
 

 

 

A MODEL TRANSFORMATION APPROACH  
TO AUTOMATED MODEL EVOLUTION 

 
 
 
 
 
 
 
 

by 

YUEHUA LIN 

 

JEFFREY G. GRAY, COMMITTEE CHAIR 
BARRETT BRYANT 

ANIRUDDHA GOKHALE 
MARJAN MERNIK 

CHENGCUI ZHANG 
 
 
 
 
 
 
 
 
 
 

A DISSERTATION 

Submitted to the graduate faculty of The University of Alabama at Birmingham, 
in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 
 

BIRMINGHAM, ALABAMA 

2007



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright by 
Yuehua Lin 

2007



 iii

A MODEL TRANSFORMATION APPROACH  
TO AUTOMATED MODEL EVOLUTION 

YUEHUA LIN 

COMPUTER AND INFORMATION SCIENCES 

ABSTRACT 

It is well-known that the inherent complex nature of software systems adds to the 

challenges of software development. The most notable techniques for addressing the 

complexity of software development are based on the principles of abstraction, problem 

decomposition, separation of concerns and automation. As an emerging paradigm for 

developing complex software, Model-Driven Engineering (MDE) realizes these 

principles by raising the specification of software to models, which are at a higher level 

of abstraction than source code. As models are elevated to first-class artifacts within the 

software development lifecycle, there is an increasing need for frequent model evolution 

to explore design alternatives and to address system adaptation issues. However, a system 

model often grows in size when representing a large-scale real-world system, which 

makes the task of evolving system models a manually intensive effort that can be very 

time consuming and error prone. Model transformation is a core activity of MDE, which 

converts one or more source models to one or more target models in order to change 

model structures or translate models to other software artifacts. The main goal of model 

transformation is to provide automation in MDE. To reduce the human effort associated 

with model evolution while minimizing potential errors, the research described in this 

dissertation has contributed toward a model transformation approach to automated model 

evolution. 



 iv

A pre-existing model transformation language, called the Embedded Constraint 

Language (ECL), has been evolved to specify tasks of model evolution, and a model 

transformation engine, called the Constraint-Specification Aspect Weaver (C-SAW), has 

been developed to perform model evolution tasks in an automated manner. Particularly, 

the model transformation approach described in this dissertation has been applied to the 

important issue of model scalability for exploring design alternatives and crosscutting 

modeling concerns for system adaptation. 

Another important issue of model evolution is improving the correctness of model 

transformation. However, there execution-based testing has not been considered for 

model transformation testing in current modeling practice. As another contribution of this 

research, a model transformation testing approach has been investigated to assist in 

determining the correctness of model transformations by providing a testing engine called 

M2MUnit to facilitate the execution of model transformation tests. The model 

transformation testing approach requires a new type of test oracle to compare the actual 

and expected transformed models. To address the model comparison problem, model 

differentiation algorithms have been designed and implemented in a tool called DSMDiff 

to compute the differences between models and visualize the detected model differences. 

The C-SAW transformation engine has been applied to support automated 

evolution of models on several different experimental platforms that represent various 

domains such as computational physics, middleware, and mission computing avionics. 

The research described in this dissertation contributes to the long-term goal of alleviating 

the increasing complexity of modeling large-scale, complex applications.



 v

 

 

 

DEDICATION 
 
 

To my husband Jun,  
 

 my parents, Jiafu and Jinying, and my sisters, Yuerong and Yueqin 
 

for their love, support and sacrifice. 
 
 
 

To Wendy and Cindy, 
 

my connection to the future. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi

 

 

 
ACKNOWLEDGEMENTS 

 
I am deeply grateful to all the people that helped me to complete this work. First 

and foremost, I wish to thank my advisor, Dr. Jeff Gray, who has offered to me much 

valuable advice during my Ph.D. study, as well as inspired me to pursue high quality 

research from an exemplary work ethic. Through constant support from his DARPA and 

NSF research grants, I was able to start my thesis research at a very early stage during the 

second semester of my first year of doctoral study, which allowed me to focus on this 

research topic without involving other non-research duties. With his expertise and 

research experiences in the modeling area, he has led me into the research area of model 

transformation and helped me make stable and significant research progress. Moreover, 

Dr. Gray provided unbounded opportunities and resources that enabled me to conduct 

collaborative research with several new colleagues. In addition, he encouraged me to 

participate in numerous professional activities (e.g., conference and journal reviews), and 

generously shared with me his experiences in proposal writing. Without his tireless 

advising efforts and constant support, I could not have matured into an independent 

researcher. 

I also want to show my gratitude to Dr. Barrett Bryant. I still remember how I was 

impressed by his prompt replies to my questions during my application for graduate study 

in the CIS department. Since that time, he has offered many intelligent and insightful 

suggestions to help me adapt to the department policies and procedures, strategies and 

culture. 



 vii

I would like to thank Dr. Chengcui Zhang for her continuous encouragement. As 

the only female faculty member in the department, she has been my role model as a 

successful female researcher. Thank you, Dr. Zhang, for sharing with me your 

experiences in research and strategies for job searching. 

To Dr. Aniruddha Gokhale and Dr. Marjan Mernik, I greatly appreciate your 

precious time and effort in serving as my committee members. I am grateful to his 

willingness to assist me in improving this work. 

To Janet Sims, Kathy Baier, and John Faulkner, who have been so friendly and 

helpful during my Ph.D. studies – they have helped to make the department a very 

pleasant place to work by making me feel at home and at ease with your kind spirit. 

I am indebted to my collaborators at Vanderbilt University. Special thanks are due 

to Dr. Sandeep Neema, Dr. Ted Bapty, and Zoltan Molnar who helped me overcome 

technical difficulties during my tool implementation. I would like to thank Dr. Swapna 

Gokhale at the University of Connecticut, for sharing with me her expertise and 

knowledge in performance analysis and helping me to better understand Stochastic 

Reward Nets. I also thank Dario Correal at the University of Los Andes, Colombia for 

applying one of my research results (the C-SAW model transformation engine) to his 

thesis research. Moreover, thanks to Dr. Frédéric Jouault for offering a great course, 

which introduced me to many new topics and ideas in Model Engineering. My work on 

model differentiation has been improved greatly by addressing his constructive 

comments.  

My student colleagues in the SoftCom lab and the department created a friendly 

and cheerful working atmosphere that I enjoyed and will surely miss. To Jing Zhang, I 



 viii

cherish the time we were working together on Dr. Gray’s research grants. To Hui Wu, 

Alex Liu, Faizan Javed and Robert Tairas, I appreciate your time and patience in listening 

to me and discussing my work, which helped me to overcome difficult moments and 

made my time here at UAB more fun. 

To my best friends, Wenyan Gan and Shengjun Zheng, who I met with luck in my 

middle school, I appreciate your giving my parents and younger sisters long term help 

when I am out of hometown. 

My strength to complete this work comes from my family. To my Mom and Dad, 

thank you for giving me the freedom to pursue my life in another country. To my sisters, 

thank you for taking care of our parents when I was far away from them. To my husband, 

Jun, thank you for making such a wonderful and sweet home for me and being such a 

great father to our two lovely girls. Without your unwavering love and support, I can not 

imagine how I would complete this task. The best way I know to show my gratitude is to 

give my love to you from the bottom of my heart as you have given to me. 

Last, I am grateful to the National Science Foundation (NSF), under grant CSR-

0509342, and the DARPA Program Composition for Embedded Systems (PCES), for 

providing funds to support my research assistantship while working on this dissertation. 

 

 



ix 

 

 

 

TABLE OF CONTENTS 

Page 

ABSTRACT....................................................................................................................... iii 

DEDICATION.....................................................................................................................v 

ACKNOWLEDGMENTS ................................................................................................. vi 

LIST OF TABLES........................................................................................................... xiii 

LIST OF FIGURES ......................................................................................................... xiv 

LIST OF LISTINGS ........................................................................................................ xvi 

LIST OF ABBREVIATIONS......................................................................................... xvii 

CHAPTER 

1. INTRODUCTION .........................................................................................................1 

1.1. Domain-Specific Modeling (DSM) ......................................................................3 
1.2. The Need for Frequent Model Evolution..............................................................7 

1.2.1. System Adaptability through Modeling....................................................8 
1.2.2. System Scalability through Modeling.....................................................10 

1.3. Key Challenges in Model Evolution...................................................................11 
1.3.1. The Increasing Complexity of Evolving 

 Large-scale System Models ...................................................................11 
1.3.2. The Limited Use of Model Transformations ..........................................13 
1.3.3. The Lack of Model Transformation Testing  

for Improving the Correctness ................................................................14 
1.3.4. Inadequate Support for Model Differentiation .......................................15 

1.4. Research Goals and Overview............................................................................17 
1.4.1. Model Transformation to Automate Model Evolution ...........................17 
1.4.2. Model Transformation Testing to Ensure the Correctness .....................18 
1.4.3. Model Differentiation Algorithms and Visualization Techniques..........19 
1.4.4. Experimental Evaluation.........................................................................20 

1.5. The Structure of the Thesis .................................................................................21 



x 

TABLE OF CONTENTS (Continued) 
                                               Page 

CHAPTER 
 

2. BACKGROUND .........................................................................................................24 

2.1. Model-Driven Architecture (MDA)....................................................................24 
2.1.1. Objectives of MDA ................................................................................25 
2.1.2. The MDA Vision ....................................................................................26 

2.2. Basic Concepts of Metamodeling and Model Transformation ...........................27 
2.2.1. Metamodel, Model and System ..............................................................28 
2.2.2. The Four-Layer MOF Metamodeling Architecture ................................30 
2.2.3. Model Transformation ............................................................................32 

2.3. Supporting Technology and Tools......................................................................36 
2.3.1. Model-Integrated Computing (MIC) .........................................................36 
2.3.2. The Generic Modeling Environment (GME).............................................37 

3. AUTOMATED MODEL EVOLUTION.....................................................................43 

3.1. Challenges and Current Limitations ...................................................................43 
3.1.1. Navigation, Selection and Transformation of Models............................44 
3.1.2. Modularization of Crosscutting Modeling Concerns..............................45 
3.1.3. The Limitations of Current Techniques .................................................47 

3.2. The Embedded Constraint Language (ECL).......................................................48 
3.2.1. ECL Type System...................................................................................50 
3.2.2. ECL Operations .....................................................................................50 
3.2.3. The Strategy and Aspect Constructs .......................................................53 
3.2.4. The Constraint-Specification Aspect Weaver (C-SAW) ........................55 
3.2.5. Reducing the Complexities of Transforming GME models ...................56 

3.3. Model Scaling with C-SAW ...............................................................................57 
3.3.1. Model Scalability ....................................................................................58 
3.3.2. Desired Characteristics of a Replication Approach ................................60 
3.3.3. Existing Approaches to Support Model Replication .............................61 
3.3.4. Replication with C-SAW ........................................................................64 
3.3.5. Scaling System Integration Modeling Languages (SIML) ....................66 

3.4. Aspect Weaving with C-SAW............................................................................74 
3.4.1. The Embedded System Modeling Language (ESML)............................74 
3.4.2. Weaving Concurrency Properties into ESML Models ...........................77 

3.5. Experimental Validation .....................................................................................80 
3.5.1. Modeling Artifacts Available for Experimental Validation ...................81 
3.5.2. Evaluation Metrics for Project Assessment ............................................82 
3.5.3. Experimental Result................................................................................83 

 
 



xi 

TABLE OF CONTENTS (Continued) 
                                               Page 

CHAPTER 
 

3.6. Related Work ......................................................................................................85 
3.6.1. Current Model Transformation Techniques and Languages ..................86 
3.6.2. Related Worked on Model Scalability....................................................89 

3.7. Conclusion ..........................................................................................................91 

4. DSMDIFF: ALGORITHMS AND TOOL SUPPORT 
FOR MODEL DIFFERENTIATION ..........................................................................93 

4.1. Motivation and Introduction ...............................................................................93 
4.2. Problem Definition and Challenges ....................................................................95 

4.2.1. Information Analysis of Domain-Specific Models.................................97 
4.2.2. Formalizing a Model Representation as a Graph....................................99 
4.2.3. Model Differences and Mappings.........................................................101 

4.3. Model Differentiation Algorithms ....................................................................103 
4.3.1. Detection of Model Mappings .............................................................103 
4.3.2. Detection of Model Differences............................................................108 
4.3.3. Depth-First Detection............................................................................110 

4.4. Visualization of Model Differences..................................................................112 
4.5. Evaluation and Discussions ..............................................................................114 

4.5.1. Algorithm Analysis...............................................................................114 
4.5.2. Limitations and Improvement ..............................................................117 

4.6. Related Work ....................................................................................................119 
4.6.1. Model Differentiation Algorithms .......................................................120 
4.6.2. Visualization Techniques for Model Differences ................................122 

4.7. Conclusion ........................................................................................................123 

5. MODEL TRANSFORMATION TESTING..............................................................125 

5.1. Motivation.........................................................................................................125 
5.1.1. The Need to Ensure the Correctness of Model Transformation ...........126 
5.1.2. The Need for Model Transformation Testing ......................................128 

5.2. A Framework of Model Transformation Testing..............................................129 
5.2.1. An Overview.........................................................................................130 
5.2.2. Model Transformation Testing Engine: M2MUnit ..............................131 

5.3. Case Study ........................................................................................................133 
5.3.1. Overview of the Test Case....................................................................134 
5.3.2. Execution of the Test Case ..................................................................136 
5.3.3. Correction of the Model Transformation Specification........................139 

5.4. Related Work ....................................................................................................140 
5.5. Conclusion ........................................................................................................142 



xii 

TABLE OF CONTENTS (Continued) 
                                               Page 

CHAPTER 
 

6. FUTURE WORK.......................................................................................................144 

6.1. Model Transformation by Example (MTBE) ...................................................144 
6.2. Toward a Complete Model Transformation Testing Framework .....................148 
6.3. Model Transformation Debugging ...................................................................151 

7. CONCLUSIONS........................................................................................................152 

7.1. The C-SAW Model Transformation Approach ................................................153 
7.2. Model Transformation Testing .........................................................................155 
7.3. Differencing Algorithms and Tools for Domain-Specific Models ...................156 
7.4. Validation of Research Results.........................................................................157 

LIST OF REFERENCES.................................................................................................160 

APPENDIX 

A      EMBEDDED CONSTRAINT LANGUAGE GRAMMAR.............................173 

B      OPERATIONS OF THE EMBEDDED CONSTRAINT LANGUAGE ..........178 

C      ADDITIONAL CASE STUDIES ON MODEL SCALABILITY ....................184 

C.1. Scaling Stochastic Reward Net Modeling Language (SRNML) ..............185 
C1.1. Scalability Issues in SRNML .........................................................188 
C1.2. ECL Transformation to Scale SRNML..........................................190 

C.2. Scaling Event QoS Aspect Language (EQAL) .........................................194 
C2.1. Scalability Issues in EQAL ............................................................195 
C2.2. ECL Transformation to Scale EQAL.............................................196 

 

 

 

 

 



xiii 

 

 

 

LIST OF TABLES 

Table                                                                                                       Page 

C-1     Enabling guard equations for Figure C-1..............................................................188 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

 

 

 

LIST OF FIGURES 

Figure                                                                                                       Page 

1-1     Metamodel, models and model transformation .........................................................5 

1-2     An overview of the topics discussed in this dissertation .........................................18 

2-1     The key concepts of the MDA ................................................................................28 

2-2     The relation between metamodel, model and system..............................................30 

2-3     The MOF four-tier metamodeling architecture .......................................................31 

2-4     Generalized transformation pattern .........................................................................35 

2-5     Metamodels, models and model interpreters (compilers) in GME .........................38 

2-6     The state machine metamodel .................................................................................40 

2-7     The ATM instance model ........................................................................................41 

3-1     Modularization of crosscutting model evolution concerns......................................46 

3-2     Overview of C-SAW ...............................................................................................56 

3-3     Replication as an intermediate stage of model compilation (A1) ...........................62 

3-4     Replication as a domain-specific model compiler (A2) ..........................................64 

3-5     Replication using the model transformation engine C-SAW (A3)..........................66 

3-6     Visual Example of SIML Scalability.......................................................................69 

3-7     A subset of a model hierarchy with crosscutting model properties.........................76 

3-8     Internal representation of a Bold Stroke component ...............................................78 

 



xv 

3-9     The transformed Bold Stroke component model.....................................................80 

4-1     A GME model and its hierarchical structure .........................................................101 

4-2     Visualization of model differences........................................................................113 

4-3     A nondeterministic case that DSMDiff may produce incorrect result ..................118 

5-1     The model transformation testing framework .......................................................131 

5-2     The model transformation testing engine M2MUnit.............................................133 

5-3     The input model prior to model transformation ....................................................135 

5-4     The expected model for model transformation testing..........................................135 

5-5     The output model after model transformation.......................................................137 

5-6     A summary of the detected differences .................................................................138 

5-7     Visualization of the detected differences...............................................................138 

C-1     Replication of Reactor Event Types (from 2 to 4 event types).............................187 

C-2     Illustration of replication in EQAL.......................................................................196 

 

 

 

 

 

 

 

 

 



xvi 

 

 

 

LIST OF LISTINGS 

Listing                                                                                                       Page 

3-1     Examples of ECL aspect and strategy .....................................................................54 

3-2     Example C++ code to find a model from the root folder ........................................57 

3-3     ECL specification for SIML scalability...................................................................73 

3-4     ECL specification to add concurrency atoms to ESML models..............................79 

4-1     Finding the candidate of maximal edge similarity ................................................107 

4-2     Computing edge similarity of a candidate.............................................................107 

4-3     Finding signature mappings and the Delete differences........................................109 

4-4     DSMDiff Algorithm ..............................................................................................111 

5-1     The to-be-tested ECL specification .......................................................................136 

5-2     The corrected ECL specification ...........................................................................139 

C-1     ECL transformation to perform first subtask of scaling snapshot ........................192 

C-2     ECL transformation to perform second subtask of scaling snapshot....................193 

C-3     ECL fragment to perform the first step of replication in EQAL...........................197 

 

 

 

 

 



xvii 

 

 

 

LIST OF ABBREVIATIONS 

AMMA  Atlas Model Management Architecture 

ANTLR  Another Tool for Language Recognition 

AOM   Aspect-Oriented Modeling 

AOP   Aspect-Oriented Programming 

AOSD   Aspect-Oriented Software Development 

API   Application Program Interface 

AST   Abstract Syntax Tree 

ATL   Atlas Transformation Language 

CASE   Computer-Aided Software Engineering 

CIAO   Component-Integrated ACE ORB 

CORBA  Common Object Request Broker Architecture 

C-SAW  Constraint-Specification Aspect Weaver 

CWM   Common Warehouse Metamodel 

DSL   Domain-Specific Language 

DSM   Domain-Specific Modeling 

DSML   Domain-Specific Modeling Language 

DRE   Distributed Real-Time and Embedded 

EBNF   Extended Backus-Naur Form 

ECL   Embedded Constraint Language 



xviii 

EMF   Eclipse Modeling Framework 

EQAL   Event Quality Aspect Language 

ESML   Embedded Systems Modeling Language 

GME   Generic Modeling Environment 

GPL   General Programming Language 

GReAT  Graph rewriting and transformation 

IP   Internet Protocol 

LHS   Left-Hand Side 

MDA   Model-Driven Architecture 

MDE   Model-Driven Engineering 

MDPT   Model-Driven Program Transformation 

MCL   Multigraph Constraint Language  

MIC   Model-Integrated Computing 

MOF   Meta Object Facility 

MTBE   Model Transformation by Example 

NP   Non-deterministic Polynomial time 

OCL   Object Constraint Language 

OMG   Object Management Group 

PBE   Programming by Example 

PIM   Platform-Independent Model 

PICML  Platform-Independent Component Modeling Language 

PLA   Production-Line Architecture 

PSM   Platform-Specific Model 



xix 

QBE   Query by Example 

QoS   Quality of Service 

RHS   Right-Hand Side 

RTES   Real-Time and Embedded Systems 

SRN   Stochastic Reward Net 

SRNML  Stochastic Reward Net Modeling Language 

QVT   Query/View/Transformations 

SIML   System Integrated Modeling Language 

XMI   XML Metadata Interchange 

XML   Extensible Markup Language 

XSLT   Extensible Stylesheet Transformations 

YATL   Yet Another Transformation Language 

UAV   Unmanned Aerial Vehicle 

UDP   User Datagram Protocol 

UML   Unified Modeling Language 

UUID   Universally Unique Identifier 

VB   Visual Basic 

 

 

 

 

 

 



 1

 

 

 

CHAPTER 1 

INTRODUCTION 

 

It is well-known that the inherent complex nature of software systems increases 

the challenges of software development [Brooks, 95]. The most notable techniques for 

addressing the complexity of software development are based on the principles of 

abstraction, problem decomposition, information hiding, separation of concerns and 

automation [Dijkstra, 76], [Parnas, 72]. Since the inception of the software industry, 

various efforts in software research and practice have been made to provide abstractions 

to shield software developers from the complexity of software development.  

Computer-Aided Software Engineering (CASE) was a prominent effort that 

focused on developing software methods and modeling tools that enabled developers to 

express their designs in terms of general-purpose graphical programming representations, 

such as state machines, structure diagrams, and dataflow diagrams [Schmidt, 06]. As the 

first software product sold independently of a hardware package, Autoflow was a 

flowchart modeling tool developed in 1964 by Martin Goetz of Applied Data Research 

[Johnson, 98]. Although CASE tools have historical relevance in terms of offering some 

productivity benefits, there are several limitations that have narrowed their potential 

[Gray et al., 07]. 



 2

The primary drawback of most CASE tools was that they were constrained to 

work with a fixed notation, which forced the end-users to adopt a language prescribed by 

the tool vendors. Such a universal language may not be suitable in all cases for an end-

user’s distinct needs for solving problems in their domain. As observed by Schmidt, “As 

a result, CASE had relatively little impact on commercial software development during 

the 1980s and 1990s, focusing primarily on a few domains, such as telecom call 

processing, that mapped nicely onto state machine representations” [Schmidt, 06].  

Another goal of CASE is to automate software development by synthesizing 

implementations from the graphical design representations. However, there exists a major 

hindrance to achieve such automation due to the lack of integrated transformation 

technologies to transform graphical representations at a high-level of abstraction (e.g., 

design model) to a low-level representation (e.g., implementation code). Consequently, 

many CASE systems were restricted to a few specific application domains and unable to 

satisfy the needs for developing production-scale systems across various application 

domains [Schmidt, 06].  

There also has been significant effort toward raising the abstraction of 

programming languages to shield the developers from the complexity of both language 

and platform technologies. For example, early programming languages such as assembly 

language provide an abstraction over machine code. Today, Object-Oriented languages 

such as C++ and Java introduce additional abstractions (e.g., abstract data types and 

objects) [Hailpern and Tarr, 06]. However, the advances on programming languages still 

cannot cover the fast growing complexity of platforms. For example, popular middleware 

platforms, such as J2EE, .NET and CORBA, contain thousands of classes and methods 



 3

with many intricate dependencies. Such middleware evolves rapidly, which requires 

considerable manual effort to program and port application code to newer platforms when 

using programming languages [Schmidt, 06]. Also, programming languages are hard to 

describe system-wide, non-functional concerns such as system deployment, configuration 

and quality assurance because they primarily aim to specify functional aspects of a 

system.  

To address the challenges in current software development such as the increased 

complexity of products, shortened development cycles and heightened expectations of 

quality [Hailpern and Tarr, 06], there is an increasing need for new languages and 

technologies that can express the concepts effectively for a specific domain. Also, new 

methodologies are needed for decomposing a system to various but consistent aspects, 

and enabling transformation and composition between various artifacts in the software 

development lifecycle within a unified infrastructure. To meet these challenges, Model-

Driven Engineering (MDE) [Kent, 02] is an emerging approach to software development 

that centers on higher level specifications of programs in Domain-Specific Modeling 

Languages (DSMLs), offering greater degrees of automation in software development, 

and the increased use of standards [Schmidt, 06]. In practice, Domain-Specific modeling 

(DSM) is a methodology to realize the vision of MDE [Gray et al., 07]. 

 

1.1 Domain-Specific Modeling (DSM) 

MDE represents a design approach that enables description of the essential 

characteristics of a problem in a manner that is decoupled from the details of a specific 

solution space (e.g., dependence on specific middleware or programming language). To 



 4

apply lessons learned from earlier efforts at developing higher level platform and 

language abstraction, a movement within the current MDE community is advancing the 

concept of customizable modeling languages, in opposition to a universal, general-

purpose language that attempts to offer solutions for a broad category of users such as the 

Unified Modeling Language (UML) [Booch et al., 99]. This newer breed of tools enables 

DSM, an MDE methodology that generates customized modeling languages and 

environments for a narrow domain of interest. 

In the past, abstraction was improved when programming languages evolved 

towards higher levels of specification. DSM takes a different approach, by raising the 

level of abstraction, while at the same time narrowing down the design space, often to a 

single range of products for a single domain [Gray et al., 07]. When applying DSM, the 

language follows the domain abstractions and semantics, allowing developers to perceive 

themselves as working directly with domain concepts of the problem space instead of 

code concepts of the solution space. Also, domain-specific models are subsequently 

transformed into executable code by a sequence of model transformations to provide 

automation support for software development. As shown in Figure 1-1, DSM 

technologies combine the following: 

• Domain-specific modeling languages “whose type systems formalize the 

application structure, behavior, and requirements within particular domains” 

[Schmidt, 06]. A metamodel formally defines the abstract syntax and static 

semantics of a DSML by specifying a set of modeling elements and their valid 

relationships for that specific domain. A model is an instance of the metamodel 

that represents a particular part of a real system. Developers use DSMLs to build 



 5

domain-specific models to specify applications and their design intents [Gray et 

al., 07]. 

• Model transformations play a key role in MDE to convert models to other 

software artifacts. They are used for refining models to capture more system 

details or synthesizing various types of artifacts from models. For example, 

models can be synthesized to source code, simulation input and XML deployment 

descriptions. Model transformation can be automated to reduce human effort and 

potential errors during software development. 

 

 

Figure 1-1 -  Metamodel, models and model transformation 

 

The DSM philosophy of narrowly defined modeling languages can be contrasted 

with larger standardized modeling languages, such as the UML, which are fixed and 



 6

whose size and complexity [Gîrba and Ducasse, 06] provide abstractions that may not be 

needed in every domain, adding to the confusion of domain experts. Moreover, using 

notations that relate directly to a familiar domain not only helps flatten learning curves 

but also facilitates the communication between a broader range of experts, such as 

domain experts, system engineers and software architects. In addition, the ability of DSM 

to synthesize artifacts from high-level models to low-level implementation artifacts, 

simplifies the activities in software development such as developing, testing and 

debugging. Most recently, the “ModelWare” principle (i.e., everything is a model) 

[Kurtev et al., 06] has been adopted in the MDE community to provide a unified 

infrastructure to integrate various artifacts and enable transformations between them 

during the software development lifecycle. 

The key challenge in applying DSM is to define useful standards that enable tools 

and models to work together portably and effectively [Schmidt, 06]. Existing de facto 

standards include the Object Management Group’s Model Driven Architecture (MDA) 

[MDA, 07], Query/View/Transformations (QVT) [QVT, 07] and the MetaObject 

Facilities (MOF) [MOF, 07]. These standards can also form the basis for domain-specific 

modeling tools. Existing metamodeling infrastructures and tools include the Generic 

Modeling Environment (GME) [Lédeczi et al., 01], ATLAS Model Management 

Architecture (AMMA) [Kurtev et al., 06], Microsoft’s DSL tools [Microsoft, 05], [Cook 

et al., 07], MetaEdit+ [MetaCase, 07], and the Eclipse Modeling Framework (EMF) 

[Budinsky et al., 04]. Initial success stories from industry adoption of DSM have been 

reported, with perhaps the most noted being Saturn’s multi-million dollar cost savings 

associated with timelier reconfiguration of an automotive assembly line driven by 



 7

domain-specific models [Long et al., 98]. The newly created DSM Forum [DSM Forum, 

07] serves as a repository of several dozen successful projects (mostly from industry, 

such as Nokia, Dupont, Honeywell, and NASA) that have adopted DSM. 

 

1.2 The Need for Frequent Model Evolution 

The goal of MDE is to raise the level of abstraction in program specification and 

increase automation in software development in order to simplify and integrate the 

various activities and tasks that comprise the software development lifecycle. In MDE, 

models are elevated as the first-class artifacts in software development and used in 

various activities such as software design, implementation, testing and evolution. 

A powerful justification for the use of models concerns the flexibility of system 

analysis, i.e., system analysis can be performed while exploring various design 

alternatives. This is particularly true for distributed real-time and embedded (DRE) 

systems, which have many properties that are often conflicting (e.g., battery consumption 

versus memory size), where the analysis of system properties is often best provided at 

higher levels of abstraction [Hatcliff et al., 03]. Also, when developers apply MDE tools 

to model large-scale systems containing thousands of elements, designers must be able to 

examine various design alternatives quickly and easily among myriad and diverse 

configuration possibilities. Ideally, a tool should simulate each new design configuration 

so that designers could rapidly determine how some configuration aspect, such as a 

communication protocol, affects an observed property, such as throughput. To provide 

support for that degree of design exploration, frequent change evolution is required 

within system models [Gray et al., 06]. 



 8

Although various types of changes can be made to models, there are two 

categories of changes that designers often do manually—typically with poor results. The 

first category comprises changes that crosscut the model representation’s hierarchy in 

order to adapt the modeled system to new requirements or environments. The second 

category of change evolution involves scaling up parts of the model—a particular 

concern in the design of large-scale distributed, real-time, embedded systems, which can 

have thousands of coarse-grained components. Model transformation provides 

automation support in MDE, not only for translating models into other artifacts (i.e., 

exogenous transformation) but also for changing model structures (i.e., endogenous 

transformation). Application of model transformation to automate model evolution can 

reduce human effort and potential errors. The research described in this dissertation 

concentrates on developing an automated model transformation approach to address two 

important system properties—system adaptability and scalability at the modeling level, 

each corresponding to one category of model evolution, as discussed in the following 

sections. 

 

1.2.1 System Adaptability through Modeling 

Adaptability is emerging as a critical enabling capability for many applications, 

particularly for environment monitoring, disaster management and other applications 

deployed in dynamically changing environments. Such applications have to reconfigure 

themselves according to fluctuations in their environment. A longstanding challenge of 

software development is to construct software that is easily adapted to changing 

requirements and new environments. Software production-line architectures (PLAs) are a 



 9

promising technology for the industrialization of software development by focusing on 

the automated assembly and customization of domain-specific component [Clements and 

Northrop, 01], which requires the ability to rapidly configure, adapt and assemble 

independent components to produce families of similar but distinct systems [Deng et al., 

08].  As demand for software adaptability increases, novel strategies and methodologies 

are needed for supporting the requisite adaptations across different software artifacts 

(e.g., models, source code, test cases, documentation) [Batory et al., 04].  

In modeling, many requirements changes must be made across a model hierarchy, 

which are called crosscutting modeling concerns [Gray et al., 01]. An example is the 

effect of fluctuating bandwidth on the quality of service across avionics components that 

must display a real-time video stream. To evaluate such a change, the designer must 

manually traverse the model hierarchy by recursively clicking on each submodel. 

Another example is the Quality of Service (QoS) constraints of Distributed Real-Time 

and Embedded (DRE) systems. The development of DRE systems is often a challenging 

task due to conflicting QoS constraints that must be explored as trade-offs among a series 

of alternative design decisions. The ability to model a set of possible design alternatives, 

and to analyze and simulate the execution of the representative model, offers great 

assistance toward arriving at the correct set of QoS parameters needed to satisfy the 

requirements for a specific DRE system. Typically, the QoS specifications are also 

distributed in DRE system models, which necessitate intensive effort to make changes 

manually. 

 



 10

1.2.2 System Scalability through Modeling 

Scalability is a desirable property of a system, a network, or a process, which 

indicates its ability to either handle growing amounts of work in a graceful manner, or to 

be readily enlarged [Bondi, 00] (e.g., new system resources may be added or new types of 

objects the system needs to handle). The corresponding form of design exploration for 

system scalability involves experimenting with model structures by expanding different 

portions of models and analyzing the result on scalability. For example, a network 

engineer may create various models to study the effect on network performance when 

moving from two routers to eight routers, and then to several dozen routers. This requires 

the ability to build a complex model from a base model by replicating its elements or 

substructures and adding the necessary connections [Lin et al., 07-a]. 

This type of change requires creating model elements and connections. 

Obviously, scaling a base model of a few elements to thousands of new elements requires 

a staggering amount of clicking and typing within the modeling tool. The ad hoc nature 

of this process causes errors, such as forgetting to make a connection between two 

replicated elements. Thus, manual scaling affects not only modeling performance, but 

also the representation’s correctness.  

According to the above discussion, to support system adaptability and scalability 

requires extensive support from the host modeling tool to enable rapid change evolution 

within the model representation. There are several challenges that need to be addressed in 

order to improve the productivity and quality of model evolution. These challenges are 

discussed in the next section. 

 



 11

1.3 Key Challenges in Model Evolution 

As discussed in Section 1.2, with the expanded focus of software and system 

models has come the urgent need to manage complex change evolution within the model 

representation [Sendall and Kozaczynski, 03]. In current MDE practice, as the size of 

system models expands, the limits of MDE practice are being pushed to address 

increasingly complex model management issues that pertain to change evolution within 

the model representation by providing new methodologies and best practices. Also, there 

is an increasing need to apply software engineering principles and processes into general 

modeling practice to assist in systematic development of models and model 

transformation. As a summary, the research described in this dissertation focuses on 

challenges in current modeling practice that are outlined in the following subsections. 

 

1.3.1 The Increasing Complexity of Evolving Large-scale System Models  

To support frequent model evolution, changes to models need to be made quickly 

and correctly. Model evolution tasks have become human intensive because of the 

growing size of system models and the deeply nested structures of models, inherently 

from the complexity of large-scale software systems.  

From our personal experience, models can have multiple thousands of coarse 

grained components (others have reported similar experience, please see [Johann and 

Egyed, 04]). Modeling these components using traditional manual model creation 

techniques and tools can approach the limits of the effective capability of humans. 

Particularly, the process of modeling a large DRE system with a DSML, or a tool like 

MatLab [Matlab, 07], is different than traditional class-based UML modeling. In DRE 



 12

systems modeling, the models consist of instances of all entities in the system, which can 

number into several thousand instances from a set of types defined in a metamodel (e.g., 

thousands of individual instantiations of a sensor type in a large sensor network model). 

Traditional UML models (e.g., UML class diagrams) are typically not concerned with the 

same type of instance-level focus, but instead specify the entities and their relationship of 

a system at design time (such as classes). This is not to imply that UML-based models do 

not have change evolution issues such as scalability issues (in fact, the UML community 

has recognized the importance of specifying instance models at a large-scale [Cuccuru et 

al., 05]), but the problem is more acute with system models built with DSMLs. The main 

reason is that system models are usually sent to an analysis tool (e.g., simulation tool) to 

explore system properties such as performance and security. Such models need to capture 

a system by including the instances of all the entities (such as objects) that occur at run-

time, which leads to their larger size and nested hierarchy [Lin et al., 07-a]. 

Due to the growing size and the complicated structures of a large-scale system 

model, a manual process for making correct changes can be laborious, error-prone and 

time consuming. For example, to examine the effect of scalability on a system, the size of 

a system model (e.g., the number of the participant model elements and connections) 

needs to be increased or decreased frequently. The challenges of scalability affect the 

productivity of the modeling process, as well as the correctness of the model 

representation. As an example, consider a base model consisting of a few modeling 

elements and their corresponding connections. To scale a base model to hundreds, or 

even thousands of duplicated elements would require a considerable amount of mouse 

clicking and typing within the associated modeling tool [Gray et al., 06]. Furthermore, 



 13

the tedious nature of manually replicating a base model may also be the source of many 

errors (e.g., forgetting to make a connection between two replicated modeling elements). 

Therefore, a manual process to model evolution significantly hampers the ability to 

explore design alternatives within a model (e.g., after scaling a model to 800 modeling 

elements, it may be desired to scale back to only 500 elements, and then back up to 700 

elements, in order to understand the impact of system size). An observation from the 

research described in this dissertation is that the complexities of model evolution must be 

tackled at a higher level of abstraction through automation with a language tailored to the 

task of model transformation. 

 

1.3.2 The Limited Use of Model Transformations 

Model transformation has the potential to provide intuitive notations at a high-

level of abstraction to define tasks of model evolution. However, this new role of model 

transformation has not been addressed fully by current modeling research and practice. 

For example, transformations in software modeling and design are mostly performed 

between modeling languages representing different domains. The role of transformation 

within the same language has not been fully explored as a new applications of stepwise 

refinement. Such potential roles for transformations may include the following: 

1. model optimizations—transforming a given model to an equivalent one that is 

optimized, in the sense that a given metric or design rule is respected; 

2. consistency checks—transforming different viewpoints of the same model into a 

common notation for purposes of comparison; 



 14

3. automation of parts of the design process—transformations are used in developing 

and managing design artifacts like models; 

4. model scalability – automation of model changes that will scale a base model to a 

larger configuration [Lin et al., 07-a]; 

5. modularization of crosscutting modeling concerns – properties of a model may be 

scattered across the modeling hierarchy. Model transformations may assist in 

modularizing the specification of such properties in a manner that supports rapid 

exploration of design alternatives [Gray et al., 06]. 

Within a complex model evolution process, there are many issues that can be addressed 

by automated model transformation. The research described in this dissertation presents 

the benefits that model transformation offers in terms of capturing crosscutting model 

properties and other issues dealing with the difficulties of model scalability. Besides 

model scalability and modularization of crosscutting modeling concerns, another scenario 

is building implementation models (e.g., deployment models) based on design models 

(e.g., component models) [Balasubramanian et al., 06]. Such tasks can be performed 

rapidly and correctly in an automated fashion using the approach presented in Chapter 3. 

 

1.3.3 The Lack of Model Transformation Testing for Improving Correctness 

One of the key issues in software engineering is to ensure that the product 

delivered meets its specification. In traditional software development, testing [Gelperin 

and Hetzel, 88], [Zhu et al., 97] and debugging [Rosenberg, 96], [Zellweger, 84] have 

proven to be vital techniques toward improving quality and maintainability of software 

systems. However, such processes are heavily applied at source code levels and are less 



 15

integrated into modeling. In addition to formal methods (e.g., model checking and 

theorem proving for verifying models and transformations), testing, as a widely used 

technique serving as a best practice in software engineering, can serve as an engineering 

solution to validate model transformations. 

Model transformation specifications are used to define tasks of model evolution. 

A transformation specification, like the source code in an implementation, is written by 

humans and susceptible to errors. Additionally, a transformation specification may be 

reusable across similar domains. Therefore, it is essential to test the correctness of the 

transformation specification (i.e., the consistency and completeness, as validated against 

model transformation requirements) before it is applied to a collection of source models. 

Consequently, within a model transformation infrastructure, it is vital to provide well-

established software engineering techniques such as testing for validating model 

transformation [Küster, 06]. Otherwise, the correctness of the transformation may always 

be suspect, which hampers confidence in reusing the transformation. A contribution to 

model transformation testing is introduced in Chapter 5. 

 

1.3.4 Inadequate Support for Model Differentiation 

  The algorithms and the supporting tools of model differentiation (i.e., finding 

mappings and differences between two models, also called model differencing or model 

comparison) may benefit various modeling practices, such as model consistency 

checking, model versioning and model refactoring. In the transformation testing 

framework, model differencing techniques are crucial to realize the vision of execution-



 16

based testing of model transformations by assisting in comparing the expected result (i.e., 

the expected model) and the actual output (i.e., the output model).  

Currently, there are many tools available for differentiating text files (e.g., code 

and documentation). However, these tools operate under a linear file-based paradigm that 

is purely textual, but models are often structurally rendered in a tree or graphical notation. 

Thus, there is an abstraction mismatch between currently available version control tools 

and the hierarchical nature of models. To address this problem, there have been only a 

few research efforts on UML model comparison [Ohst et al., 03], [Xing and Stroulia, 05] 

and metamodel independent comparison [Cicchetti et al., 07]. However, there has been 

no work reported on comparison of domain-specific models, aside from [Lin et al., 07-a]. 

Visualization of the result of model comparison (i.e., structural model differences) 

is also critical to assist in comprehending the mappings and differences between two 

models. To help communicate the comparison results, visualization techniques are 

needed to highlight model differences intuitively within a host modeling environment. 

For example, graphical symbols and colors can be used to indicate whether a model 

element is missing or redundant. Additionally, these symbols and colors are needed to 

decorate properties even inside models. Finally, a navigation system is needed to support 

browsing model differences efficiently. Such techniques are essential to understanding 

the results of model comparison. The details of a novel model differencing algorithm 

with visualization tool support are presented in Chapter 4. 

 



 17

1.4 Research Goals and Overview 

To address the increasing complexity of modeling large-scale software systems 

and to improve the productivity and quality of model evolution, the main goal of the 

research described in this dissertation is to provide a high-level model transformation 

approach and associated tools for rapid evolution of large-scale systems in an automated 

manner. To assist in determining the correctness of model transformations, this research 

also investigates testing of model transformations. The model transformation testing 

project has led into an exploration of model comparison, which is needed to determine 

the differences between an expected model and the actual result. Figure 1-2 shows an 

integrated view of this research. The overview of the research is described in the 

following sections. 

 

1.4.1 Model Transformation to Automate Model Evolution 

To address the complexity of frequent model evolution, a contribution of this 

research is a model transformation approach to automated model evolution. A pre-

existing model transformation language, called the Embedded Constraint Language 

(ECL), has been evolved to specify tasks of model evolution. The ECL has been re-

implemented in a model transformation engine, called the Constraint-Specification 

Aspect Weaver (C-SAW), to perform model evolution tasks in an automated manner. 

Particularly, the model transformation approach described in this dissertation has been 

applied to the important issue of model scalability for exploring design alternatives and 

crosscutting modeling concerns for system adaptation. 

 



 18

 

Figure 1-2 -  An overview of the topics discussed in this dissertation 

 

By enabling model developers to work at a higher level of abstraction, ECL 

serves as a small but powerful language to define tasks of model evolution. By providing 

automation to execute ECL specifications, C-SAW aims to reduce the complexity that is 

inherent in the challenge problems of model evolution. 

 

1.4.2 Model Transformation Testing to Ensure the Correctness 

Another important issue of model transformation is to ensure its correctness. To 

improve the quality of C-SAW transformations, a model transformation testing approach 

has been investigated to improve the accuracy of transformation results where a model 

transformation testing engine called M2MUnit provides support to execute test cases with 

the intent of revealing errors in the transformation specification. 



 19

The basic functionality includes execution of the transformations, comparison of 

the actual output model and the expected model, and visualization of the test results. 

Distinguished from classical software testing tools, to determine whether a model 

transformation test passes or fails requires comparison of the actual output model with 

the expected model, which necessitates model differencing algorithms and visualization. 

If there are no differences between the actual output and expected models, it can be 

inferred that the model transformation is correct with respect to the given test 

specification. If there are differences between the output and expected models, the errors 

in the transformation specification need to be isolated and removed. 

By providing a unit testing approach to test the ECL transformations, M2MUnit 

aims to reduce the human effort in verifying the correctness of model evolution. 

 

1.4.3 Model Differentiation Algorithms and Visualization Techniques 

Driven by the need of model comparison for model transformation testing, model 

differencing algorithms and an associated tool called DSMDiff have been developed to 

compute differences between models. In addition to model transformation testing, model 

differencing techniques are essential to many model development and management 

practices such as model versioning. 

Theoretically, the generic model comparison problem is similar to the graph 

isomorphism problem that can be defined as finding the correspondence between two 

given graphs, which is known to be in NP [Garey and Johnson, 79]. The computational 

complexity of graph matching algorithms is the major hindrance to applying them to 

practical applications in modeling. To provide efficient and reliable model differencing 



 20

algorithms, the research described in this dissertation provides a solution by using the 

syntax of modeling languages to help handle conflicts during model matching and 

combining structural comparison to determine whether the two models are equivalent. In 

general, DSMDiff takes two models as hierarchical graphs, starts from the top-level of 

the two containment models and then continues comparison to the child sub-models. 

Visualization of the result of model differentiation (i.e., structural model 

differences) is critical to assist in comprehending the mappings and differences between 

two models. To help communicate the discovered model differences, a tree browser has 

been constructed to indicate the possible kinds of model differences (e.g., a missing 

element, or an extra element, or an element that has different values for some properties) 

with graphical symbols and colors. 

 

1.4.4 Experimental Validation 

This research provides a model transformation approach to automated model 

evolution that considers additional issues of testing to assist in determining the 

correctness of model transformations. The contribution has been evaluated to determine 

the degree to which the developed approach achieves a significant increase in 

productivity and accuracy in model evolution. The modeling artifacts available for 

experimental validation are primarily from two sources. One source is Vanderbilt 

University, a collaborator on much of the C-SAW research, who has provided multiple 

modeling artifacts as experimental artifacts. The other source is the Escher repository 

[Escher, 07], which makes modeling artifacts developed from DARPA and NSF projects 

available for experimentation.  



 21

C-SAW has been applied to several model evolution projects for experimental 

evaluation. The feedback from these case studies has been used to evaluate the modeling 

effectiveness of C-SAW (e.g., reduced time, increased accuracy and usability) and has 

demonstrated C-SAW as an effective tool to automate model evolution in various 

domains for specific types of transformations. Moreover, a case study is provided to 

highlight the benefit of the M2MUnit testing engine in detecting errors in model 

transformation. Analytical evaluation has been conducted to assess the performance and 

relative merit of the DSMDiff algorithms and tools. 

 

1.5 The Structure of the Dissertation 

To conclude, the major contributions of the thesis work include: 1) automated 

model evolution by offering ECL as a high-level transformation language to specify 

model evolution and providing the C-SAW model transformation engine to execute the 

ECL specifications; 2) apply software engineering practices such as testing to model 

transformations in order to ensure the correctness of model evolution; and 3) develop 

model differentiation algorithms and an associated tool (DSMDiff) for computing the 

mappings and differences between domain-specific models. The thesis research aims to 

address the difficult problems in modeling complex, large-scale software systems by 

providing support for evolving models rapidly and correctly. 

The remainder of this dissertation is structured as follows: Chapter 2 provides 

further background information on MDE and DSM. Several modeling standards are 

introduced in Chapter 2, including MDA and the MOF metamodeling architecture. 

Furthermore, the concepts of metamodels and models are discussed in this background 



 22

chapter as well as the definitions and categories of model transformation are presented. 

DSM is further discussed in Chapter 2 by describing one of its paradigms - Model 

Integrated Computing (MIC) and its metamodeling tool GME, which is also the modeling 

environment used in the research described in this dissertation. 

Chapter 3 details the model transformation approach to automate model 

evolution. The model transformation language ECL and the model transformation engine 

C-SAW are described as the initial work. The emphasis is given to describe how C-SAW 

has been used to address the important issues of model scalability for exploring 

alternative designs and model adaptability for adapting systems to new requirements and 

environments. Two case studies are presented to illustrate how C-SAW addresses the 

challenges. In addition, to demonstrate the benefits of this approach, experimental 

evaluation is discussed, including modeling artifacts, evaluation metrics and experimental 

results.  

Chapter 4 describes the research contributions on model differentiation. This 

chapter begins with a brief discussion on the need for model differentiation, followed by 

detailed discussions on the limitations of current techniques. The problem of model 

differentiation is formally defined and the challenges for this problem are identified. The 

emphasis is placed on the model differentiation algorithms, including an analysis of non-

structural and structural information of model elements, formal representation of models 

and details of the algorithms. The work representing visualization of model differences is 

also presented as necessary support to assist in comprehending the results of model 

differentiation. In addition, complexity analysis is given to evaluate the performance of 

the algorithms, followed by discussions on current limitations and future improvements. 



 23

Chapter 5 presents a model transformation testing approach. This chapter begins 

with a motivation of the specific need to ensure the correctness of model transformations, 

followed by a discussion on the limitations of current techniques. An overview of the 

model transformation testing approach is provided and an emphasis is given on the 

principles and the implementation of the model transformation testing engine M2MUnit. 

In addition, a case study is offered to illustrate this approach to assist in detecting the 

errors in ECL specifications.  

Chapter 6 explores future extensions for this work and Chapter 7 presents 

concluding comments.  Appendix A provides the grammar of ECL, and Appendix B lists 

the operations in ECL. There are two additional case studies provided in Appendix C to 

demonstrate the benefit of using C-SAW to scale domain-specific models.  



 24

 

 

 

CHAPTER 2 

BACKGROUND 

 

This chapter provides further background information on Model-Driven 

Engineering (MDE) and Domain-Specific Modeling (DSM). Several modeling standards 

are introduced, including Model-Driven Architecture (MDA) and the Meta Object 

Facility (MOF) metamodeling architecture. The concepts of metamodels and models are 

discussed, as well as the definitions and categories of model transformation. Domain-

Specific Modeling is further discussed by describing one of its paradigms – Model 

Integrated Computing (MIC) and its metamodeling tool – the Generic Modeling 

Environment (GME), which is also the modeling environment used to conduct the 

research described in this dissertation.  

 

2.1 Model-Driven Architecture (MDA) 

MDA is a standard for model-driven software development promoted by the 

Object Management Group (OMG) in 2001, which aims to provide open standards to 

interoperate new platforms and applications with legacy systems [MDA, 07], [Frankel, 

03], [Kleppe et al., 03]. MDA introduces a set of basic concepts such as model, 

metamodel, modeling language and model transformation and lays the foundation for 

MDE. 



 25

2.1.1 Objectives of MDA 

To address the problem of the continual emergence of new technologies that 

forces organizations to frequently port their applications to new platforms, the primary 

goal of MDA is to provide cross-platform compatibility of application software despite 

any implementation, or platform-specific changes (to the hardware platform, the software 

execution platform, or the application software interface). In particular, MDA provides an 

architecture that assures portability, interoperability, reusability and productivity through 

architectural separation of concerns [Miller and Mukerji, 01]: 

• Portability: “reducing the time, cost and complexity associated with retargeting 

applications to different platforms and systems that are built with new 

technologies;” 

• Reusability: “enabling application and domain model reuse and reducing the cost 

and complexity of software development;” 

• Interoperability: “using rigorous methods to guarantee that standards based on 

multiple implementation technologies all implement identical business functions;” 

• Productivity: “allowing system designers and developers to use languages and 

concepts that are familiar to them, while allowing seamless communication and 

integration across the teams.” 

To meet the above objectives, OMG has established a number of modeling standards as 

the core infrastructure of the MDA: 

• The Unified Modeling Language (UML) [UML, 07] is “a standard object-

oriented modeling language and framework for specifying, visualizing, 

constructing, and documenting software systems;” 



 26

• MetaObject Facility (MOF) [MOF, 07] is “an extensible model driven 

integration framework for defining, manipulating and integrating metadata and 

data in a platform-independent manner;”  

• XML Metadata Interchange (XMI) [XMI, 07] is “a model driven XML 

Integration framework for defining, interchanging, manipulating and integrating 

XML data and objects;”  

• Common Warehouse Metamodel (CWM) [CWM, 07] is “standard interfaces 

that can be used to enable easy interchange of warehouse and business 

intelligence metadata between warehouse tools, warehouse platforms and 

warehouse metadata repositories in distributed heterogeneous environments.” 

These standards form the basis for building platform-independent applications using any 

major open or proprietary platform, including CORBA, Java, .Net and Web-based 

platforms, and even future technologies.  

 

2.1.2 The MDA Vision 

OMG defines MDA as an approach to system development based on models. 

MDA classifies models into two categories: Platform-Independent Models (PIMs) and 

Platform-Specific Models (PSMs). These categories contain models at different levels of 

abstraction. PIM represents a view of a system without involving platform and 

technology details. PSM specifies a view of a system from a platform-specific viewpoint 

by containing platform and technology dependent information. 

The development of a system according to the MDA approach starts by building a 

PIM with a high-level of abstraction that is independent of any implementation 



 27

technology. PIM describes the business functionality and behavior using UML, including 

constraints of services specified in the Object Constraint Language (OCL) [OCL, 07] and 

behavioral specification (dynamic semantics) specified in the Action Semantics (AS) 

language [AS, 01]. In the next phase the PIM is transformed to one or more PSMs.  A 

PSM is tailored to specify a system in terms of the implementation constructs provided 

by the chosen platforms (e.g., CORBA, J2EE, and .NET). Finally, implementation code 

is generated from the PSMs in the code generation phase using model-to-code 

transformation tools. The MDA architecture is summarized in Figure 2-1. 

The claimed advantages of MDA include increased quality and productivity of 

software development by isolating software developers from implementation details and 

allowing them to focus on a thorough analysis of the problem space. MDA, however, 

lacks the notion of a software development process. MDE is an enhancement of MDA 

that adds the notion of software development processes to operate and manage models by 

utilizing domain-specific technologies. 

 

2.2 Basic Concepts of Metamodeling and Model Transformation 

Metamodeling and model transformation are two important techniques used by 

model-driven approaches. However, there are no commonly agreed-upon definitions of 

these concepts in the literature and they may be analyzed from various perspectives. The 

remaining part of this chapter discusses some of these concepts to help the reader further 

understand the relationships among metamodels, models and model transformations.  

 



 28

Model 
Transformation

Platform-
Independent 

Model 

CORBA 
Model

Code 
Generation

Java/EJB 
Model

Other Platform-
Spcific Model 

CORBA 
Application

Java/EJB 
Application

Other 
Software 

Application

PIM

PSM

Application

 

Figure 2-1 – The key concepts of the MDA 

 

2.2.1 Metamodel, Model and System 

MDE promotes models as primary artifacts in the software development lifecycle. 

There are various definitions that help to understand the relationship among modeling 

terms. For example, the MDA guide [MDA, 07] defines, “a model of a system is a 

description or specification of that system and its environment for some certain purpose. 

A model is often presented as a combination of drawings and text. The text may be in a 

modeling language or in a natural language.” Another model definition can be found in 

[Kleppe et al., 03], “A model is a description of a system written in a well-defined 



 29

language.” In [Bézivin and Gerbé, 01] a model is defined as, “A model is a simplification 

of a system built with an intended goal in mind. The model should be able to answer 

questions in place of the actual system.” In the context of this research, a model 

represents an abstraction of some real system, whose concrete syntax is rendered in a 

graphical iconic notation that assists domain experts in constructing a problem 

description using concepts familiar to them.  

Metamodeling is a process for defining domain-specific modeling languages 

(DSMLs). A metamodel formally defines the abstract syntax and static semantics of a 

DSML by specifying a set of modeling elements and their valid relationships for that 

specific domain. A model is an instance of the metamodel that represents a particular part 

of a real system. Conformance is correspondence relationship between a metamodel and 

a model and substitutability defines a causal connection between a model and a system 

[Kurtev et al., 06]. As defined in [Kurtev et al., 06], a model is a directed multigraph that 

consists of a set of nodes, a set of edges and a mapping function between the nodes and 

the edges; a metamodel is a reference model of a model, which implies that there is a 

function associating the elements (nodes and edges) of the model to the nodes of the 

metamodel. 

Based on the above definitions, the relation between a model and its metamodel is 

called conformance, which is denoted as conformTo or c2. Particularly, a metamodel is a 

model whose reference model is a metametamodel, and a metametamodel is a model 

whose reference model is itself [Kurtev et al., 06]. 

 The substitutability principle is defined as, “a model M is said to be a 

representation of a system S for a given set of questions Q if, for each question of this set 



 30

Q, the model M will provide exactly the same answer that the system S would have 

provided in answering the same question” [Kurtev et al., 06]. Using this terminology, a 

model M is a representation of a given system S, satisfying the substitutability principle. 

The relation between a model and a system is called representationOf, which is also 

denoted as repOf [Kurtev et al., 06]. Figure 2-2 illustrates the relationship between a 

metamodel, a model and a system. 

 

Figure 2-2 - The relation between metamodel, model and system 

(adapted from [Kurtev et al., 06]) 

 

2.2.2 The Four-Layer MOF Metamodeling Architecture 

The MOF is an OMG standard for metamodeling. It defines a four-layer 

metamodeling architecture that a model engineer can use to define and manipulate a set 

of interoperable metamodels.  

As shown in Figure 2-3, every model element on every layer strictly conforms to 

a model element on the layer above. For example, the MOF resides at the top (M3) level 

of the four-layer metamodel architecture, which is the meta-metamodel that conforms to 

itself. The MOF captures the structure or abstract syntax of the UML metamodel. The 

UML metamodel at the M2 level describes the major concepts and structures of UML 



 31

models. A UML model represents the properties of a real system (denoted as M1). MOF 

only provides a means to define the structure or abstract syntax of a language. For 

defining metamodels, MOF serves the same role that the extended Backus–Naur form 

(EBNF) [Aho et al., 07] plays for defining programming language grammars. For 

defining a DSML, a metamodel for that specific domain plays the role that a grammar 

plays for defining a specific language (e.g., Java). 

There are other metamodeling techniques available for defining domain-specific 

modeling languages such as the Generic Modeling Environment (GME) [Lédeczi et al., 

01], ATLAS Model Management Architecture (AMMA) [Kurtev et al., 06], Microsoft’s 

DSL tools [Microsoft, 05], [Cook et al., 07], MetaEdit+ [MetaCase, 07], and the Eclipse 

Modeling Framework (EMF) [Budinsky et al., 04], which also follow the four-layer 

metamodeling architecture. 

The MOF

The UML 
metamodel

The UML 
Models

System

M3: 
The meta-metamodel 

Level

M2: 
The metamodel level

M1: 
The model level

M0: 
The real world

ConformsTo

ConformsTo

ConformsTo

RepresentedBy

 

Figure 2-3 - The MOF four-tier metamodeling architecture 



 32

2.2.3 Model Transformation 

Model transformation, a key component of model-driven approaches, represents 

the process of applying a set of transformation rules that take one or more source models 

as input to produce one or more target models as output [Sendall and Kozaczynski, 03], 

[Czarnecki and Helsen, 06], [Mens and Van Gorp, 05]. The source and target models may 

be defined either in the same modeling languages or in different modeling languages. 

Based on whether the source and target models conform to the same modeling language, 

model transformations can be categorized as endogenous transformations or exogenous 

transformations. Endogenous transformations are transformations between models 

expressed in the same language. Exogenous transformations are transformations between 

models expressed using different languages [Mens and Van Gorp, 05]. A typical example 

of endogenous transformations is model refactoring, where a change is made to the 

internal structure of models to improve certain qualities (e.g., understandability and 

modularity) without changing its observable behaviors [Zhang et al., 05-a]. An example 

of an exogenous transformation is model-to-code transformation that typically generates 

source code (e.g., Java or C++) from models. 

Another standard to categorize model transformation is whether the source and 

target models reside at the same abstraction level. Based on this standard, model 

transformations can also be categorized as horizontal transformations and vertical 

transformations [Mens and Van Gorp, 05]. If the source and target models reside at the 

same abstraction level, such a model transformation is a horizontal transformation. Model 

refactoring is also a horizontal transformation. A vertical transformation is a 

transformation where the source and target models reside at different abstraction levels. 



 33

A typical example is model refinement, where a design model is gradually refined into a 

full-fledged implementation model, by means of successive refinement steps that add 

more concrete details [Batory et al., 04], [Greenfield et al., 04]. The dimensions of 

horizontal versus vertical transformations and endogenous versus exogenous 

transformations are orthogonal. For example, model migration translates models written 

in a language to another, but these two languages are at the same level of abstraction. A 

model migration is not only an exogenous transformation but also a horizontal 

transformation. 

Although most existing MDE tools provide support for exogenous transformation 

to stepwise produce implementation code from designs, many modeling activities can be 

automated by endogenous transformations to increase the productivity of modeling and 

improve the quality of models. For example, such modeling activities include model 

refactoring [Zhang et al., 05-a] and model optimization [Mens and Van Gorp, 05]. 

Moreover, exogenous transformations are also useful for computing different views of a 

system model and synchronizing between them [Czarnecki and Helsen, 06]. This 

dissertation concentrates on applying endogenous transformations to automate model 

change evolution with an emphasis on addressing system adaptability and scalability, 

which is further discussed in Chapter 3. In the rest of the dissertation, the general term 

“model transformation” will refer to endogenous transformations (i.e., this research offers 

no contribution in the exogenous transformation form such as model-to-code 

transformation). 

A model transformation is defined in a model transformation specification, which 

consists of a set of transformation rules. A transformation rule usually includes two parts: 



 34

a Left-Hand Side (LHS) and a Right-Hand Side (RHS). The LHS defines the 

configuration of objects in the source models to which the rule applies (i.e., filtering, 

which produces a subset of elements from the source model). The RHS defines the 

configuration of objects in the target models that will be created, updated or deleted by 

the rule. Both the LHS and RHS can be represented using any mixture of variables, 

patterns and logic. 

A model transformation specification not only needs to define mapping rules, but 

also the scope of rule application. Additional parts of a transformation rule include the 

rule application strategy, and the rule application scheduling and organization [Czarnecki 

and Helsen, 06]. Rule application scoping includes the scope of source models and target 

models for rule application (in this case, scope refers to the portion or subset of a model 

to which the transformation is to be applied). The rule application strategy refers to how 

the model structure is traversed in terms of how selection matches are made with 

modeling elements when applying a transformation. A model transformation can also be 

applied as an in-place update where the source location becomes the target location. Rule 

application scheduling determines the order in which the rules are applied, and rule 

organization considers modularity mechanisms and organizational structure of the 

transformation specification [Czarnecki and Helsen, 06]. 

There exist various techniques to define and perform model transformations. 

Some of these techniques provide transformation languages to define transformation rules 

and their application, which can be either graphical or textual, either imperative or 

declarative. Although there exist different approaches to model transformation, the OMG 

has initiated a standardization process by adopting a specification on 



 35

Query/View/Transformation (QVT) [QVT, 07]. This process led to an OMG standard not 

only for defining model transformations, but also for defining views on models and 

synchronization between models. Typically, a QVT transformation definition describes 

the relationship between a source metamodel and a target metamodel defined by the 

MOF. It uses source patterns (e.g., the LHS part in a transformation rule) and target 

patterns (e.g., the RHS part in a transformation rule). In QVT, transformation languages 

are defined as MOF metamodels. A transformation is an instance of a transformation 

definition, and its source models and target models are instances of source patterns and 

target patterns, respectively. Such a generalized transformation pattern is shown partially 

in Figure 2-4, without indicating the transformation language level. 

Source Pattern Target PatternTransformation Definition
uses uses

Source Model Target ModelTransformation
input output

instanceOf instanceOf instanceOf
Metamodel level
Model level

Source Pattern Target PatternTransformation Definition
uses uses

Source Model Target ModelTransformation
input output

instanceOf instanceOf instanceOf
Metamodel level
Model level

 

Figure 2-4 - Generalized transformation pattern 

 

In MDE, model transformation is the core process to automate various activities 

in the software development life cycle. Exogenous transformation can be used to 

synthesize low-level software artifacts (e.g., source code) from high-level models, or to 

extract high-level models from lower level software artifacts such as reverse engineering. 

Endogenous transformation can be used to optimize and refactor models in order to 

improve the modeling productivity and the quality of models. 



 36

2.3 Supporting Technology and Tools 

This research is tied to a specific form of MDE, called Model-Integrated 

Computing (MIC) [Sztipanovits and Karsai, 97], which has been refined at Vanderbilt 

University over the past decade to assist in the creation and synthesis of computer-based 

systems. The Generic Modeling Environment (GME) [GME, 07] is a metamodeling tool 

based on MIC principles, with which the dissertation research is conducted. The 

following sections provide further descriptions of MIC and GME. 

 

2.3.1 Model-Integrated Computing (MIC) 

MIC realized the vision of MDE a decade before the general concepts of MDE 

were enumerated in the modeling community. Similar to the MOF mechanism, MIC is 

also a four-layer metamodeling architecture that defines DSMLs for modeling real-world 

systems. Different from the MOF, MIC provides its own meta-metamodel called 

GMEMeta [Balasubramanian et al., 06-b] to define metamodels with notation similar to 

UML class diagrams and the OCL. In terms of MIC, the main concepts of model, 

metamodel, and other topics are defined as follows [Nordstrom, 99]: 

• Metamodeling Environment: “a tool-based framework for creating, validating, 

and translating metamodels; ” 

• Metamodel: also called the modeling paradigm, “formally defines a DSML for a 

particular domain, which captures the syntax, static semantics and visualization 

rules of the target domain;” 

• Modeling Environment: “a system, based on a specific metamodel, for creating, 

analyzing, and translating domain-specific models;” 



 37

• Model: “an abstract representation of a computer-based system that is an instance 

of a specific metamodel.” 

DSMLs are the backbone of MIC to capture the domain elements of various application 

areas. A DSML can be viewed as a five tuple [Karsai et al., 03]: 

• a concrete syntax defines “the specific notation (textual or graphical) used to 

express domain elements;” 

• an abstract syntax defines “the concepts, relationships, and integrity constraints 

available in the language;” 

• a semantic domain defines “the formalism used to map the semantics of the 

models to a particular domain;” 

• a syntactic mapping assigns “syntactic constructs (graphical or textual) to 

elements of the abstract syntax;” 

• a semantic mapping relates “the syntactic concepts to the semantic domain.” 

The key application domains of MIC range from embedded systems areas typified by 

automotive factories [Long et al., 98] to avionics systems [Gray et al., 04-b] that tightly 

integrate the computational structure of a system and its physical configuration. In such 

systems, MIC has been shown to be a powerful tool for providing adaptability in 

frequently changing environments [Sztipanovits and Kaisai, 97]. 

 

2.3.2 Generic Modeling Environment (GME) 

GME is a metamodeling tool that realizes the principles of MIC [Lédeczi et al., 

01]. As shown in Figure 2-5, GME provides a metamodeling interface to define 



 38

metamodels, a modeling environment to create and manipulate models and model 

interpretation to synthesize applications from models. 

 

Figure 2-5 - Metamodels, models and model interpreters (compilers) in GME 

(adapted from [Nordstrom et al., 99]) 

 

When using the GME, a modeling paradigm is loaded into the tool by meta-level 

translation to define a modeling environment containing all the modeling elements and 

valid relationships that can be constructed in the target domain. Such an environment 

allows users to specify and edit visual models using notations common to their domain of 

expertise. GME also provides a mechanism for writing model compilers that translate 

models to different applications according to a user’s various intentions. For example, 

such compilers can generate simulation applications or synthesize computer-based 



 39

systems. GME provides the following elements to define a DSML [Balasubramanian et 

al., 06-b]: 

• project: “the top-level container of the elements of a DSML;” 

• folders: “used to group similar elements;” 

• atoms: “the atomic elements of a DSML, used to represent the leaf-level elements 

in a DSML;” 

• models: “the compound objects in a DSML, used to contain different types of 

elements (e.g., references, sets, atoms, and connections);” 

• aspects: “used to define different viewpoints of the same model;” 

• connections: “used to represent relationships between elements of a DSML;” 

• references: “used to refer to other elements in different portions of a DSML 

hierarchy;” 

• sets: “containers whose elements are defined within the same aspect and have the 

same container as the owner.” 

The concepts of metamodel and model in GME are further illustrated by a state machine 

example, as shown in Figure 2-6 and Figure 2-7. Figure 2-6 shows a metamodel defined 

with the GME meta-metamodel, which is similar to a UML diagram class. It specifies the 

entities and their relationships needed for expressing a state machine, of which the 

instance models may be various state diagrams. As specified in the metamodel, a 

StateDiagram contains zero to multiple StartState, State or EndState elements, which are 

all inherited from StateInheritance, which is a first-class object (FCO) 1 . Thus, 

                                                 
1In GME, Atom, Model, Reference, Set and Connection are basic modeling elements called first class 
objects (FCOs). 
  



 40

StateInheritance may refer to StartState, State or EndState elements. Also, a 

StateDiagram contains zero to multiple Transitions between a pair of StateInheritance 

objects. Either StateInheritance or Transition is associated with an attribute definition 

such as a field. All of these StateInheritance or Transition elements are meta-elements of 

the elements in any of its instance models. Moreover, some rules can be defined as 

constraints within the metamodel by a language such as OCL. For example, a rule for the 

state machine may be “a state diagram contains only one StartState,” which is specified 

in the OCL as “parts("StartState")->size() = 1”. 

 

Figure 2-6 - The state machine metamodel 

 

Figure 2-7 shows an Automated Teller Machine (ATM) model, which is an 

instance model of the state machine. Besides a StartState element and an EndState 

element, the ATM contains seven State elements and the necessary Transition elements 

between the StartState, EndState and State elements. The specification of this ATM 

model conforms to the state machine in several ways. For example, for any State element 

in the ATM (e.g., CaredInserted and TakeReceipt), its meta-element exists in the state 



 41

machine (i.e., State). Similarly, for all the links between State elements in the ATM, there 

exists an association in the state machine metamodel which leads from a StateInheritance 

to another StateInheritance or from a StateInheritance to itself. This represents type 

conformance within the metamodel. In other words, there exists a meta-element (i.e., 

type) in the metamodel for any element in the instance model. In addition to type 

conformance, the ATM needs to conform to the attribute and constraint definition in the 

state machine metamodel. 

 

Figure 2-7 - The ATM instance model 

 

To conclude, GME provides a framework for creating domain-specific modeling 

environments (DSMEs), which allow one to define DSMLs. The GME also provides a 

plug-in extension mechanism for writing model compilers that can be invoked from 

within the GME to synthesize a model into some other form (e.g., translation to code, 



 42

refinement to a different model, or simulation scripts). The tools developed to support the 

research have been implemented as GME plug-ins (i.e., the transformation engine C-

SAW discussed in Chapter 3, model comparison tool DSMDiff discussed in Chapter 4 

and transformation testing engine M2MUnit discussed in Chapter 5). All of the DSMLs 

presented in this thesis are also defined and developed within the GME.  



 43

 

 

 

CHAPTER 3 

AUTOMATED MODEL EVOLUTION 

 

This chapter presents a transformation approach to automate model change 

evolution. The specific challenges and the limitations of currently available techniques 

are discussed before a detailed introduction to the model transformation language ECL 

and the associated model transformation engine C-SAW. Particularly, this chapter 

concentrates on the role of C-SAW in addressing model evolution concerns related to 

system scalability and adaptability. Two case studies are offered to illustrate how these 

concerns are addressed by C-SAW. In addition, to demonstrate the benefits of this 

approach, experimental evaluation is discussed, including modeling artifacts, evaluation 

metrics and experimental results. Related work and a concluding discussion are presented 

at the end of this chapter.  

 

3.1 Challenges and Current Limitations 

One of the benefits of modeling is the ability to explore design alternatives. To 

provide support for efficient design exploration, frequent change evolution is required 

within system models. However, the escalating complexity of software and system 

models is making it difficult to rapidly explore the effects of a design decision and make 



 44

changes to models correctly. Automating such exploration with model transformation can 

improve both productivity and quality of model evolution [Gray et al., 06]. 

To support automated model evolution, a model transformation language should 

be able to specify various types of changes that are needed for common model evolution 

tasks. As discussed in Chapter 1, there are two categories of changes embodied in model 

evolution that this research addresses: one is changes for system adaptability that crosscut 

the model representation’s hierarchy; the other is changes for system scalability that 

require replication of model elements and connections. To express these changes, a 

model transformation language should address the challenges discussed in the following 

subsections. 

 

3.1.1 Navigation, Selection and Transformation of Models 

Many model evolution tasks require traversing the model hierarchy, selecting 

model elements and changing the model structure and properties. For example, model 

scalability is a process that refines a simple base model to a more complex model by 

replicating model elements or substructures and adding necessary connections. Such 

replication usually emerges in multiple locations within a model hierarchy and requires 

that a model transformation language provide support for model navigation and selection. 

Particularly, model evolution is essentially a process to manipulate (e.g., create, delete, or 

change) model elements and connections dynamically. A model transformation language 

also needs to support basic transformation operations for creating and deleting model 

elements or changing their properties. 



 45

Model transformation is also a specific type of computation and may be 

performed in a procedural style. A model transformation may contain multiple individual 

and reusable procedures. In addition to the above model-oriented features, a model 

transformation language often needs to support sequential, conditional, repetitive and 

parameterized model manipulation for defining control flows and enabling data 

communication between transformation rules. Another challenge of model evolution is 

many modeling concerns are spread across a model hierarchy. New language constructs 

are needed to improve the modularization of such concerns, as discussed in the following 

section. 

 

3.1.2 Modularization of Crosscutting Modeling Concerns 

 Many model evolution concerns are crosscutting within the model hierarchy 

[Zhang et al., 07], [Gray et al., 03]. An example is the widespread data logging 

mechanism embodied in a data communication system [Gray et al., 04-b]. Another 

example is the effect of fluctuating bandwidth on the quality of service across avionics 

components that must display a real-time video stream [Neema et al., 02]. To evaluate 

such system-wide changes inside a system model, the designer must manually traverse 

the model hierarchy by recursively clicking on each element and then make changes to 

the right elements. This process is tedious and error-prone, because system models often 

contain hierarchies several levels deep. 



 46

Level 1

Level 2

Level 3

Level 4

 

Figure 3-1 - Modularization of crosscutting model evolution concerns 

 

Traditional programming languages such as Object-Oriented languages are not 

suitable for modularizing concerns that crosscut modules such as objects. Currently, 

Aspect-Oriented Software Development (AOSD) [Filman et al., 04] offers techniques to 

modularize concerns that crosscut system components. For example, Aspect-Oriented 

Programming (AOP) [Kiczales et al., 01] provides two new types of language constructs: 

advice, which is used to represent the crosscutting behavior; and pointcut expressions, 

which are used to specify the locations in the base program where the advice should be 

applied. An aspect is a modularization of a specific crosscutting concern with pointcut 

and advice definitions. Although the application of AOSD originally focused on 

programming languages, the community investigating aspect-oriented modeling is 

growing [AOM, 07]. To support modularity in specifying crosscutting modeling 

concerns, as shown in Figure 3-1, Aspect-Oriented constructs are needed in a model 



 47

transformation language (e.g., to specify a collection of model elements crosscutting 

within the model hierarchy). A desired result of such a model transformation language is 

to achieve modularization such that a change in a design decision is isolated to one 

location.  

 

3.1.3 The Limitations of Current Techniques 

 For the purpose of automation, model evolution tasks can be programmed in 

either traditional programming languages or currently available model transformation 

languages. For example, many commercial and research toolsuites provide APIs to 

manipulate models directly. However, an API approach requires model developers to 

learn and use low-level tools (e.g., object-oriented languages and their frameworks) to 

program high-level model transformations. This emerges as a major hurdle when 

applying model-driven approaches in software development by end-users who are not 

familiar with general-purpose programming languages (GPLs). 

 There are a number of approaches to model transformation, such as graphical 

languages typified by graph grammars (e.g., GReAT [Agrawal, 03] and Fujaba [Fujaba, 

07]), or a hybrid language (e.g., the ATLAS Transformation Language [Bézivin et al., 

04], [Kurtev et al., 06] and Yet Another Transformation Language [Patrascoiu, 04]). 

However, these model transformation approaches aim to solve model transformation 

where the source model and target model belong to different metamodels, so their 

languages have complicated syntax and semantics, and additional mapping techniques 

between different metamodels are embodied in these approaches. Thus, a more 

lightweight language that aims to solve endogenous transformation where the source 



 48

model and target model belong to the same metamodel is more suitable to address the 

model evolution problems identified in this research. 

 

3.2 The Embedded Constraint Language (ECL) 

The model transformation approach developed in this research offers a textual 

transformation language called the Embedded Constraint Language (ECL). The earlier 

version of ECL was derived from Multigraph Constraint Language (MCL), which is 

supported in the GME to stipulate specific semantics within the domain during the 

creation of a domain’s metamodeling paradigm [Gray, 02]. Similar to MCL, ECL is an 

extension of the OCL [Warmer and Kleppe, 99], which complements the industry 

standard UML by providing a language to write constraints and queries over object 

models. Thus, ECL has concepts and notations that are familiar to model engineers. The 

ECL also takes advantage of model navigation features from OCL to provide declarative 

constructs for automatic selection of model elements.  

Originally, ECL was designed to address crosscutting modeling concerns where 

transformations were executed outside the GME by modifying the XML representation of 

models [Gray et al., 01], [Gray, 02]. A preliminary contribution of this dissertation was to 

enrich the language features of ECL and to adapt its interface to work as a plug-in within 

GME (i.e., the transformations are now performed within GME, not outside of GME 

through XML). Several criteria influenced the design of ECL, including: 

• The language should be small but powerful. The primary goal for the design of a 

transformation specification language should allow users to describe a transformation 

using concepts from their own domain and modeling environment. Although there is 



 49

a tradeoff between conciseness and comprehension, the key to the design of a 

transformation language is a set of core abstractions that are intuitive and cover the 

largest possible range of situations implied by current modeling practice. To achieve 

this goal, a transformation language should consist of a small set (ideally a minimized 

set) of concepts and constructs, but be powerful enough to express a complete set of 

desired transformation activities such that the expressiveness of the language is 

maximized. 

• The language should be specific to model transformation. A transformation-

specific language needs to have full power to specify all types of modeling objects 

and transformation behaviors, including model navigation, model selection and model 

modification. Such a language should provide specific constructs and mechanisms for 

users to describe model transformations. This requires both a robust type system and 

a set of functionally rich operators. In other words, a transformation language needs 

to capture all the features of the model transformation domain. 

As a result of these desiderata, ECL is implemented as a simple but highly expressive 

language for model engineers to write transformation specifications. The ECL provides a 

small but robust type system, and also provides features such as collection and model 

navigation. A set of operators are also available to support model aggregation and 

connections. In general, the ECL supports an imperative transformation style with 

numerous operations that can alter the state of a model. 

 



 50

3.2.1 ECL Type System 

ECL currently provides a basic type system to describe values and model objects 

that appear in a transformation. The data types in ECL include the primitive data types 

(e.g., boolean, integer, real and string), the model object types (e.g., atom, model, object 

and connection) and the collection types (e.g., atomList, modelList, objectList and 

connectionList). The data types are explicitly used in parameter definition and variable 

declaration. These types are new additions to the earlier version of ECL described in 

[Gray, 02]. 

 

3.2.2 ECL Operations 

ECL provides various operations to support model navigation, selection and 

transformation. These operations are described throughout this subsection. 

 

Model collection 

The manipulation of a collection of modeling elements is a common task for 

model transformation. In DSM, there exist modeling elements that have common features 

and can be grouped together. Model manipulations (e.g., navigations and evaluations) are 

often needed to be performed on such a collection of models. The concrete type of a 

collection in ECL is a bag, which can contain duplicate elements. An example operator 

for a collection is size(), which is similar to the OCL operator that returns the number 

of elements in a collection. 

All operations on collections are denoted in an ECL expression by an arrow (->). 

This makes it easy to distinguish an operation of a model object type (denoted as a 



 51

period) from an operation on a collection. In the following statement, the select operation 

following the arrow is applied to the collection (i.e., the result of the atoms operation) 

before the arrow, and the size operator appears in the comparison expression. 

    atoms()->select(a | a.kindOf() == "Data")->size() >= 1 
 
The above expression selects all the atoms, whose kind is “Data,” from the current model 

and determines whether the number of such atoms is equal to or greater than 1. 

 

Model selection and aggregation 

One common activity during model transformation is to find elements in a model. 

There are two different approaches to locating model elements. The first approach - 

querying - evaluates an expression over a model, returning those elements of the model 

for which the expression holds. The other common approach uses pattern matching where 

a term or a graph pattern containing free variables is matched against the model. 

Currently, ECL supports model queries primarily by providing the select() operator. 

Other operators include model aggregation operators to select a collection of objects (e.g. 

atoms()), and a set of operators to find a single object (e.g., 

findModel(“aModelName”)). 

The select(expression) operator is frequently used in ECL to specify a 

selection from a source collection, which can be the result of previous operations and 

navigations. The result of the select operation is always a subset of the original collection. 

In addition, model aggregation operators can also be used to perform model querying. 

For example, models(expression) is used to select all the submodels that satisfy 

the constraint specified by the expression. Other aggregation operators include 



 52

atoms(expression), connections(expression), source() and 

destination(). Specifically, source() and destination() are used to return 

the source object and the destination object in a connection. Another set of operators are 

used to obtain a single object (e.g., findAtom() and findModel()). The following 

ECL uses a number of operators just mentioned:  

rootFolder().findFolder("ComponentTypes").models()-> 
      select(m|m.name().endWith("Impl"))->AddConcurrency(); 
 
 
First, rootFolder() returns the root folder of a modeling project. Next, 

findFolder() is used to return a folder named “ComponentTypes” under the root 

folder. Then, models() is used to find all the models in the “ComponentTypes” folder. 

Finally, the select() operator is used to select all the models that match the predicate 

expression (i.e., those models whose names end with “Impl”). The AddConcurrency 

strategy is then applied to the resulting collection. The concept of a strategy is explained 

in Section 3.2.3. 

 

Transformation operations 

ECL provides basic transformation operations to add model elements, remove 

model elements and change the properties of model elements. Standard OCL does not 

provide such capabilities because it does not allow side effects on a model. However, a 

transformation language should be able to alter the state of a model. ECL extends the 

standard OCL by providing a series of operators for changing the structure or constraints 

of a model. To add new elements (e.g., a model, atom or connection) to a model, ECL 

provides such operators as addModel(), addAtom() and addConnection(). 



 53

Similarly, to remove a model, atom or connection, there are operators like 

removeModel(), removeAtom() and removeConnection(). To change the 

value of any attribute of a model element, setAttribute() can be used. 

 

3.2.3 The Strategy and Aspect Constructs 

There are two kinds of modular constructs in ECL: strategy and aspect, which are 

designed to provide aspect-oriented capabilities in specifying crosscutting modeling 

concerns. A strategy is used to specify elements of computation and the application of 

specific properties to the model entities (e.g., adding model elements). A modeling aspect 

is used to specify a crosscutting concern across a model hierarchy (e.g., a collection of 

model elements that cut across a model hierarchy). 

In general, an ECL specification may consist of one or more strategies, and a 

strategy can be called by other strategies. A strategy call implements the binding and 

parameterization of the strategy to specific model entities. The context of a strategy call 

can be an entire project; a specific model, atom, or connection; or a collection of 

assembled modeling elements that satisfy a predicate. The aspect construct in ECL is 

used to specify such a context. Examples of ECL aspect and strategy are shown in Listing 

3-1. 



 54

 

1 aspect FindData1(atomName, condName, condExpr : string) 
2 { 
3       atoms()->select(a | a.kind() == "Data" and a.name() == "data1")-> 
4             AddCond("Data1Cond", "value<200"); 
5 } 
6  
7 strategy AddCond(condName, condExpr : string) 
8 { 
9       declare p : model; 
10       declare data, pre : atom; 
11  
12       data := self; 
13       p := parent(); 
14  
15       pre:=p.addAtom("Condition", condName); 
16       pre.setAttribute("Kind", "PreCondition"); 
17       pre.setAttribute("Expression", condExpr); 
18       p.addConnection("AddCondition", pre, data); 
19 }  
 

 
Listing 3-1 - Examples of ECL aspect and strategy 
 

The findData1 aspect selects a set of data atoms named “data1” from all the 

atoms and then a strategy called AddCond is applied to the selected atoms, which adds a 

Condition atom for each of the selected atoms (Line 15) and creates a connection 

between them (Line 18). The AddCond strategy also sets values to the attributes of each 

created Condition atom (Line 16 to 17). 

With strategy and aspect constructs, ECL offers the ability to explore numerous 

modeling scenarios by considering crosscutting modeling concerns as aspects that can be 

rapidly inserted and removed from a model. This permits a model engineer to make 

changes more easily to the base model without manually visiting multiple locations. 

 



 55

3.2.4 The Constraint Specification Aspect Weaver (C-SAW) 

The ECL is fully implemented within a model transformation engine called the 

Constraint-Specification Aspect Weaver (C-SAW)2. Originally, C-SAW was designed to 

address crosscutting modeling concerns [Gray, 02], but has evolved into a general model 

transformation engine to perform different modeling tasks. As shown in Figure 3-2, C-

SAW executes the ECL transformation specification on a set of source models. One or 

more source models, together with transformation specifications, are taken as input to the 

underlying transformation engine. By executing the transformation specification, C-SAW 

weaves additive changes into source models to generate the target model as output. 

Inside C-SAW there are two core components that relate to the ECL: the parser 

and the interpreter. The parser is responsible for generating an abstract syntax tree (AST) 

of the ECL specification. The interpreter then traverses this generated AST from top to 

bottom, and performs a transformation by using the modeling APIs provided by GME. 

Thus, the accidental complexities of using the low-level details of the API are made 

abstract in the ECL to provide a more intuitive representation for specifying model 

transformations. When model transformation is performed, additive changes can be 

applied to base models, leading to structural or behavioral changes that may crosscut 

multiple boundaries of the model. Section 3.3 provides an example where C-SAW serves 

as a model replicator to scale up models. The other example is presented in Section 3.4 to 

illustrate the capability of C-SAW to address crosscutting modeling concerns. 

                                                 
2 The name C-SAW was selected due to its affinity to an aspect-oriented concept – a crosscutting saw, or 
csaw, is a carpenter’s tool that cuts across the grain of wood. 
 



 56

 

Figure 3-2 - Overview of C-SAW 

 

3.2.5 Reducing the Complexities of Transforming GME Models 

GME provides APIs in C++ and Java called the Builder Object Network (BON) 

to manipulate models as an extension mechanism for building model compilers (e.g., 

plug-in and add-on components) that supply an ability to alter the state of models or 

generate other software artifacts from the models. However, using BON to specify 

modeling concerns such as model navigation and querying introduces accidental 

complexities because users have to deal with the low-level details of the modeling APIs 

in C++ or Java. Listing 3-2 shows the code fragment for finding a model from the root 

folder using BON APIs in C++: 



 57

 

1 CbuilderFolder *rootFolder, string: modelName 
2 CBuilderModel *result = null;  
3 const CBuilderModelList *subModels; 
4 subModels = ((CBuilderFolder *)rootFolder)->GetRootModels(); 
5 POSITION POS = subModels->GetHeadPosition(); 
6 while(POS){ 
7       CBuilderModel *subModel = subModels->GetNext(POS); 
8       if(subModel->GetName() == modelName){ 
9             result = subModel; 
10             return result; 
11       }  
12 } 
13 return result; 

 

Listing 3-2 – Example C++ code to find a model from the root folder 
 

The ECL provides a more intuitive and high-level representation for specifying 

modeling concerns (e.g., model navigation, querying and transformation) such that the 

low-level details are made abstract. For example, to find a model from the root folder, the 

following ECL can be compared to the C++ code provided previously: 

rootFolder().findModel(“aModelName”); 

 

3.3 Model Scaling with C-SAW 

In MDE, it is often desirable to evaluate different design alternatives as they relate 

to scalability issues of the modeled system. A typical approach to address scalability is 

model replication, which starts by creating base models that capture the key entities as 

model elements and their relationships as model connections. A collection of base models 

can be adorned with necessary information to characterize a specific scalability concern 

as it relates to how the base modeling elements are replicated and connected together. In 

current modeling practice, such model replication is usually accomplished by scaling the 

base model manually. This is a time-consuming process that represents a source of error, 

especially when there are deep interactions between model components. As an alternative 



 58

to the manual process, this section presents the idea of automated model replication 

through a C-SAW model transformation process that expands the number of elements 

from the base model and makes the correct connections among the generated modeling 

elements. The section motivates the need for model replication through a case study. 

 

3.3.1 Model Scalability 

One of the benefits of modeling is the ability to explore design alternatives. A 

typical form of design exploration involves experimenting with model structures by 

expanding different portions of models and analyzing the result on scalability [Lin et al., 

07-a], [Gray et al., 05]. For example, a high-performance computing system may be 

evaluated when moving from a few computing nodes to hundreds of computing nodes. 

Model scalability is defined as the ability to build a complex model from a base model by 

replicating its elements or substructures and adding the necessary connections. To 

support model scalability requires extensive support from the host modeling tool to 

enable rapid change evolution within the model representation [Gray et al., 06]. However, 

it is difficult to achieve model scalability in current modeling practice due to the 

following challenges: 

(1) Large-scale system models often contain many modeling elements: In 

practice, models can have multiple thousands of coarse-grained components. As 

discussed in Section 1.3.1, modeling these components using traditional manual 

model creation techniques and tools can approach the limits of the effective 

capability of an engineer. For example, the models of a DRE system consist of 



 59

several thousand instances from a set of types defined in a metamodel, which 

leads to their larger size and nested hierarchy. 

(2) Manually scaling up models is laborious, time consuming and prone to 

errors: To examine the effect of scalability on a system, the size of a system 

model (e.g., the number of the participant model elements and connections) needs 

to be increased or decreased frequently. The challenges of scalability affect the 

productivity of the modeling process, as well as the correctness of the model 

representation. As an example, consider a base model consisting of a few 

modeling elements and their corresponding connections. To scale a base model to 

hundreds, or even thousands of duplicated elements would require a lot of mouse 

clicking and typing within the associated modeling tool [Gray et al., 06]. 

Furthermore, the tedious nature of manually replicating a base model may also be 

the source of many errors (e.g., forgetting to make a connection between two 

replicated modeling elements). A manual process to replication significantly 

hampers the ability to explore design alternatives within a model (e.g., after 

scaling a model to 800 modeling elements, it may be desired to scale back to only 

500 elements, and then back up to 700 elements, in order to understand the impact 

of system size). 

To address these challenges, the research described in this dissertation makes a 

contribution to model scalability by using a model transformation approach to automate 

replication3 of base models. A transformation for model replication is called a replicator, 

                                                 
3 The term “replication” has specific meaning in object replication of distributed systems and in database 
replication. In the context of this thesis, the term is used to refer to the repetition of modeling elements or 
structures among models to address scalability concerns. 
 



 60

which changes a model to address scalability concerns. In this approach, large-scale 

system models are automatically created from smaller, baseline specification models by 

applying model transformation rules that govern the scaling and replication behavior 

associated with stepwise refinement of models [Batory, 06]. 

 

3.3.2 Desired Characteristics of a Replication Approach 

An approach that supports model scalability through replication should have the 

following desirable characteristics: 1) retains the benefits of modeling, 2) is general 

across multiple modeling languages, and 3) is flexible to support user extensions. Each of 

these characteristics (C1 through C3) is discussed further in this subsection. 

C1. Retains the benefits of modeling: The power of modeling comes from the 

opportunity to explore various design alternatives and the ability to perform 

analysis (e.g., model checking and verification of system properties [Hatcliff et 

al., 03]) that would be difficult to achieve at the implementation level, but easier 

at the modeling level. Thus, a model replication technique should not perform 

scalability in such a way that analysis and design exploration is inhibited. This 

seems to be an obvious characteristic to desire, but we have observed replication 

approaches that remove these fundamental benefits of modeling. 

C2. General across multiple modeling languages: A replication technique that 

is generally applicable across multiple modeling languages can leverage the effort 

expended in creating the underlying transformation mechanism. A side benefit of 

such generality is that a class of users can become familiar with a common 

replicator technique, which can be applied to many modeling languages. 



 61

C3. Flexible to support user extensions: Often, large-scale system models 

leverage architectures that are already well-suited toward scalability. Likewise, 

the modeling languages that specify such systems may embody similar patterns of 

scalability, and may lend themselves favorably toward a generative and reusable 

replication process. Further reuse can be realized if the replicator supports 

multiple types of scalability concerns in a templatized fashion (e.g., the name, 

type, and size of the elements to be scaled are parameters to the replicator). The 

most flexible type of replication would allow alteration of the semantics of the 

replication more directly using a language that can be manipulated easily by an 

end-user. In contrast, replicator techniques that are hard-coded restrict the impact 

for reuse.  

 

3.3.3 Existing Approaches to Support Model Replication 

As observed, there are two techniques that represent approaches to model 

replication used in common practice: 1) an intermediate phase of replication within a 

model compiler, 2) a domain-specific model compiler that performs replication for a 

particular modeling language. 

 A1. Intermediate stage of model compilation: A model compiler translates 

the representation of a model into some other artifacts (e.g., source code, 

configuration files, or simulation scripts). As a model compiler performs its 

translation, it typically traverses an internal representation of the model through data 

structures and APIs provided by the host modeling tool (e.g., the BON offered by 

GME). One of our earlier ideas for scaling large models considered performing the 



 62

replication as an intermediate stage of the model compiler. Prior to the generation 

phase of the compilation, the intermediate representation can be expanded to address 

the desired scalability. This idea is represented in Figure 3-3, which shows the model 

scaling as an internal task within the model compiler that directly precedes the artifact 

generation. 

 
 

Figure 3-3 - Replication as an intermediate stage of model compilation (A1) 

 
 This approach is an inadequate solution to replication because it violates all 

three of the desired characteristics enumerated in Section 3.3.2. The most egregious 

violation is that the approach destroys the benefits of modeling. Because the 

replication is performed as a pre-processing phase in the model compiler, the 

replicated structures are never rendered back into the modeling tool itself to produce 

scaled models such that model engineers can further analyze the model scaling 

results. Thus, analysis and design alternatives are not made available to a model 



 63

engineer who wants to further evaluate the scaled models. Additionally, the pre-

processing rules are hard-coded into the model compiler and intermixed with other 

concerns related to artifact generation. This coupling offers little opportunity for reuse 

in other modeling languages. In general, this is the least flexible of all approaches that 

we considered. 

 
 A2. Domain-specific model compiler to support replication: This approach 

to model scalability constructs a model compiler that is capable of replicating the 

models as they appear in the tool such that the result of model scaling is available to 

the end-user for further consideration and analysis. Such a model compiler has 

detailed knowledge of the specific modeling language, as well as the particular 

scalability concern. Unlike approach A1, this technique preserves the benefits of 

modeling because the end result of the replication provides visualization of the 

scaling, and the replicated models can be further analyzed and refined. Figure 3-4 

illustrates the domain-specific model replicator approach, which separates the model 

scaling task from the artifact generator in order to provide end-users an opportunity to 

analyze the scaled models. However, this approach also has a few drawbacks. 

Because the replication rules are hard-coded into the domain-specific model 

replicator, the developed replicator has limited use outside of the intended modeling 

language. Thus, the generality across modeling languages is lost. 

 These first two approaches have drawbacks when compared against the 

desired characteristics of Section 3.3.2. The next section presents a more generalized 

solution based on C-SAW and ECL. 



 64

 
 

Figure 3-4 - Replication as a domain-specific model compiler (A2) 

  

3.3.4 Replication with C-SAW 

A special type of model compiler within the GME is a plug-in that can be 

applied to any metamodel (i.e., it is domain-independent). The C-SAW model 

transformation engine is an example of a plug-in that can be applied to any modeling 

language. The type of transformations that can be performed by C-SAW are 

endogenous transformations where the source and target models are defined by the 

same metamodel. C-SAW executes as a model compiler and renders all 

transformations (as specified in the ECL) back into the host modeling tool. A model 

transformation written in ECL can be altered very rapidly to analyze the effect of 

different degrees of scalability (e.g., the effect on performance when the model is 

scaled from 256 to 512 nodes). 



 65

This third approach to replication (designated as A3) advocates the use of a model 

transformation engine like C-SAW to perform the replication (please see Figure 3-5 for 

an overview of the technique). This technique satisfies all of the desirable characteristics 

of a replicator: by definition, the C-SAW tool is applicable across many different 

modeling languages, and the replication strategy is decoupled from other concerns (e.g., 

artifact generation) and specified in a way that can be easily modified through a higher 

level transformation language. These benefits improve the capabilities of hard-coded 

rules as observed in the approaches described in A1 and A2. With a model transformation 

engine, a second model compiler is still required for each domain as in A2 (see “Model 

Compilers” in Figure 3-4), but the scalability issue is addressed independently of the 

modeling language. 

The key benefits of approach A3 can be seen by comparing it to A2. It can be 

observed that Figures 3-4 and 3-5 are common in the two-stage process of model 

replication followed by artifact generation with a model compiler. The difference 

between A2 and A3 can be found in the replication approach. In Figure 3-4, the 

replication is performed by three separate model compilers that are hard-coded to a 

specific domain (Translator 1a, Translator 2a, and Translator 3a), but the replication in 

Figure 3-5 is carried out by a single model transformation engine that is capable of 

performing replication on any modeling language. Approach A3 provides the benefit of a 

higher level scripting language that can be generalized through parameterization to 

capture the intent of the replication process. Our most recent efforts have explored this 

third technique for model replication on several existing modeling languages. 

 



 66

 

Figure 3-5 - Replication using the model transformation engine C-SAW (A3) 
 

 

3.3.5 Scaling the System Integration Modeling Language (SIML) 

In this section, the concept of model replication is demonstrated on an example 

modeling language that was created in the GME for the computational physics domain. 

The purpose of introducing this case study is to illustrate how our model transformation 

approach supports scalability among SIML models that contain multiple hierarchies. 

The System Integration Modeling Language (SIML) is a modeling language 

developed to specify configurations of large-scale fault tolerant data processing systems 

used to conduct high-energy physics experiments [Shetty et al., 05]. SIML was developed 

by Shetty et al. from Vanderbilt University to model a large-scale real-time physics 

system developed at Fermi National Accelerator Laboratory (FermiLab) [Fermi, 07] for 

characterizing the subatomic particle interactions that take place in a high-energy physics 



 67

experiment. SIML models capture system structure, target system resources, and 

autonomic behavior. System generation technology is used to create the software from 

these models that implement communication between components with custom data type 

marshalling and demarshalling, system startup and configuration, fault tolerant behavior, 

and autonomic procedures for self-correction [Shetty et al., 05]. 

A system model expressed in SIML captures components and relationships at the 

systems engineering level. The features of SIML are hierarchical component 

decomposition and dataflow modeling with point-to-point and publish-subscribe 

communication between components. There are several rules defined by the SIML 

metamodel: 

• A system model may be composed of several independent regions 

• Each region model may be composed of several independent local process groups 

• Each local process group model may include several primitive application models 

• Each system, region, and local process group must have a representative manager 

that is responsible for mitigating failures in its area 

A local process group is a set of processes that run the set of critical tasks to perform the 

system’s overall function. In a data processing network, a local process group would 

include the set of processes that execute the algorithmic and signal processing tasks, as 

well as the data processing and transport tasks. A region is simply a collection of local 

process groups, and a system is defined as a collection of regions and possibly other 

supporting processes. These containment relationships lead to the multiple hierarchical 

structures of SIML models. A simple SIML base model is shown on the left side of 

Figure 3-6, which captures a system composed of one region and one local process group 



 68

in that region (shown as an expansion of the parent region), utilizing a total of 15 

physical modeling elements (several elements are dedicated to supporting applications 

not included in any region).  

Scalability Issues in SIML: In order to plan, deploy, and refine a high-energy 

physics data processing system, designers manually build a multitude of different SIML 

models that are subject to a variety of outside and changing constraints (e.g., the current 

availability of hardware, software, or human resources). An example of this process 

would be the manual creation of separate 16-, 32-, 64-, and 128-node versions of a 

baseline system used for bandwidth and latency testing purposes. This would later be 

followed by the creation of a set of significantly larger SIML models where the final 

system model could incorporate as many as 2,500 local processing groups. Each of these 

models would undergo a variety of analysis routines to determine several key properties 

of the system. These analyses include system throughput, network/resource utilization 

and worst-case managerial latency (the latency between managers and subordinates is 

crucial in evaluating the fault tolerance of the system). The results of these analyses may 

vary greatly as the structure of the system model is scaled in different ways.  



 69

 

 
Figure 3-6 - Visual Example of SIML Scalability 
 

The number of system configurations that are created using this process is directly 

proportional to the time and effort allowed by system designers to create valid system 

models using a manual approach. In practice, SIML models have been scaled to 32- and 

64-node models. However, the initial scaling in these cases was performed manually. The 

ultimate goal of the manual process was to scale to 2,500 nodes. After 64 nodes, it was 

determined that scaling to further nodes would be too tedious to perform without proper 

automation through improved tool support. Even with just a small expansion, the manual 

application of the same process would require an extraordinary amount of manual effort 

(e.g., much mouse-clicking and typing) to bring about the requisite changes, and increase 

the potential for introducing error into the model (e.g., forgetting to add a required 

connection). If the design needs to be scaled forward or backward, a manual approach 



 70

would require additional effort that would make the exploration and analysis of design 

alternatives impractical. Therefore, a significant victory for design agility can be claimed 

if replicators can be shown to scale a base SIML model quickly and correctly into a 

variety of larger and more elaborate SIML models. This case study shows the benefits 

that result from scaling SIML models by applying an automated approach that exhibits 

the desired characteristics for replicators. 

To decide what scaling behaviors such a replicator needs to perform, domain-

specific knowledge and rules for creating a SIML model as embodied in its metamodel 

need to be captured. For example, there are one-to-many relationships between system 

and regional managers, and also one-to-many relationships between regional and local 

process group managers. These relationships are well-defined. Because the pattern of 

these relationships is known, it is feasible to write a replicator to perform automatic 

generation of additional local process groups and/or regions to create larger and more 

elaborate system models. 

 In general, scaling up a system configuration using SIML can involve: 1) an 

increase in the number of regions, 2) an increase in the number of local process groups 

per region, or 3) both 1 and 2. Considering the SIML model in Figure 3-6, the system 

(which originally has one region with one local process group) is increased to nine 

regions with six local process groups per region. Such replication involves the following 

tasks: 

• Replication of the local process group models 

• Replication of the entire region models and their contents 



 71

• Generation of communication connections between the regional managers and 

newly created local managers 

• Generation of additional communication connections between the system 

manager and new regional manager processes 

The scaled model is shown in the right side of Figure 3-6. This example scales to just 9 

regions and 6 nodes per region simply because of the printed space to visualize the figure.  

ECL Transformation to Scale SIML: The scalability shown in Figure 3-6 can 

be performed by a replicator, which is a model transformation specification in ECL as 

shown in Listing 3-3. As a point of support for the effectiveness of replicators as 

transformations, this ECL specification was written in less than an hour by a user who 

was very familiar with ECL, but had studied the SIML metamodel for less than a few 

hours. 

The ECL transformation specification is composed of an aspect and several 

strategies. In Listing 3-3, the aspect Start (Line 1) invokes two strategies, 

scaleUpNode and scaleUpRegion in order to replicate the local process group 

node (i.e., L2L3Node) within the region model and the region itself. The strategy 

scaleUpNode (Line 7) discovers the “Region” model, sets up the context for the 

transformation, and calls the strategy addNode (Line 12) that will recursively increase 

the number of local process group nodes. The new node instance is created on Line 18, 

which is followed by the construction of the communication connections between ports, 

regional managers and the newly created nodes (Line 21 to Line 23). Some other 

connections are omitted here for the sake of keeping the listing concise. Two other 



 72

strategies, scaleUpRegion (Line 29) and addRegion (Line 34), follow a similar 

mechanism. 

The process of modeling systems using SIML illustrates the benefits of replicators 

by providing an automated technique that uses transformations to scale models in a 

concise and flexible manner. Because of the multiple hierarchies of SIML models, 

replications usually need to be performed on all the elements associated with containment 

relationships within a model. To perform a scaling task across multiple model 

hierarchies, ECL supports model navigation through its model querying and selection 

operations. A model navigation concern can be specified concisely in the ECL. For 

example, Line 9 of Listing 3-3 is a declarative statement for finding all the region models 

by navigating from the root folder to the system model, which calls these three querying 

operations: rootFolder(), findFolder() and findModel().  

Also, flexibility of the replicator can be achieved in several ways. Lines 3 and 4 

of Listing 3-3 specify the magnitude of the scaling operation, as well as the names of the 

specific nodes and regions that are to be replicated. In addition to these parametric 

changes that can be made easily, the semantics of the replication can be changed because 

the transformation specification can be modified directly by an end-user. This is not the 

case in approaches A1 and A2 from Section 3.3.3 because the replication semantics are 

hard-coded into the model compiler. 

 



 73

 

14 aspect Start() 
15 { 
16   scaleUpNode("L2L3Node", 5); //add 5 L2L3Nodes in the Region 
17   scaleUpRegion("Region", 8); //add 8 Regions in the System 
18 } 
19  
20 strategy scaleUpNode(node_name : string; max : integer) 
21 { 
22    rootFolder().findFolder("System").findModel("Region").addNode(node_name,max,1); 
23 } 
24  
25 strategy addNode(node_name, max, idx : integer)           //recursively add nodes 
26 { 
27   declare node, new_node, input_port, node_input_port : object; 
28   
29   if (idx<=max) then 
30  node := rootFolder().findFolder("System").findModel(node_name); 
31  new_node := addInstance("Component", node_name, node); 
32    
33  //add connections to the new node; three similar connections are omitted here 
34  input_port := findAtom("fromITCH"); 
35  node_input_port := new_node.findAtom("fromITCH"); 
36  addConnection("Interaction", input_port, node_input_port); 
37   
38  addNode(node_name, max, idx+1); 
39   endif; 
40 } 
41  
42 strategy scaleUpRegion(reg_name : string; max : integer) 
43 { 
44    rootFolder().findFolder("System").findModel("System").addRegion(reg_name,max,1); 
45 } 
46  
47 strategy addRegion(region_name, max, idx : integer)      //recursively add regions 
48 { 
49   declare region, new_region, out_port, region_in_port, router, new_router 
50  : object 
51   if (idx<=max) then 
52  region := rootFolder().findFolder("System").findModel(region_name); 
53  new_region := addInstance("Component", region_name, region); 
54    
55  //add connections to the new region; four similar connections are omitted here 
56  out_port := findModel("TheSource").findAtom("eventData"); 
57  region_in_port := new_region.findAtom("fromITCH"); 
58  addConnection("Interaction", out_port, region_in_port); 
59   
60      //add a new router and connect it to the new region 
61      router := findAtom("Router"); 
62      new_router := copyAtom(router, "Router"); 
63  addConnection("Router2Component", new_router, new_region); 
64  
65  addRegion(region_name, max, idx+1); 
66   endif; 
67 } 

 
Listing 3-3 - ECL specification for SIML scalability 

 

In addition to the examples discussed in this section, replication strategies have 

also been developed for the Event Quality Aspect Language (EQAL) and Stochastic 

Reward Net Modeling Language (SRNML). EQAL has been used to configure a large 



 74

collection of federated event channels for mission computing avionics applications. 

Replication within EQAL was reported in [Gray et al., 06]. SRNML has been used to 

describe performability concerns of distributed systems built from middleware patterns-

based building blocks. Replication within SRNML was reported in [Lin et al., 07-a]. 

These two case studies are presented in Appendix C. 

To conclude, replicating a hierarchical model requires that a model transformation 

language like ECL provide the capability to traverse models, the flexibility to change the 

scale of replication, and the computational power to change the data attributes within a 

replicated structure. 

 

3.4 Aspect Weaving with C-SAW 

 When a concern spreads across a model hierarchy, a model is difficult to 

comprehend and change. Currently, the most prominent work in aspect modeling 

concentrates on notational aspects for UML [France et al., 04], but tools could also 

provide automation using AOSD principles. Originally, one motivation for developing C-

SAW was the need to specify constraints that crosscut the model of a distributed real-

time embedded system [Gray et al., 01]. In the initial stage of this research, C-SAW was 

used in weaving crosscutting changes into the Embedded System Modeling Language 

(ESML), which is introduced in the next section.  

 

3.4.1 The Embedded Systems Modeling Language 

 The Embedded Systems Modeling Language (ESML), designed by the Vanderbilt 

DARPA MoBIES team, is a domain-specific graphical modeling language for modeling 



 75

real-time mission computing embedded avionics applications [Shetty et al., 05]. ESML 

has been defined within the GME and provides the following modeling categories to 

allow representation of an embedded system: a) Components, b) Component Interactions, 

and c) Component Configurations. 

 Bold Stroke is a product-line architecture written in several million lines of C++ 

that was developed by Boeing to support families of mission computing avionics 

applications for a variety of military aircraft [Sharp, 00]. It is a very complex framework 

with several thousand components implemented in over three million lines of source 

code. There are over 20 representative ESML projects for all of the Bold Stroke usage 

scenarios that have been defined by Boeing. For each specific scenario within Bold 

Stroke, the components and their interactions are captured by an event channel that is 

specified by an ESML model.  

There are a number of crosscutting model properties in ESML models, as shown 

in Figure 3-7. The top of Figure 3-7 shows the interaction among components in a 

mission-computing avionics application modeled in the ESML. The model illustrates a 

set of avionics components (Global Positioning Satellite and navigational display 

components, for example) that collaborate to process a video stream that provides a pilot 

with real-time navigational data. The middle of the figure shows the internal 

representation of two components, which reveals the data elements and other constituents 

intended to describe the infrastructure of component deployment and the distribution 

middleware. The infrastructure implements an event-driven model, in which components 

update and transfer data to each other through event notification and callback methods. 



 76

 Among the components in Figure 3-7 are a concurrency atom and two data atoms 

(circled). Each of these atoms represents a system concern that spreads across the model 

hierarchy. The concurrency atom (in red circle with *) identifies a system property that 

corresponds to the synchronization strategy distributed across the components. The 

collection of atoms (in blue circle with #) defines the recording policy of a black-box 

flight data recorder. Some data elements also have an attached precondition (in green 

circle with @) to assert a set of valid values when a client invokes the component at run-

time. 

 

 

Figure 3-7 - A subset of a model hierarchy with crosscutting model properties. Concerns 
related to synchronization (in red circle with *), black-box data recording (in blue circle 
with #), and preconditions (in green circle with @) are scattered across many submodels. 
 



 77

 To analyze the effect of an alternative design decision manually, model engineers 

must change the synchronization or flight data recorder policies, which requires making 

the change manually at each component’s location. The partial system model in Figure 3-

7 is a subset of an application with more than 6,000 components. Manually changing a 

policy will strain the limits of human ability in a system that large. With ECL, model 

engineers simply define a modeling aspect to specify the intention of a crosscutting 

concern. An example is given in the following subsection. 

 

3.4.2 Weaving Concurrency Properties into ESML Models 

There are several locking strategies available in Bold Stroke to address 

concurrency control (e.g., Internal Locking and External Locking). Internal Locking 

requires the component to lock itself when its data are modified, and External Locking 

requires the user to acquire the component’s lock prior to any access of the component. 

However, existing Bold Stoke component models lack the ability to modularize and 

specify such concurrency strategies. Figure 3-8 illustrates the ESML modeling 

capabilities for specifying the internal configuration of a component. The 

“BM_ClosedEDComponentImpl” is shown in this figure. For this component, the 

facet/receptacle descriptors and event types are specified, as well as internal data 

elements, but it does not have any elements that represent the concurrency mechanisms. 

A model transformation may be used to weave concurrency representations into these 

ESML component models. This transformation task can be described as follows:  

Insert two concurrency atoms (one internal and one external lock) to each model 

that has at least one data atom. 



 78

To perform this transformation manually into over 20 existing component models 

will be time consuming and susceptible to errors. However, C-SAW can automate model 

evolution task based on an ECL transformation specification. 

 

 
Figure 3-8 - Internal representation of a Bold Stroke component 

 

To weave concurrency atoms into existing component models, an ECL 

transformation specification is defined as shown in Listing 3-4. The Start aspect 

defines a collection of component models whose names end with “Impl.” The 

AddConcurrency strategy is then performed on the collection of models meeting the 

Start selection criteria. AddConcurrency is represented by the following tasks: for 

any component model that has at least one Data atom, create two Concurrency atoms 

within the model representing Internal Locking and External Locking. 

 



 79

1 strategy AddConcurrency() 
2 { 
3   declare concurrencyAtom1, concurrencyAtom2 : atom; 
4  
5   if(atoms()->select(a | a.kindOf() == "Data")->size() >= 1) then  
6  //add the first concurrency atom 
7    concurrencyAtom1 := addAtom("Concurrency", "InternalConcurrency"); 
8    concurrencyAtom1.setAttribute("Enable", "1"); 
9    concurrencyAtom1.setAttribute("LockType", "Thread Mutex"); 
10    concurrencyAtom1.setAttribute("LockStrategy", "Internal Locking"); 
11  
12  //add the second concurrency atom 
13    concurrencyAtom2 := addAtom("Concurrency", "ExternalConcurrency"); 
14    concurrencyAtom2.setAttribute("Enable", "1"); 
15    concurrencyAtom2.setAttribute("LockType", "Thread Mutex"); 
16    concurrencyAtom2.setAttribute("LockStrategy", "External Locking"); 
17   endif;  
18 } 
19 aspect Start( ) 
20 { 
21    rootFolder().findFolder("ComponentTypes").models() 
22                ->select(m|m.name().endWith("Impl"))->AddConcurrency(); 
23 } 
 

 
Listing 3-4 - ECL specification to add concurrency atoms to ESML models 

 

In the Start aspect, the rootFolder() function first returns the root folder 

of a modeling project. Next, findFolder() is used to return a folder named 

“ComponentTypes” under the root folder. Then, models() is used to find all the 

models in the “ComponentTypes” folder. Finally, the select() operator is used to 

select all the models whose names end with “Impl.” The AddConcurrency strategy is 

then applied to the resulting collection. In the AddConcurrency strategy, line 5 of 

Listing 3-4 determines whether there exist any Data atoms in the current context model. 

If such atoms exist, the first Concurrency atom is created and its attributes are 

assigned appropriate values in line 7 through line 8 and the second Concurrency atom 

is created and defined in lines 13 through 16. 



 80

 

Figure 3-9 - The transformed Bold Stroke component model 
 

Considering the component model shown in Figure 3-8 as one of the source 

models for this transformation, the resulting target model generated from the transformed 

source model is shown in Figure 3-9. After this transformation is accomplished, two 

concurrency atoms, representing internal locking and external locking, are inserted into 

the source model. As a result, all the existing models can be adapted to capture 

concurrency mechanisms rapidly without extensive manual operations. The ECL is 

essential to automate such a transformation process.  

 
3.5 Experimental Validation 

Experimental validation of the contributions described in this dissertation, in 

terms of the ability to enable model evolution, has been performed by evaluating the 

research on large-scale models in various domains such as computational physics, 



 81

middleware, and mission computing avionics. This section outlines the artifacts available 

for experimentation, as well as the assessment questions and measurement metrics that 

were used to evaluate the research results. 

 

3.5.1 Modeling Artifacts Available for Experimental Validation 

The modeling artifacts available for experimental validation are primarily from 

two sources. One source is Vanderbilt University, a collaborator on much of the C-SAW 

research, who has provided multiple modeling artifacts as experimental platforms. The 

other source is Escher [Escher, 07], which is an NSF sponsored repository of modeling 

artifacts developed from DARPA projects available for experimentation. As discussed in 

Section 3.4, C-SAW was used to support change evolution of Bold Stroke component 

models, which were defined in the Embedded Systems Modeling Language (ESML). 

This experiment assisted in transforming legacy codes [Gray et al., 04-b]. Another 

modeling artifact is the System Integration Modeling Language (SIML) as discussed in 

Section 3.3. C-SAW was used to support system scalability issues with SIML. 

The Event QoS Aspect Language (EQAL) [Edwards, 04] is a modeling language 

from Vanderbilt that is used to graphically specify publisher-subscriber service 

configurations for large-scale DRE systems. The EQAL modeling environment consists 

of a GME metamodel that defines the concepts of publisher-subscriber systems, in 

addition to several model compilers that synthesize middleware configuration files from 

models. The EQAL model compilers automatically generate publisher-subscriber service 

configuration files and component property description files needed by the underlying 



 82

middleware. EQAL was also used for experimentation of model scalability with C-SAW 

[Gray et al., 05]. 

Other modeling artifacts include the Stochastic Reward Net Modeling Language 

(SRNML) [Lin et al., 07-a] and Platform-Independent Component Modeling Language 

(PICML) [Balasubramanian et al., 06-a]. SRNML has been used to describe 

performability concerns of distributed systems built from middleware patterns-based 

building blocks. PICML is a domain-specific modeling language for developing 

component-based systems. Case studies on using C-SAW to support model evolution of 

EQAL and SRNML are given in Appendix C. 

 

3.5.2 Evaluation Metrics for Project Assessment 

Experimental validation of this research has been based on various experimental 

evaluations. There are a set of metrics used in the research validation. 

Domain generality is used to demonstrate that the C-SAW transformation engine 

is DSML-independent and able to perform a variety of modeling tasks. This can be 

assessed by determining how much customization effort is needed to adapt the C-SAW 

model transformation approach for each new modeling language. 

There are also other metrics that were assessed to determine the amount of effort 

and cost required to apply C-SAW to evolve models, and the effect of using C-SAW. 

This set of metrics includes productivity and accuracy. Productivity assessment is used to 

determine the ability of C-SAW to reduce the efforts (represented by amount of time) in 

developing model transformations to perform model evolution tasks, compared to a 

manual model evolution process (i.e., using editing operations in a modeling environment 



 83

such as GME). Accuracy is an assessment of C-SAW’s ability to reduce errors in 

performing model evolution tasks compared to a manual process. The expected benefits 

of the model transformation approach and its supporting tools are improved productivity 

and increased accuracy. 

Experimental validation was conducted by observing the level of effort expended 

in applying the results of the research to evolve model artifacts as identified in Section 

3.5.1, and the correctness of the result. These metrics provide an indication of the success 

of the research as it relates to the ability to evolve domain models.  

 

3.5.3 Experimental Result 

Experimental results for validating the research are from the feedback and 

observations during the applications of C-SAW to support automated evolution of models 

on several different experimental platforms.  

As an initial result, this work has been experimentally applied to a mission 

computing avionics application provided from Boeing where C-SAW was used to evolve 

component models to transform the code base through an approach called Model-Driven 

Program Transformation (MDPT) [Gray et al., 04-b], [Zhang et al., 04] (Note: MDPT is 

not a contribution of this research, but illustrates an application of C-SAW). On this 

experimental platform, C-SAW was used to weave the concurrency mechanisms, 

synchronization and flight data recorder policies into component models specified in 

ESML in order to adapt the modeled systems to new requirements. These concerns are 

usually spread across the model hierarchy and it is hard to address using a manual 

approach. In addition, C-SAW was applied to component-based distributed system 



 84

development by weaving deployment aspects into component models specified in 

PICML. Using C-SAW to compose deployment specification from component models 

not only facilitates modifications to the model in the presence of a large number of 

components, but also gives assurance that changes to model elements keep the model in a 

consistent state [Balasubramanian et al., 06]. More recently, C-SAW has been used in 

addressing the important issue of model scalability [Gray et al., 05], [Lin et al., 07-a] in 

SIML (as mentioned in Section 3.3), EQAL and SRNML (as discussed in Appendix C). 

The feedback from these experiments provides two categories of results to demonstrate 

the benefits of using C-SAW: 

• The result of the first category is related to domain generality. C-SAW has been 

designed and implemented as a modeling-language independent model 

transformation engine. Currently, C-SAW can be used in any modeling language 

that is conformant to a GME metamodel and is able to support any kind of model 

evolution when the source model and the target model belong to the same 

metamodel. Thus, C-SAW can be applied to various domains without any 

customization effort for performing a variety of modeling tasks such as aspect 

weaving [Gray et al., 06], model scalability [Lin et al., 07-a] and model 

refactoring [Zhang et al., 05-a]. This demonstrates that the C-SAW approach 

meets the quality measurement of the domain generality. Also, C-SAW is 

implemented as a GME plug-in. It is easy to install by registering the freely-

available component (please see the conclusion of this chapter for the URL), 

without the need to install any other libraries or software. This installation process 

is the same for all modeling languages.  



 85

• The result of the second category was evaluated to determine the degree of how 

the C-SAW approach improves productivity and increases accuracy for model 

evolution. As observed, compared to a manual approach by making changes using 

the editing operations of GME, using C-SAW not only reduces the time 

significantly but also decreases the potential errors. For example, SIML models 

have been scaled by hand to 32 and 64 nodes. After 64 nodes, the manual process 

deteriorated taking several days with multiple errors. Using C-SAW, SIML 

models have been scaled up to 2500 nodes within a few minutes; flexibility for 

scaling up or down can also be achieved through parameterization. For a user 

familiar with ECL, the time to create a model transformation by a user unfamiliar 

with the domain is often less than 1.5 hours. Moreover, an ECL specification may 

be tested for correctness (e.g., using the testing engine described in Chapter 4) on 

a single model before it is applied to a large collection of models, which helps to 

reduce the potential errors of C-SAW transformations. In contrast, a manual 

process requires an overwhelming amount of ad hoc mouse clicking and typing, 

which makes it easy to make errors. 

To conclude, these results have preliminarily demonstrated C-SAW as an effective tool to 

assist in model evolution in various domains for specific types of transformations. 

 

3.6 Related Work 

The general area of related work concerns model transformation approaches and 

applications, especially modeling research and practice that provide abilities to specify 



 86

model evolution concerns that address issues such as model scalability and evolution. 

This section provides an overview of work related to these issues. 

 

3.6.1 Current Model Transformation Techniques and Languages 

 A large number of approaches to model transformation have been proposed by 

both academic and industrial researchers and there are many model transformation tools 

available (example surveys can be found in [Czarnecki and Helsen, 06], [Mens and Van 

Gorp, 05], [Sendall and Kozaczynski, 03]). In general, there are three different 

approaches for defining transformations, as summarized from [Sendall and Kozaczynski, 

03]: 

• Direct Model Manipulation – developers access an internal model representation 

and use a general-purpose programming language (GPL) to manipulate the 

representation from a set of procedural APIs provided by the host modeling tool. 

An example is Rational XDE, which exposes an extensive set of APIs to its model 

server that can be used from Java, VB or C++ [Rose, 07]. Another example is the 

GME, which offers the BON (Section 3.2.5) as a set of APIs in Java and C++ to 

manipulate models [GME, 07]. 

• Intermediate Representation – a modeling tool can export the model into an 

intermediate representation format (e.g., XML). Transformations can then be 

performed on the exported model by an external transformation tool (e.g., XSLT 

[XSLT, 99]), and the output models can be imported back into the host modeling 

tool. An example is OMG’s Common Warehouse Metamodel (CWM) Specification 

[CMW, 07] and transformation implemented using XSLT. In fact, the original 



 87

implementation of the ECL performed a transformation using XSLT on GME 

models exported as XML [Gray et al., 01], [Gray, 02]. 

• Specialized Transformation Language – a specialized transformation language 

provides a set of constructs for explicitly specifying the behavior of the 

transformation. A transformation specification can typically be written more 

concisely than direct manipulation with a GPL. 

The direct manipulation approach provides APIs that may be familiar to programmers 

using Java or C++ frameworks, but may not be familiar to end-users handling high-level 

modeling notations in specific domains. The disadvantage of APIs used by a GPL is that 

they lack high-level abstraction constructs to specify model transformations so that end-

users have to deal with the accidental complexity of the low-level GPL. 

 The advantage of the XSLT-based approach is that XSLT is an industry standard 

for transforming XML where the XML Metadata Interchange (XMI) [XMI, 07] is used to 

represent models. However, XSLT requires experience and considerable effort to define 

even simple model transformation [Sendall and Kozaczynski, 03]. Manual 

implementation of model transformation in XSLT quickly leads to non-maintainable 

implementations because of the verbosity and poor readability of XMI and XSLT. 

 The specialized transformation language approach provides a domain-specific 

language (DSL) [Mernik et al., 05] for describing transformations, which offers the most 

potential expressive power for transformations. Currently, numerous model 

transformation languages have been proposed by both academic and industrial 

researchers. These languages are used to define transformation rules and rule application 



 88

strategies that can be either graphical or textual. Additionally, model transformation 

languages may be either imperative or declarative [Czarnecki and Helsen, 06]. 

 There are two major kinds of model transformation specification languages: one 

represents a graphical language, typified by graph grammars (e.g., Graph Rewriting and 

Transformation Language (GReAT) [Agrawal, 03], AToM3 [Vangheluwe and De Lara, 

04]  and Fujaba [Fujaba, 07]), the other is a hybrid language (e.g., Atlas Transformation 

Language (ATL) [Bézivin et al., 04], [Kurtev et al., 06] and Yet Another Transformation 

Language (YATL) [Patrascoiu, 04]). The distinguishing features of these two language 

categories are summarized as: 

• Graphical transformation language: In this approach, models are treated as 

graphs and model transformations are specified as graph transformations. Graph 

transformations are realized by the application of transformation rules, which are 

rewriting rules for graphs specified as graph grammars. The left-hand side (LHS) of 

a transformation rule is a graph to match, and the right-hand side (RHS) is a 

replacement graph. If a match is found for the LHS graph, then the rule is fired, 

which results in the matched sub-graph of the graph under transformation being 

replaced by the RHS graph. In such a language, graphical notations are provided to 

specify graph patterns, model transformation rules and control flow of 

transformation execution. Compared to a textual language, a graphical language is 

efficient in communicating graph patterns. However, it can be tedious to use purely 

graphical notations to describe complicated computation algorithms. As a result, it 

may require generation to a separate language to apply and execute the 

transformations. 



 89

• Hybrid transformation language: combines declarative and imperative constructs. 

Declarative constructs are used to specify source and target patterns as 

transformation rules (e.g., filtering model elements), and imperative constructs are 

used to implement sequences of instructions (e.g., assignment, looping and 

conditional constructs). However, embedding predefined patterns renders 

complicated syntax and semantics for a hybrid language [Kurtev et al., 06]. 

Many existing model transformation languages (including those discussed above) allow 

transformation to be specified between two different domains (e.g., a transformation that 

converts a UML model into an entity-relationship model). The ECL can be distinguished 

from these approaches as a relatively simple and easy-to-learn language that focuses on 

specifying and executing endogenous transformation where the source and target models 

belong to the same domain. However, it has full expressive power for model replication 

and aspect modeling because these tasks can be specified as endogenous transformations.  

 

3.6.2 Related Work on Model Scalability 

 Related work on model scalability contributes to the ability to specify and 

generate instance-based models with repetitive structures. The approach proposed by 

Milicev [Milicev, 02] uses extended UML Object Diagrams to specify the instances and 

links of a target model that is created during automatic translation; this target model is 

called the domain mapping specification. An automatically generated model transformer 

is used to produce intermediate models, which are refined to final output artifacts (e.g, 

C++ codes). Similar to the ideas presented in this dissertation, Milicev adopts a model 

transformation approach whereby users write and execute transformation specifications 



 90

to produce instance-based models. However, different from our approach, Milicev’s work 

is domain-dependent because the domain mapping specifications and model transformers 

are domain-specific. Moreover, the target of his work is the reusability of code generators 

built in existing modeling tools, which introduces an intermediate model representation to 

bridge multiple abstraction levels (e.g., from model to code). The target of our approach 

is to use existing model transformation tools, which support model-to-model 

transformations at the same abstraction level. Model transformations can be written that 

perform model replication in a domain-independent manner without any effort toward 

extending existing model representations across different abstraction levels. 

 Several researchers have proposed standard notations to represent repetitive 

structures of modeling real-time and embedded systems, which is helpful in discovering 

possible model replication patterns. The MARTE (Modeling and Analysis of Real-Time 

and Embedded systems) request for proposals was issued by the OMG in February 2005, 

which solicits submissions for a UML profile that adds capabilities for modeling Real-

Time and Embedded Systems (RTES), and for analyzing schedulability and performance 

properties of UML specifications. One of the particular requests of MARTE concerns the 

definition of common high-level modeling constructs for factoring repetitive structures 

for software and hardware. Cuccuru et al. [Cuccuru et al., 05] proposed multi-

dimensional multiplicities and mechanisms for the description of regular connection 

patterns between model elements. However, these proposed patterns are in an initial stage 

and have not been used by any existing modeling tools. Their proposal mainly works 

with models containing repetitive elements that are identical, but may not specify all the 

model replication situations that were identified in this dissertation (e.g., to represent 



 91

models with a collection of model elements of the same type, which are slightly different 

in some properties, or have similar but not identical relationships with their neighbors). 

As such research matures, we believe significant results will be achieved toward 

representation of repetitive or even similar model structures. Such maturity will 

contribute to standardizing and advancing model replication capabilities. 

 The C-SAW approach advocates using existing model transformation techniques 

and tools to address model scalability, especially where modeling languages lack support 

for dynamic creation of model instances and links. This investigation on the application 

of model transformations to address scalability concerns extends the application area of 

model transformations. The practice and experiences illustrated in this chapter help to 

motivate the need for model scalability. 

 

3.7 Conclusion 

The goal of the research described in this chapter is to provide a model 

transformation approach to automate model evolution. This chapter presents the major 

extensions to the ECL model transformation language and its associated engine C-SAW 

to address model evolution concerns that relate to important system-wide issues such as 

scalability and adaptability. ECL is a transformation language to specify various types of 

evolution tasks in modeling, such as scalability concerns that allow a model engineer to 

explore design alternatives. C-SAW has been implemented as a GME plug-in to execute 

ECL specifications within the GME. This enables weaving changes into GME domain 

models automatically. 



 92

Experimental validation is also discussed in this chapter to assess the benefits and 

effectiveness of the C-SAW approach in automating model evolution. There are several 

large-scale models available from the Escher Institute [Escher, 07] that were used as 

experimental platforms. These models have several thousand modeling elements in 

various domains such as computational physics, middleware, and mission computing 

avionics. As an experimental result, the C-SAW transformation engine has been applied 

to support automated evolution of models on several of these different experimental 

platforms. Particularly, C-SAW has been used to address the important issue of model 

scalability for exploring design alternatives and crosscutting concerns for model 

adaptation and evolution. The observation and feedback from the usage of C-SAW has 

demonstrated that C-SAW not only helps to reduce the human effort in model evolution, 

but also helps to improve the correctness. Other benefits provided by C-SAW include 

modeling language independency and the capability to perform various types of model 

evolution tasks. The C-SAW plug-in downloads, publications, and video demonstrations 

are available at the project website: http://www.cis.uab.edu/gray/Research/C-SAW/ 

 To improve the correctness of a model transformation specification, a model 

transformation testing approach as discussed in Chapter 5 provides support for testing 

model transformation specifications, which requires model comparison techniques. As 

another contribution of this research, the next chapter presents the algorithms and tool 

support called DSMDiff for model comparison. 



 

 

93

 

 

 

 

CHAPTER 4 

DSMDIFF: ALGORITHMS AND TOOL SUPPORT  

FOR MODEL DIFFERENTIATION 

 

This chapter describes the contribution of this dissertation on model 

differentiation. It begins with a brief discussion on the need for model differentiation, 

followed by detailed discussions on the limitations of current techniques. The problem of 

model differentiation is formally defined and the key issues are identified. The core of 

this chapter is to present the developed model differentiation algorithms and the 

associated tool called DSMDiff, including an analysis of non-structural and structural 

information of model elements, formal representation of models and details of the 

algorithms. This chapter also motivates the importance of visualizing the model 

differences in a manner that can be comprehended by a model engineer. The chapter 

provides an evaluation of the algorithms and concludes with an overview of related work 

and a summary. 

 

4.1 Motivation and Introduction 

As MDE is emerging as a software development paradigm that promotes models 

as first-class artifacts to specify properties of software systems at a higher level of 

abstraction,  the capability to identify mappings and differences between models, which 



 

 

94

 

is called model differentiation, model differencing or model comparison, is essential to 

many model development and management practices [Cicchetti et al., 2007]. For 

example, model differentiation is needed in a version control system that is model-aware 

to trace the changes between different model versions to understand the evolution history 

of the models. Model comparison techniques and tools may help maintain consistency 

between different views of a modeled system. Particularly, model differentiation is 

needed in the model transformation testing research discussed in Chapter 5 to assist in 

testing the correctness of model transformations by comparing the expected model and 

the resulting model after applying a transformation ruleset. 

Although there exist many techniques available for differentiating text files (e.g., 

source code and documentation) and for structured data (e.g., XML documents), such 

tools either operate under a linear file-based paradigm that is purely textual (e.g., the 

Unix diff tool [Hunt and McIlroy, 75]) or perform comparison on a tree structure (e.g., 

the XMLDiff tool [Wang et al., 03]). However, models are structurally represented as 

graphs and are often rendered in a graphical notation. Thus, there is a structural mismatch 

between currently available text-based differentiation tools and the graphical nature of 

models. Furthermore, from our experience, large models can contain several thousand 

modeling elements, which makes a manual approach to model differentiation infeasible. 

To address these problems, more research is needed to explore automated differentiation 

algorithms and supporting tools that may be applied to models with graphical structures. 

 



 

 

95

 

4.2 Problem Definition and Challenges 

Theoretically, generic model comparison is similar to the graph isomorphism 

problem that is known to be in NP [Garey and Johnson, 79]. Some research efforts aim to 

provide generic model comparison algorithms, such as the Bayesian approach, which 

initially provides diagram matching solutions to architectural models and data models 

[Mandelin et al., 06]. However, the computational complexity of general graph matching 

algorithms is the major hindrance to applying such algorithms to practical applications in 

modeling. Thus, it is necessary to loosen the constraints on graph matching to find 

solutions for model comparison. A typical solution is to provide differentiation 

techniques that are specific to a particular modeling language, where the syntax and 

semantics of this language help to handle conflicts during model matching. 

Currently, there exist many types of modeling languages. Particularly, the UML is 

a popular object-oriented modeling language. The majority of investigations into model 

differentiation focus on UML diagrams [Ohst et al., 03], [Xing and Stroulia, 05]. 

Alternatively, DSM [Gray et al., 07] is an emerging MDE methodology that generates 

customized modeling languages and environments from metamodels that define a narrow 

domain of interest. Distinguished from UML, which is a general purpose modeling 

language, DSMLs aim to specify the solution directly using rules and concepts familiar to 

end-users of a particular application domain.  

There are two main differences between domain-specific models and UML 

diagrams: 1) UML diagrams have a single definition for syntax and static semantics (i.e., 

a single metamodel), however, domain-specific models vary significantly in their 

structures and properties when their syntax and static semantics are defined in different 



 

 

96

 

metamodels, which correspond to different DSMLs customized for specific end-users; 2) 

domain-specific models are usually considered as instance-based models (e.g., large 

domain-specific system models often have repetitive and nested hierarchical structures 

and may contain large quantities of objects of the same type), but traditional UML 

diagrams are primarily class-based models. Thus, domain-specific models and UML 

diagrams differ in structure, syntax and semantics. New approaches are therefore required 

to analyze differences among domain-specific models. However, there has been little 

work reported in the literature on computing differences between domain-specific models 

that are visualized in a graphical concrete syntax. To address the problem of computing 

the differences between domain-specific models, the following issues need to be 

explored: 

• What are the essential characteristics of domain-specific models and how are 

they defined? 

• What information within domain-specific models needs to be compared and 

what information is needed to support metamodel-independent model 

comparison? 

• How is this information formalized within the model representation in a 

particular DSML? 

• How are model mappings and differences defined to enable model 

comparison? 

• What algorithms can be used to discover the mappings and differences 

between models? 



 

 

97

 

• How to visualize the result of model comparison to assist in comprehending 

the mappings and differences between two models? 

 

4.2.1 Information Analysis of Domain-Specific Models 

To develop algorithms for model differentiation, one of the critical questions is 

whether to determine if the two models are syntactically equivalent or to determine if 

they are semantically equivalent. Because the semantics of most modeling languages are 

not formally defined, the developed algorithms only determine whether the two models 

are syntactically equivalent4. To achieve this, a model comparison algorithm must be 

informed by the syntax of a specific DSML. Thus, this section discusses how the syntax 

of a DSML is defined and what essential information is embodied in the syntax. 

As discussed in Chapter 2, metamodeling is a common technique for 

conceptualizing a domain by defining the abstract syntax and static semantics of a 

DSML. A metamodel defines a set of modeling elements and their valid relationships that 

represent certain properties for a specific domain. The GME [Lédeczi et al., 01] is a 

meta-configurable tool that allows a DSML to be defined from a metamodel. Domain-

specific models can be created using a DSML and may be translated into source code, or 

synthesized into data to be sent to a simulation tool. The algorithms presented in this 

chapter have been developed within the context of the GME, but we believe these 

algorithms can solve broader model comparison problems in other metamodeling tools 

such as the ATLAS Model Management Architecture (AMMA) [Kurtev et al., 06], 

                                                 
4 Please note that this is not a serious limitation when compared to other differentiation methods. The large 
majority of differentiation techniques offer syntactic comparison only, especially those focused on 
detecting textual differences  



 

 

98

 

Microsoft’s DSL tools [Microsoft, 05], MetaEdit+ [MetaCase, 07], and the Eclipse 

Modeling Framework (EMF) [Budinsky et al., 04]. 

There are three basic types of entities used to define a DSML in GME: atom, 

model and connection. An atom is the most basic type of entity that cannot have any 

internal structures. A model is another type of entity that can contain other modeling 

entities such as child models and atoms. A connection represents the relationship between 

two entities. Generally, the constructs of a DSML defined in a metamodel consist of a set 

of model entities, a set of atom entities and a set of connections. However, these three 

types of entities are generic to any DSML and provide domain-independent type 

information (i.e., called the type in GME terminology). Each entity (e.g., model, atom or 

connection) in a metamodel is given a name to specify the role that it plays in the domain. 

Correspondingly, the name that is defined for each entity in a metamodel represents the 

domain-specific type (i.e., called the kind in GME terminology), which end-users see 

when creating an instance model. Moreover, attributes are used to record state 

information and are bound to atoms, models, and connections. Thus, without considering 

its relationships to other elements, a model element is defined syntactically by its type, 

kind, name and a set of attributes. Specifically, type provides certain meta information to 

help determine the essential structure of a model element for any DSML (e.g., model, 

atom or connection) and is needed in metamodel-independent model differentiation. 

Meanwhile, kind and name are specific to a given DSML and provide non-structural 

syntactical information to further assist in model comparison. Other syntactical 

information of a model element include its relationships to other elements (i.e., 



 

 

99

 

connections to its neighbours), which may also distinguish the identity of modeling 

elements. 

In summary, to determine whether two models are syntactically equivalent, model 

differentiation algorithms need to compare all the syntactical information between them. 

Such a set of syntactical information of a model element includes: 1) its type, kind, name 

and attribute information; and 2) its connections to other model elements. In addition, if 

these two models are containment models, the algorithms need to compare all the 

elements at all the levels. There is other information associated with a model that either 

relates to the concrete syntax of a DSML (e.g., visualization specifications such as 

associated icon objects and their default layouts and positions) or to the static semantics 

of a DSML (e.g., constraints to define domain rules). The concrete syntax is not generally 

involved in model differentiation for the purpose of determining whether two models 

from the same DSML are syntactically equivalent (e.g., the associated icon of a model 

element is always determined by its kind information from the metamodel definition). 

Similarly, because the constraints are defined at the metamodel level in our case (i.e., 

models with the same kind hold the same constraints), they are not explicitly compared in 

model differentiation; instead, kind equivalence implies the equivalence of constraints. 

 

4.2.2 Formalizing a Model Representation as a Graph 

In order to design efficient algorithms to detect differences between two models, 

it is necessary to understand the structure of a model. Figure 4-1 shows a GME model 

and its hierarchical structure. According to its hierarchical containment structure, a model 

can be represented formally as a hierarchical graph that consists of a set of nodes and 



 

 

100

 

edges, which are typed, named and attributed. There are four kinds of elements in such a 

graph: 

• Node. A node is an element of a model, represented as a 4-tuple (name, type, kind, 

attributes), where name is the identifier of the node, type is the corresponding 

metamodeling element for the node, kind is the domain-specific type, and attributes is 

a set of attributes that are predefined by the metamodel. There are two kinds of nodes: 

 Model node: a containment node that can be expanded at a lower level as a 

graph that consists of a set of nodes and a set of edges (i.e., a container). This 

kind of node is used to represent submodels within a model, which leads to 

multiple-level hierarchies of a containment model. 

 Atom node: an atomic node that cannot contain any other nodes (i.e., a leaf). 

This kind of node is used to represent atomic elements of a model. 

• Edge. An edge is a 5-tuple (name, type, kind, src, dst), where name is the identifier of 

the edge, type is the corresponding metamodeling element for the edge, kind is the 

domain-specific type, src is the source node, and dst is the destination node. A 

connection can be represented as an edge. 

• Graph. A directed graph consists of a set of nodes and a set of edges where the 

source node and the destination node of each edge belong to the set of nodes. A graph 

is used to represent an expanded model node. 

• Root. A root is the graph at the top level of a multiple-level hierarchy that represents 

the top of a hierarchical model. 

 



 

 

101

 

 

Figure 4-1 - A GME model and its hierarchical structure 

 

4.2.3 Model Differences and Mappings 

The task of model differentiation is to identify the mappings and differences 

between two containment models at all hierarchical levels. In general, the comparison 

starts from the top level of the two containment models and then continues to the child 

submodels. At each level, the comparison between two corresponding models (i.e., one is 

defined as the host model, denoted as M1, and the other is defined as the candidate 

model, denoted as M2), always produces two sets: the mapping set (denoted as MS) and 

the difference set (denoted as DS). The mapping set contains all pairs of model elements 

that are mapped to each other between two models. The difference set contains all 



 

 

102

 

detected discrepancies between the two models. Before the details of the algorithms are 

presented, the definition of model mappings and differences is discussed. 

A pair of mappings is denoted as Map (elem1, elem2), where elem1 is in M1 and 

elem2 is in M2, and may be a pair of nodes or a pair of edges. Map (elem1, elem2) is a 

bidirectional relationship that implies elem2 is the only mapped correspondence in M2 for 

elem1 in M1 based on certain matching metrics, and vice versa. The difference 

relationship between two models is more complicated than the mapping relationship. The 

notations used to represent the differences between two models are editing operational 

terms that are considered more intuitive [Alanen and Porres, 03]. For example, a New 

operation implies creating a model element, a Delete operation implies removing a model 

element and a Change operation implies changing the value of an attribute. We define DS 

= M2 – M1, where M2 is compared to M1. DS consists of a set of operations that yields 

M2 when applied to M1. The “-” operator is not commutative. 

There are several situations that could cause two models to differ. The first 

situation of model difference occurs when some modeling elements (e.g., nodes or edges 

in the graph representation) are in M2, but not in M1. We denote this kind of difference 

as New (e2) where e2 is in M2, but not in M1. The converse is another situation that could 

cause a difference (i.e., elements in M1 are missing in M2). We denote this kind of 

difference as Delete (e1) where e1 is in M1, but not in M2. These two situations occur 

from structural differences between the two models. A third difference can occur when 

all of the structural elements are the same, but a particular value of an attribute is 

different. We denote this difference as Change (e1, e2, f, v1, v2), where e1 in M1 and e2 in 

M2 are a pair of mapping elements, f is the feature name (e.g., name of an attribute), v1 is 



 

 

103

 

the value of e1.f, and v2 is the value of e2.f. Thus, the difference set actually includes three 

sets: DS = {N, D, C} where N is a set that contains all the New differences, D is a set that 

contains all the Delete differences, and C is a set that contains all the Change differences. 

This approach was initially defined in [Lin et al., 05] and extended in [Lin et al., 07-b]. 

 

4.3 Model Differentiation Algorithms 

The model comparison algorithms developed as a part of the research described in 

this dissertation identify the mappings and differences between two containment models 

by comparing all the elements and their abstract syntactical information within these 

models. In general, the comparison starts from the two root models and then continues to 

the child submodels. At each level, two metrics (i.e., signature matching and structural 

similarity) are combined to detect the mapped nodes between a pair of models and the 

remaining nodes are examined to determine all the node differences. Based on the results 

of node comparison, all the edges are computed to discover all the edge mappings and 

differences. 

To store the two models that need to be compared and the results of model 

comparison, a data structure called DiffModel is used. The structure of DiffModel 

contains a pair of models to be compared, a mapping set to store all the matched child 

pairs, and three difference sets to record New, Delete, and Change differences. 

 

4.3.1 Detection of Model Mappings 

It is well-known that some model comparison algorithms are greatly simplified by 

requiring that each element have a persistent identifier, such as a universally unique 

identifier (UUID), which is assigned to a newly created element and will not be changed 



 

 

104

 

unless the element is removed [Ohst et al., 03]. However, such traceable links only apply 

to two models that are subsequent versions. In many modeling activities, model 

comparison is needed between two models that are not subsequent versions. A pair of 

corresponding model elements need to share a set of properties, which can be a subset of 

their syntactical information. Such properties may include type information, which can be 

used to select the model elements of the same type from the candidates to be matched 

because only model elements with the same type need to be compared. For example, in a 

Petri net model, a “place” node will not match a “transition” node. In addition to type 

information, identification information such as name is also important to determine 

mappings for domain-specific models. Therefore, a combination of syntactical properties 

for a node or an edge can be used to identify different model elements. Such properties 

are called the signature in DSMDiff, and are used as the first criterion to match model 

elements. Signature is a widely used term in much of the literature on structural data 

matching and may have different definitions [Wang et al., 03]. In our context, the 

signature of a node or an edge is a subset of its syntactical information, which is defined 

as follows: 

• Node Signature is the concatenation of the type, kind and name of a node. 

Suppose v is a node in a graph. Signature (v) = /Type (v)/Kind (v)/Name (v). If a 

node is nameless, its name is set as an empty string. 

• Edge Signature is the concatenation of the type, kind and name of the edge as 

well as of the signatures of its source node and destination node. Suppose e is an 

edge in a graph, src is its source node and dst is its destination node. Signature (e) 



 

 

105

 

= Signature (src)/Type (e)/Kind (e)/Name (e)/Signature (dst). If an edge is 

nameless, its name is set as an empty string. 

Signature Matching 

Signature matching can be defined as: 

• Node Signature Matching: Given two models, M1 and M2, suppose v1 is a node 

in M1 and v2 is a node in M2. There is a node signature matching between v1 and 

v2 if Signature (v1) = Signature (v2), which means the two strings (i.e., the 

signature of v1 and the signature of v2) are textually equivalent. 

• Edge Signature Matching: Given two models, M1 and M2, suppose e1 is an 

edge in M1 and e2 is an edge in M2. There is an edge signature matching between 

e1 and e2 if Signature (e1) = Signature (e2), which means the two strings (i.e., the 

signature of e1 and the signature of e2) are textually equivalent. 

A node v1 in M1 mapping to a node v2 in M2 implies their name, type and kind are 

matched. An edge e1 in M1 mapping to an edge e2 in M2 implies their name, type, kind, 

source node and destination node are all signature matched. 

Usually, nodes are the most significant elements in a model and edge mappings also 

depend on whether their source and destination nodes match. Thus, DSMDiff first tries to 

match nodes that have the same signature. For example, to decide whether there is a node 

in M2 mapped to a node in M1 (denoted as v1), the algorithm first needs to find all the 

candidate nodes in M2 that have the same signature as v1 in M1. If there is only one 

candidate found in M2, the identified candidate is considered as a unique mapping for v1 

and they are considered as syntactically equivalent. If there is more than one candidate 



 

 

106

 

that has been found, the signature cannot identify a node uniquely. Therefore, v1 and its 

candidates in M2 will be sent for further analysis where structural matching is performed. 

Structural Matching 

In some cases, signature matching alone cannot find the exact mapping for a given model 

element. During signature matching, one node in M1 may have multiple candidates in 

M2. To find a unique mapping from these candidates, DSMDiff uses structural similarity 

as another criterion. The metric used for determining structural similarity between a node 

and its candidates is called edge similarity, which is defined as follows: 

Edge Similarity: Given two models, M1 and M2, suppose v1 is a node in M1 and v2 

is one of its candidate nodes in M2. The edge similarity of v2 to v1 is the number of 

edges connecting to v2, with each signature matched to one of the edges connecting 

to v1. 

During structural matching, if DSMDiff can find a candidate that has the maximal edge 

similarity, this candidate becomes the unique mapping for the given node. If it cannot 

find this unique mapping using edge similarity, one of the candidates will be selected as 

the host node’s mapping, following the assumption that there may exist a set of identical 

model elements. 

Listing 4-1 presents the algorithm to find the candidate node with maximal edge 

similarity for a given host node from a set of candidate nodes. It takes the host node (i.e., 

hostNode) and a set of candidate nodes of M2 (i.e., candidateNodes) as input, 

computes the edge similarity of every candidate node and returns a candidate with 

maximal edge similarity. Listing 4-2 gives the algorithm for computing edge similarity 

between a candidate node and a host node. It takes two maps as input – hostConns 



 

 

107

 

stores all the incoming and outgoing edges of the host node indexed by their edge 

signature, and candConns stores all the incoming and outgoing edges of the candidate 

node indexed by their edge signature. By examining the mapped edge pairs between these 

two maps, the algorithm computes the edge similarity as output. 

 

Listing 4-1 - Finding the candidate of maximal edge similarity 

 

 

Listing 4-2 - Computing edge similarity of a candidate 

 

Name: computeEdgeSimilarity 
Input: hostConns, candConns 
Output: similarity 

 
1. Initialize similarity as zero; 
2. For each edge signature in the map hostConns 

1) Get the number of the edges associated with the 
edge signature as hostCount; 

2) Get the number of the edges from the map candConns 
associated with the edge signature as candCount; 

3) If candCount <= hostCount 
  Similarity = similarity + candCount; 

4) Else 
  Similarity = similarity + hostCount; 

3. Return similarity; 

Name: findMaximalEdgeSimilarity 
Input: hostNode, candidateNodes 
Output: maximalCandidate 
 

1. Initialize three maps: hostConns, candConns and set 
maxSimilarity = 0, maximalCanidate = null; 

2. Store each edge signature and the number of associated 
edges of the hostNode in the map hostConns; 

3. For each candidate c in candidateNodes 
1) Store each of its edge signatures and the number of 

associated edges in the map candConns; 
2) Call computeEdgeSimilarity(hostConns, candConns) to 

compute the edge similarity of c to hostNode; 
3) If(the computed similarity > maxSimilarity) 

maxSimilarity = the computed similarity; 
maximalCandiate = c; 

4. Return maximalCandidate; 



 

 

108

 

The algorithm in Listing 4-1 determines that the unique correspondence found using 

the edge similarity has the most identical connections and neighbors to the host node 

when only one candidate has the maximal edge similarity. The algorithm also implies one 

candidate with the maximal edge similarity is selected as the unique correspondence 

when there are more than one candidates with the same maximal edge similarity; 

however, this selection may be incorrect in some cases and needs to be improved as 

discussed later in Limitations and Improvement (Section 4.5.2). DSMDiff only examines 

structural similarity within a specific local region where the host node is the center and its 

neighbor nodes form the border. In our experience, using signature matching and edge 

similarity to find model mappings not only speeds up the model differentiation process, 

but also generates accurate results in the experiments that have been conducted (one 

example is demonstrated in Chapter 5). After all the nodes in M1 have been examined by 

signature and structural matching, all the possible node mappings between M1 and M2 

are found in general practice except for the cases discussed in Section 4.5.2. 

4.3.2 Detection of Model Differences 

As mentioned previously, there are three basic types of model differences: New, 

Delete and Change. To identify these various types of differences is another major task of 

DSMDiff. In order to increase the performance of DSMDiff, some of the procedures to 

detect model differences may be integrated into the previously discussed procedures for 

finding mappings. 

 



 

 

109

 

 

Listing 4-3 - Finding signature mappings and the Delete differences 

 

To discover all the Delete differences, DSMDiff must find all the model elements 

in M1 that do not have any signature matched candidates in M2. In signature matching, 

DSMDiff examines how many candidates can be found in M2 that have the same 

signature as each element in M1. If only one is found, a pair of mappings is constructed 

and added to the mapping set. If more than one is found, the host element and the found 

candidates are sent to structural matching. If no candidate can be identified, the host 

element is considered as a Delete difference, which means it exists in M1 but does not 

exist in M2. Listing 4-3 summarizes the algorithm. 

After all the mappings are discovered between M1 and M2, the mapped elements 

are filtered out. The remaining elements in M2 are then taken as the New differences 

(i.e., a New difference indicates that there is an element in M2 that is missing in M1). 

Name: findSignatureMappingsAndDeleteDiffs 
Input: diffModel 
Output: hostSet, candMap, diffModel 
 

1. Initialize a set hostSet and a map candMap; 
2. Get M1 from diffModel and store all nodes of M1 in 

hostSet 
3. Get M2 from diffModel and store all nodes of M2 in 

candMap associated with their signature; 
4. For each node e1 in hostSet 

1) Get the count of the nodes from candMap that are 
signature matched to e1; 

2) If count == 1 
  Get the candidate from candMap as e2; 
  Add Map(e1, e2) to the mapping set of diffModel; 
  Erase e1 from hostSet; 
  Erase e2 from candMap; 

3) If count == 0 
  Add e1 to the Delete set of diffModel; 
  Erase e1 from hostSet; 

4) If count > 1 
  Do nothing; 



 

 

110

 

The Change differences are used to indicate varying attributes between any pair of 

mappings. Both model nodes and atom nodes may have a set of attributes; thus, a pair of 

matched model nodes or atom nodes may have Change differences. DSMDiff compares 

the values of each attribute of each pair of model or atom mappings. If the values are 

different, the attribute name is added to the Change difference set. 

After all the node mappings and differences are determined, DSMDiff then tries 

to find the edge mappings and differences between M1 and M2 using these strategies: 1) 

all the edges connecting to a Delete node are Delete edges; 2) all the edges connecting to 

a New node are New edges; 3) the edge signature matching is applied to find out the edge 

mappings; and 4) the remaining edges in M1 are taken as additional Delete edges and 

those in M2 are taken as additional New edges. 

 

4.3.3 Depth-First Detection 

The traversal strategy of DSMDiff is depth-first, which traverses from the root 

level of a model hierarchy and then walks down to the lower levels to compare all the 

child submodels until it reaches the bottom level, where there are no submodels that can 

be expanded. Supporting such depth-first detection requires that all the node mappings 

found at a current level be categorized into two groups: model node mappings and atom 

node mappings. DSMDiff then performs model comparison on each pair of model node 

mappings. Each atom node mapping is examined for attribute equivalence. If there are 

some attributes with different values, these represent Change differences between the 

models. If all the attributes are matched, it is inferred that two nodes are equivalent 

because there is no Change, Delete or New difference. 



 

 

111

 

To summarize, Listing 4-4 presents the overall algorithm of DSMDiff to calculate 

the mappings and the differences between two models. It takes diffModel as input, 

which is a typed DiffModel and initially stores two models (M1 and M2). DSMDiff 

produces two sets: the mapping set (MS) and the difference set (DS) that consists of three 

types of differences (N: the set of New differences, D: the set of Delete differences, and 

C: the set of Change differences). All of these mapping and difference sets are stored in 

the diffModel during execution of DSMDiff. 

 

Listing 4-4 - DSMDiff Algorithm 

Name: DSMDiff 
Input: diffModel 
Output: diffModel 
 

1. Initialize a set hostSet and a map candMap; 
2. Get the host model from diffModel as M1 and the 

candidate model as M2; 
3. Detect attribute differences between M1 and M2 and add 

them to the Change set of diffModel; 
4. //Find node mappings by signature matching 

findSignatureMappingsAndDeleteDiffs (diffModel, 
                                     hostSet, candMap); 

5. If(hostSet is not empty && candMap is not empty) 
//Find node mappings by structural matching 
For each element e1 in hostSet 

1) Get its candidates from candMap into a set 
called candSet; 

2) e2 = findMaximalEdgeSimilarity(e1,candSet); 
3) Add Pair(e1, e2) to the Mapping set of 

diffModel; 
4) Erase e1 from hostSet; 
5) Erase e2 from candMap; 

6. If(candMap is not empty)   
Add all the remained members of candMap to the New 
set of diffModel; 

7. For each mapped elements that are not submodels 
Detect attribute differences and add them to the 
Change set of diffModel; 

8. Compute edge mappings and differences 
9. //Walk into child submodels 

For each childDiffModel that stores a pair mapped 
submodels 

DSMDiff(childDiffModel); 



 

 

112

 

4.4 Visualization of Model Differences 

 Visualization of the result of model differentiation (i.e., structural model 

differences) is critical to assist in comprehending the mappings and differences between 

two models. To help communicate the comparison results intuitively within a host 

modeling environment, a tree browser has been developed to visualize the structural 

differences and to support navigation among the analyzed model differences. 

This browser looks similar to the model browser of GME, using the same 

graphical icons to represent items with types of model, atom and connection. To indicate 

the various types of differences, the browser uses three colors: red for a Delete difference, 

gray for a New difference, and green for a Change difference. The model difference 

browser displays two symmetric difference sets in two containment change trees: one 

indicates the difference set DS = M2 – M1 by annotating M1 with colors; and the other 

indicates the difference set DS' = M1 - M2 = -DS by annotating M2 with colors. If DS = 

{New = N, Delete = D, Change = C} then DS' = {New = D, Delete = N, Change = C}. 

For example, if there is a Delete difference in M1, correspondingly there is a New 

difference in M2. Such a symmetric visualization helps comprehend the corresponding 

relationships between two hierarchical models. 

Figure 4-2 shows screenshots of two models and the detected differences in the 

model difference browser 5 . The host model M1 is shown in Figure 4-2a, and the 

candidate model M2 is shown in Figure 4-2b. The corresponding model elements within 

the encircled regions in these two models are the mappings, which are filtered and not 

                                                 
5 Because the actual color shown in the browser can not be rendered in print, the figure has annotations that 
indicate the appropriate color. 



 

 

113

 

displayed in the browser. The browser only visualizes the detected differences, as shown 

in Figure 4-2c. 

 

 

Figure 4-2 - Visualization of model differences 

 

The root of the upper tree is M1; its subtrees and leaf nodes are all the differences 

compared to M2, which is represented by the bottom tree. For example, the first child of 

the upper tree is a Delete difference, which is in red. This difference means the 

LogOnRead element is in M1, but is missing in M2. Correspondingly, there is a New 

(c) Model differences 

(a) The host model: M1 

(b) The candidate model: M2 

In gray:  
New

In red:  
Delete 

In green:  
Change 

In gray:  
New

In red:  
Delete 

In green:  
Change 



 

 

114

 

difference in the bottom tree, which is in gray. It indicates that M2 misses the 

LogOnRead element when it is compared to M1. A Change difference is detected for 

the LogOnMethodEntry element; although this element exists in both models, one of 

its attributes, called kind, has different values:  “On Write” in M1 but “On Method Entry” 

in M2. Such a Change difference item is highlighted in green. When the two trees do not 

have any subtree or leaf node, we can infer there is no difference between these two 

models. To focus on any model element, a user can navigate across the tree and double-

click an item of interest, and the corresponding model element is brought into focus 

within the editing window. 

 

4.5 Evaluation and Discussion 

This section first briefly analyzes the complexity of the algorithm and illustrates 

an example application. The current limitations and proposed improvements for 

DSMDiff are also discussed. 

 

4.5.1 Algorithm Analysis 

Generally, DSMDiff is a level-wise model differentiation approach. It begins with 

the two root models at the top-levels and then continues to their child models at the lower 

levels. At each level, node comparison is performed to detect the node mappings by using 

signature matching and edge similarity, followed by edge comparison to detect the edge 

mappings and differences. These steps are repeated on the mapped child models until the 

bottom-level is reached. 



 

 

115

 

The core of the DSMDiff algorithms include signature matching (Step 4 in Listing 

4-4) and edge similarity matching (Step 5 in Listing 4-4), which significantly influence 

the execution time. To estimate the complexity of signature matching and edge similarity 

matching, we assume the two models have similar structures and sizes. Given a model, L 

denotes the depth of the model hierarchy; N denotes the average number of nodes; and, 

M denotes the average number of the edges of a model node. The size of a model node is 

denoted as S, where S = N+M. Considering the case that every node at all levels except 

for the lowest level are model nodes, the total number of model nodes is denoted as T, 

where T = ∑
−

=

2

0

L

i

iN   ≈  NL-1. 

In the best case, all the mappings and differences between two model nodes can 

be found by signature matching, in which the complexity depends on the size of the 

model nodes. In findSignatureMappingsAndDeleteDiffs (Listing 4-3), where 

signature matching is performed to detect node mappings and differences, all the 

candidate nodes and their signatures are stored in a sorted map; the upper bound for the 

complexity of this step is O(N x  logN). To find correspondences from this map for all 

the node elements of M1, the complexity is also O(N x  logN). Later, similar computation 

is taken to compute the edge mappings and differences (i.e., Step 8 of Listing 4-4); such 

complexity is neglected here because the number of edges is less than the number of 

nodes. Overall, because all the model nodes within the model hierarchy need to be 

compared, the complexity for this best case is O(N x logN x T).  

In the worst case, no exact mapping is found for a pair of model nodes during the 

signature matching. Thus, all the nodes need to be examined by edge similarity matching 

(i.e., Step 5 in Listing 4-4), which is the most complicated step in Listing 4-4. Assume 



 

 

116

 

that there is an edge between any pair of nodes, then a node has N-1 edges, which is the 

worst case regarding the complexity. In edge similarity matching (i.e., Step 5 in Listing 

4-4), the most complicated step is findMaximalEdgeSimilarity (Listing 4-1), 

which computes the edge similarity of all the candidate nodes for a host node, where all 

edge signatures of a candidate node and the number of the associated edges are stored in 

a map (i.e., Substep 3.1 in Listing 4-1). The complexity for building this map is O({N-1} 

x  log{N-1}). To compute the edge similarity of every candidate node (i.e., Step 3 of 

Listing 1), the computation cost is bound by O(R x {N-1} x log{N-1}), where R is the 

number of candidate nodes with R ≤ N. Because Step 3 is the most complicated step in 

Listing 4-1, the upper bound of findMaximalEdgeSimilarity is also O(R x {N-

1} x  log{N-1}). To find the candidate with maximal edge similarity for each host node 

(i.e., Step 5 in Listing 4-4), the cost is bounded by O(N x R x {N-1} x log{N-1}). To 

compute all the node mappings at all the levels in a model hierarchy using edge similarity 

matching, the upper bound of the complexity for this worst case is O(T x N x R x {N-1}  

x log{N-1}), which is in the polynomial class. For the same reason (i.e., the number of 

edges is less than the number of nodes), the complexity of detecting edge mappings and 

differences is neglected. 

Although the complexity of constant-time signature comparison and associated 

string comparison is not counted here, the algorithm achieves polynomial time in 

complexity according to the above analysis. 

 



 

 

117

 

4.5.2 Limitations and Improvement 

DSMDiff is based on the assumption that domain-specific models are defined 

precisely and unambiguously. That is, domain-specific models are instances of a 

metamodel that can be distinguished from each other by comparing a set of properties of 

the elements and the connections to their neighbors. However, when there are several 

candidates with the same maximal edge similarity, DSMDiff may produce inaccurate 

results. A typical case occurs when there are nodes connected to each other but their 

mappings have not been determined yet. As shown in Figure 4-3, there is an A node 

connected to three nodes: B, C and D. In M2, the A’ node connects to three other nodes: 

B’, C’ and D’, and A’’ is connected to B’’. Given that nodes with the same letter label 

have the same signatures (e.g., all the A nodes have the same signature and all the B 

nodes have the same signature), then the connections between an A node and a B node 

have the same edge signature. According to the algorithm in Listing 4-1, suppose the A 

node is examined first for structural matching and the A’ node in M2 is selected as the 

mapping of the A node in M1. When the B node is examined, the algorithm may select 

either B’ or B’’ in M2 as the mapping of the B node in M1 because both B nodes in M2 

have the same edge similarity as the B node in M1. If the B’’ node in M2 is selected as 

the mapping to the B node in M1, the result is incorrect because B’ is the correct 

mapping. In such cases, DSMDiff needs to use new rules or criteria to help find the 

correct mapping. For example, a new rule needs to be added to the algorithm in Listing 1 

to require selecting first the unmapped node in M1 that has maximal already-mapped 

neighbors. Another improvement will allow interaction between DSMDiff and users, who 

can select the mappings from multiple candidates manually. 



 

 

118

 

B C

D

A E

F
B’ C

D

A’ E

F

A’’

B’’

M1 M2

 

Figure 4-3 - A nondeterministic case that DSMDiff may produce incorrect result 

 

Besides the performance and the correctness of the results, it is also important for 

model differentiation algorithms to produce a small set of model differences (ideally a 

minimal set) rather than providing a large set of model differences. In other words, the 

conciseness of the produced result is another metric contributing to the overall quality of 

model differentiation algorithms. Currently, DSMDiff compares two models M1 and M2 

by traversing their composition trees in parallel. When an element from a model cannot 

be matched to an element of the other model at some level, the algorithm does not 

traverse the children of this element. One issue with this scheme is that DSMDiff is not 

able to detect when a subtree has been moved from one container to another between M1 

and M2. The algorithm will only report that a whole subtree has been deleted from M1, 

and that a whole subtree has been added to M2, without noting that these are identical 

subtrees. This implies that the reported difference set is less concise than it could be. To 

solve this problem, a new type of model difference needs to be introduced: Move, which 

may reference the subtree in M1, and its new container in M2. An additional step is also 

required in the algorithms to compare all the elements of M1 and M2 that have not been 

matched when first traversing them. However, this step is expensive in the general case 



 

 

119

 

because many elements may need to be compared. This cost is actually avoided in the 

current version of the algorithm by assuming a similar composition structure in M1 and 

M2. 

DSMDiff visualizes all the possible differences as a containment tree in a 

browser, but does not directly highlight the differences upon the associated model 

elements within the editing window. To indicate the differences directly on the model 

diagrams and attribute panels within the modeling environment, a set of graphical 

decorators, which may be shapes or icons, could be attached to the corresponding model 

elements or attributes in order to change their look according to the type of model 

differences. In addition, our solution using coloring to highlight all possible types of 

model differences may fail to work when users are color-blind, or when a screenshot of 

the model difference tree view is printed in black-and-white (e.g., the need to add 

annotations to Figure 4-2c). A visualization mechanism to complement the coloring 

would indicate the Delete differences by striking through them, the Change ones by 

underlining them, and marking the New ones bold. This could be a complimentary 

solution that needs to be investigated in the future. 

 

4.6 Related Work 

This work is related to differentiation techniques for various software artifacts 

such as source code, documents, diagrams and models. There are two important 

categories of related work: 1) the algorithms to compute model differences, and 2) the 

visualization techniques to highlight those differences. 

 



 

 

120

 

4.6.1 Model Differentiation Algorithms 

There exist a number of general-purpose differentiation tools for comparing two 

or more text files (e.g., code or documentation). As an example, Unix diff [Hunt and 

McIlroy, 75] is a popular tool for comparing two text files. Diff compares files and 

indicates a set of additions and deletions. Many version control tools also provide 

functionality similar to diff to identify changes between versions of text documents [Eick 

et al., 01].  

Although many tools are available for differentiating text documents, limited 

support is currently available for differentiating graphical objects such as UML diagrams 

and domain-specific models. As the importance of model differentiation techniques to 

system design and its evolution is well-recognized, there have been some research efforts 

focused on model difference calculation. 

Several metamodel-independent algorithms regarding difference calculation 

between models are presented in [Alanen and Porres, 03] and [Ohst et al., 03], which are 

developed primarily based on existing algorithms for detecting changes in structured data 

[Chawathe et al., 96] or XML documents [Wang et al., 03]. In these approaches, a set of 

change operations such as “create” and “delete” are used to represent and calculate model 

differences, which is similar to our approach. However, they are based on the assumption 

that the model versions are manipulated through the editing tool that assigns persistent 

identifiers to all model elements. Such capability is not available when two models are 

developed separately (e.g., by different developers in a non-collaborative context, or by 

different editing tools) or generated by execution of a model transformation. 



 

 

121

 

To provide algorithms independent of such identifiers, UMLDiff uses name 

similarity and structure similarity for detecting structural changes between the designs of 

subsequent versions of UML models [Xing and Stroulia, 05]. However, differentiation 

applied to domain-specific modeling is more challenging than difference analysis on 

UML diagrams. The main reason is that UML diagrams usually belong to a single 

common metamodel that can be represented formally as a containment-spanning tree 

starting at a virtual root and progressing down to packages, classes and interfaces. 

However, domain-specific models may belong to different metamodels according to their 

domains and are considered as hierarchical graphs. Also, a differentiation algorithm for 

domain-specific models needs to be metamodel-independent in order to work with 

multiple DSMLs. This required DSMDiff to consider the type information of instance 

models, as well as the type information of the corresponding metamodel. 

A promising approach is to represent the result of model difference as a model 

itself. A recent work presented in [Cicchetti et al., 07] proposes a metamodel-independent 

approach to model difference representation. Within this approach, the detected model 

differences are represented as a difference model, which conforms to a metamodel that is 

automatically derived from the metamodel of the to-be-compared base models. Such a 

derivation process itself is a model transformation. Also, because the base models and the 

difference models are all model artifacts, other model-to-model transformations are 

induced to compose models (e.g., apply a difference model to a base model to produce 

the other base model). Thus, such an approach can be supported in a modeling platform 

and does not require other ad hoc tool support. A possible future improvement to 



 

 

122

 

DSMDiff would be to integrate this approach to assist in representation of model 

differences. 

 

4.6.2 Visualization Techniques for Model Differences 

There has been some work toward visualizing model differences textually. IBM 

Rational Rose [Rose, 07] and Magic Draw UML [MagicDraw, 07] display model 

differences in a textual way. These tools convert the diagrams into hierarchical text and 

then perform differentiation on this hierarchy. Changes are shown using highlighting 

schemes on the text. Although this approach is relatively easy to implement, its main 

drawback is that changes are no longer visible in a graphical form within the actual 

modeling tool, which makes the difference results more difficult to comprehend.  

Other researchers have shown that the use of color and graphical symbols (e.g., 

icons) are more efficient in highlighting model differences. An approach is proposed in 

[Ohst et al., 03] where coloring is used to highlight the model differences in two 

overlapping diagrams. A differentiation tool described in [Mehra et al., 05] presents 

graphical changes by developing a core set of highlighting schemes and an API for 

depicting changes in a visual diagram. UMLDiff presents a change-tree visualization 

technique. It reuses the visualization of Eclipse’s Java DOM model for displaying 

different entities with diverse icons and separate visibility with various colors. 

Additionally, UMLDiff extends the visualization to use different icons to represent the 

differentiation results (e.g., “+” for add, “-” for remove).  

Although it is intuitive to visualize model differences by coloring and iconic 

notations, these techniques are not specifically tied to modeling concepts and lack the 



 

 

123

 

ability to be integrated into MDE processes. DSMDiff provides a model difference 

browser that displays the structural differences in a tree view, which is similar to the 

change-tree visualization technique of UMLDiff. To preserve the convention of the host 

modeling environment, many GME icons are used to represent the corresponding 

modeling types of the model difference items in the tree view. For example, a Delete 

atom or a New atom corresponds to an atom type. To avoid overuse of icons (e.g., “+” 

and “-” are commonly used for a collapsed folder and an expanded folder, respectively), 

DSMDiff uses colors to represent various types of model differences. 

 

4.7 Conclusion 

In this chapter, the model differentiation problem is defined in the context of 

Domain-Specific Modeling. The main points include: 1) domain-specific modeling is 

distinguished from traditional UML modeling because it is a variable-metamodel 

approach whereas UML is a fixed-metamodel approach; 2) the underlying metamodeling 

mechanism used to define a DSML determines the properties and structures of domain-

specific models; 3) domain-specific models may be formalized as hierarchical graphs 

annotated with a set of syntactical information. Based on these characteristics, model 

differentiation algorithms and an associated tool called DSMDiff were developed to 

discover the mappings and differences between any two domain-specific models. The 

chapter also describes a visualization technique to display model differences structurally 

and highlight them using color and icons.  

The applicability of DSMDiff has been demonstrated within the context of model 

transformation testing, as discussed in Chapter 5. To ensure the correctness of model 

transformation, executable testing can help detect errors in a model transformation 



 

 

124

 

specification. To realize the vision of model transformation testing, a model 

differentiation technique is needed for comparison of the actual output model and the 

expected model, and visualization of the detected visualization. If there is no difference 

between the actual output and expected models, it can be inferred that the model 

transformation is correct with respect to the given test specification. If there are 

differences between the output and expected models, the errors in the transformation 

specification need to be isolated and removed. In this application, DSMDiff serves as a 

model comparator to perform the model comparison and visualize the produced 

differences. 

 



 125

 

 

 

CHAPTER 5 

MODEL TRANSFORMATION TESTING 

 

To ensure the correctness of model transformation, testing techniques can help 

detect errors in a model transformation specification. This chapter presents a model 

transformation testing approach. It begins with a discussion of the specific need to ensure 

the correctness of model transformation, followed by a discussion on the limitations of 

current techniques. An overview of the model transformation testing approach is 

provided and an emphasis is given on the principles and the implementation of the model 

transformation testing engine M2MUnit. In addition, a case study is offered to illustrate 

using this approach to assist in detecting the errors in ECL specifications. Related work 

and concluding remarks are presented in the rest of this chapter. 

 

5.1 Motivation 

Model transformation is the core process in MDE for providing automation in 

software development [Sendall and Kozaczynski, 03]. Particularly, model-to-model 

transformation is investigated in the dissertation research to facilitate change evolution 

within MDE. To improve the reliability of such automation, validation and verification 

techniques and tools are needed to ensure the correctness of model transformation, as 

discussed in the following section. Although there are various techniques that facilitate 



 126

quality assurance of model transformation, a testing approach is investigated in this 

dissertation to improve the correctness of model transformation. 

 

5.1.1 The Need to Ensure the Correctness of Model Transformation 

 As discussed in Chapter 2, there are different types of model transformation. 

Examples of such transformation are exogenous transformation (e.g., model-to-code 

transformation for generating code from models) and endogenous transformation (e.g., 

model-to-model transformation for altering the internal structure of the model 

representation itself). The model transformation approach discussed in Chapter 3 

supports endogenous transformation. To perform a model transformation, the source 

models and the ECL transformation specification are taken by the transformation engine 

C-SAW as input to generate the target model as output. In such a model transformation 

environment, assuming the model transformation engine works correctly and the source 

models are properly specified, the quality of the transformed results depends on the 

correctness of the model transformation specifications.  

As defined in [Mens and Van Gorp, 05], there are two types of correctness. One is 

syntactic correctness, which is defined as, “Given a well-formed source model, can we 

guarantee that the target model produced by the transformation is well-formed?” The 

other is semantic correctness, which is a more significant and complex issue, “Does the 

produced target model have the expected semantic properties?” In this research, a model 

transformation specification is correct if the produced model meets its specified 

requirements with both the expected syntactic and semantic correctness. Specifically, the 

reasons for validating the correctness of a model transformation specification include: 



 127

• Transformation specifications are error-prone: like the code in an 

implementation, transformation specifications are written by humans and 

susceptible to errors. Also, transformation specifications need to define 

complicated model computation logic such as model navigation, selection and 

manipulation, which makes it hard to specify correctly.  

• Transformation specifications are usually applied to a collection of models: 

the input of a model transformation is a single model or a collection of models. 

When MDE is applied to develop a large-scale and complex system, it is common 

to apply transformation specifications to a large set of models. Before a 

transformation specification is performed on a large quantity of models, it is 

prudent to first test its correctness on a small set of models. 

• Transformation specifications are reusable: because it takes intensive effort to 

define model transformations, the reusability of a transformation specification is 

critical to reduce human effort. Before a model transformation is reused in the 

same domain or across similar domains, it is also necessary to ensure its 

correctness. 

Thus, there is a need for verification and validation techniques and tools to assist in 

finding and correcting the errors in model transformation specifications. At the 

implementation level, traditional software engineering methods and practices such as 

testing have been widely used in ensuring the quality of software development. However, 

at the modeling level, research efforts and best practices are still needed to improve the 

quality of models and model transformations. The need for model transformation testing 

is discussed in the following section. 



 128

5.1.2 The Need for Model Transformation Testing 

Verification and validation are well-established techniques for improving the 

quality of a software artifact within the overall software development lifecycle [Harrold, 

00], [Adrion et al., 82]. These techniques can be divided into two forms: static analysis 

and dynamic analysis. Static analysis does not require execution of software artifacts; this 

form of verification includes model checking and proof of correctness. Execution-based 

testing is an important form of dynamic analysis that is performed to support quality 

assurance in traditional software development [Harrold, 00]. 

As a new emerging software development paradigm, MDE highlights the need for 

verification and validation techniques that are specific to model and model 

transformation artifacts. Currently, there are a variety of verification techniques proposed 

for model transformation (e.g., model checking [Hatcliff et al., 03], [Holzmann, 97], 

[Schmidt and Varró, 03], simulation [Yilmaz, 01] and theorem proving [Varró et al., 02]). 

Common to all of these verification techniques is that they rely on a formal semantics of 

the specification or programming language concerned. 

Despite the relative maturity of formal verification within software engineering 

research, practical applications are limited to safety-critical and embedded systems 

[Clarke and Wing, 96]. Reasons for this include the complexity of formal specification 

techniques [Adrion et al., 82] and the lack of training of software engineers in applying 

them [Hinchey et al., 96]. Furthermore, there are also well-known limitations for formal 

verification such as the state-explosion problem within model checking [Hinchey et al., 

96].  



 129

Execution-based testing is widely used in practice to provide confidence in the 

quality of software [Harrold, 00]. Compared to formal verification, testing has several 

advantages that make it a practical method to improve the quality of software. These 

advantages are: 1) the relative ease with which many of the testing activities can be 

performed; 2) the software artifacts being developed (e.g., model transformation 

specifications) can be executed in its expected environment; 3) much of the testing 

process can be automated [Harrold, 00]. Model transformation specifications are 

executable, which makes execution-based testing a feasible approach to finding 

transformation faults by executing specifications within the model transformation 

environment without the need to translate models and transformations to formal 

specifications and to develop analytic models for formal verification. 

In contrast to formal verification, model transformation testing has been 

developed as a contribution of the dissertation to validate model transformation. It aims at 

improving the confidence that a model transformation specification meets its 

requirements, but cannot prove any property as a guarantee (i.e., model transformation 

testing cannot assert the absence of errors, but is useful in revealing their presence, as 

noted by Dijsktra in relation to general testing [Dijkstra, 72]). The following subsections 

discuss the investigated testing approach for assisting in improving the quality of model 

transformations. 

 

5.2 A Framework for Model Transformation Testing 

There are various levels of software testing such as unit testing [Zhu et al., 97], 

and system testing [Al Dallal and Sorenson, 02]. Unit testing is a procedure that aims at 



 130

validating individual software units or components. System testing is conducted on a 

complete, integrated system to evaluate the system’s compliance with its specified 

requirements. In the research described in this dissertation, model transformation testing 

is developed to support unit testing a model transformation as a modular unit (e.g., the 

ECL strategy). Theoretically, a complete verification of a program or a model 

transformation specification can only be obtained by performing exhaustive testing for 

every element of the domain. However, this technique is not practical because functional 

domains are sufficiently large to make the number of required test cases infeasible 

[Adrion et al., 82]. In practice, testing relies on the construction of a finite number of test 

cases and execution of parts or all of the system for the correctness of the test cases 

[Harrold, 00], [Zhu et al., 97]. A model transformation testing framework should 

facilitate the construction and execution of test cases. 

 

5.2.1 Overview 

Model transformation testing involves executing a specification with the intent of 

finding errors [Lin et al., 05]. A testing framework should assist in generating tests, 

running tests, and analyzing tests. Figure 5-1 shows the framework for model 

transformation testing. 

There are three primary components to the testing framework: test case 

constructor, testing engine, and test analyzer. The test case constructor consumes the test 

specification and produces a suite of test cases that are necessary for testing a 

transformation specification. The generated test cases are passed to the testing engine to 

be executed. The test analyzer visualizes the results and provides a capability to navigate 



 131

among any differences. The research provides tool support for executing and analyzing 

tests, which is realized by a testing engine. An assumption is that test suites will be 

constructed manually by transformation testers. 

 

 

Figure 5-1 - The model transformation testing framework 

 

5.2.2 Model Transformation Testing Engine: M2MUnit 

To provide tool support for executing test cases that are needed for testing a 

model transformation specification, a model transformation testing engine called 

M2MUnit has been developed as a GME plug-in to run test cases and visualize the test 

results. A test case contains an input model, the to-be-tested model transformation 

specification and an expected model. Figure 5-2 shows an overview of the model 

transformation testing engine M2MUnit.  

As shown in Figure 5-2, there are three major components within the testing 

engine: an executor, a comparator and a test analyzer. The executor is responsible for 



 132

executing the transformation specification on the input model to generate the output 

model. The comparator considers the output model to the expected model and collects the 

results of comparison. To assist in comprehending test results, basic visualization 

functionality of the test analyzer is also implemented within M2MUnit to structurally 

highlight the detected model differences. During the executor and comparator steps, the 

metamodel provides required information on types and constraints that are needed to 

assist in comparison of the expected and output models. Moreover, critical data that are 

included in a test case is indicated in Figure 5-2 such as input model, expected model and 

to-be-tested specification. 

The correctness of a model transformation specification can be determined by 

checking if the output of the model transformation satisfies its intent (i.e., when there are 

no differences between the output model and the expected model). If there are no 

differences between the actual output and expected models, it can be inferred that the 

model transformation is correct with respect to the given test specification. If there are 

differences between the output and expected models, the errors in the transformation 

specification need to be isolated and removed. 

The role of the executor is essentially a model transformation engine with 

functionality performed by C-SAW. Also, model comparison is performed between an 

expected model and an output model that are not subsequent versions. The output model 

is produced by the executor and the expected model is constructed by a tester. As 

discussed in Chapter 4, DSMDiff algorithms do not require two models to be subsequent 

versions. Thus, DSMDiff serves as the model comparator of M2MUnit to perform the 

model comparison and is also responsible for visualizing the produced differences as the 



 133

test analyzer. In fact, the development of DSMDiff was originally motivated by research 

on model transformation testing [Lin et al., 05]. 

To illustrate the feasibility and utility of the transformation testing framework, the 

next section describes a case study of testing a model transformation. 

 

Transformation 
Specification

Test Analyzer

InputModel

ExpectedModel

MetaModel

Comparator

Testing Engine M2MUnit

OutputModel

Executor

Test Report

 

Figure 5-2 - The model transformation testing engine M2MUnit 

 

5.3 Case Study 

This case study is performed on an experimental platform, the Embedded Systems 

Modeling Language (ESML) introduced in Chapter 3, which is a freely available domain-

specific graphical modeling language developed for modeling real-time mission 

computing embedded avionics applications [Sharp, 00]. There are over 50 ESML 



 134

component models used for this case study that communicate with each other via a real-

time event-channel mechanism. An ESML component model may contain several data 

elements. This case study shows how M2MUnit can assist in finding errors in a 

transformation specification. 

 

5.3.1 Overview of the Test Case 

The test case is designed to validate an ECL specification developed for the 

following model transformation task: 1) find all the Data atoms in a component model, 

2) create a Log atom for each Data atom, and then set its Kind attribute to “On 

Method Entry” and its MethodList attribute to “update,” and 3) create a connection 

from the Log atom to its corresponding Data atom. Figure 5-3 and Figure 5-4 represent 

the input model and the expected model of this transformation task, respectively. The 

input model contains a Data atom called numberOfUsers. The expected model 

contains a Log atom called LogOnMethodEntry, which connects to the Data atom 

numberOfUsers. The Kind attribute of LogOnMethodEntry is set to “On Method 

Entry” and the MethodList attribute is set to “update.” Such an expected model 

represents a correct transformation output. 



 135

 

 

Figure 5-3 - The input model prior to model transformation 

 

Figure 5-4 - The expected model for model transformation testing 

  

To perform such a task by C-SAW, an ECL specification can be defined to 

transform the input model to the expected model. Listing 5-1 represents the initial ECL 

model transformation specification developed to accomplish the prescribed 



 136

transformation of the case study. This specification defines one aspect and two strategies. 

The Start aspect finds the input model and applies the FindData strategy. The 

FindData strategy specifies the search criteria to find all the Data atoms. The 

AddLog strategy is executed on those Data atoms identified by FindData. The 

AddLog strategy specifies the behavior to create the Log atom for each Data atom. 

Before this specification is applied to all component models and reused later, it is 

necessary to test its correctness. 

 

1 strategy FindData() 
2 { 
3    atoms()->select(a | a.kindOf() == "Data")->AddLog(); 
4 } 
5  
6 strategy AddLog() 
7 { 
8   declare parentModel : model; 
9   declare dataAtom, logAtom : atom; 
10  
11   dataAtom := self; 
12   parentModel := parent(); 
13  
14   logAtom := parentModel.addAtom("Log", "LogOnMethodEntry"); 
15   parentModel.addAtom("Log", "LogOnRead"); 
16   logAtom.setAttribute("Kind", "On Write"); 
17   logAtom.setAttribute("MethodList", "update"); 
18 } 
19  
20 aspect Start( ) 
21 { 
22   rootFolder( ).findFolder("ComponentTypes").models()-> 
23     select(m|m.name().endWith( "DataGatheringComponentImpl_target"))->FindData(); 
24 } 
 

 

Listing 5-1 - The to-be-tested ECL specification 

 

5.3.2 Execution of the Test Case 

The test case is constructed as a GME project, from which M2MUnit is invoked 

as a GME plugin. The execution of the test case includes two steps: first, the to-be-tested 

ECL specification is executed by the executor to produce an output target model; second, 



 137

the output target model and the expected model are sent to the comparator, which 

compares the models and passes the result to the test analyzer to be visualized. 

Figure 5-5 shows the output model. When comparing it to the expected model, 

there are three differences, as shown in Figure 5-6. Figure 5-7 shows the visualization of 

the detected differences in a tree view. 

 

Figure 5-5 - The output model after model transformation 

 

Because of these detected differences between the output model and the expected 

model, the ECL specification is suspected to have errors. To discover these errors, the 

following differences need to be examined: 

• Difference 1: an extra atom LogOnRead is inserted in the output model, which 

needs to be deleted and is highlighted in red. 

• Difference 2: there is a missing connection from LogOnMethodEntry to 

numberOfUsers, which needs to be created in the output model and is 

highlighted in gray. 



 138

• Difference 3: the kind attribute of the LogOnMethodEntry has a different 

value “On Write" from the expected value “On Method Entry,” which needs to be 

changed and is highlighted in green. 

 

 

Figure 5-6 - A summary of the detected differences 

 

Figure 5-7 - Visualization of the detected differences 

5.3.3 Correction of the Model Transformation Specification 

According to the test results, it is obvious that there are three corrections that need 

to be made to initial the transformation specification. One correction is to add a statement 

In gray:  
New

In red:  
Delete 

In green:  
Change 

In gray:  
New

In red:  
Delete 

In green:  
Change 



 139

that will create the connection between LogOnMethodEntry and numberOfUsers. 

The second correction is to delete the line that adds LogOnRead: 

parentModel.addAtom(“Log”, “LogOnRead”). The third correction is to 

change the value of the Kind attribute from “On Write” to “On Method Entry.” The 

modified transformation specification is shown in Listing 5-2 with the corrections 

underlined or marked by strikethrough. However, this does not imply that the correction 

is automated – the corrections need to be made manually after observing the test results. 

 

1 strategy FindData() 
2 { 
3   atoms()->select(a | a.kindOf() == "Data")->AddLog(); 
4 } 
5  
6 strategy AddLog() 
7 { 
8   declare parentModel : model; 
9   declare dataAtom, logAtom : atom; 
10  
11   dataAtom := self; 
12   parentModel := parent(); 
13  
14   logAtom := parentModel.addAtom("Log", "LogOnMethodEntry"); 
15   parentModel.addAtom("Log", "LogOnRead"); 
16   logAtom.setAttribute("Kind", "On Method Entry"); 
17   logAtom.setAttribute("MethodList", "update"); 
18  
19   parentModel.addConnection("AddLog", logAtom, dataAtom); 
20 } 
21  
22 aspect Start( ) 
23 { 
24 rootFolder().findFolder("ComponentTypes").models()-> 
25   select(m|m.name().endWith("DataGatheringComponentImpl_target"))->FindData(); 
26 } 
 

 

Listing 5-2 - The corrected ECL specification 

5.4 Related Work  

Regarding formal verification, model checking is a widely used technique for 

verification of model properties (e.g., the SPIN Model checker [Holzmann, 97], the 

Cadena model checking toolsuite [Hatcliff et al., 03], and the CheckVML tool [Schmidt 



 140

and Varró, 03]). SPIN is a verification system for models of distributed software, which 

has been used to detect design errors for a broad range of applications ranging from a 

high-level description of distributed algorithms to detailed code for controlling telephone 

exchanges. The main idea of SPIN is that system behaviors and requirements are 

specified as two aspects of the design by defining a verification or prototype in a 

specification language. The prototype is verified by checking the internal and mutual 

consistency of the requirements and behaviors. The Cadena model checking toolsuite 

extends SPIN to add support for objects, functions, and references. CheckVML is a tool 

for model checking dynamic consistency properties in arbitrary well-formed instance 

models. It first translates models into a tool-independent intermediate representation, then 

automatically generates the input language of the back-end model checker tool (e.g., 

SPIN). Generally, model checking is based on formal specification languages and 

automata theory. 

A mathematically proven technique for validating model transformations is 

proposed in [Varró et al., 02], where the main idea is to perform mathematical model 

transformations in order to integrate UML-based system models and mathematical 

models of formal verification tools. However, such an approach requires a detailed 

mathematical description and analysis of models and transformations, which may limit 

the applicability for general use. Other formal methods include temporal logics [Manna 

and Pnueli, 92] and assertions [Hoare, 69], which have been proposed to verify the 

conformance of a program with its specification at the implementation level.  

These techniques are based on formal specification and may be used for formal 

proof of correctness. However, proving correctness of model transformations formally is 



 141

difficult and requires formal verification techniques. Execution-based testing is a feasible 

alternative to finding transformation faults without the need to translate models and 

transformations to formal specifications. Using testing to determine the correctness of 

model and model transformation also provides opportunities to bring mature software 

engineering techniques to modeling practice.  

There has been work on applying testing to validate design models. For example, 

[Pilskalns et al., 07] presents an approach for testing UML design models to uncover 

inconsistencies. This approach uses behavioral views such as sequence diagrams to 

simulate state change in an aggregate model, which is the artifact of merging information 

from behavioral and structural UML views. OCL pre-conditions, post-conditions and 

invariants are used as a test oracle. However, there are only a few reports in the literature 

regarding efforts that provide the facilities for model transformation testing. Our own 

work on model transformation testing published as [Lin et al., 04], [Lin et al., 05] is one 

of the earliest reports addressing this issue. Another initial work on model transformation 

testing is [Fleurey et al., 04], which presents a general view of the roles of testing in the 

different stages of model-driven engineering, and a more detailed exploration of 

approaches to testing model transformations. Based on this, Fleurey et al. highlight the 

particular issues for the different testing tasks, including adequacy criteria, test oracles 

and automatic test data generation. More recently, there have been a few works that 

expand research on model transformation testing by exploring additional testing issues. 

For example, a metamodel-based approach for test generation is proposed in [Brottier et 

al., 06] for model transformation testing. In [Mottu et al., 06], mutation analysis is 

investigated for model transformation to evaluate the quality of test data. Experiences in 



 142

validating model transformations using a white box approach is reported in [Kuster and 

Abd-El-Razik, 06]. Such research has focused on test coverage, test data analysis and test 

generation of source code from models, but this dissertation effort primarily aims at 

providing a testing engine to run tests and analyze the results. 

 

5.5 Conclusion 

This chapter presents another contribution of the dissertation on model 

transformation testing to improve the accuracy of transformation results. In addition to 

the developed model transformation testing framework and the unit testing approach for 

model transformation, the model transformation testing engine M2MUnit has been 

implemented to provide support to execute test cases with the intent of revealing errors in 

the model transformation specification. Distinguished from classical software testing 

tools, to determine whether a model transformation test passes or fails requires 

comparison of the actual output model with the expected model, which requires model 

differencing algorithms and visualization. The DSMDiff approach presented in Chapter 4 

provides solutions for model differentiation and visualization.  

The result presented in this chapter provides an initial solution to applying testing 

techniques at the modeling level. There are other fundamental issues that need to be 

explored deeply in order to provide mature testing solutions. In the next chapter, several 

critical issues are proposed for advancing the research on model transformation testing.  



 144

 

 

 

CHAPTER 6 

FUTURE WORK 

 

This chapter outlines research directions that will be investigated as future work. 

To alleviate the complexity of developing model transformations, research into the idea 

of Model Transformation by Example (MTBE) is proposed to assist users in constructing 

model transformation rules through interaction with modeling tools. Test generation from 

test specifications and metamodel-based coverage criteria to evaluate test adequacy are 

also discussed as future work for model transformation testing. To provide support to 

isolate the errors in model transformation specifications, model transformation debugging 

is another software engineering practice that needs to be investigated as an extension of 

the research described in this dissertation. 

 

6.1 Model Transformation by Example (MTBE) 

There are several dozen model transformation languages that have been proposed 

over the last five years, with each having a unique syntax and style [Sendall and 

Kozaczynski, 03], [Mens and Van Gorp, 05], [Czarnecki and Helsen, 06]. Because these 

model transformation languages are based on various techniques (e.g., relational 

approach or graph rewriting approach) and not all the language concepts are explicitly 

specified (e.g., transformation rule scheduling and model matching mechanism), it is 



 145

difficult for certain classes of users of the model transformation languages to write model 

transformation rules. To simplify the task of developing a model transformation 

specification, Model Transformation by Example (MTBE) is an approach that enables an 

end-user to record the type of transformation that they desire and then have the modeling 

tool infer the transformation rule corresponding to that example [Varró, 06], [Wimmer et 

al., 07]. 

The idea of MTBE has similar goals to Programming by Example (PBE) 

[Lieberman, 00] and Query by Example (QBE) [Zloof, 77] in that a user interacts with a 

modeling tool that records a set of actions and generates some representative script that 

can replay the recorded actions. The inferred script could represent a fragment of code, a 

database query, or in the case of MTBE, a model transformation rule. To realize MTBE 

within a modeling tool, an event tracing mechanism needs to be developed and 

algorithms are needed for inferring a transformation rule from the set of event traces.  

Typically, there is a specific series of events that occur during a user modeling 

session; lower-level events are user interactions with the windowing system (e.g., “mouse 

click”) and higher-level events (composed from a sequence of lower-level events in a 

certain context) correspond to the core meaning of the user actions (e.g., “add attribute” 

or “delete connection”). To support event tracing of user interaction within most 

modeling tools requires a fair amount of manual customization by either modifying the 

source code of the modeling tool or hooking into the tool’s published event channel (if it 

exists).  

With respect to programming languages, an event is a detectable action occurring 

during program execution [Auguston, 98] (e.g., expression evaluation, subroutine call, 



 146

statement execution, message sending/receiving). Within the context of MTBE, an event 

corresponds to some action made by a user during interaction with a modeling tool. An 

event is delimited by a time interval with a beginning and an end. Such a model to record 

the history of change events is defined as the event trace [Auguston et al., 03].  

To support general model evolution analysis, a new language will be designed for 

expressing computations over event traces as a basis for inferring model transformation 

rules. Such a language will allow analysis of model changes to be generalized, rather than 

fixed within the modeling tool. This language will be defined by an event grammar, 

which represents all of the possible events of interest within a given modeling context. 

For example, an “add connection” event is represented as the following:  

FOREACH C: atom-atom-connection 
FROM A1: atom A2: atom 
C.log( SAY( "added connection " C.conn_name 

"[" A1._name "-" A2._name"]" ) ) 
 

The tangible asset of this proposed work will be a language processor for event 

grammars, which will generate the requisite instrumentation of the modeling tool to 

perform the analysis specified in a query that is based on the event grammar. Integrating 

the language processor into a collection of modeling tools allows the specification of 

model evolution analysis in a tool-independent manner. This approach is distinguished 

from another MTBE approach proposed by Dániel Varró [Varró, 06], where 

transformation rules are derived semi-automatically from an initial prototypical set of 

interrelated source and target models. These initial model pairs describe critical cases of 

the model transformation problem in a purely declarative way. The derived 

transformation rules can be refined later by adding further source-target model pairs. The 

main advantage of the approach is also that transformation designers do not need to learn 



 147

a new model transformation language. Compared to Varró’s approach and manual 

adaptation of a modeling tool for a desired model evolution analysis task, the proposed 

investigation of MTBE using event grammars has the following apparent advantages: 

• The notion of an event grammar provides a general basis for model evolution 

tasks. This makes it possible to reason about the meaning of model evolution at an 

appropriate level of granularity. 

• An event grammar provides a coordinated system to refer to any interesting 

event in the evolution history of the user modeling session. Assertions about 

different modeling events may be specified and checked in an event query to 

determine if any sequence of undesirable changes were made. 

• Trace collection is implemented by instrumentation of a modeling tool. Because 

only a small projection of the entire event trace is used by any set of rules, it is 

possible to implement selective instrumentation, powerful event filtering and 

other optimizations to reduce dramatically the size of the collected trace. More 

importantly, special-purpose instrumentation will enable most analyses to be 

moved from post-mortem to live response during the actual modeling session. 

Furthermore, it may be possible for the algorithms and techniques of PBE and QBE to be 

adapted to the context of MTBE. An extensive set of event queries will be created to 

correspond with the event grammar for model evolution analysis. That is, during the 

record phase of MTBE, all of the relevant modeling events will be logged as an event 

trace. The event trace will then serve as input to the MTBE algorithms that generate the 

corresponding transformation rule. By plugging different back-ends into the MTBE 



 148

algorithms, it is anticipated that various model transformation languages can be inferred 

from a common example. 

For each new evolution analysis task (e.g., version control) that is needed, similar 

manual adaptation may be required with slight variation. The proposed work will produce 

an approach that generalizes the evolution analysis task and the underlying event channel 

of the modeling tool to allow the rapid addition of new analysis capabilities across a 

range of DSM tools. 

 

6.2 Toward a Complete Model Transformation Testing Framework 

The dissertation work on model transformation testing as discussed in Chapter 5 

is an initial step towards partially automating test execution and assisting in test result 

analysis. To develop a more mature approach to model transformation testing, additional 

research efforts are needed to provide support for test generation and test adequacy 

analysis.  

Test generation creates a set of test cases for testing a model transformation 

specification. A test case usually needs to contain general information, input data, test 

condition and action, and the expected result. Manually creating test cases is a human 

intensive task. To reduce the human effort in generating tests by improving the degree of 

automation, a test specification is required to define test cases, even test suites and a test 

execution sequence. Such a language may be an extension to the model transformation 

language that provides language constructs for defining tests. An envisioned test 

specification example for testing ECL specification is shown as the following. 

 



 149

Test test1 
{ 

Specification file: “C:\ESML\ModelComparison1\Strategies\addLog.spc” 
Start Strategy: FindData 
GME Project: “C:\ESML\ModelCompariosn1\modelComparison1.mga” 
Input model: “ComponentTypes\DataGatheringComponentImpl” 
Output model: “ComponentTypes\Output1” 
Expected model: “ComponentTypes\Expected1” 
Pass: Output1 = Expected1 

} 
 
Such a test is composed of a name (e.g., “test1”) and body. The test body defines 

the locations and identifiers of the model transformation specification, the start procedure 

to execute, a test project built for the testing purpose, the input source and output target 

models, the expected model, as well as the criteria for asserting a successful pass (i.e., the 

test oracle is a comparison between two models). Such a test specification can be written 

manually by a test developer or generated by the modeling environment with specific 

support to directly select the involved ECL specification, the input model and expected 

model. Thus, test developers can build and edit tests from within the modeling 

environment. An effective test specification language also needs to support the definition 

of test suites and a test execution sequence. In addition, it may also need to support 

various types of test oracles, which provide mechanisms for specifying expected 

behaviors and verifying that test executions meet the specification. Currently, the 

M2MUnit testing engine only supports one type of oracle, i.e., comparing the actual 

output and the expected output that are model type. However, it is possible for other 

types of test oracles to compare the actual output and the expected output that are 

primitive types such as integer, double or string or just a fragment of a model. 

Currently, the M2MUnit testing approach has not investigated the concept of test 

coverage adequacy to formally ensure that the transformation specification has been fully 



 150

tested. Thus, more research efforts are needed to provide test criteria in the context of 

model transformation testing to ensure the test adequacy. Traditional software test 

coverage criteria such as statement coverage, branch coverage and path coverage 

[Schach, 07], [Adrion et al., 82] may be applied or adapted to a procedural style of model 

transformation such as used in ECL. In addition, other criteria specific to a particular 

modeling notation may be developed to help evaluate the test adequacy. Metamodel 

coverage is such a criterion to evaluate the adequacy of model transformation testing 

[Fleurey et al., 04]. Metamodeling provides a way to precisely define a domain. Test 

adequacy can be achieved by generating test cases that cover the domain entities and their 

relationships defined in a metamodel. For example, a MOF-based metamodel can reuse 

existing criteria defined for UML class diagrams [Fleurey et al., 04], [Andrews et al., 03]. 

It has been recognized that the input metamodel for a transformation is usually larger 

than the actual metamodel used by a transformation. Such an actual metamodel is a 

subset of the input metamodel and is called the effective metamodel [Brottier et al., 06]. 

An effective metamodel can be derived from the to-be-tested transformation and used for 

generating valid models for tests [Baudry et al., 06]. However, it is tedious to generate 

models manually. An automation technique can be applied to generate sufficient instance 

models from a metamodel for large scale testing [Ehrig et al., 06]. 

In summary, the future work for the M2MUnit testing framework include: 1) a 

test specification language and tool support for generation and execution of tests or test 

suite, and 2) coverage criteria for evaluating test adequacy, especially through 

metamodel-based analysis. 

 



 151

6.3 Model Transformation Debugging 

Model transformation testing assists in determining the presence of errors in 

model transformation specifications. After determining that errors exist in a model 

transformation, the transformation specification must be investigated in order to ascertain 

the cause of the error. Model transformation debugging is a process to identify the 

specific location of the error in a model transformation specification. 

Currently, C-SAW only supports transformation developers to write “print” 

statements for the purpose of debugging. A debugger is needed to offer support for 

tracing down why the transformation specifications do not work as expected. A model 

transformation debugger has many of the same functionalities as most debugging tools to 

support setting breakpoints, stepping through one statement at a time and reviewing the 

values of the local variables and status of affected models [Rosenberg, 96]. 

A model transformation debugger would allow the step-wise execution of a 

transformation to enable the viewing of properties of the transformed model as it is being 

changed in the modeling tool. A major technical problem of a model transformation 

debugger is to visualize the status of affected models during execution. For example, it 

may be a large set of models whose status has changed after executing a set of statements. 

A challenge of this future work is to represent the change status efficiently. 

The testing toolsuite and the debugging facility together will offer a synergistic 

benefit for detecting errors in a transformation specification and isolating the specific 

cause of the error. 



 152

 

 

 

CHAPTER 7 

CONCLUSIONS 

 

With the expanded focus of software and system models has come the urgent 

need to manage complex change evolution within the model representation. Designers 

must be able to examine various design alternatives quickly and easily among myriad and 

diverse configuration possibilities. Existing approaches to exploring model change 

evolution include: 1) modifying the model by hand within the model editor, or 2) writing 

programs in C++ or Java to perform the change. Both of these approaches have 

limitations, which degrades the capability of modeling to explore system issues such as 

adaptability and scalability. A manual approach to evolving a large-scale model is often 

time consuming and error prone, especially if the size of a system model continues to 

grow. Meanwhile, many model change concerns crosscut the model hierarchy, which 

usually requires a considerable amount of typing and mouse clicking to navigate and 

manipulate a model in order to make a change. There is increasing accidental complexity 

when using low-level languages such as C++ or Java to define high-level model change 

evolution concerns such as model querying, navigation and transformation.  

Despite recent advances in modeling tools, many modeling tasks can still benefit 

from increased automation. The overall goal of the research described in this dissertation 

is to provide an automated model transformation approach to model evolution. The key 



 153

contributions include: 1) investigating the new application of model transformation to 

address model evolution concerns, especially the system-wide adaptability and scalability 

issues, 2) applying a testing process to model transformations, which assists in improving 

the quality of a transformation; and 3) developing algorithms to compute and visualize 

differences between models. The main benefit of the research is reduced human effort 

and potential errors in model evolution. The following sections summarize the research 

contributions in each of these areas. 

 

7.1 The C-SAW Model Transformation Approach 

To assist in evolving models rapidly and correctly, the research described in this 

dissertation has developed a domain-independent model transformation approach. 

Evolved from an earlier aspect modeling language originally designed to address 

crosscutting modeling concerns [Gray et al., 01], the Embedded Constraint Language 

(ECL) has been developed to support additional modeling types and provide new 

operations for model transformation. ECL is a high-level textual language that supports 

an imperative model transformation style. Compared to other model transformation 

languages, ECL is a small but expressive language that aims at defining model 

transformation where the source and target models belong to the same metamodel (i.e., an 

endogenous transformation language). C-SAW serves as the model transformation engine 

associated with the new ECL extensions described in Chapter 3. Various types of model 

evolution tasks can be defined concisely in ECL and executed automatically by C-SAW. 

The dissertation describes the use of C-SAW to address the accidental 

complexities associated with current modeling practice (e.g., manually evolving the deep 



 154

hierarchical structures of large system models can be error prone and labor intensive). 

Particularly, this dissertation focuses on addressing two system development issues 

through modeling: scalability and adaptability. At the modeling level, system scalability 

is correspondingly formulated as a model scalability problem. A transformation specified 

in ECL can serve as a model replicator that scales models up or down with flexibility in 

order to explore system-wide properties such as performance and resource allocation. 

Also, the research described in this dissertation has investigated using C-SAW to address 

system adaptability issues through modeling. For example, systems have to reconfigure 

themselves according to fluctuations in their environment. In most cases, such adaptation 

concerns crosscut the system model and are hard to specify. C-SAW permits the 

separation of crosscutting concerns at the modeling level, which assists end-users in 

rapidly exploring design alternatives that would be infeasible to perform manually. As an 

extension to the earlier investigation in [Gray et al., 01] for modularizing crosscutting 

modeling concerns, the research described in this dissertation applied C-SAW to address 

new concerns such as component deployment and synchronization that often spread 

across system components. 

To simplify the development of model transformation, as a future extension to the 

C-SAW work, the dissertation proposes an approach called Model Transformation by 

Example (MTBE) to generate model transformation rules through a user’s interaction 

with the modeling tool. An event trace mechanism and algorithms that infer model 

transformation rules form recorded events need to be developed to realize the vision of 

MTBE. 

 



 155

7.2 Model Transformation Testing 

Another important issue of model transformation is to ensure its correctness. 

There are a variety of formal methods proposed for validation and verification for models 

and associated transformations (e.g., model checking). However, the applicability of 

formal methods is limited due to the complexity of formal techniques and the lack of 

training of many software engineers in applying them [Hinchey et al., 96], [Gogolla, 04]. 

Software engineering practices such as execution-based testing represent a feasible 

approach for finding transformation faults without the need to translate models and 

transformations to formal specifications. As one of the earliest research efforts to 

investigate model transformation testing, the dissertation has described a unit testing 

approach (M2MUnit) to help detect errors in model transformation specifications where a 

model transformation testing engine provides support to execute test cases with the intent 

of revealing errors in the transformation specification. 

The basic functionality includes execution of the transformations, comparison of 

the actual output model and the expected model, and visualization of the test results. 

Distinguished from classical software testing tools, to determine whether a model 

transformation test passes or fails requires comparison of the actual output model with 

the expected model, which necessitates model differencing algorithms and visualization. 

If there are no differences between the actual output and expected models, it can be 

inferred that the model transformation is correct with respect to the given test 

specification. If there are differences between the output and expected models, the errors 

in the transformation specification need to be isolated and removed. 



 156

To further advance model transformation testing, the dissertation proposes several 

important issues for future investigation. These issues include a test specification 

language to support test generation and metamodel-based coverage criteria to evaluate 

test adequacy. Also, to provide a capability to locate errors in model transformation 

specification, model transformation debugging is proposed as another software 

engineering practice to improve the quality of model transformation. 

 

7.3 Differencing Algorithms and Tools for Domain-Specific Models 

Driven by the need for model comparison required by model transformation 

testing, model differencing algorithms and an associated tool called DSMDiff have been 

developed to compute differences between models.  

Theoretically, the generic model comparison problem is similar to the graph 

isomorphism problem, which is known to belong to NP [Garey and Johnson, 79]. The 

computational complexity of graph matching algorithms is the major hindrance to 

applying them to practical applications in modeling. To provide efficient and reliable 

model differencing algorithms, the dissertation has developed a solution using the syntax 

of modeling languages to help handle conflicts during model matching and combine 

structural comparison to determine whether the two models are equivalent. In general, 

DSMDiff takes two models as hierarchical graphs, starts from the top-level of the two 

containment models and then continues comparison to the child submodels. 

Compared to traditional UML model differentiation algorithms, comparison of 

domain-specific models is more challenging and characterized as: 1) domain-specific 

modeling is distinguished from traditional UML modeling because it is a variable-



 157

metamodel approach whereas UML is a fixed-metamodel approach; 2) the underlying 

metamodeling mechanism used to define a DSML determines the properties and 

structures of domain-specific models; 3) domain-specific models may be formalized as 

hierarchical graphs annotated with a set of syntactical information. Based on these 

characteristics, DSMDiff has been developed as a metamodel-independent solution to 

discover the mappings and differences between any two domain-specific models. 

Visualization of the result of model differentiation (i.e., structural model 

differences) is critical to assist in comprehending the mappings and differences between 

two models. To help communicate the discovered model differences, a research 

contribution has also investigated a visualization technique to display model differences 

structurally and highlight them using color and icons. For example, a tree browser has 

been developed to indicate the possible kinds of model differences (e.g., a missing 

element, or an extra element, or an element that has different values for some properties). 

Based on complexity analysis, DSMDiff achieves polynomial time complexity. 

The applicability of DSMDiff has been discussed within the context of model 

transformation testing. In addition to model transformation testing, model differencing 

techniques are essential to many model development and management practices such as 

model versioning. 

 

7.4 Validation of Research Results 

The C-SAW transformation engine has been applied to support automated 

evolution of models on several different modeling languages over multiple domains. On 

different experimentation platforms, C-SAW was applied successfully to integrate 



 158

crosscutting concerns into system models automatically. For example, C-SAW was used 

to weave the concurrency mechanisms, synchronization and flight data recorder policies 

into component models of real-time control systems provided by Boeing [Gray et al., 04-

b], [Gray et al., 06], [Zhang et al., 05-b].  More recently, C-SAW has been applied to 

improve the adaptability of component-based applications. For example, C-SAW was 

used to weave deployment concerns into PICML models that define component 

interfaces, along with their properties and system software building rules of component-

based distributed systems [Balasubramanian et al., 06-a]. Using model replicators, four 

case studies [Gray et al., 05], [Lin et al., 07-a] were used to demonstrate C-SAW’s ability 

to scale base models to large product-line instances. C-SAW was also used in Model-

Driven Program Transformation (MDPT) and model refactoring [Zhang et al., 05-a]. In 

MDPT, the contribution was specific to a set of models and concerns (e.g., logging and 

concurrency concerns). Moreover, C-SAW has been used by several external researchers 

in their research. For example, Darío Correal from Colombia has applied C-SAW to 

address crosscutting concerns in workflow processes [Correal, 06]. The C-SAW web site 

contains software downloads, related papers, and several video demonstrations [C-SAW, 

07]. 

The case studies have indicated the general applicability and flexibility of C-SAW 

to help evolve domain-specific models across various domains represented by different 

modeling languages (e.g., SIML and SRNML). These experimental results have also 

demonstrated that using C-SAW to automate model change evolution reduces the human 

effort and potential errors when compared to a corresponding manual technique.  



 159

To conclude, the escalating complexity of software and system models is making 

it difficult to rapidly explore the effects of a design decision. Automating such 

exploration with model transformation can improve both productivity and model quality. 



 160

 

 

 

LIST OF REFERENCES 

[Adrion et al., 82] W. Richards Adrion, Martha A. Branstad and John C. Cherniavsky, 
“Validation, Verification, and Testing of Computer Software,” ACM Computing Surveys, 
vol. 14 no. 2, June 1982, pp. 159-192. 
 
[Agrawal, 03] Aditya Agrawal, Gábor Karsai, and Ákos Lédeczi, “An End-to-End 
Domain-Driven Software Development Framework,” 18th Annual ACM SIGPLAN 
Conference on Object-Oriented Programming, Systems, Languages, and Applications 
(OOPSLA) - Domain-driven Track, Anaheim, California, October 2003, pp. 8-15. 

[Aho et al., 07] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, 
Compilers Principles, Techniques, and Tools, 2nd edition, Addison-Wesley, 2007. 
 
[Al Dallal and Sorenson, 02] Jehad Al Dallal, Paul Sorenson, “System Testing for 
Object-Oriented Frameworks Using Hook Technology,” 17th IEEE International 
Conference on Automated Software Engineering (ASE), Edinburgh, Scotland, September 
2002, pp. 231. 
 
[Alanen and Porres, 02] Marcus Alanen and Ivan Porres, “Difference and Union of 
Models,” 6th International Conference on Unified Modeling Language (UML), Springer-
Verlag LNCS 2863, San Francisco, California, October 2003, pp. 2-17. 
 
[Andrews et al., 03] Anneliese Andrews, Robert France, Sudipto Ghosh and Gerald 
Craig, “Test Adequacy Criteria for UML Design Models,” Software Testing, Verification 
and Reliability, vol. 13 no. 2, April-June 2003, pp. 95-127. 
 
[ANTLR, 07] ANTLR website, 2007, http://www.antlr.org/ 
 
[AOM, 07] Aspect-Oriented Modeling, http://www.aspect-modeling.org/aosd07/ 
 
[AS, 01] Object Management Group, Action Semantics for the UML, 2001, 
http://www.omg.org. 
 
[Auguston, 98] Mikhail Auguston, “Building Program Behavior Models,” ECAI 
Workshop on Spatial and Temporal Reasoning, Brighton, England, August 1998, pp. 19-
26. 
 
 
 



 161

[Auguston et al., 03] Mikhail Auguston, Clinton Jeffery, and Scott Underwood, “A 
Monitoring Language for Run Time and Post-Mortem Behavior Analysis and 
Visualization,” AADEBUG Workshop on Automated and Algorithmic Debugging, Ghent, 
Belgium, September 2003. 
 
[Balasubramanian et al., 06-a] Krishnakumar Balasubramanian, Aniruddha Gokhale, 
Yuehua Lin, Jing Zhang, and Jeff Gray, “Weaving Deployment Aspects into Domain-
Specific Models,” International Journal on Software Engineering and Knowledge 
Engineering, June 2006, vol. 16 no.3, pp. 403-424. 
 
[Balasubramanian et al., 06-b] Krishnakumar Balasubramanian, Aniruddha Gokhale, 
Gabor Karsai, Janos Sztipanovits, and Sandeep Neema, “Developing Applications Using 
Model-Driven Design Environments,” IEEE Computer (Special Issue on Model-Driven 
Engineering), February 2006, vol. 39 no. 2, pp. 33-40.  
 
[Batory, 06] Don Batory, “Multiple Models in Model-Driven Engineering, Product Lines, 
and Metaprogramming,” IBM Systems Journal, vol. 45 no. 3, July 2006, pp. 451–461. 
 
[Batory et al., 04] Don Batory, Jacob Neal Sarvela, and Axel Rauschmeyer, “Scaling 
Step-Wise Refinement,” IEEE Transactions on Software Engineering, vol. 30 no. 6, June 
2004, pp. 355-371. 
 
[Baudry et al., 06] Benoit Baudry, Trung Dinh-Trong, Jean-Marie Mottu, Devon 
Simmonds, Robert France, Sudipto Ghosh, Franck Fleurey, and Yves Le Traon, 
"Challenges for Model Transformation Testing," Proceedings of workshop on Integration 
of Model Driven Development and Model Driven Testing (IMDT), Bilbao, Spain, July 
2006. 
 
[Baxter et al., 04] Ira Baxter, Christopher Pidgeon, and Michael Mehlich, “DMS: 
Program Transformation for Practical Scalable Software Evolution,” International 
Conference on Software Engineering (ICSE), Edinburgh, Scotland, May 2004, pp. 625-
634. 
 
[Bernstein, 03] Philip A. Bernstein, “Applying Model Management to Classical Meta 
Data Problems,” The Conference on Innovative Database Research (CIDR), Asilomar, 
California, January 2003, pp. 209-220. 
 
[Bézivin, 03]  Jean Bézivin, “On the Unification Power of Models,” Journal of Software 
and System Modeling, vol. 4 no. 2, May 2005, pp. 171-188. 
 
[Bézivin and Gerbé, 01] Jean Bézivin and Olivier Gerbé, “Towards a Precise Definition 
of the OMG/MDA Framework,” Automated Software Engineering (ASE), San Diego, 
California, November 2001, pp. 273-280. 
  



 162

[Bézivin et al., 04] Jean Bézivin, Frédéric Jouault, and Patrick Valduriez, “On the Need 
for MegaModels,” OOPSLA Workshop on Best Practices for Model-Driven Software 
Development, Vancouver, Canada, October 2004. 
 
[Bondi, 00] André B. Bondi, “Characteristics of Scalability and Their Impact on 
Performance,” 2nd International Workshop on Software and Performance, Ottawa, 
Ontario, Canada, 2000, pp. 195–203. 
 
[Booch et al., 99] Grady Booch, James Rumbaugh and Ivar Jacobson, The Unified 
Modeling Language User Guide, Addison Wesley, 1999. 
 
[Brooks, 95] Frederic P. Brooks, Mythical Man-Month, Addison-Wesley, 1995. 
 
[Brottier et al., 06] Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry, Yves Le 
Traon, “Metamodel-based Test Generation for Model Transformations: An Algorithm 
and a Tool,” 17th International Symposium on Software Reliability Engineering (ISSRE), 
Raleigh, North Carolina, November 2006, pp. 85–94. 
 
[Budinsky et al., 04] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick 
and Timothy J. Grose, Eclipse Modeling Framework, Addison-Wesley, 2004.  
 
[Chawathe, 96] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and 
Jennifer Widom, “Change Detection in Hierarchically Structured Information,” The ACM 
SIGMOD International Conference on Management of Data, Montreal, Canada, June 
1996, pp. 493-504. 
 
[Cicchetti, 07] Antonio Cicchetti, Davide Di Rusico, and Alfonso Pierantonio, 
“Metamodel Independent Approach to Difference Representation,” Journal of Object 
Technology (Special Issue from TOOLS Europe 2007), June 2007, 20 pages. 
 
[Clarke and Wing, 96] E. M. Clarke and J. M. Wing, “Formal Methods: State of the Art 
and Future Directions,” ACM Computing Surveys, vol. 28, 1996, pp. 626–643. 
 
[Clements and Northrop, 01] Paul Clements and Linda Northrop, Software Product-lines: 
Practices and Patterns, Addison-Wesley, 2001. 
 
[CMW, 07] Object Management Group, Common Warehouse Metamodel Specification, 
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#CWM 
 
[Correal, 06] Darío Correal, “Definition and Execution of Multiple Viewpoints in 
Workflow Processes,” Companion to the 21st ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA), October 2006, 
Portland, Oregon, pp. 760-761. 
 
[C-SAW, 07] C-SAW: The Constraint Specification Weaver Website, 2007, 
http://www.cis/uab.edu/gray/Research/C-SAW 



 163

[Czarnecki and Helsen, 06] Krzysztof Czarnecki and Simon Helsen, “Feature-based 
Survey of Model Transformation Approaches,” IBM Systems Journal, 2006, vol. 45 no. 3, 
pp. 621-646. 
 
[Cuccuru et al., 05] Arnaud Cuccuru, Jean-Luc Dekeyser, Philippe Marquet, Pierre 
Boulet, “Towards UML2 Extensions for Compact Modeling of Regular Complex 
Topologies,” Model-Driven Engineering Languages and Systems (MoDELS), Springer-
Verlag LNCS 3713, Montego Bay, Jamaica, October 2005, pp. 445-459. 
 
[Deng et al., 08] Gan Deng, Douglas C. Schmidt, Aniruddha Gokhale, Jeff Gray, Yuehua 
Lin, and Gunther Lenz, “Evolution in Model-Driven Software Product-line 
Architectures,” Designing Software-Intensive Systems: Methods and Principles, (Pierre 
Tiako, ed.), Idea Group, 2008. 
 
[Dijkstra, 76] Edsger Wybe Dijkstra, ed., A Discipline of Programming, Prentice Hall, 
1976. 
 
[Dijkstra, 72] Edsger Dijsktra, “The Humble Programmer,” Communications of the ACM, 
October 1972, pp. 859-866 
 
[DSM Forum, 07] Domain-Specific Modeling Forum, 2007, 
http://www.dsmforum.org/tools.html 
 
[Edwards, 04] George Edwards, Gan Deng, Douglas Schmidt, Aniruddha S. Gokhale, 
and Bala Natarajan, “Model-Driven Configuration and Deployment of Component 
Middleware Publish/Subscribe Services,” Generative Programming and Component 
Engineering (GPCE), Springer-Verlag LNCS 3286, Vancouver, Canada, October 2004, 
pp. 337-360. 
 
[Ehrig et al., 06] Karsten Ehrig, Jochen M. Kuster, Gabriele Taentzer, and Jessica 
Winkelmann, “Generating Instance Models from Meta Models,” 8th IFIP International 
Conference on Formal Methods for Open Object-Based Distributed Systems (FMOODS), 
Springer-Verlag LNCS 4037, Bologna, Italy, June 2006, pp. 156-170.  
 
[Eick et al., 01] Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner, “SeeSoft--A 
Tool for Visualizing Line-Oriented Software Statistics,” IEEE Transactions on Software 
Engineering, vol. 18 no. 11, 2001, pp. 957-968. 
 
[Engels and Groenewegen, 00] Gregor Engels and Luuk Groenewegen, “Object-Oriented 
Modeling: A Roadmap,” Future of Software Engineering, Special Volume Published in 
Conjunction with ICSE 2000, (Finkelstein, A., ed.), May 2000, pp. 103-116. 
 
[Escher, 07] The Escher Repository, 2007. http://escher.isis.vanderbilt.edu 
 
[Evans, 03] Eric Evans, Domain-Driven Design: Tackling Complexity at the Heart of 
Software, Addison-Wesley, 2003. 



 164

[Fermi, 07] Fermi lab, 2007, http://www.fnal.gov/ 
 
[Filman et al., 04] Robert Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Aksit, 
editors. Aspect-Oriented Software Development, Addison-Wesley, 2004. 
 
[Fleurey et al., 04] Franck Fleurey, Jim Steel, Benoit Baudry, “Validation in model-
driven engineering: testing model transformations,” 1st International Workshop on 
Model, Design and Validation, Rennes, Bretagne, France, November 2004, pp. 29–40 
 
[France et al., 04] Robert France, Indrakshi Ray, Geri Georg, and Sudipto Ghosh, “An 
Aspect-Oriented Approach to Design Modeling,” IEE Proceedings on Software, vol. 4 
no. 151, August 2004, pp. 173-185. 
 
[Frankel, 03] David S. Frankel, Model Driven Architecture: Applying MDA to Enterprise 
Computing, John Wiley and Sons, 2003. 
 
[Fujaba, 07] The FUJABA Toolsuite. http://wwwcs.uni-paderborn.de/cs/fujaba/ 
 
[Garey and Johnson, 79] Michael R. Garey, David S. Johnson, Computers and 
Intractability: A Guide to the Theory of NP-Completeness, W H Freeman and Co, 1979.  
 
[Gîrba and Ducasse, 06] Tudor Gîrba and Stéphane Ducasse, “Modeling History to 
Analyze Software Evolution,” Journal of Software Maintenance and Evolution, vol. 18 
no. 3, May-June 2006, pp. 207-236. 
 
[Gelperin and Hetzel, 88] David Gelperin and Bill Hetzel, “The Growth of Software 
Testing,” Communications of the ACM, vol. 31 no. 6, June 1988, pp. 687-695. 
 
[GME, 07] Generic Modeling Environment, 2007, 
http://escher.isis.vanderbilit.edu/tools/get_tool?GME 
 
[Gogolla, 04] Martin Gogolla, “Benefits and Problems of Formal Methods,” Ada Europe, 
Springer-Verlag LNCS 3063, Palma de Mallorca, Spain, June 2004, pp. 1-15. 
 
[Gokhale et al., 04] Aniruddha Gokhale, Douglas Schmidt, Balachandran Natarajan, Jeff 
Gray, and Nanbor Wang, “Model-Driven Middleware,” Middleware for Communications, 
(Qusay Mahmoud, editor), John Wiley and Sons, 2004. 
 
[Gray et al., 01] Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck, “Handling 
Crosscutting Constraints in Domain-Specific Modeling,” Communications of the ACM, 
vol. 44 no. 10, October 2001, pp. 87-93. 
 
[Gray, 02] Jeff Gray, “Aspect-Oriented Domain-Specific Modeling: A Generative 
Approach Using a Metaweaver Framework,” Ph.D. Thesis, Dept. of Electrical 
Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, 2002. 
 



 165

[Gray et al., 03] Jeff Gray, Yuehua Lin, and Jing Zhang, “Aspect Model Weavers: Levels 
of Supported Independence,” Middleware 2003: Workshop on Model-driven Approaches 
to Middleware Applications Development, Rio de Janeiro, Brazil, June 2003. 
 
[Gray et al., 04-a] Jeff Gray, Matti Rossi, and Juha Pekka Tolvanen, “Preface: Special 
Issue on Domain-Specific Modeling,” Journal of Visual Languages and Computing, vol. 
15 nos. 3-4, June/August 2004, pp. 207-209. 
 
[Gray et al., 04-b] Jeff Gray, Jing Zhang, Yuehua Lin, Hui Wu, Suman Roychoudhury, 
Rajesh Sudarsan, Aniruddha Gokhale, Sandeep Neema, Feng Shi, and Ted Bapty, 
“Model-Driven Program Transformation of a Large Avionics Framework,” Generative 
Programming and Component Engineering (GPCE), Springer-Verlag LNCS 3286, 
Vancouver, Canada, October 2004, pp. 361-378. 
 
[Gray et al., 05] Jeff Gray, Yuehua Lin, Jing Zhang, Steve Nordstrom, Aniruddha 
Gokhale, Sandeep Neema, and Swapna Gokhale, “Replicators: Transformations to 
Address Model Scalability,” 8th ACM/IEEE International Conference on Model Driven 
Engineering Languages and Systems (MoDELS), Springer-Verlag LNCS 3713, Montego 
Bay, Jamaica, October 2005, pp. 295-308. 
 
[Gray et al., 06] Jeff Gray, Yuehua Lin, Jing Zhang, “Automating Change Evolution in 
Model-Driven Engineering,” IEEE Computer (Special Issue on Model-Driven 
Engineering), February 2006, vol. 39 no. 2, pp. 41-48. 
 
[Gray et al., 07] Jeff Gray, Juha-Pekka Tolvanen, Steven Kelly, Aniruddha Gokhale, 
Sandeep Neema, and Jonathan Sprinkle, Handbook of Dynamic System Modeling, (Paul 
Fishwick, ed.), CRC Press, 2007. 
 
[Greenfield et al., 04] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent, 
Software Factories: Assembling Applications with Patterns, Models, Frameworks, and 
Tools, Wiley Publishing, Inc., 2004. 
 
[Hailpern and Tarr, 06] Brent Hailpern and Peri Tarr, “Model-Driven Development: The 
Good, the Bad, and the Ugly”, IBM Systems Journal, vol. 45 no. 3, July 2006, pp. 451–
461. 
 
[Harrold, 00] Mary J. Harrold, “Testing: A Road Map,” Future of Software Engineering, 
Special Volume Published in Conjunction with ICSE 2000, (A. Finkelstein, ed.), May 
2000, Limerick, Ireland, pp. 61-72. 
 
[Hatcliff et al., 03] John Hatcliff, Xinghua Deng, Matthew B. Dwyer, Georg Jung, and 
Venkatesh P. Ranganath, “Cadena: An Integrated Development, Analysis, and 
Verification Environment for Component-based Systems,” International Conference on 
Software Engineering (ICSE), Portland, Oregon, May 2003, pp. 160-173. 
 



 166

[Hayashi et al., 04] Susumu Hayashi, Yibing Pan, Masami Sato, Kenji Mori, Sul Sejeon, 
and Shusuke Haruna, “Test Driven Development of UML Models with SMART 
Modeling System,” 7th International Conference on Unified Modeling Language (UML), 
Springer-Verlag LNCS 3237, Lisbon, Portugal, October 2004, pp. 295-409. 
 
[Hinchey et al., 96] Michael Hinchey, Jonathan Bowen, and Robert Glass, “Formal 
Methods: Point-Counterpoint,” IEEE Computer, vol. 13 no. 2, April 1996, pp. 18-19. 
 
[Hirel et al., 00] Christophe Hirel, Bruno Tuffin, and Kishor Trivedi, “SPNP: Stochastic 
Petri Nets. Version 6.0,” Computer Performance Evaluation: Modeling Tools and 
Techniques, Springer Verlag LNCS 1786, Schaumburg, Illinois, March 2000, pp. 354-
357. 
 
[Hoare, 69] Charles A. R. Hoare, “An Axiomatic Basis for Computer Programming,” 
Communications of the ACM, vol. 12 no. 10, October 1969, pp. 576-580. 
 
[Holzmann, 97] Gerard J. Holzmann, “The Model Checker SPIN,” IEEE Transactions on 
Software Engineering, vol. 23 no. 5, May 1997, pp. 279-295. 
 
[Hunt and McIlroy, 75] J. W. Hunt and M. D. McIlroy, “An Algorithm for Differential 
File Comparison,” Computing Science Technical Report No. 41, Bell Laboratories, 1975. 
 
[Johann and Egyed, 04] Sven Johann and Alexander Egyed, “Instant and Incremental 
Transformation of Models,” 19th IEEE/ACM International Conference on Automated 
Software Engineering (ASE), Linz, Austria, September 2004, pp. 362-365. 
 
[Johnson, 98] Luanne J. Johnson, “A View from the 1960s: How the Software Industry 
Began,” IEEE Annals of the History of Computing, vol. 20 no. 1, January-March 1998, 
pp. 36-42. 
 
[Karsai et al., 03] Gábor Karsai, Janos Sztipanovits, Ákos Lédeczi and Ted Bapty, 
“Model-Integrated Development of Embedded Software,” Proceedings of IEEE, vol. 91 
no. 1, January 2003, pp. 145-164. 
 
[Karsai et al., 04] Gábor Karsai, Miklos Maroti, Ákos Lédeczi, Jeff Gray, and Janos 
Sztipanovits, “Composition and Cloning in Modeling and Meta-Modeling,” IEEE 
Transactions on Control Systems Technology, vol. 12 no. 2, March 2004, pp. 263-278. 
 
[Kent, 02] Stuart Kent, “Model Driven Engineering,” 3rd International Conference on 
Integrated Formal Methods (IFM’02), Springer-Verlag LNCS 2335, Turku, Finland, 
May 2002, pp. 286-298  
 
[Kleppe et al., 03] Anneke Kleppe, Jos Warmer, and Wim Bast, MDA Explained. The 
Model Driven Architecture: Practice and Promise. Addison-Wesley, 2003 
 



 167

[Kiczales et al., 01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey 
Palm, and William Griswold, “Getting Started with AspectJ,” Communications of the 
ACM, vol. 44 no. 10, October 2001, pp. 59-65. 
 
[Kogekar et al., 06] Arundhati Kogekar, Dimple Kaul, Aniruddha Gokhale, Paul Vandal, 
Upsorn Praphamontripong, Swapna Gokhale, Jing Zhang, Yuehua Lin, and Jeff Gray, 
“Model-driven Generative Techniques for Scalable Performabality Analysis of 
Distributed Systems,” IPDPS Workshop on Next Generation Systems, Rhodes, Greece, 
April 2006. 
 
[Kuster and Abd-El-Razik, 06] Jochen M. Kuster and Mohamed Abd-El-Razik, 
“Validation of Model Transformations - First Experiences using a White Box Approach,” 
3rd International Workshop on Model Development, Validation and Verification 
(MoDeV2a), Genova, Italy, October, 2006. 
 
[Kurtev et al., 06] Ivan Kurtev, Jean Bézivin, Frédéric Jouault, and Patrick Valduriez, 
“Model-based DSL Frameworks,” Companion of the 21st Annual ACM SIGPLAN 
Conference on Object-Oriented Programming, Systems, Languages, and Applications 
(OOPSLA), Portland, Oregon, October 2006, pp. 602-616. 
 
[Küster, 06] Jochen M. Küster, “Definition and Validation of Model Transformations,” 
Software and Systems Modeling, vol. 5 no. 3, 2006, pp. 233-259. 
 
[Lédeczi et al., 01] Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Peter Volgyesi, Greg 
Nordstrom, Jonathan Sprinkle, and Gábor Karsai, “Composing Domain-Specific Design 
Environments,” IEEE Computer, vol. 34 no. 11, November 2001, pp. 44-51. 
 
[Lieberman, 00] Henry Lieberman, “Programming by Example,” Communications of the 
ACM, vol. 43, no. 3, March 2000, pp. 72-74. 
 
[Lin et al., 04] Yuehua Lin, Jing Zhang, and Jeff Gray, “Model Comparison: A Key 
Challenge for Transformation Testing and Version Control in Model-Driven Software 
Development,” OOPSLA Workshop on Best Practices for Model-Driven Software 
Development, Vancouver, Canada, October 2004. 
 
[Lin et al., 05] Yuehua Lin, Jing Zhang, and Jeff Gray, “A Framework for Testing Model 
Transformations,” in Model-driven Software Development, (Beydeda, S., Book, M. and 
Gruhn, V., eds.), Springer, 2005, Chapter 10, pp. 219-236. 
 
[Lin et al., 07-a] Yuehua Lin, Jeff Gray, Jing Zhang, Steve Nordstrom, Aniruddha 
Gokhale, Sandeep Neema, and Swapna Gokhale, “Model Replication: Transformations to 
Address Model Scalability,” conditionally accepted, Software: Practice and Experience. 
 
[Lin et al., 07-b] Yuehua Lin, Jeff Gray and Frédéric Jouault, “DSMDiff: A Differencing 
Tool for Domain-Specific Models,” European Journal of Information Systems (Special 
Issue on Model-Driven Systems Development), Fall 2007. 



 168

[Long et al., 98] Earl Long, Amit Misra, and Janos Sztipanovits, “Increasing Productivity 
at Saturn,” IEEE Computer, vol. 31 no. 8, August 1998, pp. 35-43. 
 
[Manna and Pnueli, 92] Zohar Manna and Amir Pnueli, The Temporal Logic of Reactive 
and Concurrent Systems, Specification, Springer-Verlag, 1992. 
 
[Mandelin et al., 06] David Mandelin, Doug Kimelman, and Daniel Yellin, “A Bayesian 
Approach to Diagram Matching with Application to Architectural Models,” 28th 
International Conference on Software Engineering (ICSE), Shanghai, China, May 2006, 
pp. 222-231. 
 
[Marsan et al., 95] M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis, 
Modelling with Generalized Stochastic Petri Nets, Wiley Series in Parallel Computing, 
John Wiley and Sons, 1995. 
 
[MDA, 07] Object Management Group, Model Driven Architecture, 
http://www.omg.org/mda/  
 
[Mehra et al., 05] Akhil Mehra, John Grundy, and John Hosking, “A Generic Approach 
to Supporting Diagram Differencing and Merging for Collaborative Design,” 20th 
IEEE/ACM International Conference on Automated Software Engineering (ASE), Long 
Beach, California, November 2005, pp. 204-213. 
 
[Mens and Van Gorp, 05] Tom Mens and Pieter Van Gorp, “A Taxonomy of Model 
Transformation,” International Workshop on Graph and Model Transformation 
(GraMoT), Tallinn, Estonia, September, 2005. 
 
[Mernik et al., 05] Marjan Mernik, Jan Heering, and Anthony M. Sloane, “When and 
How to Develop Domain-Specific Languages,” ACM Computing Surveys, December 
2005, vol. 37 no. 4, pp. 316-344. 
 
[MetaCase, 07] MetaEdit+ 4.5 User’s Guide. http://www.metacase.com 
 
[Microsoft, 05] Visual Studio Launch: Domain-Specific Language (DSL) Tools: Visual 
Studio 2005 Team System. 
http://msdn.microsoft.com/vstudio/teamsystem/workshop/DSLTools 
 
[Milicev, 02] Dragan Milicev, “Automatic Model Transformations Using Extended UML 
Object Diagrams in Modeling Environments,” IEEE Transactions on Software 
Engineering, April 2002, vol. 28 no. 4, pp. 413-431. 
 
[Miller and Mukerji, 01] Joaquin Miller and Jishnu Mukerji, MDA Guide Version 1.0.1, 
http://www.omg.org/docs/omg/03-06-01.pdf 
 
[MOF, 07] Object Management Group, Meta Object Facility specification, 
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#MOF 



 169

[Mottu et al., 06] Jean-Marie Mottu, Benoit Baudry and Yves Le Traon, “Mutation 
Analysis Testing for Model Transformations,” 2nd European conference on Model 
Driven Architecture - Foundations and Applications (ECMDA-FA), Bilbao, Spain, July 
2006. pp. 376-390. 
 
[Muppala et al., 94] Jogesh K. Muppala, Gianfranco Ciardo, and Kishor S. Trivedi, 
“Stochastic Reward Nets for Reliability Prediction,” Communications in Reliability, 
Maintainability and Serviceability, July 1994, pp. 9-20. 
 
[Neema et al., 02] Sandeep Neema, Ted Bapty, Jeff Gray, and Aniruddha Gokhale, 
“Generators for Synthesis of QoS Adaptation in Distributed Real-Time Embedded 
Systems,” Generative Programming and Component Engineering (GPCE), Springer-
Verlag LNCS 2487, Pittsburgh, Pennsylvania, October 2002, pp. 236-251. 
 
[Nordstrom et al., 99] Gregory G. Nordstrom, Janos Sztipanovits, Gábor Karsai, and 
Ákos Lédeczi, “Metamodeling - Rapid Design and Evolution of Domain-Specific 
Modeling Environments,” International Conference on Engineering of Computer-Based 
Systems (ECBS), Nashville, Tennessee, April 1999, pp. 68-74. 
 
[Nordstrom, 99] Gregory G. Nordstrom, “MetaModeling - Rapid Design and Evolution 
of Domain-Specific Modeling Environments,” Ph.D. Thesis, Dept. of Electrical 
Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, 1999. 
 
[OCL, 07] Object Management Group, Object Constraint Language Specification, 
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL 
 
[Ohst et al., 03] Dirk Ohst, Michael Welle, and Udo Kelter, “Differences Between 
Versions of UML Diagrams,” European Software Engineering Conference/Foundations 
of Software Engineering, Helsinki, Finland, September 2003, pp. 227-236. 
 
[Parnas, 72] David Parnas, “On the Criteria To Be Used in Decomposing Systems into 
Modules,” Communications of the ACM, December 1972, vol. 15 no. 12, pp. 1053-1058. 
 
[Patrascoiu, 04] Octavian Patrascoiu, “Mapping EDOC to Web Services Using YATL,” 
8th International IEEE Enterprise Distributed Object Computing Conference (EDOC), 
Monterey, California, September 2004, pp. 286-297. 
 
[Peterson, 77] James L. Peterson, “Petri Nets,” ACM Computing Surveys, vol. 9 no. 3, 
September 1977, pp. 223-252. 
 
[Petriu et al., 05] Dorina C. Petriu, Jinhua Zhang, Gordon Gu and Hui Shen, 
“Performance Analysis with the SPT Profile,” in Model-Driven Engineering for 
Distributed and Embedded Systems, (S. Gerard, J.P. Babeau, J. Champeau, eds.), Hermes 
Science Publishing Ltd., London, England, 2005, pp. 205-224. 
 



 170

[Pilskalns et al., 07] Orest Pilskalns, Anneliese Andrews, Andrew Knight, Sudipto Ghosh, 
and Robert France, “Testing UML Designs,” Information and Software Technology, vol. 
49 no.8, August 2007, pp. 892-912. 
 
[Pohjonen and Kelly, 02] Risto Pohjonen and Steven Kelly, “Domain-Specific 
Modeling,” Dr. Dobbs Journal, August 2002, pp. 26-35. 
 
[QVT, 07] MOF Query/Views/Transformations Specification, 2007. 
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01. 
 
[Rácz et al., 99] Sándor Rácz and Miklós Telek, “Performability Analysis of Markov 
Reward Models with Rate and Impulse Reward,” International Conference on Numerical 
Solution of Markov Chains, Zaragoza, Spain, September 1999, pp. 169-180. 
 
[Rose, 07] IBM Rational Rose, http://www-
306.ibm.com/software/awdtools/developer/rose/ 
 
[Rosenberg, 96] Jonathan B. Rosenberg, How Debuggers Work - Algorithms, Data 
Structures, and Architecture, John Wiley and Sons, Inc, 1996. 
 
[Schach, 07] Stephen R. Schach, Object-Oriented and Classical Software Engineering, 
7th Edition, McGraw-Hill, 2007. 
 
[Schmidt, 06] Douglas C. Schmidt, “Model-Driven Engineering,” IEEE Computer, 
February 2006, vol. 39 no. 2, pp. 25-32. 
 
[Schmidt et al., 00] Douglas C. Schmidt, Michael Stal, Hans Rohnert, Frank Buschman, 
Pattern-Oriented Software Architecture – Volume 2: Patterns for Concurrent and 
Networked Objects, John Wiley and Sons, 2000. 
 
[Schmidt and Varró, 03] Akos Schmidt and Daniel Varró, “CheckVML: A Tool for 
Model Checking Visual Modeling Languages,” 6th International Conference on the 
Unified Modeling Language (UML), Springer-Verlag LNCS 2863, San Francisco, 
California, October 2003, pp. 92-95. 
 
[Sendall and Kozaczynski, 03] Shane Sendall and Wojtek Kozaczynski, “Model 
Transformation - the Heart and Soul of Model-Driven Software Development,” IEEE 
Software, vol. 20 no. 5, September/October 2003, pp. 42-45. 
 
[Sharp, 00] David C. Sharp, “Component-Based Product Line Development of Avionics 
Software,” First Software Product Lines Conference (SPLC-1), Denver, Colorado, 
August 2000, pp. 353-369. 
 
 
 
 



 171

[Shetty et al., 05] Shweta Shetty, Steven Nordstrom, Shikha Ahuja, Di Yao, Ted Bapty, 
and Sandeep Neema, “Integration of Large-Scale Autonomic Systems using Multiple 
Domain Specific Modeling Languages,” 12th IEEE International Conference and 
Workshops on the Engineering of Autonomic Systems (ECBS), Greenbelt, Maryland, 
April 2005, pp. 481-489. 
 
[Sztipanovits, 02] Janos Sztipanovits, “Generative Programming for Embedded 
Systems,” Keynote Address: Generative Programming and Component Engineering 
(GPCE), Springer-Verlag LNCS 2487, Pittsburgh, Pennsylvania, October 2002, pp. 32-
49. 
 
[Sztipanovits and Karsai, 97] Janos Sztipanovits, Gábor Karsai, “Model-Integrated 
Computing,” IEEE Computer, April 1997, pp. 10-12. 
 
[UML, 07] Object Management Group, Unified Modeling Language Specification, 
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML 
 
[Vangheluwe and De Lara, 04] Hans Vangheluwe and Juan de Lara, “Domain-Specific 
Modelling with AToM3,” 4th OOPSLA Workshop on Domain-Specific Modeling, 
Vancouver, Canada, October 2004. 
 
[Varró, 06] Dániel Varró, “Model Transformation by Example,” 9th International 
Conference on Model Driven Engineering Languages and Systems (MoDELS), Genova, 
Italy, October 2006, pp. 410-424. 
 
[Varró et al., 02] Dániel Varró, Gergely Varró, and András Pataricza, “Designing the 
Automatic Transformation of Visual Languages,” Science of Computer Programming, 
vol. 44 no. 2, 2002, pp. 205-227. 
 
[Wang et al., 03] Yuan Wang, David J. DeWitt, and Jin-Yi Cai, “X -Diff: An Effective 
Change Detection Algorithm for XML Documents,” 19th International Conference on 
Data Engineering, Bangalore, India, March 2003, pp. 519-530. 
 
[Warmer and Kleppe, 99] Jos Warmer and Anneke Kleppe, The Object Constraint 
Language: Precise Modeling with UML, Addison-Wesley, 1999. 
 
[Whittle, 02] Jon Whittle, “Transformations and Software Modeling Languages: 
Automating Transformations in UML,” 5th International Conference on the Unified 
Modeling Language (UML), Springer-Verlag LNCS 2460, September-October 2002, 
Dresden, Germany, pp. 227-242. 
 
[Wimmer et al., 07] Manuel Wimmer, Michael Strommer, Horst Kargl, and Gerhard 
Kramler, “Towards Model Transformation Generation By-Example,” 40th Hawaii 
International Conference on System Sciences (HICSS), Big Island, Hawaii, January 2007. 
 



 172

[Xing and Stroulia, 05] Zhenchang Xing and Eleni Stroulia, “UMLDiff: An Algorithm 
for Object-Oriented Design Differencing,” 20th IEEE/ACM International Conference on 
Automated Software Engineering (ASE), Long Beach, California, November 2005, pp. 
54-65. 
 
[XMI, 07] Object Management Group, XMI specification, 
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#XMI 
 
[XSLT, 99] W3C, XSLT Transformation version 1.0, 1999, http://www.w3.org/TR/xslt 
 
[Yilmaz, 01] Levent Yilmaz, “Verification and Validation: Automated Object-Flow 
Testing of Dynamic Process Interaction Models,” 33rd Winter Conference on Simulation, 
Arlington, Virginia, December 2001, pp. 586-594. 
 
[Zellweger, 84] Polle T. Zellweger, “Interactive Source-Level Debugging of Optimized 
Programs,” Ph.D. Thesis, Department of Computer Science, University of California, 
Berkeley, California, May 1984. 
 
[Zhang et al., 04] Jing Zhang, Jeff Gray, and Yuehua Lin, “A Generative Approach to 
Model Interpreter Evolution,” 4th OOPSLA Workshop on Domain-Specific Modeling, 
Vancouver, Canada, October 2004, pp. 121-129. 
 
[Zhang et al., 05-a] Jing Zhang, Yuehua Lin, and Jeff Gray, “Generic and Domain-
Specific Model Refactoring using a Model Transformation Engine,” Model-Driven 
Software Development, (Beydeda, S., Book, M. and Gruhn, V., eds.), Springer, 2005, 
Chapter 9, pp. 199-218. 
 
[Zhang et al., 05-b] Jing Zhang, Jeff Gray, and Yuehua Lin, “A Model-Driven Approach 
to Enforce Crosscutting Assertion Checking,” 27th ICSE Workshop on the Modeling and 
Analysis of Concerns in Software (MACS), St. Louis, Missouri, May 2005. 
 
[Zhang et al., 07] Jing Zhang, Jeff Gray, Yuehua Lin, and Robert Tairas, “Aspect Mining 
from a Modeling Perspective,” International Journal of Computer Applications in 
Technology (Special Issue on Concern Oriented Software), Fall 2007. 
 
[Zhu et al., 97] Hong Zhu, Patrick Hall, and John May, “Software Unit Test Coverage 
and Adequacy,” ACM Computing Surveys, vol. 29 no. 4, December 1997, pp. 367-427. 
 
[Zloof, 77] Moshé Zloof, “Query By Example,” IBM Systems Journal, vol. 16 no. 4, 
1977, pp. 324-343. 



 173

 

 

 

APPENDIX A 

EMBEDDED CONSTRAINT LANGUAGE GRAMMAR 



 174

The Embedded Constraint Language (ECL) extensions described in Chapter 3 are 

based on an earlier ECL description presented in [Gray, 02]. Furthermore, this earlier 

ECL definition was an extension of the Multigraph Constraint Language (MCL), which 

was an early OCL-like constraint language for the first public release of the GME [GME, 

07]. The ECL grammar is defined in an ANTLR [ANTLR, 07] grammar (ecl.g), which is 

presented in the remainder of this appendix. Much of this grammar has legacy 

productions from the original MCL. This section does not claim a major contribution of 

this dissertation, but is provided for completeness to those desiring a more formal 

description of the ECL syntax. 

 

//begin ecl.g 

 

class ECLParser { 

exception 

 

default: //Print error messages  

name :  id : IDENT ;  

defines : { DEFINES defs  SEMI } ; 

defs  :  def ( COMMA def )* ; 

def  :  name ; 

cpars : cpar ( SEMI cpar )* ; 

cpar : name ( COMMA name )* ":" name ; 



 175

cdef : { INN foldername { DOT modelname { DOT aspectname }}}    

(STRATEGY name | ASPECT name ) 

   LPAR  { cpars } RPAR 

   priority  

   description  

   LBRACE cexprs  { action  } RBRACE 

             | FUNCTION name LPAR { cpars } RPAR cexprs  { action } ; 

priority : PRIORITY "=" id:INTEGER |  ; 

description : id:STR  | ; 

foldername : name ; 

modelname :  name ; 

aspectname : name ; 

lval : name ; 

astring  : str:ACTION ; 

action  : astring;   

cexprs : cexpr SEMI ( cexpr SEMI )* ; 

cexpr : { action }  

 ( assign | DECLARE STATIC cpar  

         | DECLARE cpar 

         | lexpr) ; 

assign : lval ASSIGN lexpr ; 



 176

ifexpr : IF cexpr 

  THEN cexprs { action }  

  { ELSE cexprs  { action } }  

  ENDIF ; 

lexpr : relexpr lexpr_r ; 

lexpr_r : { lop  relexpr  lexpr_r } ; 

relexpr : addexpr  { rop addexpr } ; 

addexpr : mulexpr  addexpr_r ; 

addexpr_r :{   addop  mulexpr  addexpr_r } ; 

mulexpr : unaexpr  mulexpr_r ; 

mulexpr_r :{  mulop unaexpr  mulexpr_r } ; 

unaexpr : ( unaryop  postfixexpr  ) | postfixexpr ; 

postfixexpr : primexpr  postfixcall ; 

postfixcall : { (  (   DOT | ARROW | CARET )  call )  postfixcall } ; 

primexpr : litcoll   |  lit | objname callpars | LPAR cexpr RPAR | ifexpr ; 

callpars : {  LPAR  ( ( decl ) ? decl  { actparlist  }  |  { actparlist  }  )   RPAR } ; 

lit : string | number ; 

tname : name ; 

litcoll : coll  LBRACE { cexprlrange } RBRACE ; 

cexprlrange : cexpr  {   (   (COMMA cexpr )+   )  |   ( ".." cexpr ) } ; 

call  : name  callpars ; 

decl :  name     ( COMMA name  )*     { ":" tname } "\|" ; 

objname : name | SELF ; 



 177

actparlist : cexpr     ( COMMA cexpr  )* ; 

lop : AND | OR | XOR | IMPLIES ; 

coll  :   SET  | BAG  | SEQUENCE | COLLECTION ; 

rop :   "==" | "<" | ">" | ">=" | "<=" |  "<>" ; 

addop > :    PLUS | MINUS ; 

mulop >  :    MUL | DIV ; 

unaryop :    MINUS | NOT ; 

string :   str:STR ;  

number :    r:REAL | n:INTEGER; 

} 

 

// Token definitions 

#token STR  "\"~[\"]*\"" 

#token  INTEGER "[0-9]+" 

#token  REAL   "([0-9]+.[0-9]* | [0-9]*.[0-9]+) {[eE]{[\-\+]}[0-9]+}" 

#token  IDENT "[a-zA-Z][a-zA-Z0-9_]*" 

 

// end of ecl.g 



 178

 

 

 

APPENDIX B 

OPERATIONS OF THE EMBEDDED CONSTRAINT LANGUAGE 



 179

 addAtom 
 purpose: add an atom based on its partName(i.e., kindName) that belongs to a 
 model and assign a new name to it 
 caller: a model or an object that represents a model 
 usage:  caller.addAtom(string partName, string newName) 
 result type: atom 
 
 addConnection 
 purpose: add a connection with a specific kindName from a source object to a 
 destination object within a caller 
 caller: a model or an object that represents a model 
 usage:  caller.addConnection(string kindName, object source, object destination) 
 result type: connection 
  
 addFolder 
 purpose: add a folder based on its kindName and assign a new name to it 
 caller: a folder  
 usage:  caller.addFolder(string kindName, string newName) 
 result type: folder 
 
 addMember 
 purpose: add an object as a member of a set 
 caller: an object that represents a set 
 usage:  caller.addMember(object anObj) 
 result type: void 
 
 addModel 
 purpose: add a model based on its partName(i.e., kindName) that belongs to a 
 model and assign a new name to it 
 caller: a model, a folder, an object that represents a model/folder or a list of 
 models. 
 usage:   
 1) if caller is a single object, caller.addModel(string partName, string newName) 
 2) if caller is a list, caller-> addModel(string partName, string newName) 
 result type: model 
 
 addReference 
 purpose: add a reference with a specific kindName  that refers to an object and 
 assign a new name to it within a caller 
 caller: a model 
 usage:  caller.addReference(string kindName, object refTo) 
 result type: reference 
 



 180

 addSet 
 purpose: add a set based on its kindName and assign a new name to it within a 
 caller or a list of callers 
 caller: a model or a list of models 
 usage:  caller.addSet(string kindName, string newName) or caller->addSet(string 
 kindName, string newName) 
 result type: set 
 
 atoms 
 purpose: return all the atoms or the atoms with specific kindName within a caller. 
 caller: a model or an object that represents a model 
 usage: caller.atoms() or caller.atoms(string kindName) 
 result type: atomList 
 
 connections 
 purpose: return all the connections with a specific connection kindname within a 
 model 
 caller: a model or an  object that represents a model 
 usage:  caller.connections(string connName) 
 result type: objectList that represents a list of connections 
 
 destination 
 purpose: return the destination point of a connection 
 caller: a connection 
 usage:  caller.destination() 
 result type: model/atom/reference/object 
 
 endWith 
 purpose: check if a string ends with a substring 
 caller: a string 
 usage: caller.endWith(string aSubString) 
 result type: boolean 
 
 findAtom 
 purpose: return an atom based on its name within a caller 
 caller: a model or an object that represents a model 
 usage:  caller.findAtom(string atomName) 
 result type: atom 
 
 findConnection 
 purpose: find a connection with a specific kindName from a source object to a 
 destination object within a caller 
 caller: a model or an object that represents a model 
 usage:  caller.findConnection(string kindName, object source, object destination) 
 result type: connection 
 



 181

 findFolder 
 purpose: return a folder with a specific name 
 caller: a folder 
 usage:  caller.findFolder(string folderName) 
 result type: folder 
 
 findModel 
 purpose: return a model based on its name 
 caller: a folder or a model or an object that represents a model 
 usage:  caller.findModel(string modelName) 
 result type: model 
 
 findObject 
 purpose: return an object based on its name within a caller 
 caller: a model or a folder, or an object that represents a model/folder 
 usage: caller.findObject(string objName) 
 result type: object 
 
 getAttribute 
 purpose: return the value of  an attribute of a caller which type is int, bool, double  
 or string 
 caller: an atom, a model or an object 
 usage: caller.getAttribute(string attrName) 
 result type: int, bool, double or string 
 
 intToString 
 purpose: convert an integer value to string 
 caller: none 
 usage: intToString(int val) 
 result type: string 
 
 isNull 
 purpose: determine if the caller is null 
 caller: an atom, a model or an object 
 usage: caller.isNull() 
 result type: boolean 
  
 kindOf 
 purpose: return an caller’s kindname 

caller: an atom, a model or an object 
 usage: caller.kindOf() 
 result type: string 
 



 182

 models 
 purpose: return all the models or the models with specific kindName within 
 a caller 
 caller: a model or a folder 
 usage: caller.models() or caller.models(string kindName). 
 result type: modelList   
 
 modelRefs 
 purpose: return all the models within a caller that are referred by the model 
 references with the specific kindName 
 caller: a model or an object that represents a model 
 usage:  caller.modelRefs(string kindName) 
 result type: modelList 
 
 name 
 purpose: return a caller’s name 
 caller: an atom, a model or an object 
 usage: caller.name() 
 result type: string 
 
 parent 
 purpose: return the parent model of a caller 
 caller: a model, an atom or an object that represents a model/an atom. 
 usage:  caller.parent() 
 result type: model 
 
 refersTo 
 purpose: return a model/an atom/an object that the caller refers to 
 caller: a modelRef or an object that represents a model reference 
 usage:  caller.referesTo() 
 result type: model or atom or object  
 
 removeAtom 
 purpose: remove an atom based on its name 
 caller: a model or an object that represents a model, which is the parent model of 
 the to-be-removed atom 
 usage:  caller.removeAtom(string atomName) 
 result type: void 
  
 removeConnection 
 purpose: remove a connection with a specific kindName from a source object to a 
 destination object within a caller 
 caller: a model or an object that represents a model 
 usage:  caller.removeConnection(string kindName, object source, object 
 destination) 
 result type: void 



 183

 removeModel 
 purpose: remove a model based on its name 
 caller: a model or an object that represents a model, which is the parent model of 
 the to-be-removed model 
 usage:  caller.removeModel(string modelName) 
 result type: void 
 
 rootFolder 
 purpose: return the root folder of an open GME project 
 caller: none 
 usage:  rootFolder() 
 result type: folder 
 
 select 
 purpose: select  the atoms or the models within a caller according to the specified 
 condition 
 caller: atomList, modelList or an objectList 
 usage: caller.select(logic expression) 
 result type: atomList or modelList 
 
 show 
 purpose: display string message 
 caller: none 
 usage: show(any expression that returns a string) 
 result type: void 
 
 size 
 purpose: return the size of the caller list 
 caller: atomList, modelList or an objectList 
 usage: caller.size() 
 result type: int 
 
 source 
 purpose: return the source point of a connection 
 caller: a connection 
 usage:  caller.source() 
 result type: model/atom/reference/object 
 
 setAttribute 
 purpose: set a new value to an attribute of a caller 
 caller: an atom, a model or an object 
 usage: caller.setAttribute(string attrName, anyType value) 
 result type: void 
 



 184

 

 

 

APPENDIX C 

ADDITIONAL CASE STUDIES ON MODEL SCALABILITY 



 185

In this appendix, the concept of model replicators is further demonstrated on two 

separate example modeling languages that were created in GME for different domains. 

The two DSMLs are: 

• Stochastic Reward Net Modeling Language (SRNML), which has been used to 

describe performability concerns of distributed systems built from middleware 

patterns-based building blocks. 

• Event QoS Aspect Language (EQAL), which has been used to configure a large 

collection of federated event channels for mission computing avionics 

applications. 

 

C.1 Scaling Stochastic Reward Net Modeling Language (SRNML) 

Stochastic Reward Nets (SRNs) [Muppala et al., 94] represent a powerful 

modeling technique that is concise in its specification and whose form is closer to a 

designer’s intuition about what a performance model should look like. Because an SRN 

specification is closer to a designer’s intuition of system behavior, it is also easier to 

transfer the results obtained from solving the models and interpret them in terms of the 

entities that exist in the system being modeled. SRNs have been used extensively for 

performance, reliability and performability modeling of different types of systems. SRNs 

are the result of a chain of evolution starting with Petri nets [Peterson, 77]. More 

discussion on SRNs can be found in [Marsan et al., 95], [Rácz et al., 99]. 

The Stochastic Reward Net Modeling Language (SRNML) is a DSML developed 

in GME to describe SRN models of large distributed systems [Kogekar et al., 06]. The 

SRNML is similar to the goals of performance-based modeling extensions for the UML, 



 186

such as the Schedulability, Performance, and Time profile [Petriu et al., 05]. The model 

compilers developed for SRNML can synthesize artifacts required for the SPNP tool 

[Hirel et al., 00], which is a model solver based on SRN semantics. 

The SRN models, which are specified in SRNML, depict the Reactor pattern 

[Schmidt et al., 00] in middleware for network services, which provides synchronous 

event demultiplexing and dispatching mechanisms. In the Reactor pattern, an application 

registers an event handler with the event demultiplexer and delegates to it the 

responsibility of listening for incoming events. On the occurrence of an event, the 

demultiplexer dispatches the event by making a callback to its associated application-

supplied event handler. As shown in Figure C-1a, an SRN model usually consists of two 

parts: the top half represents the event types handled by a reactor and the bottom half 

defines the associated execution snapshot. The execution snapshot needs to represent the 

underlying mechanism for handling the event types included in the top part (e.g., non-

deterministic handling of events). Thus, there are implied dependent relations between 

the top and bottom parts. Any change made to the top will require corresponding changes 

to the bottom. 

Figure C-1a shows the SRN model for the reactor pattern for two event handlers. 

The top of Figure C-1a models the arrival, queuing and service of the two event types. 

Transitions A1 and A2 represent the arrivals of the events of types one and two, 

respectively. Places B1 and B2 represent the queue for the two types of events. 

Transitions Sn1 and Sn2 are immediate transitions that are enabled when a snapshot is 

taken. Places S1 and S2 represent the enabled handles of the two types of events, whereas 

transitions Sr1 and Sr2 represent the execution of the enabled event handlers of the two 



 187

types of events. An inhibitor arc from place B1 to transition A1 with multiplicity N1 

prevents the firing of transition A1 when there are N1 tokens in place B1. The presence of 

N1 tokens in place B1 indicates that the buffer space to hold the incoming input events of 

the first type is full, and no additional incoming events can be accepted. The inhibitor arc 

from place B2 to transition A2 achieves the same purpose for type two events. 

 

a) base model with 2 event handlers                   b) scaled model with 4 event handlers 

Figure C-1 - Replication of Reactor Event Types (from 2 to 4 event types) 
 

The bottom of Figure C-1a models the process of taking successive snapshots and 

non-deterministic service of event handles in each snapshot. Transition Sn1 is enabled 

when there are one or more tokens in place B1, a token in place StSnpSht, and no token in 

place S1. Similarly, transition Sn2 is enabled when there are one or more tokens in place 

B2, a token in place StSnpSht and no token in place S2. Transitions TStSnp1 and TStSnp2 

are enabled when there is a token in place S1, place S2, or both. Transitions TEnSnp1 and 

TEnSnp2 are enabled when there are no tokens in both places S1 and S2. Transition 

TProcSnp1,2 is enabled when there is no token in place S1 and a token in place S2. 

Similarly, transition TProcSnp2,1 is enabled when there is no token in place S2 and a 



 188

token in place S1. Transition Sr1 is enabled when there is a token in place SnpInProg1, 

and transition Sr2 is enabled when there is a token in place SnpInProg2. All the 

transitions have their own guard functions, as shown in Table C -1. 

 

Table C-1 - Enabling guard equations for Figure C-1 

Transition Guard Function 
Sn1 ((#StSnpShot == 1) && (#B1 >= 1) && (#S1 == 0)) ? 1 : 0 

. . . 
. . . 

Snm ((#StSnpShot == 1) && (#Bm >= 1) && (#Sm == 0)) ? 1 : 0 
TStSnp1 (#S1 == 1) ? 1 : 0 

. . . 
. . . 

TStSnpm (#Sm == 1) ? 1 : 0 
TEnSnp1 ((#S1 == 0) && (#S2 == 0) && … (#Sm == 0)) ? 1 : 0 

. . . 
. . . 

TEnSnpm ((#S1 == 0) && (#S2 == 0) && … (#Sm == 0)) ? 1 : 0 
TProcSnp1,2 ((#S1 == 0) && (#S2 == 1)) ? 1 : 0 

. . . 
. . . 

TProcSnp1,m ((#S1 == 0) && (#Sm == 1)) ? 1 : 0 
. . . 

. . . 
TProcSnpm,m-1 ((#Sm == 0) && (#Sm-1 == 1)) ? 1 : 0 

. . . 
. . . 

TProcSnpm,1 ((#Sm == 0) && (#S1 == 1)) ? 1 : 0 
Sr1 (#SnpInProg1 == 1) ? 1 : 0 
. . . 

. . . 
Srm (#SnpInProgm == 1) ? 1 : 0 

 

C1.1 Scalability Issues in SRNML 

The scalability challenges of SRN models arise from the addition of new event 

types and connections between their corresponding event handlers. For example, the top 

of the SRN model must scale to represent the event handling for every event type that is 

available. A problem emerges when there could be non-deterministic handling of events, 

which leads to the complicated connections between the elements within the execution 



 189

snapshot of an SRN model. Due to the implied dependencies between the top and bottom 

parts, the bottom part of the model (i.e., the snapshot) should incorporate appropriate 

non-deterministic handling depicted in the scaled number of event types. The inherent 

structural complexity and the complicated dependent relations within an SRN model 

make it difficult and impractical to scale up SRN models manually, which requires a 

computer-aided method such as a replicator to perform the replication automatically. 

The replication behaviors for scaling up an SRN model can be formalized as 

computation logic and specified in a model transformation language such as ECL [Lin et 

al., 07]. Figure C-1a describes a base SRN model for two event types, and Figure C-1b 

represents the result of scaling this base model from two event types to four event types. 

Such scalability in SRN models can be performed with two model transformation steps. 

The first step scales the reactor event types (i.e., the upper part of the SRN model) from 

two to four, which involves creating the B and S places, the A, Sn and Sr transitions and 

associated connection arcs and renaming them, as well as setting appropriate guard 

functions for each new event type. The second step scales the snapshot (i.e., the bottom 

part of the SRN model) according to the newly added event types. Inside a snapshot, the 

model elements can be divided into three categories. The first category is a group of 

elements that are independent of each event type; the second category is a group of model 

elements that are associated with every two new event types; and the third category is a 

group of elements that are associated to one old event type and one new event type. 

Briefly, these three groups of elements can be built by three subtasks: 

• Create the TStSnp and TEnSnp transitions and the SnpInProg place, as well as 

required connection arcs among them for each newly added event type; assign 



 190

the correct guard function for each created transition; this task builds the first 

group. 

• For each pair of new event types, create two TProcSnp transitions and connect 

their SnpInProg places to these TProcSnp transitions; assign the correct guard 

function for each created transition; this task builds the second group. 

• For each pair of <old event type, new event type>, create two TProcSnp 

transitions and connect their SnpInProg places to these TProcSnp transitions; 

assign the correct guard function for each created transition; this task builds 

the third group. 

 

C1.2 ECL Transformation to Scale SRNML 

In this example, only the model transformation for scaling the snapshot is 

illustrated. The ECL specification shown in Listing C-1 performs subtask one. It is 

composed of several strategies. The computeTEnSnpGuard (Line 1) strategy is used 

to re-compute the guard functions of the TEnSnp transitions when new event types are 

added. The ECL code on Lines 3 and 4 recursively concatenate the string that represents 

the guard function. After this string is created, it is passed to the 

addEventsWithGuard strategy (Line 41 to 47), which adds the new guard function 

and event to the snapshot. The addEvents strategy (Line 12) recursively calls the 

addNewEvent strategy to create necessary transitions, places and connections in the 

snapshot for the new event types with identity numbers from min_new to max_new. 

The addNewEvent strategy (Line 20) creates snapshot elements for a single new event 

type with identity number event_num. The findAtom operation on Line 25 is used 



 191

to discover the StSnpSht place in the snapshot. The TStSnp transition is created on Line 

26 and its guard function is created on Lines 27 and 28. Next, the SnpInProg place and 

the TEnSnp transition are created on Lines 30 and 31, respectively. The guard function of 

the TEnSnp transition is set on Line 32. Finally, four connection arcs are created among 

the StSnpSht place, the TStSnp transition, the SnpInProg place and the TEnSnp transition 

(Lines 34 to 37). 

Subtask one actually creates independent snapshot elements for each new event 

type. In collaboration, subtasks two and three build the necessary relationships between 

each pair of new event types, and each pair consisting of a new event type and an old 

event type. Listing C-2 shows the ECL specification to perform subtask two (i.e., to build 

the relationship between every two new event types). The connectTwoEvents 

strategy (Line 17) creates the TProcSnp transition and its associated connections between 

two events. Then, the connectOneNewEventToOtherNewEvents strategy (Line 9) 

recursively calls the connectTwoEvent strategy to build relationships between two 

new events. Finally, the connectNewEvents strategy (Line 1) builds the relationships 

between each pair of new event types by recursively calling the 

connectOneNewEventToOtherNewEvents strategy. Inside the 

connectTwoEvents strategy, the SnpInProg places of the two event types are 

discovered on Lines 28 and 29, respectively. Then, two new TProcSnp transitions are 

created and their guard functions are set (Lines 30 through 33), followed by the 

construction of the connections between the SnpInProg places and the TProcSnp 

transitions (Lines 35 through 38). 

 



 192

 
1 strategy computeTEnSnpGuard(min_old, min_new, max_new : integer; TEnSnpGuardStr : string) 
2 { 
3  if (min_old < max_new) then 
4     computeTEnSnpGuard(min_old + 1, min_new, max_new, TEnSnpGuardStr +  

                          "(#S" + intToString(min_old) +  " == 0)&&"); 
5  else  
6     addEventswithGuard(min_new, max_new, TEnSnpGuardStr + "(#S" + intToString(min_old) +

                          "== 0))?1:0"); 
7  endif; 
8 } 
9  
10 ...  // several strategies not show here 
11  
12 strategy addEvents(min_new, max_new : integer; TEnSnpGuardStr : string) 
13 {  
14  if (min_new <= max_new) then 
15   addNewEvent(min_new, TEnSnpGuardStr); 
16   addEvents(min_new+1, max_new, TEnSnpGuardStr); 
17  endif; 
18 } 
19  
20 strategy addNewEvent(event_num : integer; TEnSnpGuardStr : string) 
21 { 
22  declare start, stTran, inProg, endTran : atom; 
23  declare TStSnp_guard : string; 
24   
25  start := findAtom("StSnpSht"); 
26  stTran := addAtom("ImmTransition", "TStSnp" + intToString(event_num)); 
27  TStSnp_guard := "(#S" + intToString(event_num) + " == 1)?1 : 0"; 
28  stTran.setAttribute("Guard", TStSnp_guard); 
29   
30  inProg := addAtom("Place", "SnpInProg" + intToString(event_num)); 
31  endTran := addAtom("ImmTransition", "TEnSnp" + intToString(event_num)); 
32  endTran.setAttribute("Guard", TEnSnpGuardStr); 
33  
34  addConnection("InpImmedArc", start, stTran); 
35  addConnection("OutImmedArc", stTran, inProg); 
36  addConnection("InpImmedArc", inProg, endTran); 
37  addConnection("OutImmedArc", endTran, start);  
38 } 
39  
40 //recursively calls "addEvents" and "modifyOldGuards" 
41 strategy addEventswithGuard(min_new, max_new : integer; TEnSnpGuardStr : string) 
42 { 
43  rootFolder().findFolder("SRNFolder").findModel("SRNModel"). 
44          addEvents(min_new, max_new, TEnSnpGuardStr); 
45  rootFolder().findFolder("SRNFolder").findModel("SRNModel"). 
46          modifyOldGuards(1, min_new-1, TEnSnpGuardStr); 
47 } 
48 ... 

 
Listing C-1 - ECL transformation to perform first subtask of scaling snapshot 

 

 
 
 
 
 
 
 
 



 193

 
1 strategy connectNewEvents(min_new, max_new: interger) 
2 { 
3  if(min_new < max_new) then 
4   connectOneNewEventToOtherNewEvents(min_new, max_new); 
5   connectNewEvents(min_new+1, max_new); 
6  endif; 
7 } 
8  
9 strategy connectOneNewEventToOtherNewEvents(event_num, max_new: integer)  
10 { 
11  if(event_num < max_new) then 
12   connectTwoEvents(event_num, max_new); 
13   connectNewEvents(event_num, max_new-1); 
14  endif;  
15 } 
16  
17 strategy connectTwoEvents(first_num, second_num : integer) 
18 { 
19  declare firstinProg, secondinProg : atom; 
20  declare secondTProc1, secondTProc2 : atom; 
21  declare first_numStr, second_numStr, TProcSnp_guard1, TProcSnp_guard2 : string; 
22   
23  first_numStr := intToString(first_num); 
24  second_numStr := intToString(second_num); 
25  TProcSnp_guard1 := "((#S" + first_numStr + " == 0) && (#S" + second_numStr + 

                          "  == 1))?1 : 0"; 
26  TProcSnp_guard2 := "((#S" + second_numStr + " == 0) && (#S" + first_numStr +  

                          " == 1))?1 : 0"; 
27  
28  firstinProg := findAtom("SnpInProg" + first_numStr); 
29  secondinProg := findAtom("SnpInProg" + second_numStr); 
30  secondTProc1 := addAtom("ImmTransition", "TProcSnp" + first_numStr +  

                            "," + second_numStr); 
31  secondTProc1.setAttribute("Guard", TProcSnp_guard1); 
32  secondTProc2 := addAtom("ImmTransition", "TProcSnp" + second_numStr +  

                            "," + first_numStr); 
33  secondTProc2.setAttribute("Guard", TProcSnp_guard2); 
34   
35  addConnection("InpImmedArc", firstinProg, secondTProc1); 
36  addConnection("OutImmedArc", secondTProc1, secondinProg); 
37  addConnection("InpImmedArc", secondinProg, secondTProc2); 
38  addConnection("OutImmedArc", secondTProc2, firstinProg);  
39 } 
40 ... 

 
Listing C-2 - ECL transformation to perform second subtask of scaling snapshot 

 

To conclude, the introduction of new event types into an SRN model requires 

changes in several locations of the model. For example, new event types need to be 

inserted; some properties of model elements such as the guard functions need to be 

computed; and the execution snapshot needs to be expanded accordingly. The difficulties 

of scaling up an SRN model manually is due to the complicated dependencies among its 

model elements and parts, which can be addressed by a replicator using C-SAW and its 



 194

model transformation language ECL. With the expressive power of ECL, it is possible to 

specify reusable complicated transformation logic in a templatized fashion. The 

replication task is also simplified by distinguishing independent and dependent elements, 

and building up a larger SRN model in a stepwise manner. The result of the model 

replication preserves the benefits of modeling because the result of the replication can be 

persistently exported to XML and sent to a Petri net analysis tool. 

 

C.2 Scaling Event QoS Aspect Language (EQAL) 

The Event QoS Aspect Language (EQAL) [Edwards, 04] is a DSML for 

graphically specifying publisher-subscriber service configurations for large-scale DRE 

systems. Publisher-subscriber mechanisms, such as event-based communication models, 

are particularly relevant for large-scale DRE systems (e.g., avionics mission computing, 

distributed audio/video processing, and distributed interactive simulations) because they 

help reduce software dependencies and enhance system composability and evolution. In 

particular, the publisher-subscriber architecture of event-based communication allows 

application components to communicate anonymously and asynchronously. The 

publisher-subscriber communication model defines three software roles: 

• Publishers generate events to be transmitted 

• Subscribers receive events via hook operations 

• Event channels accept events from publishers and deliver events to 

subscribers 

The EQAL modeling environment consists of a GME metamodel that defines the 

concepts of publisher-subscriber systems, in addition to several model compilers that 



 195

synthesize middleware configuration files from models. The EQAL model compilers 

automatically generate publisher-subscriber service configuration files and component 

property description files needed by the underlying middleware. 

The EQAL metamodel defines a modeling paradigm for publisher-subscriber 

service configuration models, which specify QoS configurations, parameters, and 

constraints. For example, the EQAL metamodel contains a distinct set of modeling 

constructs for building a federation of real-time event services supported by the 

Component-Integrated ACE ORB (CIAO) [Gokhale et al., 04], which is a component 

middleware platform targeted by EQAL. A federated event service allows sharing 

filtering information to minimize or eliminate the transmission of unwanted events to a 

remote entity. Moreover, a federated event service allows events that are being 

communicated in one channel to be made available on another channel. The channels 

typically communicate through CORBA Gateways, User Datagram Protocol (UDP), or 

Internet Protocol (IP) Multicast. In Figure C-2, to model a federation of event channels in 

different sites, EQAL provides modeling concepts including CORBA Gateways and 

other entities of the publish-subscribe paradigm (e.g., event consumers, event suppliers, 

and event channels). 

 

C.2.1 Scalability Issues in EQAL 

The scalability issues in EQAL arise when a small federation of event services 

must be scaled to a very large system, which usually accommodates a large number of 

publishers and subscribers [Gray et al., 06]. It is conceivable that EQAL modeling 

features, such as the event channel, the associated QoS attributes, connections and event 



 196

correlations must be applied repeatedly to build a large scale federation of event services. 

Figure C-2 shows a federated event service with three sites, which is then scaled up to 

federated event services with eight sites. This scaling process includes three steps: 

• Add five CORBA_Gateways to each original site 

• Repeatedly replicate one site instance to add five more extra sites, each with 

eight CORBA_Gateways 

• Create the connections between all of the eight sites 

 

 
 

 
Figure C-2 - Illustration of replication in EQAL 

 

C.2.2 ECL Transformation to Scale EQAL 

The process discussed above can be automated with an ECL transformation that is 

applied to a base model with C-SAW. Listing C-3 shows a fragment of the ECL 

specification for the first step, which adds more Gateways to the original sites. The other 

steps would follow similarly using ECL. The size of the replication in this example was 



 197

kept to five sites so that the visualization could be rendered appropriately in Figure C-2. 

The approach could be extended to scale to hundreds or thousands of sites and gateways. 

 

1 //traverse the original sites to add CORBA_Gateways 
2 //n is the number of the original sites 
3 //m is the total number of sites after scaling 
4 strategy traverseSites(n, i, m, j : integer) 
5 { 
6   declare id_str : string; 
7   if (i <= n) then   
8     id_str := intToString(i); 
9  rootFolder().findModel("NewGateway_Federation"). 

            findModel("Site " + id_str).addGateWay_r(m, j); 
10     traverseSites(n, i+1, m, j); 
11   endif; 
12 } 
13  
14 //recursively add CORBA_Gateways to each existing site 
15 strategy addGateWay_r(m, j: integer) 
16 { 
17   if (j<=m) then 
18     addGateWay(j);  
19     addGateWay_r(m, j+1); 
20   endif; 
21 } 
22  
23 //add one CORBA_Gateway and connect it to Event_Channel 
24 strategy addGateWay(j: integer) 
25 { 
26   declare id_str : string;  
27   declare ec, site_gw : object; 
28   id_str := intToString(j); 
29  
30   addAtom("CORBA_Gateway", "CORBA_Gateway" + id_str);  
31   ec := findModel("Event_Channel");  
32   site_gw := findAtom("CORBA_Gateway" + id_str); 
33   addConnection("LocalGateway_EC", site_gw, ec);  
34 } 

 
 

Listing C-3 - ECL fragment to perform the first step of replication in EQAL 
 

To conclude, scaling EQAL from a small federation of events to a very large 

system requires creation of a large number of new publishers and subscribers. Also, the 

associated EQAL modeling features, such as the event channel, the associated QoS 

attributes, connections and event correlations must be built accordingly. Such model 

scalability can be achieved through ECL model transformation with the flexibility to 

control the scaling size and the reusability to repeat any desired scaling task. 

 


