“ Software Composition and Modeling Laboratory

University of Alabama at Birmingham

A Model Transformation Approach
to Automated Model Evolution

Ph.D. Defense Advisor: Dr. Jeff Gray
. Thesis Committee:
Yuehua Lin

iny@ci b.ed Dr. Barrett Bryant

iIny@cis.uab.edu _

http://www.cis.uab.edu/liny Dr. Aniruddha Gokhale
Dr. Marjan Mernik

07/06/2007 Dr. Chengcui Zhang




verview of Presentation

pppppp

Background

Domain-Sp
Modeli aded
Motivation

Help to ——=
change| -2 |
models ;wfﬁ ) Research Goals
rap I d Iy - e J = AL

My Approaches

transformation

Evaluation _
testing

Automated Model
transformation to model
evolution




Model-Driven Engineering (MDE)

B

.~ MetaModel

2
. -
Model

Transformation

Domain-specific

Models

Generated

artifacts

»MDE: specifies and generates
software systems based on high-level
models

»Domain-Specific Modeling (DSM): a
paradigm of MDE that uses notations
and rules from an application domain

»Metamodel: defines a Domain-
specific Modeling language (DSML)
by specifying the entities and their
relationships in an application domain

»>Model: an instance of the
metamodel

»Model Transformation: a process
that converts one or more models to
various levels of software artifacts
(e.g., other models, source code)



Metamodel, Model and System

»Conformance: a model M is conformant to
(c2) a metamodel MM if there exists a
function to associate the elements of M to
those of MM1

»Substitutability: a model M is a Metamodel
representation of (repOf) the system S if for MM
each question of a given set of questions, the |

model M will provide exactly the same answer

that the system S would have provided in c2
answering the same questiont
y Y repOf Terminal

System S .'____jﬁ: < model M

\\\

[1] Kurtev I., Bézivin J., Jouault F, and Valduriez P., “Model-based DSL Frameworks,” Companion of the 21st Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), Portland, Oregon,
October 2006, pp. 602-616.



Categories of Model Transformation

Model transformation

/\

Exogenous Transformation Endogenous transformation

(e.g., models to XML files, (e.g., model scaling and

models to source code) model refactoring)
»Exogenous transformation VS. endogenous

transformation : whether the source model and the target
model are conformant to different modeling languages,
which are represented by different metamodels.

»Model evolution: adapts models to changing
requirements or environments by changing their internal
structure. Also endogenous transformation.



—naoo —noo030o~0Z

= D0~ 0®=T =03 —

A Domain-Specific Modeling Tool Suite

Metamodeling
Interface

Application

Environment Application Domain
Evolution Evolution
- —-==n == ==

Metamodel Definition

App App App
1 . 2 . &

Modeling
Environment

Model Builder

Meta-Level

- : Model
=lation

Interpretation

Void CComponent. TVOKEEX(CBU
der,CBuilderObject *focus, CBui
IderObjectList &selected, long param)
{

CString DMSRoot = "";
DMSRoot = SelectFolder("Please Select DMS
Root Folder:");

if (DMSRoot 1= ") {

DMSRulePath =

DMSRoot + RULESPATH + "Rules\\";
MSRuleApplierPath

= DMSRoot + RULESPATH + "RuleApplier\\";
AfxMessageBox("DMSRulePath =

"+ DMSRulePath , MB_OK);

CString OEPRoot = "";

‘OEPRoot = SelectFolder("Please Selec

_ Model Interpreters

The Generic Modeling Environment (GME) adopts the DSM
approach and provides a plug-in mechanism for extension.




Example DSMLs and Applications

An application
for a family
entertainment
center

An application

for automotive

manufacturing
system

1. Modeling 2. Stepwise model transformations



Motivation

The abillity to evolve models rapidly is needed for

1 Exploration of various design alternatives in terms of
system-wide issues

= E.g., understanding tradeoff between Dbattery
consumption and memory size of an embedded device

= E.g.,, scaling a model to 800 nodes to examine
performance implications; reduce to 500 nodes with
same analysis

 System adaptation to changing requirements and
environments

= E.g., Inserting logging and concurrency concerns to data
communication models

= E.g., weaving deployment concerns to component
models for rapid configuration



Is It easy to add a model manually?

TSDML - TSDMLecmpExample - [TestSeriesDefinition1 - AISDMLcmpExample/]

fal File Edit ‘Yiew ‘Window Help

S i 2} A A REEEEEOED ? |~

;‘ T Name:|TEStSEriESDEfinitiDn' |TEStSEriESDEfinitiDr‘| ,ﬁ.spect:lTestSeriesDefirﬂ Baze: |N.-".l'3'. Zoom: | 100% vl

L

; 2.Build the 1.Select the

2 connections model element

& v} Joy] con and drag it
@ @ to the editor

=0 Replicator lterator  \wWindow

3.Set the values of
the properties

x x
|Heplicatnr;lteratnr;H L [

HE g @1 Atributes ] Preferen Properties

lterator Replicator ‘

Application

TestSenes0 efintiond spect I

EDIT 100% TSDML |OF:44 AM

Feady




10

Making changes into large-scale system models is

harder...

Crosscutting
concerns !

Deep hierarchy !

Growing size ! b ' Model scaling
B 9 . concerns !

) Dt} MEN_DISPLAT e
DifFLAY DEVICE & P .
| [l _ g F g |

InteractionModel

-~
BM ut Impl BM

:d_df:_ —- AddCaondition
o EAEEE 1
!

InternalLock data2_ Data2Cond InternalLock data2 DatazCond




11

Challenges of Model Evolution

dThe size of models will continue to grow

= Domain-specific models often have repetitive and nested
structures

= Large-scale system models may contain large guantities
of components (>1000s)

 Accidental complexities of the modeling activity

= Overwhelming amount of mouse clicking and typing
required within a modeling tool to describe a change

= Manually constructing and evolving models is laborious,
time consuming and prone to errors

dMany model evolution concerns crosscut within the
deep model hierarchy

= logging, constraints

A general metric for determining the effectiveness of a modeling toolsuite comprises the
degree of effort required to make a correct change to a set of models.



Research Focus: Ability to Evolve Models Rapidly

Existing MDE
Technologies

Domain
Applications

App B Arp il Arp
4 e

Rapid system
construction for exploring
system issues such as Model

OF Interpretation
scalability and
adaptability

Existing Domain
Model

Research

1
App MBE App Ml A
Ep . gp. 3pp

\

Evolved Domain
Applications

focus: ability to
evolve models
rapidly

Evolved Domain
Model




Research Statement and Goals

Alleviate the accidental complexity of modeling
large-scale, complex applications by providing a
model transformation approach to automate
model evolution

JGoals:

= |[mprove the productivity
* |ncrease the accuracy

JTo achieve the above goals, we need

= Technigues for specifying and executing tasks of
model evolution

= Technigues for determining the correctness of the
changes that are made to the model

13



urey?d 1001

Overview of My Approach

Apply a high-level model transformation language to specify tasks
of model change evolution

Construct a model transformation engine to automate such tasks
by executing the transformation specification

Provide a model transformation testing engine for improving the
correctness of model transformation, which requires support for
model comparison

Model Model Model
Transformation Transformation Comparator
Engine Testing Engine

J

e

[ The Generic Modeling Environment (GME) }

14



Integration Point

| ECL Expected
Specification Domain Model
Domain [ e
Applications = =

App W Arp B App

Domain Model

% - ] R \ A .
= o= Er——_——

. C-SAW Model | Validated

: s 5 : z %Test Analysis

. Transformation by _-  M2MUnit "oy DSMDiff
; Evolved Domain : ; z ‘Perfomed by : )

Interpretation  for Automated f Model : \  Model

Model P ; :
Model . Transformation . Differentiation

Py [Eisenses, . Evolution == Testing
-~ = &= J Test

....................... - OUtpl‘It E--_ -_.': Fessecsscssssasscsssssant’
m=—a Chapter 3 Ge“;‘j‘ted ~ Chapter5 Chapter 4

App W Arp B ApPp
oo ) ~2° il

T

Applications

Existing MDE
Technologies

Research results are integrated into existing MDE technologies to
help software evolution

Model Transformation Approach to
Automated Model Evolution

I
|
I
Evolved Domain |
|
|
I



Part I: Toward Automated
Model Evolution

] Related work and the limitations

= Many modeling tools provide low-level APIs (typically
In C++ and Java) to manipulate and transform models
so that model transformation developers have to
handle accidental complexities with these languages

= The research on applying model transformation
technigues to address model evolution is limited and
most of them haven't been used in evolving real
models

= Current model transformation languages primarily aim
to solve problems across multiple metamodels, which
Inevitably involve complicated syntax and semantics
= Graphical Languages (e.g., GReAT and Fujaba)

= Hybrid Languages (e.g., the ATLAS Transformation
Language)

16



My Approach

Automated model transformation:

d A high-level model transformation language
— Embedded Constraint Language (ECL)

= The Ilanguage to specify model evolution
concerns

d A model transformation engine (C-SAW)
= The machine to execute the specification

d Incremental extension of Dr. Gray’s work

= Extended the language features (e.g., the new
type system) and adapted the function
Interfaces to work as a plug-in in GME;

= C-SAW is implemented to allow transformation
performed within GME.

17



The Transformation Language
--The Embedded Constraint Language (ECL)

d ECL is a textual language that supports a procedural
style of model transformation

 An extension of the Object Constraint Language (OCL)
 Type system: atom, model, atomList, modelList, etc

J Model navigation and selection operations:
models(), findModel(), atoms(), findAtom() , etc

- Model transformation operations:
addModel, removeModel and setAttribute() , etc

18



Reducing the Complexities of
Transforming Models

Using GME C++ modeling APIs

CbuilderFolder *rootFolder, string: modelName
CBuilderModel *result = null;
const CBuilderModelList *subModels;
subModels = ((CBuilderFolder *)rootFolder)->GetRootModels();
POSITION POS = subModels->GetHeadPosition();
while(POS){
CBuilderModel *subModel = subModels->GetNext(POS);
if(subModel->GetName() == modelName){
result = subModel;
return result;

}
}

return result;

Using ECL
rootFolder().findModel(*aModelName”);

19



20

C-SAW: The Model Transformation Engine

MetaModel
Defines - Defines
4
, C§L <}:{>[ ECL Interpreter §_ 1
2 _/ll\_ o
EM1_ActvabonFacel :> 8 (3 _____ ‘_’) ub”: E | F |
> > Any_Ret BM1_ActivationF acet
e g ECL Parser g LtrJr—.
Source Model '

ECL Transformation
Specifications

Target Model

Implemented as a GME plug-in



21

Address Model Evolution Concerns

Model Scalability: construct
a large model by replicating — ‘/.\.
elements of a simple base )/‘ '\‘

model.

0%@[%0 s Model Adaptability: weave
- ‘ = - W, changes to models to satisfy
o{c™{cal® en | o changing reguirements or

environments.

Component models Deployment models

Weave deployment concerns into component
models



Application Example:
Replicating a Base Model to Address
Scalabillity Issues

alf
L pou Wi e il
Wuax g cEd A B
[T ey Anpaen]0 B
e | [meand (o i :
— I P I Pl Lot
T fory fory 7
s =
[ Orsinbuto a
Destributor a

Atematig Bmpound

| | —
-
E - nputPost OupetPon |
P
=

Single UAV Model Three UAV Model

Model Scalability

— Base models must be expanded to explore alternative
designs

— Model elements need to be replicated, in addition to all
required connections

22



23

Scaling System Integration Modeling Language
(SIML)

 Assists Iin specification of configuration of large-
scale fault tolerant data processing systems
1 Used to model several thousand processing nodes

for high-performance physics applications at Fermi
Accelerator Lab

 Structural feature: deeply nested structures
= A system model may be composed of independent regions
= Each region may be composed of local process nodes

= Each local process node may contain primitive application
models

Address Model scalability with C-SAW
This example shows the capability of C-SAW to scale up a system
configuration model by increasing its region models from 1 to 9 and scaling

up each region’s internal elements, and then building the necessary
communication connections.




<

=R

R FEw

1

(- N o’ G S Y

| =l |

aspectStartO) <
scaleUpNode("L2L3Node", 5);
scaleUpRegion("Region", 8);
}

strategy scaleUpNode(node_name : string; max : integer) {
rootFolder().findFolder("System").findModel("Region").addNode(node_name,max,1);

}

strategy addNode(node_name, max, idx : integer) {

declare node, new_node, input_port, node_input_port : object;

if (idx<=max) then
node := rootFolder().findFolder('System").findModel(node_name);
new_node := addInstance("Component”, node_name, node);
input_port := findAtom("fromITCH");
node_input_port := new_node.findAtom("fromITCH");
addConnection("Interaction”, input_port, node_input_port);
addNode(node_name, max, idx+1);

endif;

}

strategy scaleUpRegion(reg_name : string; max : integer) {
rootFolder().findFolder("System").findModel("System").addRegion(reg_name,max,1);

}

strategy addRegion(region_name, max, idx : integer) {
declare region, new_region, out_port, region_in_port, router, new_router : object;
if (idx<=max) then
region := rootFolder().findFolder('System").findModel(region_name);
new_region := addIinstance("Component”, region_name, region);
//more : skip for conciseness
endif;

24

oS

=10l x|
==l x|

e 2 A

[ Zoom [100%

B

monData

= 9
&3
reqTCH

fii}
Router

i




Part Il: Toward Improving the

Correctness of Model Transformation

J Problem:

= Model transformation specifications can be erroneous, resulting
In unintended changes to the input models

= It Is essential to ensure the correctness of the specifications
before they are applied to a collection of models or reused
across similar domains

= How to improve the correctness of model transformation?

] Related work and the limitations

= Formal methods (e.g., model checking and theorem proving) are
common techniques; however, such techniques are hard to use
in general practice 2

= There is a lack of engineering approach such as executable
testing that may be applied to current modeling practice

[2] Hinchey M., Bowen J., and Glass R., “Formal Methods: Point-Counterpoint,” IEEE
Computer, vol. 13 (no. 2), April 1996, pp. 18-19.

25



My Approach

Model Transformation Testing:

J Apply execution-based testing to model
transformations

J A model transformation testing engine
M2MUnit has been constructed to realize
this vision

- Provide a test oracle as model comparison
to determine the test result

26



27

A Model Transformation Testing Framework

Domain
MetaModels Models
Generate a
l l finite set of
| | RRLLLEE ;ﬁ’ ....................... . test cases
Transformation - e ' Transformation s | Test Specification
Specification k Tester
Visualize

the testing
results



28

Transformation Testing Engine: M2MUnit

Atesting engine performs all the tests for testing a specification, which has
three components: 1.Executor 2. Comparator 3. Test analyzer

Metamodel

M2MUnit
implemented as
a GME plug-in

P >
o
O

~

Test oracle as model comparison: A test passes if there are no differences
between the output and the expected models; otherwise, the test fails.




Part Ill: Model Comparison

»Also called model differentiation, the capabillity to identify
the mappings and differences between two models

»Answer these gquestions:
Are they equivalent?
If no, what are the differences?

29

Level 3 Level 3




Three Types of Model Differences

1) Missing connection (in red circle)

2) An extra atom (in blue rectangle)

“ESML - ModelComparisonl - [BM1
T4l Rl Edit Wiew wWindow Help

_DataGatheringEomponmtIn‘;ﬂﬁ elCo

=10l x|
=l=i x|

J Components:

IT T Name:lBMLDataGathering IEomponentT}lpe .&spect:lStructure ;I Base: IN;".-’-‘«
- =
=
»
S F
& Any_Sub
Any_Ref BM1_ActivationFacet

ogionhlethodEntry =1

i ILogDnMethodEntry I for Kind

Attributes I Preferencesl Froperties

On Method Entry
d ethod list:

Log kind:

<>

The Expected Model

3) Different attribute value (in
green highlight)

_DataGal:heringEomponi:ntIn‘;ﬂE elCo

“ESML - ModelComparisonl - [BM1
T4l Rl Edit Wiew wWindow Help

=10l x|
=l=] x|

30

J Comporents:

IT T Name:lBMLDataGathering IComponentType Aspect:lStructure ;I Base: INHA
a

=

+ N

Q O F

& Any_Sub :

Any Ref B 1_ActivationFacet
(@ | =%
ata i
| == pa—
numberCfllsers
LogOnhethodEntry =l
i ILogDnMethodEntry o

Attributes I Preferencesl Properties

OnWrite
Fd ethod list:

Log kind:

The Output Model



31

Critical Issues on Model Comparison

dModel comparison algorithms: detecting the
mappings and differences between two models
by comparing all the elements and their
properties within these models

dVisualization of model differences: use
graphical symbols and colors to highlight all
possible kinds of model differences (e.g., a
missing element, or an element that has different
values for some properties) in a structured way



Challenges and Related Work

] Challenges

= Traditional differencing techniques applied to text files or
structured data with tree structure

= Theoretically, generic model differencing is similar to the graph
Isomorphism problem, which is NP-hard
J Related work and limitations

= Generic model differencing algorithms work on architectural
models and data models

= |n practice, modeling language-specific differencing algorithms
may be more efficient

= Algorithms for differencing UML models are based on a single
metamodel

= Few reports on differencing domain-specific models that may
conform to different metamodels

32



My Approach
Formalizing a Model as a Graph

« A model can be represented formally as a
hierarchical graph that consists of a set of nodes
and edges, which are typed, named and
attributed.

The annotated type and name information of
model elements are combined together as
signatures, which are the non-structural
syntactical  information  defined by the
metamodel.

The containment and connection relationships
defined In the metamodel represent structural
syntactical information.

33



My Approach (cont’d)

dModel Differencing Algorithms

= The comparison starts from the two root models and
then continues to the child sub-models

= At each level, two metrics (i.e., signature matching
and edge similarity) are combined to detect the

mapped nodes and the different nodes between each
pair of models

= Based on the results of node comparison, all the

edges are computed to discover all the edge
mappings and differences.

J Features

= Metamodel independent by using meta information
= Achieve polynomial time in complexity

34



35

1. Node signature matching: M1s E = M2sS E, M1s F = M2s F,
M1sB=M2sB, M1sC=M2sC, M1sD =M2sD

2. Maximal edge similarity: M1S A= M2s A

3. Edge matching: E (a,b), E (a,c), E (a,d), E (e,f) in M1 and
M2 are matched to each other

4. Model differences: A”, E (a”,c), E (a”, b) of M2



Visualization of Model Differences in a Tree View

I Bl Bt yew wrdow el
Jiéild@ax oo

ESMl. - [RM1_DataGatheringCompomentinpl! - MC__ConcurremeysP_sodeiCmpExampler... (= |[5][5]
& x

asEdaMEMEEED 2 ||®

Zoom 100X v

R T Name:[B01 fc [ =] Base: MR
I —
S s T TTmmmm==—- ~
| .= N
2 E F |
A1 AN _sub 1
1 ANY_ref BM1__ActivationFacet )
I - P4
1 T TS e e e e e e - PR
1 1
\ qumberdtusers_ 4
N ———— fogOnr\dcmodEn[wI

LogOnRead

Tty EDIT [100% ESML D)

o

147 P

(a) The host model: M1

tdegJsEaMEMEECED

B
- 8 X

X T Homa BT & f | Bane: i Zoom [0~
W aa e mm=—mm=m~ - _-_-_ N
;
- \
Bl 1
I SE— F |
£ | ANY_sub |
I ANY_ref EM1_ActivationFace],
1 -—. - ’
1 1 N - -
1 1
1 1
umberCiLjser 4 Data
IR — LogOnMsthodEntry
Aeady EDIT ID0% ESML D)0 PM

(b) The candidate model: M2

E LogOnFRead
& Addlog
@ LogOnFead
E numberJfU zers_

e

M odel Differences View @

= Q Br1__DatalatheringCompaonent mpll

/

nheed to be
deleted!

E LogOnkdethodE ntry
@ nurnberJfd sers_
= @ LaogOnbdethodE ntry

B find Ly wiite
= I BM1__DataGatheringeo Hrip2
@

SR
E LogOnFead
& numberdf]sers_

1 Data

=i Addlog
i LogOnMethodE ntry
E nunberJf] sers_

- Q LogOnbdethodE ntry
" Find : On Method Entry

(c) Model differences

DSMDiff implemented as a GME Plug-in

need to be
added!

need to be
changed!




Limitations and Improvements ¥

When structural matching can not find a unique candidate
that has maximal edge similarity, the result s

nondeterministic: in this case, M1s A = M2s A’ but M1s B =
M2sB’ or M2s B"?

Possible improvements:

= Use new rule: the node with maximal already mapped
neighbors is selected as the mapping

= Allow human interaction to pick the best candidate



38

Limitations and Improvements (cont’d)

M1

Move

Toward a smaller set of model differences:

1 A new type of model difference needs to be introduced:
Move, which may reference the subtree in M1, and its
new container in M2.

Subtree S
moves from
M1s E to
M2s F



Experimental Evaluation

d C-SAW has helped address model scalability and
adaptability issues for different applications such as
embedded avionics, computational physics and
performance anaIyS|s Example languages include:

Embedded System Modeling Language (ESML):
modeling real-time mission computing embedded
avionics applications (e.g., Boeing Bold Stroke)

The Stochastic Reward Net Modeling Language
(SRNML): Specifying properties of high-performance
physics experiments

Platform-Independent Component Modeling
Language (PICML): specifying component-based
systems.

Event QoS Aspect Language (EQAL): used to
configure a large collection of federated event
channels for mission-computing avionics applications

Others: Avallable from the Escher repository and
Vanderbilt university, which makes modeling artifacts
developed from NSF projects available for
experimentation

39

...............




A Summary of Applications of C-SAW

1. Aspect weaving new | = i .
features in the Embedded = = " L =
System Modeling Language | El g . | - L
(ESML) o =

2. Model Scalability in 4
different DSMLs

D4t J M"!"f“t‘ﬁ 7

-
3

3. Weaving deployment aspects in
Platform-Independent Component Modeling
Language (PICML)




Experimental Results

The experimental results have shown using C-SAW to perform
model evolution is significantly faster and more accurate than
manual processes.

d  When scaling an EQAL model from 3 sites to 8 sites, a
model engineer needs to insert more than 120 new
elements and almost 150 connections, which requires
more than 300 mouse clicks.

d  When SIML models were scaled to more than 64 nodes,
the manual process deteriorated taking several days with
multiple errors

d Using a model transformation, SIML models have been
scaled up to 2500 nodes, flexibility for scaling up or down
can be achieved through parameterization

d The time to create the model transformation by a user
unfamiliar with the domain: < 1.5 hours

41



o O O O

Contribution

Automating model transformations for evolving
models rapidly and correctly

Applying software engineering processes such
as testing to model transformations

Developing algorithms for comparing models in
the context of Domain-Specific Modeling

The developed tools are available as open
source and have been used by several
external users in their research (several users
are international, including a very active user In
Colombia)

42



J

Publications

Book chapters: 3, Journal papers: 5,
Conference and workshop papers: 9

Journal papers:

Lin Y., Gray J., Zhang J., Nordstrom S., Gokhale A., Neema S., and
Gokhale S., “Model Replication: Transformations to Address Model
Scalability,” conditionally accepted — pending revision, Software: Practice
and Experience.

Lin Y., Gray J. and Jouault F., “DSMDiff: A Differencing Tool for Domain-
Specific Models,” conditionally accepted by European Journal of
Information Systems (Special Issue on Model-Driven Systems
Development).

Gray, J., Lin, Y., and Zhang, J., “Automating Change Evolution in
Model-Driven Engineering,” IEEE Computer, Special Issue on Model-
Driven Engineering (Doug Schmidt, ed.), vol. 39, no. 2, February 2006, pp.
51-58.

Book chapter:

Lin, Y., Zhang, J., and Gray, J., “A Framework for Testing Model
Transformations,” Model-Driven Software Development, (Sami Beydeda,
Matthias Book, and Volker Gruhn, eds.), Springer, ISBN: 3-540-25613-X,
2005, Chapter 10, pp.219-236.

43



Future Research Directions

dModel transformation by example (MTBE)

= Assists end-users in forming transformation rules
through recorded interaction with the host modeling
tool

dMore work on model transformation testing

= Automated test generation, test specification
language to define test/test suites and their execution

= Metamodel-based test coverage criteria

dModel transformation debugger for ECL
= Setting breakpoints
= Stepping through one statement at a time

= Reviewing the values of the local variables and status
of affected models

44



A= eiiw

Acknowledgement:

This project was previously funded by the DARPA Program
Composition for Embedded Systems (PCES) program, and currently

supported by the National Science Foundation under CSR-SMA-
0509342.

Video demonstrations, software downloads, and papers available at:
http://www.cis.uab.edu/gray/Research/C-SAW/

Questions?

S




Back Up Slides

46



47

MDE, MDA, DSM and MIC

DSM

MDA is an OMG's initiative for specifying and generating software based on
models. The modeling language is UML, key concepts are PIM and PSM.

MDE is a big picture.

DSM is a a paradigm of MDE that focuses on using concepts and rules that are
familiar to end users for a specific domain to define a modeling language.

MIC is a specific DSM approach, developed by Vanderbilt university. It aims at
providing solutions to develop systems that the physical hardware and software
are very tied to each other. For example, automotive manufacturing systems
and avionics systems.

DSM may solve problems that the hardware and software don’t have to tie to
each other. For example, a banking system does nothing with hardware.



stateDiagram
==hlodel==

Statelnheritance
==F Q==

Text: field

sStartState
==AMtom==

State
==ptom==

e Ty
T Transition
0.7 — ==Conhection==
&--— |Fire_text:  field
Fire_expr:  field
EndState
==ptom==

48



Startbtate

_ardinserted

Defosit

Vallddser <

TakeR

Viithdraw

I

Feceipt

eceipt

49



My Approach

Automated model transformation:
A high-level model transformation language (ECL)
= The language to specify model evolution concerns

d A model transformation engine (C-SAW)
= The machine to execute the specification

Address model evolution issues:

d Model scalability: construct a large model by
replicating elements of a simple based model.

d Model adaptability: weave changes to models that
crosscut the model representation’s hierarchy
= Weave deployment concerns into component models

= Weave logging and concurrency concerns to component
Interaction models

50



iml

i

DL g

strategy scaleupNoae(noae_name : string; max : integer) {
rootFolder().findFolder("System").findModel("Region").addNode(node_name,max,1);

}

strategy addNode(node_name, max, idx : integer) {
declare node, new_node, input_port, node_input_port : object;
if (idx<=max) then

endif;

}

node := rootFolder().findFolder('System").findModel(node_name);
new_node := addInstance("Component”, node_name, node);
input_port := findAtom("fromITCH");

node_input_port := new_node.findAtom("fromITCH");
addConnection("Interaction”, input_port, node_input_port);
addNode(node_name, max, idx+1);

strategy scaleUpRegion(reg_name : string; max : integer) {
rootFolder().findFolder("System").findModel("System").addRegion(reg_name,max,1);

}

strategy addRegion(region_name, max, idx : integer) {
declare region, new_region, out_port, region_in_port, router, new_router : object;
if (idx<=max) then

endif;

region := rootFolder().findFolder('System").findModel(region_name);
new_region := addIinstance("Component”, region_name, region);
out_port := findModel("TheSource").findAtom("eventData");
region_in_port := new_region.findAtom("fromITCH");
addConnection("Interaction", out_port, region_in_port);

router := findAtom("Router");

new_router := copyAtom(router, "Router");
addConnection("Router2Component”, new_router, new_region);
addRegion(region_name, max, idx+1);




foo b

Node signature matching: 1'sE =2sE, 1'sF=2sF, 1'sC=2'sC, 1's
D=2's D
Maximal edge similarity: 1's A=2's A'then 1's B ?= B’ or B”?

Given a node in M1, to find a matched node using maximal edge
similarity, the result is deterministic only when all of their neighbors are

already mapped.

When structural matching can not find a unique candidate, human
Interaction or

Pick the remained node that has the maximal mapped neighbors

52



Related Work

e Graphical Transformation Language

— Typified by graph grammars and graph rewriting techniques (e.g.
GReAT and Fujaba)

— provide a visual notation to specify graphical patterns of the
source and target models (e.g., a subgraph of a graph).
— It can be tedious o use purely graphical notations to describe
complicated computation algorithms
 Hybrid Languages
— Combine imperative and declarative constructs (e.g. the ATLAS
Transformation Language and Yet Another Transformation Language)

— Declarative constructs specify source and target patterns, and
Imperative constructs implement sequences of instructions.

— Embedding predefined patterns render complicated syntax and
semantics

53



Is It easy to create a model manually?

TSDML - TSDMLecmpExample - [TestSeriesDefinition1 - AISDMLcmpExample/]

fal File Edit ‘Yiew ‘Window Help

S i 2} A A REEEEEOED ? |~

;‘ T Name:|TEStSEriESDEfinitiDn' |TEStSEriESDEfinitiDr‘| ,ﬁ.spect:lTestSeriesDefirﬂ Baze: |N.-".l'3'. Zoom: | 100% vl

L

; 2.Build the 1.Select the

2 connections model element

& v} Joy] con and drag it
@ @ to the editor

=0 Replicator lterator  \wWindow

3.Set the values of
the properties

x x
|Heplicatnr;lteratnr;H L [

HE g @1 Atributes ] Preferen Properties

lterator Replicator ‘

Application

TestSenes0 efintiond spect I

EDIT 100% TSDML |OF:44 AM

Feady

54



Goal

dDevelop automated technigues for model
evolution that can

* [mprove the productivity

* Increase the accuracy
JTo achieve the above goal, we need

* Technigues for specifying and executing tasks
of model evolution

» Techniques for determining the correctness of
the changes that are made to the model

55



DO

Publications

Book chapters: 2

Journal papers: 3 published, 2 conditionally
accepted, 1 under review

Conference and workshop papers: 9

56



Representative Publications

Journal papers:

Lin Y., Gray J., Zhang J., Nordstrom S., Gokhale A., Neema S., and
Gokhale S., “Model Replication: Transformations to Address Model
Scalability,” conditionally accepted — pending revision, Software: Practice
and Experience.

Lin Y., Gray J. and Jouault F., “DSMDiff: A Differencing Tool for
Domain-Specific Models,” conditionally accepted by European Journal of
Information Systems (Special Issue on Model-Driven Systems
Development).

Gray, J., Lin, Y., and Zhang, J., “Automating Change Evolution in
Model-Driven Engineering,” IEEE Computer, Special Issue on Model-
Driven Engineering (Doug Schmidt, ed.), vol. 39, no. 2, February 2006, pp.
51-58.

Book chapter:

Lin, Y., Zhang, J., and Gray, J., “A Framework for Testing Model
Transformations,” Model-Driven Software Development, (Sami Beydeda,
Matthias Book, and Volker Gruhn, eds.), Springer, ISBN: 3-540-25613-X,
2005, Chapter 10, pp.219-236.

57



58

Address Model Evolution Concerns

Model Scalability: construct a
large model Dby replicating ,Il — A

elements of a simple base model.

Multiple Model Adaptability: weave changes to
Levels of

Hierarchy models that crosscut the model
representation’s hierarchy

o c1 °

®C c4f®

Modularizing
crosscutting

Component models Deployment models
concerns
Weave deployment concerns into component

Crosscutting model concerns
models



Experimental Results

d C-SAW is a modeling-language independent model
transformation engine that does not require extra
customization efforts for different DSMLs.

 The experimental results have shown using C-SAW to
perform model evolution is significantly faster and more
accurate than manual processes.
When SIML models were scaled to more than 64 nodes, the

manual process deteriorated taking several days with multiple
errors

Using a model transformation, SIML models have been scaled up
to 2500 nodes, flexibility for scaling up or down can be achieved
through parameterization

The time to create the model transformation by a user unfamiliar
with the domain: < 1.5 hours

59



