
1
Software Composition and Modeling Laboratory

S o f t C o m
Department of Computer and Information Sciences

University of Alabama at Birmingham

S o f t C o m

A Model Transformation Approach
to Automated Model Evolution

Ph D Defense

to Automated Model Evolution
Advisor: Dr. Jeff GrayPh.D. Defense

Yuehua Lin
liny@cis.uab.edu

y
Thesis Committee:
Dr. Barrett Bryant
Dr Aniruddha Gokhalehttp://www.cis.uab.edu/liny

07/06/2007

Dr. Aniruddha Gokhale
Dr. Marjan Mernik
Dr. Chengcui Zhang

2

Overview of Presentation

M ti ti

Background
Domain-Specific

Modeling

Frequent model
evolution is

needed
Motivation

Research Goals

Help to change
models correctly

Help to
change
models

My Approaches

*

rapidly

Automated Model

Model transformation
testing

*
Evaluation

Automated Model
transformation to model

evolution

3

Model-Driven Engineering (MDE)
MDE: specifies and generates

software systems based on high-level
models

Domain-Specific Modeling (DSM): a
paradigm of MDE that uses notations
and rules from an application domainpp

Metamodel: defines a Domain-
specific Modeling language (DSML)
by specifying the entities and theirby specifying the entities and their
relationships in an application domain

Model: an instance of the
metamodel

Model Transformation: a process
that converts one or more models tothat converts one or more models to
various levels of software artifacts
(e.g., other models, source code)

4

Metamodel, Model and System
Conformance: a model M is conformant to

(c2) a metamodel MM if there exists a
function to associate the elements of M tofunction to associate the elements of M to
those of MM1

Substitutability: a model M is a
representation of (repOf) the system S if for
each question of a given set of questions, theq g q ,
model M will provide exactly the same answer
that the system S would have provided in
answering the same question1answering the same question1

[1] Kurtev I., Bézivin J., Jouault F, and Valduriez P., “Model-based DSL Frameworks,” Companion of the 21st Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), Portland, Oregon,
October 2006, pp. 602-616.

5

Categories of Model Transformation
Model transformation

E T f ti E d t f tiExogenous Transformation

(e.g., models to XML files, (e.g., model scaling and

Endogenous transformation

(e.g., models to XML files,
models to source code)

(g , g
model refactoring)

E ogeno s transformation s endogeno sExogenous transformation vs. endogenous
transformation : whether the source model and the target
model are conformant to different modeling languages,
which are represented by different metamodels.

Model evolution: adapts models to changingModel evolution: adapts models to changing
requirements or environments by changing their internal
structure. Also endogenous transformation.

6

A Domain-Specific Modeling Tool Suite

Application
DomainApplication

E l ti
Environment

Metamodeling
Interface

M
e
t
a
m
o

App
1

App
2

App
3

EvolutionEvolution

Metamodel Definition

o
d
e
l

DEFINE

Modeling
Environment

Model Builder

M
o
d

Model
Interpretation

Models

Meta-Level
Translation

Model Builderd
e
l

INTERPRET

Model Interpreters

I
n
t
e
r
p

void CComponent::InvokeEx(CBuilder &buil
der,CBuilderObject *focus, CBui
lderObjectList &selected, long param)
{
CString DMSRoot = "";
DMSRoot = SelectFolder("Please Select DMS
Root Folder:");
if (DMSRoot != "") {
DMSRulePath =
DMSRoot + RULESPATH + "Rules\\";
MSR l A li P th

INTERPRET

r
e
t
e
r

MSRuleApplierPath
= DMSRoot + RULESPATH + "RuleApplier\\";
AfxMessageBox("DMSRulePath =
" + DMSRulePath , MB_OK);
CString OEPRoot = "";
OEPRoot = SelectFolder("Please Selec

The Generic Modeling Environment (GME) adopts the DSM
approach and provides a plug-in mechanism for extension.

7

Example DSMLs and Applications
An application

for a family
1 2

y
entertainment

center

An application
for automotive
manufacturing

1 2

manufacturing
system

1. Modeling 2. Stepwise model transformations

8

Motivation
The ability to evolve models rapidly is needed for

Exploration of various design alternatives in terms of
system wide issuessystem-wide issues

E.g., understanding tradeoff between battery
consumption and memory size of an embedded devicep y
E.g., scaling a model to 800 nodes to examine
performance implications; reduce to 500 nodes with
same analysissame analysis

System adaptation to changing requirements and
environments

E.g., inserting logging and concurrency concerns to data
communication models
E.g., weaving deployment concerns to component
models for rapid configuration

9

Is it easy to add a model manually?

11..SelectSelect thethe
modelmodel elementelement

2.Build the2.Build the
connectionsconnections

iconicon andand dragdrag itit
toto thethe editoreditor
windowwindow

3 S t th l f3 S t th l f3.Set the values of 3.Set the values of
the propertiesthe properties

10Making changes into large-scale system models is
harder…

C tti

Deep hierarchy !

Crosscutting
concerns !

Growing size !
Model scaling
concerns !

11

Challenges of Model Evolution
Th i f d l ill ti tThe size of models will continue to grow

Domain-specific models often have repetitive and nested
structures
Large-scale system models may contain large quantities
of components (>1000s)

Accidental complexities of the modeling activityAccidental complexities of the modeling activity
Overwhelming amount of mouse clicking and typing
required within a modeling tool to describe a changeq g g
Manually constructing and evolving models is laborious,
time consuming and prone to errors

Many model evolution concerns crosscut within theMany model evolution concerns crosscut within the
deep model hierarchy

logging, constraintsgg g,

A general metric for determining the effectiveness of a modeling toolsuite comprises the
degree of effort required to make a correct change to a set of models.

12

Research Focus: Ability to Evolve Models Rapidly

Domain

Existing MDE
Technologies

App
1

App
2

App
3

Applications

App
1

App
2

App
3

Existing Domain
Model

ModelModelModel

Rapid system
construction for exploring

system issues such as

Research
focus: ability to

Model
Interpretation

Model
Interpretation

Model
Interpretation Evolved Domain

Model

system issues such as
scalability and

adaptability

evolve models
rapidly

App
1

App
2

App
3

Applications
Evolved Domain

App
1

App
2

App
3

pp cat o s

13Research Statement and Goals
Alleviate the accidental complexity of modeling
large-scale, complex applications by providing a

d l t f ti h t t tmodel transformation approach to automate
model evolution

lGoals:
Improve the productivity
Increase the accuracyIncrease the accuracy

To achieve the above goals, we need
Techniques for specifying and executing tasks of
model evolution
Techniques for determining the correctness of theTechniques for determining the correctness of the
changes that are made to the model

14

Overview of My Approachy pp
Apply a high-level model transformation language to specify tasks
of model change evolution
Construct a model transformation engine to automate such tasksConstruct a model transformation engine to automate such tasks
by executing the transformation specification
Provide a model transformation testing engine for improving the
correctness of model transformation, which requires support for

T

correctness of model transformation, which requires support for
model comparison

Model
Comparator

Model
Transformation

Engine

Model
Transformation
Testing Engine

Tool C
hainn

The Generic Modeling Environment (GME)

15

21 3

Research results are integrated into existing MDE technologies to
help software evolution

16

Part I: Toward Automated
M d l E l iModel Evolution

Related work and the limitations
Many modeling tools provide low-level APIs (typically
in C++ and Java) to manipulate and transform models
so that model transformation developers have to
h dl id t l l iti ith th lhandle accidental complexities with these languages
The research on applying model transformation
techniques to address model evolution is limited and
most of them haven’t been used in evolving realmost of them haven t been used in evolving real
models
Current model transformation languages primarily aim
to solve problems across multiple metamodels whichto solve problems across multiple metamodels, which
inevitably involve complicated syntax and semantics

Graphical Languages (e.g., GReAT and Fujaba)
Hybrid Languages (e g the ATLAS TransformationHybrid Languages (e.g., the ATLAS Transformation
Language)

17

My Approach
Automated model transformation:

A high-level model transformation language
E b dd d C t i t L (ECL)– Embedded Constraint Language (ECL)

The language to specify model evolution
concerns

A model transformation engine (C-SAW)
The machine to execute the specification

Incremental extension of Dr. Gray’s work
Extended the language features (e.g., the new
type system) and adapted the functiontype system) and adapted the function
interfaces to work as a plug-in in GME;
C-SAW is implemented to allow transformation

f d ithi GMEperformed within GME.

18

The Transformation Language
--The Embedded Constraint Language (ECL)The Embedded Constraint Language (ECL)

ECL is a textual language that supports a procedural
t l f d l t f tistyle of model transformation

An extension of the Object Constraint Language (OCL)j g g ()

Type system: atom, model, atomList, modelList, etc

Model navigation and selection operations:
models(), findModel(), atoms(), findAtom() , etc

Model transformation operations:
addModel, removeModel and setAttribute() , etc()

19Reducing the Complexities of
Transforming ModelsTransforming Models

Using GME C++ modeling APIs
Cb ild F ld * tF ld t i d lNCbuilderFolder *rootFolder, string: modelName
CBuilderModel *result = null;
const CBuilderModelList *subModels;
subModels = ((CBuilderFolder *)rootFolder)->GetRootModels();(()) ();
POSITION POS = subModels->GetHeadPosition();
while(POS){

CBuilderModel *subModel = subModels->GetNext(POS);
if(subModel >GetName() == modelName){if(subModel->GetName() == modelName){

result = subModel;
return result;

}

Using ECL

}
return result;

Using ECL
rootFolder().findModel(“aModelName”);

20

C-SAW: The Model Transformation Engine
M t M d l

Defines

MetaModel

Defines

ECL Interpreter

M
odel

M
odel

ECL Parser

Source Model

ling
AP

Is

ling
AP

Is

Target Model

Defines CopyAtom
strategy CopyAtom

Target Model

ECL Transformation
Specifications

Implemented as a GME plug-in

21

Address Model Evolution Concerns

Model Scalability: construct
l d l b li tia large model by replicating

elements of a simple base
model.

LAN

C1 C2

C3 C4

Model Adaptability: weave
changes to models to satisfy
h i i t

Weave deployment concerns into component

Component models Deployment models

C3 C4 changing requirements or
environments.

Weave deployment concerns into component
models

22

Application Example:
Replicating a Base Model to AddressReplicating a Base Model to Address

Scalability Issues

Model Scalability
Single UAV Model Three UAV Model

Model Scalability
– Base models must be expanded to explore alternative

designs
– Model elements need to be replicated, in addition to all

required connections

23

Scaling System Integration Modeling Language
(SIML)(SIML)

Assists in specification of configuration of large-
scale fault tolerant data processing systemsscale fault tolerant data processing systems
Used to model several thousand processing nodes
for high-performance physics applications at Fermi
A l t L bAccelerator Lab
Structural feature: deeply nested structures

A system model may be composed of independent regions
Each region may be composed of local process nodesEach region may be composed of local process nodes
Each local process node may contain primitive application
models

Address Model scalability with C-SAW
This example shows the capability of C-SAW to scale up a system
configuration model by increasing its region models from 1 to 9 and scalingconfiguration model by increasing its region models from 1 to 9 and scaling
up each region’s internal elements, and then building the necessary
communication connections.

24

Scaling the System Integration Modeling Language
aspect Start() {

scaleUpNode("L2L3Node", 5);
scaleUpRegion("Region", 8);

}

strategy scaleUpNode(node name : string; max : integer) {strategy scaleUpNode(node_name : string; max : integer) {
rootFolder().findFolder("System").findModel("Region").addNode(node_name,max,1);

}

strategy addNode(node_name, max, idx : integer) {
declare node, new node, input port, node input port : object;, _ , p _p , _ p _p j ;
if (idx<=max) then

node := rootFolder().findFolder("System").findModel(node_name);
new_node := addInstance("Component", node_name, node);
input_port := findAtom("fromITCH");
node_input_port := new_node.findAtom("fromITCH");
ddC ti ("I t ti " i t t d i t t)addConnection("Interaction", input_port, node_input_port);

addNode(node_name, max, idx+1);
endif;

}

strategy scaleUpRegion(reg name : string; max : integer) {strategy scaleUpRegion(reg_name : string; max : integer) {
rootFolder().findFolder("System").findModel("System").addRegion(reg_name,max,1);

}

strategy addRegion(region_name, max, idx : integer) {
declare region, new_region, out_port, region_in_port, router, new_router : object;g g g j
if (idx<=max) then

region := rootFolder().findFolder("System").findModel(region_name);
new_region := addInstance("Component", region_name, region);
//more : skip for conciseness

endif;
}}

25

Part II: Toward Improving the
C f fCorrectness of Model Transformation
Problem:

Model transformation specifications can be erroneous, resulting
in unintended changes to the input models
It is essential to ensure the correctness of the specifications
before they are applied to a collection of models or reusedbefore they are applied to a collection of models or reused
across similar domains
How to improve the correctness of model transformation?

Related work and the limitations
Formal methods (e.g., model checking and theorem proving) are
common techniques; however, such techniques are hard to use
in general practice 2in general practice 2

There is a lack of engineering approach such as executable
testing that may be applied to current modeling practice

[2] Hinchey M., Bowen J., and Glass R., “Formal Methods: Point-Counterpoint,” IEEE
Computer, vol. 13 (no. 2), April 1996, pp. 18-19.

26

My ApproachMy Approach
Model Transformation Testing:g

Apply execution-based testing to model
transformations
A model transformation testing engine
M2MUnit has been constructed to realize
this vision
Provide a test oracle as model comparison
to determine the test result

27

A Model Transformation Testing FrameworkA Model Transformation Testing Framework

MetaModels Domain
Models

Generate a
finite set of
test cases

Test Cases Constructor Test SpecificationTransformation
Specification

Transformation
Tester

test cases

Visualize
Test cases

Test results
Testing Engine

Execute
test

cases

Visualize
the testing

results

Test Analyzer
Test results

Executor Comparator Tool Support

28

Transformation Testing Engine: M2MUnit
A testing engine performs all the tests for testing a specification, which has
three components: 1.Executor 2. Comparator 3. Test analyzer

Metamodel
M2MU it

Testing Engine M2MUnit

M2MUnit
implemented as
a GME plug-in

Transformation
Specification

Input Model

Output Model

Executor 1

Bugs?

Specification

Expected Model

Comparator
2

Test AnalyzerTest Report 3

Test oracle as model comparison: A test passes if there are no differences
between the output and the expected models; otherwise, the test fails.

29

Part III: Model Comparison
Also called model differentiation, the capability to identify

the mappings and differences between two models

Answer these questions:
Are they equivalent?
If no, what are the differences?

30

Three Types of Model Differences
1) Missing connection (in red circle) 3) Different attribute value (in

green highlight)green highlight)
2) An extra atom (in blue rectangle)

*

The Output ModelThe Expected Model

31

Critical Issues on Model Comparison

Model comparison algorithms: detecting theModel comparison algorithms: detecting the
mappings and differences between two models
by comparing all the elements and their
properties within these models
Visualization of model differences: use
graphical symbols and colors to highlight all
possible kinds of model differences (e.g., a
missing element or an element that has differentmissing element, or an element that has different
values for some properties) in a structured way

32

Challenges and Related WorkChallenges and Related Work

Challengesg
Traditional differencing techniques applied to text files or
structured data with tree structure
Theoretically, generic model differencing is similar to the graph
isomorphism problem, which is NP-hard

Related work and limitations
Generic model differencing algorithms work on architecturalg g
models and data models
In practice, modeling language-specific differencing algorithms
may be more efficient
Algorithms for differencing UML models are based on a single
metamodel
Few reports on differencing domain-specific models that may
conform to different metamodelsconform to different metamodels

33My Approach
Formalizing a Model as a GraphFormalizing a Model as a Graph

• A model can be represented formally as ap y
hierarchical graph that consists of a set of nodes
and edges, which are typed, named and
attributed.

• The annotated type and name information of
model elements are combined together as
signatures which are the non structuralsignatures, which are the non-structural
syntactical information defined by the
metamodel.
Th i d i l i hi• The containment and connection relationships
defined in the metamodel represent structural
syntactical information.y

34

My Approach (cont’d)My Approach (cont d)
Model Differencing Algorithmsg g

The comparison starts from the two root models and
then continues to the child sub-models
At each level, two metrics (i.e., signature matchingAt each level, two metrics (i.e., signature matching
and edge similarity) are combined to detect the
mapped nodes and the different nodes between each
pair of models
Based on the results of node comparison, all the
edges are computed to discover all the edge
mappings and differences.

Features
Metamodel independent by using meta information
Achieve polynomial time in complexityAchieve polynomial time in complexity

35

A E
A’ E

M1 M2
x xx x

C

D
F

B
C

D
Fx x

x

x
xx x x x x x xx

x
B

C B
A’’

xx xx x
x

x

1. Node signature matching: M1’s E = M2’s E, M1’s F = M2’s F,
M1’s B = M2’s B, M1’s C = M2’s C, M1’s D = M2’s D, ,

2. Maximal edge similarity: M1’s A = M2’s A’

3. Edge matching: E (a,b), E (a,c), E (a,d), E (e,f) in M1 and
M2 are matched to each other

4. Model differences: A’’, E (a’’,c), E (a’’, b) of M2

36

Visualization of Model Differences in a Tree View

need to be
deleted!

need to be
added!

(a) The host model: M1

need to be
changed!changed!

(b) The candidate model: M2
(c) Model differences(c) Model differences

DSMDiff implemented as a GME Plug-in

37

M1 M2

Limitations and Improvements

D

A E

D

A’ E

F

A’’

M1 M2

B C

D
F

B’ C
F

B’’
?

?

When structural matching can not find a unique candidate
that has maximal edge similarity, the result isg y,
nondeterministic: in this case, M1’s A = M2’s A’ but M1’s B =
M2’s B’ or M2’s B’’?

Possible improvements:
Use new rule: the node with maximal already mapped
neighbors is selected as the mapping
Allow human interaction to pick the best candidate

38

Limitations and Improvements (cont’d)

E F

M1 M2

E F

M2

E F

Subtree S
moves from

A

D

A M1’s E to
M2’s FS S

Move

B C

D

B C

D

Toward a smaller set of model differences:
A new type of model difference needs to be introduced:
Move which may reference the subtree in M1 and itsMove, which may reference the subtree in M1, and its
new container in M2.

39

Experimental Evaluation
C-SAW has helped address model scalability and
adaptability issues for different applications such as
embedded a ionics comp tational ph sics andembedded avionics, computational physics and
performance analysis. Example languages include:

Embedded System Modeling Language (ESML):
modeling real-time mission computing embedded
avionics applications (e.g., Boeing Bold Stroke)
The Stochastic Reward Net Modeling Language
(SRNML): Specifying properties of high-performance
physics experimentsphysics experiments
Platform-Independent Component Modeling
Language (PICML): specifying component-based
systems.
Event QoS Aspect Language (EQAL): used toEvent QoS Aspect Language (EQAL): used to
configure a large collection of federated event
channels for mission-computing avionics applications
Others: Available from the Escher repository and
V d bil i i hi h k d li ifVanderbilt university, which makes modeling artifacts
developed from NSF projects available for
experimentation

40

A Summary of Applications of C-SAW

1. Aspect weaving new
features in the Embedded
System Modeling Language
(ESML)

2. Model Scalability in 42. Model Scalability in 4
different DSMLs Scale UpScale UpScale UpScale Up

3. Weaving deployment aspects ing p y p
Platform-Independent Component Modeling
Language (PICML)

41

Experimental Results
The experimental results have shown using C-SAW to perform
model evolution is significantly faster and more accurate than

When scaling an EQAL model from 3 sites to 8 sites, a
model engineer needs to insert more than 120 new

manual processes.

model engineer needs to insert more than 120 new
elements and almost 150 connections, which requires
more than 300 mouse clicks.
When SIML models were scaled to more than 64 nodesWhen SIML models were scaled to more than 64 nodes,
the manual process deteriorated taking several days with
multiple errors
U i d l t f ti SIML d l h bUsing a model transformation, SIML models have been
scaled up to 2500 nodes, flexibility for scaling up or down
can be achieved through parameterization
The time to create the model transformation by a user
unfamiliar with the domain: < 1.5 hours

42

ContributionContribution
Automating model transformations for evolving g g
models rapidly and correctly
Applying software engineering processes such
as testing to model transformationsas testing to model transformations
Developing algorithms for comparing models in
the context of Domain-Specific Modeling
The developed tools are available as open
source and have been used by several
external users in their research (several userse te a use s t e esea c (se e a use s
are international, including a very active user in
Colombia)

43

Publications
Book chapters: 3, Journal papers: 5,
Conference and workshop papers: 9

Journal papers:Journal papers:
• Lin Y., Gray J., Zhang J., Nordstrom S., Gokhale A., Neema S., and

Gokhale S., “Model Replication: Transformations to Address Model
Scalability,” conditionally accepted – pending revision, Software: Practice
and Experienceand Experience.

• Lin Y., Gray J. and Jouault F., “DSMDiff: A Differencing Tool for Domain-
Specific Models,” conditionally accepted by European Journal of
Information Systems (Special Issue on Model-Driven Systems
Development).p)

• Gray, J., Lin, Y., and Zhang, J., “Automating Change Evolution in
Model-Driven Engineering,” IEEE Computer, Special Issue on Model-
Driven Engineering (Doug Schmidt, ed.), vol. 39, no. 2, February 2006, pp.
51-58.

Book chapter:
• Lin, Y., Zhang, J., and Gray, J., “A Framework for Testing Model

Transformations,” Model-Driven Software Development, (Sami Beydeda,Transformations, Model Driven Software Development, (Sami Beydeda,
Matthias Book, and Volker Gruhn, eds.), Springer, ISBN: 3-540-25613-X,
2005, Chapter 10, pp.219-236.

44

Future Research Directions

Model transformation by example (MTBE)
A i t d i f i t f ti lAssists end-users in forming transformation rules
through recorded interaction with the host modeling
tool

More work on model transformation testing
Automated test generation, test specification
language to define test/test suites and their executionlanguage to define test/test suites and their execution
Metamodel-based test coverage criteria

Model transformation debugger for ECLgg
Setting breakpoints
Stepping through one statement at a time
R i i th l f th l l i bl d t tReviewing the values of the local variables and status
of affected models

45

Acknowledgement:
This project was previously funded by the DARPA Program
Composition for Embedded Systems (PCES) program, and currently
supported by the National Science Foundation under CSR-SMA-
0509342

Video demonstrations software downloads and papers available at:

0509342.

Video demonstrations, software downloads, and papers available at:
http://www.cis.uab.edu/gray/Research/C-SAW/

Questions?

46

Back Up SlidesBack Up Slides

47

MDE, MDA, DSM and MIC
MDE

DSM
MIC

MDA
UML
OMG

MDA is an OMG’s initiative for specifying and generating software based on
models. The modeling language is UML, key concepts are PIM and PSM.models. The modeling language is UML, key concepts are PIM and PSM.

MDE is a big picture.

DSM i di f MDE th t f i t d l th tDSM is a a paradigm of MDE that focuses on using concepts and rules that are
familiar to end users for a specific domain to define a modeling language.

MIC is a specific DSM approach, developed by Vanderbilt university. It aims at p pp , p y y
providing solutions to develop systems that the physical hardware and software
are very tied to each other. For example, automotive manufacturing systems
and avionics systems.

DSM may solve problems that the hardware and software don’t have to tie to
each other. For example, a banking system does nothing with hardware.

48

49

50

My Approach
Automated model transformation:

A high-level model transformation language (ECL)A high level model transformation language (ECL)
The language to specify model evolution concerns

A model transformation engine (C-SAW)
The machine to execute the specificationThe machine to execute the specification

Address model evolution issues:
Model scalability: construct a large model byModel scalability: construct a large model by
replicating elements of a simple based model.
Model adaptability: weave changes to models that
crosscut the model representation’s hierarchycrosscut the model representation s hierarchy

Weave deployment concerns into component models
Weave logging and concurrency concerns to component
interaction modelsinteraction models

51

Scaling the System Integration Modeling Language
strategy scaleUpNode(node_name : string; max : integer) {

rootFolder().findFolder("System").findModel("Region").addNode(node_name,max,1);
}

strategy addNode(node_name, max, idx : integer) {
declare node, new node, input port, node input port : object;declare node, new_node, input_port, node_input_port : object;
if (idx<=max) then

node := rootFolder().findFolder("System").findModel(node_name);
new_node := addInstance("Component", node_name, node);
input_port := findAtom("fromITCH");
node_input_port := new_node.findAtom("fromITCH");
addConnection("Interaction", input_port, node_input_port);
addNode(node_name, max, idx+1);

endif;
}

strategy scaleUpRegion(reg name : string; max : integer) {strategy scaleUpRegion(reg_name : string; max : integer) {
rootFolder().findFolder("System").findModel("System").addRegion(reg_name,max,1);

}

strategy addRegion(region_name, max, idx : integer) {
declare region, new region, out port, region in port, router, new router : object;declare region, new_region, out_port, region_in_port, router, new_router : object;
if (idx<=max) then

region := rootFolder().findFolder("System").findModel(region_name);
new_region := addInstance("Component", region_name, region);
out_port := findModel("TheSource").findAtom("eventData");
region_in_port := new_region.findAtom("fromITCH");
addConnection("Interaction", out_port, region_in_port);
router := findAtom("Router");
new_router := copyAtom(router, "Router");
addConnection("Router2Component", new_router, new_region);
addRegion(region_name, max, idx+1);

endif;endif;
}

52

A E
A’ EA’’M1 M2

C

D
F

B’ C

D
FB’’

B C B

Node signature matching: 1’s E = 2’s E, 1’s F = 2’s F, 1’s C=2’s C, 1’s
D=2’s D
Maximal edge similarity: 1’s A = 2’s A’ then 1’s B ?= B’ or B’’?Maximal edge similarity: 1 s A = 2 s A then 1 s B ?= B or B ?

Given a node in M1, to find a matched node using maximal edge
similarity, the result is deterministic only when all of their neighbors are
already mapped.

When structural matching can not find a unique candidate, human
interaction orinteraction or

Pick the remained node that has the maximal mapped neighbors

53

Related WorkRelated Work
• Graphical Transformation Languagep g g

– Typified by graph grammars and graph rewriting techniques (e.g.
GReAT and Fujaba)

– provide a visual notation to specify graphical patterns of the
source and target models (e.g., a subgraph of a graph).

– It can be tedious o use purely graphical notations to describe
complicated computation algorithms

• Hybrid Languages
– Combine imperative and declarative constructs (e.g. the ATLAS

Transformation Language and Yet Another Transformation Language)
D l ti t t if d t t tt d– Declarative constructs specify source and target patterns, and
imperative constructs implement sequences of instructions.

– Embedding predefined patterns render complicated syntax and
semanticssemantics

54

Is it easy to create a model manually?

11..SelectSelect thethe
modelmodel elementelement

2.Build the2.Build the
connectionsconnections

iconicon andand dragdrag itit
toto thethe editoreditor
windowwindow

3 S t th l f3 S t th l f3.Set the values of 3.Set the values of
the propertiesthe properties

55

GoalGoal
Develop automated techniques for model

l ti th tevolution that can
Improve the productivity
Increase the accuracy

To achieve the above goal, we need
T h i f if i d ti t kTechniques for specifying and executing tasks
of model evolution
T h i f d t i i th t fTechniques for determining the correctness of
the changes that are made to the model

56

Publications
Book chapters: 2
Journal papers: 3 published, 2 conditionally p p p , y
accepted, 1 under review
Conference and workshop papers: 9

57

Representative Publications
Journal papers:
• Lin Y., Gray J., Zhang J., Nordstrom S., Gokhale A., Neema S., and

Gokhale S., “Model Replication: Transformations to Address Model
Scalability ” conditionally accepted – pending revision Software: PracticeScalability, conditionally accepted pending revision, Software: Practice
and Experience.

• Lin Y., Gray J. and Jouault F., “DSMDiff: A Differencing Tool for
Domain-Specific Models ” conditionally accepted by European Journal ofDomain Specific Models, conditionally accepted by European Journal of
Information Systems (Special Issue on Model-Driven Systems
Development).

• Gray J Lin Y and Zhang J “Automating Change Evolution in• Gray, J., Lin, Y., and Zhang, J., Automating Change Evolution in
Model-Driven Engineering,” IEEE Computer, Special Issue on Model-
Driven Engineering (Doug Schmidt, ed.), vol. 39, no. 2, February 2006, pp.
51-58.

Book chapter:
• Lin, Y., Zhang, J., and Gray, J., “A Framework for Testing Model

Transformations,” Model-Driven Software Development, (Sami Beydeda,
Matthias Book, and Volker Gruhn, eds.), Springer, ISBN: 3-540-25613-X,Matthias Book, and Volker Gruhn, eds.), Springer, ISBN: 3 540 25613 X,
2005, Chapter 10, pp.219-236.

58

Address Model Evolution Concerns
Model Scalability: construct a
large model by replicating
l t f i l b d lelements of a simple base model.

A

B F

Multiple
Levels of
Hierarchy

Model Adaptability: weave changes to
models that crosscut the model
representation’s hierarchy

c d e
B

c d e

B

c d e C1 C2

LAN

p y

Modularizing
tti

C3 C4

Crosscutting model concerns

crosscutting
concerns

Weave deployment concerns into component
models

Component models Deployment models

59

Experimental ResultsExperimental Results
C-SAW is a modeling-language independent modelg g g p
transformation engine that does not require extra
customization efforts for different DSMLs.
The experimental results have shown using C-SAW toThe experimental results have shown using C SAW to
perform model evolution is significantly faster and more
accurate than manual processes.
When SIML models were scaled to more than 64 nodes theWhen SIML models were scaled to more than 64 nodes, the

manual process deteriorated taking several days with multiple
errors

Using a model transformation, SIML models have been scaled upg p
to 2500 nodes, flexibility for scaling up or down can be achieved
through parameterization

The time to create the model transformation by a user unfamiliar
ith th d i < 1 5 hwith the domain: < 1.5 hours

