

MODEL TRANSFORMATION BY DEMONSTRATION:

A USER-CENTRIC APPROACH TO SUPPORT MODEL EVOLUTION

by

YU SUN

PURUSHOTHAM BANGALORE, COMMITTEE CHAIR

BARRETT BRYANT

JEFF GRAY

MARJAN MERNIK

JULES WHITE

CHENGCUI ZHANG

ROBERT FRANCE, EXTERNAL REVIEWER

ANIRUDDHA GOKHALE, EXTERNAL REVIEWER

A DISSERTATION

Submitted to the graduate faculty of The University of Alabama at Birmingham,

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

BIRMINGHAM, ALABAMA

2011

Copyright by

Yu Sun

2011

iii

MODEL TRANSFORMATION BY DEMONSTRATION:

A USER-CENTRIC APPROACH TO SUPPORT MODEL EVOLUTION

YU SUN

COMPUTER AND INFORMATION SCIENCES

ABSTRACT

Domain-Specific Modeling (DSM) is an innovative software development

methodology that raises the specification of software to graphical models at a high-level

of abstraction using domain concepts available in a language that is defined by a

metamodel. Using DSM, models become first-class entities in the construction of

software systems, and therefore model evolution becomes as important as code evolution

in traditional software development.

Model transformation is a core technology of DSM that converts a source model

to a target model, which plays a significant role in supporting model evolution activities.

A common approach toward model transformation is to write transformation rules in a

specialized model transformation language. Although such languages provide powerful

capabilities to automate model transformations, their usage may present challenges to

those who are unfamiliar with a specific model transformation language or a particular

metamodel definition. In addition, in the collaborative modeling situations when model

evolution knowledge needs to be exchanged and reused, most model transformation

languages do not support sharing of existing model transformation rules across different

editors among different users, so reusing the existing rules to support model evolution

activities becomes difficult. Finally, most transformation languages do not have an

associated debugger for users to track errors, or the debugger is not at the appropriate

level of abstraction for end-users.

iv

This dissertation focuses on three aspects related to supporting model evolution

activities: 1) simplify the creation of model transformations in a demonstration-based

approach by recording and analyzing the operational behavior exhibited by an end-user as

they perform a transformation task manually; 2) improve model evolution knowledge

sharing, exchange and reuse through tool support; and 3) enable an end-user centric

approach to debug the execution of a model transformation. The overall goal of the

research in this dissertation is to enable end-users to create their desired model evolution

tasks without any knowledge of model transformation languages or metamodel

definitions, share and reuse existing model evolution tasks, and check and trace errors in

a user-friendly manner when performing model evolution tasks. Each of these objectives

will be explained in detail in this dissertation, combined with case studies from different

domains to illustrate how a user-centric approach can support common model evolution

activities in practice.

v

DEDICATION

To Mom and Dad,

for their love and sacrifice.

vi

ACKNOWLEDGEMENTS

My sincerest gratitude goes to my advisor, Dr. Jeff Gray for his consistent

support, encouragement, and care for me over the past years. Through his NSF CAREER

grant, I was able to concentrate fully on my research work from the second semester of

my graduate study. During the whole period of my graduate study, Dr. Gray has offered

me numerous opportunities and kept encouraging me to build connections with

researchers and professors, publish and present my works, attend professional activities,

participate in various competitions, and collaborate with industry. In each step toward the

completion of my Ph.D. degree, Dr. Gray has offered a great deal of effort to help me

form ideas, give research direction and advice, revise the publications and presentations,

refine and improve the quality of my research results. For every accomplishment that I

achieved as a student, Dr. Gray always expressed his joy and pride for each milestone

that I achieved. In addition, his support and care also came to my life outside of school

and research, such that I always felt a strong sense of encouragement, inspiration and

warmness, when facing difficulties in my life. I have learned so much from his attitudes

toward work, students, colleagues and family. I like Steve Jobs’ quote “You cannot

connect the dots looking forward; you can only connect them looking backward.” Today,

when looking back over my own connected dots in the past years, I can see Dr. Gray’s

support in every one of them.

vii

I also want to thank Dr. Barrett Bryant and Dr. Purushotham Bangalore, for their

more involved role as committee chairs during recent faculty transitions. I really

appreciate their advice and direction on each of the key stages in my graduate study, from

taking courses, preparing the qualification exam, forming a research proposal, to doing

internships, completing the dissertation defense, and finding jobs. None of these can be

accomplished without their support.

I would like to show my gratitude to Dr. Jules White. Without Dr. White’s help

on understanding and extending the research work he has done on GEMS, my Ph.D. idea

could not have been implemented and realized. I have also benefited so much from his

research ideas and his help to connect me with Siemens, where I enriched my experience

by combining research and real practice. Moreover, Dr. White has always been a great

model for me on creating new research ideas, conducting high-quality research, and

producing exceptional research papers and presentations.

To Dr. Marjan Mernik, thank you for your effort and help to bring me into the

research area with the necessary knowledge and skills in the early stage of my Ph.D.

study. I also want to thank you for always giving me valuable feedback and suggestions

for my research work.

To Dr. Chengcui Zhang, I greatly appreciate your precious time and effort in

serving as my committee member and sharing your experience of graduate study with

me.

To Dr. Robert France and Dr. Aniruddha Gokhale, thank you for reviewing my

work and providing valuable feedback. Your expertise in the modeling area improved the

quality and direction of this work.

viii

I am also indebted to the help and guidance I gained from a number of great

groups in the industry. Special thanks are due to Dr. Michael Golm, Mr. Christoph

Wienands, Mr. Sean Eade, and Dr. Sam Zheng from Siemens Corporate Research, who

offered me the wonderful opportunity to apply my research and skills in practical projects

and enrich myself. I would also like to thank Mr. Benjamin Redman, Dr. Imran Patel, and

Dr. Yu Gu from Amazon, who guided me with great patience and trained me with mature

and professional software engineering knowledge and skills. To Mr. Karlheinz Bulheller

and Mr. Nicolaus von Baillou, thank you for providing me the chance and resources to

collaborate with you on such a meaningful project – I learned so much from you.

I also will never forget the support and help from current and previous

SoftComers. To Qichao Liu, thank you for everything you gave to me, and I cherish

every moment we had together in the past years. To Dr. Robert Tairas, Hyun Cho, Ferosh

Jacob, Zekai Demirezen, Jia Ma, Haisong Li, I really appreciate our friendship and all the

wonderful and fun time together as a collaborative team.

To Dr. Shelby Sanford, Lisa Sanford, Dr. Hang Li, Michael Stueve, and Qingsong

Yue, thank you for introducing me to God in this special period of time in my life, so that

I can finally know God, believe in God and start to receive great gifts and mercy from

God. Thank you, God. Without you, none of these amazing things can happen.

Finally, I am grateful to the financial support from the UAB Department of

Computer and Information Sciences, and the National Science Foundation CAREER

Grant (No. 1052616).

ix

TABLE OF CONTENTS

Page

ABSTRACT ... iii

DEDICATION .. v

ACKNOWLEDGEMENTS ... vi

LIST OF FIGURES ... xiii

LIST OF LISTINGS .. xvi

LIST OF TABLES .. xvii

LIST OF ABBREVIATIONS .. xviii

1 INTRODUCTION ... 1

1.1 Domain-Specific Modeling (DSM) .. 3

1.2 Model Evolution in DSM ... 7

1.3 Model Transformation and Model Transformation Languages (MTLs) 9

1.4 Key Challenges in Supporting Model Evolution ... 11

1.4.1 The Difficulty of Learning and Using MTLs for End-Users 12

1.4.2 Limited Tool Support to Exchange and Reuse Model Evolution

 Knowledge .. 15

1.4.3 The Lack of an End-User Debugging Facility for MTLs 17

1.5 Research Goals and Overview ... 18

1.5.1 Model Transformation By Demonstration (MTBD) to Simplify Model

 Transformation ... 19

1.5.2 Live-MTBD to Improve Model Evolution Knowledge Exchange and

 Reuse .. 19

1.5.3 MTBD Debugger to Enable End-User Model Transformation Debugging 20

1.5.4 Applications of the Research to Support Model Evolution in Practice 21

1.6 The Structure of the Thesis .. 21

x

2 BACKGROUND ... 23

2.1 Model-Driven Engineering (MDE) .. 23

2.1.1 Model-Driven Architecture (MDA) .. 25

2.1.2 Domain-Specific Modeling Development Process 27

2.1.3 Model Evolution in DSM.. 28

2.2 Metamodeling and Tools .. 29

2.2.1 Four-Layer Modeling Architecture ... 29

2.2.2 Metamodeling Tools ... 31

2.3 Model Transformation and Model Transformation Languages 33

2.3.1 Categories of Model Transformation Languages 34

2.3.2 Examples of MTLs ... 36

2.4 End-User Programming (EUP) .. 41

2.4.1 Examples of EUP .. 43

3 MODEL TRANSFORMATION BY DEMONSTRATION:

 AN END-USER CENTRIC MODEL TRANSFORMATION APPROACH 45

3.1 Overview of Model Transformation By Demonstration (MTBD) 45

3.2 MTBD Process and Implementation .. 47

3.3 Formal Specification of MTBD ... 60

3.3.1 Operation Demonstration and Recording ... 62

3.3.2 Operation Optimization .. 62

3.3.3 Pattern Inference ... 63

3.3.4 User Refinement ... 68

3.3.5 Pattern Execution .. 69

3.4 Related Work.. 69

3.5 Summary .. 74

4 MTBD IN ACTION: USING MTBD TO SUPPORT MODEL EVOLUTION.... 75

4.1 Model Refactoring.. 75

4.1.1 Case Study – Background ... 77

4.1.2 Case Study – Solution ... 78

4.2 Model Scalability ... 80

4.2.1 Case Study – Background ... 82

4.2.2 Case Study – Solution ... 84

4.3 Aspect-Oriented Modeling ... 88

4.3.1 Case Study – Background ... 90

4.3.2 Case Study – Solution ... 94

xi

4.4 Model Management.. 98

4.4.1 Case Study – Background ... 99

4.4.2 Cast Study – Solution.. 101

4.5 Model Layout ... 103

4.5.1 Case Study – Background ... 111

4.5.2 Case Study – Solution ... 113

4.6 Experimental Validation .. 116

4.6.1 Generality .. 116

4.6.2 Separation from MTLs and Metamodel Definitions 117

4.6.3 Productivity ... 118

4.6.4 Practicality .. 123

4.7 Summary .. 123

5 LIVE MODEL TRANSFORMATION BY DEMONSTRATION:

 TOOL SUPPORT TO IMPROVE MODEL TRANSFORMATION REUSE 125

5.1 Live Model Transformation By Demonstration (Live-MTBD) 125

5.1.1 Live Demonstration .. 127

5.1.2 Live Sharing .. 130

5.1.3 Live Matching ... 132

5.2 Case Study .. 134

5.2.1 Background ... 134

5.2.2 LiveMTBD in Action .. 137

5.3 Related Work.. 141

5.4 Conclusion .. 143

6 MODEL TRANSFORMATION BY DEMONSTRATION DEBUGGER:

 AN END-USER FACILITY TO DEBUG MODEL TRANSFORMATION

 EXECUTION ... 145

6.1 Model Transformation By Demonstration Debugger 146

6.1.1 Pattern Execution View .. 148

6.1.2 Pattern Matching View ... 149

6.1.3 Common Bugs and Tracking Solution .. 149

6.2 Case Study .. 151

6.2.1 Background ... 151

6.2.2 Debugging in Action ... 153

6.3 Related Work.. 162

6.4 Conclusion ... 164

xii

7 FUTURE WORK ... 165

7.1 Enhance MTBD Capacity .. 165

7.1.1 Supporting Additonal Types of Specification in Demonstration 166

7.1.2 Enable Model Transformation Inference based on Multiple

 Demonstrations ... 168

7.2 Improve Live-MTBD Tool Support ... 169

7.2.1 Enhance the Correctness and User Experience of Live Demonstration ... 169

7.2.2 Add Management Features for Live Sharing .. 170

7.2.3 Improve the Performance of Live Matching ... 171

7.3 MTBD Debugger.. 171

7.4 Apply MTBD to Exogenous Model Transformation 172

8 CONCLUSION .. 174

8.1 The MTBD Model Transformation Approach ... 175

8.2 The Live-MTBD Toolkit .. 176

8.3 The MTBD Debugger .. 177

LIST OF REFERENCES .. 179

xiii

LIST OF FIGURES

Figure Page

1.1 Flexibility versus level of abstraction of programming technologies 3

1.2 Excerpts of models specified using TTSML ... 5

1.3 Overview of DSM methodology .. 6

1.4 Model evolution in DSM ... 9

1.5 Two types of model transformation – exogenous and endogenous 10

1.6 Research overview ... 18

2.1 Four layers modeling architecture and tool support .. 30

2.2 An excerpt of an ATL transformation rule .. 37

2.3 An excerpt of an ECL transformation rule .. 38

2.4 An excerpt of a GReAT transformation rule ... 40

3.1 High-level overview of MTBD process ... 47

3.2 An ongoing demonstration and the Operation Recording view............................. 49

3.3 The attribute refactoring editor .. 50

3.4 Refine structural precondition by confirming containment 55

3.5 Precondition specification dialog ... 57

3.6 Generic operations identification dialog .. 58

3.7 Execution controller dialog .. 59

4.1 Model refactoring for state diagram .. 76

4.2 UML refactoring - Extract Superclass ... 78

4.3 An SRN model before and after scaling .. 84

xiv

4.4 The process of scaling a SRN model from two events to three events 86

4.5 QoSAML model... 93

4.6 Two state transition protocols to adapt to environment ... 93

4.7 A QoSAML model after applying the Priority Exhaustive protocol 94

4.8 Demonstration of adding a transition and setting up the attributes for the new

 transition .. 95

4.9 The initial generalized transformation pattern ... 97

4.10 The final generated transformation pattern after user refinement 97

4.11 Two options to control application instances... 99

4.12 Pet Store Web Tier 1 node ... 100

4.13 Using absolute coordinates in the demonstration to place the element in the

 same location in every model evolution scenario .. 106

4.14 Using coordinates relative to the boundary of the existing model in the

 demonstration to place the element in the location relative to the existing

 model in every model evolution scenario .. 108

4.15 Using coordinate relative to the other model elements in the demonstration to

 place the element in the location relative to the same model elements in every

 model evolution scenario ... 110

4.16 Different layout configurations of SRN models .. 112

4.17 The layout demonstration in action for the first motivating example 114

5.1 Different user editing scenarios ... 128

5.2 The overview of Live-MTBD toolkit .. 129

5.3 The implementation of the centralized pattern repository 130

5.4 EmFuncML models before (top) and after (bottom) applying Buffering

 function .. 135

5.5 Live demonstration enables demonstration by checking the editing history 138

5.6 Final transformation pattern for CreateADC ... 139

5.7 Pattern execution controller to show all the patterns from a centralized

 repository ... 140

5.8 Live matching suggests applicable transformations in the current selection 141

6.1 The overview of MTBD Debugger .. 147

xv

6.3 The excerpt of a MazeGame model before and after replacing the monster 153

6.4 Debugging the transformation pattern of Example 1 ... 155

6.5 Debugging the transformation pattern of Example 2 ... 156

6.6 The excerpt of a MazeGame model before and after removing all Gold 157

6.7 Debugging the transformation pattern of Example 3 ... 158

6.8 Debugging the transformation pattern of Example 4 ... 159

6.9 The excerpt of a MazeGame model before and after doubling the new weapon 160

6.10 Debugging the transformation pattern of Example 5 ... 161

xvi

LIST OF LISTINGS

Listing Page

4.1 Operations for demonstrating Extract Superclass .. 80

4.2 Operations for demonstrating Sub-task t1 of model scalability example 85

4.3 Operations for demonstrating Sub-task t2 of model scalability example 87

4.4 Operations for demonstrating Sub-task t3 of model scalability example 88

4.5 Operations for demonstrating weaving protocol aspects 95

4.6 Refinement operations performed in the demonstration of weaving aspects 96

4.7 Operations for demonstrating model management example 102

4.8 Layout configuration operations using absolute coordinates............................... 106

4.9 Layout configuration operations using relative coordinates to model boundary . 107

4.10 Layout configuration operations using relative coordinates to model

 element(s) ... 109

4.11 Operations to configure layout demonstration for part one of the motivating

 example .. 115

4.12 Operations to configure layout demonstration for part two of the motivating

 example .. 115

4.13 Operations to configure layout demonstration for part three of the motivating

 example .. 116

4.14 Excerpt of the ECL code to weave aspects to QoSAML models 122

4.15 An excerpt of a transformation rule written in ECL to scale EQAL models

 while controlling the number of execution times .. 123

6.1 Operations for demonstrating replacing a Monster ... 154

6.2 Operations for demonstrating removing all pieces of Gold 157

6.3 Operations for demonstrating replacing a Monster and doubling the strength 161

xvii

LIST OF TABLES

Table Page

3.1 The types of operations and the related context information recorded 52

4.1 Attributes of PetStore Web Tier Instance 1 (Overloaded Node) 101

4.2 Comparison of accomplishing model transformation tasks using three

 approaches.. 119

xviii

LIST OF ABBREVIATIONS

ADC Analog-to-Digital Converter

AOM Aspect-Oriented Modeling

AOP Aspect-Oriented Programming

API Application Programming Interface

ATL Atlas Transformation Language

C2M2L Cloud Computing Management Modeling Language

CASE Computer-Aided Software Engineering

CDL Contract Description Language

COM Component Object Model

CORBA Common Object Request Broker Architecture

CRUD Create/Read/Update/Delete

C-SAW Constraint-Specification Weaver

CWM Common Warehouse Metamodel

DRE Distributed Real-time and Embedded

DSM Domain-Specific Modeling

DSL Domain-Specific Language

DSML Domain-Specific Modeling Language

ECU Electronic Control Unit

ECL Embedded Constraint Language

xix

EMF Eclipse Modeling Framework

EmFuncML Embedded Function Modeling Language

EMP Eclipse Modeling Project

EQAL Event Quality of Service Aspect Language

ESML Embedded Systems Modeling Language

EUP End-User Programming

FSM Finite State Machine

GEMS Generic Eclipse Modeling System

GEF Graphical Editing Framework

GME Generic Modeling Environment

GMF Graphical Modeling Framework

GPL General-purpose Programming Language

GREAT Graph Rewrite And Transformation

GUI Graphical User Interface

HTML Hypertext Markup Language

J2EE Java Platform Enterprise Edition

JSF Java Server Faces

KM3 Kernel Meta-Meta Model

LHS Left-Hand Side

Live-MTBD Live-Model Transformation By Demonstration

M2T Model-to-Text

MDA Model-Driven Architecture

MDE Model-Driven Engineering

xx

MOF Meta-Object Facility

MTBD Model Transformation By Demonstration

MTBE Model Transformation By Example

MTL Model Transformation Language

MT-Scribe Model Transformation-Scribe

NAC Negative Application Condition

OCL Object Constraint Language

OMG Object Management Group

OSM Operation Specification Model

PBE Programming By Example

PIM Platform-Independent Model

QoS Quality of Service

QoSAML QoS Adpation Modeling Language

QVT Query View Transformations

RHS Right-Hand Side

RMI Remote Method Invocation

SLOC Source Lines Of Code

SRN Stochastic Reward Net

SRNML Stochastic Reward Net Modeling Language

TGG Triple Graphical Grammar

TN Transformation Net

TTSML Time-Triggered System Modeling Language

UAV Unmanned Aerial Vehicle

xxi

UML Unified Modeling Language

VE Visual Editor

VPL Visual Programming Language

WCET Worst Case Execution Time

WYSIWYG What You See Is What You Get

XML Extensible Markup Language

XMI XML Metadata Interchange

XSLT Extensible Stylesheet Language

1

CHAPTER 1

INTRODUCTION

Software development is an inherently challenging process, resulting from both

essential and accidental complexities [Brooks, 1987]. The essential complexities of

software are reflected in the difficulty of understanding the problem, designing and

testing the conceptual construct, as well as the characteristics of software, such as

invisibility, changeability and conformity. The accidental complexities represent the

challenges on the concrete software implementation and testing processes. In the past

several decades, much effort has been made to help software developers and engineers

address these complexities, in order to increase the productivity, simplicity and reliability

of software development.

Among all the effort, one of the most frequently applied and effective approaches

is to raise the level of programming language abstraction by capturing only the details

relevant to the current computing perspective, but hiding the underlying implementation

information [Lenz and Wienands, 2006]. As shown in Figure 1.1, from machine code to

assembly language, high-level and object-oriented programming languages, although

programmers generally lose fine-grained control of the underlying machine as abstraction

increases (e.g., direct memory address control is not feasible using Java while it can be

implemented using C effectively), they are enabled to better focus on the specific

2

problems they want to solve, while being isolated from irrelevant low-level

implementation details [Greenfield and Short, 2004].

With the complexity and scale of software systems increasing dramatically [Lenz

and Wienands, 2006], a new and higher level of abstraction is needed to continue

alleviating the difficulties encountered in the complex software development process. A

notable and promising approach is Model-Driven Engineering (MDE) [Schmidt, 2006],

which decouples the description of the essential characteristics of a problem from the

details of a specific solution space (e.g., middleware, programming languages).

MDE promotes the general idea of using models at different levels of abstraction

to define systems, and automate the transformation process between different levels of

models and the final implementation code. As a concrete and mainstream MDE

methodology, Domain-Specific Modeling (DSM) [Gray et al., 2007] uses a Domain-

Specific Modeling Language (DSML) [Lédeczi et al., 2001] to declaratively define a

software system using specific domain concepts, and automatically generate the desired

software artifacts (e.g., programming code, simulation script, XML deployment

description) by model transformation engines and code generators. Using DSM, software

developers and engineers, or even end-users (e.g., domain experts), are enabled to

program in terms of their unique intentions and understanding of a specific problem

domain, rather than focusing on solutions that are intertwined with the underlying

computing environment [Schmidt, 2006].

3

Jav
a, C

#

A
ssem

b
ly

 L
an

g
u
ag

e

C

M
ach

in
e C

o
d
e

Abstraction

M
o
d
el-D

riv
en

 E
n
g
in

eerin
g

F
lex

ib
ility

Figure 1.1 – Flexibility versus level of abstraction of programming technologies

1.1 Domain-Specific Modeling (DSM)

DSM reaches a new level of abstraction by focusing on the specific problem

domains using DSMLs so that the design space is narrowed down and the associated

complexities are reduced. A problem domain can be any of the areas that require software

solutions, such as automobile, telecommunication, health care, industry, robotics, energy

or finance. It can also vertically include the different aspects of system development,

such as user interface, functional properties, non-functional properties, user work flow, or

data persistency. Additionally, any of these domains can be divided into smaller problems

or tasks, which can be considered as a separate sub-domain.

A DSML is designed for a single problem domain, which only contains the

concepts related with the specific problems to solve, rather than the underlying

implementation details. The metamodel [Atkinson and Kuhne, 2003] is used to specify

the entities, associations and constraints for the DSML, having a similar role as a

4

grammar to specify the syntax for a programming language. The metamodel can be used

to generate a modeling environment, in which users are enabled to build concrete models

to represent the system for the application domain. The models built by users must

conform to the definition of the metamodel. Figure 1.2 shows a DSML called TTSML

(Time-Triggered System Modeling Language) [Sun et al., 2011-c] used to specify the

data communication system used inside electric automobiles. It provides the basic

modeling elements such as ECU (Electronic Control Unit), Channel, Controller,

Functional Unit, Timing Requirement. Users of TTSML can specify the desired system

by constructing the model using these concepts directly. For example, as shown in Figure

1.2, three ECUs (i.e., SimulatorPC, DrvierAssistance, DriverInferfaceAndSensor) are

connected to both Channel A and Channel B; different function units (e.g.,

BrakeAssistant, ReadGasPedalPosition) are running on these ECUs and communicate

with each other based on different timing requirements (e.g., Safety Critical,

LowSpeedSensor). The low-level implementation details about how to configure the

ECUs with the APIs provided by the manufacturer, how to implement the correct data

transmission protocol, or how to make the correct function calls to ensure the timing

requirements are hidden to users. In other words, users only need to think about the

concrete problem space – what system functionalities are needed, what system

performance properties are desired, rather than the solution space (i.e., how to implement

the actual system).

5

Figure 1.2 – Excerpts of models specified using TTSML

The solution space is handled by code generators associated with the DSML. A

code generator [Kelly and Tolvanen, 2008] takes models built by users as input, and

produces low-level implementation artifacts as output. Multiple code generators or model

interpreters might exist for a single DSML, which can be used to generate the code for

6

different platforms or software artifacts. Taking TTSML as an example, two code

generators are available to generate the implementation code for two hardware platforms:

Freescale S12 Microcontroller [Freescale, 2011] and Eberspächer FlexRayCard

[Eberspächer, 2011]; another generator is used to generate the XML configuration for the

protocol implementation. In some other DSM applications, code generators have also

been applied to produce HTML files, property files, graphical charts and tables, or even

software documents [Kelly and Tolvanen, 2008], as shown in Figure 1.3.

Figure 1.3 – Overview of DSM methodology

The main benefit of DSM comes from its ability to describe the properties of a

system at a high-level of abstraction and in a platform-independent notation, and protect

key intellectual assets from technology obsolescence, resulting in less effort and fewer

low-level details to specify a given system. Compared with the traditional usage of

software models and code generation techniques, DSM distinguishes itself by pursuing

7

automated code generation without further modifications, so that users are completely

isolated from the low-level implementation details. Otherwise, DSM will not raise the

level of abstraction for domain experts. UML [UML, 2011] models, for instance, are

often used either as a design blueprint for software developers to write code, or as a basis

to generate the initial code framework (e.g., class definitions and method signatures) with

the inner implementation part to be filled manually.

Furthermore, by raising the level of abstraction, DSM helps to improve end-user

programming [Burnett et al., 2004], and therefore reduces the chance of software failures

due to miscommunications between software engineers and end-users. In the traditional

software development process, a knowledge and expertise gap between software

developers and different domain experts exists, the negative consequence being that

developers who are skilled at programming may not fully and correctly understand the

user’s requirements, while the users who know their problem domain very well may have

no idea about how to build the desired software system. However, in DSM, because the

system can be represented by high-level and domain-specific models rather than general-

purpose programming languages, end-users who have no knowledge or experience in

programming are enabled to participate in the software system development process,

making more accurate and valuable decisions in software design, implementation, and

maintenance [Kelly and Tolvanen, 2008].

1.2 Model Evolution in DSM

Software evolution is an inevitable and essential activity in software development.

As noted by Lehman, “Software that is being used must be continually adapted or it

8

becomes progressively less satisfactory” [Lehman, 1978]. In the context of DSM, models

replace source code as the first-class entities in the software development process and

represent the initial point for the generation of low-level artifacts. Therefore, if a system

needs to evolve and adapt to new requirements, instead of changing source code directly,

the models representing the system should be evolved first according to the need, which

then leads to a re-generation of the low-level code or other artifacts [Lin et al., 2007].

Figure 1.4 shows a model evolution scenario. A metamodel has been defined for a

problem domain, and Model0 is the initial model that conforms to the metamodel, which

generates the first version of the source code (Code0) for the system. As the new

requirements come from the problem domain, Model0 has to be changed and evolved to

new versions (Model1, Model2, … Modeln,) to adapt the new requirements, so that the

corresponding changes can be reflected in Code1, Code2, … Coden by triggering the

code generation process from each new model. This dissertation research focuses on

addressing the problems and challenges associated with implementing the model

evolution process, while involving end-user participation.

A number of scenarios can trigger the evolution of models, such as adding /

removing / updating a certain functionality for an existing system [Greenfield and Short,

2004], weaving a new aspect (e.g., logging, constraint checking) into the base system

[Elrad et al., 2002; Gray et al., 2006], scaling the system from a base state to a complex

state [Lin et al., 2008], and optimizing the internal structure (e.g., refactoring) [France et

al., 2003]. Clearly, model evolution is as essential as traditional code evolution in a

software development process. In fact, some other model evolution issues also exist in

the context of DSM; for instance, evolving a model to a different domain [Jouault and

9

Kurtev, 2005], metamodel evolution [Sprinkle, 2003; Narayanan et al., 2009], model

interpreter evolution [Zhang et al., 2004], and model evolution by changing the

corresponding code (i.e., reverse engineering) [Rugaber and Stirewalt, 2004]. However,

the research described in this dissertation particularly focuses on model evolution from

one state to another and from one version to another version within the same metamodel.

The typical evolution activities in this category are model refactoring [Zhang et al.,

2005], model scalability [Lin et al., 2008], aspect-oriented modeling [Zhang et al., 2007],

model management [Deridder et al., 2008], and model layout configuration [Sun et al.,

2011-b].

MetaModel

Model0 Model1 Modeln

Conform To

Code0 Code1 Coden

Generate Generate Generate

∆M1 ∆M2 ∆Mn

∆C1 ∆C2 ∆Cn

… …

… …

Figure 1.4 – Model evolution in DSM

1.3 Model Transformation and Model Transformation Languages (MTLs)

Model transformation [Sendall and Kozaczynski, 2003] is a core technology in

DSM. It receives a source model that conforms to a given source metamodel as input, and

produces as output another model conforming to a given target metamodel. When the

10

source and target metamodels are different (i.e., between two different domains), the

transformation is called exogenous, as shown in Figure 1.5a (e.g., a UML class diagram

model is transformed to a relational data model [Shah and Slaughter, 2003]). If the source

and target metamodels are identical, the transformation is called endogenous, as shown in

Figure 1.5b (e.g., a UML class diagram model is transformed from one state to another

state through a “Pull Up Method” refactoring process [Fowler, 1999]).

Because the essence of model transformation is to transform and change a model,

there is a direct connection between model transformation and model evolution. Actually,

model evolution tasks as discussed in this dissertation can be regarded as a model

transformation process, or more precisely, an endogenous model transformation process,

because both the source model (e.g., Model0 in Figure 1.4) and the target model (e.g.,

Model1 in Figure 1.4) in a model evolution conform to the same metamodel.

MetaModel 1 MetaModel 2

Model Instance 2Model Instance 1

Conforms To Conforms To

Transform To

Transform To

MetaModel 1

Model Instance 1 Model Instance 2

Conforms To Conforms To

Transform To

a. Exogenous Model Transformation b. Endogenous Model Transformation

Figure 1.5 – Two types of model transformation – exogenous and endogenous

The benefit of connecting model evolution with model transformation is that a

number of model transformation tools and technologies can be utilized to support model

evolution tasks. The traditional approach to realize a model transformation is to use an

executable model transformation language. A Model Transformation Language (MTL)

11

[Sendall and Kozaczynski, 2003] is usually a Domain-Specific Language (DSL) [Mernik

et al., 2005; Sun et al., 2008] particularly used for model transformation tasks. A set of

transformation rules can be defined in a MTL to specify how a source model should be

transformed into a target model. More specifically, the rules define how the source model

should be mapped to the target model, and the scope where the rules can be applied.

These rules are often defined at the metamodel level rather than to a specific model

instance, so that they are capable of carrying out the desired transformation process

automatically on any model that conforms to the same metamodel.

MTLs can be either graphical or textual, and most of them are at a higher level of

abstraction than General-purpose Programming Languages (GPLs), such as Java or C++.

MTLs support either an imperative, declarative, or hybrid approach to specify a

transformation task. Some popular MTLs in this category are QVT [QVT, 2010], ATL

[Jouault et al., 2008], and ECL [Gray, 2002]. Using MTLs, automated model evolution

processes can be implemented by specifying and executing the model transformation

rules on how to evolve a model from one state to another state, or from one configuration

to another.

1.4 Key Challenges in Supporting Model Evolution

As discussed in the previous sections, model evolution is an essential and

inevitable activity in DSM. However, the tools to support model evolution have not been

well developed. In current DSM practice, model evolution tasks are mainly implemented

and automated using MTLs. Although MTLs are powerful and expressive to handle

various kinds of model evolution tasks, it is not always the perfect solution due to some

12

challenges related to end-user friendliness, the mechanism of exchanging and reusing

model evolution knowledge, and debugging support. The following subsections outline

the challenges that this dissertation focuses on with respect to current model evolution

practice.

1.4.1 The Difficulty of Learning and Using MTLs for End-Users

Although a number of powerful MTLs have been developed to support various

types of model evolution tasks in different modeling tools and platforms, learning and

using these languages is by no means an easy task, particularly for general end-users

including domain experts and non-programmers who are not familiar with MTLs or

GPLs. The emphasis on enabling this group of users to implement model evolution tasks

results from the fact that end-users can participate in the software development process

using DSM, and in many cases, they know the exact model evolution tasks in need.

However, this group of users might be prevented from contributing to these tasks from

which they have much domain experience due to the difficulty of learning and using

MTLs as described throughout this subsection.

The steep learning curve for MTL adoption. Most MTLs are high-level languages

and specific to model transformation tasks, but a steep learning curve is still inevitable

due to the complexity of learning the syntax, semantics, special features or concepts,

associated libraries, and the editing or execution environment of a MTL. This challenge

is particularly true for those who have never had MTL or programming language training.

Moreover, in many cases, in order to correctly use a MTL, users are required to

learn not only its basic usage of how to transform models, but also some additional

13

knowledge that is not directly related with model transformations. For example, ECL

integrates some general programming concepts, such as variable declarations (e.g.,

declare node : object;), and branch statements (e.g., if (idx<=max)

then); ATL applies Object Constraint Language (OCL) [OCL, 2010] expressions to

give specific constraints on the precondition of model transformations. Learning these

may not be very challenging to a computer scientist, a software developer or a model

engineer, but it is definitely a hindering barrier to general end-users like domain experts

and non-programmers.

In addition, the diversity of MTLs introduces a number of different model

transformation design approaches, bringing about a challenge toward achieving a uniform

MTL learning process. For instance, with declarative MTLs (e.g., ATL), users can focus

on the mapping relationships between the source and target models, ignoring the details

underlying those mappings; but many powerful MTLs (e.g., ECL) also support

imperative mechanisms, which means that users need to think about how a model should

be changed and transformed to the target desired state; some other MTLs (e.g., EMF

Tiger [Biermann et al., 2006; EMF Tiger, 2010], GReAT [Agrawal, 03]) are based on

graph theory, such as graph matching and graph rewriting, and users are expected to think

of model transformation processes in terms of graphs. Thus, even being familiar with a

certain MTL cannot guarantee a gradual adoption curve for learning a second MTL.

The difficulty of understanding metamodels. A metamodel, as explained in

Section 1.1, serves as the abstract syntax of a DSML, and precisely specifies how the

models should be constructed in a particular domain. Using most MTLs, the model

transformation rules are often defined at the metamodel level rather than the concrete

14

model instance level. However, developing a deep and clear understanding of a

metamodel is challenging, especially for large and complex domains.

The need to define transformation rules at the metamodel level results from the

gap existing between the way a user recognizes models and the way a computer does

[Wimmer et al., 2007]. Typically, users reason on models that represent real-world

examples shown by concrete syntax and mappings between semantically corresponding

model elements according to the specific transformation scenarios. However, this way of

thinking is not appropriate for precisely defining model transformations with currently

available MTLs, because instead of writing transformation rules working for one specific

model example, users expect the rules to be generic so that they can be reused on other

models for the same transformation purpose. Currently, the most effective way to realize

this goal is to define the generic rules in terms of metamodel definitions for the models to

be transformed.

Understanding metamodels becomes even more challenging when some concepts

in a particular domain are hidden in the metamodel definition and difficult to unveil

[Kappel, 2006]. This is because not all concepts in a domain can be represented as first-

class constructs in the metamodel. Some domain concepts may be hidden in attributes or

association ends in the metamodels. The consequence is that users are required to

correctly uncover these hidden concepts and use them in the transformation rules that

they write.

Thus, if model transformations can be specified and implemented without

explicitly understanding the full details of a metamodel, users could avoid the extra

burden of understanding the complex and abstract metamodel definitions.

15

1.4.2 Limited Tool Support to Exchange and Reuse Model Evolution Knowledge

Similar to traditional software development, specifying a complex system using

DSM usually requires collaboration [Redmiles et al., 2004]. A DSML may be used to

describe different aspects of a system (e.g., a DSML designed to model embedded

systems [Sun et al., 2011-a] enables users to specify the system from the perspectives of

both the hardware configuration and the software functional logic), and users might come

from different areas with different expertise. Even for the same perspective and the same

area, users may have different levels of experience and knowledge (e.g., a senior engineer

is more likely to produce higher quality models or provide better modeling solutions in

most cases than a junior engineer). When it comes to model evolution tasks in a diverse

and collaborative modeling environment, it is essential to enable different users to share,

exchange their knowledge and experience, as well as enable the reuse of the knowledge

(e.g., a software engineer may need to reuse the hardware engineer’s knowledge about

evolving a part of the hardware configuration; a junior engineer may need the senior

engineer’s experience to validate models and fix errors). Unfortunately, tool support in

this area is very limited in the current practice.

 When using MTLs to implement model evolution tasks, each set of the executable

model transformation rules can be regarded as the persistent knowledge for a certain

evolution task. Executing the rules on different models actually realizes knowledge reuse.

However, for most MTL tools, there is no mechanism to load and execute the

transformation rules specified by different users at editing time. For instance, ATL

provides an online collection of the commonly used model transformation scenarios

16

(ATL transformation zoo [ATL Transformation Zoo, 2011]), where users can download

the rules and execute them in their own environments. Obviously, this is by no means the

desired approach to exchange and reuse knowledge, because a large number of model

evolution tasks can be created during the editing time, which at the same time, are needed

to be shared and reused by different users. Using a static online collection cannot satisfy

the need to acquire the correct evolution knowledge promptly.

Moreover, the presence of reusable model evolution knowledge does not

guarantee that it can be reused correctly by users who need them. On one hand, users

might not know that certain model evolution tasks they need to accomplish have already

been created and shared, so that they might end up manually implementing the task again.

On the other hand, even if users know the presence of certain model evolution knowledge

that can be potentially reused, how to determine whether it is the right knowledge to

reuse or whether it is applicable to their own scenarios is another challenging problem. In

the current practice, users may decide to reuse an available model evolution task either by

reading and understanding the textual description about the evolution rules, or by directly

executing and comparing the results. The negative consequence is that users are very

likely to reuse the wrong knowledge due to the misunderstanding of an inaccurate textual

description, destroy the current model or import accidental errors by executing the wrong

evolution rules. Thus, enabling users to identify the correct and available knowledge to

reuse in a timely manner plays an important role in supporting model evolution

knowledge exchange and reuse.

17

1.4.3 The Lack of an End-User Debugging Facility for MTLs

Because model transformation specifications are written by humans and

susceptible to errors, the need for testing and debugging mechanisms for MTLs are as

important as the similar need with general-purpose programming languages. Although

testing offers some confidence about whether the model is in the desired state after being

transformed, debugging helps users to examine the transformation process and track

potential errors.

Recently, some algorithms and tools have been developed to support model

transformation testing by model comparison, which have demonstrated initial results in

automating the testing process [Lin et al., 2005; Lin et al., 2007]. However, model

transformation debugging is still a weak area with limited results. Most modeling tools or

platforms only provide an editing and execution environment for a supported MTL

without enabling users to track and monitor the execution of transformation rules and the

result. When errors occur, the most common way to fix the error is to check the model

after a transformation and locate the erroneous model elements, attributes or connections,

and then go back to the corresponding transformation rules to check the potential errors.

This process will iterate until the model is transformed to the desired state. Because most

MTLs do not support common constructs available in GPLs, the debugging process

becomes more challenging if a debugger is not present in the modeling tool or execution

engine.

Without the assistance of a debugger, error recovery becomes tedious and error-

prone, particularly when the model being transformed is large and a lot of complex

transformation rules are involved in the model evolution task. Although some MTL tools

18

already have associated debuggers [Jouault et al., 2008; Balasubramanian et al., 2006-a],

the debuggers work by tracking the MTL rules or codes, which are at the same level of

abstraction as the MTL and therefore not appropriate for some categories of end-users.

1.5 Research Goals and Overview

To address the difficulty of supporting model evolution using the traditional

model transformation approaches that rely on MTLs, and enable a wider range of end-

users to participate in model evolution activities through implementing model evolution

tasks, exchanging and reusing model evolution knowledge, and debugging model

evolution execution process, the research in this dissertation provides a user-centric

model transformation approach to implement model evolution tasks with tools to share

and reuse evolution knowledge. Furthermore, this research considers the transformation

debugging issue to assist in determining the correctness and tracking of model

transformation errors. Figure 1.6 shows an integrated view of this research. The overview

of the research is described in the following sections.

Model Transformation By Demonstration (MTBD) (Chapter 3)

End-user Model Transformation Framework

Live-MTBD (Chapter 5)

Evolution Knowledge Exchange and Reuse Tool Support

MTBD Debugger (Chapter 6)

End-User MTBD Debugger

Apply MTBD to Model Evolution (Chapter 4)

Model

Refactoring

Model

Scalability

Aspect-Oriented

Modeling

Model

Management
Model Layout

Figure 1.6 – Research overview

19

1.5.1 Model Transformation By Demonstration (MTBD) to Simplify Model

Transformation

To address the challenges of learning and using MTLs to support model evolution,

a new endogenous model transformation framework has been designed and implemented,

called Model Transformation By Demonstration (MTBD) [Sun et al., 2009-a], which

enables end-users to specify a model transformation by directly performing editing

operations on concrete examples (i.e., to give a demonstration), combined with user

refinement and automatic inference processes. After a user demonstration, a model

transformation pattern is generated as the persistent specification of a model

transformation task. MTBD also includes its own transformation pattern execution engine,

which executes the inferred transformation by pattern matching and automated operation

execution. This framework is different from the traditional MTLs in that no language is

involved in the process and the specification of the rules is realized at the model instance

level rather than the metamodel level, so that users can be isolated from the language

learning curve and the complex metamodel definitions. In other words, the level of

abstraction to implement model transformations is raised, so that the end-users (e.g.,

domain experts and non-programmers) are able to implement the desired model evolution

tasks through demonstration without being exposed to the low-level implementation

details.

1.5.2 Live-MTBD to Improve Model Evolution Knowledge Exchange and Reuse

The second contribution of this research includes “Live” feature extensions to

MTBD (Live-MTBD), which improves the user experience when demonstrating a

20

transformation, and more importantly, supports model evolution knowledge sharing,

exchange and reuse. The toolset Live-MTBD contains three components: 1) Live

Demonstration, provides a more general demonstration environment that allows users to

specify editing activities based on their editing history, with the purpose being to

encourage users to create more transformation patterns; 2) in order to improve the sharing

of editing activity knowledge among different users, Live Sharing – a centralized model

transformation pattern repository has been built so that transformation patterns can be

reused across different editors; 3) a live model transformation matching engine – Live

Matching has been developed to automatically match the saved transformation patterns at

modeling time, and provides editing suggestions and guidance to users during the editing

process. Live-MTBD features cooperate seamlessly with MTBD to offer an end-user

friendly, collaborative, and intelligent model evolution environment.

1.5.3 MTBD Debugger to Enable End-User Model Transformation Debugging

To support error tracking and execution monitoring, an MTBD debugger

associated with the MTBD execution engine has been developed. The debugging tool can

offer support for isolating the cause of a transformation error, by enabling users to trace

all the matched locations in the model in an execution of a transformation pattern, and

step through individual actions of the transformation to display the model data intuitively

within the host modeling environment. Users can determine the correctness of the

precondition of the inferred pattern from the matching locations, and the correctness of

the actions of the inferred pattern by watching each of the execution steps. In addition, to

improve end-user friendliness, the MTBD debugger hides the low-level execution

21

information or metamodel definitions and focuses only on information at the model

instance level.

1.5.4 Applications of the Research to Support Model Evolution in Practice

The primary purpose of this research is to support various model evolution tasks

using a new model transformation approach. Therefore, the power and functionality of

the approach should be decided and evaluated by focusing on how it can fulfill the

diverse needs of model evolution in practice. The MTBD approach should be applicable

to the core types of model evolution tasks, such as model refactoring, model scalability,

aspect-oriented modeling, model management, and model layout configuration. Thus, the

identification of the special requirements in each type of task and the investigation on

how to apply MTBD to these practical applications is another key contribution in this

research, and demonstrated by various case studies throughout this dissertation.

1.6 The Structure of the Thesis

This chapter has summarized a subset of the research on model evolution in the

context of DSM and the current challenges that exist to support model evolution

activities. Research goals that address these problems have been outlined. Chapter 2

describes background information related to the research of this dissertation.

Chapter 3 presents the MTBD model transformation approach, including the

description about the main steps and implementation details of the approach and the

formal specification of the MTBD functionality. Related work is discussed to highlight

the unique features and contributions of MTBD.

22

Case studies are presented in Chapter 4 to show how MTBD supports various

model evolution tasks. In addition, to demonstrate the benefits of this approach,

experimental evaluation is discussed, including modeling artifacts, evaluation metrics and

experimental results.

Chapter 5 details the live feature extensions of MTBD. The motivation of these

features is explained, followed by illustrating its usage through a practical case study.

Chapter 6 describes the debugger for MTBD. This chapter presents the basic

debugging features designed for MTBD, as well as how to apply these features to track

potential errors. Case studies are also shown to further illustrate the idea.

Chapter 7 outlines future work of the research described in the previous chapters.

Chapter 8 concludes the work of this dissertation and summarizes its contributions.

23

CHAPTER 2

BACKGROUND

This chapter provides background information relevant to the research of this

dissertation. First, Model-Driven Engineering (MDE), representing the broad scope of

this research, will be introduced, with a further discussion on Domain-Specific Modeling

and model evolution. This chapter will also outline the key concepts, techniques and tools

in MDE that have been applied in practice. Background information on model

transformation and Model Transformation Languages (MTLs) will be given in the third

section, which includes the categories of MTLs and a subset of popular languages being

used. Finally, because the main contribution of this research focuses on providing an

approach centered on end-user model evolution, relevant information about end-user

programming will be discussed briefly.

2.1 Model-Driven Engineering (MDE)

The emergence of MDE was triggered by a consistent effort toward raising the

level of abstraction in software development. Back in the 1980s when programming

languages (e.g., C, Fortran) lacked many of the now common modularity concepts (e.g.,

objects) to develop increasingly complex software systems, computer-aided software

engineering (CASE) [Fuggetta, 1993] was promoted as an approach to assist users in

expressing their design decisions above the underlying solution space. CASE applied

24

general-purpose graphical or textual representations to form programs that aimed at

reducing the errors incurred using traditional programming languages (e.g., memory

leaks and corruption when using C) as well as the development effort. However, CASE

finally failed to exert a significant influence on software development, because on one

hand, the general-purpose graphical representation used in CASE did not support many

application domains effectively; on the other hand, CASE was not generally successful at

handling the needs of complex systems development (e.g., concurrent computing is not

supported by CASE). In addition, due to a lack of common middleware platforms,

generating desired implementation code and integrating it with different platforms is

challenging, which undermined the capability of CASE to support multiple platforms.

Since the 1990s, object-oriented programming languages (e.g., Java, C++) have

provided more expressive language constructs, and have assisted developers in

maintaining and reusing various software systems [Booch, 1997]. Despite a number of

advantages, these languages have reached a complexity ceiling due to the fast growth of

dependent platforms and middleware complexity, and the inability of expressing domain

concepts effectively [Schmidt, 2006].

MDE has emerged as a promising approach to address platform complexity and

the need to express domain concepts. Using DSMLs that are designed specifically for

application domains, developers can work at a higher-level of abstraction than object-

oriented programming languages. In DSM, transformation engines and generators handle

the mapping of high-level models to the underlying implementation details, so that

developers are fully isolated from the accidental complexities of the solution space. In the

past several years, MDE has attracted considerable attention from both academia and

25

industry. A number of concepts (e.g., metamodel [Atkinson and Kuhne, 2003], model

transformation [Sendall and Kozaczynski, 2003]), standards (e.g., MDA [MDA, 2011],

QVT [QVT, 2011]), tools (e.g., MetaCase+ [MetaCase+, 2011], GMF [GMF, 2011]), and

related technologies (e.g., model version control [Lin et al., 2004]) have been created,

which have enabled many successful case studies and applications in various areas, such

as telephony, information management, bug tracking, stream data processing [Kurtev et

al., 2006].

2.1.1 Model-Driven Architecture (MDA)

 To better support MDE, the Object Management Group (OMG) launched Model-

Driven Architecture (MDA) [MDA, 2011], providing a set of guidelines and

specifications to encourage the use of models in software system design and

implementation.

 The MDA approach specifies a software system using a Platform-Independent

Model (PIM), which can then be mapped and transformed to Platform-Specific Models

(PSMs). The PIM is based on domain-specific languages for the application domain, but

the PSMs can be specified using either a domain-specific or general-purpose language.

The OMG provides only the standards and specifications for the basic approach instead

of detailed implementations. Some of the standards related with MDA models are listed

in the following paragraphs:

Unified Modeling Language (UML). UML is used to describe various types of

models in MDA. Although UML was not originally designed for MDA, being the most

widely used modeling language, it has become a standard general-purpose modeling

26

language. UML contains a number of diagrams, constructs and views that can be used to

represent various perspectives of a system. Thus, UML serves as a standard formalism in

MDA for a wide range of application domains.

Meta-Object Facility (MOF). MOF [MOF, 2011] is a meta-metamodel that can be

applied to define different metamodels. The definition of UML is based on MOF.

Therefore, MOF makes it possible to extend UML or create any other potential languages

needed in the future.

XML Metadata Interchange (XMI). XMI [XMI, 2011] defines a standard metadata

interchange format for XML documents. This enables models to be shared and

exchanged among different tools and platforms. XMI has already been applied as the

interchange format for UML models, as well as a number of models built in other tools

such as GME [Lédeczi et al., 2001] and EMF [Budinsky et al., 2004].

Common Warehouse Metamodel (CWM). CWM [CWM, 2011] provides

interfaces that can be used to enable interchange of warehouse and business intelligence

metadata between warehouse tools, warehouse platforms and warehouse metadata

repositories. Mappings between two types of metamodels can be defined using CWM,

making it possible to build the model transformations in the context of MOF.

In summary, UML, MOF, XMI, CWM and some other standards aim at handling

different aspects of the MDA – the creation of models, the extension and definition of

models, model interchange, and model transformations.

27

2.1.2 Domain-Specific Modeling Development Process

 While MDA provides a set of standard guidelines to support the vision of MDE,

DSM is a concrete MDE methodology that has been applied in a number of domains

(e.g., automotive, robotics, mobile computing) successfully. From the example given in

Section 1.1, it can be seen that DSM is often based on a graphical DSML designed for a

specific problem domain, combined with code generators to produce implementation

software artifacts.

 In practice, a complete DSM development process follows an iterative process.

Model engineers and domain experts need to work together to target the problem domain

and understand the necessary domain concepts that will be included in the future DSML.

Then, model engineers need to define the DSML precisely by defining the metamodel as

well as the needed constraints for the domain. With the complete metamodel, the DSML

environment can be generated automatically. In addition, code generators are built by

model engineers and software engineers together to map the metamodel concepts to low-

level implementation code. With the complete DSML environment and code generators,

users can work in the editors to build various model instances when needed and trigger

the code generation any time.

 The time required to implement a DSM solution varies according to the

complexity of each domain. It can take from a few weeks to months [Kelly and Tolvanen,

2008]. No matter what the development period is, the benefits of using DSM can often be

seen immediately after users are enabled to create models and generate code [Kelly and

Tolvanen, 2008].

28

2.1.3 Model Evolution in DSM

 Model evolution issues in DSM are mainly triggered by two scenarios. First, the

metamodel for a certain domain is not unchangeable, because the actual domain in

practice evolves and users tend to request new concepts and elements to enhance the

expressiveness and power of the DSML. In fact, even model engineers themselves

occasionally create new ideas to refine or extend the DSML, when their understanding of

a domain improves or when they receive feedback from users. Therefore, evolution of

metamodels is inevitable.

 When it comes to the model instance level, evolution occurs more frequently. Just

like programmers need to change their programs in any phase of software development

for different purposes, models are often evolved by users as well. Actually, one of the

main advantages of using DSM is reflected in this evolution scenario. Because

traditionally, programmers need to understand the source code and make necessary

changes according to a new requirement. In the context of DSM, the same change can be

realized by modifying models at a high level of abstraction with less effort and then re-

generating the code into a new version automatically.

 The metamodel evolution problem has been investigated widely [Sprinkle, 2003],

but the importance of evolution at the model instance level should not be ignored,

because it directly relates to the main benefit of using DSM, and it is targeted for end-

users and their usage experience. This dissertation focuses on supporting the evolution

problems at the model instance level.

29

2.2 Metamodeling and Tools

 In the previous sections, most of the discussion on MDE and DSM focused on a

high level description and background introduction. This section will first present the

basic four-layer modeling architecture used in the MDE community, serving as a formal

summary of MDE, followed by an introduction to tools that support the MDE and DSM

ideas.

2.2.1 Four-Layer Modeling Architecture

 The classical architecture of MDE has been defined using four different layers, as

shown in Figure 2.1. The topmost layer (i.e., M3 or Meta-metamodel layer) is a core

modeling language that conforms to itself, which can be applied to define other modeling

languages for different domains (i.e., to define other metamodels). It forms the

foundation for the whole MDE architecture. The common modeling languages at this

layer are MOF, Ecore, and KM3 [Jouault and Bézivin, 2006]. The second layer is the

metamodel layer (or M2). The models at this layer are defined using the modeling

language at M3 and therefore are instances of the meta-metamodel. They are defined to

precisely specify different application domains. Models at the M1 level will conform to

the M2 metamodels. The M1 models represent what users create and manipulate the

underlying real system. Each model is built based on a certain metamodel, conforming to

all the syntax and static semantics constraints. In many cases, a single system can be

specified by multiple models either under the same metamodel or different ones, for the

purpose of modeling different components and perspectives. Finally, the real-world

system is at the M0 layer, which is mapped and generated from models at M1. One

30

important criterion to evaluate the mappings between M1 and M0 is that for questions

about the real-world system at M0, it must be possible to retrieve the answers from

models at M1. This is called the substitution principle [Kurtev et al., 2006].

System

Metamodel

Model

Meta-metamodel

Metamodeling

Tool

Code

Generator

Modeling

Environment

M3

M2

M1

M0 Conforms to

Relationship between model layers and tools

Figure 2.1 – Four layers modeling architecture and tool support

 The creation of the final real-world system follows a top-down approach, starting

from defining the models at higher layers, to deriving and generating artifacts in the

lower layer. To ease the whole workflow, metamodeling tools have been implemented to

support the specification of each layer and the transitions as shown in Figure 2.1.

Generally speaking, a metamodeling tool has its own M3 modeling language embedded,

and provides a metamodeling environment to enable users to create metamodels at the

M2 layer. The modeling environment (i.e., end-user modeling editors) at M1 can often be

automatically generated from the metamodel. The transition to the final M0 layer is

carried out by code generators for each metamodel or model translators embedded in the

modeling environment.

31

2.2.2 Metamodeling Tools

There are several key characteristics that most DSM tools possess, such as

generative capabilities (i.e., to automatically generate the model editor or generator from

the metamodel), change management (i.e., a runtime facility to support change

notifications in models), model serialization (i.e., used to make models persistent), and

plug-in capabilities (i.e., to provide an extension mechanism to enrich the functionality of

the tool). Examples of metamodeling tools are described in the remainder of this

subsection.

Generic Modeling Environment. The Generic Modeling Environment (GME)

[Lédeczi et al., 2001] is a metamodeling tool to define DSMLs for different domains. The

metamodeling language is based on the UML class diagram notation and OCL

constraints. The metamodels specifying the domain concepts are used to automatically

generate the target domain-specific environment. The generated domain-specific

environment is then used to build domain models that are stored in a model database or in

XML format.

GME has an extensible architecture that uses the Component Object Model

(COM) [COM, 2011] for integration. External components can be written in any

language that supports COM (e.g., C++, Visual Basic, C#). GME has many advanced

features. A built-in constraint manager enforces all domain constraints during model

building. GME supports multiple viewpoint modeling. It provides metamodel

composition for reusing and combining existing modeling languages and language

concepts [Karsai et al., 2004]. It also supports model libraries for reuse at the model

32

level. All GME modeling languages provide type inheritance. Model visualization is

customizable through decorator interfaces.

Graphical Modeling Framework. The Graphical Modeling Framework (GMF)

[Moore et al., 2004; GMF, 2011] is a metamodeling tool based on Eclipse [Eclipse,

2011], which is a part of the Eclipse Modeling Project (EMP) [EMP, 2011]. It includes

three key components to define a DSML: the domain model (i.e., the abstract syntax for

the domain defined by Ecore [Budinsky et al., 2004]), the graphical definition model (i.e.,

the concrete syntax for the domain, such as the figures, nodes, and links used to display

the models on the diagram), and the tooling definition model (i.e., to specify the palette,

creation tools, and actions for the graphical elements in the editor). These three models

can be integrated together and used to automatically generate a graphical modeling

environment for a particular domain.

Because GMF is part of the EMP, most of the other existing technologies based

on EMP can be applied to the models built in GMF. For instance, the M2M project

(model to model transformation) [M2M, 2011] and M2T project (model to text

transformation) [M2T, 2011] can assist the general model transformation or code

generation tasks.

Generic Eclipse Modeling System. The Generic Eclipse Modeling System

(GEMS) [GEMS, 2011; White et al., 2007-a] is an open source metamodeling tool in

Eclipse. The goal of GEMS is to bridge the gap between the communities experienced

with visual metamodeling tools, such as GME, and those built around the Eclipse

modeling technologies, such as the Eclipse Modeling Framework (EMF) [Budinsky et al.,

04] and GMF. Thus, domain experts that use GEMS can create an Eclipse-based

33

graphical modeling tool without knowing the core components of EMP such as EMF,

Graphical Editor Framework (GEF) [GEF, 2011] and GMF. In addition to automatically

generating the modeling tool, GEMS also integrates a constraint checking mechanism to

enable users to better reason about the models. The layout and appearance of models and

the modeling tool can be controlled and customized through stylesheets. Moreover,

GEMS provides a facility to capture the events occurring in the model editing process,

which is very useful for the work in this dissertation. Extensions can be made to GEMS

through the traditional Eclipse plug-in mechanism. The research in this dissertation will

be implemented and evaluated in GEMS.

2.3 Model Transformation and Model Transformation Languages

 Model transformation has been a core technology since the emergence of MDE

and DSM [Sendall and Kozaczynski, 2003]. Examples of model transformation include

code generation from models, model synchronization and mapping, model evolution, and

reverse engineering. Although the use of a model transformation language has been

introduced in Section 1.3 as the main approach to support model transformation

processes, other alternatives are also available to implement the same tasks.

 The first approach is to manipulate and access the internal structure of a model

instance directly using an API provided by a host modeling tool, and encode the

transformation procedures in a GPL. This approach is not feasible for end-users who do

not have programming experience, because

34

GPLs lack the high-level abstractions that are needed by end-users to specify

transformations. In addition, the power of a transformation is often restricted by the

supported API within the modeling tool.

Many modeling tools support importing and exporting model instances in the

form of XMI. It is also possible to use existing XML tools (e.g., XSLT [XSLT, 2011]) to

perform model transformations outside of a modeling tool using XMI as an intermediate

representation. Although XSLT can be used to transform models, it is tightly coupled to

XML, requiring experience to define the transformations using concepts at a lower level

of abstraction. In addition, transformations performed outside of a modeling tool exert a

potential risk that the models being transformed cannot be imported or exported correctly

with future versions of the tool.

By comparison, MTLs raise the level of abstraction by providing a set of language

constructs specific to the model transformation tasks, playing an increasingly significant

role in various model transformation activities.

2.3.1 Categories of Model Transformation Languages

Many MTLs have been invented with different features and characteristics [Mens

and Gorp, 2005; Czarnecki and Helsen, 2006]. They can be classified into different

categories. Understanding the categories is important for users to choose the most

appropriate MTLs for different scenarios. Some main categories will be discussed in the

following.

Exogenous versus endogenous. As introduced in Section 1.3, MTLs can be

classified into exogenous MTLs and endogenous MTLs based on the difference between

35

the source and target metamodels. Exogenous MTLs can be applied to handle tasks such

as model migration (i.e., changing models conforming to the source version of a

metamodel into models conforming to an evolved version of the metamodel) and model

mapping (i.e., relating and transforming models between two different domains).

Endogenous MTLs fit the problems of model refactoring (i.e., optimizing the internal

structure of a model) and scalability (i.e., enlarging or reducing the model from a base

state) very well. The key characteristic of exogenous MTLs is that the expressive

language constructs to define the mappings between two metamodels are always

available (e.g., from … to …), so that users can specify the relationships and associations

between two domains. For endogenous MTLs, the most important part of the language is

the ability to create/read/update/delete models (CRUD). Because endogenous model

transformation tasks focus on changing the source model from one state to another state,

or from one configuration to another, it is thus very essential to support various language

constructs to perform the transformation with complex computation and rich constraints.

Textual versus graphical. Textual MTLs have their own grammar and keywords,

and users can write the desired transformation rules in blocks or functions. A typical

graphical MTL usually defines a transformation rule as a LHS (left-hand side) graph

representing the source model and a RHS (right-hand side) graph representing the target

model. Then, the engine automatically matches the LHS graph in a model and changes it

into the desired RHS graph. Compared with textual MTLs, it is easier to define specific

model patterns using graphs, leading to a simplification of the transformation rules in

many cases.

36

Imperative versus declarative. The imperative style uses highly reusable granular

language constructs that are capable of outlining the details of each model transformation

step. For example, Aspect-Oriented Modeling (AOM) [Balasubramanian et al., 2006-b;

Gray et al., 2001] is an important model transformation scenario, which enhances the

modularity at the model level by allowing the separation of concerns (i.e., aspects) from

the models representing the base system. To weave an aspect to a base model, a typical

imperative MTL enables users to specify precisely where to locate the correct part of the

base model that needs the aspect, and how exactly the aspect should be woven step-by-

step. Using declarative MTLs, users focus on what to do instead of how. In other words,

declarative MTLs express the logic of a transformation without describing its control

flow. The typical example of using a declarative MTL is to specify what kind of elements

in a source domain should be mapped to a target domain, without caring about how the

mappings and translations are implemented. Although declarative MTLs have many

advantages, they are not the best choice for all scenarios (e.g., transforming an attribute

based on certain computations is hard to represent declaratively). However, the

imperative style should not be discounted entirely. In fact, both styles are not mutually

exclusive, and a number of MTLs include both mechanisms to specify transformation

rules, offering the appropriate level of granularity as the situation demands.

2.3.2 Examples of MTLs

 Three concrete examples of MTLs will be shown in this section, which cover the

main categories mentioned in the previous section.

37

Atlas Transformation Language (ATL). ATL [Jouault et al., 2008] is a textual

MTL, designed and implemented under the Eclipse Model-to-Model transformation

(M2M) project [M2M, 2011], conforming to the proposed standard by OMG - the

Query/View/Transformation (QVT) [QVT, 2011]. Both declarative and imperative

language constructs are available in ATL, which makes it a hybrid MTL that can be

applied to both endogenous and exogenous model transformation tasks. However, ATL is

more appropriate to handle exogenous model transformation scenarios because its

execution engine is based on model rewriting rather than in-place changing. Figure 2.2

shows an excerpt of model transformation rules written in ATL. The main blocks in an

ATL program are the rules, specifying how to transform a model element from one

metamodel to another (e.g., Member2Male). Inside a rule, constraints on the rules (e.g.,

not s.isFemale()) and the specific transformation process (e.g., fullName <-

s.firstName + “ “ + s.familyName) are defined. Helpers serve as function

calls in an ATL transformation, which can contain the basic logic and control statements.

helper context Families!Member def: isFemale() : Boolean =

 if not self.familyMother.oclIsUndefined() then

 true

 else

 if not self.familyDaughter.oclIsUndefined() then

 true

 else

 false

 endif

 endif;

rule Member2Male {

 from

 s : Families!Member (not s.isFemale())

 to

 t : Persons!Male (

 fullName <- s.firstName + ' ' + s.familyName

)

}

Figure 2.2 – An excerpt of an ATL transformation rule

38

 ATL has been implemented in Eclipse with a development toolkit plugin. A

library of existing transformations is available to reuse from [ATL Transformation Zoo,

2011], which contains successful transformation scenarios in many domains.

Embedded Constraint Language (ECL). ECL [Gray et al., 2006] was designed

and implemented to solve endogenous model transformation problems, supporting the in-

place modifications on source models. ECL applies and extends OCL, and supports three

types of operations: 1) Model collection can be used to navigate the source model and

group the model elements sharing the common features or satisfying the common criteria

together. Model collection provides an expressive way to filter desired model elements

from a large-scale source model; 2) Model selection operates on the collected model

elements and further locates the target model elements to be transformed. The selection

process can be based on either the evaluation of a logical expression or the matching of a

specified pattern; 3) Model transformation carries out the final transformation task on the

selected model elements. The transformation can be applied to both nodes and

connections, being capable of adding, removing, and changing the structure and

attributes. Figure 2.3 is an excerpt of an ECL example. An aspect in ECL is used to

specify a crosscutting concern across a model hierarchy. The FindData1 aspect collects

all the atoms in the model, selects those Data atoms with the name being “data1” and

executes the AddCond strategy. A strategy in ECL is a set of transformation operations,

which in this example, creates a new Condition atom, a new connection, as well as setting

up the attributes of each Condition atom.

ECL is fully implemented with a transformation engine called the Constraint-

Specification Weaver (C-SAW) in GME. Although ECL was originally designed to

39

handle aspect-oriented modeling problems, it has been extended and applied to other

general model evolution tasks such as model scalability [Lin et al., 2008] and model

refactoring [Zhang et al., 2005]. Because ECL focuses on the same set of model

evolution problems as this dissertation research, the comparison between ECL and the

result from this research will be made in a future chapter.

aspect FindData1(atomName, condName, condExpr : string)

{

atoms()->select(a | a.kind() == "Data" and

 a.name() == "data1")->AddCond("Data1Cond", "value<200");

}

strategy AddCond(condName, condExpr : string)

{

 declare p : model;

 declare data, pre : atom;

 data := self;

 p := parent();

 pre := p.addAtom("Condition", condName);

 pre.setAttribute("Kind", "PreCondition");

 pre.setAttribute("Expression", condExpr);

 p.addConnection("AddCondition", pre, data);

}

Figure 2.3 – An excerpt of an ECL transformation rule

Graph Rewriting and Transformation (GReAT). GReAT [Balasubramanian et al.,

2006-a] is a graphical language to specify model transformations. GReAT is a set of three

sub-languages: 1) The pattern specification language defines the pattern to be matched in

the source model. A pattern consists of nodes and edges that must be present in the

model, as well as the associations and containment relationships. Users can also specify

negative application conditions that restrict the presence of certain patterns; 2) The

transformation rule in GReAT is the basic transformation entity, which contains the

40

pattern to be matched, and a set of actions to be executed. Additionally, guards can be

defined as part of the transformation rule to determine whether the actions should be

executed based on the evaluation of the logical expression; 3) GReAT also contains a

control flow language to handle the larger and more complex transformation scenarios,

such as how to sequence the execution of the rules, how to execute the rules in parallel

with non-determinism, how to control the hierarchy of the transformation rules using

blocks, and how to implement recursion when executing the rules. The execution engine

of GReAT is built within GME using graph mapping and rewriting. Figure 2.4 shows an

example of a GReAT transformation rule. It binds all the instances of Class A, Class B,

Class C that satisfy the given containment relationships (i.e., Class C can contain

instances of Class A and Class B, and connections can exist between instances of Class A

and Class B), and creates the new Item elements in the container (i.e., Class C).

Figure 2.4 – An excerpt of a GReAT transformation rule

41

2.4 End-User Programming (EUP)

 The concept of End-User Programming (EUP) can be traced back to the 1960s

[Martin, 1967]. James Martin presented his vision on this topic as, “We must develop

languages that the scientist, the architect, the teacher, and the layman can use without

being computer experts. The language for each user must be as natural as possible to him.

The statistician must talk to his terminal in the language of statistics. The civil engineer

must use the language of civil engineering. When a man learns his profession he must

learn the problem-oriented languages to go with that profession.” [Martin, 1967]

End-Users are defined as the final users of application programs and software,

who have not necessarily been taught or trained how to write code and programs in

traditional programming languages. EUP aims at enabling this group of users to use the

software in their daily life and work, and also participate in the creation, modification,

and maintenance of software applications. The most representative example of EUP is a

spreadsheet application [Rothermel et al., 2001]. Users who are not professional

developers can process tables of complex data, and create automated calculation behavior

without significant knowledge of a programming language.

Supporting EUP exerts a significant influence on the whole software community.

According to the research done by the U.S. Bureau of Census and Bureau of Labor

[Scaffidi et al., 2005], there are 3 million professional software developers and

programmers in the U.S., while over 12 million people say that they do programming at

work, and over 50 million spreadsheet and database users exist. Therefore, the total

number of end-user programmers in the U.S. alone is several times the number of

professional programmers. These end-users’ involvement in programming can contribute

42

substantially to the application domains, because 1) end-users know their domains and

problems best, so they can create the specific solutions to solve their own problems

without talking or explaining to a programmer, avoiding the potential communication

gaps; 2) after end-users receive their own programs and applications, they can also be

responsible for the maintenance, rather than simply complaining about the software and

seeking help from professional developers, leading to a more general “customer support”;

3) the software systems designed with end-user programming capability can be simpler

and less complex, due to the fact that professional programmers only need to focus on

implementing the general functions, while the end-users take care of using these general

functions to realize their specific needs [Lieberman et al., 2006].

However, the benefits of EUP do not come for free. Problems and cost can also be

caused by applying EUP. The first and foremost problem associated with EUP is the

quality of the applications built by end-users. Without professional training, end-users are

likely to produce errors and bugs, which can have significant impact (e.g., a numerical

error in a spreadsheet can lead to fatal failures in many areas). In addition, security

cannot be guaranteed in the applications developed by end-users, because they may lack

the necessary knowledge on how to test and secure their applications, or in some other

cases, the security control is not even exposed to end-users. In some cases, the cost of

quality and security issues can weigh much more than the benefits gained from EUP

[Harrison, 2004].

In summary, while it is significant and beneficial to support EUP and enable users

to participate in software development process, ensuring the quality and security of

software applications built by end-users is indispensible.

43

2.4.1 Examples of EUP

The approach to support model evolution used in this dissertation shares some

features of EUP. In this section, we choose some typical and successful examples to

further illustrate the idea of EUP.

Programming By Example (PBE). PBE [Cypher, 1993] is a technique for teaching

computers new behaviors by demonstrating actions on concrete examples. A program can

be generalized from the recorded actions during the demonstration, which is applicable to

accomplish the same task to other examples. The goal of PBE is to make programming

easier than learning and using traditional programming languages. A popular PBE

application domain was robotics [Narayanan et al., 2010]. By moving and operating the

robots through a series of teaching, guiding, and play-back steps, the configurations and

desired sequential actions for the robot can be completed.

What You See Is What You Get (WYSIWYG). WYSIWYG [Rothermel et al., 2001]

represents a technique that enables users to edit certain content (e.g., text, graphs,

models) in a form that is exactly the same as it will appear in the final finished version or

product. WYSIWYG intends to directly control and manipulate the properties (in most

cases the layout) of the final product without learning and using the low-level

implementation details. For instance, users can adopt Microsoft Word to configure the

layout of a document by checking the final document appearance directly, while the

special layout control code has to be inserted into the document using LaTeX [LaTeX,

2011]. Another good example is that a number of Jave GUI editors are available (e.g.,

NetBeans [NetBeans, 2011], Eclipse Visual Editor [Eclipse VE, 2011]) to handle the Java

GUI interface design by dragging and dropping the various GUI control elements on the

44

canvas directly. The underlying executable implementation in Java code is generated

automatically. WYSIWYG can also go beyond the layout configuration. Google App

Inventor [Google App Inventor, 2011] allows users to create Andriod applications in the

same drag-and-drop manner, so that even young people who have no programming

experiences can develop mobile applications for their own needs.

Visual Programming Languages (VPL) and DSM. VPLs [Myers, 1986] let users

create programs by using graphical elements and constructs rather than textual

expressions. Based on the idea that, “A picture is worth a thousand words.” VPLs can

make the specification of certain applications more direct and end-user friendly. For

instance, the Microsoft Visual Programming Language [MS VPL, 2011] is a graphical

development environment designed to create dataflow-based programming models;

KTechlab [KTechlab, 2011] uses flowcharts to program microcontrollers graphically;

OpenMusic [Agon, 1998] is a visual programming language for music composition

applications. DSM, by comparison, shares similar features as VPLs that both rely on the

graphical representations. However, although a DSML can be considered a type of VPL,

the main difference between a VPL and a DSML is that a DSML raises the level of

abstraction by generating the low-level software artifacts, while VPLs are usually

independent languages or development environments. When it comes to supporting EUP,

both are effective approaches.

45

CHAPTER 3

MODEL TRANSFORMATION BY DEMONSTRATION:

AN END-USER CENTRIC MODEL TRANSFORMATION APPROACH

This chapter presents the main contribution of this dissertation – Model

Transformation By Demonstration (MTBD), which is an end-user centric approach to

implement model transformation. The basic goals and high-level description of the idea

are discussed first, before a detailed explanation of each step and implementation

component. A formal description of the approach is also given, which defines the

functionality of the approach precisely. In order to highlight the unique features and

contribution of MTBD, related work will be discussed and compared, followed by

concluding remarks that are presented at the end of the chapter.

3.1 Overview of MTBD

The main difficulty of learning and using MTLs to support model evolution, as

discussed in Chapter 1, results from the steep learning curve of MTLs and the challenge

of understanding the metamodels correctly. Therefore, the goal of the new model

transformation approach presented in this dissertation is to isolate users from learning any

MTLs or knowing any metamodels, to make the activity of performing model

transformations more end-user centric.

46

The idea of MTBD derives from PBE. Although PBE focuses on enabling users to

teach a computer new behaviors by demonstrating actions on concrete examples, MTBD

concentrates on a more specific programming scenario to allow users to implement model

transformation tasks by demonstrating how to transform and evolve models on concrete

model instances.

The basic idea of MTBD is that instead of manually writing transformation rules

in a specific model transformation language, users demonstrate how a model

transformation should be done by directly editing (e.g., add, delete, connect, update) a

concrete model instance to simulate the desired model transformation process. A

recording and inference engine has been developed to capture all user operations

performed during the demonstration. After the recording process has completed, the

inference engine optimizes the recorded operations and infers a transformation pattern

that specifies the precondition of the transformation and the sequence of actions needed

to realize the transformation. In order to make the inferred transformation pattern more

accurate, users are allowed to make refinements on the pattern through dialogs and

wizard interfaces. The finalized pattern is stored in the repository, and can be executed by

the execution engine by matching the precondition in a given model instance and then

replaying the actions to execute the transformation actions. During the execution of a

transformation pattern, constraint checking ensures that the execution does not violate the

metamodel definition of the domain.

The design and implementation of MTBD is independent from any MTLs, and

metamodel information is not exposed to users during the whole MTBD process, so that

47

users can be isolated from learning MTLs or understanding metamodel definitions. More

details about each step of MTBD will be presented in the next sub-sections.

3.2 MTBD Process and Implementation

 Figure 3.1 shows the high-level overview of MTBD, which is a complete model

transformation framework that allows users to specify a model transformation, as well as

to execute the generated transformation pattern in any desired model instances.

Figure 3.1 – High-level overview of MTBD process

The implementation of MTBD is a plug-in called Model Transformation-Scribe

(MT-Scribe) to GEMS in Eclipse. This sub-section will present each of the steps and the

associated implementation details.

User Demonstration. A user’s demonstration provides the base for transformation

pattern analysis and inference, so accurately demonstrating a concrete model

48

transformation process is the first and foremost step. The demonstration is given by

directly editing a model instance in the model editor to simulate a transformation task.

Six different types of operations can be performed and demonstrated: 1) add a model

element (i.e., node), 2) remove a model element, 3) change the attribute of a model

element, 4) add a new connection, 5) remove a connection, and 6) change the attribute of

a connection. Users can change any model from the source state to the target state using

these operations.

The implementation of the demonstration is enabled in the GEMS model editor.

Figure 3.2 shows an ongoing demonstration in the modeling language EmFucnML [Sun

et al., 2011-a].

The key of the demonstration is that it should be sufficient to reflect the

transformation purpose accurately. For example, if a model transformation scenario

requires replacing all model elements of ElemType1 and ElemType2 with other types

of elements, the demonstration must cover replacing both types of elements, rather than

only replacing one of them. On the other hand, over-demonstration should also be

avoided. In other words, the demonstration should be as short and concise as possible,

which means that it is not necessary to cover multiple instances of the same type of

changes needed in the entire model instance. For example, to replace all the elements of

ElemType1 contained in the root of the model, instead of manually deleting every

ElemType1 and adding a new type of element, demonstrating only one replacement is

enough, because one replacement already contains the necessary information about how

the transformation should be performed in other locations.

49

Figure 3.2 – An ongoing demonstration and the Operation Recording view

During the demonstration, users are expected to perform operations not only on

model elements and connections, but also on their attributes, so that the attribute

transformation can be realized. In most model evolution activities, attribute

transformation is an essential task, because the attributes in the target model are often

based on the computation using one or more attributes in the source model. To support

this type of scenario, an attribute refactoring editor has been developed. As illustrated in

Figure 3.3, the attribute refactoring editor enables users to access all the attributes in the

current model editor and specify the desired transformation expressions (e.g., string and

arithmetic computation). During the demonstration, a user specifies the attribute

computation with the concrete values and obtains the concrete results, but the generic and

50

metamodel level transformation rules can be inferred from it later. The computation can

either be based on single attribute value assignment, or the combination of multiple

attribute values from different model elements and connections. The attribute refactoring

editor also provides a mechanism to let users create a temporary data pair, with a given

name and a value. The creation of the temporary data pair is actually used to simulate the

user input process, and the data can be used in any attribute configuration and

computation process through the entire demonstration. The creation of the temporary data

will be generalized as a user input action and will display an input box when the final

pattern is executed.

Figure 3.3 – The attribute refactoring editor

Because the demonstration is based on the concrete model instances, users are

fully isolated from metamodel definitions and MTL concepts, which allow them to think

51

about the transformation or evolution problem using the concepts they are most familiar

with.

Operation Recording. User demonstration reflects the intention of the

transformation. To infer this intention accurately, the detailed information about each

operation performed during the demonstration should be recorded accordingly. The

information to be recorded includes the elements and connections being involved directly

during the demonstration, but also the context information. Therefore, an event listener

has been developed to monitor all the operations occurring in the model editor and collect

the information for each operation in sequence. In GEMS, an extension point is available

to capture all the events occurring in the editor. The event listener extends this extension

point and stores all the needed information, and displays it in the Operation Recording

view (the bottom part of Figure 3.2), where users can track all the operations being

recorded during the demonstration. Table 3.1 shows the six types of operations that a user

may perform and the related information that needs to be recorded. Each recorded

operation is encapsulated into an object, similar to the Command pattern [Gamma et al.,

1995]. The final list of these objects represents the sequence of operations the user

performed during the demonstration.

Operation Optimization. The list of recorded operations indicates how a

transformation should be performed. However, not all operations in the list are

meaningful. Users may perform useless or inefficient operations during the

demonstration. For instance, without a careful design, it is possible that a user first adds a

new element and modifies its attributes, and then deletes it in another operation later,

with the result being that all the operations regarding this element actually did not take

52

effect in the transformation process and therefore are meaningless. The presence of

meaningless operations not only has the potential to make the inferred transformation

preconditions inaccurate, but also exerts a negative influence on the performance of a

transformation, especially when it executes on a large model instance. Thus, an

optimization that eliminates all meaningless operations is automatically done after the

recording. An optimization algorithm has been designed and implemented to detect the

meaningless operations and eliminate them, which will be presented in Section 3.3.

Table 3.1

The types of operations and the related context information recorded

Operation Type Information Recorded

Add an Element Location of the parent element and its meta type

The newly added element and its meta type

Remove an Element Location of the element being removed and its meta type

Modify an Element Location of the element being modified and its meta type

The attribute name, the old value and the new value

Add a Connection Location of the parent source and target elements and their meta

types

The newly added connection and its meta type

Remove a Connection Location of the connection being modified and its meta type

Modify a Connection Location of the connection being modified and its meta type

The attribute name, the old value and the new value

Pattern Inference. With an optimized list of recorded operations, the initial

transformation can be inferred. Because the MTBD approach does not rely on any MTLs,

it is not necessary to generate specific transformation rules, although that is possible.

Instead, a general transformation pattern is inferred, which is invisible to end-users so

that they are fully isolated from knowing MTLs or any implementation details. The

transformation pattern describes the precondition of a transformation (i.e., where the

53

transformation should be performed) and the actions of a transformation (i.e., how the

transformation should be realized). The precondition is defined by specifying the required

model elements and connections, with the constraints on them (e.g., the type of the

element must be ElemType1). The actions specify the sequence of operations to be

executed on the elements and connections identified in the precondition. By analyzing the

recorded operations, the related meta-information of model elements and connections is

extracted to construct the precondition, and the actions are generated by generalizing the

recorded operation sequence.

The pattern inferred in this step is an initial version, which means that the

precondition is the weakest precondition for the transformation and the set of actions is

specific to the operations performed during the demonstration. For instance, if a user

performed an operation to remove an element of ElemType1 from the root of the model

instance, and another operation to add a new element of ElemType2 in the root, the

inferred precondition is that the model instance should contain at least an element of

ElemType1 in the root so that the delete operation could be executed on it. In other

words, satisfying the weakest precondition means that a model instance contains the

minimally sufficient elements for each operation to be executed correctly. Obviously,

such kind of precondition is not restrictive enough in practice. In many cases, more

specific constraints are needed for the precondition from the aspects of both structure and

attribute, which cannot be inferred directly from the demonstration. For instance, the

element of ElemType1 should be removed only when a certain attribute value (e.g.,

load) is less than 100, or only when it is connected to another element of ElemType1.

Similarly, the initially inferred transformation actions are just the same as the operations

54

in the recorded operation set. However, sometimes this kind of repetition is not generic

enough to reflect the user’s real intention. Thus, a user refinement step comes after the

inference of the initial transformation pattern to let users make the pattern more accurate.

User refinement. The initial pattern inferred is specific to the demonstration and is

usually not practical and accurate enough, due to the limitation on the expressiveness of

the user demonstration. Thus, MTBD allows users to refine the inferred transformation

by providing more feedback for the desired transformation scenario. Three types of

refinement can be performed: 1) refinement on the structural precondition, 2) refinement

on the attribute precondition, and 3) refinement on the transformation actions. In order to

keep users at the appropriate level of abstraction without knowing MTLs or metamodel

definition, all the refinements can be done through interfaces that only expose

information from the demonstration on the concrete model instances.

The refinement on the structural precondition aims to restrict the required model

elements and connections to be included when matching a model transformation pattern.

From the example mentioned in the previous sub-section, after a user demonstrates

removal of an element of ElemType1, the structural precondition inferred only contains

one ElemType1. If the desired transformation scenario is to remove this element only

when it is connected to another ElemType1 trough a connection, users can refine the

inferred transformation pattern by including the additional required elements or

connections. The refinement can be done directly in the model editor, by selecting the

concrete elements or connections and confirming their containment using a one-click

pop-up menu in the editor, as shown in Figure 3.4.

55

Figure 3.4 – Refine structural precondition by confirming containment

The refinement on an attribute precondition enables users to give constraints on

the attributes of model elements and connections specified in the structural precondition.

When matching a transformation pattern in a model instance, after the structure is

matched, all the constraints on the attributes must be satisfied as well. The constraints on

attributes are specified using logical expressions. For instance, if the desired model

transformation scenario is to remove ElemType1 only when load < 100, users can

find out the element of ElemType1 in the precondition specification dialog, select the

attribute “load,” followed by giving the expression “< 100.” The constraint can be

based on multiple attributes on different model elements and connections. For example, if

ElemType1, ElemType2, and ElemType3 are involved in the precondition, the

constraint can be made by specifying “ElemType1.load + ElemType2.load ==

56

ElemType3.load.” The refinement is done in a dialog as shown in Figure 3.5. The

upper-left lists all the recorded operations in the demonstration. By clicking on a specific

operation, all the model elements involved will be listed, so that a user can locate the

elements for which they want to provide more constraints. Similarly, by clicking on a

certain element, all its attributes and associated values are listed. Users can select certain

attributes and type the necessary restrictions. Also, constraints can be given on the

attributes that are not defined in the metamodel, such as the number of outgoing or

incoming connections. Through this interface, users continue to work at the model

instance level to give specific preconditions on the elements they considered in the

demonstration. The meta-information and generic computation will be inferred and stored

in the transformation pattern automatically, with the information on the low-level

implementation and metamodel definition being hidden.

The inferred sequence of transformation actions also can be refined by users. The

most typical scenario is to identify the generic operations that should be repeated

according to the available model elements and connections. An illustrative example of

this refinement is when a user wants to remove all the elements of ElemType1 in the

root of the model instance. Instead of demonstrating the removal of all the elements, the

demonstration is done by only removing one of them. In the initially inferred

transformation actions, only a single operation (i.e., remove Elem1) is included. Without

refinement, the execution of the transformation pattern will only trigger the removal of a

single ElemType1, rather than deleting all of those contained in the root of the model as

expected. Therefore, users can refine the transformation actions, by marking the

operation generic. A generic operation means that during an execution of a

57

transformation pattern, the operation should be executed repeatedly by matching the

related precondition in the current model until no more matches can be made. The

identification of generic operations can be accomplished by marking the list of

transformation actions in a dialog, as shown in Figure 3.6.

Figure 3.5 – Precondition specification dialog

Pattern Repository. After the user refinement, the transformation pattern will be

finalized and stored in the pattern repository for future use. Because the transformation

pattern is represented by different types of objects (i.e., precondition objects,

transformation action objects), the current implementation of MTBD serializes all the

objects in a transformation pattern and stores them locally.

58

Figure 3.6 – Generic operations identification dialog

Pattern Execution. The final generated patterns in the repository can be executed

on any model instances. Because a pattern consists of the precondition and the

transformation actions, the execution starts with matching the precondition in the new

model instance and then carries out the transformation actions on the matched locations

of the model. The precondition matching is done by traversing the model instance to

search all locations that satisfy both the structural and attribute preconditions. Because

both the precondition and the model instance can be regarded as graphs, the precondition

matching problem could be solved by using graph matching theories [Varró et al., 2005].

A backtracking algorithm has been developed to match a precondition in a given model

instance, as presented in Section 3.3. A notification is given if no matching locations are

found. In MTBD, a matching location is defined as a part or substructure of a model that

contains all the model elements and connections required in the precondition that satisfies

all the constraints given in the user’s refinement.

59

After a matching location is found, the transformation actions can be executed

with the matched model elements and connections. If operations are identified as generic,

the execution engine will rematch the related part of the precondition, and execute these

operations as long as additional matching can be made.

Figure 3.7 – Execution controller dialog

Execution Control. Users can select the pattern in the execution controller dialog

shown in Figure 3.7 to execute an inferred transformation pattern from the repository.

Users can select multiple patterns to execute in sequence, which is particularly useful

when a model transformation task is divided by sub-tasks and specified by different

demonstrations. In addition, the total times for executing the selected pattern(s) can be

specified, because in some use cases (e.g., model scalability), a transformation pattern(s)

needs to be executed multiple times to transform the model to a specific state and

configuration. Moreover, users can customize part of the model instance to execute the

pattern. By default, a transformation pattern will be executed in the root of the current

60

model instance and matched in the whole model. Users are also allowed to select a partial

model as an input base to match a transformation pattern.

Correctness Checking. The location matching the precondition guarantees that all

transformation actions can be executed with necessary operands with satisfied

constraints. However, it does not ensure that executing them will not violate the

metamodel definition or external constraints, because the implementation of executing

the actions is based on the low-level model manipulation APIs provided by GEMS that

could be applied without the monitoring of the GEMS checking mechanism. Therefore,

the execution of each transformation action will be logged and the model instance

correctness checking is performed after every execution. If a certain action violates the

metamodel definition, all executed actions are undone and the whole transformation is

cancelled, with the model instance being rolled back to the initial state. Because the

transformation actions have been encapsulated as objects in the Command pattern, the

undo process is implemented directly.

3.3 Formal Specification of MTBD

 As a new model transformation approach that is at a higher level of abstraction

than MTLs, MTBD provides an end-user centric solution to handle model transformation

problems. Different from MTLs that have well-defined language syntax and semantics to

precisely reflect the power and functionality, the usage and power of MTBD cannot be

expressed directly in a similar way. Therefore, a formal specification of MTBD is

presented in this section, for the purpose of accurately describing the process of MTBD

and defining its power and full functionality.

61

 Using the description of MTBD provided in Section 3.2, a formal model of the

MTBD has been built as a 5-tuple:

),,(),,(),,(),,(, TPMTPMMTGMTBD jmimim

 (1)

where:

 Mi is a model conformant to the metamodel Metai

 Mj is a model also conformant to the metamodel Metai

 m

is a sequence of model modifications recorded during a user

demonstration of a transformation on the model, Mi.

),(miMTG

is a generalization function that produces an initial set of model

transformation actions, T

, that can be applied to any model conformant to

Metai. The transformation is produced by generalizing the series of

modifications, m

, that were applied to Mi.

),(miM

is an inference function that extracts a set of preconditions, P

,

needed in order to generalize and apply the modifications, m

, to another

model.

),(TP

 is an optional manual transformation and precondition refinement

function that allows the domain expert to modify the transformation and

preconditions inferred by TG and ϖ. This function produces a refined

transformation, T

 , and set of preconditions P

 .

),,(TPM j

is a transformation function that applies the refined generalized

transformation, T

 , to a model, Mj, if the preconditions P

are met by Mj.

62

3.3.1 Operation Demonstration and Recording

The goal of MTBD is to allow users to express domain knowledge regarding a

function, K(Mi). That is, the user is describing a domain-specific function that can be

applied to a model in order to achieve a domain-specific goal. A critical component of

MTBD is that the domain function (transformation) is expressed in terms of the notations

in the modeling language and not the notations used to describe the metamodel, Metai.

MTBD captures domain functions as transformations that can be applied to

models that adhere to the metamodel, Metai, of the target domain. The first step in

MTBD is for a user to apply the domain function, K(Mi) to a model, so that the MTBD

engine can capture the set of model modifications, m

. The process begins by the user or

an external signal initiating a recording process. During the recording process, the user

applies the domain function, K(Mi), to the model, Mi:

K(Mi) ⇒ Mj (2)

K : Metai→ Metai (3)

The domain function takes an initial model, Mi, as input, and produces a new

model, Mj, as output. Although it is possible that Mi and Mj are not conformant to the

same metamodel, Metai, this dissertation explicitly focuses and enforces this assumption.

Equation 3 shows that the domain function must represent an endogenous model

transformation that maps a model in one metamodel to a model in the same metamodel.

3.3.2 Operation Optimization

The set of modifications m

 potentially can contain meaningless operations due

to a users’ careless design of a demonstration. An algorithm has been developed to

63

remove these meaningless operations and optimize m

, as shown in Algorithm 1. The

algorithm traverses the whole recorded operation list, and seeks the meaningless

operation pairs on the same model element or connection, such as removing after adding,

or multiple modifications without making changes between source and target states.

 for each op in the input operation list
 switch (op.type)
 case ADD_ELEM:
 for each op_temp after the current op in the list
 if op_temp.type == REMOVE_ELEM and op_temp removes what op added

 and the element was not referred in between
 then remove both op and op_temp from the list
 end for
 case MODIFY_ELEM:
 traverse the final model instance and search the element being modified
 if not found then remove op from the list
 if found then compare the attribute value with the value stored in op
 if different then remove op from the list
 case ADD_CONN:
 for each op_temp after the current op in the list
 if op_temp.type == REMOVE_CONN and op_temp removes what op added
 and the element was not referred in between
 then remove both op and op_temp from the list
 end for
 case MODIFY_CONN:
 traverse the final model instance and search the connection being modified
 if not found then remove op from opList
 if found then compare its attribute value with the value stored in op
 if different then remove op from opList
 end for

Algorithm 1 – Optimize Operation List

3.3.3 Pattern Inference

After the recording process, the MTBD engine possesses a series of optimized

model modifications m

, that express the application of the domain function K(Mi), to a

specific model. The next step of MTBD is to use pattern inference to generalize and

describe the domain function as a model transformation. A critical aspect of this process

64

is that the transformation must be expressed in terms of the general metamodel notations

captured in Metai, rather than a specific model’s elements, Mi. The inference step

produces a model transformation, which we describe as a tuple:

TPtionTransforma

, (4)

where P

 is a set of preconditions that must be met in order to apply the transformation

produced by function , and T

is the set of generalized model modifications that

transform the source model to the desired target model, produced by function TG . In

terms of the domain function, P

 describes the domain knowledge regarding the

circumstances in which K(Mi) can be applied, and T

defines what to do when these

circumstances are met. For example, in the previous example from Section 3.2, P

 is the

precondition that the element must be connected to another element and the load attribute

is above a set threshold, where T

 represents the modifications needed in order to remove

or replace the element.

As mentioned in the previous sub-section, the preconditions can be subdivided

into two types:

Structural preconditions that govern the types of elements, the containment

relationships, and connection relationships that must exist within the model. The

structural preconditions take the form of assertions on the hierarchy or connection

relationships that must be present in the model. A hierarchical precondition, Pei, is

described as a vector:

Pei= T0, T1,..., Tn (5)

where T0 is the type of an element that is directly modified by one or more operations in

65

m

, T1 is the type of the parent of T0, T2 is the type of the parent of T1, and so forth to the

root element. In order for this precondition to hold in an arbitrary model, Mj, an instance

of the type T0, contained within an element of type T1, must exist. More formally, given

an element, ei, in a model Mj that conforms to the metamodel Metai, a hierarchical

precondition, Pei, is satisfied by ei if:

V (ei, Ti) = (type(ei) == Ti) ∧(V(ei+1, Ti+1)) (6)

falseotherwise

truetrueTeV
ePe

i

ii
,

),),((
)(

0
 (7)

A connection precondition is another form of a structural precondition.

Connection preconditions dictate the associations that must be present in the model. A

connection precondition, Pci, is defined as a 3-tuple:

Pci = <Pej, Pek, Tl> (8)

where Pej specifies a structural precondition that must be met for an element to be

considered the source element of a connection to be modified; Pek is a precondition that

must be met for an element to be considered the target element of the connection; and Tl

is the type of connection that must exist between the elements that satisfy the source and

target structural preconditions. In order for a connection, ci, between two elements, ei and

ej, to satisfy Pci:

falseotherwise

trueTctypeePeePe

trueTctypeePeePe

Pc liikjj

lijkij

i

,

),)(()()(

),)(()()(

 (9)

The inference),(miM

 function evaluates each change in m that occurred.

From these changes, structural preconditions are extracted as follows:

 Added Elements. For each model element ej that is added to the model as a

66

child of ei, a precondition Pei is created. The type vector for Pei captures the

types of elements that are visited from traversing from ei to the root of the

model. T0 is set to the type of ei.

 Removed Elements. If an element ei is removed from the model, a

precondition Pek is created. The type vector for Pek captures the types of

elements that are visited from traversing from ei to the root of the model. T0 is

set to the type of ei.

 Added Connections. Each new connection, cj, that is added from model

element ei to ej produces a new precondition Pci. The type vector for the

source element Pej captures the types of elements that are visited from

traversing the source element to the root of the model. The type vector for the

target element Pek captures the types of elements that are visited from

traversing the target element to the root of the model. Tl is set to 0 to indicate

that no existing connection is required between the elements that satisfy Pej

and Pek.

 Removed Connections. Each deleted connection, cj, that previously started

from model element ei and ended at model element ej produces a new precon-

dition, Pci. The type vector for the source element Pej captures the types of

elements that are visited from traversing the source element to the root of the

model. The type vector for the target element, Pek, captures the types of

elements that are visited from traversing from the target element to the root of

the model. Tl is set to the type of cj.

67

 Changed Element Attributes. If an element ei, has an attribute value changed,

a pre-condition Pek, is created. The type vector for Pek captures the types of

elements that are visited from traversing from ei to the root of the model. T0 is

set to the type of ei.

 Changed Connection Attributes. If a connection, ci, has an attribute value

changed, a precondition Pck is created. The type vector for the source element

Pej captures the types of elements that are visited from traversing the source

element to the root of the model. The type vector for the target element Pek

captures the types of elements that are visited from traversing the target

element to the root of the model. Tl is set to the type of cj.

Attribute preconditions specify the required values of attributes on the model

elements that a transformation will apply. The attribute preconditions, Ac, are specified as

tuples:

Aci = <Pei, Expr> (10)

where Pei is a structural precondition specifying the source model element to which the

attribute precondition must be checked. The Expr component specifies a mathematical

expression over the attributes of an element that satisfy Pei. Currently, the attribute must

be a primitive value and any logical and arithmetic expressions are supported.

Complete structural and attribute preconditions are difficult to infer automatically.

Simple algorithms can extract preconditions that specify the minimum number of

required model elements and connections, and an exact value of one or more element

attributes. However, these algorithms are often too exclusive and generate preconditions

that require exact matching of the structure and all attribute values. Ideally, attribute

68

preconditions are specified as expressions from domain knowledge covering the affected

elements. Manual inference refinement is used to capture this type of precondition.

 With the inferred precondition, the transformation action T

can be constructed by

listing all the recorded operations op in the demonstration, associating with the elements

and connections in the precondition P

.

3.3.4 User Refinement

The goal of MTBD is to generate a transformation, T

, that faithfully represents

the domain function K(Mi). However, in many circumstances, the model that the function

is demonstrated on, Mi, may lack sufficient information to infer preconditions accurately.

In this type of situation, the domain expert must be able to refine the inferred

preconditions in order to ensure that T

accurately captures K(Mi). The optional user

refinement function,),(TP

 , allows the user to view and modify the inferred

transformation and preconditions produced by TG and ϖ. The following three types of

refinement are supported:

 Refinement on structural precondition is a function)(Ps

 to include

additional element Pei = T0, T1,...,Tn or connection Pci = <Pej, Pek, Tl> to the

initial precondition P

, and produces an updated precondition P

 .

 Refinement on attribute precondition is a function)(Pa

 to include an

additional attribute constraint Aci = <Pei, Expr> to the initial precondition P

,

and produces an updated precondition P

 .

 Refinement on transformation actions is a function)(Tt

 to update a set of op

in T

to be op’ as generic, and produces an updated transformation actionT

 .

69

3.3.5 Pattern Execution

 The pattern execution function),,(TPM j

 takes an input model jM , and

matches the precondition P

 . Transformation actions T

 are executed on all the matched

locations. The matching algorithm is based on a backtracking algorithm as shown in

Algorithm 2. The algorithm works by first constructing the candidate object list used for

matching the preconditions. Then, all combinations of the candidate objects in the list are

tried to match all preconditions. Failing to satisfy any of the preconditions will lead to the

next combination in a backtracking manner. Once the precondition P

 can be matched,

transformation actions T

 can be guaranteed to be executed with the sufficient operands.

Initialize a candidate object list L containing all the elements and connections in jM

for each entry p in the precondition P

for each obj in the candidate object list L

 if obj matches p then assign obj to p and break

 if obj does not match p then continue

end for

if p is assigned and is the last entry in the list L then matching succeeds

if p has not been assign then backtrack to the previous p and continue

if no further backtracking is allowed then matching fails and break

end for

Algorithm 2 – Precondition matching using a backtracking algorithm

3.4 Related Work

 The general area of related work concerns new model transformation approaches

that aim at simplifying the implementation of model transformation tasks. Some

innovative model transformation approaches have been proposed and developed as

alternatives to MTLs. These new approaches share a similar goal of making the

specification of model transformation easier and more user friendly, requiring less

70

knowledge of MTLs and metamodels. These innovations provide strong potential to

simplify the automation of model scalability tasks.

Model Transformation By Example (MTBE) [Varró, 2006] is an innovative

approach to address the challenges inherent from using model transformation languages.

Instead of writing transformation rules manually, MTBE enables users to define a

prototypical set of interrelated mappings between the source and target model instances,

and then the metamodel-level transformation rules can be inferred and generated semi-

automatically. In this context, users work directly at the model instance level and

configure the mappings without knowing any details about the metamodel definition or

the hidden concepts. With the semi-automatically generated rules, the simplicity of

specifying model transformations is greatly improved. As first introduced by Varró

[Varró, 2006], the prototypical transformation rules of MTBE can be generated partially

from the user-defined mappings by conducting source and target model context analysis.

Varró later proposed a way to realize MTBE by using inductive logic programming

[Balogh and Varró, 2009]. Similarly, Strommer and Wimmer implemented an Eclipse

prototype to enable generation of ATL rules from the semantic mappings between

domain models [Strommer et al., 2007; Strommer and Wimmer, 2008]. Instead of using

logic programming engines, the inference and reasoning process is based on pattern

matching.

However, the current state of MTBE research still has some limitations in terms

of automating model scalability tasks. The semi-automatic generation often leads to an

iterative manual refinement of the generated rules; therefore, the model evolution

designers are not isolated completely from knowing the transformation languages and the

71

metamodel definitions. In addition, the inference of transformation rules depends on the

given sets of mapping examples. In order to obtain a complete and precise inference

result, one or more representative examples must be available for users to setup the

prototypical mappings, but seeding the process with the proper scalability examples is not

always an easy task. Furthermore, current MTBE approaches focus on mapping the

corresponding domain concepts between two different metamodels without handling

complex attribute transformations. Therefore, it is challenging to automate the

configuration of attributes in the scaling process, which is commonly required in practice.

Finally, most MTBE approaches fit the exogenous model transformation concept very

well to map the concepts one-to-one between two different domains, but they are not very

practical when it comes to endogenous model transformations where one-to-multiple or

multiple-to-multiple mappings between the source and target models are involved, which

presents limitations in supporting model scalability evolution activities.

Brosch et al. introduced a method for specifying composite operations within the

user’s modeling language and environment of choice [Brosch et al., 2009-a; Brosch et al.,

2009-b]. The user models the composite operation by-example, changing a source model

into the desired target model. By comparing the source and target states, the specific

changes can be summarized by a model difference algorithm. After giving additional

specification of the pre-condition and post-condition, an Operation Specification Model

(OSM) can be generated that represents the composite operation scenario and can be used

to generate other transformation artifacts. Similar to MTBE, users can work on the

concrete model instance level without knowing about the metamodel to define composite

operations through examples. Although user refinement (e.g., specification of pre- and

72

post- conditions) is also needed to make the generated transformation complete and

accurate, the refinement is done at the example level through the given interfaces, rather

than at the generated transformation rule when using MTBE. In addition, the composite

operation focuses on endogenous model transformation, which potentially could be used

to support automating model scalability tasks. However, the major limitations with this

approach are: 1) Even though the refinement process is not on the level of generated

model transformation rules, some programming concepts are involved (e.g.,

includesAll(), isEmpty(), and some iteration control), making this process

dependent on technical skills that some domain experts may not possess; 2) Attribute

transformation has not been considered and implemented, which shares the same problem

as MTBE; 3) In the generation of artifacts for a certain scenario, a manual binding

process is required to map the elements in the OSM to the new concrete model. Although

a user friendly interface has been developed to simplify the procedure, the manual

binding process would become challenging when a large number of model elements and

connections are present in a scaling scenario.

EMF Refactor [Arendt et al., 2009; EMF Refactor, 2011] is a new open source

component under the Eclipse EMFT project [Eclipse EMFT, 2011] to provide tool

support for generating and applying refactorings for models based on EMF Ecore models.

EMF Refactor is based on EMF Tiger, an Eclipse plug-in that performs in-place EMF

model transformations using a graphical MTL. The model transformation concepts of

EMF Tiger are based on algebraic graph transformation concepts. Model refactorings are

designed by ordered sets of rules. Each rule describes a conditional statement on model

changes. If the pattern specified in the LHS exists, it is transformed into another pattern

73

defined in the RHS. Additionally, several negative application conditions (NACs) can be

specified which represent patterns that prevent the rule from being applied. A complete

set of artifacts can be generated from the rules as a refactoring operation applicable to

EMF models.

EMF Refactor enables an automatic generation of refactoring operations,

simplifying the process of adding new refactoring functions to support model evolution

activities in model editors. However, the initial definition of the refactoring rules is based

on EMF Tiger. As pointed out in Section 1.3, a graphical MTL also presents challenges

to end-users. In fact, defining LHS, RHS, and NAC graphs may be as difficult as writing

textual rules for those users who have no model transformation or programming

experience. Moreover, EMF Refactor is restricted to support model refactoring without

the capability of enabling other types of model evolution activities such as model

scalability, aspect-oriented modeling.

Although our contribution focuses on model transformations, a similar work has

been done to carry out program transformations by demonstration [Robbes and Lanza,

2008]. To perform a program transformation, users first manually change a concrete

program example, and all the changes will be recorded by the monitoring plug-in. Then,

the recorded changes will be generalized in a transformation. After editing and specifying

the generated transformation, it can be applied to other source code locations. Although it

also supports the specification of how variable values are computed, it is in a separate

step with much manual editing involved. MTBD automates this step in the demonstration

process and is focused on demonstrating changes on model instances, not source code.

74

3.5 Summary

 The goal of the research described in this chapter is to provide an end-user centric

model transformation approach to support model evolution. The new approach presented

in this chapter is MTBD that extends the idea of PBE to allow users to specify a model

transformation by demonstrating the process on concrete examples. The detailed MTBD

process and components are presented, with its formal specification being defined.

MTBD has been implemented as a plug-in to GEMS in Eclipse, which can support these

model evolution activities on any DSML defined in GEMS.

 Chapter 4 will provide case studies of using MTBD on the typical model

evolution tasks, such as model scalability, model refactoring, aspect-oriented modeling,

model management, and model layout.

75

CHAPTER 4

MTBD IN ACTION:

USING MTBD TO SUPPORT MODEL EVOLUTION

The final goal of MTBD is to support model evolution activities in practice. Five

types of model evolution tasks will be described in this chapter to demonstrate a wide

range of evolution tasks that are possible with MTBD. For each type of model evolution,

background information will be given followed by the key techniques needed. Then, a

case study will be presented to illustrate how to use MTBD to address the problem in

each type of evolution. Furthermore, to demonstrate the benefits of this approach,

experimental evaluation is provided at the end of the chapter.

4.1 Model Refactoring

Refactoring refers to the process of changing the internal structure of a software

system without modifying its external functional behavior or existing functionality

[Fowler, 1999]. Traditionally, refactoring focused on the implementation stage to

optimize the structure of program code [Mens and Tourwé, 2004]. In MDE and DSM,

applying refactoring to models is as important as to code [Zhang et al., 2005], because

models have become first-class entities to construct a software system. Also, optimizing

model structures at the design stage may result in a potential reduction of the cost during

future maintenance [Zhang et al., 2005].

76

A model refactoring process is a typical example of an endogenous model

transformation, where a source model in a non-optimized state is transformed to the

target model with the structure being optimized. For example, Figure 4.1 shows a

refactoring example on a UML state diagram for a simple telephone object. The initial

model is in a messy state (i.e., because one can hang up at any time during

communication, transitions have been drawn to the Idle state from every other state in the

diagram), but can be transformed to a model with an optimized structure (i.e., all the

other states have been moved into a new parent state called Active, and only one set of

incoming and outgoing transitions from Idle is needed). Both models are in the same

domain and conform to the same metamodel, and the refactoring did not change the

functions of the model.

Active

DialTone

Dialing

Invalid

Connecting

Busy

Talking Ringing

Idle

DialTone Dialing

Invalid

Connecting

Busy

Talking Ringing

Idle

Figure 4.1 – Model refactoring for state diagram (adapted from [Sunyé et al., 2001])

To use model transformation to implement model refactoring tasks in a practical

way, the following features are frequently required:

77

 The final model transformation must be generic, not specific to a model

instance (e.g., the transformation should be capable of moving not only seven

states to the Active state, but also any number of states to the Active state).

 A precise precondition specification must be enabled to restrict the subpart of

the model that is to be refactored.

 When executing a model transformation, users should be able to select the

subparts of the model manually to perform a refactoring, or automatically

match the precondition in the whole model.

 User input must be enabled to specify the attributes for different scenarios. In

the example of Figure 4.1, the newly created surrounding state is called

Active. However, in other scenarios, the name could be something else.

Therefore, users should be able to specify the name according to their needs.

MTBD supports the requirements above by enabling the precondition and generic

operation refinement. The execution controller enables users to flexibly choose where to

execute the transformation pattern. The user input can be realized by using the artificial

attribute pair, which will be presented in the case study.

4.1.1 Case Study – Background

UML class diagrams have been used widely to design and visualize software

architecture. Similar to software source code refactoring, a number of refactoring rules

can be applied to UML class diagrams at the modeling level. Because UML class

diagrams are more intuitive as a graphical notation than the source code, it provides a

78

way to enable software developers to discover the refactoring hot spots earlier in the

lifecycle, as well as evaluating the impact after the refactoring.

+getName()

+getHeadCount()

+getTotalAnualCost()

Department

+getId()

+getName()

+getAddress()

Employee
+getName()

Party

+getHeadCount()

+getTotalAnualCost()

Department

+getId()

+getAddress()

Employee

Figure 4.2 – UML refactoring - Extract Superclass

One classical UML class diagram refactoring is Extract Superclass, which is

defined as “when you have two classes with similar features, create a superclass and

move the common features to the superclass.” [France et al., 2003] The main purpose of

this refactoring is to remove the duplicate common behaviors from different classes. For

instance, as shown in Figure 4.2, both Department and Employee share the same method

getName(), so a new parent class Party is created containing the common method

getName(), followed by making Department and Employee extensions of the super class

and removing the original getName(). Of course, extract superclass can be applied to

more than two classes based on the same principle.

4.1.2 Case Study – Solution

Using MTBD to specify model refactoring starts from demonstrating the

refactoring process on the concrete example followed by refining and generating the

generic transformation pattern. We take the example in Figure 4.2 as our base model for

79

the demonstration. List 4.1 shows the operations performed during the demonstration.

The demonstration starts by creating the new parent class. Because in different scenarios,

the name of the new parent class varies, so an artificial name is created and then used to

set the name of the new class. The artificial name will become a user input box when the

final transformation pattern is executed, so that users can have a chance to input their

desired attribute values. In the newly created parent class, a method is added, which

represents the common behavior to extract. The name of the method should be the same

as the one to be removed in the subclasses. The attribute refactoring editor can be used to

access the method getName() in Department and set the name of the new method to be

the same. After the method is created in the parent classes, we can then remove the

original method in the subclass, and finally make a generalization connection. After this

point, the extract process in one of the subclasses has been done. We continue to

demonstrate extraction of the behavior in Employee class. Because the parent class has

been created already, we simply remove the method getName() in Employee and make

the generalization connection.

 The correct transformation pattern cannot be generated without user refinement in

this case. On one hand, the precondition has to be defined to restrict the extract process

only to the method with the same name, as shown in Operation 10 in List 4.1. On the

other hand, the number of subclasses varies, so we must make sure that the same process

can be applied to all those classes that having the same behavior, by identifying

Operations 8 and 9 as generic.

80

List 4.1 – Operations for demonstrating Extract Superclass

(* represents generic operations to be identified)

Sequence Operation Performed

1 Add a Class in UMLRoot

2 Create an artificial name with the value: ClassName = “Party”

3 Set UMLRoot.Class.name = ClassName = “Party”

4 Add a Method in UMLRoot.Party

5
Set UMLRoot.Party.Method.name = UMLRoot.Department.getName =

“getName”

6 Remove getName in UMLRoot.Department

7 Connect UMLRoot.Department and UMLRoot.Party with generalization

8* Remove getName in UMLRoot.Employee

9* Connect UMLRoot.Employee and UMLRoot.Party with generalization

10
Add precondition UMLRoot.Department.getName.name ==

UMLRoot.Employee.getName.name

With the finalized transformation pattern, users can apply it to any UML class

diagram model either by automatically matching the pattern, or manually selecting part of

the model to receive the refactoring.

4.2 Model Scalability

 Model scalability is defined in [Gray et al., 2005] as the ability to build a complex

model from a base model by adding or replicating its model elements, connections or

substructures. In the context of MDE and DSM, analyzing and testing the scalability of

models becomes essential in every phase of software development. For instance, feature

models [Kang et al., 1990] are used as design models in software product lines to

configure the components of a software system, such that adding new product

functionality often consists of adding new feature elements to a model. Domain-specific

models can be built to specify software systems and generate implementation code,

which means that expanding the implementation of a software system is based on scaling

81

the corresponding domain-specific models. Moreover, when a software system is about to

be deployed, deployment models can be used to specify how to allocate software to the

underlying hardware infrastructure [White et al., 2007-b] and to monitor and control the

infrastructure at runtime [Sun et al., 2009-b]. In order to allocate additional infrastructure

to handle larger workloads, the underlying deployment models must be scaled.

To support model scalability, the following four features are important when

using model transformation approaches:

 The finalized model transformation must be capable of scaling up a model

independently of the number of base degrees. In other words, it must be very

generic (e.g., the transformation should work for the tasks to scale up the

model from 4 to 5, 9 to 10, 99 to 100, or even back down from a larger model

to a smaller one).

 Because it is very common to compose an attribute (e.g., name) in the

complex model using the attribute in the based model, a rich set of attribute

transformations should be supported (e.g., string concatenation, substring

matching).

 Manually scaling a model by executing a model transformation one-by-one is

tedious. When executing a transformation, users should be able to specify the

number of times the selected transformation will be executed.

 Sometimes, a single scaling process can be done by several separated tasks

with several model transformation processes, so users should also be allowed

to select multiple model transformations in a certain sequence to execute.

82

MTBD is designed and implemented to support the features listed above. To

make the generated transformation pattern generic for different model instances, users

could first identify the process of scaling the model by one degree. Then, by

demonstrating this smaller scaling transformation on a concrete model, the generic

pattern can be inferred by identifying the generic operations in the user refinement step.

Executing the pattern multiple times (users can customize the execution times in the

execution controller) may result in scaling the model for multiple degrees, without being

dependent on the existing number of model elements and connections. For those complex

model scalability scenarios, a single task can be divided and accomplished by multiple

demonstrations. The execution control also enables users to select multiple

transformation patterns in a specific execution sequence. Finally, complex attribute

transformation is supported in the attribute refactoring editor.

4.2.1 Case Study – Background

Stochastic Reward Nets (SRNs) [Muppala et al., 1994] can be used for evaluating

the reliability of complex distributed systems. The Stochastic Reward Net Modeling

Language (SRNML) [Kogekar et al., 2006] was developed to describe SRN models of

large distributed systems [Lin et al., 2008], in order to design and model performance-

based system properties such as schedulability, performance, and time profiles. For

example, the SRN model defined by SRNML in Figure 4.3 depicts mechanisms to handle

synchronous event demultiplexing and dispatching when applying the Reactor pattern

[Schmidt et al., 2000] in middleware for network services.

83

The reactor pattern handles service requests to a service handler from one or

multiple input events concurrently. Whenever an event comes in, the service handler

demultiplexes the incoming event to its associated event handler. Thus, an SRN model

consists of two parts: the event types handled by a reactor and the associated execution

snapshot. The execution snapshot depicts the underlying mechanism for handling the

event types included in the top part, so any change made to the event types will require

corresponding changes to the snapshot. In Figure 4.3, the original model has two event

types, 1 and 2, each from its arrival (e.g., A1), to queuing (e.g., Sn1) and finally service

(e.g., Sr1) through the immediate transitions (e.g., B1, S1). It also models the process of

taking successive snapshots and non-deterministic service of event handles in each

snapshot through some snapshot transitions and places (e.g., StSnpSht, TStSnp1,

TProcSnp1,2).

The scalability challenges of SRN models are triggered when new event types and

the corresponding connections with event handlers are added. As shown in the bottom of

Figure 4.3, when two new event types (3 and 4) need to be modeled, two new sets of

event types and connections (i.e., from A3 to Sr3, from A4 to Sr4) should be added. Also,

the snapshot model should be scaled accordingly by adding new snapshot places (i.e.,

SnpLnProg3, SnpLnProg4), transitions from starting place to end place (i.e., TStSnp3,

TEnSnp3, TStSnp4, TEnSnp4), transitions between each new place and each existing

place (i.e., TProcSnp3,1, TProcSnp1,3, TProcSnp3,2, TProcSnp2,3, TProcSnp4,1,

TProcSnp1,4, TProcSnp4,2, TProcSnp2,4, TProcSnp3,4, TProcSnp4,3), as well as all the

needed connections between places and transitions.

84

Figure 4.3 – An SRN model before (top) and after (bottom) scaling

4.2.2 Case Study – Solution

Using MTBD to address the model scalability problem starts with analyzing the

scalability scenario. The task of adding one more event types to an existing SRN model

can be divided into the following three sub-tasks, as shown in Figure 4.4:

85

t1. Create a new set of places, transitions and connections for the new event type.

Specify proper names for them based on the name of the event.

t2. Create the TStSnp and TEnSnp snapshot transitions and the SnpInProg

snapshot place, as well as the associated connections.

t3. For each pair of <existing snapshot place, new snapshot place>, create two

TProcSnp transitions and connect their SnpInProg places to these TProcSnp

transitions.

To demonstrate scalability as an evolution task, we choose the 2-event SRN

model as shown in the top of Figure 4.3. Then, we manually edit the model and

demonstrate the three sub-tasks. To demonstrate t1, the operations identified in List 4.2

are performed.

List 4.2 – Operations for demonstrating Sub-task t1 of model scalability example

Sequence Operation Performed

1 Add a Place in SRNRoot

2 Create an artificial name with the value: EventName = “3”

3 Set SRNRoot.Place.name = “A” + EventName = “A3”

4 Add a Transition in SRNRoot

5 Set SRNRoot.Transition.name = “B” + EventName = “B3”

6 Add a Place in SRNRoot

7 Set SRNRoot.Place.name = “Sn” + EventName = “Sn3”

8 Add a Transition in SRNRoot

9 Set SRNRoot.Transition.name = “S” + EventName = “S3”

10 Add a Place in SRNRoot

11 Set SRNRoot.Place.name = “Sr” + EventName = “Sr3”

12 Connect SRNRoot.A3 and SRNRoot.B3

13 Connect SRNRoot.B3 and SRNRoot.A3

14 Connect SRNRoot.B3 and SRNRoot.Sn3

15 Connect SRNRoot.Sn3 and SRNRoot.S3

16 Connect SRNRoot.S3 and SRNRoot.Sr3

17 Connect SRNRoot.A3 and SRNRoot.B3

86

Operation 2 is used to create a name for a certain value manually, which can be

reused later in the rest of the demonstration to setup the desired name for each element

(e.g., the new event is called “3”, so the places and transitions are named as “A3”, “B3”,

“Sn3”). The operation also indicates that the value of this name should be given by the

user, which will invoke an input box when the final generated transformation pattern is

executed on other model instances. When setting up the attribute in operations 3, 5, 7, 9,

11, users just need to give the specific composition of the attributes by using the artificial

names and constants, or simply select an existing attribute value in the attribute

refactoring editor. After applying these operations, the top model will have a new event

type, as shown in Figure 4.4 (Sub-task 1).

Figure 4.4 – The process of scaling a SRN model from two events to three events

87

To demonstrate t2, the necessary snapshot places and transitions in sub-task 2 are

added for the new event type by performing the operations indicated in List 4.3. Figure

4.4 (Sub-task t2) shows the model after these operations.

List 4.3 – Operations for demonstrating Sub-task t2 of model scalability example

Sequence Operation Performed

18 Add a SnpPlace in SRNRoot

19 SetSRNRoot.SnpPlace.name=

“SnpLnProg”+EventName = “SnpLnProg3”

20 Add a SnpTransition in SRNRoot

21 Set SRNRoot.SnpTransition.name =

“TStSnp” + EventName = “TStSnp3”

22 Add a SnpTransition in SRNRoot

23 Set SRNRoot.SnpTransition.name =

 “TEnSnp” + EventName = “TEnSnp3”

24 Connect SRNRoot.StSnpSht and SRNRoot.TStSnp3

25 Connect SRNRoot.TStSnp3 and SRNRoot.SnpLnProg3

26 Connect SRNRoot.SnpLnProg3 and SRNRoot.TEnSnp3

27 Connect SRNRoot.TEnSnp3 and SRNRoot.StSnpSht

To demonstrate t3, two snapshot transitions for each <existing snapshot place,

new snapshot place> are created. This sub-task involves using generic operations,

because the number of existing snapshot places may vary in different model instances.

This number will also increase after each scaling process. Therefore, in the

demonstration, users only need to create two snapshot transitions for just one set of

<existing snapshot place, new snapshot place>, followed by identifying these operations

as generic after the demonstration, so that the engine will generate the correct

transformation pattern to repeat these operations when needed. The operations performed

are shown in List 4.4. We select SnpLnProg2 as the existing snapshot place, and

demonstrate the creation of snapshot transitions TProcSnp2,3 and TProcSnp3, 2.

88

List 4.4 – Operations for demonstrating Sub-task t3 of model scalability example

(* represents generic operations to be identified)

Sequence Operation Performed

28
*

Add a SnpTransition in SRNRoot

29
*

Set SRNRoot.SnpTransition.name = “TProcSnp” +

SRNRoot.SnpLnProg2.name.subString(9) + “,” + EventName

= “TProcSnp” + “2” + “,” + “3” = “TProcSnp2,3”

30
*
 Add a SnpTransition in SRNRoot

31
*
 Set SRNRoot.SnpTransition.name = “TProcSnp” +

EventName + “,” + SRNRoot.SnpLnProg3.name.subString(9)

= “TProcSnp” + “3” + “,” + “2” = “TProcSnp3,2”

32
*
 Connect SRNRoot.SnpLnProg2 and SRNRoot.TProcSnp2,3

33
*
 Connect SRNRoot.TProcSnp2,3 and SRNRoot.SnpLnProg3

34
*
 Connect SRNRoot.SnpLnProg3 and SRNRoot.TProcSnp3,2

35
*
 Connect SRNRoot.TProcSnp3,2 and SRNRoot.SnpLnProg2

When specifying the name attributes, complex String composition can be given,

as done in operations 29 and 31. After the demonstration is completed and generic

operations are identified in the user refinement step, the inference engine automatically

infers and generates the transformation pattern. After the inferred transformation is saved,

a user may select any model instance and a desired transformation pattern, and the

selected model will be scaled by adding a new event type. The execution of the pattern

multiple times can be realized using the execution control. The bottom of Figure 4.3 is

the result of adding two event types using the inferred pattern.

4.3 Aspect-Oriented Modeling

In DSM, constraints may be specified throughout the nodes of a model to stipulate

design criteria and limit design alternatives. A lack of support for separation of concerns

with respect to constraints can cause difficulties when creating models [Gray et al.,

89

2001]. The scattering of constraints throughout various levels of a model makes it hard to

maintain and reason about their effect and purpose [Zhang, 2009].

Similar to the idea of traditional Aspect-Oriented Programming (AOP) [Kiczales

et al., 1997], Aspect-Oriented Modeling (AOM) [Balasubramanian et al., 2006-b]

enhances modularity at the model level by allowing the separation of concerns. The same

concepts in AOP can also be applied in AOM [Gray et al., 2001].

A typical AOM process weaves the aspect models (i.e., the crosscutting concerns

that are scattered across a model) into the base model (i.e., the main model without

crosscutting behaviors). The model weaving process is accomplished by locating specific

locations in the base model according to some pattern of model properties, and

composing the necessary aspect models at these locations. An AOM task specifies where

and how to weave new concerns into the base model.

To support typical AOM functions using model transformation approaches, two

points should be taken into consideration:

 The mechanism to specify the precondition of a model transformation is

essential to locate the correct locations for weaving an aspect. Thus, it must

support a desired granularity and diversity on the specification of a

precondition.

 In some AOM tasks, constraints need to be weaved into the base model [Gray

et al., 2001]. These constraints are often specified in OCL, which contains

complex string formatting. Therefore, long string construction and

computation should be supported.

90

MTBD can be applied to address AOM challenges because the specification of

preconditions on both the structure and attribute are supported, with the granularity on

any model element, connection and all of their attributes. The specific aspect can be

represented by the sequence of transformation actions. Long string computation is

possible using the attribute refactoring editor. Using MTBD, users can demonstrate

where and how to weave an aspect into one of the desired locations in the base model,

followed by weaving the aspect to the rest of the model instance by executing the

generated transformation pattern.

4.3.1 Case Study – Background

The development of distributed real-time and embedded (DRE) systems is often

challenging because of the consideration of different Quality-of-Service (QoS)

constraints that might conflict with each other and must be treated as trade-offs among a

series of alternative design decisions [Gray et al., 2009]. The QoS Adpation Modeling

Language (QoSAML) was designed to address the challenges of using an MDE

approach, which uses a Finite State Machine (FSM) representation extended with

hierarchy and concurrency mechanisms to model the QoS adpative behavior of the

system [Gray et al., 2009].

One successful usage of QoSAML is to specify the QoS properties for an

Unmanned Aerial Vehicle (UAV) [Karr et al., 2001]. A UAV is an aircraft that is capable

of surveying dangerous terrain and territories. The UAV continuously sends video

streams to a central distributor, so that operators can observe the video and give futher

commands to the UAV. In order to reach a precise and timely response from operations, a

91

smooth video stream must be guaranteed, which means that the video must not be stale,

or be affected by jittering. However, due to the changing conditions in the surveillance

environment, the fidelity of the video stream must be maintained by adjusting the QoS

parameters. In good conditions where a realiable network transmission is avaible, a

smooth video stream can be kept using a high video Size and a high video FrameRate,

while in a poor environment, both video Size and FrameRate should be reduced in order

to keep the same video transimission latency.

Figure 4.5 – QoSAML model

Figure 4.5 is part of a QoSAML model that specifies the QoS properties for a

UAV application. In this model, the latency is a dependent variable input to a hierachical

state machine called Outer State. Inside the OuterState, there are state machines that

92

describe the adaption of identified independent control parameters, such as Size State,

FrameRate State. In each of the state machines, several States are included to represent

the options for the corresponding control parameter. A state specifies three Data for the

option: Pri defines the priority of this option; Max defines the maximum value that can

be used for this parameter; and Min defines the minimum value for the parameter. Model

translators have been developed to generate Contract Description Language (CDL) [Karr

et al., 2001] from the QoSAML models automatically, which can be integrated into the

runtime kernel of the system.

The AOM scenario in QoSAML results from the configuration of the transition

strategies. The model in Figure 4.5 is not complete, because the transitions between

different states have not been specified. A transition connects a source state to a target

state, representing how a control parameter can be changed and adapted. To give the

transitions, there are two different strategies that can be used, as illustrated in Figure 4.6.

The left side of

Figure 4.6 specifies a protocol that changes one parameter (Size) before trying to

adjust another independent paramenter (FrameRate). In other words, the FrameRate

parameter has a higher priority so that it is not reduced until there is no further reduction

possible to the Size. By contrast, the strategy in the right side of Figure 4.6 is more

equitable, with a zig-zag pattern suggesting that the reduction of one parameter is

staggered with the reduction of another. From this scenario, it can be seen that weaving

the strategy protocols becomes a challenging task when more control parameters are

invovled, or a large number of intermediate states are included in the state.

93

As the case study for supporting AOM, we choose the task of weaving the priority

exhaustive protocol to the QoSAML model, which is defined as follows:

In a given state machine, for each pair of two states included in the state machine,

if their priority data are less than 5, and if the priority data of one state is one less than

the other, add a transition between the two states from the state with the lower priority

(SourceState) to the one with the higher priority (TargetState). In addition, set up the

attibutes for the transition: the Guard of the transition should be given from the users

input, and the Action of the transition should be in the format of

“ControlParameterName = (SourceState.Max + TargetState.Max) / 2).”

Figure 4.6 – Two state transition protocols to adapt to environment - Priority Exhaustive

(left) and Zig-zag (right) (adapted from [Gray, 2002])

For example, Figure 4.7 shows the model after applying the priority exhaustive

protocol to Size State and FrameRate State. The challenges of this task result from

locating all pairs of the states that consist of the qualified priority data (i.e.,

94

SourceState.Priority = TargetState.Priority – 1, SourceState.Priority < 5,

TargetState.Priority < 5), performing the repeated computation to get the average value

from the two Max data, as well as enabling user input.

Figure 4.7 – A QoSAML model after applying the Priority Exhaustive protocol

4.3.2 Case Study – Solution

The demonstration of adding a QoS transition strategy is performed on the

selected Size State, as shown in Figure 4.8. Inside the Size State, we locate the two States

with the proper Pri values, and perform the operations in List 4.5. The Action attribute

configuration by operation 2 is conducted through the attribute refactoring editor.

95

List 4.5 – Operations for demonstrating weaving protocol aspects

Sequence Operation Performed

1 Add a Transition between

QoSAMLRoot.OuterState.SizeState.State1 and

QoSAMLRoot.OuterState.SizeState.State2

2 Set Transition.Action =

QoSAMLRoot.OuterState.SizeState.name + “ = “ +

 (QoSAMLRoot.OuterState.SizeState.State1.Max.value +

QoSAMLRoot.OuterState.SizeState.State2.Max.value) / 2

 = “Size = 75”

3 Create a temporary data pair

(Name: guard, Value: “Latency > 25 &&FrameRate< 5”)

4 Set Transition.Guard = guard.value = “Latency > 25 &&FrameRate< 5”

Figure 4.8 – Demonstration of adding a transition and setting up the attributes for the new

transition

The initial pattern generalized from the demonstration is shown in Figure 4.9 (the

transformation pattern is invisible to end-users, and the figure shows an abstract

representation of the pattern for the purpose of illustrating how the pattern is specified

96

and stored). It can be seen that the precondition is not accurate enough, because the

relationship between the two Pri values are not reflected in the demonstration. Moreover,

although the two Max elements are included in the pattern, they share the same type as

Min and Pri (their meta types are all Data), the consequence being that it is possible that

the execution engine incorrectly uses Min or Pri to calculate the average value, or uses

Max or Min to compare the Pri relationship. Thus, it is necessary to futher restrict the

Data involved in the pattern with their names. The following operations in List 4.6 are

performed in the user refinement step. Operations 5 – 10 confirm the required Pri data

elements and their relationships, while operations 11 – 12 ensures that Max data elements

exist in the two States. Figure 4.10 shows the final generated transformation pattern.

List 4.6 – Refinement operations performed in the demonstration of weaving aspects

Sequence Operation Performed

5 Confirm the containment of QoSAMLRoot.OuterState.SizeState.State1.Pri

6 Confirm the containment of QoSAMLRoot.OuterState.SizeState.State2.Pri

7 Specify precondition

QoSAMLRoot.OuterState.SizeState.State1.Pri.name = “Pri”

8 Specify precondition

QoSAMLRoot.OuterState.SizeState.State2.Pri.name = “Pri”

9 Specify precondition

QoSAMLRoot.OuterState.SizeState.State1.Pri.value =

QoSAMLRoot.OuterState.SizeState.State2.Pri.value - 1

10 Specify precondition

QoSAMLRoot.OuterState.SizeState.State2.Pri.value < 5

11 Specify precondition

QoSAMLRoot.OuterState.SizeState.State1.Max.name == “Max”

12 Specify precondition

QoSAMLRoot.OuterState.SizeState.State2.Max.name == “Max”

Executing the pattern on any selected States will make the execution engine

automatically traverse the state and locate all the pairs of included States that satisfy the

Pri relationship constraint and contains needed Max elements, so that the Transition can

be added correctly combined with a user input Guard value.

97

Precondition

elem1.elem2.elem3.elem4

elem1.elem2.elem3.elem5

elem1.elem2.elem3.elem4.elem6

elem1.elem2.elem3.elem5.elem7

elem1: QoSAMLRoot

elem2: State

elem3: State

elem4: State

elem5: State

elem6: Data

elem7: Data

Actions

1. Add a Transition between elem4 and elem5

2. Set Transition.Action = elem3.name + “=” + (elem6.value + elem7.value) / 2

3. Create a data pair (guard = “Latency > 25 &&FrameRate< 5”)

4. Set Transition.Guard = guard.value

Figure 4.9 – The initial generalized transformation pattern

Precondition

elem1.elem2.elem3.elem4

elem1.elem2.elem3.elem5

elem1.elem2.elem3.elem4.elem6

(elem6.name == “Max”)

elem1.elem2.elem3.elem5.elem7

(elem7.name == “Max”)

elem1.elem2.elem3.elem4.elem8

(elem8.name == “Pri”)

elem1.elem2.elem3.elem5.elem9

(elem9.name == “Pri”)

(elem8.value == elem9.value – 1)

(elem9.value < 5)

elem1: QoSAMLRoot

elem2: State

elem3: State

elem4: State

elem5: State

elem6: Data

elem7: Data

elem8: Data

elem9: Data

Actions

5. Add a Transition between elem4 and elem5

6. Set Transition.Action = elem3.name + “=” + (elem6.value + elem7.value) / 2

7. Create a data pair (guard = “Latency > 25 &&FrameRate< 5”)

8. Set Transition.Guard = guard.value

Figure 4.10 – The final generated transformation pattern after user refinement

98

4.4 Model Management

Apart from model refactoring, model scalability and AOM, other model editing

tasks are often needed during model evolution for the purpose of maintenance. These

kinds of tasks are classified as model management [Deridder et al., 2008; Sun et al.,

2009-b].

The need for model management often emerges from the change of system

requirements, the need to detect and recover erroneous models, the regular update of

model status, or the test of an alternative system design. In addition, model management

becomes more important and useful when applied to the runtime model of an application

[Blair et al., 2009]. Models at runtime extend the applicability of model-driven

engineering techniques to the runtime environment. A runtime model usually provides

current and exact information about the system to drive subsequent adaptation decisions.

A causal connection exists between the models and the applications so that adaptations

can be made at the model level rather than at the system level. Runtime model

management is significant, because a fast response is always needed in the management

tasks in order to reach acceptable performance. Relying on manual model management

may be undesirable in some cases, especially when a large number of applications exist.

Realizing the model management tasks also relies on the power of supporting the

specification of precondition constraints as well as generic operations. An additional

requirement is a mechanism to select and execute certain transformation patterns

regularly (e.g., whenever a change happens in the model, the error recovery pattern will

be executed to see if the error exists and recovery will occur, if needed).

99

4.4.1 Case Study – Background

 In the cloud computing paradigm [Hayes, 2008], the large number of running

nodes increases the number of potential points of failure and the complexity of

recovering from error states. For instance, if an application terminates unexpectedly, it is

necessary to search quickly through the large number of running nodes to locate the

problematic nodes and states. Moreover, to avoid costly downtime, administrators must

quickly remedy the problematic node states to avoid further spread of errors.

Although many cloud computing platforms provide a user-friendly and simple

interface to manage and control the application instances (Figure 4.11a), administrators

must still be experienced with the administrative commands, the configuration of each

application, as well as some domain knowledge about each running instance.

Administrators must therefore be highly trained to handle error detection and error

recovery effectively. The complexity of managing a large cloud of nodes can increase

maintenance costs, especially when personnel are replaced due to turnover or

downsizing.

Figure 4.11 – Two options to control application instances

100

To address the challenges of traditional cloud computing application

management, the Cloud Computing Management Modeling Language (C2M2L) is a

DSML developed to define the running status of a specific cloud application. C2M2L can

be used to construct a runtime model that serves as a graphical monitoring interface to

reflect the running nodes and states of an application. Figure 4.12 is an excerpt of a

C2M2L runtime model instance, which specifies the PetStore (a sample J2EE application

brought by Java BluePrints program using Ajax with Java, JSF, and Java Persistence

APIs) application node – PetStore Web Tier Instance 1, including four services being

applied. Whenever errors appear in the cloud, they are also reflected in the model (i.e.,

models are relevant at runtime). A causal connection is established such that correcting

errors in the runtime model triggers the same corresponding changes in the cloud.

Because models are a high-level abstraction of the application instances, administering

changes by editing the models (Figure 4.11b) is easier and more direct to most general

end-users than using the traditional command-line interface (Figure 4.11a). The

correction of errors in the cloud can then be accomplished by modifying the runtime

models.

Figure 4.12 – Pet Store Web Tier 1 node

101

One model management scenario in C2M2L comes from handling the overloaded

application nodes. If the CPULoad of a Node exceeds 20, and CPULoadRateofChange

exceeds 5, the Node is overloaded. Table 4.1 shows a Node in the erroneous overloaded

state. The solution to this scenario is to replace the Node with two identical Nodes, and

split the CPULoad equally to the two new Nodes. In other words, set the CPULoad

attribute of each new Node to be half of the original Node.

Table 4.1

Attributes of PetStore Web Tier Instance 1 (Overloaded Node)

Attribute Name Value

IsWorking True

AMI ami-45e7002c

CPULoad 22.0

CPULoadRateOfChange 5.5

HeartbeatURI http://ps01.aws.amazon.com/hb

HostName http://ps01.aws.amazon.com/hb

Name PetStore Web Tier Instance 1

4.4.2 Cast Study – Solution

 Using MTBD to specify the error recovery solution, we first select a Node and

perform the demonstration. As shown in List 4.7, after adding the two new Node

elements, the attributes are initialized as usual. In order to split the original CPULoad

into two equal parts, the attribute editor is applied. For example, if the original CPULoad

is 25, we can set NewNode.CPULoad = 25 / 2 = 12.5 through an attribute editor dialog,

which can be internally recorded as NewNode.CPULoad = PetStore Web Tier Instance

1.CPULoad / 2. The attribute editor enables users to specify the attribute computation at

the instance level in a demonstration process, but infer the transformation rules at the

102

metamodel level, so that when the value changes at the next time (e.g., 50, not 25), it can

still compute the correct value.

List 4.7 – Operations for demonstrating model management example

(* represents generic operations to be identified)

Sequence Operation Performed

1 Remove PetStore Web Tier Instance 1

2 Add a new Node

3–8 Set the attributes of the new Node to be those in the old one (6 attributes)

9 Set the CPULoad attribute of the new Node to be half in the old one

10* Add a new NodeService

11–13* Set all the attributes of these NodeService to be those in the old one (3

attributes)

14 Add a another new Node

15–21 Set the attributes of the new Node to be those in the old one (6 attributes)

22 Set the CPULoad attribute of the new Node to be half in the old one

23* Add a new NodeService

24–26* Set all the attributes of these NodeService to be those in the old one (3

attributes)

The original inferred transformation pattern also needs to be refined. In this

scenario, the precondition should be all the Nodes whose CPULoad is greater than 20 and

CPULoadRateofChange is greater than 5. Therefore, we added one restriction on the

precondition: PetStore Web Tier Instance 1.CPULoad > 20 && PetStore Web Tier

Instance 1.CPULoadRateofChange > 5. In addition, because the number of NodeServices

in a Node is not fixed, replicating NodeServices needs to be demonstrated on a single case

followed by identifying the operations as generic.

Executing this transformation will automatically find all of the Nodes that are

overloaded, and split the load into two new Nodes. If the load in the new Node is still

over the limit, it can be split again by invoking the transformation repeatedly until the

values satisfy the precondition.

103

4.5 Model Layout

The model evolution activities in the previous subsections focus only on the

semantic aspects of the evolution (e.g., adding or removing necessary model elements

and connections, modifying attributes of model elements), but the layout of models (e.g.,

positions of model elements, font, color and size used in labels) is rarely considered in

the traditional model evolution process [Sun et al., 2011-b]. For instance, executing a set

of model transformation rules to add model elements and connections will sometimes

lead to placing all the newly created elements in a random location in the model editor.

Ignoring the desired layout after model evolution has a strong potential to

undermine the readability and understandability of the evolved model, and may even

unexpectedly affect the implicit semantics under certain circumstances. For example,

users may accidentally misunderstand the system because of a disordered layout.

Furthermore, the positions of model elements and connections may correspond to special

coordinates in the real-world, such that an unoptimized layout could lead to unexpected

problems for the actual system. It may be possible to incorporate the layout information

related with the implicit semantics into the metamodel as part of the abstract syntax, but a

change to the metamodel may trigger further model migration problems. Although it is

very direct to adjust the layout manually, it becomes a tedious, timing-consuming task

when a larger number of model elements are involved in the model evolution process.

Therefore, while the semantic concerns of model evolution have been implemented and

automated, it is indispensible to realize the automatic configuration of the layout as part

of the model evolution process, as a type of “Pretty Printing” for models.

104

The most commonly used approach to automatically arrange the layout of models

is to apply layout algorithms [Battista et al., 1994; Misue et al., 1995] after the evolution

process. A number of modeling tools (e.g., GMF, GEMS, GME, MetaCase+ [MetaCase+,

2011]) provide automatic layout functionality in their model editors using specific

algorithms. They can rearrange the layout of the models and make them more readable by

avoiding the overlaps of model elements and connections, adding blank spaces among

model elements, or grouping the same type of elements together. However, most of these

algorithms do not consider the implicit semantics of the model elements and connections;

the result being that a readable model does not necessarily result in an optimized system

if part of the system implementation depends on the layout configuration. Furthermore,

fixed layout algorithms usually cannot consider the underlying mental map of individual

users (i.e., a user’s understanding of the relationship between the entities in a diagram)

[Misue et al., 1995] into consideration. Although a user might prefer to see different

types of model elements grouped closely, the automatic layout algorithm might destroy

the user’s mental map by separating them.

An alternative to configuring the layout is to change the layout properties as part

of the model evolution using a model transformation process. When specifying model

transformation rules to evolve the semantic aspect of the model, extra rules may be given

to handle the layout configuration. Although this offers a flexible way to enable users to

customize the preferred implicit semantics and mental maps, it is tied to MTLs. In

addition, testing and debugging the layout configuration are done by running the

transformation and checking the final model, which is not direct and convenient.

105

Therefore, a desirable approach to configure the model layout concerns in model

evolution tasks should include the following features:

 It should enable users to customize the layout configuration flexibly in order

to realize their desired implicit semantics and mental maps.

 It should be separated clearly from the semantic aspect of the model

evolution.

 It should enable end-users to configure and test the result using the notation

related to their domain.

 It should be at a level of abstraction that is appropriate for end-user adoption,

and not tied to low-level accident complexities of the transformation process.

Using MTBD to Support Model Layout. After demonstrating the semantic

concerns of model evolution using MTBD, users can continue to select target model

elements and place them at the correct positions as a demonstration of the layout

transformation. At the same time, the underlying MTBD engine records all of the user’s

operations and then generates a transformation pattern that incorporates both the semantic

evolution and the layout configuration [Sun et al., 2011-b].

Various options can be applied when specifying the positions, as presented in the

following:

 Absolute coordinates. The most direct and simplest layout configuration is to

use absolute coordinates. Users can demonstrate where to place each element

exactly in the editor. As shown in List 4.8, two kinds of operations are added

to the editor to support locating and choosing the absolute coordinates of a

certain element. When the transformation is executed, the chosen model

106

elements will be placed in the exact same location as in the demonstration. For

example, in the top of Figure 4.13, the Node in the lower-right corner is

selected and confirmed with an absolute coordinate for both X and Y in the

demonstration. When the generated transformation pattern is executed, the

Node is configured with the same coordinate values automatically as shown in

the bottom of Figure 4.13.

List 4.8 – Layout configuration operations using absolute coordinates

Operation Type Description

Set X as Current Set X in the current coordinates as the desired X

Set Y as Current Set Y in the current coordinates as the desired Y

Figure 4.13 – Using absolute coordinates in the demonstration (top) to place the element

in the same location in every model evolution scenario (bottom)

107

 Relative coordinates to model boundary. Using relative coordinates requires a

reference point. One type of reference is to consider all the model elements

and connections as a whole rectangle (i.e., the minimum rectangle that

includes all the current model elements and connections), and use the

boundary of the rectangle as the reference. The coordinates can be relative to

each side of the rectangle from either inside or outside. Thus, a total of eight

operations can be extended, as shown in List 4.9. For instance, in the top of

Figure 4.14, Node1 and Node2 are two newly created model elements. When

configuring the layout in the demonstration, Node1 is specified using Set X

Relative to Rightmost Outside, and Set Y as Current, while Node2 applies Set

X Relative to Leftmost Inside and Set Y Relative to Lowermost Inside. The

result is that when applying the transformation in other models, Node1 will

always be placed right to the existing model, but at the same vertical level as

in the demonstration; and Node2 will always appear on the left-lower corner

of the existing model, as shown in the bottom of Figure 4.14.

List 4.9 – Layout configuration operations using relative coordinates to model boundary

Operation Type Description

Set Y Relative to

Uppermost

Set the desired Y to be the current Y relative to the uppermost

boundary of the current model from inside or outside

Set Y Relative to

Lowermost

Set the desired Y to be the current Y relative to the lowermost

boundary of the current model from inside or outside

Set X Relative to

Leftmost

Set the desired X to be the current X relative to the leftmost

boundary of the current model from inside or outside

Set X Relative to

Rightmost

Set the desired X to be the current X relative to the rightmost

boundary of the current model from inside or outside

108

Figure 4.14 – Using coordinates relative to the boundary of the existing model in the

demonstration (top) to place the element in the location relative to the existing model in

every model evolution scenario (bottom)

 Relative coordinates to model element(s). A more improved granularity and

flexible reference is to set up the coordinates of a model element relative to

other model element(s). As enumerated in List 4.10, users can configure X/Y

based on the location of another model element. In the current

implementation, a model element selector has been developed that enables

users to choose any element from the existing model instance, and set up the

109

X or Y coordinate. For example, at the top of Figure 4.15, several model

elements (i.e., Node1, Node2, Node3, Node4, Node5) are involved in a model

transformation scenario. A user may configure the location of Node3 using Set

X Relative to Model Element Node2, and Set Y Relative to Model Element

Node1, so that Node3 will always be in the same horizontal level as Node2

and have the same vertical distance to Node1 no matter where Node2 and

Node1 are located in different model instances. On the other hand, both X and

Y of Node4 are configured relative to Node5, the result being that Node4 is

always on the upper-left part of Node5 with the same distance as illustrated in

the bottom of Figure 4.15.

List 4.10 – Layout configuration operations using relative coordinates to model

element(s)

Operation Type Description

Set X Relative to Model Element E Set the desired X to be the current X relative to

the X of the model element E

Set Y Relative to Model Element E Set the desired Y to be the current Y relative to

the X of the model element E

 Configuring the appearance of model elements. Apart from the location of

model elements, the appearance (e.g., the color, shape, font, size used in the

model element) is also essential to the layout of the model or even the

semantics of the model.

110

Figure 4.15 – Using coordinate relative to the other model elements in the demonstration

(top) to place the element in the location relative to the same model elements in every

model evolution scenario (bottom)

By demonstrating the layout configuration directly, users are able to customize

their desired layout and preserve their mental maps (or other implicit semantic issues) in

a WYSIWYG style. The approach also offers a more convenient environment to give

precise positions, as well as to test and debug the resulting layout transformation. The

demonstration of layout configuration occurs after the demonstration of the semantic

111

evolution, so that the two concepts are separated without being tangled as crosscutting

concerns.

4.5.1 Case Study – Background

 The case study is based on the same model scalability scenario described in

Section 4.2.1. A number of new elements and connections are created during this model

evolution scenario. The creation process can be automated by executing model

transformation rules or calling APIs provided by the modeling environment. Figure 4.16b

shows the SRN model after executing the transformation pattern on the model in Figure

4.16a, which scales the model from 2 event types to 4. Although the correct number of

elements (i.e., 26 model elements) are created and the correct connections are made (i.e.,

38 connections), all the newly created elements and connections are placed randomly in

the upper-left corner of the editor and overlap with each other, which is unreadable

without arranging the layout. However, manual layout arrangement is tedious and time-

consuming, especially when the model is scaled to adapt a larger number of event types

(e.g., over 100 new elements will be created when scaling a SRN model from 5 event

types to 10, and over 150 connections are needed to connect them).

112

a) SRN model before evolution b) SRN model after evolution with configuration layout

c) SRN model after evolution with layout configured using auto-layout function

d) SRN model after evolution with desired layout configuration

Figure 4.16 – Different layout configurations of SRN models

113

One option to avoid manual layout arrangement is to use the auto-layout

functionality provided by the modeling tool. For instance, Figure 4.16c shows the scaled

SRN model after applying the auto-layout function embedded in the GMF editor.

Compared with Figure 4.16b, it can be seen that the overlaps of all the newly created

elements are removed; the location of each element is changed so that the distances

between two elements are more similar; and all the elements connected are grouped

together. A clear and readable model is obtained by a single mouse-click. However, a

readable model does not necessarily preserve the implicit semantics and a user’s mental

map. As shown in Figure 4.16c, it is challenging to determine the corresponding part in

the execution snapshot for each of the existing event types, while in Figure 4.16b the

execution snapshot is clearly separated by different event types. On the other hand, the

layout of event definitions in Figure 4.16c is changed from the original horizontal

arrangement to vertical. Although it does not significantly affect the understandability or

implicit semantics of the definitions, users might have their own preferences of placing

the event definition horizontally, and the auto-layout functionality obviously destroyed

this particular mental map.

4.5.2 Case Study – Solution

 After demonstrating the model transformation as shown in Section 4.2.1, the

model evolution at the semantics level has been accomplished. At this point, users can

continue to drag-and-drop each element in the editor and confirm the desired location

using the provided layout configuration operations.

114

Figure 4.17 shows the desired layout configuration for each element in the model

transformation process. According to the three steps in this model evolution scenario, the

newly created model elements and connections belong to three parts. The first part is the

event definition (i.e., A3, B3, Sn3, S3, Sr3). Assume that most users prefer to place these

elements always above the previous definitions. Therefore, they use the uppermost

boundary of the existing model as the reference for Y, and the X coordinate of each

element in event type 1 for X. Users would generally perform the operations in List 4.11

in the layout demonstration.

Figure 4.17 – The layout demonstration in action for the first motivating example

For the new execution snapshot part definition (i.e., TStSnp3, SnpLnProg3,

TEnSnp3), we set all the X values to be relative to the rightmost boundary, and Y values

115

relative to the root of the execution snapshot StSnpSht (TStSnp3.Y is set to be directly

relative to StSnpSht.Y, SnpLnProg3.Y is set to be relative to TStSnp3.Y, and TEnSnp3.Y to

be relative to SnpLnProg3.Y), see List 4.12.

List 4.11 – Operations to configure layout demonstration for part one of the motivating

example

(The layout demonstration is immediately after the model transformation demonstration)

Sequence Operation Performed

36 Set SRNRoot.A3.Y Relative to Uppermost Outside

37 Set SRNRoot.A3.X Relative to A1.X

38 Set SRNRoot.B3.Y Relative to Uppermost Outside

39 Set SRNRoot.B3.X Relative to B1.X

40 Set SRNRoot.Sn3.Y Relative to Uppermost Outside

41 Set SRNRoot.Sn3.X Relative to Sn1.X

42 Set SRNRoot.S3.Y Relative to Uppermost Outside

43 Set SRNRoot.S3.X Relative to S1.X

44 Set SRNRoot.Sr3.Y Relative to Uppermost Outside

45 Set SRNRoot.Sr3.X Relative to Sr1.X

List 4.12 – Operations to configure layout demonstration for part two of the motivating

example

Sequence Operation Performed

46 Set SRNRoot.TStSnp3.X Relative to Rightmost Outside

47 Set SRNRoot.TStSnp3.Y Relative toSrnRoot.StSnpSht.Y

48 Set SRNRoot.SnpLnProg3.X Relative to Rightmost Outside

49 Set SRNRoot.SnpLnProg3.Y Relative to TStSnp3.Y

50 Set SRNRoot.TEnSnp3.X Relative to Rightmost Outside

51 Set SRNRoot.TEnSnp3.Y Relative to SnpLnProg3.Y

Finally, for the Execution Snapshot Transitions, the X is relative to the rightmost

boundary, and Y is relative to the Snapshot Place it is connected to, see List 4.13.

116

List 4.13 – Operations to configure layout demonstration for part three of the motivating

example

Sequence Operation Performed

52 Set SRNRoot.TProcSnp2,3.X Relative to Rightmost Outside

53 Set SRNRoot.TProcSnp2,3.Y Relative toSrnRoot.StSnpSht.Y

54 Set SRNRoot.TProcSnp3,2.X Relative to Rightmost Outside

55 Set SRNRoot.TProcSnp3,2.Y Relative to TStSnp3.Y

After the demonstration is completed, the recording engine calculates all the

values and integrates them in the final generated transformation pattern. Executing the

final pattern will result in the model shown in Figure 4.16d.

4.6 Experimental Validation

Experimental evaluation of this research is based on various empirical techniques

and measurements. The expected benefits of the MTBD transformation framework will

be indicated by its generality, separation of MTLs and metamodel definitions,

productivity and practicality.

4.6.1 Generality

This characteristic ensures that the MTBD approach is applicable to different

modeling languages. The current implementation of MT-Scribe is a plug-in to GEMS,

and triggered in the model editor. Thus, any modeling language defined in GEMS that

can be edited in the GEMS model editor is able to apply MTBD to address the model

transformation and evolution problems, which means that MTBD is a general solution. In

the cases studies shown in previous sections, a number of models in different DSMLs

have been used to test different types of model evolution tasks. The demonstrated

capability to handle different DSMLs reflects the generality of the approach. Of course,

117

for other modeling tools, MT-Scribe would need to be adapted, but its generality across

modeling languages would still hold true.

4.6.2 Separation from MTLs and Metamodel Definitions

Using MTBD, users are only involved in editing model instances to demonstrate

the specific model transformation process on concrete examples and avoiding refinement

after the demonstration. All of the other procedures (i.e., optimization, inference,

generation, execution, execution control and correctness checking) are fully automated.

In both the steps where users are involved, all of the information exposed to users is at

the model instance level, rather than the metamodel level. For instance, the demonstration

is done using the basic editing operations in the concrete model editor; the attribute

configuration is accomplished using the attribute refactoring editor which contains all the

concrete attribute values from all the available elements and connections; the

containment confirmation to give constraints on a structural precondition is simply

realized by a one-click operation on the desired model element or connection; and the

extra precondition on attributes is given using the dialog where users can access all the

elements touched in the demonstration and type the constraints directly. The generated

patterns are invisible to users (Figures 4.9 and 3.17 are presented for the sake of

explanation, which are not visible to users when using MTBD). Therefore, users are

isolated fully from metamodel definitions and implementation details. Furthermore, no

model transformation languages and tools are used in the implementation of MTBD.

Thus, users are completely isolated from knowing any model transformation languages or

programming language concepts.

118

4.6.3 Productivity

Productivity addresses performance issues regarding the degree of effort that

users need to put forth to realize a model transformation task. Similar to the development

of MTLs, which aimed to improve the manual transformation process, MTBD is designed

to further enhance the productivity over both MTLs and manual transformation.

Experiments on the improved productivity using a MTL over manual transformation have

already been done [Lin, 2007]. To achieve some indication of the level of improvement

offered by MTDB, we select some model transformation tasks as experimental scenarios

and compare the cost to realize them using three different approaches. As a baseline, we

first count the mouse and keyboard operations that a user must perform during a

traditional manual transformation process. A second measure will consider the number of

Source Lines Of Code (SLOC) of the transformation specification written in a specific

MTL to perform the same task as the manual baseline. Finally, we will observe the

amount of effort needed to describe the same transformation using MTBD. These

quantitative measurements will be compared and observations made regarding the

productivity concerns of each approach.

Five model transformation tasks are selected for experimental consideration.

These tasks represent the typical model evolution scenarios. More importantly, these

tasks have been well-addressed using MTLs, so that we can better compare the efforts by

using MTBD to accomplish the same results. The final comparison is shown in Table 4.2.

119

Table 4.2

Comparison of accomplishing model transformation tasks using three approaches

Example Manual Process MTL(ECL) MTBD

Model Refactoring

Extract Super Class

9 operations for 3

subclasses

27 operations for 30

subclasses

28 SLOC 9 editing operations

3 refinement operations

Model Scalability

Scale SRN Models

57 operations from 2

event types to 4

event types

159 operations from

4 event types to 6

event types

170 SLOC 35 editing operations

1 refinement operations

Model Scalability

Scale EQAL Models

26 operations from 3

sites to 4 sties

175 operations from

4 sites to 8 sites

124 SLOC 16 editing operations

3 refinement operations

Aspect-Oriented

Modeling

Weave aspects to

QoSAML Models

6 operations to

weave 3 transition

strategies

12 operations to

weave 6 transition

strategies

23 SLOC 3 editing operations

2 refinement operations

Aspect-Oriented

Modeling

Weave aspects to

ESML Models

9 operations to

weave 3 logging

elements

27 operations to

weave 9 logging

elements

40 SLOC 4 editing operations

8 refinement operations

 The manual process column illustrates the efforts needed to complete each of the

tasks by manually editing the source models. Because the efforts of manual editing

depend on the scale of the transformation (e.g., performing the transformation on a larger

model costs more efforts than performing the same task on a smaller model), the efforts

on two different scales have been listed for each task. However, the numerical counts of

the operations cannot fully reflect the real efforts needed in the manual process, due to

the fact that it usually costs additional effort to manually locate the model elements to

120

perform the operations, as well as do the manual computation. The main purpose of the

manual process column is to provide a basic overview of the complexity of the

transformation tasks.

 The MTL column shows the effort needed to write the model transformation rules

in MTLs. Because all the examples have been done using ECL, we analyzed all the

source codes and counted the SLOC. Compared with the MTBD column, it can be seen

that only a small number of operations are needed using MTBD to accomplish the exact

same tasks that were done by writing transformation rules.

In addition, to better identify the productivity advantage of using MTBD, we can

take a more detailed analysis on the specific part of the MTL code and see how MTBD

can achieve the same purpose in a more end-user centric manner. List 4.14 shows part of

the code to implement the AOM case study presented in Section 4.3.1. One essential part

of the AOM task is to identify the desired locations to weave the aspect. In the ECL

transformation rules, the location to weave aspects is defined by extended OCL

constraints (e.g., forAll(), select()) together with APIs provided in the transformation

language (e.g., models(“State”), atoms()). The process becomes more complex when

the different APIs are called and used together in a single statement. By contrast, the

main location specification in MTBD is automatically handled in the demonstration

process. It is the recording engine that detects the location of where the operation occurs

and generalizes the location context information, so that users focus on selecting a

desired location without being aware of a generalized location process.

The specific constraints on the preconditions using MTBD are more intuitive and

direct than writing transformation rules. By selecting and clicking on the desired model

121

elements or connections, constraints on the structure can be specified. The location and

selection of the attribute in MTBD is realized by clicking on the element in the

precondition specification dialog and providing much simpler expressions based on the

instance model. However, in ECL, OCL expressions and condition statements need to be

applied (e.g., if … select(m | m.kindOf() == “Action”)->size() >= 1). When it comes

to defining the precondition on attribute values, we believe that MTBD is simpler than

using conditional statement with model accessing APIs. For example, the following is an

expression that would be needed in a typical model transformation rule using the

traditional approach:

findAtom("Priority").findAttributeNode("InitialValue").getInt(pri);

Regarding the actual aspect composition process, it has to be implemented using

model manipulation APIs in ECL (e.g., parent().addConnection("Transition",

"Transition","Transition",endID,prevID),Connection.addAttribute("Guard",guard)),

while using MTBD, the composition process is demonstrated using the basic editing

operations (i.e., add, delete, update attributes).

List 4.15 shows another excerpt of the ECL to implement the model scalability

example – Scale EQAL Models in Table 4.2. To control the number of execution times,

recursive calls are used in the ECL transformation rules. In MTBD, a user simply

identifies related operations as generic, and the execution controller will handle executing

the transformation pattern as many times as needed.

122

List 4.14 – Excerpt of the ECL code to weave aspects to QoSAML models [Gray, 2002]

defines AddTransition, FindConnectingState, ApplyTransitions;

strategy AddTransition(stateName, prevID, guard : string; prevPri : integer)

{

 declare pri, minVal, maxVal, avgVal : integer;

 declare endID : string;

 declare aConnection : node;

 findAtom("Priority").findAttributeNode("InitialValue").getInt(pri);

 if (pri == prevPri + 1)

 then

 getID(endID);

 findAtom("Min").findAttributeNode("InitialValue").getInt(minVal);

 findAtom("Max").findAttributeNode("InitialValue").getInt(maxVal);

 avgVal := (minVal + maxVal) / 2;

 <<CComBSTR action(stateName);

 action.Append("="+XMLParser::itos(avgVal)); >>

 aConnection :=

 parent().addConnection("Transition", "Transition", "Transition",

 endID, prevID);

 aConnection.addAttribute("Guard", guard);

 aConnection.addAttribute("Action", action);

 endif;

}

strategy FindConnectingState(stateName, guard : string)

{

 declare pri : integer;

 declare startID : string;

 findAtom("Priority").findAttributeNode("InitialValue").getInt(pri);

 getID(startID);

 if (pri< 4)

 then

 parent().models("State")->

 forAll(AddTransition(stateName, startID, guard, pri));

 endif;

}

strategy ApplyTransitions(stateName, guard : string)

{

 declare theModel : node;

 theModel := findModel(stateName);

 theModel.models("State")->forAll(FindConnectingState(stateName, guard));

}

We have not performed a formal user study on the comparison between the two

approaches. However, with the comparative effort shown in Table 4.2, we believe that

for general end-users who have no experience of using MTLs, MTBD provides a feasible

alternative without a steep learning curve.

123

List 4.15 – An excerpt of a transformation rule written in ECL to scale EQAL models

while controlling the number of execution times [Gray et al., 2005]

//traverse the original sites to add CORBA_Gateways

//n is the number of the original sites

//m is the total number of sites after scaling

strategy traverseSites(n, i, m, j : integer)

{

 declare id_str : string;

 if (i <= n) then

 id_str := intToString(i);

 rootFolder().findModel("NewGateway_Federation").

 findModel("Site " + id_str).addGateWay_r(m, j);

 traverseSites(n, i+1, m, j);

 endif;

}

//recursively add CORBA_Gateways to each existing site

strategy addGateWay_r(m, j: integer)

{

 if (j<=m) then

 addGateWay(j);

 addGateWay_r(m, j+1);

 endif;

}

4.6.4 Practicality

MTBD is designed to support model evolution tasks. We have identified five

types of model evolution tasks in practice in the previous sections. By realizing several

common examples from each type of model evolution task, it is demonstrated that MTBD

can be used to support diverse types of model evolution tasks.

4.7 Summary

MTBD has been applied to support several common model evolution activities

(i.e., model scalability, model refactoring, aspect-oriented modeling, model management,

and model layout). Experimental validation is also discussed in this chapter to assess the

benefits and effectiveness of MTBD in supporting model evolution. Particularly, the

validation is done on the generality, the separation of MTLs and metamodel definitions

124

from end-users, the productivity, and the practicality. It can be seen that, as a general

model transformation approach that is applicable to any DMSLs in GEMS, MTBD can

enable general end-users to implement their desired model evolution activities, while

being fully isolated from knowing any MTLs and understanding metamodel definitions,

and with less perceived effort.

With an increasing number of model transformation patterns being generated, it

becomes equally important to enable users to better share these patterns and reuse them.

As another contribution, Chapter 4 provides an extension to MTBD that further improves

the MTBD user experience with a mechanism to help users to share, exchange and reuse

their model evolution knowledge and model transformation patterns.

125

CHAPTER 5

LIVE MODEL TRANSFORMATION BY DEMONSTRATION:

TOOL SUPPORT TO IMPROVE MODEL TRANSFORMATION REUSE

Model Transformation By Demonstration (MTBD) provides an end-user centric

approach to implement various model transformation tasks. When additional users are

enabled to contribute to model evolution activities using MTBD, reusing model

transformation knowledge and patterns becomes an essential issue, particularly when

multiple users work collaboratively in a specific domain. This chapter presents a tool kit

called Live-MTBD, an extension to MTBD, which focuses on enabling users to perform

demonstration more flexibly, share transformation patterns across different editors, and

reuse patterns with guidance. The overview of Live-MTBD will be given first, followed

by its usage and implementation details. In addition, a case study is offered to illustrate

using the toolkit to assist with demonstration, pattern sharing and reuse. Related work

and concluding remarks are presented in the rest of the chapter.

5.1 Live Model Transformation By Demonstration (Live-MTBD)

The Live-MTBD concept starts with the need to reuse model transformation

patterns in the context of MTBD. Reuse becomes increasingly important, because when

more users are enabled to implement model transformations using MTBD, a number of

126

patterns with the same or similar purposes might be created by different users at various

times or locations, which implies a potentially large reusable transformation pool. On the

other hand, with the diverse knowledge level and expertise background, different users

may possess numerous ideas about model evolution activities, and therefore it is in many

cases required to reuse the transformation patterns from each other.

In order to support the reuse of model transformation patterns in the context of

MTBD, three areas can be enhanced. First, it is necessary to further improve the user

experience of MTBD and make the use of MTBD more preferable by end-users. In other

words, encouraging more users to adapt MTBD and demonstrate transformations is the

prerequisite to building a large model transformation pattern pool. Moreover, when

transformation patterns are inferred and generated by different users, they should be

immediately available to others for reuse. This requires a mechanism to share the

transformation patterns among different users in their individual model editors. Finally,

having access to a number of existing transformation patterns does not guarantee that

users can choose the correct pattern to reuse at the proper time, particularly when they are

not the initial creator of the pattern. Another key aspect to support reuse is to have an

intelligent mechanism to aid and guide users to reuse the necessary patterns in

appropriate situations.

Live-MTBD is an extension of MTBD that contains three features to cover the

enhancement of the three aspects summarized above. Live Demonstration provides a

more general demonstration environment that allows users to specify editing activities

based on their editing history. In order to improve the sharing of model transformation

patterns among different users, Live Sharing (a centralized model transformation pattern

127

repository), has been designed so that transformation patterns can be reused across

different editors. A live model transformation matching engine (Live Matching) has been

developed to match the existing transformation patterns automatically at modeling time,

and provides suggestions and guidance to users on reusing applicable patterns during

editing time. The rest of the section will provide details on each of the three features.

5.1.1 Live Demonstration

 The specification of a model transformation using MTBD is given by a

demonstration. Although MTBD is designed to be applicable to end-users, being able to

use MTBD to demonstrate a transformation does not guarantee that every user will

actually use MTBD to do the demonstration and specify the transformation pattern. As

shown in Figure 5.1, if a user has a certain model transformation task in mind and wants

to implement it, he or she can then prepare the appropriate source model, and

demonstrate the transformation process using MTBD to create and generate the finalized

transformation pattern. However, in most cases, the user creates a model and starts to edit

it without thinking about any model transformation tasks or scenarios. As the editing

process ensues, it is very likely that the user realizes that there are a number of the same

or similar editing activities that are based on a pattern and can be automated as a model

transformation process. It is also possible that the user completes a very complex editing

activity, and then realizes that this editing activity can be specified as a transformation to

be reused in the future to avoid the same manual editing process. In other words, it is a

common scenario in practice that users may not realize the need of a model

transformation pattern until they completely finish the editing process. The problem

128

associated with this scenario is that users may not be willing to use MTBD to

demonstrate and specify the transformation pattern after the fact, because 1) they have to

redo a demonstration of the finished editing process, and this process can be complex and

tedious; 2) the re-demonstration should be performed on an appropriate source model, but

there might not be available source models without manually modifying the existing

complete model instances. As a result, a number of reusable transformation patterns may

not be demonstrated and generated through MTBD, although users might have performed

the necessary editing process in different model instances multiple times.

When users have clear model transformation tasks

When users do not have clear model transformation tasks

Generate model

transformation pattern

Perform model

editing operations

Use MTBD to

demonstrate the task

Reuse model

transformation pattern

Finish the editing

Redo the editing

operation using MTBD
Find editing patterns

Generate model

transformation pattern

Reuse model

transformation pattern

Reflect the editing

history using LiveMTBD

Figure 5.1 – Different user editing scenarios

 Therefore, in order to encourage users to specify model transformation patterns

using MTBD for future reuse, the challenges of re-demonstration need to be solved. The

key of the solution is to reduce the effort of the re-demonstration, and more specifically,

the effort to repeat the same editing operations users have already performed, and the

effort to find the appropriate and available source model for the re-demonstration.

129

As a solution to make MTBD a more flexible demonstration approach, live

demonstration is implemented so that users can completely avoid repeating the same set

of editing operations and finding the available source model instance. Live demonstration

is realized using a recording engine that works continuously to record every editing

operation performed in the editor. Then, whenever a user realizes a need to specify and

summarize a certain model transformation pattern for a past editing activity, they can

simply go back to the recording view and check all the operations that are related with the

specific editing activity, after which the original MTBD inference engine infers the

transformation from the archived editing events. Thus, users specify their desired editing

activity by reflecting on their editing history, rather than by an intentional demonstration.

Figure 5.2 – The overview of Live-MTBD toolkit

130

Based on the formal specification in Section 3.2, live demonstration enables the

generation of m

(i.e., the sequence of model modifications on the source model Mi) by

selecting a set of editing operations Sop from the editing history H. m

will then be used

as the same input to function),(miMTG

to generalize the initial transformation pattern.

As shown in Figure 5.2, Live Demonstration is based on the original demonstration

framework, modifying the recording engine to keep track of all the editing operations

without explicitly starting a demonstration. However, users still have the option to

initialize a demonstration in the regular way.

5.1.2 Live Sharing

 MTBD keeps a local repository to save all the generated model transformation

patterns. Although it is sufficient for a single user to specify and reuse model

transformation tasks, it becomes a barrier when multiple users are involved and need to

exchange patterns across different modeling environments. Live Sharing is another part

of Live-MTBD, which realizes the sharing of patterns at editing time using a centralized

repository.

Centralized Pattern Repository Server

Remote

Server Object

getPatternList

getPattern

addPattern

removePattern Persistent Pattern Objects

LiveMTBD Host

RMI Client

LiveMTBD Host

RMI Client

… ...

Figure 5.3 – The implementation of the centralized pattern repository

131

 In the MTBD implementation, a class has been defined to specify a complete

model transformation pattern, including the preconditions and the transformation actions.

Each generated transformation pattern is represented by an instance of this class. Thus, it

is possible to serialize the object instances and persist them in the local repository.

 To support a centralized pattern repository, the local persistent pattern objects are

moved to a remote server, enabling different Live-MTBD clients to communicate with it.

Java RMI (Remote Method Invocation) is used to implement the server side. Three

service API calls have been implemented in the remote server object as shown in Figure

5.3: 1) getPatternList returns a list of the existing transformation patterns in the

repository; 2) addPattern can add a newly generated transformation pattern to the

repository; 3) getPatterns can retrieve patterns from the repository with unique pattern

names; 4) removePattern can be used to delete an existing pattern from the repository

with a unique name.

In each Live-MTBD client, the remote server object can be gained through the

RMI registry. After a model transformation pattern is generated and finalized, it will be

passed to the server using the addPattern service call. When users want to apply certain

transformation patterns, the whole list of existing patterns can be returned and displayed

from the repository using getPatternList. Selecting one or multiple patterns leads to

retrieving the corresponding patterns from the repository through getPatterns, being

loaded by the MTBD execution engine. The execution controller console shown in Figure

3.7 enables the removal of patterns, which is realized using the removePattern service

call.

132

Using Live Sharing, users are offered a transparent pattern sharing environment.

Different users at different locations can contribute to the pattern repository at any time,

which are immediately available to be reused by any other user at model editing time.

5.1.3 Live Matching

 With Live Demonstration and Live Sharing, users are enabled to create and share

transformation patterns, creating a set of patterns in the centralized pattern repository.

However, the ultimate goal of creation and sharing is to support and improve the reuse of

model transformation patterns. As mentioned in the beginning of this chapter, the

availability of a large number of transformation patterns does not necessarily ensure a

desired reuse scenario. In order to reach the desired reuse, we need to, 1) know exactly if

there is already an existing pattern in the repository for reuse; 2) fully understand the

existing pattern and make sure it is the correct one to reuse. Both of these are by no

means easy tasks, because patterns can be added to the repository any time, so users need

to refresh and check the pattern list frequently to get the latest available patterns and

determine if there are potentially reusable ones, which is a tedious and time-consuming

process. On the other hand, the purpose and usage of a pattern can only be found from its

name and description, without a formal definition of the internal preconditions and

transformation actions being visible to users. This exerts a challenge for users to

understand the accurate usage of a pattern correctly. In many cases, users simply test and

execute the pattern and determine if it is the appropriate one to reuse, but this is

sometimes risky when executing patterns on existing valid model instances, because any

133

failure of the undo function in the editor or an accidental save operation will lead to

breaking the existing models if an incorrect pattern is executed.

 To assist with the reuse of transformation patterns, automatic and intelligent

mechanisms are needed. Live Matching, being another part of the Live-MTBD toolkit, is

designed and implemented to help users find the right patterns to reuse in the appropriate

context. Live Matching monitors the user’s selection in the model editor, and triggers the

automatic pattern matching process whenever the user’s selection is changed. The

matching process loads all the existing patterns from the repository and reads the user’s

selection as the input model to check if the precondition of each pattern can be satisfied.

The final list of matched patterns will be displayed in an editor view, as well as showing

the number of matched locations in the current model.

 Formally, Live Matching is a modified version of the execution function

),,(TPM j

 . We define it as),(tj SM , where jM is the input model defined by the

user’s selection, and tS is the set of all the existing transformation patterns, each pattern

being specified by a tuple ',' TP

. The function returns the set of transformation

patterns 'tS , which is a subset of tS , where each 'P

 in 'tS

can be satisfied on the input

model jM .

 An event listener is added to the model editor to capture any change on the

selection in the editor. A view is also provided to display the matched patterns on the

current selection state, and the number of the match locations. Selecting the patterns from

the view can trigger the execution of the patterns automatically. In this way, users are

notified about all the available transformation patterns that can be applied at the current

134

location with the satisfied precondition, so that the chance is reduced for missing an

opportunity to reuse a pattern.

5.2 Case Study

 This section presents a case study from practice, where Live-MTBD is applied to

support the creation, sharing and reuse of model transformation patterns using MTBD in

an embedded system controller domain.

5.2.1 Background

 The example is based on the Embedded Function Modeling Language

(EmFuncML), which has been used to support modeling embedded controllers in the

automotive industry [Sun et al., 2011-a]. EmFuncML enables the following: 1) model the

internal computation process and data flow within functions; 2) model the high-level

assignment and configurations between functions and supporting hardware devices; 3)

generate platform-dependent implementation code; and 4) estimate the Worst Case

Execution Time (WCET) for each function.

The top of Figure 5.4 shows an excerpt of the model describing functions used in

an automotive system. ReadAcc (i.e., Read Acceleration) reads output data from ADC

(i.e. Analog-to-Digital Converter) and sends the processed data to the Analysis function,

which then transmits messages to the Display function. The input/output ports of each

function are given (e.g., ADC has four input ports: Resolution, SamplingRate,

Downsampling, InterruptID; and one output port AnalogValue). The hardware devices

(e.g., ADC, ECU) are presented, to which the corresponding functions are assigned. A

135

tool has been developed to estimate the WCET of each function based on the internal

computation logic. For the sake of ensuring a smooth data flow and quick processing

time, the WCET of each function should be less than 300ms; otherwise, it is defined as a

WCET violation.

Figure 5.4 – EmFuncML models before (top) and after (bottom) applying Buffering

function

In practice, EmFuncML is used by both hardware and software engineers in a

collaborative way. One common task occurring when using EmFuncML is to specify the

ADC function. For example, the upper left part of Figure 5.4 shows the ADC

configuration, which is modeled through a sequence of approximately 20 editing

operations to create the ADC function, input/output ports, set its names and types, and

create the ADC hardware device with the assignment connection. Hardware engineers are

more experienced than software engineers in this part of the configuration. Thus, the

136

complex editing operation of creating an ADC can be specified as a reusable model

transformation using MTBD by hardware engineers that can be used by different

colleagues in their modeling process when the ADC needs to be modeled in other system

contexts. However, using traditional MTBD, users must plan ahead and explicitly provide

a demonstration that specifies the desired editing activity. A challenge is when a user

does not realize the potential for reusing an editing activity until it is part-way through.

For example, the hardware engineer configures ADC by performing a sequence of editing

operations. After the editing is completed, the engineer may then think (post-editing) that

because the ADC is a commonly used component in embedded systems, the editing

activity just performed should be summarized and saved as a reusable model

transformation pattern. Therefore, he or she may begin a demonstration and repeat

exactly the same editing operations for the sake of inferring the transformation pattern.

This repetition could be tedious and time-consuming if the editing activity to demonstrate

is complex.

Another common practice in the configuration of functions in EmFuncML is that

if a WCET violation occurs, a Buffering function can be added between the source

function and the target function that receives data to ensure the correct data flow. At the

bottom of Figure 5.4, Analysis sends a message data to Display. However, the WCET of

Analysis is 460ms, which is longer than the desired processing time. Therefore, a

Buffering function is added between Analysis and Display, which serves as intermediate

storage for the transmitted data. In this case, embedded software system engineers who

are familiar with functional timing requirements may perform the Buffering editing

activity frequently in the editor whenever the WCET violation is detected. Therefore, this

137

model transformation process can be specified as a transformation pattern using MTBD

to enable automation and reuse.

It can be seen from the examples in this section that if model transformation

patterns can be shared among users with different expertise or levels of experience, the

reuse captured in a transformation rule can contribute to a knowledge base, improving the

collaborative construction of models in the same domain.

In addition, archiving model transformation rules does not guarantee the

appropriate and correct reuse of the rules, due to a lack of suggestion or guidance about

when and where to apply the transformation rules, particularly when the rules are

specified by other users. For instance, it is likely that hardware engineers fail to reuse the

ApplyBuffer transformation if it has been specified by software engineers, because they

do not realize the issues involving WCET. Likewise, when software engineers are trying

to configure the correct ADC for their system, the ADC creation transformation specified

by hardware engineers may not be reused either, simply because the software engineers

are not aware of the existence of a model transformation that can fulfill their needs

directly.

5.2.2 LiveMTBD in Action

This section shows how to use “live” features in Live-MTBD to improve pattern

specification, sharing and reuse.

In order to enable a more flexible demonstration and avoid repeating the same

demonstration, live demonstration can be used so that the recording engine works

continuously to record every editing operation performed in the editor. As can be seen in

138

Figure 5.5, a user creates the whole model by adding the ComputeAcc function, ADC

function and hardware, and then ReadSpeed. Although explicit demonstrations were not

performed using MTBD, after the complete model is specified, the user may check the

related editing operations from the recording view to construct the operation list as an

input to the inference engine, followed by generating the transformation pattern (e.g., the

CreateADC transformation pattern as shown in Figure 5.6. This is an abstract

representation of a transformation pattern in MTBD, which is not visible to end-users)

with the normal steps. This pattern can be applied to any function, and changes the

selected function into a fully configured ADC function by adding four input ports and one

output port, as well as the corresponding ADC hardware. In this way, users specify their

desired editing activity by reflecting on their editing history, rather than by an intentional

demonstration.

Figure 5.5 – Live demonstration enables demonstration by checking the editing history

139

Precondition Actions

1. Set f1.name = “ADC”

2. Add InputPort ip1

3. Set ip1.name = “Resolution”

4. Set ip1.type = “double”

5. Add InputPort ip2

6. Set ip2.name = “Downsampling”

7. Set ip2.type = “double”

8. Add InputPort ip3

9. Set ip3.name = “SampingRate”

10. Set ip3.type = “double”

11. Add InputPort ip4

12. Set ip4.name = “InterruptID”

13. Set ip4.type = “String”

14. Add OutputPort op1

15. Set op1.name = “AnalogValue”

16. Set op1.type = “double”

17. Add Hardware h1

18. Set h1.name = “ADC”

19. Connect f1 to h1

Figure 5.6 – Final transformation pattern for CreateADC

 The original MTBD saves finalized patterns locally. To ease the sharing of

patterns and enhance the editing activities, Live-MTBD changes the repository to a

centralized repository, which can be accessed by any user at any time. All the patterns

generated by different users are stored automatically in the centralized repository, and

they are immediately available for users to choose in the pattern execution step, which

provides a live collaborative environment. As shown in Figure 5.7, the pattern execution

controller displays all the patterns that exist in the current repository, with CreateADC

being created by a hardware engineer and ApplyBuffering being created by a software

engineer. With this feature, users can exchange and benefit from each others’ knowledge

during the modeling process.

Finally, in order to assist users in reusing the correct transformation patterns, live

matching in Live-MTBD offers user guidance about applicable model transformation

patterns during editing. Live matching is triggered during two occasions: 1) the selected

input model changes, or 2) the available patterns in the repository changes. As an

example shown in the top of Figure 5.8, after we finalize the two transformation patterns,

CreateADC and ApplyBuffer, if the users do not select any part of the model, the whole

model instance is included as the input model to the inference engine, and live matching

140

indicates that both patterns can be applied. Because there are five functions available in

the current editor, CreateADC is matched 5 times; while the ApplyBuffer can be matched

to the ReadSpeed function whose WCET is greater than 300. Double-clicking on any of

the matched patterns triggers its execution directly, but live matching requires user

approval before executing the pattern.

Figure 5.7 – Pattern execution controller to show all the patterns from a centralized

repository

At the bottom of Figure 5.8, a user may change the selections on the model from

the default to the single function newly added to the model. At this point, only

CreateADC can be matched, and the precondition of ApplyBuffer cannot be satisfied due

to the insufficient model elements and connections in the input model. Executing

CreateADC can transform this function automatically to a fully configured ADC function.

141

Figure 5.8 – Live matching suggests applicable transformations in the current selection

5.3 Related Work

Some work has been done to realize automatic model completion features to

create and modify the existing model elements automatically from an incomplete state to

a complete state. Sen et al. proposed to transform the metamodel and associated instance

models to an Alloy specification, including static semantics [Sen et al., 2010-a]. Then, the

partial model can be completed automatically by applying a SAT solver. This approach

provides guidance and assistance to end-users in the model editing process, but the

limitation is that the inferred complete models are mainly based on the formal input

constraints, rather than end-user customizations. In other words, specific constraints and

rules have to be defined in order to enable the desired model completion, which is the

142

same as writing transformation rules in MTLs. Thus, it shares the similar challenges of

using MTLs.

Mazanek et al. implemented an auto-completion feature for diagram editors based

on graph grammars [Mazanek and Minas, 2009]. Given an incomplete graph (model) in

the editor, all possible graphs that can be generated using the grammar production rules

will be suggested to users. Although this is a runtime and live suggestion feature, the

suggestions are totally dependent on the grammar production rules, which require users

to specify a number to restrict the times of production in order to avoid infinite

production loops. Also, the graph grammar may not be fully compatible to process

domain-specific modeling languages, because there are usually specific node or

connection types associated with each element, as well as the different attributes. This

approach cannot express user-customized evolution activities (e.g., the WCET must be

greater than 300).

General MTLs, particularly graphical MTLs [Mens and Gorp, 2005] based on left

and right side patterns, can all be extended with a live model transformation feature

without much modification, although this is still not a common practice. VIATRA2

[Balogh and Varró, 2006] already supports live model transformation matching features.

For instance, triggers can be defined as special rules to execute certain model

transformations at modeling time. However, a suggestion or guidance before applying the

transformation is not available in the environment.

Based on graphical MTLs, Rath et al. [Rath et al., 2008; Bergmann et al., 2009]

performed a detailed investigation on live model transformations using incremental

pattern matching techniques. They applied the Rete algorithm (an efficient pattern

143

matching algorithm for implementing production rule systems) to preserve the full

transformation context in the form of pattern matches that improved the performance of

the live transformation. Their live model transformation was mainly aimed at supporting

incremental model transformations and model synchronization between source and target

models, although it could be applied to automate the editing activities as well. The full

implementation of their approach is based on VIATRA2, which requires the usage of

graph transformation rules at the metamodel level. Their matching technique could be

helpful to improve our live matching feature.

Finally, there are also related works that support model transformation reuse.

Rather than focusing on reusing the complete transformation, Iacob et al. summarized a

number of model transformation patterns and enabled reusing and extending these

patterns in QVT [Iacob et al., 2008]; Sen et al. presented a novel approach to adapt a

metamodel so that an existing model transformation written for a different metamodel

can be reused [Sen et al., 2010-b].

5.4 Conclusion

This chapter presents another contribution of the dissertation on improving the

creation, sharing and reuse of model transformation patterns when using MTBD, through

a set of “live” features: live demonstration provides a different demonstration approach in

order to encourage the creation of model transformation patterns; live sharing makes all

the generated patterns available to all the users to reuse, and live matching helps users to

reuse the right pattern at the right time. These features have been fully implemented as

144

the toolkit Live-MTBD integrated with the original MTBD. Users have the option to use

these features or not.

 Although similar functionality and features can be seen in other MTLs and tools,

there was no work available to integrate all these features seamlessly together with a

model transformation approach. In addition, with the same goal of MTBD to focus on

end-users, Live-MTBD is realized at an automatic and transparent level, so that users are

fully isolated from the low-level implementation details. Users only focus on their

general editing activities, while the operation recording, sharing of patterns, and pattern

matching are carried out transparently.

145

CHAPTER 6

MODEL TRANSFORMATION BY DEMONSTRATION DEBUGGER:

AN END-USER FACILITY TO DEBUG MODEL TRANSFORMATION EXECUTION

 Model Transformation By Demonstration (MTBD) has the potential to ease the

specification and execution of model transformation tasks. Combined with Live-MTBD,

users are exposed to a large resource of transformation patterns to use. However, not

every transformation pattern is correctly demonstrated and specified. Similar to writing

programs, bugs can also occur during a user demonstration and refinement process,

which will bring about transforming the models into undesired states. This chapter

presents the third part of the contribution in this dissertation – MTBD Debugger, which is

a debugger based on the MTBD execution engine, enabling users to step through the

transformation execution process and track the model’s state during a transformation.

MTBD Debugger also focuses on the end-user friendliness, so the low-level execution

information is hidden during the debugging process. An overview of MTBD Debugger

will be given first, followed by its usage and implementation details. Additionally, a case

study is provided to illustrate usage of the debugger to assist tracking and locating errors

in transformation patterns. Related work and concluding remarks are presented in the rest

of the chapter.

146

6.1 Model Transformation By Demonstration Debugger

 MTBD eases the specification of model transformations by a demonstration-based

approach, and allows users to execute the generated transformation patterns on any model

instance directly. Although the main goal of MTBD is to avoid the steep learning curve

and make it end-user centric, there is not a mechanism to check or verify the correctness

of the generated transformation patterns. In other words, the correctness of the final

transformation pattern totally depends on the demonstration and refinement operations

given by the user, and it is impossible to check automatically whether the transformation

pattern accurately reflects the user’s intention. In practice, similar to producing bugs

when writing programs, it is also inevitable that bugs will be introduced in the

transformation patterns due to the incorrect operations in the demonstration or user

refinement step when using MTBD. Incorrect patterns can lead to errors and transform

the model into undesired states. For instance, users may perform the demonstration of an

attribute editing using the value of a wrong model element; they may give preconditions

that are either too restrictive or too weak; or they may forgot to mark certain operations

as generic.

 Obviously, an incorrect transformation pattern can cause the model to be

transformed into an incorrect and undesired state or configuration, which may be

observed and caught by users. However, knowing the existence of errors and bugs cannot

guarantee the correct identification and their location, because MTBD hides all the low-

level and metamodel information from users. Also, the final generated pattern is

invisible, which makes it challenging to map the errors in the target model to the errors in

the demonstration or refinement step. This issue becomes even more apparent when

147

reusing an existing transformation pattern generated by a different user, such that the

current users who did not create the original pattern usually have no idea about how to

track the cause of errors and bugs in the transformation.

 In order to enable users to track and ascertain errors in transformation patterns, a

transformation pattern execution debugger is needed that can work together with the

pattern execution engine. In fact, a number of model transformation debuggers have

already been developed for different MTLs [Allilaire et al., 2006]. However, the main

problem with these debuggers is that they work by tracking the MTL rules or codes,

which is at the same level of abstraction as the MTL and therefore not appropriate for

end-users. Because MTBD has already raised the level of abstraction above the general

level of MTLs, the associated MTBD Debugger should be built at the same level of

abstraction. Thus, the goal of MTBD Debugger is to provide users with the necessary

debugging functionality without exposing them to low-level execution details or

metamodel information.

MTBD Pattern Execution Engine

Transformation Pattern

Source Model

MTBD Debugger

Pattern Matching View

Pattern Execution View

Target Model

Figure 6.1 – The overview of MTBD Debugger

 To realize this goal, MTBD Debugger is based on the structure of a

transformation pattern. As mentioned in Chapter 3, a transformation pattern contains the

148

precondition of a transformation (i.e., including the structural precondition and attribute

precondition) and the sequence of transformation actions. During the execution of a

transformation pattern, any error occurring can be traced back to the errors in either the

precondition or the transformation actions. From the technical perspective as shown in

Figure 6.1, the goal of MTBD Debugger is to help users to correctly map the effect of a

transformation exerted on the target model instance to the precondition and actions

specified in the transformation pattern, so that users can track the cause of an undesired

transformation result.

 The main functionality of MTBD Debugger is supported by enabling the step

through execution of a transformation pattern and displaying the related information with

each step in two views – Pattern Execution View and Pattern Matching View. Users can

directly observe what action is about to be executed, what are the matched model

elements for the operation, and more importantly how the matched elements are

determined based on what types of preconditions, so that they can follow each step and

check if it is the desired execution process.

6.1.1 Pattern Execution View

 The Pattern Execution View lists all the actions to be executed in a transformation

pattern in sequence. As shown in Figure 6.4, the view displays the type of the action, the

main target element used for this action, whether the action is generic or not, and the

related details based on the type of the action.

 In the debugging mode, users can step through each action one-by-one. Before the

execution of the action, all the matched elements that will be used for the action are

149

highlighted in the Pattern Matching View, so that users can determine which elements are

going to be used for the execution of the action. If the required target element cannot be

matched, “null” will be displayed.

 After the action is executed, the Pattern Execution View highlights the next

action. At the same time, the model in the editor is updated with the execution of the

previous action. Users can check the properties and structure of the latest model instance

and determine if it is transformed into the desired state.

6.1.2 Pattern Matching View

 The Pattern Matching View works together with the Pattern Execution View to

provide relevant information about the matched model elements. From Figure 6.4, it can

be seen that it shows the model element type, the precondition associated with it, and the

specific model element that is matched in the current model. The list includes all the

model elements needed in the transformation pattern. As mentioned in the previous

section, the execution of each action will trigger the highlight of all the needed model

elements in this view.

6.1.3 Common Bugs and Tracking Solution

 The two views in MTBD Debugger can be used to assist tracking the following

bugs commonly occurred in the usage of MTBD.

 Over-Matched/Under-Matched Precondition. The refinement on the inferred

transformation pattern needs user involvement. During this step, incorrect preconditions

can be given by users, which will lead to failures on matching the desired parts of the

150

model. For instance, users may provide insufficient constraints, and cause the pattern to

be over-matched in a model, making the transformation process carried out in many

undesired locations. On the contrary, too restrictive preconditions can also be given by

users mistakenly, which will trigger an under-matched pattern execution process,

preventing the desired parts of the model from being transformed. The Pattern Matching

View can highlight all the matched model elements before the execution of every single

transformation action. In addition, the precondition used to match each element will be

shown as well to inform users how and why the current element is being matched. Using

this view, users can directly track the information about all the matched elements and

their matching reasons, in order to determine the errors caused by incorrect precondition

specification.

 Incorrect Generic Operation. Besides precondition specification, another type of

user refinement is to identify the generic operations. A common bug caused in this step is

that users either forget to check certain generic operations or identify more generic

operations than needed. Incorrect configuration of generic operations will cause the

transformation actions taken for an undesired number of execution times. To track the

bugs related with generic operations, a specific column in the Pattern Execution View

displays the generic configuration for each transformation action in a pattern, so that

users can clearly check the correctness of the configuration.

 Incorrectly Chosen Elements in Demonstration. The correctness of inferred

pattern depends on the user’s demonstration. If incorrect elements are chosen during a

demonstration, it will trigger the inference engine to infer wrong elements types or

relationship, which will finally cause either the failure of matching the desired parts of

151

the model or the transformation actions taken on the wrong element. Such type of bugs

can be tracked using the Pattern Matching view and the editor together. Before the

execution of each transformation action, the matched element for the current action will

be highlighted in the Pattern Matching view. A user can then locate the elements in the

editor and decide if they are the desired elements to be matched.

 Incorrect Attribute Expression. Attribute transformation is well supported in

MTBD by allowing users to specify the desired attribute transformation expression. An

incorrect expression produces the wrong attribute values. Therefore, in the Pattern

Execution view, the detailed attribute expression stored in the pattern will be displayed

for users in order to enable them to check its correctness.

6.2 Case Study

This section presents a case study that illustrates the use of MTBD Debugger to

support tracking and debugging errors in several practical model transformation tasks in a

textual game application domain.

6.2.1 Background

 The case study is based on a simple modeling language called MazeGame. A

model instance is shown in Figure 6.2. A Maze consists of Rooms, which can be

connected to each other. Each Room can contain Gold, a Weapon or a Monster with the

strength attribute to specify the power. This modeling language is used to generate a

textual game in Java, enabling players to type textual commands to move in the maze and

152

collect all the gold without being killed by monsters. A model instance describes a

specific maze configuration. Collecting weapons during game-play increases a player’s

power, which can be used to kill monsters. We constructed this metamodel in GEMS.

Figure 6.2 – An excerpt of a MazeGame model instance

 Model evolution tasks always need to be performed for the maintenance purposes

in this domain. For instance, for those rooms that contain gold and a weapon (the two

unfolded rooms in Figure 6.2, Room2 and Room6), the transformation removes one gold

piece, replaces the weapon with a monster, and sets the strength of the new monster to be

half of the strength of the weapon being replaced. This transformation is used when the

maze designer discovers that the number of monsters is far less than that of weapons,

making the game too easy.

153

6.2.2 Debugging in Action

 In order to illustrate the usage of MTBD Debugger, we choose some common

bugs or mistakes users make when using MTBD, and show how to use MTBD Debugger

to track and locate these errors.

Debugging Example 1. This first example is based on the following

transformation task: if a Monster is contained in a Room, whose strength is greater than

100, replace this Monster with a Weapon having the same strength, and add a Gold in the

same Room. Figure 6.3 shows a concrete example for this transformation task.

Monster1.stength =

120

Weapon1.strength =

120

Figure 6.3 – The excerpt of a MazeGame model before and after replacing the monster

Based on this scenario, a user starts the demonstration by first locating a Room

with a Monster in it, and deleting the Monster followed by adding a Weapon plus a Gold.

The strength of the new Weapon can be configured using the attribute refactoring editor.

Finally, a precondition on Monster is needed to restrict the transformation

(Monster1.strength > 100). As shown in List 6.1, the user performed all the correct

154

operations except mistakenly provided the incorrect precondition (Monster1.strength >

10).

List 6.1 – Operations for demonstrating replacing a Monster

Sequence Operation Performed

1 Remove Monster1 in Root.TextGameFolder.Room2

2 Add a Weapon in Root.TextGameFolder.Room2

3 Add a Gold in Root.TextGameFolder.Room2

4 Set Root.TextGameFolder.Room2.Weapon.strength

 = Monster1.strength = 120

5 Set precondition on Monster1: Monster1.strength > 10

When applying this finally generated pattern to the model, it is found that the

transformation takes place in every Room with a Monster in it, which is not the desired

result. Obviously, because the strength of every Monster is greater than 10, so the

incorrect precondition can be satisfied with all Monsters in the model instance.

To debug the error, we execute the transformation pattern again using MTBD

Debugger. As shown in Figure 6.4, the Pattern Execution view lists all the operations to

be performed, while the Pattern Matching view provides the currently matched elements

for the transformation pattern. Users can step through each of the operations, and the

corresponding model elements needed for each operation will be highlighted. For

instance, the very first operation in this scenario is to remove the Monster in the Room.

Before executing this operation and stepping to the next one, we can clearly find out

which Monster is currently matched as the target to be removed. In this case, the

Monster1 in Room12 is about to be removed. If we check the strength attribute of

Monster1 (e.g., 30), we can ensure that there is something wrong with the precondition

we specified in the demonstration, because the strength of this Monster is not greater than

155

100. At this point, we can double check the precondition in the Pattern Matching view,

which shows the actual precondition is “Strength > 10”, not “Strength > 100” as desired.

The bug is therefore identified and located.

Figure 6.4 – Debugging the transformation pattern of Example 1

The bug of the first example comes from a mistakenly specified precondition that

over-matched the model elements. In the second example, we present how to debug a

transformation pattern that contains preconditions that are under-matched.

Debugging Example 2. The second example is based on the same transformation

scenario as the first one to replace the Monster with a Weapon. However, in this second

demonstration, instead of giving the correct precondition “Strength > 100”, the user

specified “Strength > 1000” by mistake. As we can imagine, the result of executing this

156

transformation pattern will probably not replace any of the Monsters in the model

instance, because there are seldom Monsters whose strength is greater than 1000.

Figure 6.5 – Debugging the transformation pattern of Example 2

 Similar to the first example, when using the MTBD Debugger to step through the

execution process, we can find out the currently matched model elements for each

operation. As shown in Figure 6.5, the first operation to remove the Monster contains a

null operation element as the target, which means that there is not a Monster in the

current model instance that can be matched as an operand for this operation. We may

think that there is again something wrong with the precondition, so we take a look at the

precondition in the Pattern Matching view, and we find the bug results from the

precondition being set as “Strength > 1000”.

157

Debugging Example 3. Using MTBD, one of the scenarios that likely cause bugs

is the refinement on the transformation actions in order to identify generic operations.

The third example is based on the scenario that we want to remove all the pieces of Gold

in all the Rooms, no matter how many pieces there are in the Room, as shown in Figure

6.6.

Figure 6.6 – The excerpt of a MazeGame model before and after removing all Gold

 To specify the transformation pattern, a user performs a demonstration on a Room

that contains two pieces of Gold. Two operations were performed as listed in List 6.2.

List 6.2 – Operations for demonstrating removing all pieces of Gold

Sequence Operation Performed

1 Remove Gold1 in Root.TextGameFolder.Room3

2 Remove Gold2 in Root.TextGameFolder.Room3

 Without giving further refinement on the transformation actions, the user

completed the demonstration. When executing the generated transformation pattern on

the model, however, it is found that the Rooms that contain only one piece of Gold were

not transformed as expected.

158

 To track the error, we re-execute the pattern using MTBD Debugger. As listed in

the Pattern Execution view, we can see that there are two operations in this pattern, and

each operation requires a different target element (i.e., the Gold to remove). When the

Room contains only one piece of Gold, the second operation cannot be provided with a

correct operand as shown in Figure 6.7. Thus, the problem of this bug comes from the

fact that the transformation actions are not generic so that it always requires a fixed

number of model elements to enable the correct transformation. As mentioned in Chapter

3, the demonstration should be concise, such that users should only demonstrate a single

case followed by identifying the necessary generic operations. In this case, the correct

demonstration should be done by removing only one piece of Gold and then marking it as

generic.

Figure 6.7 – Debugging the transformation pattern of Example 3

159

Debugging Example 4. Following Example 3, the user re-demonstrated removing

pieces of Gold by only performing a single removal operation. However, the wrong

transformation pattern is generated again due to the user forgetting to mark the operation

as generic. This time, when the pattern is executed, only one piece of Gold can be

removed in each Room.

 To track the error, the MTBD Debugger can show whether each operation is

generic or not. As shown in Figure 6.8, when stepping through the execution in Room3

(which contains two pieces of Gold), the user can find that another Room will be matched

after removing only one piece of Gold. The user may think that the problem is caused by

the generic operations, so by double-checking the generic status, it can be seen from the

Pattern Execution view that the removal operation is not generic.

Figure 6.8 – Debugging the transformation pattern of Example 4

160

Debugging Example 5. Another common error that occurs when using MTBD is

choosing the wrong element in the demonstration process, particularly in the attribute

editing demonstration. For example, the user wants to replace all the Monsters with

Weapons, as well as doubling the strength of the new Weapons, as shown in Figure 6.9.

Monster1.Strength = 76 NewWeapon.Strength =

152

Figure 6.9 – The excerpt of a MazeGame model before and after doubling the new

weapon

The following operations are performed as listed in List 6.3. An attribute

transformation is demonstrated using the attribute refactoring editor. The expected

computation of the strength is to use the removed Monster and double its strength value.

However, operation 3 in the list mistakenly selects the wrong Monster (i.e., Monster1 in

Room1) which is not the Monster that has just been removed (i.e., Monster1 in Room2).

The wrong execution result triggered by this bug is that the new Weapon being added in

the Room uses the strength value of the Monster in a different Room, which is not what

users expect to double.

161

List 6.3 – Operations for demonstrating replacing a Monster and doubling the strength

Sequence Operation Performed

1 Remove Monster1 in Root.TextGameFolder.Room2

2 Add a Weapon in Root.TextGameFolder.Room2

3 Set Root.TextGameFolder.Room2.Weapon.strength

 = Root.TextGameFolder.Room1.Monster1.strength * 2 = 152

 This type of bug can be located easily using MTBD Debugger as shown in Figure

6.10. When we step through each operation, we can clearly see the used elements in the

Pattern Matching view. In this case, the remove element operation is done on Monster1 in

Room2, while the change attribute operation uses the Monster1 in Room7, which means

that we probably chose the wrong element in the demonstration of the attribute changing

process.

Figure 6.10 – Debugging the transformation pattern of Example 5

162

6.3 Related Work

 Being one of the most popular MTLs, ATL has an associated debugger [Allilaire

et al., 2006] to provide the basic debugging options similar to general-purpose

programming languages, such as step-by-step execution, setting up breakpoints, and

watching current variables. Additionally, simple navigation in source and target models is

supported. However, all these debugging options are closely related with the language

constructs, so it is inappropriate for general end-users who do not have the knowledge of

ATL to use. Similarly, in the Fujaba modeling environment, Triple Graphical Grammar

(TGG) rules [Koenigs, 2005] can be compiled into Fujaba diagrams implemented in Java,

which allows debugging the TGG rules directly [Wagner, 2011].

Schoenboeck et al. applied a model transformation debugging approach

[Schoenboeck et al., 2009] using Transformation Nets (TNs), which is a type of colored

Petri Net. The original source and target metamodels are used as the input to derive

places in TNs, while model instances are represented as tokens with the places. The

actual transformation logic is reflected by the transitions. The derived transformation

TNs provides a formalism to describe the runtime semantics and enable the execution of

model transformations. An interactive OCL console has been provided to enable users to

debug the execution process. TNs are at a higher level of abstraction than the MTLs (e.g.,

QVT is used as the base MTL in this approach), so this approach helps to isolate users

from knowing the low-level execution details. In addition, the formalism can be applied

to implement some of the model transformation verification tasks.

163

However, although TNs can be considered as a DSML to assist debugging model

transformations, it is a different formalism from the specific model transformation area

and can be used as a general-purpose specification in many domains, which inevitably

limits its end-user friendliness. Most users may find it challenging to switch their model

transformation tasks to colored Petri Net transition processes. On the other hand, TNs

also aim at defining the underlying operational semantics that are hidden in the model

transformation rules, and this exerts an extra burden in its understandability to general

end-users. Finally, applying OCL specification to perform and query the debugging

information is not a desired end-user approach, because it requires the knowledge of a

new language even though it is a tiny DSL.

 A similar work has been done by Hibberd [Hibberd et al., 2007] which presents

forensic debugging techniques to model transformation by using the trace information

between source and target model instances. The trace information can be used to answer

debugging questions in the form of queries that help localize the bugs. In addition, a

technique using program slicing to further narrow the area of a potential bug is also

shown. Compared with MTBD Debugger, which is a live debugging tool, this work

focuses on a different context – forensic debugging. Similar to the ATL debugger, it aims

at providing debugging support to general MTLs used in MDE.

 Another related work is done on debugging a different type of model

transformation – Model-to-text (M2T) [Dhoolia et al., 2010]. Dhoolia et al. present an

approach for assisting with fault localization in M2T transformations. The basic idea is to

create marks in the input-model elements, followed by propagating the marks to the

output text during the whole transformation, so that a dynamic process to trace the flow

164

of data from the transform input to the transform output can be realized. Using the

generated mark logs and a location where a missing or incorrect string occurs in the

output, the fault space that the user can examine incrementally to locate the fault can be

identified.

6.4 Conclusion

This chapter presents the third part of the contribution in the dissertation on

supporting the MTBD debugging process of model transformation patterns in an end-user

centric matter. The MTBD Debugger works by allowing users to step through each action

in the transformation pattern and check all the relevant information through two views.

The MTBD Debugger has been implemented as an extension to the MTBD execution

engine and integrated with the original MT-Scribe. Users have the option to debug an

execution.

 Although different debuggers have already been developed to work with other

MTLs and tools, most of them are at the same level of abstraction as the associated

MTLs, requiring the knowledge of the language itself or the metamodel definitions. In

order to seamlessly integrate with MTBD at the same level of abstraction, MTBD

Debugger is designed to be user-centric, so that users are isolated from the low-level

implementation details and abstract metamodel information.

165

CHAPTER 7

FUTURE WORK

This chapter outlines research directions that will be investigated as future work.

To further enhance the expressiveness and functionality of MTBD, several new features

are proposed to enable users to demonstrate and specify more diverse transformation

tasks using a more intelligent inference engine. Regarding the live features in Live-

MTBD, the current limitations and drawbacks will be pointed out, followed by a

discussion of the solutions as future work to address these problems. Although the

MTBD debugger helps users track potential errors in the generated transformation

pattern, a mechanism to verify whether a transformation pattern truly reflects the desired

transformation scenario is still not available, which will be another key direction for the

future. Finally, we will also propose how to apply MTBD to another significant model

transformation scenario – exogenous model transformation.

7.1 Enhance MTBD Capacity

This section describes extensions to the capabilities of MTBD through additional

demonstration options. In addition, extending the inference capability of MTBD using

multiple demonstrations and logical programming are described.

166

7.1.1 Supporting Additonal Types of Specification in Demonstration

 In MTBD, the capability of the transformation depends on the expressiveness of

the demonstration. Although demonstration is very end-user friendly, it is not as

expressive as MTLs. Some tasks could be specified easily by MTL expressions, but turn

out to be very difficult to demonstrate. For instance, scaling an element having the

maximum value of a specific attribute is currently not possible using MTBD, because

there is no way to demonstrate selecting the maximum value or adding this restriction as

a precondition. The same task could be implemented by function calls, selection or

iteration facilities available in most MTLs. Another example is that most MTLs support

conditional statements to specify the different transformation scenarios based on certain

conditions. Using MTBD, preconditions are specified for the same transformation task,

which means that different transformation tasks based on branch conditions are not

possible.

 To make MTBD more expressive and powerful, additonal features are needed to

address these commonly occurring specification needs. We can either add new interfaces

and options for users to do more diverse demonstration, or enrich the user refinement step

to give more restrictive and specific preconditions and actions. For example, to support

selecting the element with the maximum attribute value, an option can be added in the

attribute precondition specification dialog to let users click on “must be maximum.” The

execution engine will check if the value is the maximum among all the elements during

the execution. To support the transformation tasks based on conditional branches, users

can be allowed to provide a marker in certain steps of the demonstration, followed by the

167

specific preconditions for this marked part of the actions. As a result, different

preconditions can be attached to different parts of the transformation actions, and the

execution engine will execute all parts of the actions only when the precondition can be

matched. While improving the additional types of specification in demonstration, it is

also worth building a mechanism to rewind the demonstration if users find something

wrong during the demonstration. The current MT-Scribe does not support rewinding a

demonstration, so users always have to redo the demonstration if incorrect operations are

performed during a demonstration.

However, when designing and implementing the additional features, we need to

take into consideration the tradeoffs existing between simplicity and functionality,

because when new functions are extended to MTBD by designing some other user-

friendly demonstration or refinement interfaces, its simplicity and user friendliness would

likely be undermined. Therefore, because it is not easy to make MTBD a fully complete

replacement to a well-defined model transformation language to support all possible

model transformation tasks, our focus has been toward making MTBD practical for most

scenarios. When encountering difficulties in using MTBD to solve common model

transformation problems in practice, the most needed and essential features and functions

will be selected and added into MT-Scribe by designing user-friendly and user-centric

interfaces and mechanisms that are capable of implementing the desired function. On the

other hand, enabling more diverse types of demonstration can make the patterns more

complex, which increases the chance of creating conflicting patterns. Thus, another key

issue to improve MTBD is to design new algorithms to detect conflicts among different

patterns and avoid the interference. By such an incremental and selective extension

168

process, we believe a proper balance can be achieved between simplicity, functionality,

and practicality.

7.1.2 Enable Model Transformation Inference based on Multiple Demonstrations

The current inference is based on a single demonstration from users, rather than a

series of demonstrations for different scenarios. Although a single demonstration requires

much less effort from a user, it often contains limited information about the desired

scenario, restricting the accuracy of the transformation pattern being inferred. The desired

number of demonstrations given by users as the input to the inference engine is another

issue that needs to be further investigated. It is also useful to make multiple

demonstrations that contain negative demonstrations as well. For example, users can

demonstrate a scenario that is not desired. Combined with positive demonstrations, more

restrictive preconditions can be integrated into the final transformation pattern.

In addition, to further improve the inference engine, some artificial intelligence or

machine learning techniques could be applied to MTBD. As mentioned in Chapter 3,

related work has been done to apply logical programming to infer the transformation

rules automatically from a set of given input facts. Similarly, the demonstrations can be

considered as the input facts, leading to the generation of the pattern using the logical

inference engine. Machine learning is another promising technique to improve the

inference result for MTBD. The recorded user operation history can be a useful source of

empirical data to capture or recognize the patterns automatically. For instance, when

users frequently perform certain editing behavior (e.g., a user always adds an Output Port

169

after adding an ADC function), the learning engine can summarize the repeated actions

and ask users if they want to generate the pattern based on their editing history.

7.2 Improve Live-MTBD Tool Support

Live-MTBD provides a set of basic features to improve the creation, sharing and

reuse of model transformation patterns. As an initial version, however, there are still

limitations associated with each feature. This section points out these issues as the future

work to improve Live-MTBD tool support.

7.2.1 Enhance the Correctness and User Experience of Live Demonstration

 Forming the transformation pattern from the editing history using live

demonstration is very flexible compared with the explicit demonstration, but it also leads

to a possibility that the selected editing operations from the history may not be accurate.

For instance, without a mechanism to guide the selection of operations related with

certain model elements, extra unnecessary operations could be added accidentally to the

pattern, which cannot be filtered by the optimization algorithm; or an incomplete pattern

is inferred due to the insufficient operations chosen from the view. Therefore, a crucial

aspect for the future work is how to ensure the correctness of the selections when using

live demonstration. This actually raises a similar issue about how to verify a generated

model transformation pattern and determine if it really reflects the user’s demonstration

intention, which will be discussed in Section 7.3.

 In addition, the current selection of editing operations from the history is done in

a list view, which shows all the information about each operation in text. This is error-

170

prone for users to make the right selection of operations, particularly when the list is long

and the needed operations are not sequentially next to each other. Thus, it would be very

helpful to provide a graphical interface to show exactly where an operation occurred in

the model and what model elements and connections are involved in this operation. With

graphical guidance, users can reflect on their editing history easily and reduce the chance

of making an incorrect selection when using live demonstration.

7.2.2 Add Management Features for Live Sharing

The current implementation of live sharing simply provides a centralized pattern

repository and stores all the patterns together without classification. This could lead to

matching transformation patterns that are not designed for the current modeling language.

Based on the current design of the MTBD execution engine, a transformation pattern can

only be matched to the model instances that conform to the same metamodel (i.e., belong

to the same DSML) used in the demonstration. Thus, it is meaningless to show all the

existing transformation patterns in the execution controller to the user. Instead, only the

patterns created in the same DSML should be shown. The filtering of patterns can help

users to better select the desired patterns from the repository, but also improve the

performance of live matching, because the matching engine will only match the patterns

that potentially can be applied in the current model instance.

The desired management features for live sharing also includes recording and

showing more detailed information about each pattern in the repository, such as the

creator of the pattern, the use case description, and the pattern creation date and time. A

171

pattern searching function can be implemented in the execution controller to help users

locate the correct pattern from the large pattern repository.

7.2.3 Improve the Performance of Live Matching

 Although live matching has been applied as a useful tool to help users recognize

reusable patterns at editing runtime, its usage suffers from poor performance. Because the

current implementation of live matching loads all the patterns from the repository and

carries out the matching process on the input selected part of the model whenever the

selection changes, it could increase the workload of the matching engine when there are a

large number of patterns to match or the user changes the selection frequently. Thus, new

algorithms or techniques are needed to reduce the workload and improve the matching

performance. As mentioned in Chapter 5, the Rete algorithm can be applied to preserve

the full transformation context in the form of pattern matches that improve the

performance of the live transformation. The same approach can be applied in our case.

Moreover, caching is another option to improve the performance by caching the matching

result based on the selection and the patterns, so that the repeated matching process can

be avoided and the workload of the matching engine can be reduced.

7.3 MTBD Debugger

 The MTBD debugger can be applied to the core elements specified in a model

transformation pattern. However, one drawback of the current views used in the debugger

is that they are textual and not visual. For instance, the Pattern Matching View shows all

the needed elements for each action. However, the containment relationship among these

172

elements cannot be seen clearly. It would be very helpful to have another view that shows

all the currently involved model elements and their relationships visually. In other words,

a view that can capture the specific part of the current model that is used for the next

transformation action. This can enable users to catch and check the matched elements

easily.

 Another option that is useful in the general debugging process, but missing in the

MTBD debugger, is the concept of setting a breakpoint. In some large model

transformation scenarios (e.g., scaling up a base model to a large and complex state), it is

not necessary to watch all the actions being executed one-by-one, so setting a breakpoint

would make the debugging more useful in this case. Thus, in the Pattern Execution View,

it would be helpful to enable the breakpoint setup in the action execution list.

7.4 Apply MTBD to Exogenous Model Transformation

MTBD was designed to support model transformation problems within the same

domain or metamodel, because the demonstration of a transformation process occurs in

the model editor, but editing models conforming to different metamodels within the same

editor is currently not supported. However, we believe that the demonstration-based

approach can be applied also to exogenous model transformation scenarios, by recording

the operations needed to change the model from one domain to another domain and

conducting the inference process. The main challenge to enable exogenous model

transformation is to provide a flexible demonstration environment. This could be

implemented by either designing an editor that allows users to edit models without

metamodel restrictions (e.g., change the meta type of an element in the editor, change the

173

attribute name or attribute data type, or add connections between elements although there

are no connections defined in the metamodel), or implementing an interactive editing

environment between two different editors so that users can make mappings, and drag

and drop elements to perform the desired demonstration. After the demonstration is

realized, the other steps in MTBD can be modified to adapt to exogenous model

transformations.

174

CHAPTER 8

CONCLUSION

 Model transformation is a core part of DSM and plays an indispensible role in

many applications of model engineering (e.g., code generation, model mapping and

synchronization, model evolution, and reverse engineering). The traditional way to

implement model transformations is to use executable MTLs to specify the

transformation rules and automate the transformation process. However, the use of model

transformation languages may present some challenges to users due to the steep learning

curve and the difficulties of understanding metamodels, particularly to those who are

unfamiliar with a specific transformation language. Moreover, reusing the specific

transformation rules is not well supported in most MTLs and tools, because there lacks a

way to directly share the existing rules or a mechanism to provide guidance to users

about which rules to use for the correct purpose. In addition, most MTLs do not have an

associated debugger. Even if the debuggers are available, they usually work at the same

level of abstraction as MTLs.

The overall goal of the research described in this dissertation is to provide an end-

user centric approach to implement model transformation tasks in various model

evolution activities. The key contributions include: 1) designing and implementing the

new demonstration-based approach to address the challenges of using traditional MTLs

to support implementing model transformation tasks, 2) investigating tools to improve

sharing and reusing the existing transformation, 3) developing a debugger associated with

175

the model transformation engine that is at the same level of abstraction as the new model

transformation approach and is end-user centric.

8.1 The MTBD Model Transformation Approach

 To simplify the model transformation implementation, we described a new

approach in Chapter 3 – Model Transformation By Demonstration (MTBD). Instead of

writing MTL rules manually, users are asked to demonstrate how the model

transformation should be done by directly editing the model instance to simulate the

model transformation process step-by-step. A recording and inference engine has been

developed to capture all user operations and infer a user’s intention in a model

transformation task. A transformation pattern is generated from the inference, specifying

the precondition of the transformation and the sequence of operations needed to realize

the transformation. This pattern can be reused by automatically matching the

precondition in a new model instance and replaying the necessary operations to simulate

the model transformation process.

 Using MTBD, users are enabled to specify model transformations without the

need to use a MTL. Furthermore, an end-user can describe a desired transformation task

without detailed understanding of a specific metamodel. We have applied MTBD in

different model evolution activities – model refactoring, model scalability, aspect-

oriented modeling, model management and model layout. Chapter 4 presents some of the

typical model transformation tasks in each activity. From these examples, it can be seen

that MTBD can be applied generally to different application domains in practice, be used

by end-users without the knowledge of MTLs and metamodels, and can improve the

176

productivity compared with doing the transformation either manually or by writing MTL

rules.

8.2 The Live-MTBD Toolkit

 The Live-MTBD toolkit presented in Chapter 5 can be applied to improve the

reuse of model transformation patterns. The main obstacles of reuse come from missing

the specification of many reusable transformation patterns, a lack of a sharing mechanism

for transformation patterns, and the challenge of reusing the correct pattern from the

repository. Thus, three new features were developed as an extension toolkit to MTBD to

improve the reuse: 1) Live Demonstration, provides a more general demonstration

environment that encourages and eases the specification of transformation patterns based

on their editing history, 2) in order to improve the sharing of transformation patterns

among different users, Live Sharing – a centralized model transformation pattern

repository allows users to reuse transformation patterns across different editors, 3) a live

model transformation matching engine – Live Matching has been developed to match the

existing transformation patterns automatically at modeling time, and provides reuse

suggestions and guidance to users during model editing. Based on a practical case study,

we presented how to use Live-MTBD to improve the reuse of model transformation

patterns.

177

8.3 The MTBD Debugger

 Chapter 6 presents the debugger designed and implemented specifically for

MTBD. It focuses on providing necessary debugging options when executing MTBD

transformation patterns, which includes displaying the sequence of transformation actions

and the model elements matching the preconditions. The related information is displayed

in two views. Users can step through each of the transformation actions one by one, and

observe the information about the model being transformed during the transformation

execution time. With the same goal of MTBD, the associated MTBD debugger was built

to allow end-users to perform debugging tasks, without the need to understand the

abstract metamodel definition or the low-level implementation details.

 To conclude, DSM has been applied to raise the level of abstraction, address the

difficulties associated with developing complex systems, and enable end-users to

participate in software development. However, MTLs, which are the common technology

to support model evolution, are obviously not at the same abstraction level as models,

which prevent a wider range of model users from contributing to system evolution and

development, thus restraining the power of DSM. To address this abstraction gap with

respect to model transformations, MTBD allows end-users to contribute to model

evolution tasks at the same level of abstraction as modeling systems using DSM.

Additionally, performing model evolution tasks usually involves other activities such as

sharing and reusing the model evolution knowledge, debugging and tracking errors

during a model evolution process. Live-MTBD and the MTBD Debugger were created

for these purposes. The essential feature of the Live-MTBD and MTBD Debugger is that

they both work at the same level of abstraction as MTBD. This dissertation brings the

178

activities related to model evolution closer to the end-users, promoting the usage of DSM

to more end-users.

179

LIST OF REFERENCES

[Agon, 1998] Carlos Agon, “OpenMusic: Un langage visuel pour la composition

musicale assistée par ordinateur,” Ph.D. Thesis, IRCAM University Paris, 1998.

[Agrawal, 2003] Aditya Agrawal, Gábor Karsai, and Ákos Lédeczi, “An End-to-End

Domain-Driven Software Development Framework,” International Conference on

Object-Oriented Programming, Systems, Languages, and Applications - Domain-driven

Track, Anaheim, CA, October 2003, pages 8-15.

[Allilaire et al., 2006] Freddy Allilaire, Jean Bézivin, Frédéric Jouault, and Ivan Kurtev,

“ATL: Eclipse Support for Model Transformation,” The Eclipse Technology eXchange

Workshop (eTX) of the European Conference on Object-Oriented Programming

(ECOOP), Nantes, France, July 2006.

[Arendt et al., 2009] Thorsten Arendt, Florian Mantz, Lars Schneider, and Gabriele

Taentzer, “Model Refactoring in Eclipse by LTK, EWL, and EMF Refactor: A Case

Study,” Models and Evolution Joint MODELS Workshop, Denver, CO, October 2009,

pages 38-47.

[Atkinson and Kuhne, 2003] Colin Atkinson, and Thomas Kuhne, “Model-Driven

Development: A Metamodeling Foundation,” IEEE Software, vol. 20, no. 5, May 2003,

pages 36-41.

[ATL Transformation Zoo, 2011] ATL Transformation Zoo,

http://www.eclipse.org/m2m/atl/atlTransformations/, 2011.

[Balasubramanian et al., 2006-a] Daniel Balasubramanian, Anantha Narayanan, Chris

van Buskirk, and Gabor Karsai, “The Graph Rewriting and Transformation Language:

GReAT,” Electronic Communication of the European Association of Software Science

and Technology, vol. 1, 2006, 8 pages.

[Balasubramanian et al., 2006-b] Krishnakumar Balasubramanian, Aniruddha Gokhale,

Yuehua Lin, Jing Zhang, and Jeff Gray, “Weaving Deployment Aspects into Domain-

Specific Models,” International Journal on Software Engineering and Knowledge

Engineering, vol. 16., no. 3, June 2006, pages 403-424.

[Balogh and Varró, 2006] Zoltán Balogh and Dániel Varró, “Advanced Model

Transformation Language Constructs in the VIATRA2 Framework,” Symposium on

Applied Computing, Dijon, France, April 2006, pages 1280-1287.

180

[Balogh and Varró, 2009] Zoltán Balogh and Dániel Varró, “Model Transformation by

Example using Inductive Logic Programming,” Software and Systems Modeling, vol. 8,

no. 3, July 2009, pages 347-364.

[Battista et al., 1994] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis

Tollis, “Algorithms for Automatic Graph Drawing: An Annotated Bibliography,”

Computational Geometry: Theory and Applications, vol. 4, 1994, pages 235-282.

[Bergmann et al., 2009] Gábor Bergmann, István Ráth, and Dániel Varró, “Parallelization

of Graph Transformation based on Incremental Pattern Matching,” Electronic

Communication of the European Association of Software Science and Technology, vol.

18, 2009, 15 pages.

[Biermann et al., 2006] Enrico Biermann, Karsten Ehrig, Christian Köhler, Günter

Kuhns, Gabriele Taentzer, and Eduard Weiss, “Graphical Definition of In-Place

Transformations in the Eclipse Modeling Framework,” International Conference on

Model Driven Engineering Languages and Systems, Genova, Italy, October 2006, pages

425-439.

[Blair et al., 2009] Gordon Blair, Nelly Bencomo, and Robert France,

“Models@run.time,” IEEE Computer, vol. 42, no. 10, 2009, pages 22-27.

[Booch, 1997] Grady Booch, Object-Oriented Analysis and Design with Applications,

Addison-Wesley, 1997.

[Brooks, 1987] Frederick Brooks, “No Silver Bullet - Essence and Accident in Software

Engineering,” IEEE Computer, vol. 20, no. 4, April 1987, pages 10-19.

[Brosch et al., 2009-a] Petra Brosch, Philip Langer, Martina Seidl, Konrad Wieland,

Manuel Wimmer, Gerti Kappel, Werner Retschitzegger, and Wieland Schwinger, “An

Example is Worth a Thousand Words: Composite Operation Modeling By-Example,”

International Conference on Model Driven Engineering Languages and Systems, Denver,

CO, October 2009, pages 271-285.

[Brosch et al., 2009-b] Petra Brosch, Martina Seidl, Konrad Wieland, Manuel Wimmer,

and Philip Langer, “The Operation Recorder: Specifying Model Refactorings By-

example,” International Conference on Object Oriented Programming Systems

Languages and Applications - Tool Demonstration, Orlando, FL, October 2009, pages

791-792.

[Budinsky et al., 2004] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick

and Timothy J. Grose, Eclipse Modeling Framework, Addison-Wesley, 2004.

[Burnett et al., 2004] Margaret Burnett, Curtis Cook, and Gregg Rothermel, “End-user

Software Engineering,” Communications of the ACM, vol. 47, no. 9, January 2004, pages

53-58.

[COM, 2011] Component Object Model (COM) Technology,

http://www.microsoft.com/com/, 2011.

[CWM, 2011] Object Management Group, Common Warehouse Metamodel,

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#CWM, 2011

181

[Czarnecki and Helsen, 2006] Krzysztof Czarnecki, and Simon Helsen, “Feature-based

Survey of Model Transformation Approaches,” IBM Systems Journal, vol. 45 no. 3,

2006, pages 621-645.

[Cypher, 1993] Allen Cypher, Watch What I Do: Programming by Demonstration,

Cambridge, MA, MIT Press, 1993.

[Deridder et al., 2008] Dirk Deridder, Jeff Gray, Alfonso Pierantonio, and Pierre-Yves

Schobbens, “Report on the International Workshop on Model Co-evolution and

Consistency Management,” Workshop on Model Co-Evolution and Consistency

Management (MCCM), Toulouse, France, September 2008, pages 120-123.

[Dhoolia et al., 2010] Pankaj Dhoolia, Senthil Mani, Vibha Singhal Sinha, and Saurabh

Sinha, “Debugging Model-Transformation Failures Using Dynamic Tainting,” European

Conference on Object-Oriented Programming, Maribor, Slovenia, June 2010, pages 26-

51.

[Eberspächer, 2011] Eberspächer Flexray Card. http://www.eberspacher.com/, 2011.

[Eclipse, 2011] Eclipse, http://www.eclipse.org/, 2011.

[Eclipse EMFT, 2011] Eclipse Modeling Framework Technology (EMFT),

http://www.eclipse.org/modeling/emft/, 2011.

[Eclipse VE, 2011] Eclipse Visual Editor, http://www.eclipse.org/vep, 2011.

[Edwards, 2004] George Edwards, Gan Deng, Douglas Schmidt, Aniruddha Gokhale, and

Bala Natarajan, “Model-Driven Configuration and Deployment of Component

Middleware Publish/Subscribe Services,” International Conference on Generative

Programming and Component Engineering, Vancouver, Canada, October 2004, pp. 337-

360.

[Elrad et al., 2002] Tzilla Elrad, Omar Aldawud,

and Atef Bader, “Aspect-Oriented

Modeling: Bridging the Gap between Implementation and Design,” International

Conference on Generative Programming and Component Engineering, Pittsburgh, PA,

October 2002, pages 189-201.

[EMF Refactor, 2011] EMF Refactor, http://www.mathematik.uni-

marburg.de/~swt/modref/, 2011.

[EMF Tiger, 2011] EMF Tiger, http://tfs.cs.tu-berlin.de/emftrans/, 2011.

[EMP, 2011] Eclipse Modeling Project, http://www.eclipse.org/modeling/, 2011.

[Fowler, 1999] Martin Fowler, Refactoring: Improving the Design of Existing Code,

Addison-Wesley, 1999.

[France et al., 2003] Robert France, Sudipto Ghosh, Eunjee Song, and Dae-Kyoo Kim,

“A Metamodeling Approach to Pattern-Based Model Refactoring, ” IEEE Software, vol.

20, no. 5, September 2003, pages 52-58.

[Freescale, 2011] Freescale S12 Microcontroller. http://www.freescale.com/, 2011.

182

[Fuggetta, 1993] Alfonso Fuggetta, “A Classification of CASE Technology,” Computer,

vol. 26, no. 12, December 1993, pages 25-38.

[Gamma et al., 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,

Design Patterns: Elements of Reusable Object-oriented Software, Addison Wesley, 1995.

[GEF, 2011] Graphical Editing Framework, http://www.eclipse.org/gef/, 2011.

[GEMS, 2011] Generic Eclipse Modeling System (GEMS),

http://www.eclipse.org/gmt/gems/, 2011.

[GMF, 2011] Graphical Modeling Framework, http://www.eclipse.org/modeling/gmf/,

2011.

[Google App Inventor, 2011] Google App Inventor, http:// appinventor.googlelabs.com/,

2011

[Gray, 2002] Jeff Gray, “Aspect-Oriented Domain-Specific Modeling: A Generative

Approach Using a Metaweaver Framework,” Ph.D. Thesis, Vanderbilt University,

Nashville, TN, 2002.

[Gray et al., 2001] Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck, “Handling

Crosscutting Constraints in Domain-Specific Modeling,” Communications of the ACM,

vol. 44, no. 10, October 2001, pages 87-93.

[Gray et al., 2005] Jeff Gray, Yuehua Lin, Jing Zhang, Steve Nordstrom, Aniruddha

Gokhale, Sandeep Neema, and Swapna Gokhale, “Replicators: Transformations to

Address Model Scalability,” International Conference on Model Driven Engineering

Languages and Systems, Montego Bay, Jamaica, October 2005, pages 295-308.

[Gray et al., 2006] Jeff Gray, Yuehua Lin, and Jing Zhang, “Automating Change

Evolution in Model-Driven Engineering,” IEEE Computer, Special Issue on Model-

Driven Engineering (Doug Schmidt, ed.), vol. 39, no. 2, February 2006, pages 51-58.

[Gray et al., 2007] Jeff Gray, Juha-Pekka Tolvanen, Steven Kelly, Aniruddha Gokhale,

Sandeep Neema, and Jonathan Sprinkle, “Domain-Specific Modeling,” Handbook of

Dynamic System Modeling, CRC Press, 2007, Chapter 7, pages 7-1 through 7-20.

[Gray et al., 2009] Jeff Gray, Sandeep Neema, Jing Zhang, Yuehua Lin, Ted Bapty,

Aniruddha Gokhale, and Douglas Schmidt, “Concern Separation for Adaptive QoS

Modeling in Distributed Real-Time Embedded Systems,” Behavioral Modeling for

Embedded Systems and Technologies: Applications for Design and Implementation, (Luis

Gomes and Joao Fernandes, eds.), Idea Group, 2009, Chapter 4, pages 85-113.

[Greenfield and Short, 2004] Jack Greenfield and Keith Short, Software Factories:

Assembling Applications with Patterns, Models, Frameworks, and Tools, John Wiley and

Sons, 2004.

[Grimes, 2002] Richard Grimes, Developing applications with Visual Studio .NET,

Addison Wesley, 2002.

183

[Harrison, 2004] Warren Harrison, “The Dangers of End-User Programming,” IEEE

Software, vol. 21, no. 4, July 2004, pages 5-7.

[Hayes, 2008] Brian Hayes, “Cloud Computing,” Communications of the ACM, vol. 51,

no. 7, July 2008, pages 9-11.

[Hibberd et al., 2007] Mark Hibberd, Michael Lawley, and Kerry Raymond, “Forensic

Debugging of Model Transformations,” International Conference on Model Driven

Engineering Languages and Systems, Nashville, TN, October 2007, pages 589-604.

[Hirel et al., 2000] Christophe Hirel, Bruno Tuffin, and Kishor S. Trivedi, “SPNP:

Stochastic Petri Nets. Version 6.0,” Computer Performance Evaluation Modeling

Techniques and Tools, Schaumburg, IL, March 2000, pages 354-357.

[Iacob et al., 2008] Maria-Eugenia Iacob, Maarten W. A. Steen, and Lex Heerink,

“Reusable Model Transformation Patterns,” Enterprise Distributed Object Computing

Conference Workshops, Munich, Germany, September 2008, pages 1-10.

[Jouault et al., 2008] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev,

“ATL: A Model Transformation Tool,” Science of Computer Programming, vol. 72, no.

1-2, June 2008, pages 31-39.

[Jouault and Bézivin, 2006] Frédéric Jouault and Jean Bézivin, “KM3: A DSL for

Metamodel Specification,” International Conference on Formal Methods for Open

Object-based Distributed Systems, Bologna, Italy, June 2006, pages. 171–185.

[Jouault and Kurtev, 2005] Frédéric Jouault and Ivan Kurtev, “Transforming Models with

ATL,” Satellite Events at the MoDELS Conference, Montego Bay, Jamaica, October

2005, pages 128-138.

[Kang et al., 1990] Kyo Kang, Sholom Cohen, James Hess, William Novak, and Spencer

Peterson, “Feature-Oriented Domain Analysis (FODA) Feasibility Study,” Technical

Report CMU/SEI-90-TR-021, SEI, Carnegie Mellon University, November 1990.

[Kappel, 2006] Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler,

Thomas Reiter, Werner Retschitzegger, Wieland Schwinger, and Manuel Wimmer,

“Lifting Metamodels to Ontologies - a Step to the Semantic Integration of Modeling

Languages,” International Conference on Model Driven Engineering Languages and

Systems, Genova, Italy, October 2006, pages 528-542.

[Karr et al., 2001] David Karr, Craig Rodrigues, Joseph Loyall, Richard Schantz,

Yamuna Krishnamurthy, Irfan Pyarali, and Douglas Schmidt, “Application of the QuO

Quality-of-Service Framework to a Distributed Video Application,” International

Symposium on Distributed Objects and Applications, Rome, Italy, 2001, pages 67-89.

[Karsai et al., 2004] Gábor Karsai, Miklós Maróti, Ákos Lédeczi, Jeff Gray, and Janos

Sztipanovits, “Composition and Cloning in Modeling and Meta-Modeling Languages,”

IEEE Transactions on Control System Technology, Special issue on Computer

Automated Multi-Paradigm Modeling (Pieter Mosterman and Sebastian Engell, eds.),

vol. 12, no. 2, March 2004, pages 263-278.

184

[Kehn, 2010] Dan Kehn, “Extend Eclipse Java Development Tools,”

http://www.ibm.com/developerworks/opensource/library/os-ecjdt/, 2010.

[Kelly and Tolvanen, 2008] Steven Kelly and Juha-Pekka Tolvanen, Domain-Specific

Modeling: Enabling Full Code Generation, Wiley-IEEE Computer Society Press, 2008.

[Kiczales et al., 1997] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris

Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin “Aspect-Oriented

Programming,” European Conference on Object-Oriented Programming, Jyväskylä,

Finland, June 1997, pages 220-242.

[Koenigs, 2005] Alexander Königs, “Model Transformation with TGGs,” Model

Transformations in Practice Workshop of MoDELS 2005, Montego Bay, Jamaica,

September 2005.

[Kogekar et al., 2006] Arundhati Kogekar, Dimple Kaul, Aniruddha Gokhale, Paul

Vandal, Upsorn Praphamontripong, Swapna Gokhale, Jing Zhang, Yuehua Lin, and Jeff

Gray, “Model-driven Generative Techniques for Scalable Performabality Analysis of

Distributed Systems,” IPDPS Workshop on Next Generation Systems, Rhodes, Greece,

April 2006, 8 pages.

[KTechlab, 2011] KTechlab, http://sourceforge.net/projects/ktechlab/, 2011.

[Kurtev et al., 2006] Ivan Kurtev, Jean Bezivin, Frédéric Jouault, and Patrick Valduriez,

“Model-based DSL Frameworks,” Object-Oriented Programming Systems, Languages,

and Applications, Portland, OR, October 2006, pages 602-616.

[LaTeX, 2011] LATeX – A document preparation system, http://www.latex-project.org/,

2011

[Lechner and Schrefl, 2003] Stephan Lechner and Michael Schrefl, “Defining Web

Schema Transformers by Example,” Database and Expert Systems Applications, Prague,

Czech Republic, September 2003, pages 46-56.

[Lédeczi et al., 2001] Ákos Lédeczi, Árpád Bakay, Miklós Maróti, Péter Völgyesi, Greg

Nordstrom, Jonathan Sprinkle, and Gábor Karsai, “Composing Domain-Specific Design

Environments,” IEEE Computer, vol. 34, no. 11, November 2001, pages 44-51.

[Lehman, 1978] Meir Lehman, “Laws of Program Evolution – Rules and Tools for

Programming Management,” Infotech State of the Art Conference, Why Software Projects

Fail, April 1978, pages 11/1–11/25.

[Lenz and Wienands, 2006] Gunther Lenz and Christoph Wienands, Practical Software

Factories in .NET, Apress, 2006.

[Lieberman et al., 2006] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker

Wulf, “End-User Development: An Emerging Paradigm,” End User Development –

Human-Computer Interaction Series, vol. 9, January 2006, pages 1-8.

185

[Lin et al., 2004] Yuehua Lin, Jing Zhang, and Jeff Gray, “Model Comparison: A Key

Challenge for Transformation Testing and Version Control in Model Driven Software

Development,” Workshop on Best Practices for Model-Driven Software Development,

held at OOPSLA 2004, Vancouver, BC, October 2004.

[Lin, 2007] Yuehua Lin, “A Model Transformation Approach to Automated Model

Evolution,” Ph.D. Thesis, University of Alabama at Birmingham, Birmingham, AL,

2007.

[Lin et al., 2005] Yuehua Lin, Jing Zhang, and Jeff Gray, “A Testing Framework for

Model Transformations,” Model-driven Software Development, Springer, 2005, Chapter

10, pages 219-236.

[Lin et al., 2007] Yuehua Lin, Jeff Gray, and Frédéric Jouault, “DSMDiff: A

Differentiation Tool for Domain-Specific Models,” European Journal of Information

Systems, vol. 16, no. 4, August 2007, pages 349-361.

[Lin et al., 2008] Yuehua Lin, Jeff Gray, Jing Zhang, Steve Nordstrom, Aniruddha

Gokhale, Sandeep Neema, and Swapna Gokhale, “Model Replication: Transformations to

Address Model Scalability,” Software: Practice and Experience, vol. 38, no. 14,

November 2008, pages 1475-1497.

[Martin, 1967] James Martin. Design of Real-Time Computer Systems. Prentice-Hall,

Inc., Upper Saddle River, NJ, 1967.

[Mazanek and Minas, 2009] Steffen Mazanek and Mark Minas, “Business Process

Models as a Showcase for Syntax-Based Assistance in Diagram Editors,” International

Conference on Model Driven Engineering Languages and Systems, Denver, CO, October,

2009, pages 322-336.

[M2M, 2011] Model To Model (M2M) Project, http://www.eclipse.org/m2m/, 2011.

[M2T, 2011] Model To Text (M2T) Project, http://www.eclipse.org/m2t/, 2011.

[MDA, 2011] Model-Driven Architecture (MDA) Specification, http://www.omg.org/cgi-

bin/doc?omg/03-06-01.

[Mens and Gorp, 2005] Tom Mens and Pieter Van Gorp, “A Taxonomy of Model

Transformation and its Application to Graph Transformation,” Workshop on Graph and

Model Transformation, Tallinn, Estonia, September 2005, 15 pages.

[Mens and Tourwé, 2004] Tom Mens and Tom Tourwé, “A Survey of Software

Refactoring,” IEEE Transactions on Software Engineering, vol. 30, no. 2, February 2004,

pages 126-139.

[Mernik et al., 2005] Marjan Mernik, Jan Heering, and Anthony M. Sloane. “When and

How to Develop Domain-Specific Languages,” ACM Computing Surveys, vol. 37, no. 4

December 2005, pages 316-344.

[MetaCase+, 2011] MetaCase+, http://www.metacase.com/, 2011.

186

[Misue et al., 1995] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama, “Layout

Adjustment and the Mental Map,” Journal of Visual Languages and Computing, vol. 6,

no. 2, June 1995, pages 183-210.

[MOF, 2011] Object Management Group, Meta Object Facility specification,

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#MOF

[Moore et al., 2004] Bill Moore, David Dean, Anna Gerber, and Gunnar Wagenknecht,

Philippe Vanderheyden, “Eclipse Development using the Graphical Editing Framework

and the Eclipse Modeling Framework,” IBM Redbooks, International Business Machines,

January 2004.

[MS VPL, 2011] Microsoft Visual Programming Language,

http://msdn.microsoft.com/en-us/library/bb483088.aspx, 2011.

[Myers, 1986] Brad Myers, “Visual Programming, Programming by Example, and

Program Visualization: A Taxonomy,” SIGCHI Conference on Human factors in

Computing Systems, Boston, MA, April 1986 , pages 59-66.

[Muppala et al., 1994] Jogesh K. Muppala, Gianfranco Ciardo, and Kishor S. Trivedi,

“Stochastic Reward Nets for Reliability Prediction,” Communications in Reliability,

Maintainability and Serviceability, vol. 1, no. 2, July 1994, pages 9-20.

[Narayanan et al., 2009] Anantha Narayanan, Tihamer Levendovszky, Daniel

Balasubramanian, and Gabor Karsai “Automatic Domain Model Migration to Manage

Metamodel Evolution,” International Conference on Model Driven Engineering

Languages and Systems, Denver, CO, October 2009, pages 706-711.

[Narayanan et al., 2010] Krishna Kumar Narayanan, Luis Felipe Posada, Frank

Hoffmann and Torsten Bertram, “Robot Programming by Demonstration,” Simulation,

Modeling, and Programming for Autonomous Robots, Darmstadt, Germany, November

2010, pages 288-299.

[NetBeans, 2011] NetBeans, http://www.netbeans.org/, 2011

[Nordstrom et al., 1999] Greg Nordstrom, Janos Sztipanovits, Gábor Karsai, and Ákos

Lédeczi, “Metamodeling - Rapid Design and Evolution of Domain-Specific Modeling

Environments,” International Conference on Engineering of Computer-Based Systems,

Nashville, TN, April 1999, pages 68-74.

[OCL, 2011] Object Management Group, Object Constraint Language Specification,

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL, 2011.

[QVT, 2011] MOF Query/Views/Transformations Specification,

http://www.omg.org/cgi-bin/doc?ptc/2005-11-01, 2011.

[Rath et al., 2008] Istvan Rath, Gabor Bergmann, Andras Okros, and Dániel Varró, “Live

Model Transformations Driven by Incremental Pattern Matching,” International

Conference on Model Transformation, Zurich, Switzerland, June 2008, pages 107–121.

187

[Redmiles et al., 2004] David Redmiles, Li-Te Cheng, David Millen, and John Patterson

“How a Good Software Practice Thwarts Collaboration: the Multiple Roles of APIs in

Software Development,” International Symposium on Foundations of Software

Engineering, Newport Beach, CA, November 2004, pages. 221-230.

[Robbes and Lanza, 2008] Romain Robbes, and Michele Lanza, “Example-Based

Program Transformation,” International Conference on Model Driven Engineering

Languages and Systems, Toulouse, France, October 2008, pages 174-188.

[Rothermel et al., 2001] Gregg Rothermel, Margaret Burnett, Lixin Li, Christopher

Dupuis, and Andrei Sheretov, “A Methodology for Testing Spreadsheets,” ACM

Transactions on Software Engineering and Methodology, vol. 10, no. 1, January 2001,

pages 110-147.

[Rugaber and Stirewalt, 2004] Spencer Rugaber and Kurt Stirewalt, “Model-Driven

Reverse Engineering,” IEEE Software, vol. 21, no. 4, July 2004, pages 45-53.

[Scaffidi et al., 2005] Christopher Scaffidi, Mary Shaw, and Brad Myers, “Estimating the

Numbers of End Users and End User Programmers,” IEEE Symposium on Visual

Languages and Human-Centric Computing, Dallas, TX, September 2005, pages 207-214.

[Schmidt, 2006] Douglas Schmidt, “Model-Driven Engineering,” IEEE Computer, vol.

39, no. 2, 2006, pages 25-32.

[Schmidt et al., 2000] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank

Buschman, Pattern-Oriented Software Architecture – Volume 2: Patterns for Concurrent

and Networked Objects, John Wiley and Sons, 2000.

[Schoenboeck et al., 2009] Johannes Schoenboeck, Gerti Kappel, Angelika Kusel,

Werner Retschitzegger, Wieland Schwinger, and Manuel Wimmer, “Catch Me If You

Can – Debugging Support for Model Transformations,” Models in Software Engineering:

Workshops and Symposia at MoDELS 2009, Denver, CO, October 2009, pages 5-20.

[Sen et al., 2010-a] Sagar Sen, Benoit Baudry, and Hans Vangheluwe, “Towards

Domain-specific Model Editors with Automatic Model Completion,” SIMULATION, vol.

86, no. 2, September 2010, pages 109-126.

[Sen et al., 2010-b] Sagar Sen, Naouel Moha, Vincent Mahé, Olivier Barais, Benoit

Baudry, and Jean-Marc Jézéquel, “Reusable Model Transformations,” Software and

System Modeling, to appear, DOI: 10.1007/s10270-010-0181-9.

[Sendall and Kozaczynski, 2003] Shane Sendall and Wojtek Kozaczynski, “Model

Transformation - The Heart and Soul of Model-Driven Software Development,” IEEE

Software, vol. 20, no. 5, September 2003, pages 42-45.

[Shah and Slaughter, 2003] Devang Shah and Sandra Slaughter, “Transforming UML

Class Diagrams into Relational Data Models,” UML and the Unified Process, IGI

Publishing, Hershey, PA, 2003, pages 217-236.

[Sprinkle, 2003] Jonathan Sprinkle, “Metamodel Driven Model Migration,” Ph.D. Thesis,

Vanderbilt University, Nashville, TN, 2003.

188

[Strommer and Wimmer, 2008] Michael Strommer and Manuel Wimmer, “A Framework

for Model Transformation by-example: Concepts and Tool Support,” International

Conference on Technology of Object-Oriented Languages and Systems, Zurich,

Switzerland, July 2008, pages 372-391.

[Strommer et al., 2007] Michael Strommer, Marion Murzek, and Manuel Wimmer,

“Applying Model Transformation By-example on Business Process Modeling

Languages,” International Workshop on Foundations and Practices of UML, Auckland,

New Zealand, November 2007, pages 116-125.

[Sun et al., 2008] Yu Sun, Zekai Demirezen, Marjan Mernik, Jeff Gray, and Barrett

Bryant, “Is My DSL a Modeling or Programming Language,” Workshop on Domain-

Specific Program Development, Nashville, TN, October 2008, 5 pages.

[Sun et al., 2009-a] Yu Sun, Jules White, and Jeff Gray, “Model Transformation By

Demonstration,” International Conference on Model Driven Engineering Languages and

Systems, Denver, CO, October 2009, pages 712-726.

[Sun et al., 2009-b] Yu Sun, Jules White, Jeff Gray, and Aniruddha Gokhale, “Model-

Driven Automated Error Recovery in Cloud Computing,” Model-driven Analysis and

Software Development: Architectures and Functions, IGI Global, Hershey, PA, 2009,

pages. 136-155.

[Sun et al., 2011-a] Yu Sun, Jeff Gray, Christoph Weinands, Michael Golm, and Jules

White, “A Demonstration-based Approach to Support Live Transformations in a Model

Editor,” International Conference on Model Transformation, Zurich, Switzerland, June

2011, pages 213-227.

[Sun et al., 2011-b] Yu Sun, Jeff Gray, Philip Langer, Gerti Kappel, Manuel Wimmer,

and Jules White, “A WYSIWYG Approach to Support Layout Configuration in Model

Evolution,” Emerging Technologies for the Evolution and Maintenance of Software

Models, (Joerg Rech and Christian Bunse, eds.), Idea Group, 2011, Chapter 4, pages 92-

120.

[Sun et al., 2011-c] Yu Sun, Christoph Wienands, and Meik Felser, “Apply Model-

Driven Design and Development to Distributed Time-Triggered Systems,” International

Conference on Engineering and Meta-Engineering, Orlando, FL, March 2011.

[Sunyé et al., 2001] Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc

Jézéquel, “Refactoring UML Models,” International Conference on the Unified Modeling

Language, Toronto, Canada, October 2001, pages 134–148.

[UML, 2011] Object Management Group, Unified Modeling Language Specification,

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML.

[Varró, 2006] Daniel Varró, “Model Transformation by Example,” International

Conference on Model Driven Engineering Languages and Systems, Genova, Italy,

October 2006, pages 410-424.

189

[Varró and Balogh, 2007] Dániel Varró and Zoltán Balogh, “Automating Model

Transformation by Example using Inductive Logic Programming,” Symposium on

Applied Computing, Seoul, Korea, March 2007, pages 978-984.

[Varró et al., 2005] Gergely Varró, Katalin Friedla, and Dániel Varró, “Adaptive Graph

Pattern Matching for Model Transformations using Model-sensitive Search Plans,”

International Workshop on Graph and Model Transformation, Brighton, United

Kingdom, September 2006, pages 191-205.

[Wagner, 2011] Robert Wagner, “Developing Model Transformations with Fujaba,”

International Fujaba Days, Bayreuth, Germany, September 2006, pages 79–82.

[White et al., 2007-a] Jules White, Douglas C. Schmidt, and Sean Mulligan, “The

Generic Eclipse Modeling System,” Model-Driven Development Tool Implementer’s

Forum at the 45th International Conference on Objects, Models, Components and

Patterns, Zurich Switzerland, June 2007.

[White et al., 2007-b] Jules White, Krzysztof Czarnecki, Douglas Schmidt, Gunther

Lenz, Christoph Wienands, Egon Wuchner, and Lugder Fiege, “Automated Model-based

Configuration of Enterprise Java Applications,” Enterprise Distributed Object

Computing (EDOC), Annapolis, MD, October 2007, pages 301-312.

[Wimmer et al., 2007] Manuel Wimmer, Michael Strommer, Horst Kargl, and Gerhard

Kramler, “Towards Model Transformation Generation By-Example,” Annual Hawaii

International Conference on System Sciences, Big Island, HI, January 2007, pages 285.

[Wright and Freeman-Benson, 2004] Darin Wright and Bjorn Freeman-Benson, How to

Write an Eclipse Debugger, 2004, http://www.eclipse.org/articles/Article-Debugger/how-

to.html.

[XMI, 2011] Object Management Group, XMI specification,

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#XMI.

[XSLT, 2011] W3C, XSLT Transformation version 1.0, 2011,

http://www.w3.org/TR/xslt.

[Zhang, 2009] Jing Zhang, “Model-Driven Aspect Adaptation to Support Modular

Software Evolution,” Ph.D. Thesis, University of Alabama at Birmingham, Birmingham,

AL, 2009.

[Zhang et al., 2004] Jing Zhang, Jeff Gray, and Yuehua Lin, “A Generative Approach to

Model Interpreter Evolution,” International Workshop on Domain Specific Modeling,

Vancouver, Canada, October 2004, pages 121-129.

[Zhang et al., 2005] Jing Zhang, Yuehua Lin, and Jeff Gray, “Generic and Domain-

Specific Model Refactoring using a Model Transformation Engine,” Model-driven

Software Development, Springer, 2005, Chapter 9, pages 199-218.

[Zhang et al., 2007] Jing Zhang, Thomas Cottenier, Aswin van den Berg, and Jeff Gray,

“Aspect Composition in the Motorola Aspect-Oriented Modeling Weaver,” Journal of

Object Technology, Special Issue on Aspect-Oriented Modeling, vol. 6, no. 7, August

2007, pages 89–108.

190

[Zloof, 1975] Moshé M. Zloof, “Query-By-Example: The Invocation and Definition of

Tables and Terms,” International Conference on Very Large Data Bases, Framingham,

MA, September 1975, pages 1-24.

