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MODEL TRANSFORMATION BY DEMONSTRATION: 

A USER-CENTRIC APPROACH TO SUPPORT MODEL EVOLUTION  

 

YU SUN 

 

COMPUTER AND INFORMATION SCIENCES 

 

ABSTRACT 

 

Domain-Specific Modeling (DSM) is an innovative software development 

methodology that raises the specification of software to graphical models at a high-level 

of abstraction using domain concepts available in a language that is defined by a 

metamodel. Using DSM, models become first-class entities in the construction of 

software systems, and therefore model evolution becomes as important as code evolution 

in traditional software development.  

Model transformation is a core technology of DSM that converts a source model 

to a target model, which plays a significant role in supporting model evolution activities. 

A common approach toward model transformation is to write transformation rules in a 

specialized model transformation language. Although such languages provide powerful 

capabilities to automate model transformations, their usage may present challenges to 

those who are unfamiliar with a specific model transformation language or a particular 

metamodel definition. In addition, in the collaborative modeling situations when model 

evolution knowledge needs to be exchanged and reused, most model transformation 

languages do not support sharing of existing model transformation rules across different 

editors among different users, so reusing the existing rules to support model evolution 

activities becomes difficult. Finally, most transformation languages do not have an 

associated debugger for users to track errors, or the debugger is not at the appropriate 

level of abstraction for end-users. 
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This dissertation focuses on three aspects related to supporting model evolution 

activities: 1) simplify the creation of model transformations in a demonstration-based 

approach by recording and analyzing the operational behavior exhibited by an end-user as 

they perform a transformation task manually; 2) improve model evolution knowledge 

sharing, exchange and reuse through tool support; and 3) enable an end-user centric 

approach to debug the execution of a model transformation. The overall goal of the 

research in this dissertation is to enable end-users to create their desired model evolution 

tasks without any knowledge of model transformation languages or metamodel 

definitions, share and reuse existing model evolution tasks, and check and trace errors in 

a user-friendly manner when performing model evolution tasks. Each of these objectives 

will be explained in detail in this dissertation, combined with case studies from different 

domains to illustrate how a user-centric approach can support common model evolution 

activities in practice. 
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CHAPTER 1 

INTRODUCTION 

Software development is an inherently challenging process, resulting from both 

essential and accidental complexities [Brooks, 1987]. The essential complexities of 

software are reflected in the difficulty of understanding the problem, designing and 

testing the conceptual construct, as well as the characteristics of software, such as 

invisibility, changeability and conformity. The accidental complexities represent the 

challenges on the concrete software implementation and testing processes. In the past 

several decades, much effort has been made to help software developers and engineers 

address these complexities, in order to increase the productivity, simplicity and reliability 

of software development. 

Among all the effort, one of the most frequently applied and effective approaches 

is to raise the level of programming language abstraction by capturing only the details 

relevant to the current computing perspective, but hiding the underlying implementation 

information [Lenz and Wienands, 2006]. As shown in Figure 1.1, from machine code to 

assembly language, high-level and object-oriented programming languages, although 

programmers generally lose fine-grained control of the underlying machine as abstraction 

increases (e.g., direct memory address control is not feasible using Java while it can be 

implemented using C effectively), they are enabled to better focus on the specific 
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problems they want to solve, while being isolated from irrelevant low-level 

implementation details [Greenfield and Short, 2004]. 

With the complexity and scale of software systems increasing dramatically [Lenz 

and Wienands, 2006], a new and higher level of abstraction is needed to continue 

alleviating the difficulties encountered in the complex software development process. A 

notable and promising approach is Model-Driven Engineering (MDE) [Schmidt, 2006], 

which decouples the description of the essential characteristics of a problem from the 

details of a specific solution space (e.g., middleware, programming languages).  

MDE promotes the general idea of using models at different levels of abstraction 

to define systems, and automate the transformation process between different levels of 

models and the final implementation code. As a concrete and mainstream MDE 

methodology, Domain-Specific Modeling (DSM) [Gray et al., 2007] uses a Domain-

Specific Modeling Language (DSML) [Lédeczi et al., 2001] to declaratively define a 

software system using specific domain concepts, and automatically generate the desired 

software artifacts (e.g., programming code, simulation script, XML deployment 

description) by model transformation engines and code generators. Using DSM, software 

developers and engineers, or even end-users (e.g., domain experts), are enabled to 

program in terms of their unique intentions and understanding of a specific problem 

domain, rather than focusing on solutions that are intertwined with the underlying 

computing environment [Schmidt, 2006]. 
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Figure 1.1 ï Flexibility versus level of abstraction of programming technologies 

 

1.1 Domain-Specific Modeling (DSM) 

DSM reaches a new level of abstraction by focusing on the specific problem 

domains using DSMLs so that the design space is narrowed down and the associated 

complexities are reduced. A problem domain can be any of the areas that require software 

solutions, such as automobile, telecommunication, health care, industry, robotics, energy 

or finance. It can also vertically include the different aspects of system development, 

such as user interface, functional properties, non-functional properties, user work flow, or 

data persistency. Additionally, any of these domains can be divided into smaller problems 

or tasks, which can be considered as a separate sub-domain.  

A DSML is designed for a single problem domain, which only contains the 

concepts related with the specific problems to solve, rather than the underlying 

implementation details. The metamodel [Atkinson and Kuhne, 2003] is used to specify 

the entities, associations and constraints for the DSML, having a similar role as a 
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grammar to specify the syntax for a programming language. The metamodel can be used 

to generate a modeling environment, in which users are enabled to build concrete models 

to represent the system for the application domain. The models built by users must 

conform to the definition of the metamodel. Figure 1.2 shows a DSML called TTSML 

(Time-Triggered System Modeling Language) [Sun et al., 2011-c] used to specify the 

data communication system used inside electric automobiles. It provides the basic 

modeling elements such as ECU (Electronic Control Unit), Channel, Controller, 

Functional Unit, Timing Requirement. Users of TTSML can specify the desired system 

by constructing the model using these concepts directly. For example, as shown in Figure 

1.2, three ECUs (i.e., SimulatorPC, DrvierAssistance, DriverInferfaceAndSensor) are 

connected to both Channel A and Channel B; different function units (e.g., 

BrakeAssistant, ReadGasPedalPosition) are running on these ECUs and communicate 

with each other based on different timing requirements (e.g., Safety Critical, 

LowSpeedSensor). The low-level implementation details about how to configure the 

ECUs with the APIs provided by the manufacturer, how to implement the correct data 

transmission protocol, or how to make the correct function calls to ensure the timing 

requirements are hidden to users. In other words, users only need to think about the 

concrete problem space ï what system functionalities are needed, what system 

performance properties are desired, rather than the solution space (i.e., how to implement 

the actual system).  
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Figure 1.2 ï Excerpts of models specified using TTSML 

 

The solution space is handled by code generators associated with the DSML. A 

code generator [Kelly and Tolvanen, 2008] takes models built by users as input, and 

produces low-level implementation artifacts as output. Multiple code generators or model 

interpreters might exist for a single DSML, which can be used to generate the code for 
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different platforms or software artifacts. Taking TTSML as an example, two code 

generators are available to generate the implementation code for two hardware platforms: 

Freescale S12 Microcontroller [Freescale, 2011] and Eberspächer FlexRayCard 

[Eberspächer, 2011]; another generator is used to generate the XML configuration for the 

protocol implementation. In some other DSM applications, code generators have also 

been applied to produce HTML files, property files, graphical charts and tables, or even 

software documents [Kelly and Tolvanen, 2008], as shown in Figure 1.3. 

 

Figure 1.3 ï Overview of DSM methodology 

 

The main benefit of DSM comes from its ability to describe the properties of a 

system at a high-level of abstraction and in a platform-independent notation, and protect 

key intellectual assets from technology obsolescence, resulting in less effort and fewer 

low-level details to specify a given system. Compared with the traditional usage of 

software models and code generation techniques, DSM distinguishes itself by pursuing 
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automated code generation without further modifications, so that users are completely 

isolated from the low-level implementation details. Otherwise, DSM will not raise the 

level of abstraction for domain experts. UML [UML, 2011] models, for instance, are 

often used either as a design blueprint for software developers to write code, or as a basis 

to generate the initial code framework (e.g., class definitions and method signatures) with 

the inner implementation part to be filled manually. 

Furthermore, by raising the level of abstraction, DSM helps to improve end-user 

programming [Burnett et al., 2004], and therefore reduces the chance of software failures 

due to miscommunications between software engineers and end-users. In the traditional 

software development process, a knowledge and expertise gap between software 

developers and different domain experts exists, the negative consequence being that 

developers who are skilled at programming may not fully and correctly understand the 

userôs requirements, while the users who know their problem domain very well may have 

no idea about how to build the desired software system. However, in DSM, because the 

system can be represented by high-level and domain-specific models rather than general-

purpose programming languages, end-users who have no knowledge or experience in 

programming are enabled to participate in the software system development process, 

making more accurate and valuable decisions in software design, implementation, and 

maintenance [Kelly and Tolvanen, 2008]. 

 

1.2 Model Evolution in DSM 

Software evolution is an inevitable and essential activity in software development. 

As noted by Lehman, ñSoftware that is being used must be continually adapted or it 
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becomes progressively less satisfactoryò [Lehman, 1978]. In the context of DSM, models 

replace source code as the first-class entities in the software development process and 

represent the initial point for the generation of low-level artifacts. Therefore, if a system 

needs to evolve and adapt to new requirements, instead of changing source code directly, 

the models representing the system should be evolved first according to the need, which 

then leads to a re-generation of the low-level code or other artifacts [Lin et al., 2007].  

Figure 1.4 shows a model evolution scenario. A metamodel has been defined for a 

problem domain, and Model 0 is the initial model that conforms to the metamodel, which 

generates the first version of the source code (Code0) for the system. As the new 

requirements come from the problem domain, Model 0 has to be changed and evolved to 

new versions (Model 1, Model 2, é Model n,) to adapt the new requirements, so that the 

corresponding changes can be reflected in Code1, Code2, é Coden by triggering the 

code generation process from each new model. This dissertation research focuses on 

addressing the problems and challenges associated with implementing the model 

evolution process, while involving end-user participation. 

A number of scenarios can trigger the evolution of models, such as adding / 

removing / updating a certain functionality for an existing system [Greenfield and Short, 

2004], weaving a new aspect (e.g., logging, constraint checking) into the base system 

[Elrad et al., 2002; Gray et al., 2006], scaling the system from a base state to a complex 

state [Lin et al., 2008], and optimizing the internal structure (e.g., refactoring) [France et 

al., 2003]. Clearly, model evolution is as essential as traditional code evolution in a 

software development process. In fact, some other model evolution issues also exist in 

the context of DSM; for instance, evolving a model to a different domain [Jouault and 
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Kurtev, 2005], metamodel evolution [Sprinkle, 2003; Narayanan et al., 2009], model 

interpreter evolution [Zhang et al., 2004], and model evolution by changing the 

corresponding code (i.e., reverse engineering) [Rugaber and Stirewalt, 2004]. However, 

the research described in this dissertation particularly focuses on model evolution from 

one state to another and from one version to another version within the same metamodel. 

The typical evolution activities in this category are model refactoring [Zhang et al., 

2005], model scalability [Lin et al., 2008], aspect-oriented modeling [Zhang et al., 2007], 

model management [Deridder et al., 2008], and model layout configuration [Sun et al., 

2011-b]. 

 

MetaModel

Model0 Model1 Modeln

Conform To

Code0 Code1 Coden

Generate Generate Generate

æM1 æM2 æMn

æC1 æC2 æCn

é é

é é

 

Figure 1.4 ï Model evolution in DSM 

 

1.3 Model Transformation and Model Transformation Languages (MTLs) 

Model transformation [Sendall and Kozaczynski, 2003] is a core technology in 

DSM. It receives a source model that conforms to a given source metamodel as input, and 

produces as output another model conforming to a given target metamodel. When the 
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source and target metamodels are different (i.e., between two different domains), the 

transformation is called exogenous, as shown in Figure 1.5a (e.g., a UML class diagram 

model is transformed to a relational data model [Shah and Slaughter, 2003]). If the source 

and target metamodels are identical, the transformation is called endogenous, as shown in 

Figure 1.5b (e.g., a UML class diagram model is transformed from one state to another 

state through a ñPull Up Methodò refactoring process [Fowler, 1999]). 

Because the essence of model transformation is to transform and change a model, 

there is a direct connection between model transformation and model evolution. Actually, 

model evolution tasks as discussed in this dissertation can be regarded as a model 

transformation process, or more precisely, an endogenous model transformation process, 

because both the source model (e.g., Model 0 in Figure 1.4) and the target model (e.g., 

Model 1 in Figure 1.4) in a model evolution conform to the same metamodel. 

 

MetaModel 1 MetaModel 2

Model Instance 2Model Instance 1

Conforms To Conforms To

Transform To

Transform To

MetaModel 1

Model Instance 1 Model Instance 2

Conforms To Conforms To

Transform To

a. Exogenous Model Transformation b. Endogenous Model Transformation

 

Figure 1.5 ï Two types of model transformation ï exogenous and endogenous 

 

The benefit of connecting model evolution with model transformation is that a 

number of model transformation tools and technologies can be utilized to support model 

evolution tasks. The traditional approach to realize a model transformation is to use an 

executable model transformation language. A Model Transformation Language (MTL) 
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[Sendall and Kozaczynski, 2003] is usually a Domain-Specific Language (DSL) [Mernik 

et al., 2005; Sun et al., 2008] particularly used for model transformation tasks. A set of 

transformation rules can be defined in a MTL to specify how a source model should be 

transformed into a target model. More specifically, the rules define how the source model 

should be mapped to the target model, and the scope where the rules can be applied. 

These rules are often defined at the metamodel level rather than to a specific model 

instance, so that they are capable of carrying out the desired transformation process 

automatically on any model that conforms to the same metamodel. 

MTLs can be either graphical or textual, and most of them are at a higher level of 

abstraction than General-purpose Programming Languages (GPLs), such as Java or C++. 

MTLs support either an imperative, declarative, or hybrid approach to specify a 

transformation task. Some popular MTLs in this category are QVT [QVT, 2010], ATL 

[Jouault et al., 2008], and ECL [Gray, 2002]. Using MTLs, automated model evolution 

processes can be implemented by specifying and executing the model transformation 

rules on how to evolve a model from one state to another state, or from one configuration 

to another. 

 

1.4 Key Challenges in Supporting Model Evolution 

As discussed in the previous sections, model evolution is an essential and 

inevitable activity in DSM. However, the tools to support model evolution have not been 

well developed. In current DSM practice, model evolution tasks are mainly implemented 

and automated using MTLs. Although MTLs are powerful and expressive to handle 

various kinds of model evolution tasks, it is not always the perfect solution due to some 
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challenges related to end-user friendliness, the mechanism of exchanging and reusing 

model evolution knowledge, and debugging support. The following subsections outline 

the challenges that this dissertation focuses on with respect to current model evolution 

practice. 

 

1.4.1 The Difficulty of Learning and Using MTLs for End-Users 

Although a number of powerful MTLs have been developed to support various 

types of model evolution tasks in different modeling tools and platforms, learning and 

using these languages is by no means an easy task, particularly for general end-users 

including domain experts and non-programmers who are not familiar with MTLs or 

GPLs. The emphasis on enabling this group of users to implement model evolution tasks 

results from the fact that end-users can participate in the software development process 

using DSM, and in many cases, they know the exact model evolution tasks in need. 

However, this group of users might be prevented from contributing to these tasks from 

which they have much domain experience due to the difficulty of learning and using 

MTLs as described throughout this subsection. 

The steep learning curve for MTL adoption. Most MTLs are high-level languages 

and specific to model transformation tasks, but a steep learning curve is still inevitable 

due to the complexity of learning the syntax, semantics, special features or concepts, 

associated libraries, and the editing or execution environment of a MTL. This challenge 

is particularly true for those who have never had MTL or programming language training. 

Moreover, in many cases, in order to correctly use a MTL, users are required to 

learn not only its basic usage of how to transform models, but also some additional 
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knowledge that is not directly related with model transformations. For example, ECL 

integrates some general programming concepts, such as variable declarations (e.g., 

declare node : object; ), and branch statements (e.g., if (idx<=max) 

then ); ATL applies Object Constraint Language (OCL) [OCL, 2010] expressions to 

give specific constraints on the precondition of model transformations. Learning these 

may not be very challenging to a computer scientist, a software developer or a model 

engineer, but it is definitely a hindering barrier to general end-users like domain experts 

and non-programmers. 

In addition, the diversity of MTLs introduces a number of different model 

transformation design approaches, bringing about a challenge toward achieving a uniform 

MTL learning process. For instance, with declarative MTLs (e.g., ATL), users can focus 

on the mapping relationships between the source and target models, ignoring the details 

underlying those mappings; but many powerful MTLs (e.g., ECL) also support 

imperative mechanisms, which means that users need to think about how a model should 

be changed and transformed to the target desired state; some other MTLs (e.g., EMF 

Tiger [Biermann et al., 2006; EMF Tiger, 2010], GReAT [Agrawal, 03]) are based on 

graph theory, such as graph matching and graph rewriting, and users are expected to think 

of model transformation processes in terms of graphs. Thus, even being familiar with a 

certain MTL cannot guarantee a gradual adoption curve for learning a second MTL. 

The difficulty of understanding metamodels. A metamodel, as explained in 

Section 1.1, serves as the abstract syntax of a DSML, and precisely specifies how the 

models should be constructed in a particular domain. Using most MTLs, the model 

transformation rules are often defined at the metamodel level rather than the concrete 
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model instance level. However, developing a deep and clear understanding of a 

metamodel is challenging, especially for large and complex domains. 

The need to define transformation rules at the metamodel level results from the 

gap existing between the way a user recognizes models and the way a computer does 

[Wimmer et al., 2007]. Typically, users reason on models that represent real-world 

examples shown by concrete syntax and mappings between semantically corresponding 

model elements according to the specific transformation scenarios. However, this way of 

thinking is not appropriate for precisely defining model transformations with currently 

available MTLs, because instead of writing transformation rules working for one specific 

model example, users expect the rules to be generic so that they can be reused on other 

models for the same transformation purpose. Currently, the most effective way to realize 

this goal is to define the generic rules in terms of metamodel definitions for the models to 

be transformed. 

Understanding metamodels becomes even more challenging when some concepts 

in a particular domain are hidden in the metamodel definition and difficult to unveil 

[Kappel, 2006]. This is because not all concepts in a domain can be represented as first-

class constructs in the metamodel. Some domain concepts may be hidden in attributes or 

association ends in the metamodels. The consequence is that users are required to 

correctly uncover these hidden concepts and use them in the transformation rules that 

they write. 

Thus, if model transformations can be specified and implemented without 

explicitly understanding the full details of a metamodel, users could avoid the extra 

burden of understanding the complex and abstract metamodel definitions. 
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1.4.2 Limited Tool Support to Exchange and Reuse Model Evolution Knowledge 

Similar to traditional software development, specifying a complex system using 

DSM usually requires collaboration [Redmiles et al., 2004]. A DSML may be used to 

describe different aspects of a system (e.g., a DSML designed to model embedded 

systems [Sun et al., 2011-a] enables users to specify the system from the perspectives of 

both the hardware configuration and the software functional logic), and users might come 

from different areas with different expertise. Even for the same perspective and the same 

area, users may have different levels of experience and knowledge (e.g., a senior engineer 

is more likely to produce higher quality models or provide better modeling solutions in 

most cases than a junior engineer). When it comes to model evolution tasks in a diverse 

and collaborative modeling environment, it is essential to enable different users to share, 

exchange their knowledge and experience, as well as enable the reuse of the knowledge  

(e.g., a software engineer may need to reuse the hardware engineerôs knowledge about 

evolving a part of the hardware configuration; a junior engineer may need the senior 

engineerôs experience to validate models and fix errors). Unfortunately, tool support in 

this area is very limited in the current practice. 

 When using MTLs to implement model evolution tasks, each set of the executable 

model transformation rules can be regarded as the persistent knowledge for a certain 

evolution task. Executing the rules on different models actually realizes knowledge reuse. 

However, for most MTL tools, there is no mechanism to load and execute the 

transformation rules specified by different users at editing time. For instance, ATL 

provides an online collection of the commonly used model transformation scenarios 
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(ATL transformation zoo [ATL Transformation Zoo, 2011]), where users can download 

the rules and execute them in their own environments. Obviously, this is by no means the 

desired approach to exchange and reuse knowledge, because a large number of model 

evolution tasks can be created during the editing time, which at the same time, are needed 

to be shared and reused by different users. Using a static online collection cannot satisfy 

the need to acquire the correct evolution knowledge promptly. 

Moreover, the presence of reusable model evolution knowledge does not 

guarantee that it can be reused correctly by users who need them. On one hand, users 

might not know that certain model evolution tasks they need to accomplish have already 

been created and shared, so that they might end up manually implementing the task again. 

On the other hand, even if users know the presence of certain model evolution knowledge 

that can be potentially reused, how to determine whether it is the right knowledge to 

reuse or whether it is applicable to their own scenarios is another challenging problem. In 

the current practice, users may decide to reuse an available model evolution task either by 

reading and understanding the textual description about the evolution rules, or by directly 

executing and comparing the results. The negative consequence is that users are very 

likely to reuse the wrong knowledge due to the misunderstanding of an inaccurate textual 

description, destroy the current model or import accidental errors by executing the wrong 

evolution rules. Thus, enabling users to identify the correct and available knowledge to 

reuse in a timely manner plays an important role in supporting model evolution 

knowledge exchange and reuse. 
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1.4.3 The Lack of an End-User Debugging Facility for MTLs 

Because model transformation specifications are written by humans and 

susceptible to errors, the need for testing and debugging mechanisms for MTLs are as 

important as the similar need with general-purpose programming languages. Although 

testing offers some confidence about whether the model is in the desired state after being 

transformed, debugging helps users to examine the transformation process and track 

potential errors. 

Recently, some algorithms and tools have been developed to support model 

transformation testing by model comparison, which have demonstrated initial results in 

automating the testing process [Lin et al., 2005; Lin et al., 2007]. However, model 

transformation debugging is still a weak area with limited results. Most modeling tools or 

platforms only provide an editing and execution environment for a supported MTL 

without enabling users to track and monitor the execution of transformation rules and the 

result. When errors occur, the most common way to fix the error is to check the model 

after a transformation and locate the erroneous model elements, attributes or connections, 

and then go back to the corresponding transformation rules to check the potential errors. 

This process will iterate until the model is transformed to the desired state. Because most 

MTLs do not support common constructs available in GPLs, the debugging process 

becomes more challenging if a debugger is not present in the modeling tool or execution 

engine. 

Without the assistance of a debugger, error recovery becomes tedious and error-

prone, particularly when the model being transformed is large and a lot of complex 

transformation rules are involved in the model evolution task. Although some MTL tools 
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already have associated debuggers [Jouault et al., 2008; Balasubramanian et al., 2006-a], 

the debuggers work by tracking the MTL rules or codes, which are at the same level of 

abstraction as the MTL and therefore not appropriate for some categories of end-users. 

 

1.5 Research Goals and Overview 

To address the difficulty of supporting model evolution using the traditional 

model transformation approaches that rely on MTLs, and enable a wider range of end-

users to participate in model evolution activities through implementing model evolution 

tasks, exchanging and reusing model evolution knowledge, and debugging model 

evolution execution process, the research in this dissertation provides a user-centric 

model transformation approach to implement model evolution tasks with tools to share 

and reuse evolution knowledge. Furthermore, this research considers the transformation 

debugging issue to assist in determining the correctness and tracking of model 

transformation errors. Figure 1.6 shows an integrated view of this research. The overview 

of the research is described in the following sections. 

 

Model Transformation By Demonstration (MTBD) (Chapter 3)

End-user Model Transformation Framework

Live-MTBD (Chapter 5)

Evolution Knowledge Exchange and Reuse Tool Support 

MTBD Debugger (Chapter 6)

End-User MTBD Debugger

Apply MTBD to Model Evolution (Chapter 4)

Model 

Refactoring

Model 

Scalability

Aspect-Oriented 

Modeling

Model 

Management
Model Layout

 

Figure 1.6 ï Research overview 
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1.5.1 Model Transformation By Demonstration (MTBD) to Simplify Model 

Transformation 

To address the challenges of learning and using MTLs to support model evolution, 

a new endogenous model transformation framework has been designed and implemented, 

called Model Transformation By Demonstration (MTBD) [Sun et al., 2009-a], which 

enables end-users to specify a model transformation by directly performing editing 

operations on concrete examples (i.e., to give a demonstration), combined with user 

refinement and automatic inference processes. After a user demonstration, a model 

transformation pattern is generated as the persistent specification of a model 

transformation task. MTBD also includes its own transformation pattern execution engine, 

which executes the inferred transformation by pattern matching and automated operation 

execution. This framework is different from the traditional MTLs in that no language is 

involved in the process and the specification of the rules is realized at the model instance 

level rather than the metamodel level, so that users can be isolated from the language 

learning curve and the complex metamodel definitions. In other words, the level of 

abstraction to implement model transformations is raised, so that the end-users (e.g., 

domain experts and non-programmers) are able to implement the desired model evolution 

tasks through demonstration without being exposed to the low-level implementation 

details. 

 

1.5.2 Live-MTBD to Improve Model Evolution Knowledge Exchange and Reuse 

The second contribution of this research includes ñLiveò feature extensions to 

MTBD (Live-MTBD), which improves the user experience when demonstrating a 
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transformation, and more importantly, supports model evolution knowledge sharing, 

exchange and reuse. The toolset Live-MTBD contains three components: 1) Live 

Demonstration, provides a more general demonstration environment that allows users to 

specify editing activities based on their editing history, with the purpose being to 

encourage users to create more transformation patterns; 2) in order to improve the sharing 

of editing activity knowledge among different users, Live Sharing ï a centralized model 

transformation pattern repository has been built so that transformation patterns can be 

reused across different editors; 3) a live model transformation matching engine ï Live 

Matching has been developed to automatically match the saved transformation patterns at 

modeling time, and provides editing suggestions and guidance to users during the editing 

process. Live-MTBD features cooperate seamlessly with MTBD to offer an end-user 

friendly, collaborative, and intelligent model evolution environment. 

 

1.5.3 MTBD Debugger to Enable End-User Model Transformation Debugging 

To support error tracking and execution monitoring, an MTBD debugger 

associated with the MTBD execution engine has been developed. The debugging tool can 

offer support for isolating the cause of a transformation error, by enabling users to trace 

all the matched locations in the model in an execution of a transformation pattern, and 

step through individual actions of the transformation to display the model data intuitively 

within the host modeling environment. Users can determine the correctness of the 

precondition of the inferred pattern from the matching locations, and the correctness of 

the actions of the inferred pattern by watching each of the execution steps. In addition, to 

improve end-user friendliness, the MTBD debugger hides the low-level execution 



21 

 

 

 

information or metamodel definitions and focuses only on information at the model 

instance level. 

 

1.5.4 Applications of the Research to Support Model Evolution in Practice 

The primary purpose of this research is to support various model evolution tasks 

using a new model transformation approach. Therefore, the power and functionality of 

the approach should be decided and evaluated by focusing on how it can fulfill the 

diverse needs of model evolution in practice. The MTBD approach should be applicable 

to the core types of model evolution tasks, such as model refactoring, model scalability, 

aspect-oriented modeling, model management, and model layout configuration. Thus, the 

identification of the special requirements in each type of task and the investigation on 

how to apply MTBD to these practical applications is another key contribution in this 

research, and demonstrated by various case studies throughout this dissertation. 

 

1.6 The Structure of the Thesis 

This chapter has summarized a subset of the research on model evolution in the 

context of DSM and the current challenges that exist to support model evolution 

activities. Research goals that address these problems have been outlined. Chapter 2 

describes background information related to the research of this dissertation. 

Chapter 3 presents the MTBD model transformation approach, including the 

description about the main steps and implementation details of the approach and the 

formal specification of the MTBD functionality. Related work is discussed to highlight 

the unique features and contributions of MTBD. 
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Case studies are presented in Chapter 4 to show how MTBD supports various 

model evolution tasks. In addition, to demonstrate the benefits of this approach, 

experimental evaluation is discussed, including modeling artifacts, evaluation metrics and 

experimental results. 

Chapter 5 details the live feature extensions of MTBD. The motivation of these 

features is explained, followed by illustrating its usage through a practical case study. 

Chapter 6 describes the debugger for MTBD. This chapter presents the basic 

debugging features designed for MTBD, as well as how to apply these features to track 

potential errors. Case studies are also shown to further illustrate the idea. 

Chapter 7 outlines future work of the research described in the previous chapters. 

Chapter 8 concludes the work of this dissertation and summarizes its contributions. 
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CHAPTER 2 

BACKGROUND 

This chapter provides background information relevant to the research of this 

dissertation. First, Model-Driven Engineering (MDE), representing the broad scope of 

this research, will be introduced, with a further discussion on Domain-Specific Modeling 

and model evolution. This chapter will also outline the key concepts, techniques and tools 

in MDE that have been applied in practice. Background information on model 

transformation and Model Transformation Languages (MTLs) will be given in the third 

section, which includes the categories of MTLs and a subset of popular languages being 

used. Finally, because the main contribution of this research focuses on providing an 

approach centered on end-user model evolution, relevant information about end-user 

programming will be discussed briefly. 

 

2.1 Model-Driven Engineering (MDE) 

The emergence of MDE was triggered by a consistent effort toward raising the 

level of abstraction in software development. Back in the 1980s when programming 

languages (e.g., C, Fortran) lacked many of the now common modularity concepts (e.g., 

objects) to develop increasingly complex software systems, computer-aided software 

engineering (CASE) [Fuggetta, 1993] was promoted as an approach to assist users in 

expressing their design decisions above the underlying solution space. CASE applied 
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general-purpose graphical or textual representations to form programs that aimed at 

reducing the errors incurred using traditional programming languages (e.g., memory 

leaks and corruption when using C) as well as the development effort. However, CASE 

finally failed to exert a significant influence on software development, because on one 

hand, the general-purpose graphical representation used in CASE did not support many 

application domains effectively; on the other hand, CASE was not generally successful at 

handling the needs of complex systems development (e.g., concurrent computing is not 

supported by CASE). In addition, due to a lack of common middleware platforms, 

generating desired implementation code and integrating it with different platforms is 

challenging, which undermined the capability of CASE to support multiple platforms. 

Since the 1990s, object-oriented programming languages (e.g., Java, C++) have 

provided more expressive language constructs, and have assisted developers in 

maintaining and reusing various software systems [Booch, 1997]. Despite a number of 

advantages, these languages have reached a complexity ceiling due to the fast growth of 

dependent platforms and middleware complexity, and the inability of expressing domain 

concepts effectively [Schmidt, 2006]. 

MDE has emerged as a promising approach to address platform complexity and 

the need to express domain concepts. Using DSMLs that are designed specifically for 

application domains, developers can work at a higher-level of abstraction than object-

oriented programming languages. In DSM, transformation engines and generators handle 

the mapping of high-level models to the underlying implementation details, so that 

developers are fully isolated from the accidental complexities of the solution space. In the 

past several years, MDE has attracted considerable attention from both academia and 
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industry. A number of concepts (e.g., metamodel [Atkinson and Kuhne, 2003], model 

transformation [Sendall and Kozaczynski, 2003]), standards (e.g., MDA [MDA, 2011], 

QVT [QVT, 2011]), tools (e.g., MetaCase+ [MetaCase+, 2011], GMF [GMF, 2011]), and 

related technologies (e.g., model version control [Lin et al., 2004]) have been created, 

which have enabled many successful case studies and applications in various areas, such 

as telephony, information management, bug tracking, stream data processing [Kurtev et 

al., 2006]. 

 

2.1.1 Model-Driven Architecture (MDA) 

 To better support MDE, the Object Management Group (OMG) launched Model-

Driven Architecture (MDA) [MDA, 2011], providing a set of guidelines and 

specifications to encourage the use of models in software system design and 

implementation. 

 The MDA approach specifies a software system using a Platform-Independent 

Model (PIM), which can then be mapped and transformed to Platform-Specific Models 

(PSMs). The PIM is based on domain-specific languages for the application domain, but 

the PSMs can be specified using either a domain-specific or general-purpose language. 

The OMG provides only the standards and specifications for the basic approach instead 

of detailed implementations. Some of the standards related with MDA models are listed 

in the following paragraphs: 

Unified Modeling Language (UML). UML is used to describe various types of 

models in MDA. Although UML was not originally designed for MDA, being the most 

widely used modeling language, it has become a standard general-purpose modeling 
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language. UML contains a number of diagrams, constructs and views that can be used to 

represent various perspectives of a system. Thus, UML serves as a standard formalism in 

MDA for a wide range of application domains. 

Meta-Object Facility (MOF). MOF [MOF, 2011] is a meta-metamodel that can be 

applied to define different metamodels. The definition of UML is based on MOF. 

Therefore, MOF makes it possible to extend UML or create any other potential languages 

needed in the future.   

XML Metadata Interchange (XMI). XMI [XMI, 2011] defines a standard metadata 

interchange format for XML documents. This enables models to be shared and 

exchanged among different tools and platforms. XMI has already been applied as the 

interchange format for UML models, as well as a number of models built in other tools 

such as GME [Lédeczi et al., 2001] and EMF [Budinsky et al., 2004]. 

Common Warehouse Metamodel (CWM). CWM [CWM, 2011] provides 

interfaces that can be used to enable interchange of warehouse and business intelligence 

metadata between warehouse tools, warehouse platforms and warehouse metadata 

repositories. Mappings between two types of metamodels can be defined using CWM, 

making it possible to build the model transformations in the context of MOF. 

In summary, UML, MOF, XMI, CWM and some other standards aim at handling 

different aspects of the MDA ï the creation of models, the extension and definition of 

models, model interchange, and model transformations. 
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2.1.2 Domain-Specific Modeling Development Process 

 While MDA provides a set of standard guidelines to support the vision of MDE, 

DSM is a concrete MDE methodology that has been applied in a number of domains 

(e.g., automotive, robotics, mobile computing) successfully. From the example given in 

Section 1.1, it can be seen that DSM is often based on a graphical DSML designed for a 

specific problem domain, combined with code generators to produce implementation 

software artifacts. 

 In practice, a complete DSM development process follows an iterative process. 

Model engineers and domain experts need to work together to target the problem domain 

and understand the necessary domain concepts that will be included in the future DSML. 

Then, model engineers need to define the DSML precisely by defining the metamodel as 

well as the needed constraints for the domain. With the complete metamodel, the DSML 

environment can be generated automatically. In addition, code generators are built by 

model engineers and software engineers together to map the metamodel concepts to low-

level implementation code. With the complete DSML environment and code generators, 

users can work in the editors to build various model instances when needed and trigger 

the code generation any time.  

 The time required to implement a DSM solution varies according to the 

complexity of each domain. It can take from a few weeks to months [Kelly and Tolvanen, 

2008]. No matter what the development period is, the benefits of using DSM can often be 

seen immediately after users are enabled to create models and generate code [Kelly and 

Tolvanen, 2008]. 
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2.1.3 Model Evolution in DSM 

 Model evolution issues in DSM are mainly triggered by two scenarios. First, the 

metamodel for a certain domain is not unchangeable, because the actual domain in 

practice evolves and users tend to request new concepts and elements to enhance the 

expressiveness and power of the DSML. In fact, even model engineers themselves 

occasionally create new ideas to refine or extend the DSML, when their understanding of 

a domain improves or when they receive feedback from users. Therefore, evolution of 

metamodels is inevitable. 

 When it comes to the model instance level, evolution occurs more frequently. Just 

like programmers need to change their programs in any phase of software development 

for different purposes, models are often evolved by users as well. Actually, one of the 

main advantages of using DSM is reflected in this evolution scenario. Because 

traditionally, programmers need to understand the source code and make necessary 

changes according to a new requirement. In the context of DSM, the same change can be 

realized by modifying models at a high level of abstraction with less effort and then re-

generating the code into a new version automatically. 

 The metamodel evolution problem has been investigated widely [Sprinkle, 2003], 

but the importance of evolution at the model instance level should not be ignored, 

because it directly relates to the main benefit of using DSM, and it is targeted for end-

users and their usage experience. This dissertation focuses on supporting the evolution 

problems at the model instance level. 
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2.2 Metamodeling and Tools 

 In the previous sections, most of the discussion on MDE and DSM focused on a 

high level description and background introduction. This section will first present the 

basic four-layer modeling architecture used in the MDE community, serving as a formal 

summary of MDE, followed by an introduction to tools that support the MDE and DSM 

ideas. 

 

2.2.1 Four-Layer Modeling Architecture 

 The classical architecture of MDE has been defined using four different layers, as 

shown in Figure 2.1. The topmost layer (i.e., M3 or Meta-metamodel layer) is a core 

modeling language that conforms to itself, which can be applied to define other modeling 

languages for different domains (i.e., to define other metamodels). It forms the 

foundation for the whole MDE architecture. The common modeling languages at this 

layer are MOF, Ecore, and KM3 [Jouault and Bézivin, 2006]. The second layer is the 

metamodel layer (or M2). The models at this layer are defined using the modeling 

language at M3 and therefore are instances of the meta-metamodel. They are defined to 

precisely specify different application domains. Models at the M1 level will conform to 

the M2 metamodels. The M1 models represent what users create and manipulate the 

underlying real system. Each model is built based on a certain metamodel, conforming to 

all the syntax and static semantics constraints. In many cases, a single system can be 

specified by multiple models either under the same metamodel or different ones, for the 

purpose of modeling different components and perspectives. Finally, the real-world 

system is at the M0 layer, which is mapped and generated from models at M1. One 
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important criterion to evaluate the mappings between M1 and M0 is that for questions 

about the real-world system at M0, it must be possible to retrieve the answers from 

models at M1. This is called the substitution principle [Kurtev et al., 2006]. 

 

System

Metamodel

Model

Meta-metamodel

Metamodeling 

Tool

Code 

Generator

Modeling 

Environment

M3

M2

M1

M0 Conforms to

Relationship between model layers and tools 

 

Figure 2.1 ï Four layers modeling architecture and tool support 

 

 The creation of the final real-world system follows a top-down approach, starting 

from defining the models at higher layers, to deriving and generating artifacts in the 

lower layer. To ease the whole workflow, metamodeling tools have been implemented to 

support the specification of each layer and the transitions as shown in Figure 2.1. 

Generally speaking, a metamodeling tool has its own M3 modeling language embedded, 

and provides a metamodeling environment to enable users to create metamodels at the 

M2 layer. The modeling environment (i.e., end-user modeling editors) at M1 can often be 

automatically generated from the metamodel. The transition to the final M0 layer is 

carried out by code generators for each metamodel or model translators embedded in the 

modeling environment. 
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2.2.2 Metamodeling Tools 

There are several key characteristics that most DSM tools possess, such as 

generative capabilities (i.e., to automatically generate the model editor or generator from 

the metamodel), change management (i.e., a runtime facility to support change 

notifications in models), model serialization (i.e., used to make models persistent), and 

plug-in capabilities (i.e., to provide an extension mechanism to enrich the functionality of 

the tool). Examples of metamodeling tools are described in the remainder of this 

subsection. 

Generic Modeling Environment. The Generic Modeling Environment (GME) 

[Lédeczi et al., 2001] is a metamodeling tool to define DSMLs for different domains. The 

metamodeling language is based on the UML class diagram notation and OCL 

constraints. The metamodels specifying the domain concepts are used to automatically 

generate the target domain-specific environment. The generated domain-specific 

environment is then used to build domain models that are stored in a model database or in 

XML format. 

GME has an extensible architecture that uses the Component Object Model 

(COM) [COM, 2011] for integration. External components can be written in any 

language that supports COM (e.g., C++, Visual Basic, C#). GME has many advanced 

features. A built-in constraint manager enforces all domain constraints during model 

building. GME supports multiple viewpoint modeling. It provides metamodel 

composition for reusing and combining existing modeling languages and language 

concepts [Karsai et al., 2004]. It also supports model libraries for reuse at the model 
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level. All GME modeling languages provide type inheritance. Model visualization is 

customizable through decorator interfaces. 

Graphical Modeling Framework. The Graphical Modeling Framework (GMF) 

[Moore et al., 2004; GMF, 2011] is a metamodeling tool based on Eclipse [Eclipse, 

2011], which is a part of the Eclipse Modeling Project (EMP) [EMP, 2011]. It includes 

three key components to define a DSML: the domain model (i.e., the abstract syntax for 

the domain defined by Ecore [Budinsky et al., 2004]), the graphical definition model (i.e., 

the concrete syntax for the domain, such as the figures, nodes, and links used to display 

the models on the diagram), and the tooling definition model (i.e., to specify the palette, 

creation tools, and actions for the graphical elements in the editor). These three models 

can be integrated together and used to automatically generate a graphical modeling 

environment for a particular domain. 

Because GMF is part of the EMP, most of the other existing technologies based 

on EMP can be applied to the models built in GMF. For instance, the M2M project 

(model to model transformation) [M2M, 2011] and M2T project (model to text 

transformation) [M2T, 2011] can assist the general model transformation or code 

generation tasks. 

Generic Eclipse Modeling System. The Generic Eclipse Modeling System 

(GEMS) [GEMS, 2011; White et al., 2007-a] is an open source metamodeling tool in 

Eclipse. The goal of GEMS is to bridge the gap between the communities experienced 

with visual metamodeling tools, such as GME, and those built around the Eclipse 

modeling technologies, such as the Eclipse Modeling Framework (EMF) [Budinsky et al., 

04] and GMF. Thus, domain experts that use GEMS can create an Eclipse-based 
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graphical modeling tool without knowing the core components of EMP such as EMF, 

Graphical Editor Framework (GEF) [GEF, 2011] and GMF. In addition to automatically 

generating the modeling tool, GEMS also integrates a constraint checking mechanism to 

enable users to better reason about the models. The layout and appearance of models and 

the modeling tool can be controlled and customized through stylesheets. Moreover, 

GEMS provides a facility to capture the events occurring in the model editing process, 

which is very useful for the work in this dissertation. Extensions can be made to GEMS 

through the traditional Eclipse plug-in mechanism. The research in this dissertation will 

be implemented and evaluated in GEMS. 

 

2.3 Model Transformation and Model Transformation Languages 

 Model transformation has been a core technology since the emergence of MDE 

and DSM [Sendall and Kozaczynski, 2003]. Examples of model transformation include 

code generation from models, model synchronization and mapping, model evolution, and 

reverse engineering. Although the use of a model transformation language has been 

introduced in Section 1.3 as the main approach to support model transformation 

processes, other alternatives are also available to implement the same tasks.  

 The first approach is to manipulate and access the internal structure of a model 

instance directly using an API provided by a host modeling tool, and encode the 

transformation procedures in a GPL. This approach is not feasible for end-users who do 

not have programming experience, because 
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GPLs lack the high-level abstractions that are needed by end-users to specify 

transformations. In addition, the power of a transformation is often restricted by the 

supported API within the modeling tool. 

Many modeling tools support importing and exporting model instances in the 

form of XMI. It is also possible to use existing XML tools (e.g., XSLT [XSLT, 2011]) to 

perform model transformations outside of a modeling tool using XMI as an intermediate 

representation. Although XSLT can be used to transform models, it is tightly coupled to 

XML, requiring experience to define the transformations using concepts at a lower level 

of abstraction. In addition, transformations performed outside of a modeling tool exert a 

potential risk that the models being transformed cannot be imported or exported correctly 

with future versions of the tool. 

By comparison, MTLs raise the level of abstraction by providing a set of language 

constructs specific to the model transformation tasks, playing an increasingly significant 

role in various model transformation activities. 

 

2.3.1 Categories of Model Transformation Languages 

Many MTLs have been invented with different features and characteristics [Mens 

and Gorp, 2005; Czarnecki and Helsen, 2006]. They can be classified into different 

categories. Understanding the categories is important for users to choose the most 

appropriate MTLs for different scenarios. Some main categories will be discussed in the 

following. 

Exogenous versus endogenous. As introduced in Section 1.3, MTLs can be 

classified into exogenous MTLs and endogenous MTLs based on the difference between 
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the source and target metamodels. Exogenous MTLs can be applied to handle tasks such 

as model migration (i.e., changing models conforming to the source version of a 

metamodel into models conforming to an evolved version of the metamodel) and model 

mapping (i.e., relating and transforming models between two different domains). 

Endogenous MTLs fit the problems of model refactoring (i.e., optimizing the internal 

structure of a model) and scalability (i.e., enlarging or reducing the model from a base 

state) very well. The key characteristic of exogenous MTLs is that the expressive 

language constructs to define the mappings between two metamodels are always 

available (e.g., from é to é), so that users can specify the relationships and associations 

between two domains. For endogenous MTLs, the most important part of the language is 

the ability to create/read/update/delete models (CRUD). Because endogenous model 

transformation tasks focus on changing the source model from one state to another state, 

or from one configuration to another, it is thus very essential to support various language 

constructs to perform the transformation with complex computation and rich constraints.  

Textual versus graphical. Textual MTLs have their own grammar and keywords, 

and users can write the desired transformation rules in blocks or functions. A typical 

graphical MTL usually defines a transformation rule as a LHS (left-hand side) graph 

representing the source model and a RHS (right-hand side) graph representing the target 

model. Then, the engine automatically matches the LHS graph in a model and changes it 

into the desired RHS graph. Compared with textual MTLs, it is easier to define specific 

model patterns using graphs, leading to a simplification of the transformation rules in 

many cases. 
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Imperative versus declarative. The imperative style uses highly reusable granular 

language constructs that are capable of outlining the details of each model transformation 

step. For example, Aspect-Oriented Modeling (AOM) [Balasubramanian et al., 2006-b; 

Gray et al., 2001] is an important model transformation scenario, which enhances the 

modularity at the model level by allowing the separation of concerns (i.e., aspects) from 

the models representing the base system. To weave an aspect to a base model, a typical 

imperative MTL enables users to specify precisely where to locate the correct part of the 

base model that needs the aspect, and how exactly the aspect should be woven step-by-

step. Using declarative MTLs, users focus on what to do instead of how. In other words, 

declarative MTLs express the logic of a transformation without describing its control 

flow. The typical example of using a declarative MTL is to specify what kind of elements 

in a source domain should be mapped to a target domain, without caring about how the 

mappings and translations are implemented. Although declarative MTLs have many 

advantages, they are not the best choice for all scenarios (e.g., transforming an attribute 

based on certain computations is hard to represent declaratively). However, the 

imperative style should not be discounted entirely. In fact, both styles are not mutually 

exclusive, and a number of MTLs include both mechanisms to specify transformation 

rules, offering the appropriate level of granularity as the situation demands. 

 

2.3.2 Examples of MTLs 

 Three concrete examples of MTLs will be shown in this section, which cover the 

main categories mentioned in the previous section. 
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Atlas Transformation Language (ATL). ATL [Jouault et al., 2008] is a textual 

MTL, designed and implemented under the Eclipse Model-to-Model transformation 

(M2M) project [M2M, 2011], conforming to the proposed standard by OMG - the 

Query/View/Transformation (QVT) [QVT, 2011]. Both declarative and imperative 

language constructs are available in ATL, which makes it a hybrid MTL that can be 

applied to both endogenous and exogenous model transformation tasks. However, ATL is 

more appropriate to handle exogenous model transformation scenarios because its 

execution engine is based on model rewriting rather than in-place changing. Figure 2.2 

shows an excerpt of model transformation rules written in ATL. The main blocks in an 

ATL program are the rules, specifying how to transform a model element from one 

metamodel to another (e.g., Member2Male). Inside a rule, constraints on the rules (e.g., 

not s.isFemale() ) and the specific transformation process (e.g., fullName < -  

s.firstName + ñ ñ + s.familyName) are defined. Helpers serve as function 

calls in an ATL transformation, which can contain the basic logic and control statements. 

helper context Families!Member def: isFemale() : Boolean =  

 if not self.familyMother.oclIsUndefined() then  

  true  

 else  

  if not self.familyDa ughter.oclIsUndefined() then  

   true  

  else  

   false  

  endif  

 endif;  

  

rule Member2Male {  

 from  

  s : Families!Member (not s.isFemale())  

 to  

  t : Persons!Male (  

   fullName < -  s.firstName + ' ' + s.familyName   

  )  

}  

Figure 2.2 ï An excerpt of an ATL transformation rule 
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 ATL has been implemented in Eclipse with a development toolkit plugin. A 

library of existing transformations is available to reuse from [ATL Transformation Zoo, 

2011], which contains successful transformation scenarios in many domains.  

Embedded Constraint Language (ECL). ECL [Gray et al., 2006] was designed 

and implemented to solve endogenous model transformation problems, supporting the in-

place modifications on source models. ECL applies and extends OCL, and supports three 

types of operations: 1) Model collection can be used to navigate the source model and 

group the model elements sharing the common features or satisfying the common criteria 

together. Model collection provides an expressive way to filter desired model elements 

from a large-scale source model; 2) Model selection operates on the collected model 

elements and further locates the target model elements to be transformed. The selection 

process can be based on either the evaluation of a logical expression or the matching of a 

specified pattern; 3) Model transformation carries out the final transformation task on the 

selected model elements. The transformation can be applied to both nodes and 

connections, being capable of adding, removing, and changing the structure and 

attributes. Figure 2.3 is an excerpt of an ECL example. An aspect in ECL is used to 

specify a crosscutting concern across a model hierarchy. The FindData1 aspect collects 

all the atoms in the model, selects those Data atoms with the name being ñdata1ò and 

executes the AddCond strategy. A strategy in ECL is a set of transformation operations, 

which in this example, creates a new Condition atom, a new connection, as well as setting 

up the attributes of each Condition atom. 

ECL is fully implemented with a transformation engine called the Constraint-

Specification Weaver (C-SAW) in GME. Although ECL was originally designed to 
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handle aspect-oriented modeling problems, it has been extended and applied to other 

general model evolution tasks such as model scalability [Lin et al., 2008] and model 

refactoring [Zhang et al., 2005]. Because ECL focuses on the same set of model 

evolution problems as this dissertation research, the comparison between ECL and the 

result from this research will be made in a future chapter. 

 

aspect FindData1(atomName, condName, condExpr : string)  

{  

atoms() - >select(a | a.kind() == "Data" and  

    a.name() == "data1") - >AddCond("Data1Cond", " value<200");  

}  

 

strategy AddCond(condName, condExpr : string)  

{  

    declare p : model;  

    declare data, pre : atom;  

 

    data := self;  

    p := parent();  

 

    pre := p.addAtom("Condition", condName);  

    pre.setAttribute("Kind", "PreCondition");  

    pre.s etAttribute("Expression", condExpr);  

    p.addConnection("AddCondition", pre, data);  

}  

 

Figure 2.3 ï An excerpt of an ECL transformation rule 

 

Graph Rewriting and Transformation (GReAT). GReAT [Balasubramanian et al., 

2006-a] is a graphical language to specify model transformations. GReAT is a set of three 

sub-languages: 1) The pattern specification language defines the pattern to be matched in 

the source model. A pattern consists of nodes and edges that must be present in the 

model, as well as the associations and containment relationships. Users can also specify 

negative application conditions that restrict the presence of certain patterns; 2) The 

transformation rule in GReAT is the basic transformation entity, which contains the 
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pattern to be matched, and a set of actions to be executed. Additionally, guards can be 

defined as part of the transformation rule to determine whether the actions should be 

executed based on the evaluation of the logical expression; 3) GReAT also contains a 

control flow language to handle the larger and more complex transformation scenarios, 

such as how to sequence the execution of the rules, how to execute the rules in parallel 

with non-determinism, how to control the hierarchy of the transformation rules using 

blocks, and how to implement recursion when executing the rules. The execution engine 

of GReAT is built within GME using graph mapping and rewriting. Figure 2.4 shows an 

example of a GReAT transformation rule. It binds all the instances of Class A, Class B, 

Class C that satisfy the given containment relationships (i.e., Class C can contain 

instances of Class A and Class B, and connections can exist between instances of Class A 

and Class B), and creates the new Item elements in the container (i.e., Class C).  

 

 

Figure 2.4 ï An excerpt of a GReAT transformation rule 
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2.4 End-User Programming (EUP) 

 The concept of End-User Programming (EUP) can be traced back to the 1960s 

[Martin, 1967]. James Martin presented his vision on this topic as, ñWe must develop 

languages that the scientist, the architect, the teacher, and the layman can use without 

being computer experts. The language for each user must be as natural as possible to him. 

The statistician must talk to his terminal in the language of statistics. The civil engineer 

must use the language of civil engineering. When a man learns his profession he must 

learn the problem-oriented languages to go with that profession.ò [Martin, 1967]  

End-Users are defined as the final users of application programs and software, 

who have not necessarily been taught or trained how to write code and programs in 

traditional programming languages. EUP aims at enabling this group of users to use the 

software in their daily life and work, and also participate in the creation, modification, 

and maintenance of software applications. The most representative example of EUP is a 

spreadsheet application [Rothermel et al., 2001]. Users who are not professional 

developers can process tables of complex data, and create automated calculation behavior 

without significant knowledge of a programming language.  

Supporting EUP exerts a significant influence on the whole software community. 

According to the research done by the U.S. Bureau of Census and Bureau of Labor 

[Scaffidi et al., 2005], there are 3 million professional software developers and 

programmers in the U.S., while over 12 million people say that they do programming at 

work, and over 50 million spreadsheet and database users exist. Therefore, the total 

number of end-user programmers in the U.S. alone is several times the number of 

professional programmers. These end-usersô involvement in programming can contribute 
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substantially to the application domains, because 1) end-users know their domains and 

problems best, so they can create the specific solutions to solve their own problems 

without talking or explaining to a programmer, avoiding the potential communication 

gaps; 2) after end-users receive their own programs and applications, they can also be 

responsible for the maintenance, rather than simply complaining about the software and 

seeking help from professional developers, leading to a more general ñcustomer supportò; 

3) the software systems designed with end-user programming capability can be simpler 

and less complex, due to the fact that professional programmers only need to focus on 

implementing the general functions, while the end-users take care of using these general 

functions to realize their specific needs [Lieberman et al., 2006]. 

However, the benefits of EUP do not come for free. Problems and cost can also be 

caused by applying EUP. The first and foremost problem associated with EUP is the 

quality of the applications built by end-users. Without professional training, end-users are 

likely to produce errors and bugs, which can have significant impact (e.g., a numerical 

error in a spreadsheet can lead to fatal failures in many areas). In addition, security 

cannot be guaranteed in the applications developed by end-users, because they may lack 

the necessary knowledge on how to test and secure their applications, or in some other 

cases, the security control is not even exposed to end-users. In some cases, the cost of 

quality and security issues can weigh much more than the benefits gained from EUP 

[Harrison, 2004]. 

In summary, while it is significant and beneficial to support EUP and enable users 

to participate in software development process, ensuring the quality and security of 

software applications built by end-users is indispensible. 
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2.4.1 Examples of EUP 

The approach to support model evolution used in this dissertation shares some 

features of EUP. In this section, we choose some typical and successful examples to 

further illustrate the idea of EUP.  

Programming By Example (PBE). PBE [Cypher, 1993] is a technique for teaching 

computers new behaviors by demonstrating actions on concrete examples. A program can 

be generalized from the recorded actions during the demonstration, which is applicable to 

accomplish the same task to other examples. The goal of PBE is to make programming 

easier than learning and using traditional programming languages. A popular PBE 

application domain was robotics [Narayanan et al., 2010]. By moving and operating the 

robots through a series of teaching, guiding, and play-back steps, the configurations and 

desired sequential actions for the robot can be completed.  

What You See Is What You Get (WYSIWYG). WYSIWYG [Rothermel et al., 2001] 

represents a technique that enables users to edit certain content (e.g., text, graphs, 

models) in a form that is exactly the same as it will appear in the final finished version or 

product. WYSIWYG intends to directly control and manipulate the properties (in most 

cases the layout) of the final product without learning and using the low-level 

implementation details. For instance, users can adopt Microsoft Word to configure the 

layout of a document by checking the final document appearance directly, while the 

special layout control code has to be inserted into the document using LaTeX [LaTeX, 

2011]. Another good example is that a number of Jave GUI editors are available (e.g., 

NetBeans [NetBeans, 2011], Eclipse Visual Editor [Eclipse VE, 2011]) to handle the Java 

GUI interface design by dragging and dropping the various GUI control elements on the 



44 

 

 

 

canvas directly. The underlying executable implementation in Java code is generated 

automatically. WYSIWYG can also go beyond the layout configuration. Google App 

Inventor [Google App Inventor, 2011] allows users to create Andriod applications in the 

same drag-and-drop manner, so that even young people who have no programming 

experiences can develop mobile applications for their own needs. 

Visual Programming Languages (VPL) and DSM. VPLs [Myers, 1986] let users 

create programs by using graphical elements and constructs rather than textual 

expressions. Based on the idea that, ñA picture is worth a thousand words.ò VPLs can 

make the specification of certain applications more direct and end-user friendly. For 

instance, the Microsoft Visual Programming Language [MS VPL, 2011] is a graphical 

development environment designed to create dataflow-based programming models; 

KTechlab [KTechlab, 2011] uses flowcharts to program microcontrollers graphically; 

OpenMusic [Agon, 1998] is a visual programming language for music composition 

applications. DSM, by comparison, shares similar features as VPLs that both rely on the 

graphical representations. However, although a DSML can be considered a type of VPL, 

the main difference between a VPL and a DSML is that a DSML raises the level of 

abstraction by generating the low-level software artifacts, while VPLs are usually 

independent languages or development environments. When it comes to supporting EUP, 

both are effective approaches. 
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CHAPTER 3 

MODEL TRANSFORMATION BY DEMONSTRATION:  

AN END-USER CENTRIC MODEL TRANSFORMATION APPROACH 

This chapter presents the main contribution of this dissertation ï Model 

Transformation By Demonstration (MTBD), which is an end-user centric approach to 

implement model transformation. The basic goals and high-level description of the idea 

are discussed first, before a detailed explanation of each step and implementation 

component. A formal description of the approach is also given, which defines the 

functionality of the approach precisely. In order to highlight the unique features and 

contribution of MTBD, related work will be discussed and compared, followed by 

concluding remarks that are presented at the end of the chapter. 

 

3.1 Overview of MTBD 

The main difficulty of learning and using MTLs to support model evolution, as 

discussed in Chapter 1, results from the steep learning curve of MTLs and the challenge 

of understanding the metamodels correctly. Therefore, the goal of the new model 

transformation approach presented in this dissertation is to isolate users from learning any 

MTLs or knowing any metamodels, to make the activity of performing model 

transformations more end-user centric. 
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The idea of MTBD derives from PBE. Although PBE focuses on enabling users to 

teach a computer new behaviors by demonstrating actions on concrete examples, MTBD 

concentrates on a more specific programming scenario to allow users to implement model 

transformation tasks by demonstrating how to transform and evolve models on concrete 

model instances. 

The basic idea of MTBD is that instead of manually writing transformation rules 

in a specific model transformation language, users demonstrate how a model 

transformation should be done by directly editing (e.g., add, delete, connect, update) a 

concrete model instance to simulate the desired model transformation process. A 

recording and inference engine has been developed to capture all user operations 

performed during the demonstration. After the recording process has completed, the 

inference engine optimizes the recorded operations and infers a transformation pattern 

that specifies the precondition of the transformation and the sequence of actions needed 

to realize the transformation. In order to make the inferred transformation pattern more 

accurate, users are allowed to make refinements on the pattern through dialogs and 

wizard interfaces. The finalized pattern is stored in the repository, and can be executed by 

the execution engine by matching the precondition in a given model instance and then 

replaying the actions to execute the transformation actions. During the execution of a 

transformation pattern, constraint checking ensures that the execution does not violate the 

metamodel definition of the domain. 

The design and implementation of MTBD is independent from any MTLs, and 

metamodel information is not exposed to users during the whole MTBD process, so that 
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users can be isolated from learning MTLs or understanding metamodel definitions. More 

details about each step of MTBD will be presented in the next sub-sections. 

 

3.2 MTBD Process and Implementation 

 Figure 3.1 shows the high-level overview of MTBD, which is a complete model 

transformation framework that allows users to specify a model transformation, as well as 

to execute the generated transformation pattern in any desired model instances. 

 

Figure 3.1 ï High-level overview of MTBD process 
 

The implementation of MTBD is a plug-in called Model Transformation-Scribe 

(MT-Scribe) to GEMS in Eclipse. This sub-section will present each of the steps and the 

associated implementation details. 

User Demonstration. A userôs demonstration provides the base for transformation 

pattern analysis and inference, so accurately demonstrating a concrete model 
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transformation process is the first and foremost step. The demonstration is given by 

directly editing a model instance in the model editor to simulate a transformation task. 

Six different types of operations can be performed and demonstrated: 1) add a model 

element (i.e., node), 2) remove a model element, 3) change the attribute of a model 

element, 4) add a new connection, 5) remove a connection, and 6) change the attribute of 

a connection. Users can change any model from the source state to the target state using 

these operations. 

The implementation of the demonstration is enabled in the GEMS model editor. 

Figure 3.2 shows an ongoing demonstration in the modeling language EmFucnML [Sun 

et al., 2011-a]. 

The key of the demonstration is that it should be sufficient to reflect the 

transformation purpose accurately. For example, if a model transformation scenario 

requires replacing all model elements of ElemType1  and ElemType2  with other types 

of elements, the demonstration must cover replacing both types of elements, rather than 

only replacing one of them. On the other hand, over-demonstration should also be 

avoided. In other words, the demonstration should be as short and concise as possible, 

which means that it is not necessary to cover multiple instances of the same type of 

changes needed in the entire model instance. For example, to replace all the elements of 

ElemType1  contained in the root of the model, instead of manually deleting every 

ElemType1  and adding a new type of element, demonstrating only one replacement is 

enough, because one replacement already contains the necessary information about how 

the transformation should be performed in other locations.  
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Figure 3.2 ï An ongoing demonstration and the Operation Recording view 

 

 

During the demonstration, users are expected to perform operations not only on 

model elements and connections, but also on their attributes, so that the attribute 

transformation can be realized. In most model evolution activities, attribute 

transformation is an essential task, because the attributes in the target model are often 

based on the computation using one or more attributes in the source model. To support 

this type of scenario, an attribute refactoring editor has been developed. As illustrated in 

Figure 3.3, the attribute refactoring editor enables users to access all the attributes in the 

current model editor and specify the desired transformation expressions (e.g., string and 

arithmetic computation). During the demonstration, a user specifies the attribute 

computation with the concrete values and obtains the concrete results, but the generic and 
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metamodel level transformation rules can be inferred from it later. The computation can 

either be based on single attribute value assignment, or the combination of multiple 

attribute values from different model elements and connections. The attribute refactoring 

editor also provides a mechanism to let users create a temporary data pair, with a given 

name and a value. The creation of the temporary data pair is actually used to simulate the 

user input process, and the data can be used in any attribute configuration and 

computation process through the entire demonstration. The creation of the temporary data 

will be generalized as a user input action and will display an input box when the final 

pattern is executed. 

 

 

Figure 3.3 ï The attribute refactoring editor 

 
Because the demonstration is based on the concrete model instances, users are 

fully isolated from metamodel definitions and MTL concepts, which allow them to think 
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about the transformation or evolution problem using the concepts they are most familiar 

with. 

Operation Recording. User demonstration reflects the intention of the 

transformation. To infer this intention accurately, the detailed information about each 

operation performed during the demonstration should be recorded accordingly. The 

information to be recorded includes the elements and connections being involved directly 

during the demonstration, but also the context information. Therefore, an event listener 

has been developed to monitor all the operations occurring in the model editor and collect 

the information for each operation in sequence. In GEMS, an extension point is available 

to capture all the events occurring in the editor. The event listener extends this extension 

point and stores all the needed information, and displays it in the Operation Recording 

view (the bottom part of Figure 3.2), where users can track all the operations being 

recorded during the demonstration. Table 3.1 shows the six types of operations that a user 

may perform and the related information that needs to be recorded. Each recorded 

operation is encapsulated into an object, similar to the Command pattern [Gamma et al., 

1995]. The final list of these objects represents the sequence of operations the user 

performed during the demonstration. 

Operation Optimization. The list of recorded operations indicates how a 

transformation should be performed. However, not all operations in the list are 

meaningful. Users may perform useless or inefficient operations during the 

demonstration. For instance, without a careful design, it is possible that a user first adds a 

new element and modifies its attributes, and then deletes it in another operation later, 

with the result being that all the operations regarding this element actually did not take 
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effect in the transformation process and therefore are meaningless. The presence of 

meaningless operations not only has the potential to make the inferred transformation 

preconditions inaccurate, but also exerts a negative influence on the performance of a 

transformation, especially when it executes on a large model instance. Thus, an 

optimization that eliminates all meaningless operations is automatically done after the 

recording. An optimization algorithm has been designed and implemented to detect the 

meaningless operations and eliminate them, which will be presented in Section 3.3. 

 

Table 3.1  

The types of operations and the related context information recorded 

Operation Type Information Recorded 

Add an Element Location of the parent element and its meta type 

The newly added element and its meta type 

Remove an Element Location of the element being removed and its meta type 

Modify an Element Location of the element being modified and its meta type 

The attribute name, the old value and the new value 

Add a Connection Location of the parent source and target elements and their meta 

types 

The newly added connection and its meta type 

Remove a Connection Location of the connection being modified and its meta type 

Modify a Connection Location of the connection being modified and its meta type 

The attribute name, the old value and the new value 

 

Pattern Inference. With an optimized list of recorded operations, the initial 

transformation can be inferred. Because the MTBD approach does not rely on any MTLs, 

it is not necessary to generate specific transformation rules, although that is possible. 

Instead, a general transformation pattern is inferred, which is invisible to end-users so 

that they are fully isolated from knowing MTLs or any implementation details. The 

transformation pattern describes the precondition of a transformation (i.e., where the 
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transformation should be performed) and the actions of a transformation (i.e., how the 

transformation should be realized). The precondition is defined by specifying the required 

model elements and connections, with the constraints on them (e.g., the type of the 

element must be ElemType1 ). The actions specify the sequence of operations to be 

executed on the elements and connections identified in the precondition. By analyzing the 

recorded operations, the related meta-information of model elements and connections is 

extracted to construct the precondition, and the actions are generated by generalizing the 

recorded operation sequence. 

The pattern inferred in this step is an initial version, which means that the 

precondition is the weakest precondition for the transformation and the set of actions is 

specific to the operations performed during the demonstration. For instance, if a user 

performed an operation to remove an element of ElemType 1 from the root of the model 

instance, and another operation to add a new element of ElemType 2 in the root, the 

inferred precondition is that the model instance should contain at least an element of 

ElemType 1 in the root so that the delete operation could be executed on it. In other 

words, satisfying the weakest precondition means that a model instance contains the 

minimally sufficient elements for each operation to be executed correctly. Obviously, 

such kind of precondition is not restrictive enough in practice. In many cases, more 

specific constraints are needed for the precondition from the aspects of both structure and 

attribute, which cannot be inferred directly from the demonstration. For instance, the 

element of ElemType 1 should be removed only when a certain attribute value (e.g., 

load ) is less than 100 , or only when it is connected to another element of ElemType1 . 

Similarly, the initially inferred transformation actions are just the same as the operations 
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in the recorded operation set. However, sometimes this kind of repetition is not generic 

enough to reflect the userôs real intention. Thus, a user refinement step comes after the 

inference of the initial transformation pattern to let users make the pattern more accurate.  

User refinement. The initial pattern inferred is specific to the demonstration and is 

usually not practical and accurate enough, due to the limitation on the expressiveness of 

the user demonstration. Thus, MTBD allows users to refine the inferred transformation 

by providing more feedback for the desired transformation scenario. Three types of 

refinement can be performed: 1) refinement on the structural precondition, 2) refinement 

on the attribute precondition, and 3) refinement on the transformation actions. In order to 

keep users at the appropriate level of abstraction without knowing MTLs or metamodel 

definition, all the refinements can be done through interfaces that only expose 

information from the demonstration on the concrete model instances. 

The refinement on the structural precondition aims to restrict the required model 

elements and connections to be included when matching a model transformation pattern. 

From the example mentioned in the previous sub-section, after a user demonstrates 

removal of an element of ElemType1 , the structural precondition inferred only contains 

one ElemType1 . If the desired transformation scenario is to remove this element only 

when it is connected to another ElemType1  trough a connection, users can refine the 

inferred transformation pattern by including the additional required elements or 

connections. The refinement can be done directly in the model editor, by selecting the 

concrete elements or connections and confirming their containment using a one-click 

pop-up menu in the editor, as shown in Figure 3.4. 
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Figure 3.4 ï Refine structural precondition by confirming containment 

 

The refinement on an attribute precondition enables users to give constraints on 

the attributes of model elements and connections specified in the structural precondition. 

When matching a transformation pattern in a model instance, after the structure is 

matched, all the constraints on the attributes must be satisfied as well. The constraints on 

attributes are specified using logical expressions. For instance, if the desired model 

transformation scenario is to remove Ele mType 1 only when load < 100 , users can 

find out the element of ElemType 1 in the precondition specification dialog, select the 

attribute ñload ,ò followed by giving the expression ñ< 100 .ò The constraint can be 

based on multiple attributes on different model elements and connections. For example, if 

ElemType 1, ElemType 2, and ElemType 3 are involved in the precondition, the 

constraint can be made by specifying ñElemType 1.load + Elem Type 2.load == 
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ElemType 3.load .ò The refinement is done in a dialog as shown in Figure 3.5. The 

upper-left lists all the recorded operations in the demonstration. By clicking on a specific 

operation, all the model elements involved will be listed, so that a user can locate the 

elements for which they want to provide more constraints. Similarly, by clicking on a 

certain element, all its attributes and associated values are listed. Users can select certain 

attributes and type the necessary restrictions. Also, constraints can be given on the 

attributes that are not defined in the metamodel, such as the number of outgoing or 

incoming connections. Through this interface, users continue to work at the model 

instance level to give specific preconditions on the elements they considered in the 

demonstration. The meta-information and generic computation will be inferred and stored 

in the transformation pattern automatically, with the information on the low-level 

implementation and metamodel definition being hidden. 

The inferred sequence of transformation actions also can be refined by users. The 

most typical scenario is to identify the generic operations that should be repeated 

according to the available model elements and connections. An illustrative example of 

this refinement is when a user wants to remove all the elements of ElemType1  in the 

root of the model instance. Instead of demonstrating the removal of all the elements, the 

demonstration is done by only removing one of them. In the initially inferred 

transformation actions, only a single operation (i.e., remove Elem1 ) is included. Without 

refinement, the execution of the transformation pattern will only trigger the removal of a 

single ElemType 1, rather than deleting all of those contained in the root of the model as 

expected. Therefore, users can refine the transformation actions, by marking the 

operation generic. A generic operation means that during an execution of a 
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transformation pattern, the operation should be executed repeatedly by matching the 

related precondition in the current model until no more matches can be made. The 

identification of generic operations can be accomplished by marking the list of 

transformation actions in a dialog, as shown in Figure 3.6.  

 

 

Figure 3.5 ï Precondition specification dialog 

 

Pattern Repository. After the user refinement, the transformation pattern will be 

finalized and stored in the pattern repository for future use. Because the transformation 

pattern is represented by different types of objects (i.e., precondition objects, 

transformation action objects), the current implementation of MTBD serializes all the 

objects in a transformation pattern and stores them locally. 
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Figure 3.6 ï Generic operations identification dialog 

 

Pattern Execution. The final generated patterns in the repository can be executed 

on any model instances. Because a pattern consists of the precondition and the 

transformation actions, the execution starts with matching the precondition in the new 

model instance and then carries out the transformation actions on the matched locations 

of the model. The precondition matching is done by traversing the model instance to 

search all locations that satisfy both the structural and attribute preconditions. Because 

both the precondition and the model instance can be regarded as graphs, the precondition 

matching problem could be solved by using graph matching theories [Varró et al., 2005]. 

A backtracking algorithm has been developed to match a precondition in a given model 

instance, as presented in Section 3.3. A notification is given if no matching locations are 

found. In MTBD, a matching location is defined as a part or substructure of a model that 

contains all the model elements and connections required in the precondition that satisfies 

all the constraints given in the userôs refinement. 
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After a matching location is found, the transformation actions can be executed 

with the matched model elements and connections. If operations are identified as generic, 

the execution engine will rematch the related part of the precondition, and execute these 

operations as long as additional matching can be made. 

 

Figure 3.7 ï Execution controller dialog 

Execution Control. Users can select the pattern in the execution controller dialog 

shown in Figure 3.7 to execute an inferred transformation pattern from the repository. 

Users can select multiple patterns to execute in sequence, which is particularly useful 

when a model transformation task is divided by sub-tasks and specified by different 

demonstrations. In addition, the total times for executing the selected pattern(s) can be 

specified, because in some use cases (e.g., model scalability), a transformation pattern(s) 

needs to be executed multiple times to transform the model to a specific state and 

configuration. Moreover, users can customize part of the model instance to execute the 

pattern. By default, a transformation pattern will be executed in the root of the current 
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model instance and matched in the whole model. Users are also allowed to select a partial 

model as an input base to match a transformation pattern. 

Correctness Checking. The location matching the precondition guarantees that all 

transformation actions can be executed with necessary operands with satisfied 

constraints. However, it does not ensure that executing them will not violate the 

metamodel definition or external constraints, because the implementation of executing 

the actions is based on the low-level model manipulation APIs provided by GEMS that 

could be applied without the monitoring of the GEMS checking mechanism. Therefore, 

the execution of each transformation action will be logged and the model instance 

correctness checking is performed after every execution. If a certain action violates the 

metamodel definition, all executed actions are undone and the whole transformation is 

cancelled, with the model instance being rolled back to the initial state. Because the 

transformation actions have been encapsulated as objects in the Command pattern, the 

undo process is implemented directly. 

 

3.3 Formal Specification of MTBD 

 As a new model transformation approach that is at a higher level of abstraction 

than MTLs, MTBD provides an end-user centric solution to handle model transformation 

problems. Different from MTLs that have well-defined language syntax and semantics to 

precisely reflect the power and functionality, the usage and power of MTBD cannot be 

expressed directly in a similar way. Therefore, a formal specification of MTBD is 

presented in this section, for the purpose of accurately describing the process of MTBD 

and defining its power and full functionality. 
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 Using the description of MTBD provided in Section 3.2, a formal model of the 

MTBD has been built as a 5-tuple:  

),,(),,(),,(),,(, TPMTPMMTGMTBD jmimim

CCCCCCC
¡¡DDD= xfv  (1) 

where:  

¶ Mi  is a model conformant to the metamodel Metai 

¶ Mj  is a model also conformant to the metamodel Metai 

¶ mD
C

 
is a sequence of model modifications recorded during a user 

demonstration of a transformation on the model, Mi.  

¶ ),( miMTG D
C

 
is a generalization function that produces an initial set of model 

transformation actions, T
C

, that can be applied to any model conformant to 

Metai. The transformation is produced by generalizing the series of 

modifications, mD
C

, that were applied to Mi.  

¶ ),( miM D
C

v
 
is an inference function that extracts a set of preconditions, P

C
, 

needed in order to generalize and apply the modifications, mD
C

, to another 

model.  

¶ ),( TP
CC

f  is an optional manual transformation and precondition refinement 

function that allows the domain expert to modify the transformation and 

preconditions inferred by TG and ◗. This function produces a refined 

transformation, T
C
¡, and set of preconditions P

C
¡.  

¶ ),,( TPM j

CC
¡¡x

 
is a transformation function that applies the refined generalized 

transformation, T
C
¡, to a model, Mj, if the preconditions P

C
¡are met by Mj.  
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3.3.1 Operation Demonstration and Recording 

The goal of MTBD is to allow users to express domain knowledge regarding a 

function, K(Mi). That is, the user is describing a domain-specific function that can be 

applied to a model in order to achieve a domain-specific goal. A critical component of 

MTBD is that the domain function (transformation) is expressed in terms of the notations 

in the modeling language and not the notations used to describe the metamodel, Metai.  

MTBD captures domain functions as transformations that can be applied to 

models that adhere to the metamodel, Metai, of the target domain. The first step in 

MTBD is for a user to apply the domain function, K(Mi) to a model, so that the MTBD 

engine can capture the set of model modifications, mD
C

. The process begins by the user or 

an external signal initiating a recording process. During the recording process, the user 

applies the domain function, K(Mi), to the model, Mi: 

K(Mi) ᵼ Mj (2) 

K : MetaiŸ Metai (3) 

The domain function takes an initial model, Mi, as input, and produces a new 

model, Mj, as output. Although it is possible that Mi and Mj are not conformant to the 

same metamodel, Metai, this dissertation explicitly focuses and enforces this assumption. 

Equation 3 shows that the domain function must represent an endogenous model 

transformation that maps a model in one metamodel to a model in the same metamodel. 

 

3.3.2 Operation Optimization 

The set of modifications mD
C

 potentially can contain meaningless operations due 

to a usersô careless design of a demonstration. An algorithm has been developed to 
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remove these meaningless operations and optimize mD
C

, as shown in Algorithm 1. The 

algorithm traverses the whole recorded operation list, and seeks the meaningless 

operation pairs on the same model element or connection, such as removing after adding, 

or multiple modifications without making changes between source and target states.  

  for each op in the input operation list 
    switch (op.type) 
        case ADD_ELEM:  
           for each op_temp after the current op in the list 
              if  op_temp.type == REMOVE_ELEM and op_temp removes what op added 

                 and the element was not referred in between 
                     then remove both op and op_temp from the list 
           end for 
        case MODIFY_ELEM: 
           traverse the final model instance and search the element being modified 
           if  not found then remove op from the list 
           if  found then compare the attribute value with the value stored in op 
               if  different then remove op from the list 
        case ADD_CONN:  
           for each op_temp after the current op in the list 
              if  op_temp.type == REMOVE_CONN and op_temp removes what op added  
                 and the element was not referred in between 
                     then remove both op and op_temp from the list 
           end for 
        case MODIFY_CONN: 
           traverse the final model instance and search the connection being modified 
           if  not found then remove op from opList 
           if  found then compare its attribute value with the value stored in op 
               if  different then remove op from opList 
  end for  

Algorithm 1 ï Optimize Operation List 

3.3.3 Pattern Inference 

After the recording process, the MTBD engine possesses a series of optimized 

model modifications mD
C

, that express the application of the domain function K(Mi), to a 

specific model. The next step of MTBD is to use pattern inference to generalize and 

describe the domain function as a model transformation. A critical aspect of this process 
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is that the transformation must be expressed in terms of the general metamodel notations 

captured in Metai, rather than a specific modelôs elements, Mi. The inference step 

produces a model transformation, which we describe as a tuple:  

TPtionTransforma
CC

,=  (4) 

where P
C

 is a set of preconditions that must be met in order to apply the transformation 

produced by function v , andT
C

is the set of generalized model modifications that 

transform the source model to the desired target model, produced by function TG. In 

terms of the domain function,P
C

 describes the domain knowledge regarding the 

circumstances in which K(Mi) can be applied, and T
C

defines what to do when these 

circumstances are met. For example, in the previous example from Section 3.2, P
C

 is the 

precondition that the element must be connected to another element and the load attribute 

is above a set threshold, where T
C

 represents the modifications needed in order to remove 

or replace the element. 

As mentioned in the previous sub-section, the preconditions can be subdivided 

into two types: 

Structural preconditions that govern the types of elements, the containment 

relationships, and connection relationships that must exist within the model. The 

structural preconditions take the form of assertions on the hierarchy or connection 

relationships that must be present in the model. A hierarchical precondition, Pei, is 

described as a vector:  

Pei= T0, T1,..., Tn (5) 

where T0 is the type of an element that is directly modified by one or more operations in 
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mD
C

, T1 is the type of the parent of T0, T2 is the type of the parent of T1, and so forth to the 

root element. In order for this precondition to hold in an arbitrary model, Mj, an instance 

of the type T0, contained within an element of type T1, must exist. More formally, given 

an element, ei, in a model Mj that conforms to the metamodel Metai, a hierarchical 

precondition, Pei, is satisfied by ei if:  

V (ei, Ti) = (type(ei) == Ti) (᷈V(ei+1, Ti+1)) (6) 
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falseotherwise
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A connection precondition is another form of a structural precondition. 

Connection preconditions dictate the associations that must be present in the model. A 

connection precondition, Pci, is defined as a 3-tuple:  

Pci = <Pej, Pek, Tl> (8) 

where Pej specifies a structural precondition that must be met for an element to be 

considered the source element of a connection to be modified; Pek is a precondition that 

must be met for an element to be considered the target element of the connection; and Tl 

is the type of connection that must exist between the elements that satisfy the source and 

target structural preconditions. In order for a connection, ci, between two elements, ei and 

ej, to satisfy Pci:  
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The inference ),( miM D
C

v function evaluates each change in mD that occurred. 

From these changes, structural preconditions are extracted as follows: 

¶ Added Elements. For each model element ej that is added to the model as a 
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child of ei, a precondition Pei is created. The type vector for Pei captures the 

types of elements that are visited from traversing from ei to the root of the 

model. T0 is set to the type of ei. 

¶ Removed Elements. If an element ei is removed from the model, a 

precondition Pek is created. The type vector for Pek captures the types of 

elements that are visited from traversing from ei to the root of the model. T0 is 

set to the type of ei. 

¶ Added Connections. Each new connection, cj, that is added from model 

element ei to ej produces a new precondition Pci. The type vector for the 

source element Pej captures the types of elements that are visited from 

traversing the source element to the root of the model. The type vector for the 

target element Pek captures the types of elements that are visited from 

traversing the target element to the root of the model. Tl is set to 0 to indicate 

that no existing connection is required between the elements that satisfy Pej 

and Pek.  

¶ Removed Connections. Each deleted connection, cj, that previously started 

from model element ei and ended at model element ej produces a new precon-

dition, Pci. The type vector for the source element Pej captures the types of 

elements that are visited from traversing the source element to the root of the 

model. The type vector for the target element, Pek, captures the types of 

elements that are visited from traversing from the target element to the root of 

the model. Tl is set to the type of cj.  
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¶ Changed Element Attributes. If an element ei, has an attribute value changed, 

a pre-condition Pek, is created. The type vector for Pek captures the types of 

elements that are visited from traversing from ei to the root of the model. T0 is 

set to the type of ei.  

¶ Changed Connection Attributes. If a connection, ci, has an attribute value 

changed, a precondition Pck is created. The type vector for the source element 

Pej captures the types of elements that are visited from traversing the source 

element to the root of the model. The type vector for the target element Pek 

captures the types of elements that are visited from traversing the target 

element to the root of the model. Tl is set to the type of cj. 

Attribute preconditions specify the required values of attributes on the model 

elements that a transformation will apply. The attribute preconditions, Ac, are specified as 

tuples: 

Aci = <Pei, Expr> (10) 

where Pei is a structural precondition specifying the source model element to which the 

attribute precondition must be checked. The Expr component specifies a mathematical 

expression over the attributes of an element that satisfy Pei. Currently, the attribute must 

be a primitive value and any logical and arithmetic expressions are supported.  

Complete structural and attribute preconditions are difficult to infer automatically. 

Simple algorithms can extract preconditions that specify the minimum number of 

required model elements and connections, and an exact value of one or more element 

attributes. However, these algorithms are often too exclusive and generate preconditions 

that require exact matching of the structure and all attribute values. Ideally, attribute 




