

MODEL TRANSFORMATION BY DEMONSTRATION:

A USER-CENTRIC APPROACH TO SUPPORT MODEL EVOLUTION

by

YU SUN

PURUSHOTHAM BANGALORE, COMMITTEE CHAIR

BARRETT BRYANT

JEFF GRAY

MARJAN MERNIK

JULES WHITE

CHENGCUI ZHANG

ROBERT FRANCE, EXTERNAL REVIEWER

ANIRUDDHA GOKHALE, EXTERNAL REVIEWER

A DISSERTATION

Submitted to the graduate faculty of The University of Alabama at Birmingham,

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

BIRMINGHAM, ALABAMA

2011

Copyright by

Yu Sun

2011

iii

MODEL TRANSFORMATION BY DEMONSTRATION:

A USER-CENTRIC APPROACH TO SUPPORT MODEL EVOLUTION

YU SUN

COMPUTER AND INFORMATION SCIENCES

ABSTRACT

Domain-Specific Modeling (DSM) is an innovative software development

methodology that raises the specification of software to graphical models at a high-level

of abstraction using domain concepts available in a language that is defined by a

metamodel. Using DSM, models become first-class entities in the construction of

software systems, and therefore model evolution becomes as important as code evolution

in traditional software development.

Model transformation is a core technology of DSM that converts a source model

to a target model, which plays a significant role in supporting model evolution activities.

A common approach toward model transformation is to write transformation rules in a

specialized model transformation language. Although such languages provide powerful

capabilities to automate model transformations, their usage may present challenges to

those who are unfamiliar with a specific model transformation language or a particular

metamodel definition. In addition, in the collaborative modeling situations when model

evolution knowledge needs to be exchanged and reused, most model transformation

languages do not support sharing of existing model transformation rules across different

editors among different users, so reusing the existing rules to support model evolution

activities becomes difficult. Finally, most transformation languages do not have an

associated debugger for users to track errors, or the debugger is not at the appropriate

level of abstraction for end-users.

iv

This dissertation focuses on three aspects related to supporting model evolution

activities: 1) simplify the creation of model transformations in a demonstration-based

approach by recording and analyzing the operational behavior exhibited by an end-user as

they perform a transformation task manually; 2) improve model evolution knowledge

sharing, exchange and reuse through tool support; and 3) enable an end-user centric

approach to debug the execution of a model transformation. The overall goal of the

research in this dissertation is to enable end-users to create their desired model evolution

tasks without any knowledge of model transformation languages or metamodel

definitions, share and reuse existing model evolution tasks, and check and trace errors in

a user-friendly manner when performing model evolution tasks. Each of these objectives

will be explained in detail in this dissertation, combined with case studies from different

domains to illustrate how a user-centric approach can support common model evolution

activities in practice.

v

DEDICATION

To Mom and Dad,

for their love and sacrifice.

vi

ACKNOWLEDGEMENTS

My sincerest gratitude goes to my advisor, Dr. Jeff Gray for his consistent

support, encouragement, and care for me over the past years. Through his NSF CAREER

grant, I was able to concentrate fully on my research work from the second semester of

my graduate study. During the whole period of my graduate study, Dr. Gray has offered

me numerous opportunities and kept encouraging me to build connections with

researchers and professors, publish and present my works, attend professional activities,

participate in various competitions, and collaborate with industry. In each step toward the

completion of my Ph.D. degree, Dr. Gray has offered a great deal of effort to help me

form ideas, give research direction and advice, revise the publications and presentations,

refine and improve the quality of my research results. For every accomplishment that I

achieved as a student, Dr. Gray always expressed his joy and pride for each milestone

that I achieved. In addition, his support and care also came to my life outside of school

and research, such that I always felt a strong sense of encouragement, inspiration and

warmness, when facing difficulties in my life. I have learned so much from his attitudes

toward work, students, colleagues and family. I like Steve Jobsô quote ñYou cannot

connect the dots looking forward; you can only connect them looking backward.ò Today,

when looking back over my own connected dots in the past years, I can see Dr. Grayôs

support in every one of them.

vii

I also want to thank Dr. Barrett Bryant and Dr. Purushotham Bangalore, for their

more involved role as committee chairs during recent faculty transitions. I really

appreciate their advice and direction on each of the key stages in my graduate study, from

taking courses, preparing the qualification exam, forming a research proposal, to doing

internships, completing the dissertation defense, and finding jobs. None of these can be

accomplished without their support.

I would like to show my gratitude to Dr. Jules White. Without Dr. Whiteôs help

on understanding and extending the research work he has done on GEMS, my Ph.D. idea

could not have been implemented and realized. I have also benefited so much from his

research ideas and his help to connect me with Siemens, where I enriched my experience

by combining research and real practice. Moreover, Dr. White has always been a great

model for me on creating new research ideas, conducting high-quality research, and

producing exceptional research papers and presentations.

To Dr. Marjan Mernik, thank you for your effort and help to bring me into the

research area with the necessary knowledge and skills in the early stage of my Ph.D.

study. I also want to thank you for always giving me valuable feedback and suggestions

for my research work.

To Dr. Chengcui Zhang, I greatly appreciate your precious time and effort in

serving as my committee member and sharing your experience of graduate study with

me.

To Dr. Robert France and Dr. Aniruddha Gokhale, thank you for reviewing my

work and providing valuable feedback. Your expertise in the modeling area improved the

quality and direction of this work.

viii

I am also indebted to the help and guidance I gained from a number of great

groups in the industry. Special thanks are due to Dr. Michael Golm, Mr. Christoph

Wienands, Mr. Sean Eade, and Dr. Sam Zheng from Siemens Corporate Research, who

offered me the wonderful opportunity to apply my research and skills in practical projects

and enrich myself. I would also like to thank Mr. Benjamin Redman, Dr. Imran Patel, and

Dr. Yu Gu from Amazon, who guided me with great patience and trained me with mature

and professional software engineering knowledge and skills. To Mr. Karlheinz Bulheller

and Mr. Nicolaus von Baillou, thank you for providing me the chance and resources to

collaborate with you on such a meaningful project ï I learned so much from you.

I also will never forget the support and help from current and previous

SoftComers. To Qichao Liu, thank you for everything you gave to me, and I cherish

every moment we had together in the past years. To Dr. Robert Tairas, Hyun Cho, Ferosh

Jacob, Zekai Demirezen, Jia Ma, Haisong Li, I really appreciate our friendship and all the

wonderful and fun time together as a collaborative team.

To Dr. Shelby Sanford, Lisa Sanford, Dr. Hang Li, Michael Stueve, and Qingsong

Yue, thank you for introducing me to God in this special period of time in my life, so that

I can finally know God, believe in God and start to receive great gifts and mercy from

God. Thank you, God. Without you, none of these amazing things can happen.

Finally, I am grateful to the financial support from the UAB Department of

Computer and Information Sciences, and the National Science Foundation CAREER

Grant (No. 1052616).

ix

TABLE OF CONTENTS

Page

ABSTRACT ... iii

DEDICATION .. v

ACKNOWLEDGEMENTS ... vi

LIST OF FIGURES ... xiii

LIST OF LISTINGS .. xvi

LIST OF TABLES .. xvii

LIST OF ABBREVIATIONS .. xviii

1 INTRODUCTION ... 1

1.1 Domain-Specific Modeling (DSM) .. 3

1.2 Model Evolution in DSM ... 7

1.3 Model Transformation and Model Transformation Languages (MTLs) 9

1.4 Key Challenges in Supporting Model Evolution ... 11

1.4.1 The Difficulty of Learning and Using MTLs for End-Users 12

1.4.2 Limited Tool Support to Exchange and Reuse Model Evolution

 Knowledge .. 15

1.4.3 The Lack of an End-User Debugging Facility for MTLs 17

1.5 Research Goals and Overview ... 18

1.5.1 Model Transformation By Demonstration (MTBD) to Simplify Model

 Transformation ... 19

1.5.2 Live-MTBD to Improve Model Evolution Knowledge Exchange and

 Reuse .. 19

1.5.3 MTBD Debugger to Enable End-User Model Transformation Debugging 20

1.5.4 Applications of the Research to Support Model Evolution in Practice 21

1.6 The Structure of the Thesis .. 21

x

2 BACKGROUND ... 23

2.1 Model-Driven Engineering (MDE) .. 23

2.1.1 Model-Driven Architecture (MDA) .. 25

2.1.2 Domain-Specific Modeling Development Process 27

2.1.3 Model Evolution in DSM.. 28

2.2 Metamodeling and Tools .. 29

2.2.1 Four-Layer Modeling Architecture ... 29

2.2.2 Metamodeling Tools ... 31

2.3 Model Transformation and Model Transformation Languages 33

2.3.1 Categories of Model Transformation Languages 34

2.3.2 Examples of MTLs ... 36

2.4 End-User Programming (EUP) .. 41

2.4.1 Examples of EUP .. 43

3 MODEL TRANSFORMATION BY DEMONSTRATION:

 AN END-USER CENTRIC MODEL TRANSFORMATION APPROACH 45

3.1 Overview of Model Transformation By Demonstration (MTBD) 45

3.2 MTBD Process and Implementation .. 47

3.3 Formal Specification of MTBD ... 60

3.3.1 Operation Demonstration and Recording ... 62

3.3.2 Operation Optimization .. 62

3.3.3 Pattern Inference ... 63

3.3.4 User Refinement ... 68

3.3.5 Pattern Execution .. 69

3.4 Related Work.. 69

3.5 Summary .. 74

4 MTBD IN ACTION: USING MTBD TO SUPPORT MODEL EVOLUTION.... 75

4.1 Model Refactoring.. 75

4.1.1 Case Study ï Background ... 77

4.1.2 Case Study ï Solution ... 78

4.2 Model Scalability ... 80

4.2.1 Case Study ï Background ... 82

4.2.2 Case Study ï Solution ... 84

4.3 Aspect-Oriented Modeling ... 88

4.3.1 Case Study ï Background ... 90

4.3.2 Case Study ï Solution ... 94

xi

4.4 Model Management.. 98

4.4.1 Case Study ï Background ... 99

4.4.2 Cast Study ï Solution.. 101

4.5 Model Layout ... 103

4.5.1 Case Study ï Background ... 111

4.5.2 Case Study ï Solution ... 113

4.6 Experimental Validation .. 116

4.6.1 Generality .. 116

4.6.2 Separation from MTLs and Metamodel Definitions 117

4.6.3 Productivity ... 118

4.6.4 Practicality .. 123

4.7 Summary .. 123

5 LIVE MODEL TRANSFORMATION BY DEMONSTRATION:

 TOOL SUPPORT TO IMPROVE MODEL TRANSFORMATION REUSE 125

5.1 Live Model Transformation By Demonstration (Live-MTBD) 125

5.1.1 Live Demonstration .. 127

5.1.2 Live Sharing .. 130

5.1.3 Live Matching ... 132

5.2 Case Study .. 134

5.2.1 Background ... 134

5.2.2 LiveMTBD in Action .. 137

5.3 Related Work.. 141

5.4 Conclusion .. 143

6 MODEL TRANSFORMATION BY DEMONSTRATION DEBUGGER:

 AN END-USER FACILITY TO DEBUG MODEL TRANSFORMATION

 EXECUTION ... 145

6.1 Model Transformation By Demonstration Debugger 146

6.1.1 Pattern Execution View .. 148

6.1.2 Pattern Matching View ... 149

6.1.3 Common Bugs and Tracking Solution .. 149

6.2 Case Study .. 151

6.2.1 Background ... 151

6.2.2 Debugging in Action ... 153

6.3 Related Work.. 162

6.4 Conclusion ... 164

xii

7 FUTURE WORK ... 165

7.1 Enhance MTBD Capacity .. 165

7.1.1 Supporting Additonal Types of Specification in Demonstration 166

7.1.2 Enable Model Transformation Inference based on Multiple

 Demonstrations ... 168

7.2 Improve Live-MTBD Tool Support ... 169

7.2.1 Enhance the Correctness and User Experience of Live Demonstration ... 169

7.2.2 Add Management Features for Live Sharing .. 170

7.2.3 Improve the Performance of Live Matching ... 171

7.3 MTBD Debugger.. 171

7.4 Apply MTBD to Exogenous Model Transformation 172

8 CONCLUSION .. 174

8.1 The MTBD Model Transformation Approach ... 175

8.2 The Live-MTBD Toolkit .. 176

8.3 The MTBD Debugger .. 177

LIST OF REFERENCES .. 179

xiii

LIST OF FIGURES

Figure Page

1.1 Flexibility versus level of abstraction of programming technologies 3

1.2 Excerpts of models specified using TTSML ... 5

1.3 Overview of DSM methodology .. 6

1.4 Model evolution in DSM ... 9

1.5 Two types of model transformation ï exogenous and endogenous 10

1.6 Research overview ... 18

2.1 Four layers modeling architecture and tool support .. 30

2.2 An excerpt of an ATL transformation rule .. 37

2.3 An excerpt of an ECL transformation rule .. 38

2.4 An excerpt of a GReAT transformation rule ... 40

3.1 High-level overview of MTBD process ... 47

3.2 An ongoing demonstration and the Operation Recording view............................. 49

3.3 The attribute refactoring editor .. 50

3.4 Refine structural precondition by confirming containment 55

3.5 Precondition specification dialog ... 57

3.6 Generic operations identification dialog .. 58

3.7 Execution controller dialog .. 59

4.1 Model refactoring for state diagram .. 76

4.2 UML refactoring - Extract Superclass ... 78

4.3 An SRN model before and after scaling .. 84

xiv

4.4 The process of scaling a SRN model from two events to three events 86

4.5 QoSAML model... 93

4.6 Two state transition protocols to adapt to environment ... 93

4.7 A QoSAML model after applying the Priority Exhaustive protocol 94

4.8 Demonstration of adding a transition and setting up the attributes for the new

 transition .. 95

4.9 The initial generalized transformation pattern ... 97

4.10 The final generated transformation pattern after user refinement 97

4.11 Two options to control application instances... 99

4.12 Pet Store Web Tier 1 node ... 100

4.13 Using absolute coordinates in the demonstration to place the element in the

 same location in every model evolution scenario .. 106

4.14 Using coordinates relative to the boundary of the existing model in the

 demonstration to place the element in the location relative to the existing

 model in every model evolution scenario .. 108

4.15 Using coordinate relative to the other model elements in the demonstration to

 place the element in the location relative to the same model elements in every

 model evolution scenario ... 110

4.16 Different layout configurations of SRN models .. 112

4.17 The layout demonstration in action for the first motivating example 114

5.1 Different user editing scenarios ... 128

5.2 The overview of Live-MTBD toolkit .. 129

5.3 The implementation of the centralized pattern repository 130

5.4 EmFuncML models before (top) and after (bottom) applying Buffering

 function .. 135

5.5 Live demonstration enables demonstration by checking the editing history 138

5.6 Final transformation pattern for CreateADC ... 139

5.7 Pattern execution controller to show all the patterns from a centralized

 repository ... 140

5.8 Live matching suggests applicable transformations in the current selection 141

6.1 The overview of MTBD Debugger .. 147

xv

6.3 The excerpt of a MazeGame model before and after replacing the monster 153

6.4 Debugging the transformation pattern of Example 1 ... 155

6.5 Debugging the transformation pattern of Example 2 ... 156

6.6 The excerpt of a MazeGame model before and after removing all Gold 157

6.7 Debugging the transformation pattern of Example 3 ... 158

6.8 Debugging the transformation pattern of Example 4 ... 159

6.9 The excerpt of a MazeGame model before and after doubling the new weapon 160

6.10 Debugging the transformation pattern of Example 5 ... 161

xvi

LIST OF LISTINGS

Listing Page

4.1 Operations for demonstrating Extract Superclass .. 80

4.2 Operations for demonstrating Sub-task t1 of model scalability example 85

4.3 Operations for demonstrating Sub-task t2 of model scalability example 87

4.4 Operations for demonstrating Sub-task t3 of model scalability example 88

4.5 Operations for demonstrating weaving protocol aspects 95

4.6 Refinement operations performed in the demonstration of weaving aspects 96

4.7 Operations for demonstrating model management example 102

4.8 Layout configuration operations using absolute coordinates............................... 106

4.9 Layout configuration operations using relative coordinates to model boundary . 107

4.10 Layout configuration operations using relative coordinates to model

 element(s) ... 109

4.11 Operations to configure layout demonstration for part one of the motivating

 example .. 115

4.12 Operations to configure layout demonstration for part two of the motivating

 example .. 115

4.13 Operations to configure layout demonstration for part three of the motivating

 example .. 116

4.14 Excerpt of the ECL code to weave aspects to QoSAML models 122

4.15 An excerpt of a transformation rule written in ECL to scale EQAL models

 while controlling the number of execution times .. 123

6.1 Operations for demonstrating replacing a Monster ... 154

6.2 Operations for demonstrating removing all pieces of Gold 157

6.3 Operations for demonstrating replacing a Monster and doubling the strength 161

xvii

LIST OF TABLES

Table Page

3.1 The types of operations and the related context information recorded 52

4.1 Attributes of PetStore Web Tier Instance 1 (Overloaded Node) 101

4.2 Comparison of accomplishing model transformation tasks using three

 approaches.. 119

xviii

LIST OF ABBREVIATIONS

ADC Analog-to-Digital Converter

AOM Aspect-Oriented Modeling

AOP Aspect-Oriented Programming

API Application Programming Interface

ATL Atlas Transformation Language

C2M2L Cloud Computing Management Modeling Language

CASE Computer-Aided Software Engineering

CDL Contract Description Language

COM Component Object Model

CORBA Common Object Request Broker Architecture

CRUD Create/Read/Update/Delete

C-SAW Constraint-Specification Weaver

CWM Common Warehouse Metamodel

DRE Distributed Real-time and Embedded

DSM Domain-Specific Modeling

DSL Domain-Specific Language

DSML Domain-Specific Modeling Language

ECU Electronic Control Unit

ECL Embedded Constraint Language

xix

EMF Eclipse Modeling Framework

EmFuncML Embedded Function Modeling Language

EMP Eclipse Modeling Project

EQAL Event Quality of Service Aspect Language

ESML Embedded Systems Modeling Language

EUP End-User Programming

FSM Finite State Machine

GEMS Generic Eclipse Modeling System

GEF Graphical Editing Framework

GME Generic Modeling Environment

GMF Graphical Modeling Framework

GPL General-purpose Programming Language

GREAT Graph Rewrite And Transformation

GUI Graphical User Interface

HTML Hypertext Markup Language

J2EE Java Platform Enterprise Edition

JSF Java Server Faces

KM3 Kernel Meta-Meta Model

LHS Left-Hand Side

Live-MTBD Live-Model Transformation By Demonstration

M2T Model-to-Text

MDA Model-Driven Architecture

MDE Model-Driven Engineering

xx

MOF Meta-Object Facility

MTBD Model Transformation By Demonstration

MTBE Model Transformation By Example

MTL Model Transformation Language

MT-Scribe Model Transformation-Scribe

NAC Negative Application Condition

OCL Object Constraint Language

OMG Object Management Group

OSM Operation Specification Model

PBE Programming By Example

PIM Platform-Independent Model

QoS Quality of Service

QoSAML QoS Adpation Modeling Language

QVT Query View Transformations

RHS Right-Hand Side

RMI Remote Method Invocation

SLOC Source Lines Of Code

SRN Stochastic Reward Net

SRNML Stochastic Reward Net Modeling Language

TGG Triple Graphical Grammar

TN Transformation Net

TTSML Time-Triggered System Modeling Language

UAV Unmanned Aerial Vehicle

xxi

UML Unified Modeling Language

VE Visual Editor

VPL Visual Programming Language

WCET Worst Case Execution Time

WYSIWYG What You See Is What You Get

XML Extensible Markup Language

XMI XML Metadata Interchange

XSLT Extensible Stylesheet Language

1

CHAPTER 1

INTRODUCTION

Software development is an inherently challenging process, resulting from both

essential and accidental complexities [Brooks, 1987]. The essential complexities of

software are reflected in the difficulty of understanding the problem, designing and

testing the conceptual construct, as well as the characteristics of software, such as

invisibility, changeability and conformity. The accidental complexities represent the

challenges on the concrete software implementation and testing processes. In the past

several decades, much effort has been made to help software developers and engineers

address these complexities, in order to increase the productivity, simplicity and reliability

of software development.

Among all the effort, one of the most frequently applied and effective approaches

is to raise the level of programming language abstraction by capturing only the details

relevant to the current computing perspective, but hiding the underlying implementation

information [Lenz and Wienands, 2006]. As shown in Figure 1.1, from machine code to

assembly language, high-level and object-oriented programming languages, although

programmers generally lose fine-grained control of the underlying machine as abstraction

increases (e.g., direct memory address control is not feasible using Java while it can be

implemented using C effectively), they are enabled to better focus on the specific

2

problems they want to solve, while being isolated from irrelevant low-level

implementation details [Greenfield and Short, 2004].

With the complexity and scale of software systems increasing dramatically [Lenz

and Wienands, 2006], a new and higher level of abstraction is needed to continue

alleviating the difficulties encountered in the complex software development process. A

notable and promising approach is Model-Driven Engineering (MDE) [Schmidt, 2006],

which decouples the description of the essential characteristics of a problem from the

details of a specific solution space (e.g., middleware, programming languages).

MDE promotes the general idea of using models at different levels of abstraction

to define systems, and automate the transformation process between different levels of

models and the final implementation code. As a concrete and mainstream MDE

methodology, Domain-Specific Modeling (DSM) [Gray et al., 2007] uses a Domain-

Specific Modeling Language (DSML) [Lédeczi et al., 2001] to declaratively define a

software system using specific domain concepts, and automatically generate the desired

software artifacts (e.g., programming code, simulation script, XML deployment

description) by model transformation engines and code generators. Using DSM, software

developers and engineers, or even end-users (e.g., domain experts), are enabled to

program in terms of their unique intentions and understanding of a specific problem

domain, rather than focusing on solutions that are intertwined with the underlying

computing environment [Schmidt, 2006].

3

Jav
a, C

#

A
ssem

b
ly

 L
an

g
u
ag

e

C

M
ach

in
e C

o
d
e

Abstraction

M
o
d
el-D

riv
en

 E
n
g
in

eerin
g

F
lex

ib
ility

Figure 1.1 ï Flexibility versus level of abstraction of programming technologies

1.1 Domain-Specific Modeling (DSM)

DSM reaches a new level of abstraction by focusing on the specific problem

domains using DSMLs so that the design space is narrowed down and the associated

complexities are reduced. A problem domain can be any of the areas that require software

solutions, such as automobile, telecommunication, health care, industry, robotics, energy

or finance. It can also vertically include the different aspects of system development,

such as user interface, functional properties, non-functional properties, user work flow, or

data persistency. Additionally, any of these domains can be divided into smaller problems

or tasks, which can be considered as a separate sub-domain.

A DSML is designed for a single problem domain, which only contains the

concepts related with the specific problems to solve, rather than the underlying

implementation details. The metamodel [Atkinson and Kuhne, 2003] is used to specify

the entities, associations and constraints for the DSML, having a similar role as a

4

grammar to specify the syntax for a programming language. The metamodel can be used

to generate a modeling environment, in which users are enabled to build concrete models

to represent the system for the application domain. The models built by users must

conform to the definition of the metamodel. Figure 1.2 shows a DSML called TTSML

(Time-Triggered System Modeling Language) [Sun et al., 2011-c] used to specify the

data communication system used inside electric automobiles. It provides the basic

modeling elements such as ECU (Electronic Control Unit), Channel, Controller,

Functional Unit, Timing Requirement. Users of TTSML can specify the desired system

by constructing the model using these concepts directly. For example, as shown in Figure

1.2, three ECUs (i.e., SimulatorPC, DrvierAssistance, DriverInferfaceAndSensor) are

connected to both Channel A and Channel B; different function units (e.g.,

BrakeAssistant, ReadGasPedalPosition) are running on these ECUs and communicate

with each other based on different timing requirements (e.g., Safety Critical,

LowSpeedSensor). The low-level implementation details about how to configure the

ECUs with the APIs provided by the manufacturer, how to implement the correct data

transmission protocol, or how to make the correct function calls to ensure the timing

requirements are hidden to users. In other words, users only need to think about the

concrete problem space ï what system functionalities are needed, what system

performance properties are desired, rather than the solution space (i.e., how to implement

the actual system).

5

Figure 1.2 ï Excerpts of models specified using TTSML

The solution space is handled by code generators associated with the DSML. A

code generator [Kelly and Tolvanen, 2008] takes models built by users as input, and

produces low-level implementation artifacts as output. Multiple code generators or model

interpreters might exist for a single DSML, which can be used to generate the code for

6

different platforms or software artifacts. Taking TTSML as an example, two code

generators are available to generate the implementation code for two hardware platforms:

Freescale S12 Microcontroller [Freescale, 2011] and Eberspächer FlexRayCard

[Eberspächer, 2011]; another generator is used to generate the XML configuration for the

protocol implementation. In some other DSM applications, code generators have also

been applied to produce HTML files, property files, graphical charts and tables, or even

software documents [Kelly and Tolvanen, 2008], as shown in Figure 1.3.

Figure 1.3 ï Overview of DSM methodology

The main benefit of DSM comes from its ability to describe the properties of a

system at a high-level of abstraction and in a platform-independent notation, and protect

key intellectual assets from technology obsolescence, resulting in less effort and fewer

low-level details to specify a given system. Compared with the traditional usage of

software models and code generation techniques, DSM distinguishes itself by pursuing

7

automated code generation without further modifications, so that users are completely

isolated from the low-level implementation details. Otherwise, DSM will not raise the

level of abstraction for domain experts. UML [UML, 2011] models, for instance, are

often used either as a design blueprint for software developers to write code, or as a basis

to generate the initial code framework (e.g., class definitions and method signatures) with

the inner implementation part to be filled manually.

Furthermore, by raising the level of abstraction, DSM helps to improve end-user

programming [Burnett et al., 2004], and therefore reduces the chance of software failures

due to miscommunications between software engineers and end-users. In the traditional

software development process, a knowledge and expertise gap between software

developers and different domain experts exists, the negative consequence being that

developers who are skilled at programming may not fully and correctly understand the

userôs requirements, while the users who know their problem domain very well may have

no idea about how to build the desired software system. However, in DSM, because the

system can be represented by high-level and domain-specific models rather than general-

purpose programming languages, end-users who have no knowledge or experience in

programming are enabled to participate in the software system development process,

making more accurate and valuable decisions in software design, implementation, and

maintenance [Kelly and Tolvanen, 2008].

1.2 Model Evolution in DSM

Software evolution is an inevitable and essential activity in software development.

As noted by Lehman, ñSoftware that is being used must be continually adapted or it

8

becomes progressively less satisfactoryò [Lehman, 1978]. In the context of DSM, models

replace source code as the first-class entities in the software development process and

represent the initial point for the generation of low-level artifacts. Therefore, if a system

needs to evolve and adapt to new requirements, instead of changing source code directly,

the models representing the system should be evolved first according to the need, which

then leads to a re-generation of the low-level code or other artifacts [Lin et al., 2007].

Figure 1.4 shows a model evolution scenario. A metamodel has been defined for a

problem domain, and Model 0 is the initial model that conforms to the metamodel, which

generates the first version of the source code (Code0) for the system. As the new

requirements come from the problem domain, Model 0 has to be changed and evolved to

new versions (Model 1, Model 2, é Model n,) to adapt the new requirements, so that the

corresponding changes can be reflected in Code1, Code2, é Coden by triggering the

code generation process from each new model. This dissertation research focuses on

addressing the problems and challenges associated with implementing the model

evolution process, while involving end-user participation.

A number of scenarios can trigger the evolution of models, such as adding /

removing / updating a certain functionality for an existing system [Greenfield and Short,

2004], weaving a new aspect (e.g., logging, constraint checking) into the base system

[Elrad et al., 2002; Gray et al., 2006], scaling the system from a base state to a complex

state [Lin et al., 2008], and optimizing the internal structure (e.g., refactoring) [France et

al., 2003]. Clearly, model evolution is as essential as traditional code evolution in a

software development process. In fact, some other model evolution issues also exist in

the context of DSM; for instance, evolving a model to a different domain [Jouault and

9

Kurtev, 2005], metamodel evolution [Sprinkle, 2003; Narayanan et al., 2009], model

interpreter evolution [Zhang et al., 2004], and model evolution by changing the

corresponding code (i.e., reverse engineering) [Rugaber and Stirewalt, 2004]. However,

the research described in this dissertation particularly focuses on model evolution from

one state to another and from one version to another version within the same metamodel.

The typical evolution activities in this category are model refactoring [Zhang et al.,

2005], model scalability [Lin et al., 2008], aspect-oriented modeling [Zhang et al., 2007],

model management [Deridder et al., 2008], and model layout configuration [Sun et al.,

2011-b].

MetaModel

Model0 Model1 Modeln

Conform To

Code0 Code1 Coden

Generate Generate Generate

æM1 æM2 æMn

æC1 æC2 æCn

é é

é é

Figure 1.4 ï Model evolution in DSM

1.3 Model Transformation and Model Transformation Languages (MTLs)

Model transformation [Sendall and Kozaczynski, 2003] is a core technology in

DSM. It receives a source model that conforms to a given source metamodel as input, and

produces as output another model conforming to a given target metamodel. When the

10

source and target metamodels are different (i.e., between two different domains), the

transformation is called exogenous, as shown in Figure 1.5a (e.g., a UML class diagram

model is transformed to a relational data model [Shah and Slaughter, 2003]). If the source

and target metamodels are identical, the transformation is called endogenous, as shown in

Figure 1.5b (e.g., a UML class diagram model is transformed from one state to another

state through a ñPull Up Methodò refactoring process [Fowler, 1999]).

Because the essence of model transformation is to transform and change a model,

there is a direct connection between model transformation and model evolution. Actually,

model evolution tasks as discussed in this dissertation can be regarded as a model

transformation process, or more precisely, an endogenous model transformation process,

because both the source model (e.g., Model 0 in Figure 1.4) and the target model (e.g.,

Model 1 in Figure 1.4) in a model evolution conform to the same metamodel.

MetaModel 1 MetaModel 2

Model Instance 2Model Instance 1

Conforms To Conforms To

Transform To

Transform To

MetaModel 1

Model Instance 1 Model Instance 2

Conforms To Conforms To

Transform To

a. Exogenous Model Transformation b. Endogenous Model Transformation

Figure 1.5 ï Two types of model transformation ï exogenous and endogenous

The benefit of connecting model evolution with model transformation is that a

number of model transformation tools and technologies can be utilized to support model

evolution tasks. The traditional approach to realize a model transformation is to use an

executable model transformation language. A Model Transformation Language (MTL)

11

[Sendall and Kozaczynski, 2003] is usually a Domain-Specific Language (DSL) [Mernik

et al., 2005; Sun et al., 2008] particularly used for model transformation tasks. A set of

transformation rules can be defined in a MTL to specify how a source model should be

transformed into a target model. More specifically, the rules define how the source model

should be mapped to the target model, and the scope where the rules can be applied.

These rules are often defined at the metamodel level rather than to a specific model

instance, so that they are capable of carrying out the desired transformation process

automatically on any model that conforms to the same metamodel.

MTLs can be either graphical or textual, and most of them are at a higher level of

abstraction than General-purpose Programming Languages (GPLs), such as Java or C++.

MTLs support either an imperative, declarative, or hybrid approach to specify a

transformation task. Some popular MTLs in this category are QVT [QVT, 2010], ATL

[Jouault et al., 2008], and ECL [Gray, 2002]. Using MTLs, automated model evolution

processes can be implemented by specifying and executing the model transformation

rules on how to evolve a model from one state to another state, or from one configuration

to another.

1.4 Key Challenges in Supporting Model Evolution

As discussed in the previous sections, model evolution is an essential and

inevitable activity in DSM. However, the tools to support model evolution have not been

well developed. In current DSM practice, model evolution tasks are mainly implemented

and automated using MTLs. Although MTLs are powerful and expressive to handle

various kinds of model evolution tasks, it is not always the perfect solution due to some

12

challenges related to end-user friendliness, the mechanism of exchanging and reusing

model evolution knowledge, and debugging support. The following subsections outline

the challenges that this dissertation focuses on with respect to current model evolution

practice.

1.4.1 The Difficulty of Learning and Using MTLs for End-Users

Although a number of powerful MTLs have been developed to support various

types of model evolution tasks in different modeling tools and platforms, learning and

using these languages is by no means an easy task, particularly for general end-users

including domain experts and non-programmers who are not familiar with MTLs or

GPLs. The emphasis on enabling this group of users to implement model evolution tasks

results from the fact that end-users can participate in the software development process

using DSM, and in many cases, they know the exact model evolution tasks in need.

However, this group of users might be prevented from contributing to these tasks from

which they have much domain experience due to the difficulty of learning and using

MTLs as described throughout this subsection.

The steep learning curve for MTL adoption. Most MTLs are high-level languages

and specific to model transformation tasks, but a steep learning curve is still inevitable

due to the complexity of learning the syntax, semantics, special features or concepts,

associated libraries, and the editing or execution environment of a MTL. This challenge

is particularly true for those who have never had MTL or programming language training.

Moreover, in many cases, in order to correctly use a MTL, users are required to

learn not only its basic usage of how to transform models, but also some additional

13

knowledge that is not directly related with model transformations. For example, ECL

integrates some general programming concepts, such as variable declarations (e.g.,

declare node : object;), and branch statements (e.g., if (idx<=max)

then); ATL applies Object Constraint Language (OCL) [OCL, 2010] expressions to

give specific constraints on the precondition of model transformations. Learning these

may not be very challenging to a computer scientist, a software developer or a model

engineer, but it is definitely a hindering barrier to general end-users like domain experts

and non-programmers.

In addition, the diversity of MTLs introduces a number of different model

transformation design approaches, bringing about a challenge toward achieving a uniform

MTL learning process. For instance, with declarative MTLs (e.g., ATL), users can focus

on the mapping relationships between the source and target models, ignoring the details

underlying those mappings; but many powerful MTLs (e.g., ECL) also support

imperative mechanisms, which means that users need to think about how a model should

be changed and transformed to the target desired state; some other MTLs (e.g., EMF

Tiger [Biermann et al., 2006; EMF Tiger, 2010], GReAT [Agrawal, 03]) are based on

graph theory, such as graph matching and graph rewriting, and users are expected to think

of model transformation processes in terms of graphs. Thus, even being familiar with a

certain MTL cannot guarantee a gradual adoption curve for learning a second MTL.

The difficulty of understanding metamodels. A metamodel, as explained in

Section 1.1, serves as the abstract syntax of a DSML, and precisely specifies how the

models should be constructed in a particular domain. Using most MTLs, the model

transformation rules are often defined at the metamodel level rather than the concrete

14

model instance level. However, developing a deep and clear understanding of a

metamodel is challenging, especially for large and complex domains.

The need to define transformation rules at the metamodel level results from the

gap existing between the way a user recognizes models and the way a computer does

[Wimmer et al., 2007]. Typically, users reason on models that represent real-world

examples shown by concrete syntax and mappings between semantically corresponding

model elements according to the specific transformation scenarios. However, this way of

thinking is not appropriate for precisely defining model transformations with currently

available MTLs, because instead of writing transformation rules working for one specific

model example, users expect the rules to be generic so that they can be reused on other

models for the same transformation purpose. Currently, the most effective way to realize

this goal is to define the generic rules in terms of metamodel definitions for the models to

be transformed.

Understanding metamodels becomes even more challenging when some concepts

in a particular domain are hidden in the metamodel definition and difficult to unveil

[Kappel, 2006]. This is because not all concepts in a domain can be represented as first-

class constructs in the metamodel. Some domain concepts may be hidden in attributes or

association ends in the metamodels. The consequence is that users are required to

correctly uncover these hidden concepts and use them in the transformation rules that

they write.

Thus, if model transformations can be specified and implemented without

explicitly understanding the full details of a metamodel, users could avoid the extra

burden of understanding the complex and abstract metamodel definitions.

15

1.4.2 Limited Tool Support to Exchange and Reuse Model Evolution Knowledge

Similar to traditional software development, specifying a complex system using

DSM usually requires collaboration [Redmiles et al., 2004]. A DSML may be used to

describe different aspects of a system (e.g., a DSML designed to model embedded

systems [Sun et al., 2011-a] enables users to specify the system from the perspectives of

both the hardware configuration and the software functional logic), and users might come

from different areas with different expertise. Even for the same perspective and the same

area, users may have different levels of experience and knowledge (e.g., a senior engineer

is more likely to produce higher quality models or provide better modeling solutions in

most cases than a junior engineer). When it comes to model evolution tasks in a diverse

and collaborative modeling environment, it is essential to enable different users to share,

exchange their knowledge and experience, as well as enable the reuse of the knowledge

(e.g., a software engineer may need to reuse the hardware engineerôs knowledge about

evolving a part of the hardware configuration; a junior engineer may need the senior

engineerôs experience to validate models and fix errors). Unfortunately, tool support in

this area is very limited in the current practice.

 When using MTLs to implement model evolution tasks, each set of the executable

model transformation rules can be regarded as the persistent knowledge for a certain

evolution task. Executing the rules on different models actually realizes knowledge reuse.

However, for most MTL tools, there is no mechanism to load and execute the

transformation rules specified by different users at editing time. For instance, ATL

provides an online collection of the commonly used model transformation scenarios

16

(ATL transformation zoo [ATL Transformation Zoo, 2011]), where users can download

the rules and execute them in their own environments. Obviously, this is by no means the

desired approach to exchange and reuse knowledge, because a large number of model

evolution tasks can be created during the editing time, which at the same time, are needed

to be shared and reused by different users. Using a static online collection cannot satisfy

the need to acquire the correct evolution knowledge promptly.

Moreover, the presence of reusable model evolution knowledge does not

guarantee that it can be reused correctly by users who need them. On one hand, users

might not know that certain model evolution tasks they need to accomplish have already

been created and shared, so that they might end up manually implementing the task again.

On the other hand, even if users know the presence of certain model evolution knowledge

that can be potentially reused, how to determine whether it is the right knowledge to

reuse or whether it is applicable to their own scenarios is another challenging problem. In

the current practice, users may decide to reuse an available model evolution task either by

reading and understanding the textual description about the evolution rules, or by directly

executing and comparing the results. The negative consequence is that users are very

likely to reuse the wrong knowledge due to the misunderstanding of an inaccurate textual

description, destroy the current model or import accidental errors by executing the wrong

evolution rules. Thus, enabling users to identify the correct and available knowledge to

reuse in a timely manner plays an important role in supporting model evolution

knowledge exchange and reuse.

17

1.4.3 The Lack of an End-User Debugging Facility for MTLs

Because model transformation specifications are written by humans and

susceptible to errors, the need for testing and debugging mechanisms for MTLs are as

important as the similar need with general-purpose programming languages. Although

testing offers some confidence about whether the model is in the desired state after being

transformed, debugging helps users to examine the transformation process and track

potential errors.

Recently, some algorithms and tools have been developed to support model

transformation testing by model comparison, which have demonstrated initial results in

automating the testing process [Lin et al., 2005; Lin et al., 2007]. However, model

transformation debugging is still a weak area with limited results. Most modeling tools or

platforms only provide an editing and execution environment for a supported MTL

without enabling users to track and monitor the execution of transformation rules and the

result. When errors occur, the most common way to fix the error is to check the model

after a transformation and locate the erroneous model elements, attributes or connections,

and then go back to the corresponding transformation rules to check the potential errors.

This process will iterate until the model is transformed to the desired state. Because most

MTLs do not support common constructs available in GPLs, the debugging process

becomes more challenging if a debugger is not present in the modeling tool or execution

engine.

Without the assistance of a debugger, error recovery becomes tedious and error-

prone, particularly when the model being transformed is large and a lot of complex

transformation rules are involved in the model evolution task. Although some MTL tools

18

already have associated debuggers [Jouault et al., 2008; Balasubramanian et al., 2006-a],

the debuggers work by tracking the MTL rules or codes, which are at the same level of

abstraction as the MTL and therefore not appropriate for some categories of end-users.

1.5 Research Goals and Overview

To address the difficulty of supporting model evolution using the traditional

model transformation approaches that rely on MTLs, and enable a wider range of end-

users to participate in model evolution activities through implementing model evolution

tasks, exchanging and reusing model evolution knowledge, and debugging model

evolution execution process, the research in this dissertation provides a user-centric

model transformation approach to implement model evolution tasks with tools to share

and reuse evolution knowledge. Furthermore, this research considers the transformation

debugging issue to assist in determining the correctness and tracking of model

transformation errors. Figure 1.6 shows an integrated view of this research. The overview

of the research is described in the following sections.

Model Transformation By Demonstration (MTBD) (Chapter 3)

End-user Model Transformation Framework

Live-MTBD (Chapter 5)

Evolution Knowledge Exchange and Reuse Tool Support

MTBD Debugger (Chapter 6)

End-User MTBD Debugger

Apply MTBD to Model Evolution (Chapter 4)

Model

Refactoring

Model

Scalability

Aspect-Oriented

Modeling

Model

Management
Model Layout

Figure 1.6 ï Research overview

19

1.5.1 Model Transformation By Demonstration (MTBD) to Simplify Model

Transformation

To address the challenges of learning and using MTLs to support model evolution,

a new endogenous model transformation framework has been designed and implemented,

called Model Transformation By Demonstration (MTBD) [Sun et al., 2009-a], which

enables end-users to specify a model transformation by directly performing editing

operations on concrete examples (i.e., to give a demonstration), combined with user

refinement and automatic inference processes. After a user demonstration, a model

transformation pattern is generated as the persistent specification of a model

transformation task. MTBD also includes its own transformation pattern execution engine,

which executes the inferred transformation by pattern matching and automated operation

execution. This framework is different from the traditional MTLs in that no language is

involved in the process and the specification of the rules is realized at the model instance

level rather than the metamodel level, so that users can be isolated from the language

learning curve and the complex metamodel definitions. In other words, the level of

abstraction to implement model transformations is raised, so that the end-users (e.g.,

domain experts and non-programmers) are able to implement the desired model evolution

tasks through demonstration without being exposed to the low-level implementation

details.

1.5.2 Live-MTBD to Improve Model Evolution Knowledge Exchange and Reuse

The second contribution of this research includes ñLiveò feature extensions to

MTBD (Live-MTBD), which improves the user experience when demonstrating a

20

transformation, and more importantly, supports model evolution knowledge sharing,

exchange and reuse. The toolset Live-MTBD contains three components: 1) Live

Demonstration, provides a more general demonstration environment that allows users to

specify editing activities based on their editing history, with the purpose being to

encourage users to create more transformation patterns; 2) in order to improve the sharing

of editing activity knowledge among different users, Live Sharing ï a centralized model

transformation pattern repository has been built so that transformation patterns can be

reused across different editors; 3) a live model transformation matching engine ï Live

Matching has been developed to automatically match the saved transformation patterns at

modeling time, and provides editing suggestions and guidance to users during the editing

process. Live-MTBD features cooperate seamlessly with MTBD to offer an end-user

friendly, collaborative, and intelligent model evolution environment.

1.5.3 MTBD Debugger to Enable End-User Model Transformation Debugging

To support error tracking and execution monitoring, an MTBD debugger

associated with the MTBD execution engine has been developed. The debugging tool can

offer support for isolating the cause of a transformation error, by enabling users to trace

all the matched locations in the model in an execution of a transformation pattern, and

step through individual actions of the transformation to display the model data intuitively

within the host modeling environment. Users can determine the correctness of the

precondition of the inferred pattern from the matching locations, and the correctness of

the actions of the inferred pattern by watching each of the execution steps. In addition, to

improve end-user friendliness, the MTBD debugger hides the low-level execution

21

information or metamodel definitions and focuses only on information at the model

instance level.

1.5.4 Applications of the Research to Support Model Evolution in Practice

The primary purpose of this research is to support various model evolution tasks

using a new model transformation approach. Therefore, the power and functionality of

the approach should be decided and evaluated by focusing on how it can fulfill the

diverse needs of model evolution in practice. The MTBD approach should be applicable

to the core types of model evolution tasks, such as model refactoring, model scalability,

aspect-oriented modeling, model management, and model layout configuration. Thus, the

identification of the special requirements in each type of task and the investigation on

how to apply MTBD to these practical applications is another key contribution in this

research, and demonstrated by various case studies throughout this dissertation.

1.6 The Structure of the Thesis

This chapter has summarized a subset of the research on model evolution in the

context of DSM and the current challenges that exist to support model evolution

activities. Research goals that address these problems have been outlined. Chapter 2

describes background information related to the research of this dissertation.

Chapter 3 presents the MTBD model transformation approach, including the

description about the main steps and implementation details of the approach and the

formal specification of the MTBD functionality. Related work is discussed to highlight

the unique features and contributions of MTBD.

22

Case studies are presented in Chapter 4 to show how MTBD supports various

model evolution tasks. In addition, to demonstrate the benefits of this approach,

experimental evaluation is discussed, including modeling artifacts, evaluation metrics and

experimental results.

Chapter 5 details the live feature extensions of MTBD. The motivation of these

features is explained, followed by illustrating its usage through a practical case study.

Chapter 6 describes the debugger for MTBD. This chapter presents the basic

debugging features designed for MTBD, as well as how to apply these features to track

potential errors. Case studies are also shown to further illustrate the idea.

Chapter 7 outlines future work of the research described in the previous chapters.

Chapter 8 concludes the work of this dissertation and summarizes its contributions.

23

CHAPTER 2

BACKGROUND

This chapter provides background information relevant to the research of this

dissertation. First, Model-Driven Engineering (MDE), representing the broad scope of

this research, will be introduced, with a further discussion on Domain-Specific Modeling

and model evolution. This chapter will also outline the key concepts, techniques and tools

in MDE that have been applied in practice. Background information on model

transformation and Model Transformation Languages (MTLs) will be given in the third

section, which includes the categories of MTLs and a subset of popular languages being

used. Finally, because the main contribution of this research focuses on providing an

approach centered on end-user model evolution, relevant information about end-user

programming will be discussed briefly.

2.1 Model-Driven Engineering (MDE)

The emergence of MDE was triggered by a consistent effort toward raising the

level of abstraction in software development. Back in the 1980s when programming

languages (e.g., C, Fortran) lacked many of the now common modularity concepts (e.g.,

objects) to develop increasingly complex software systems, computer-aided software

engineering (CASE) [Fuggetta, 1993] was promoted as an approach to assist users in

expressing their design decisions above the underlying solution space. CASE applied

24

general-purpose graphical or textual representations to form programs that aimed at

reducing the errors incurred using traditional programming languages (e.g., memory

leaks and corruption when using C) as well as the development effort. However, CASE

finally failed to exert a significant influence on software development, because on one

hand, the general-purpose graphical representation used in CASE did not support many

application domains effectively; on the other hand, CASE was not generally successful at

handling the needs of complex systems development (e.g., concurrent computing is not

supported by CASE). In addition, due to a lack of common middleware platforms,

generating desired implementation code and integrating it with different platforms is

challenging, which undermined the capability of CASE to support multiple platforms.

Since the 1990s, object-oriented programming languages (e.g., Java, C++) have

provided more expressive language constructs, and have assisted developers in

maintaining and reusing various software systems [Booch, 1997]. Despite a number of

advantages, these languages have reached a complexity ceiling due to the fast growth of

dependent platforms and middleware complexity, and the inability of expressing domain

concepts effectively [Schmidt, 2006].

MDE has emerged as a promising approach to address platform complexity and

the need to express domain concepts. Using DSMLs that are designed specifically for

application domains, developers can work at a higher-level of abstraction than object-

oriented programming languages. In DSM, transformation engines and generators handle

the mapping of high-level models to the underlying implementation details, so that

developers are fully isolated from the accidental complexities of the solution space. In the

past several years, MDE has attracted considerable attention from both academia and

25

industry. A number of concepts (e.g., metamodel [Atkinson and Kuhne, 2003], model

transformation [Sendall and Kozaczynski, 2003]), standards (e.g., MDA [MDA, 2011],

QVT [QVT, 2011]), tools (e.g., MetaCase+ [MetaCase+, 2011], GMF [GMF, 2011]), and

related technologies (e.g., model version control [Lin et al., 2004]) have been created,

which have enabled many successful case studies and applications in various areas, such

as telephony, information management, bug tracking, stream data processing [Kurtev et

al., 2006].

2.1.1 Model-Driven Architecture (MDA)

 To better support MDE, the Object Management Group (OMG) launched Model-

Driven Architecture (MDA) [MDA, 2011], providing a set of guidelines and

specifications to encourage the use of models in software system design and

implementation.

 The MDA approach specifies a software system using a Platform-Independent

Model (PIM), which can then be mapped and transformed to Platform-Specific Models

(PSMs). The PIM is based on domain-specific languages for the application domain, but

the PSMs can be specified using either a domain-specific or general-purpose language.

The OMG provides only the standards and specifications for the basic approach instead

of detailed implementations. Some of the standards related with MDA models are listed

in the following paragraphs:

Unified Modeling Language (UML). UML is used to describe various types of

models in MDA. Although UML was not originally designed for MDA, being the most

widely used modeling language, it has become a standard general-purpose modeling

26

language. UML contains a number of diagrams, constructs and views that can be used to

represent various perspectives of a system. Thus, UML serves as a standard formalism in

MDA for a wide range of application domains.

Meta-Object Facility (MOF). MOF [MOF, 2011] is a meta-metamodel that can be

applied to define different metamodels. The definition of UML is based on MOF.

Therefore, MOF makes it possible to extend UML or create any other potential languages

needed in the future.

XML Metadata Interchange (XMI). XMI [XMI, 2011] defines a standard metadata

interchange format for XML documents. This enables models to be shared and

exchanged among different tools and platforms. XMI has already been applied as the

interchange format for UML models, as well as a number of models built in other tools

such as GME [Lédeczi et al., 2001] and EMF [Budinsky et al., 2004].

Common Warehouse Metamodel (CWM). CWM [CWM, 2011] provides

interfaces that can be used to enable interchange of warehouse and business intelligence

metadata between warehouse tools, warehouse platforms and warehouse metadata

repositories. Mappings between two types of metamodels can be defined using CWM,

making it possible to build the model transformations in the context of MOF.

In summary, UML, MOF, XMI, CWM and some other standards aim at handling

different aspects of the MDA ï the creation of models, the extension and definition of

models, model interchange, and model transformations.

27

2.1.2 Domain-Specific Modeling Development Process

 While MDA provides a set of standard guidelines to support the vision of MDE,

DSM is a concrete MDE methodology that has been applied in a number of domains

(e.g., automotive, robotics, mobile computing) successfully. From the example given in

Section 1.1, it can be seen that DSM is often based on a graphical DSML designed for a

specific problem domain, combined with code generators to produce implementation

software artifacts.

 In practice, a complete DSM development process follows an iterative process.

Model engineers and domain experts need to work together to target the problem domain

and understand the necessary domain concepts that will be included in the future DSML.

Then, model engineers need to define the DSML precisely by defining the metamodel as

well as the needed constraints for the domain. With the complete metamodel, the DSML

environment can be generated automatically. In addition, code generators are built by

model engineers and software engineers together to map the metamodel concepts to low-

level implementation code. With the complete DSML environment and code generators,

users can work in the editors to build various model instances when needed and trigger

the code generation any time.

 The time required to implement a DSM solution varies according to the

complexity of each domain. It can take from a few weeks to months [Kelly and Tolvanen,

2008]. No matter what the development period is, the benefits of using DSM can often be

seen immediately after users are enabled to create models and generate code [Kelly and

Tolvanen, 2008].

28

2.1.3 Model Evolution in DSM

 Model evolution issues in DSM are mainly triggered by two scenarios. First, the

metamodel for a certain domain is not unchangeable, because the actual domain in

practice evolves and users tend to request new concepts and elements to enhance the

expressiveness and power of the DSML. In fact, even model engineers themselves

occasionally create new ideas to refine or extend the DSML, when their understanding of

a domain improves or when they receive feedback from users. Therefore, evolution of

metamodels is inevitable.

 When it comes to the model instance level, evolution occurs more frequently. Just

like programmers need to change their programs in any phase of software development

for different purposes, models are often evolved by users as well. Actually, one of the

main advantages of using DSM is reflected in this evolution scenario. Because

traditionally, programmers need to understand the source code and make necessary

changes according to a new requirement. In the context of DSM, the same change can be

realized by modifying models at a high level of abstraction with less effort and then re-

generating the code into a new version automatically.

 The metamodel evolution problem has been investigated widely [Sprinkle, 2003],

but the importance of evolution at the model instance level should not be ignored,

because it directly relates to the main benefit of using DSM, and it is targeted for end-

users and their usage experience. This dissertation focuses on supporting the evolution

problems at the model instance level.

29

2.2 Metamodeling and Tools

 In the previous sections, most of the discussion on MDE and DSM focused on a

high level description and background introduction. This section will first present the

basic four-layer modeling architecture used in the MDE community, serving as a formal

summary of MDE, followed by an introduction to tools that support the MDE and DSM

ideas.

2.2.1 Four-Layer Modeling Architecture

 The classical architecture of MDE has been defined using four different layers, as

shown in Figure 2.1. The topmost layer (i.e., M3 or Meta-metamodel layer) is a core

modeling language that conforms to itself, which can be applied to define other modeling

languages for different domains (i.e., to define other metamodels). It forms the

foundation for the whole MDE architecture. The common modeling languages at this

layer are MOF, Ecore, and KM3 [Jouault and Bézivin, 2006]. The second layer is the

metamodel layer (or M2). The models at this layer are defined using the modeling

language at M3 and therefore are instances of the meta-metamodel. They are defined to

precisely specify different application domains. Models at the M1 level will conform to

the M2 metamodels. The M1 models represent what users create and manipulate the

underlying real system. Each model is built based on a certain metamodel, conforming to

all the syntax and static semantics constraints. In many cases, a single system can be

specified by multiple models either under the same metamodel or different ones, for the

purpose of modeling different components and perspectives. Finally, the real-world

system is at the M0 layer, which is mapped and generated from models at M1. One

30

important criterion to evaluate the mappings between M1 and M0 is that for questions

about the real-world system at M0, it must be possible to retrieve the answers from

models at M1. This is called the substitution principle [Kurtev et al., 2006].

System

Metamodel

Model

Meta-metamodel

Metamodeling

Tool

Code

Generator

Modeling

Environment

M3

M2

M1

M0 Conforms to

Relationship between model layers and tools

Figure 2.1 ï Four layers modeling architecture and tool support

 The creation of the final real-world system follows a top-down approach, starting

from defining the models at higher layers, to deriving and generating artifacts in the

lower layer. To ease the whole workflow, metamodeling tools have been implemented to

support the specification of each layer and the transitions as shown in Figure 2.1.

Generally speaking, a metamodeling tool has its own M3 modeling language embedded,

and provides a metamodeling environment to enable users to create metamodels at the

M2 layer. The modeling environment (i.e., end-user modeling editors) at M1 can often be

automatically generated from the metamodel. The transition to the final M0 layer is

carried out by code generators for each metamodel or model translators embedded in the

modeling environment.

31

2.2.2 Metamodeling Tools

There are several key characteristics that most DSM tools possess, such as

generative capabilities (i.e., to automatically generate the model editor or generator from

the metamodel), change management (i.e., a runtime facility to support change

notifications in models), model serialization (i.e., used to make models persistent), and

plug-in capabilities (i.e., to provide an extension mechanism to enrich the functionality of

the tool). Examples of metamodeling tools are described in the remainder of this

subsection.

Generic Modeling Environment. The Generic Modeling Environment (GME)

[Lédeczi et al., 2001] is a metamodeling tool to define DSMLs for different domains. The

metamodeling language is based on the UML class diagram notation and OCL

constraints. The metamodels specifying the domain concepts are used to automatically

generate the target domain-specific environment. The generated domain-specific

environment is then used to build domain models that are stored in a model database or in

XML format.

GME has an extensible architecture that uses the Component Object Model

(COM) [COM, 2011] for integration. External components can be written in any

language that supports COM (e.g., C++, Visual Basic, C#). GME has many advanced

features. A built-in constraint manager enforces all domain constraints during model

building. GME supports multiple viewpoint modeling. It provides metamodel

composition for reusing and combining existing modeling languages and language

concepts [Karsai et al., 2004]. It also supports model libraries for reuse at the model

32

level. All GME modeling languages provide type inheritance. Model visualization is

customizable through decorator interfaces.

Graphical Modeling Framework. The Graphical Modeling Framework (GMF)

[Moore et al., 2004; GMF, 2011] is a metamodeling tool based on Eclipse [Eclipse,

2011], which is a part of the Eclipse Modeling Project (EMP) [EMP, 2011]. It includes

three key components to define a DSML: the domain model (i.e., the abstract syntax for

the domain defined by Ecore [Budinsky et al., 2004]), the graphical definition model (i.e.,

the concrete syntax for the domain, such as the figures, nodes, and links used to display

the models on the diagram), and the tooling definition model (i.e., to specify the palette,

creation tools, and actions for the graphical elements in the editor). These three models

can be integrated together and used to automatically generate a graphical modeling

environment for a particular domain.

Because GMF is part of the EMP, most of the other existing technologies based

on EMP can be applied to the models built in GMF. For instance, the M2M project

(model to model transformation) [M2M, 2011] and M2T project (model to text

transformation) [M2T, 2011] can assist the general model transformation or code

generation tasks.

Generic Eclipse Modeling System. The Generic Eclipse Modeling System

(GEMS) [GEMS, 2011; White et al., 2007-a] is an open source metamodeling tool in

Eclipse. The goal of GEMS is to bridge the gap between the communities experienced

with visual metamodeling tools, such as GME, and those built around the Eclipse

modeling technologies, such as the Eclipse Modeling Framework (EMF) [Budinsky et al.,

04] and GMF. Thus, domain experts that use GEMS can create an Eclipse-based

33

graphical modeling tool without knowing the core components of EMP such as EMF,

Graphical Editor Framework (GEF) [GEF, 2011] and GMF. In addition to automatically

generating the modeling tool, GEMS also integrates a constraint checking mechanism to

enable users to better reason about the models. The layout and appearance of models and

the modeling tool can be controlled and customized through stylesheets. Moreover,

GEMS provides a facility to capture the events occurring in the model editing process,

which is very useful for the work in this dissertation. Extensions can be made to GEMS

through the traditional Eclipse plug-in mechanism. The research in this dissertation will

be implemented and evaluated in GEMS.

2.3 Model Transformation and Model Transformation Languages

 Model transformation has been a core technology since the emergence of MDE

and DSM [Sendall and Kozaczynski, 2003]. Examples of model transformation include

code generation from models, model synchronization and mapping, model evolution, and

reverse engineering. Although the use of a model transformation language has been

introduced in Section 1.3 as the main approach to support model transformation

processes, other alternatives are also available to implement the same tasks.

 The first approach is to manipulate and access the internal structure of a model

instance directly using an API provided by a host modeling tool, and encode the

transformation procedures in a GPL. This approach is not feasible for end-users who do

not have programming experience, because

34

GPLs lack the high-level abstractions that are needed by end-users to specify

transformations. In addition, the power of a transformation is often restricted by the

supported API within the modeling tool.

Many modeling tools support importing and exporting model instances in the

form of XMI. It is also possible to use existing XML tools (e.g., XSLT [XSLT, 2011]) to

perform model transformations outside of a modeling tool using XMI as an intermediate

representation. Although XSLT can be used to transform models, it is tightly coupled to

XML, requiring experience to define the transformations using concepts at a lower level

of abstraction. In addition, transformations performed outside of a modeling tool exert a

potential risk that the models being transformed cannot be imported or exported correctly

with future versions of the tool.

By comparison, MTLs raise the level of abstraction by providing a set of language

constructs specific to the model transformation tasks, playing an increasingly significant

role in various model transformation activities.

2.3.1 Categories of Model Transformation Languages

Many MTLs have been invented with different features and characteristics [Mens

and Gorp, 2005; Czarnecki and Helsen, 2006]. They can be classified into different

categories. Understanding the categories is important for users to choose the most

appropriate MTLs for different scenarios. Some main categories will be discussed in the

following.

Exogenous versus endogenous. As introduced in Section 1.3, MTLs can be

classified into exogenous MTLs and endogenous MTLs based on the difference between

35

the source and target metamodels. Exogenous MTLs can be applied to handle tasks such

as model migration (i.e., changing models conforming to the source version of a

metamodel into models conforming to an evolved version of the metamodel) and model

mapping (i.e., relating and transforming models between two different domains).

Endogenous MTLs fit the problems of model refactoring (i.e., optimizing the internal

structure of a model) and scalability (i.e., enlarging or reducing the model from a base

state) very well. The key characteristic of exogenous MTLs is that the expressive

language constructs to define the mappings between two metamodels are always

available (e.g., from é to é), so that users can specify the relationships and associations

between two domains. For endogenous MTLs, the most important part of the language is

the ability to create/read/update/delete models (CRUD). Because endogenous model

transformation tasks focus on changing the source model from one state to another state,

or from one configuration to another, it is thus very essential to support various language

constructs to perform the transformation with complex computation and rich constraints.

Textual versus graphical. Textual MTLs have their own grammar and keywords,

and users can write the desired transformation rules in blocks or functions. A typical

graphical MTL usually defines a transformation rule as a LHS (left-hand side) graph

representing the source model and a RHS (right-hand side) graph representing the target

model. Then, the engine automatically matches the LHS graph in a model and changes it

into the desired RHS graph. Compared with textual MTLs, it is easier to define specific

model patterns using graphs, leading to a simplification of the transformation rules in

many cases.

36

Imperative versus declarative. The imperative style uses highly reusable granular

language constructs that are capable of outlining the details of each model transformation

step. For example, Aspect-Oriented Modeling (AOM) [Balasubramanian et al., 2006-b;

Gray et al., 2001] is an important model transformation scenario, which enhances the

modularity at the model level by allowing the separation of concerns (i.e., aspects) from

the models representing the base system. To weave an aspect to a base model, a typical

imperative MTL enables users to specify precisely where to locate the correct part of the

base model that needs the aspect, and how exactly the aspect should be woven step-by-

step. Using declarative MTLs, users focus on what to do instead of how. In other words,

declarative MTLs express the logic of a transformation without describing its control

flow. The typical example of using a declarative MTL is to specify what kind of elements

in a source domain should be mapped to a target domain, without caring about how the

mappings and translations are implemented. Although declarative MTLs have many

advantages, they are not the best choice for all scenarios (e.g., transforming an attribute

based on certain computations is hard to represent declaratively). However, the

imperative style should not be discounted entirely. In fact, both styles are not mutually

exclusive, and a number of MTLs include both mechanisms to specify transformation

rules, offering the appropriate level of granularity as the situation demands.

2.3.2 Examples of MTLs

 Three concrete examples of MTLs will be shown in this section, which cover the

main categories mentioned in the previous section.

37

Atlas Transformation Language (ATL). ATL [Jouault et al., 2008] is a textual

MTL, designed and implemented under the Eclipse Model-to-Model transformation

(M2M) project [M2M, 2011], conforming to the proposed standard by OMG - the

Query/View/Transformation (QVT) [QVT, 2011]. Both declarative and imperative

language constructs are available in ATL, which makes it a hybrid MTL that can be

applied to both endogenous and exogenous model transformation tasks. However, ATL is

more appropriate to handle exogenous model transformation scenarios because its

execution engine is based on model rewriting rather than in-place changing. Figure 2.2

shows an excerpt of model transformation rules written in ATL. The main blocks in an

ATL program are the rules, specifying how to transform a model element from one

metamodel to another (e.g., Member2Male). Inside a rule, constraints on the rules (e.g.,

not s.isFemale()) and the specific transformation process (e.g., fullName < -

s.firstName + ñ ñ + s.familyName) are defined. Helpers serve as function

calls in an ATL transformation, which can contain the basic logic and control statements.

helper context Families!Member def: isFemale() : Boolean =

 if not self.familyMother.oclIsUndefined() then

 true

 else

 if not self.familyDa ughter.oclIsUndefined() then

 true

 else

 false

 endif

 endif;

rule Member2Male {

 from

 s : Families!Member (not s.isFemale())

 to

 t : Persons!Male (

 fullName < - s.firstName + ' ' + s.familyName

)

}

Figure 2.2 ï An excerpt of an ATL transformation rule

38

 ATL has been implemented in Eclipse with a development toolkit plugin. A

library of existing transformations is available to reuse from [ATL Transformation Zoo,

2011], which contains successful transformation scenarios in many domains.

Embedded Constraint Language (ECL). ECL [Gray et al., 2006] was designed

and implemented to solve endogenous model transformation problems, supporting the in-

place modifications on source models. ECL applies and extends OCL, and supports three

types of operations: 1) Model collection can be used to navigate the source model and

group the model elements sharing the common features or satisfying the common criteria

together. Model collection provides an expressive way to filter desired model elements

from a large-scale source model; 2) Model selection operates on the collected model

elements and further locates the target model elements to be transformed. The selection

process can be based on either the evaluation of a logical expression or the matching of a

specified pattern; 3) Model transformation carries out the final transformation task on the

selected model elements. The transformation can be applied to both nodes and

connections, being capable of adding, removing, and changing the structure and

attributes. Figure 2.3 is an excerpt of an ECL example. An aspect in ECL is used to

specify a crosscutting concern across a model hierarchy. The FindData1 aspect collects

all the atoms in the model, selects those Data atoms with the name being ñdata1ò and

executes the AddCond strategy. A strategy in ECL is a set of transformation operations,

which in this example, creates a new Condition atom, a new connection, as well as setting

up the attributes of each Condition atom.

ECL is fully implemented with a transformation engine called the Constraint-

Specification Weaver (C-SAW) in GME. Although ECL was originally designed to

39

handle aspect-oriented modeling problems, it has been extended and applied to other

general model evolution tasks such as model scalability [Lin et al., 2008] and model

refactoring [Zhang et al., 2005]. Because ECL focuses on the same set of model

evolution problems as this dissertation research, the comparison between ECL and the

result from this research will be made in a future chapter.

aspect FindData1(atomName, condName, condExpr : string)

{

atoms() - >select(a | a.kind() == "Data" and

 a.name() == "data1") - >AddCond("Data1Cond", " value<200");

}

strategy AddCond(condName, condExpr : string)

{

 declare p : model;

 declare data, pre : atom;

 data := self;

 p := parent();

 pre := p.addAtom("Condition", condName);

 pre.setAttribute("Kind", "PreCondition");

 pre.s etAttribute("Expression", condExpr);

 p.addConnection("AddCondition", pre, data);

}

Figure 2.3 ï An excerpt of an ECL transformation rule

Graph Rewriting and Transformation (GReAT). GReAT [Balasubramanian et al.,

2006-a] is a graphical language to specify model transformations. GReAT is a set of three

sub-languages: 1) The pattern specification language defines the pattern to be matched in

the source model. A pattern consists of nodes and edges that must be present in the

model, as well as the associations and containment relationships. Users can also specify

negative application conditions that restrict the presence of certain patterns; 2) The

transformation rule in GReAT is the basic transformation entity, which contains the

40

pattern to be matched, and a set of actions to be executed. Additionally, guards can be

defined as part of the transformation rule to determine whether the actions should be

executed based on the evaluation of the logical expression; 3) GReAT also contains a

control flow language to handle the larger and more complex transformation scenarios,

such as how to sequence the execution of the rules, how to execute the rules in parallel

with non-determinism, how to control the hierarchy of the transformation rules using

blocks, and how to implement recursion when executing the rules. The execution engine

of GReAT is built within GME using graph mapping and rewriting. Figure 2.4 shows an

example of a GReAT transformation rule. It binds all the instances of Class A, Class B,

Class C that satisfy the given containment relationships (i.e., Class C can contain

instances of Class A and Class B, and connections can exist between instances of Class A

and Class B), and creates the new Item elements in the container (i.e., Class C).

Figure 2.4 ï An excerpt of a GReAT transformation rule

41

2.4 End-User Programming (EUP)

 The concept of End-User Programming (EUP) can be traced back to the 1960s

[Martin, 1967]. James Martin presented his vision on this topic as, ñWe must develop

languages that the scientist, the architect, the teacher, and the layman can use without

being computer experts. The language for each user must be as natural as possible to him.

The statistician must talk to his terminal in the language of statistics. The civil engineer

must use the language of civil engineering. When a man learns his profession he must

learn the problem-oriented languages to go with that profession.ò [Martin, 1967]

End-Users are defined as the final users of application programs and software,

who have not necessarily been taught or trained how to write code and programs in

traditional programming languages. EUP aims at enabling this group of users to use the

software in their daily life and work, and also participate in the creation, modification,

and maintenance of software applications. The most representative example of EUP is a

spreadsheet application [Rothermel et al., 2001]. Users who are not professional

developers can process tables of complex data, and create automated calculation behavior

without significant knowledge of a programming language.

Supporting EUP exerts a significant influence on the whole software community.

According to the research done by the U.S. Bureau of Census and Bureau of Labor

[Scaffidi et al., 2005], there are 3 million professional software developers and

programmers in the U.S., while over 12 million people say that they do programming at

work, and over 50 million spreadsheet and database users exist. Therefore, the total

number of end-user programmers in the U.S. alone is several times the number of

professional programmers. These end-usersô involvement in programming can contribute

42

substantially to the application domains, because 1) end-users know their domains and

problems best, so they can create the specific solutions to solve their own problems

without talking or explaining to a programmer, avoiding the potential communication

gaps; 2) after end-users receive their own programs and applications, they can also be

responsible for the maintenance, rather than simply complaining about the software and

seeking help from professional developers, leading to a more general ñcustomer supportò;

3) the software systems designed with end-user programming capability can be simpler

and less complex, due to the fact that professional programmers only need to focus on

implementing the general functions, while the end-users take care of using these general

functions to realize their specific needs [Lieberman et al., 2006].

However, the benefits of EUP do not come for free. Problems and cost can also be

caused by applying EUP. The first and foremost problem associated with EUP is the

quality of the applications built by end-users. Without professional training, end-users are

likely to produce errors and bugs, which can have significant impact (e.g., a numerical

error in a spreadsheet can lead to fatal failures in many areas). In addition, security

cannot be guaranteed in the applications developed by end-users, because they may lack

the necessary knowledge on how to test and secure their applications, or in some other

cases, the security control is not even exposed to end-users. In some cases, the cost of

quality and security issues can weigh much more than the benefits gained from EUP

[Harrison, 2004].

In summary, while it is significant and beneficial to support EUP and enable users

to participate in software development process, ensuring the quality and security of

software applications built by end-users is indispensible.

43

2.4.1 Examples of EUP

The approach to support model evolution used in this dissertation shares some

features of EUP. In this section, we choose some typical and successful examples to

further illustrate the idea of EUP.

Programming By Example (PBE). PBE [Cypher, 1993] is a technique for teaching

computers new behaviors by demonstrating actions on concrete examples. A program can

be generalized from the recorded actions during the demonstration, which is applicable to

accomplish the same task to other examples. The goal of PBE is to make programming

easier than learning and using traditional programming languages. A popular PBE

application domain was robotics [Narayanan et al., 2010]. By moving and operating the

robots through a series of teaching, guiding, and play-back steps, the configurations and

desired sequential actions for the robot can be completed.

What You See Is What You Get (WYSIWYG). WYSIWYG [Rothermel et al., 2001]

represents a technique that enables users to edit certain content (e.g., text, graphs,

models) in a form that is exactly the same as it will appear in the final finished version or

product. WYSIWYG intends to directly control and manipulate the properties (in most

cases the layout) of the final product without learning and using the low-level

implementation details. For instance, users can adopt Microsoft Word to configure the

layout of a document by checking the final document appearance directly, while the

special layout control code has to be inserted into the document using LaTeX [LaTeX,

2011]. Another good example is that a number of Jave GUI editors are available (e.g.,

NetBeans [NetBeans, 2011], Eclipse Visual Editor [Eclipse VE, 2011]) to handle the Java

GUI interface design by dragging and dropping the various GUI control elements on the

44

canvas directly. The underlying executable implementation in Java code is generated

automatically. WYSIWYG can also go beyond the layout configuration. Google App

Inventor [Google App Inventor, 2011] allows users to create Andriod applications in the

same drag-and-drop manner, so that even young people who have no programming

experiences can develop mobile applications for their own needs.

Visual Programming Languages (VPL) and DSM. VPLs [Myers, 1986] let users

create programs by using graphical elements and constructs rather than textual

expressions. Based on the idea that, ñA picture is worth a thousand words.ò VPLs can

make the specification of certain applications more direct and end-user friendly. For

instance, the Microsoft Visual Programming Language [MS VPL, 2011] is a graphical

development environment designed to create dataflow-based programming models;

KTechlab [KTechlab, 2011] uses flowcharts to program microcontrollers graphically;

OpenMusic [Agon, 1998] is a visual programming language for music composition

applications. DSM, by comparison, shares similar features as VPLs that both rely on the

graphical representations. However, although a DSML can be considered a type of VPL,

the main difference between a VPL and a DSML is that a DSML raises the level of

abstraction by generating the low-level software artifacts, while VPLs are usually

independent languages or development environments. When it comes to supporting EUP,

both are effective approaches.

45

CHAPTER 3

MODEL TRANSFORMATION BY DEMONSTRATION:

AN END-USER CENTRIC MODEL TRANSFORMATION APPROACH

This chapter presents the main contribution of this dissertation ï Model

Transformation By Demonstration (MTBD), which is an end-user centric approach to

implement model transformation. The basic goals and high-level description of the idea

are discussed first, before a detailed explanation of each step and implementation

component. A formal description of the approach is also given, which defines the

functionality of the approach precisely. In order to highlight the unique features and

contribution of MTBD, related work will be discussed and compared, followed by

concluding remarks that are presented at the end of the chapter.

3.1 Overview of MTBD

The main difficulty of learning and using MTLs to support model evolution, as

discussed in Chapter 1, results from the steep learning curve of MTLs and the challenge

of understanding the metamodels correctly. Therefore, the goal of the new model

transformation approach presented in this dissertation is to isolate users from learning any

MTLs or knowing any metamodels, to make the activity of performing model

transformations more end-user centric.

46

The idea of MTBD derives from PBE. Although PBE focuses on enabling users to

teach a computer new behaviors by demonstrating actions on concrete examples, MTBD

concentrates on a more specific programming scenario to allow users to implement model

transformation tasks by demonstrating how to transform and evolve models on concrete

model instances.

The basic idea of MTBD is that instead of manually writing transformation rules

in a specific model transformation language, users demonstrate how a model

transformation should be done by directly editing (e.g., add, delete, connect, update) a

concrete model instance to simulate the desired model transformation process. A

recording and inference engine has been developed to capture all user operations

performed during the demonstration. After the recording process has completed, the

inference engine optimizes the recorded operations and infers a transformation pattern

that specifies the precondition of the transformation and the sequence of actions needed

to realize the transformation. In order to make the inferred transformation pattern more

accurate, users are allowed to make refinements on the pattern through dialogs and

wizard interfaces. The finalized pattern is stored in the repository, and can be executed by

the execution engine by matching the precondition in a given model instance and then

replaying the actions to execute the transformation actions. During the execution of a

transformation pattern, constraint checking ensures that the execution does not violate the

metamodel definition of the domain.

The design and implementation of MTBD is independent from any MTLs, and

metamodel information is not exposed to users during the whole MTBD process, so that

47

users can be isolated from learning MTLs or understanding metamodel definitions. More

details about each step of MTBD will be presented in the next sub-sections.

3.2 MTBD Process and Implementation

 Figure 3.1 shows the high-level overview of MTBD, which is a complete model

transformation framework that allows users to specify a model transformation, as well as

to execute the generated transformation pattern in any desired model instances.

Figure 3.1 ï High-level overview of MTBD process

The implementation of MTBD is a plug-in called Model Transformation-Scribe

(MT-Scribe) to GEMS in Eclipse. This sub-section will present each of the steps and the

associated implementation details.

User Demonstration. A userôs demonstration provides the base for transformation

pattern analysis and inference, so accurately demonstrating a concrete model

48

transformation process is the first and foremost step. The demonstration is given by

directly editing a model instance in the model editor to simulate a transformation task.

Six different types of operations can be performed and demonstrated: 1) add a model

element (i.e., node), 2) remove a model element, 3) change the attribute of a model

element, 4) add a new connection, 5) remove a connection, and 6) change the attribute of

a connection. Users can change any model from the source state to the target state using

these operations.

The implementation of the demonstration is enabled in the GEMS model editor.

Figure 3.2 shows an ongoing demonstration in the modeling language EmFucnML [Sun

et al., 2011-a].

The key of the demonstration is that it should be sufficient to reflect the

transformation purpose accurately. For example, if a model transformation scenario

requires replacing all model elements of ElemType1 and ElemType2 with other types

of elements, the demonstration must cover replacing both types of elements, rather than

only replacing one of them. On the other hand, over-demonstration should also be

avoided. In other words, the demonstration should be as short and concise as possible,

which means that it is not necessary to cover multiple instances of the same type of

changes needed in the entire model instance. For example, to replace all the elements of

ElemType1 contained in the root of the model, instead of manually deleting every

ElemType1 and adding a new type of element, demonstrating only one replacement is

enough, because one replacement already contains the necessary information about how

the transformation should be performed in other locations.

49

Figure 3.2 ï An ongoing demonstration and the Operation Recording view

During the demonstration, users are expected to perform operations not only on

model elements and connections, but also on their attributes, so that the attribute

transformation can be realized. In most model evolution activities, attribute

transformation is an essential task, because the attributes in the target model are often

based on the computation using one or more attributes in the source model. To support

this type of scenario, an attribute refactoring editor has been developed. As illustrated in

Figure 3.3, the attribute refactoring editor enables users to access all the attributes in the

current model editor and specify the desired transformation expressions (e.g., string and

arithmetic computation). During the demonstration, a user specifies the attribute

computation with the concrete values and obtains the concrete results, but the generic and

50

metamodel level transformation rules can be inferred from it later. The computation can

either be based on single attribute value assignment, or the combination of multiple

attribute values from different model elements and connections. The attribute refactoring

editor also provides a mechanism to let users create a temporary data pair, with a given

name and a value. The creation of the temporary data pair is actually used to simulate the

user input process, and the data can be used in any attribute configuration and

computation process through the entire demonstration. The creation of the temporary data

will be generalized as a user input action and will display an input box when the final

pattern is executed.

Figure 3.3 ï The attribute refactoring editor

Because the demonstration is based on the concrete model instances, users are

fully isolated from metamodel definitions and MTL concepts, which allow them to think

51

about the transformation or evolution problem using the concepts they are most familiar

with.

Operation Recording. User demonstration reflects the intention of the

transformation. To infer this intention accurately, the detailed information about each

operation performed during the demonstration should be recorded accordingly. The

information to be recorded includes the elements and connections being involved directly

during the demonstration, but also the context information. Therefore, an event listener

has been developed to monitor all the operations occurring in the model editor and collect

the information for each operation in sequence. In GEMS, an extension point is available

to capture all the events occurring in the editor. The event listener extends this extension

point and stores all the needed information, and displays it in the Operation Recording

view (the bottom part of Figure 3.2), where users can track all the operations being

recorded during the demonstration. Table 3.1 shows the six types of operations that a user

may perform and the related information that needs to be recorded. Each recorded

operation is encapsulated into an object, similar to the Command pattern [Gamma et al.,

1995]. The final list of these objects represents the sequence of operations the user

performed during the demonstration.

Operation Optimization. The list of recorded operations indicates how a

transformation should be performed. However, not all operations in the list are

meaningful. Users may perform useless or inefficient operations during the

demonstration. For instance, without a careful design, it is possible that a user first adds a

new element and modifies its attributes, and then deletes it in another operation later,

with the result being that all the operations regarding this element actually did not take

52

effect in the transformation process and therefore are meaningless. The presence of

meaningless operations not only has the potential to make the inferred transformation

preconditions inaccurate, but also exerts a negative influence on the performance of a

transformation, especially when it executes on a large model instance. Thus, an

optimization that eliminates all meaningless operations is automatically done after the

recording. An optimization algorithm has been designed and implemented to detect the

meaningless operations and eliminate them, which will be presented in Section 3.3.

Table 3.1

The types of operations and the related context information recorded

Operation Type Information Recorded

Add an Element Location of the parent element and its meta type

The newly added element and its meta type

Remove an Element Location of the element being removed and its meta type

Modify an Element Location of the element being modified and its meta type

The attribute name, the old value and the new value

Add a Connection Location of the parent source and target elements and their meta

types

The newly added connection and its meta type

Remove a Connection Location of the connection being modified and its meta type

Modify a Connection Location of the connection being modified and its meta type

The attribute name, the old value and the new value

Pattern Inference. With an optimized list of recorded operations, the initial

transformation can be inferred. Because the MTBD approach does not rely on any MTLs,

it is not necessary to generate specific transformation rules, although that is possible.

Instead, a general transformation pattern is inferred, which is invisible to end-users so

that they are fully isolated from knowing MTLs or any implementation details. The

transformation pattern describes the precondition of a transformation (i.e., where the

53

transformation should be performed) and the actions of a transformation (i.e., how the

transformation should be realized). The precondition is defined by specifying the required

model elements and connections, with the constraints on them (e.g., the type of the

element must be ElemType1). The actions specify the sequence of operations to be

executed on the elements and connections identified in the precondition. By analyzing the

recorded operations, the related meta-information of model elements and connections is

extracted to construct the precondition, and the actions are generated by generalizing the

recorded operation sequence.

The pattern inferred in this step is an initial version, which means that the

precondition is the weakest precondition for the transformation and the set of actions is

specific to the operations performed during the demonstration. For instance, if a user

performed an operation to remove an element of ElemType 1 from the root of the model

instance, and another operation to add a new element of ElemType 2 in the root, the

inferred precondition is that the model instance should contain at least an element of

ElemType 1 in the root so that the delete operation could be executed on it. In other

words, satisfying the weakest precondition means that a model instance contains the

minimally sufficient elements for each operation to be executed correctly. Obviously,

such kind of precondition is not restrictive enough in practice. In many cases, more

specific constraints are needed for the precondition from the aspects of both structure and

attribute, which cannot be inferred directly from the demonstration. For instance, the

element of ElemType 1 should be removed only when a certain attribute value (e.g.,

load) is less than 100 , or only when it is connected to another element of ElemType1 .

Similarly, the initially inferred transformation actions are just the same as the operations

54

in the recorded operation set. However, sometimes this kind of repetition is not generic

enough to reflect the userôs real intention. Thus, a user refinement step comes after the

inference of the initial transformation pattern to let users make the pattern more accurate.

User refinement. The initial pattern inferred is specific to the demonstration and is

usually not practical and accurate enough, due to the limitation on the expressiveness of

the user demonstration. Thus, MTBD allows users to refine the inferred transformation

by providing more feedback for the desired transformation scenario. Three types of

refinement can be performed: 1) refinement on the structural precondition, 2) refinement

on the attribute precondition, and 3) refinement on the transformation actions. In order to

keep users at the appropriate level of abstraction without knowing MTLs or metamodel

definition, all the refinements can be done through interfaces that only expose

information from the demonstration on the concrete model instances.

The refinement on the structural precondition aims to restrict the required model

elements and connections to be included when matching a model transformation pattern.

From the example mentioned in the previous sub-section, after a user demonstrates

removal of an element of ElemType1 , the structural precondition inferred only contains

one ElemType1 . If the desired transformation scenario is to remove this element only

when it is connected to another ElemType1 trough a connection, users can refine the

inferred transformation pattern by including the additional required elements or

connections. The refinement can be done directly in the model editor, by selecting the

concrete elements or connections and confirming their containment using a one-click

pop-up menu in the editor, as shown in Figure 3.4.

55

Figure 3.4 ï Refine structural precondition by confirming containment

The refinement on an attribute precondition enables users to give constraints on

the attributes of model elements and connections specified in the structural precondition.

When matching a transformation pattern in a model instance, after the structure is

matched, all the constraints on the attributes must be satisfied as well. The constraints on

attributes are specified using logical expressions. For instance, if the desired model

transformation scenario is to remove Ele mType 1 only when load < 100 , users can

find out the element of ElemType 1 in the precondition specification dialog, select the

attribute ñload ,ò followed by giving the expression ñ< 100 .ò The constraint can be

based on multiple attributes on different model elements and connections. For example, if

ElemType 1, ElemType 2, and ElemType 3 are involved in the precondition, the

constraint can be made by specifying ñElemType 1.load + Elem Type 2.load ==

56

ElemType 3.load .ò The refinement is done in a dialog as shown in Figure 3.5. The

upper-left lists all the recorded operations in the demonstration. By clicking on a specific

operation, all the model elements involved will be listed, so that a user can locate the

elements for which they want to provide more constraints. Similarly, by clicking on a

certain element, all its attributes and associated values are listed. Users can select certain

attributes and type the necessary restrictions. Also, constraints can be given on the

attributes that are not defined in the metamodel, such as the number of outgoing or

incoming connections. Through this interface, users continue to work at the model

instance level to give specific preconditions on the elements they considered in the

demonstration. The meta-information and generic computation will be inferred and stored

in the transformation pattern automatically, with the information on the low-level

implementation and metamodel definition being hidden.

The inferred sequence of transformation actions also can be refined by users. The

most typical scenario is to identify the generic operations that should be repeated

according to the available model elements and connections. An illustrative example of

this refinement is when a user wants to remove all the elements of ElemType1 in the

root of the model instance. Instead of demonstrating the removal of all the elements, the

demonstration is done by only removing one of them. In the initially inferred

transformation actions, only a single operation (i.e., remove Elem1) is included. Without

refinement, the execution of the transformation pattern will only trigger the removal of a

single ElemType 1, rather than deleting all of those contained in the root of the model as

expected. Therefore, users can refine the transformation actions, by marking the

operation generic. A generic operation means that during an execution of a

57

transformation pattern, the operation should be executed repeatedly by matching the

related precondition in the current model until no more matches can be made. The

identification of generic operations can be accomplished by marking the list of

transformation actions in a dialog, as shown in Figure 3.6.

Figure 3.5 ï Precondition specification dialog

Pattern Repository. After the user refinement, the transformation pattern will be

finalized and stored in the pattern repository for future use. Because the transformation

pattern is represented by different types of objects (i.e., precondition objects,

transformation action objects), the current implementation of MTBD serializes all the

objects in a transformation pattern and stores them locally.

58

Figure 3.6 ï Generic operations identification dialog

Pattern Execution. The final generated patterns in the repository can be executed

on any model instances. Because a pattern consists of the precondition and the

transformation actions, the execution starts with matching the precondition in the new

model instance and then carries out the transformation actions on the matched locations

of the model. The precondition matching is done by traversing the model instance to

search all locations that satisfy both the structural and attribute preconditions. Because

both the precondition and the model instance can be regarded as graphs, the precondition

matching problem could be solved by using graph matching theories [Varró et al., 2005].

A backtracking algorithm has been developed to match a precondition in a given model

instance, as presented in Section 3.3. A notification is given if no matching locations are

found. In MTBD, a matching location is defined as a part or substructure of a model that

contains all the model elements and connections required in the precondition that satisfies

all the constraints given in the userôs refinement.

59

After a matching location is found, the transformation actions can be executed

with the matched model elements and connections. If operations are identified as generic,

the execution engine will rematch the related part of the precondition, and execute these

operations as long as additional matching can be made.

Figure 3.7 ï Execution controller dialog

Execution Control. Users can select the pattern in the execution controller dialog

shown in Figure 3.7 to execute an inferred transformation pattern from the repository.

Users can select multiple patterns to execute in sequence, which is particularly useful

when a model transformation task is divided by sub-tasks and specified by different

demonstrations. In addition, the total times for executing the selected pattern(s) can be

specified, because in some use cases (e.g., model scalability), a transformation pattern(s)

needs to be executed multiple times to transform the model to a specific state and

configuration. Moreover, users can customize part of the model instance to execute the

pattern. By default, a transformation pattern will be executed in the root of the current

60

model instance and matched in the whole model. Users are also allowed to select a partial

model as an input base to match a transformation pattern.

Correctness Checking. The location matching the precondition guarantees that all

transformation actions can be executed with necessary operands with satisfied

constraints. However, it does not ensure that executing them will not violate the

metamodel definition or external constraints, because the implementation of executing

the actions is based on the low-level model manipulation APIs provided by GEMS that

could be applied without the monitoring of the GEMS checking mechanism. Therefore,

the execution of each transformation action will be logged and the model instance

correctness checking is performed after every execution. If a certain action violates the

metamodel definition, all executed actions are undone and the whole transformation is

cancelled, with the model instance being rolled back to the initial state. Because the

transformation actions have been encapsulated as objects in the Command pattern, the

undo process is implemented directly.

3.3 Formal Specification of MTBD

 As a new model transformation approach that is at a higher level of abstraction

than MTLs, MTBD provides an end-user centric solution to handle model transformation

problems. Different from MTLs that have well-defined language syntax and semantics to

precisely reflect the power and functionality, the usage and power of MTBD cannot be

expressed directly in a similar way. Therefore, a formal specification of MTBD is

presented in this section, for the purpose of accurately describing the process of MTBD

and defining its power and full functionality.

61

 Using the description of MTBD provided in Section 3.2, a formal model of the

MTBD has been built as a 5-tuple:

),,(),,(),,(),,(, TPMTPMMTGMTBD jmimim

CCCCCCC
¡¡DDD= xfv (1)

where:

¶ Mi is a model conformant to the metamodel Metai

¶ Mj is a model also conformant to the metamodel Metai

¶ mD
C

is a sequence of model modifications recorded during a user

demonstration of a transformation on the model, Mi.

¶),(miMTG D
C

is a generalization function that produces an initial set of model

transformation actions, T
C

, that can be applied to any model conformant to

Metai. The transformation is produced by generalizing the series of

modifications, mD
C

, that were applied to Mi.

¶),(miM D
C

v

is an inference function that extracts a set of preconditions, P

C
,

needed in order to generalize and apply the modifications, mD
C

, to another

model.

¶),(TP
CC

f is an optional manual transformation and precondition refinement

function that allows the domain expert to modify the transformation and

preconditions inferred by TG and ◗. This function produces a refined

transformation, T
C
¡, and set of preconditions P

C
¡.

¶),,(TPM j

CC
¡¡x

is a transformation function that applies the refined generalized

transformation, T
C
¡, to a model, Mj, if the preconditions P

C
¡are met by Mj.

62

3.3.1 Operation Demonstration and Recording

The goal of MTBD is to allow users to express domain knowledge regarding a

function, K(Mi). That is, the user is describing a domain-specific function that can be

applied to a model in order to achieve a domain-specific goal. A critical component of

MTBD is that the domain function (transformation) is expressed in terms of the notations

in the modeling language and not the notations used to describe the metamodel, Metai.

MTBD captures domain functions as transformations that can be applied to

models that adhere to the metamodel, Metai, of the target domain. The first step in

MTBD is for a user to apply the domain function, K(Mi) to a model, so that the MTBD

engine can capture the set of model modifications, mD
C

. The process begins by the user or

an external signal initiating a recording process. During the recording process, the user

applies the domain function, K(Mi), to the model, Mi:

K(Mi) ᵼ Mj (2)

K : MetaiŸ Metai (3)

The domain function takes an initial model, Mi, as input, and produces a new

model, Mj, as output. Although it is possible that Mi and Mj are not conformant to the

same metamodel, Metai, this dissertation explicitly focuses and enforces this assumption.

Equation 3 shows that the domain function must represent an endogenous model

transformation that maps a model in one metamodel to a model in the same metamodel.

3.3.2 Operation Optimization

The set of modifications mD
C

 potentially can contain meaningless operations due

to a usersô careless design of a demonstration. An algorithm has been developed to

63

remove these meaningless operations and optimize mD
C

, as shown in Algorithm 1. The

algorithm traverses the whole recorded operation list, and seeks the meaningless

operation pairs on the same model element or connection, such as removing after adding,

or multiple modifications without making changes between source and target states.

 for each op in the input operation list
 switch (op.type)
 case ADD_ELEM:
 for each op_temp after the current op in the list
 if op_temp.type == REMOVE_ELEM and op_temp removes what op added

 and the element was not referred in between
 then remove both op and op_temp from the list
 end for
 case MODIFY_ELEM:
 traverse the final model instance and search the element being modified
 if not found then remove op from the list
 if found then compare the attribute value with the value stored in op
 if different then remove op from the list
 case ADD_CONN:
 for each op_temp after the current op in the list
 if op_temp.type == REMOVE_CONN and op_temp removes what op added
 and the element was not referred in between
 then remove both op and op_temp from the list
 end for
 case MODIFY_CONN:
 traverse the final model instance and search the connection being modified
 if not found then remove op from opList
 if found then compare its attribute value with the value stored in op
 if different then remove op from opList
 end for

Algorithm 1 ï Optimize Operation List

3.3.3 Pattern Inference

After the recording process, the MTBD engine possesses a series of optimized

model modifications mD
C

, that express the application of the domain function K(Mi), to a

specific model. The next step of MTBD is to use pattern inference to generalize and

describe the domain function as a model transformation. A critical aspect of this process

64

is that the transformation must be expressed in terms of the general metamodel notations

captured in Metai, rather than a specific modelôs elements, Mi. The inference step

produces a model transformation, which we describe as a tuple:

TPtionTransforma
CC

,= (4)

where P
C

 is a set of preconditions that must be met in order to apply the transformation

produced by function v , andT
C

is the set of generalized model modifications that

transform the source model to the desired target model, produced by function TG. In

terms of the domain function,P
C

 describes the domain knowledge regarding the

circumstances in which K(Mi) can be applied, and T
C

defines what to do when these

circumstances are met. For example, in the previous example from Section 3.2, P
C

 is the

precondition that the element must be connected to another element and the load attribute

is above a set threshold, where T
C

 represents the modifications needed in order to remove

or replace the element.

As mentioned in the previous sub-section, the preconditions can be subdivided

into two types:

Structural preconditions that govern the types of elements, the containment

relationships, and connection relationships that must exist within the model. The

structural preconditions take the form of assertions on the hierarchy or connection

relationships that must be present in the model. A hierarchical precondition, Pei, is

described as a vector:

Pei= T0, T1,..., Tn (5)

where T0 is the type of an element that is directly modified by one or more operations in

65

mD
C

, T1 is the type of the parent of T0, T2 is the type of the parent of T1, and so forth to the

root element. In order for this precondition to hold in an arbitrary model, Mj, an instance

of the type T0, contained within an element of type T1, must exist. More formally, given

an element, ei, in a model Mj that conforms to the metamodel Metai, a hierarchical

precondition, Pei, is satisfied by ei if:

V (ei, Ti) = (type(ei) == Ti) (᷈V(ei+1, Ti+1)) (6)

í
ì
ë ==
=

falseotherwise

truetrueTeV
ePe

i

ii
,

),),((
)(

0
 (7)

A connection precondition is another form of a structural precondition.

Connection preconditions dictate the associations that must be present in the model. A

connection precondition, Pci, is defined as a 3-tuple:

Pci = <Pej, Pek, Tl> (8)

where Pej specifies a structural precondition that must be met for an element to be

considered the source element of a connection to be modified; Pek is a precondition that

must be met for an element to be considered the target element of the connection; and Tl

is the type of connection that must exist between the elements that satisfy the source and

target structural preconditions. In order for a connection, ci, between two elements, ei and

ej, to satisfy Pci:

î
í

î
ì

ë

==ØØ

==ØØ

=

falseotherwise

trueTctypeePeePe

trueTctypeePeePe

Pc liikjj

lijkij

i

,

),)(()()(

),)(()()(

 (9)

The inference),(miM D
C

v function evaluates each change in mD that occurred.

From these changes, structural preconditions are extracted as follows:

¶ Added Elements. For each model element ej that is added to the model as a

66

child of ei, a precondition Pei is created. The type vector for Pei captures the

types of elements that are visited from traversing from ei to the root of the

model. T0 is set to the type of ei.

¶ Removed Elements. If an element ei is removed from the model, a

precondition Pek is created. The type vector for Pek captures the types of

elements that are visited from traversing from ei to the root of the model. T0 is

set to the type of ei.

¶ Added Connections. Each new connection, cj, that is added from model

element ei to ej produces a new precondition Pci. The type vector for the

source element Pej captures the types of elements that are visited from

traversing the source element to the root of the model. The type vector for the

target element Pek captures the types of elements that are visited from

traversing the target element to the root of the model. Tl is set to 0 to indicate

that no existing connection is required between the elements that satisfy Pej

and Pek.

¶ Removed Connections. Each deleted connection, cj, that previously started

from model element ei and ended at model element ej produces a new precon-

dition, Pci. The type vector for the source element Pej captures the types of

elements that are visited from traversing the source element to the root of the

model. The type vector for the target element, Pek, captures the types of

elements that are visited from traversing from the target element to the root of

the model. Tl is set to the type of cj.

67

¶ Changed Element Attributes. If an element ei, has an attribute value changed,

a pre-condition Pek, is created. The type vector for Pek captures the types of

elements that are visited from traversing from ei to the root of the model. T0 is

set to the type of ei.

¶ Changed Connection Attributes. If a connection, ci, has an attribute value

changed, a precondition Pck is created. The type vector for the source element

Pej captures the types of elements that are visited from traversing the source

element to the root of the model. The type vector for the target element Pek

captures the types of elements that are visited from traversing the target

element to the root of the model. Tl is set to the type of cj.

Attribute preconditions specify the required values of attributes on the model

elements that a transformation will apply. The attribute preconditions, Ac, are specified as

tuples:

Aci = <Pei, Expr> (10)

where Pei is a structural precondition specifying the source model element to which the

attribute precondition must be checked. The Expr component specifies a mathematical

expression over the attributes of an element that satisfy Pei. Currently, the attribute must

be a primitive value and any logical and arithmetic expressions are supported.

Complete structural and attribute preconditions are difficult to infer automatically.

Simple algorithms can extract preconditions that specify the minimum number of

required model elements and connections, and an exact value of one or more element

attributes. However, these algorithms are often too exclusive and generate preconditions

that require exact matching of the structure and all attribute values. Ideally, attribute

