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MODEL TRANSFORMATION BY DEMONSTRATION:
A USERCENTRIC APPROACH TO SUPPORT MODEL EVOLUTION

YU SUN
COMPUTER AND INFORMATION SCIENCES
ABSTRACT

DomainSpecific Modeling (DSM) is an innovative software development
methodology that raises the specification of softwargrgphical models at a highevel
of abstraction using domain concepts available in a language that is defined by a
metamodel. Using DSM, models become f{falstss entities in the construction of
software systems, and therefore model evolution becomes agamtpas code evolution
in traditional software development.

Model transformation is a core technology of DSM that converts a source model
to a target model, which plays a significant role in supporting model evolution activities.
A common approach towamthodel transformation is to write transformation rules in a
specialized model transformation language. Although such languages provide powerful
capabilities to automate model transformations, their usage may present challenges to
those who are unfamiliar Wi a specific model transformation language or a particular
metamodel definition. In addition, in the collaborative modeling situations when model
evolution knowledge needs to be exchanged and reused, most model transformation
languages do not support singrof existing model transformation rules across different
editors among different users, so reusing the existing rules to support model evolution
activities becomes difficult. Finally, most transformation languages do not have an
associated debugger fasers to track errors, or the debugger is not at the appropriate

level of abstraction for endsers.



This dissertation focuses on three aspects related to supporting model evolution
activities: 1) simplify the creation of model transformations in a dematr@tbased
approach by recording and analyzing the operational behavior exhibited by-asesras
they perform a transformation task manually; 2) improve model evolution knowledge
sharing, exchange and reuse through tool support; and 3) enable -aseeragntric
approach to debug the execution of a model transformation. The overall goal of the
research in this dissertation is to enable-esers to create their desired model evolution
tasks without any knowledge of model transformation languages oanmudel
definitions, share and reuse existing model evolution tasks, and check and trace errors in
a useiffriendly manner when performing model evolution tasks. Each of these objectives
will be explained in detail in this dissertation, combined with casdies from different
domains to illustrate how a useentric approach can support common model evolution

activities in practice.
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CHAPTER 1
INTRODUCTION

Software developmeris an inherently challenging process, resulting from both
essentialand accidental complexite [Brooks 1987. The essential complexities of
software are reflected in the difficulty of understanding the problem, designing and
testing the conceptual construct, as well as the characteristics of software, such as
invisibility, changeability and confaity. The accidental complexities represent the
challenges on the concrete software implementation and testing prodastes.past
several decadespuch effort has been made to help software developers and engineers
addresshesecomplexities, in ordeto increase the productivity, simplicity and relldp
of software development

Among all the effort, one of the most frequently applied and effective apm®ach
is to raise the level of programming language abstraction by capturing only the details
relevant to the current computing perspectivat hiding the underlying implementation
information[Lenz and Wienands, 2006As shown in Figure 1.1, from machine code to
assembly language, hidgével and objecbriented programming languages, although
progmammers generally lose firgrained control of the underlying machine as abstraction
increases (e.g., direct memory address control is not feasible using Java while it can be

implemented using C effectively), they are enabled to better focus on the specific



problems they want to solve, while being isolated from irrelevant-ldéoel
implementation detailgSreenfield and Short, 2004]

With the complexity and scale of software systems increasing dramafloatly
and Wienands, 2006]a new and higher level adbstraction is needed to continue
alleviating the difficulties encountered in the complex software development précess.
notable and promising approach is Me@elven Engineering (MDE]JSchmidt, 2006
which decouples the description of the essentiaratteristics of a problem from the
details of a specific solution space (e.g., middleware, programming languages).

MDE promotes the general idea of using models at different levels of abstraction
to define systems, and automate the transformation proetseen different levels of
models and the final implementation code. Asconcrete andmainstream MDE
methodology, Domau$pecific Modeling (DSM)[Gray et al., 2007juses a Domain
Specific Modeling Language (DSMLLé&leczi et al., 2001]to declarativelydefine a
software system using specific domain concepts, and automatically generate the desired
software artifacts (e.g., programming code, simulation script, XML deployment
description) by model transformation engines eodegenerators. Using DSM, sofare
developers and engineers, or even-esers (e.g., domain expertsgre enabled to
program in terms of theiunique intentions and understanding of a specific problem
domain, rather than focusing on solutions that are intertwined with the underlying

computing environmeniiSchmidt, 2006]
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Figure 1.17 Flexibility versus level of abstraction of programming technologies

1.1 DomainSpecific Moddéing (DSM)

DSM reaches a new levalf abstractionby focusing on the specific problem
domairs using DSMLs so thatthe design spacies narrowed down and the associated
complexities are reduced problem domain can be any of the areas that require software
solutions, such as automobile, telecommunication, health care, industry, robotics, energy
or finance. It can also vertically include the different aspects of system development,
such as user interfackinctional properties, nefunctional properties, user work flow, or
data persistency. Additionally, any of these domains can be divided into smaller problems
or tasks, which can be considered as a separatécsndin.

A DSML is designed fora single poblem domain, which only contains the
concepts related with the specific problems to solve, rather than the underlying
implementation details. The metamod&tkinson and Kuhne, 2003 used to specify

the entities, associations and constraints for théiDQShaving a similar role as a



grammar to specify the syntax for a programming language. The metamodel can be used
to generate a modeling environment, in which users are enabled to build concrete models
to represent the system for the application domahe models built by users must
conform to the definition of the metamodel. Figure 1.2 shows a DSML called TTSML
(Time-Triggered System Modeling Languaggun et al., 201-c] used to specify the

data communication system used inside electric automobilesroltides the basic
modeling elements such asCU (Electronic Control Unit) Channe] Controller,
Functional Unit Timing RequirementUsers ofTTSML can specify the desired system

by constructing the model using these concepts directly. For examplevas ishFigure

1.2, threeECUs (i.e., SimulatorPC DrvierAssistance DriverinferfaceAndSensprare
connected to bothChannel A and Channel B different function units (e.g.,
BrakeAssistantReadGasPedalPositiprare running on theseCUs and communicate

with each other based on different timing requirements (eSgfety Critical
LowSpeedSensprThe lowlevel implementation details about how to configure the
ECUswith the APIs provided by the manufactyrbow to implement the correct data
transmission priocol, or how to make theorrectfunction calls to ensure the timing
requirementsare hidden to users. In other words, users only need to think d@beut
concrete problem spacé what system functionalities are needed, what system
performance propertieseadesired, rather than the solution space (i.e., how to implement

the actual system).
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B2 simulatorPC [BA Driver AssistanceECU [BA CriverInterfaceAndSensorECl

B8 FlexrayController B8 FlexrayController B8 FlexrayController

B Brakedssistant SafetyCriical
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B CbstacleDetector
MNonCritical
(E) EnvironmentSimulator
A sirnulatorPC (F) Brakeschuator
HighSpeedActuator
) GasActuator
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LowSpeedSensor
A CriverInterfaceAndSensorECU [F) ReadGasPedalPosition
() ReadBrakePedalPosition HighSpeedSensor

Figure 1.2° Excerpts of models specified using TTSML

The solution spaces handled by code generat@ssociated with the DSML. A
code generatofKelly and Tolvanen, 2008takes models built by users as input, and
producedow-level implementation artifactss output. Multiple code generatarsmodel

interpretersmight exist for a single DSML, which cdre used to generate the code for



different platforms or software artifacts. Taking TTSML as an example, two code
generators are available to generate the implementation code for two hardware platforms
Freescale S12 MicrocontrollefFreescale, 2011]and Elersp&her FlexRayCard
[Ebersp&hey 2011} another generator is used to generate the XML configuration for the
protocol implementation. In some other DSM applications, code generators have also
been applied to produce HTML files, propefiles, graphicalcharts and tables, or even

software documen{¥elly and Tolvanen, 2008hs shown in Figure 1.3.
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Figure 1.3 Overview of DSM methodology

The main benefit of DSM comes from its ability to describe the ptiggeof a
system at a higlevel of abstraction and in a platforimdependent notation, and protect
key intellectual assets from technology obsolescence, resulting in less effort and fewer
low-level details to specify a given syste@ompared with the tditional usage of

software models and code generation techniques, DSM gligghresitself by pursuing



automated code generatianithout further modificationsso that users are completely
isolated from the lowevel implementation detail®©therwise, DSMwill not raise the

level of abstraction for domain expertdML [UML, 2011 models, for instance, are

often used either as a design blueprint for software developers to write code, or as a basis
to generate the initial code framewdgkg., class definitioss and method signaturesith
theinnerimplementation part to be filled manually.

Furthermore, by raising the level of abstraction, DSM helps to improveissrd
programmingBurnett et al., 2004], and therefore reduces the chance of software failures
due to miscommunications between software engineers andsamnd In the traditional
software development process, a knowledge and expertise gap between software
developers and different domain experts exists, the negative consequence being that
developerswvho are skilledat programming may not fully and correctly understand the
user6s requirements, while the usayhave who
no idea about how to build the desired software system. However, in DSM, because the
systemcanbe represented by higavel and domakspecific models rather than general
purpose programming languages, -@1se@rs who have no knowledge or experience in
programming are enabled to participate in the software system development process,
making more accate and valuable decisions in software design, implementation, and

maintenancgKelly and Tolvanen, 2008]

1.2 Model Evolution in DSM

Software evolution is an inevitable and essential activity in software geweld.

As noted by Lehmanii Sof t war e t hat i's being used mus



becomes pr ogr es s i[weray 1978Istke cantext of BSMarmodadsr y 0
replace source code #se first-class entities in the software developmentcpss and
represent the initial point for the generation of l@wel artifacts. Therefore, if a system
needs to evolve and adapt to new requirements, instead of changing source code directly,
the models representing the system should be evolved firsdaugdo the need, which

then leads to a rgeneration of the lovevel code or other artifacfkin et al., 2007]

Figure 1.4 shows a model evolution scenario. A metamodel has been defined for a
problem domain, anModel ¢ is the initial model that conforento the metamodel, which
generates the first version of the source cddedg,) for the system. As the new
requirements come from the problem domaliodel , has to be changed and evolved to
new versionsNlodel ; Model , € Model ) to adapt the new requireents, so that the
corresponding changes can be reflecte€ae;, Code,,  €ode, by triggering the
code generation process from each new motblels dissertation research focuses on
addressing the problems and challenges associated with implementingnothed
evolution process, while involving ender participation.

A number ofscenaris can triggerthe evolution of models, such as adding /
removing / updating a certain functionality for an existing syqtéreenfield and Short,
2004] weaving a new aspe(e.g., logging, constraint checking)to the base system
[Elrad et al., 2002Gray et al., 200 scaling the system from a base state to a complex
state[Lin et al., 2008] and optimizing the internal structure (e.g., refactor[Rgance et
al., 2003. Clearly, model evolution is as essential as traditional code evolution in a
software development process. In fact, some other model evolution issues also exist in

the context of DSM; for instance, evolving a model to a different dofpdawault and



Kurtev, 2005] metamodel evolutionSprinkle, 2003;Narayanan et al., 2009model
interpreter evolution[Zhang et al.,, 2004] and model evolution by changing the
corresponding code (i.e., reverse engineerjRgigaber and Stirewalt, 2004However,

the researh described in this dissertation particularly focuses on model evolution from
one state to another and from one version to another version within the same metamodel.
The typical evolution activities in this category are model refactofitgang et al.,

2005], model scalabilityLin et al., 2008] aspeciriented modelingZhang et al., 2007]

model managemerbDeridder et al., 2008]and model layout configuration [Sun et al.,

2011-b].
MetaM odel
A
Conform To
Model, e Model, - aM, > € & M, Model,
Generate Generate Generate
Codey ——aC—» Code; S é e ———aC— > Code,

Figure 1.4 Model evolution in DSM

1.3  Model Transformation and Model Transformation Languages (MTLS)
Model transformatiorfSendall and Kozaczynski, 2008 a core techwogy in
DSM. It receives a source model that conforms to a given source metamodel as input, and

produces as output another model conforming to a given target metambusi. the
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source and target metamodels are different (i.e., between two differentndpntbe
transformation is calledxogenous, as shown in Figure 1(Bay., a UML class diagram
model is transformed to a relational data m¢8ékah and Slaughter, 2003]f the source

and target metamodedse identical, the transformation is callatbgenousas shown in
Figure 1.5b (e.g., a UML class diagram model is transformed from one state to another
state through &Pull Up Metho refactoring procesg-owler, 1999].

Because the essence of model transformation is to transform and change a model,
there is a direct connection between model transformation and model evolution. Actually,
model evolution task asdiscussed in this dissertation can be regarded as a model
transformation process, or more precisely, an endogenous model transformatiss, proce
because both the source model (eMpdel o in Figure 1.4) and the target model (e.g.,

Model ; in Figure 1.4) in a model evolution conform to the same metamodel.

MetaModel 1 | TransformTo—»|  MetaModel 2 MetaModel 1
A
Conforms To Conforms To rConforms To— Conforms To
Model Instance 1 —Transform To—>{ Model Instance 2 Model Instancel |—Transform To—» Model Instance 2
a. Exogenous Model Transformation b. Endogenous Model Transformation

Figure 1.5 Two types of model transformatidnexogenous ahendogenous

The benefit of connecting model evolution with model transformation is that a
number of model transformation to@sdtechnologies can be utilized to support mode
evolution tasks. The traditional approach to realize a model transformation is to use an

executable model transformation language. A Model Transformation Language (MTL)
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[Sendall and Kozaczynski, 2003] usually abomainSpecific LanguaggDSL) [Mernik

et al., 2005 Sun et al., 20(08particularly used for model transformation tasks. A set of
transformation rules can be defined in a MTL to specify how a source model should be
transformed into a target model. More specifically, the rules define how theesoodel

should be mapped to the target model, and the scope where the rules can be applied.
These rules are often defined at the metamodel level rather than to a specific model
instance, so that they are capable of carrying out the desired transformatc®ss
automatically on any model that conforms to the same metamodel.

MTLs can be either graphical or textual, and most of them are at a hegkeof
abstraction than Generpurpose Programming Languages (GPLs), such as Java or C++.
MTLs support eiter an imperative, declarative, or hybrid approach to specify a
transformation task. Some popular MTLs in this category are (@XT, 2010} ATL
[Jouault et al., 2008Jand ECL[Gray, 2002] Using MTLs, automated model evolution
processes can be implementeyl specifyingand executinghe model transformation
rules on how to evolve a model from one state to another state, or from one configuration

to another.

1.4  Key Challenge#n Supporing Model Evolution
As discussed in the previous sections, model evolution is an essential and
inevitable activity in DSM. However, the tools to support model evolution have not been
well developed. In current DSM practice, model evolution tasks are mainlgrmepted
and automated using MTLs. Although MTLs are powerful and expressive to handle

various kinds of model evolution tasks, it is not always the perfect solution due to some
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challengesrelated toenduser friendliness, the mechanism of exchanging aodig
model evolution knowledge, and debugging support. The following subsections outline
the challenges that this dissertation focusesvith respect tocurrent model evolution

practice.

1.4.1 The Difficulty of Learning and Using MTLs for Ektsers

Although a number of powerful MTLs have been developed to support various
types of model evolution tasks in different modeling tools and platforms, learning and
using these languagés by no means an easy task, particularly for generalusads
including domain experts and ngnogrammers who are not familiar with MTLs or
GPLs. The emphasis on enabling this group of users to implement model evolution tasks
results from the fact thandusers can participate in the software development process
using DSM, andn many casesthey know the exact model evolution tasksneed.
However, this group of users might be prevented from contributing to these tasks from
which they have much domaexperience due to the difficulty of learning and using
MTLs as described throughout this subsection.

The steep learning curve for MTL adoptidhost MTLs are higHevel languages
and specific to model transformation tasks, but a steep learning curvié ireesitable
due to the complexity of learning the syntax, semantics, special features or concepts,
associated libraries, and the editing or execution environment of a MTL. This challenge
is particularly true for those who have never had MTL or prograigrainguage training.

Moreover, in many cases, in order to correctly use a MTL, users are required to

learn not only its basic usage of how to transform models, but also some additional



13

knowledgethat is not directly related with model transformations. Eaample, ECL
integrates some general programming concepts, such as variable declarations (e.qg.,
declare node : object; ), and branch statements (e.d.,(idx<=max)

then ); ATL applies Object Constraint Language (OJODCL, 2010] expressions to

give specift constraints on the precondition of model transformations. Learning these
may not be very challenging to a computer scientist, a software developer or a model
engineer, but it is definitely a hindering barrier to generatesads like domain experts
andnonprogrammers.

In addition, the diversity of MTLs introduces a number of different model
transformation design approaches, bringing about a challenge toward achieving a uniform
MTL learning process. For instance, with declarative MTLs (e.g., ATL), usergocus
on the mapping relationships between the source and target models, ignoring the details
underlying those mappings; but many powerful MTLs (e.g., ECL) also support
imperative mechanisms, which means that users need to think about how a model shoul
be changed and transformed to the target desired state; some other MTLs (e.g., EMF
Tiger [Biermann et al., 2006; EMF Tiger, 2010ReAT [Agrawal, 03) are based on
graph theoy, such as graph matching and graph rewriting, and users are expected to think
of model transformation processes in terms of graphs. Thus, even being familiar with a
certain MTL cannot guarantee a grada@bptioncurve for learningasecond MTL.

The difficulty of understanding metamodeh. metamodel, as explained in
Section 1.1serves as the abstract syntax of a DSML, and precisely specifies how the
models should be constructed in a particular domain. Using most MTLs, the model

transformation rules are often defined at the metamodel level rather than the concrete
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model instance ieel. However, developing a deep and clear understanding of a
metamodel is challenging, especially for large and complex domains.

The need to defingansformation rules ahe metamodel level results from the
gap existing between the way a user recognmedels and the way a computer does
[Wimmer et al., 2007] Typically, users reason on models that representwesdl
examples shown by concrete syntax and mappings between semantically corresponding
model elements according to the specific transformatt@marios. However, this way of
thinking is not appropriate for precisely defining model transformations with currently
available MTLs, because instead of writing transformation rules working for one specific
model example, users expect the rules to bereo that they can be reused on other
models for the same transformation purpose. Currently, the most effective way to realize
this goal is to define the generic rules in terms of metamodel definitions for the models to
be transformed.

Understanding mamodels becomes even more challenging when some concepts
in a particulardomain are hidden in the metamodel definition and difficult to unveil
[Kappel, 2006] This is because not all concepts in a domain can be represented as first
class constructs in thmetamodel. Somdomain conceptmay be hidden in attributes or
association ends in the metamodels. The consequence is that users are required to
correctly uncover these hidden concepts and use them in the transformation rules that
they write.

Thus, if modé transformations can be specified and implemented without
explicitly understanding the full details of a metamodel, users could avoid the extra

burden of understanding the complex and abstract metamodel definitions.
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1.4.2 Limited Tool Support to Exchange anduRe ModeEvolutionKnowledge

Similar to traditional software development, specifying a complex system using
DSM usually requires collaboratidfiRedmiles et a] 2004] A DSML may be used to
describe different aspects of a system (e.g., a DSML designed to model embedded
systemgqSun et al., 201-h] enables users to specify the system from the perspectives of
both the hardware configuration and the software fanat logic), and users might come
from different areas with different expertise. Even for the spengpectiveand the same
area, users may have different levels of experience and knowledge (e.g., a senior engineer
is more likely to produce higher qualitgodels or provide bettenodelingsolutionsin
most caseghan a junior engineer). When it comes to model evolution tasks in a diverse
and collaborative modeling environment, iessentiato enabledifferent users tshare,
exchange their knowledge aedperience, as well anablethe reuse of the knowledge
(e.g., a software engineer may need to rel
evolving a part of the hardware configuration; a junior engineer may need the senior
engi neer 6s ddatp modeleand fix eritorg). Unfartunately, tool support in
this area is very limited in the current practice.

When using MTLs to implement model evolution tasks, each set of the executable
model transformation rules can be regarded as the persistenwtekige for a certain
evolution task. Executing the rulea different models actually realizes knowledge reuse.
However, for most MTL tools, there is no mechanism to load and execute the
transformation rulespecified by different users at editing time.ofF instance, ATL

provides an online collection of the commonly used model transformation scenarios
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(ATL transformation zodATL Transformation Zoo, 201)] where users can download

the rules and execute them in their own environments. Obviously, thisii fmgans the
desired approach to exchange and reuse knowledge, because a large number of model
evolution tasks can be created during the editing time, which at the same time, are needed
to be shared and reused by different users. Usstgtic online cdection cannot satisfy

the need to acquire tlrrectevolutionknowledge promptly.

Moreover, the presenceof reusable model evolution knowledge does not
guarantee that it can be reused correctly by usbsneedthem On one hand, users
might not know lhat certain model evolution tasks they need to accomplish have already
been created and shared{lsatthey might end up manually implementing the task again.

On the other hand, even if users know the presence of certain model evolution knowledge
that canbe potentially reused, how to determine whether it is the right knowledge to
reuse or whether it is applicable to their own scesasianother challenging problem. In

the current practice, users may decide to reuse an available model evolution &dkyeith
reading and understanding the textual descriglmout the evolution rulesr by directly
executing and comparing the resulifie negative consequentethat users are very

likely to reuse the wrong knowledge due to the misunderstandiaginfccurate textual
description, destroy the current modeliraport accidental errors by executing the wrong
evolutionrules Thus, enabling users to identify therrectand available knowledge to
reuse in a timely manner plays an important role in supgpnimodel evolution

knowledgeexchange and reuse.
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1.4.3 The Lack of an Entlser Debugging Facility for MTLs

Because model transformation specifications are written by humans and
suscetible to errors, the need for testing and debugging mechanisms for MTLs are as
important as the similar need with gengoatpose programming languagédthough
testing offers some confidence about whether the model is in the desired state after being
transformed, debugging helps users to examine the transformation process and track
potential errors.

Recently, some algorithms and tools have been developed to support model
transformation testing by model comparison, whigtve demonstrate initial resultsin
automating the testing procefisn et al.,, 2005; Lin et al., 2007]However, model
transformation debugging is still a weak area with limited results. Most modeling tools or
platforms only provide an editing and execution environment for a supportdd MT
without enabling users to track and monitor the execution of transformation rules and the
result. When errors occur, the most common way to fix the error is to check the model
after a transformation and locate the erroneous model elements, attribchesections,
and then go back to tlerrespondindransformation rules to check tpetential errors
This process will iterate until the model is transformed to the desired state. Because most
MTLs do not support common constructs available in GPLs,d#t®igging process
becomes more challenging if a debugger is not present in the modeling tool or execution
engine.

Without the assistance of a debugger, error recovery becomes tedioesand
prone particularly when the model being transformed is large a lot of complex

transformation rules are involved in the model evolution task. Although some MTL tools
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already have associated debugdéomiault et al., 2008alasubramanian et al., 20@h
the debuggers work by tracking the MTL rules or codes, lwarie at the same level of

abstraction as the MTL and therefore not appropriatedore categories @hdusers.

1.5 Research Goals and Overview

To address the difficulty of supporting model evolution gsthe traditional
model transformation approaches that rely on MTLs, and enable a wider range of end
users to participate in model evolution activittkeough implementing model evolution
tasks exchangg and reumg model evolutionknowledge, and debugmgg model
evolution execution processhe research in this dissertation prowde usefcentric
model transformation approach itaplement model evolution tasks with tools to share
and reuse evolution knowledge. Furthermore, this research considerangfertnation
debugging issue to assist in determining the correctness and trackimgocsl
transformation errors. Figure 1.6 shows an integrated view of this res€hecbverview

of the research is described in the following sections.

Apply MTBD to Model Evolution (Chapter 4)
Model Model Aspect-Oriented
Refactoring Scalability Modeling

Model
[ Management ’[ Model Layout }

T

Model Transformation By Demonstration (M TBD) (Chapter 3)
End-user Model Transformation Framework

Live-MTBD (Chapter 5) MTBD Debugger (Chapter 6)
Evolution Knowledge Exchange and Reuse Tool Support End-User MTBD Debugger

Figure 1.6/ Researcloverview
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1.5.1 Model Transformation By Demonstration (MTBD) to Simplify Model

Transformation

To address the challenges of learning and using MTLs to support model evolution,
a new endogenous model transformatr@meworkhas been designed and implemented,
called Model Transformation By Demonstration (MTB[Hun et al., 2004], which
enalles endusers to specify a model transformation by directly performing editing
operations on concrete examples (i.e., to give a demonstration), combined with user
refinement and automatic inference procesgdter a user demonstration, @odel
transformabn pattern is generated as the persistent specification of a model
transformation task. MTBD also includes its own transformation pattern execution engine,
which executsthe inferred transformation by pattern matching and automated operation
execution. his frameworkis different from the traditional MTLs in that no language is
involved in the process and the specification of the rules is realized at the model instance
level rather tharthe metamodel level, so that users can be isolated from the language
learning curve and the complex metamodel definitions. In other words, the level of
abstraction to implement model transformations is raised, so that thesersd(e.qg.,
domain experts and ngpgrogrammers) are able to implement the desired model evolution
tasks through demonstrationvithout being exposed to the lelvel implementation

details.

1.5.2 Live-MTBD to Improve Model Evolution Knowledge Exchaagd Reuse

The £ cond contribution of t hi s research

MTBD (Live-MTBD), which improwes the user experienc&vhen demonstrahg a
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transformation and more importantly, suppsrimodel evolution knowledgeharing,
exchange and reus&he tmlset Live-MTBD contains threecomponerg: 1) Live
Demonstration provides a more general demonstration environment that allows users to
specify editing activities based on their editing histomth the purpose being to
encourage users to create moradgfarmation pattern®) in order to improve the sharing

of editing activity knowledge among different usdrsje Sharingi a centralized model
transformation pattern repository has been built so that transformation patterns can be
reused across differeetditors; 3) a live model transformation matching endindve
Matchinghas been developed to automatically match the saved transformation patterns at
modeling time, and provides editing suggestions and guidance to users during the editing
process. LiveMTBD features cooperate seamlessly with MTBD to offereaduser

friendly, collaborative, and intelligent model evolution environment.

1.5.3 MTBD Debuggerto Enable EndJser Model Transformation Debugging

To support error tracking and execution monitorira;y MTBD debugger
associated witthe MTBD execution engindas been developed. The debugging tool can
offer support for isolating the cause of a transformation erroeniapling users to trace
all the matched locations in the model in an execution of a transformation pattern, and
step through individual actions of the transformation to display the model data intuitively
within the host modeling environment. Users canedeine the correctness of the
precondition of the inferred pattern from the matching locations, and the correctness of
the actions of the inferred pattern by watching each of the execution steps. In addition, to

improve eneuser friendlinessthe MTBD debwgger hides the lowlevel execution



21

information or metamodel definitions and focuses only on information at the model

instance level.

1.5.4 Applications of thdResearcho Support Model Evolution in Practice

The primary purpose of this research is to support various model evolution tasks
using a new model transformation approa€hereforethe power and functionalityf
the approaclshould be decided and evaluated fogusing on howit can fulfill the
diverse needs of model evolution in practice. MiEBD approach should be applicable
to the core types of model evolution tasks, such as model refactoring, model scalability,
aspecioriented modeling, model management] amdel layout configuration. Thus, the
identification of the special requirements in each type of task and the investigation on
how to apply MTBD to these practical applications is another key contributiorisin th

researchand demonstrated by various €asudies throughout this dissertation

1.6  The Structure of the Thesis

This chapter has summarizadsubset othe research on model evolution in the
context of DSM and the current challenges that exissupport model evolution
activities. Research goals that address these problems have been outlined. Chapter 2
describes background information related to the research of this dissertation.

Chapter 3 presents thdTBD model transformatiorapproach, includig the
description about the main steps and implementation details of the approach and the
formal specification of the MTBD functionalityRelated work is discussed to highlight

the unique features and contributions of MTBD.



22

Case studies are preseniadChapter 4to show how MTBD supportsarious
model evolution tasks. In addition, to demonstrate the benefits of this approach,
experimental evaluation is discussed, including modeling artifacts, evaluation metrics and
experimental results.

Chapter5 details he live feature extensions of MTBD. The motivation of these
features is explained, followed by illustrating its usage through a practical case study.

Chapter6 describes the debuggésr MTBD. This chapter presents the basic
debugging features designed MiTBD, as well as how to apply these featie track
potential errors. Case studies are also shown to further illustrate the idea.

Chapter7 outlines future work of the research described in the previous chapters.

Chapter8 concludes the work of this disrtation and summarizes its contributions.
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CHAPTER 2
BACKGROUND

This chapter provides background information relevant to the research of this
dissertation. First, ModdDriven Engineering (MDE), representing the broad scope of
this research, will be introduced, with a further discussion on DeByaeeific Modeling
and model evolution. This chapter will also outline the key concepts, technigusoim
in MDE that have been applied in practice. Background information on model
transformation and Model Transformation Languages (MTLs) will be given in the third
section, which includes the categories of MTLs and a subset of popular languages being
used. Finally, because the main contribution of this research focuses on providing an
approach centered on ender model evolution, relevant information about -asdr

programming will be discussed briefly.

2.1  ModelDriven Engineering (MDE)

The emergence of MDE was triggered by a consistent effort toward raising the
level of abstraction in software development. Back in the 1980s when programming
languages (e.g., C, Fortran) lacked many of the now comnuoalularity concepts (e.g.,
objects) to develop increasingly complex software systems, corgideat software
engineering (CASEJFuggetta, 1993jvas promoted as an approach to assist users in

expressing their design decisions above the underlying solspace. CASE applied
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generalpurpose graphical or textual representations to form programs that aimed at
reducing the errors incurred using traditional programming languages (e.g., memory
leaks and corruption when using C) as well as the development éftovever, CASE

finally failed to exert a significant influence on software development, because on one
hand, the genergdurpose graphical representation used in CASE did not support many
application domains effectively; on the other hand, CASE was netgénsuccessful at
handling the needs of complex systems development (e.g., concurrent computing is not
supported by CASE). In addition, due to a lack of common middleware platforms,
generating desired implementation code and integrating it with ditfgrletforms is
challenging, which undermined the capability of CASE to support multiple platforms.

Since the 1990s, objeotiented programming languages (e.g., Java, C++) have
provided more expressive language constructs, and have assisted developers in
maintaining and reusing various software systems [Booch, 1997]. Despite a number of
advantages, these languages have reached a complexity ceiling due to the fast growth of
dependent platforms and middleware complexity, and the inability of expressing domain
concepts effectivelygchmidt, 2006

MDE has emerged as a promising approach to address platform complexity and
the need to express domain concepts. Using DSMLs that are designed specifically for
application domains, developers can work at a highesl of abstraction than object
oriented programming languages. In DSM, transformation engines and generators handle
the mapping of highevel models to the underlying implementation details, so that
developers are fully isolated from the accidental compkibif the solution space. In the

past several years, MDE has attracted considerable attention from both academia and
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industry. A number of concepts (e.g., metamdée¢kinson and Kuhne, 2003jmodel
transformationSendall and Kozaczynski, 200Q3standard (e.g., MDA[MDA, 2011],

QVT [QVT, 2011)), tools (e.g., MetaCase+ [MetaCase+, 2011], GMF [GMF, 2011]), and
related technologies (e.g., model version conttoh jet al., 2004) have been created,
which have enabled many successful case studies and #ippBda various areas, such
as telephony, information management, bug tracking, stream data prod&ssieyg et

al., 2006]

2.1.1 ModelDriven Architecture (MDA)

To better support MDE, the Object Magement Group (OMG) launched Model
Driven Architecture (MDA) [MDA, 2011], providing a set of guidelines and
specifications to encourage the use of models in software system design and
implementation.

The MDA approach specifies a software system usingadoPm-Independent
Model (PIM), which can then be mapped and transformed to PlaBqecific Models
(PSMs). The PIM is based on domaipecific languages for the application domain, but
the PSMs can be specified using either a dorspétific or genergburpose language.

The OMG provides only the standards and specifications for the basic approach instead
of detailed implementations. Some of the standards related with MDA models are listed
in the following paragraphs:

Unified Modeling Language (UML)JJML is used to describe various types of
models in MDA. Although UML was not originally designed for MDA, being the most

widely used modeling language, it has become a standard gpuogvake modeling
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language. UML contains a number of diagrams, construdtviaws that can be used to
represent various perspectives of a system. Thus, UML serves as a standard formalism in
MDA for a wide range of application domains.

Meta-Object Facility (MOF) MOF [MOF, 2011 is a metametamodel that can be
applied to define ifferent metamodels. The definition of UML is based on MOF.
Therefore, MOF makes it possible to extend UML or create any other potential languages
needed in the future.

XML Metadata Interchange (XMIXMI [XMlI, 2011] defines a standard metadata
interchamge format for XML documents. This enables models to be shared and
exchanged among different tools and platforms. XMI has already been applied as the
interchange format for UML models, as well as a number of models built in other tools
such as GMHELédleczi et al., 2001 and EMF[Budinsky et al., 2004]

Common Warehouse Metamodel (CWMJWM [CWM, 2011] provides
interfaces that can be used to enable interchange of warehouse and business intelligence
metadata between warehouse tools, warehouse platforms amdhowse metadata
repositoriesMappings between two types of metamodels can be defined using CWM,
making it possible to build the model transformations in the context of MOF.

In summary, UML, MOF, XMI, CWM and some other standards aim at handling
different aspects of the MDA the creation of models, the extension and definition of

models, model interchange, and model transformations.
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2.1.2 DomainSpecific Modelinddevelopment Process

While MDA provides a set of standard guidelines to support the vision of MDE,
DSM is a concrete MDE methodology that has been applied in a number of domains
(e.g., automotive, robotics, mobile computing) successfully. From the example given in
Section 1.1, itan be seen that DSM is often based on a graphical DSML designed for a
specific problem domain, combined with code generators to produce implementation
software artifacts.

In practice, a complete DSM development process follows an iterative process.
Model engineers and domain experts need to work together to target the problem domain
and understand the necessary domain concepts that will be included in the future DSML.
Then, model engineers need to define the DSML precisely by defining the metamodel as
well as the needed constraints for the domain. With the complete metamodel, the DSML
environment can be generated automatically. In addition, code generators are built by
model engineers and software engineers together to map the metamodel concepts to low
level implementation code. With the complete DSML environment and code generators,
users can work in the editors to build various model instances when needed and trigger
the code generation any time.

The time required to implement a DSM solution varies ating to the
complexity of each domain. It can take franiew weekdso monthgKelly and Tolvanen,

2008] No matter what the development period is, the benefits of using DSM can often be
seen immediately after users are enabled to create models andegendefKelly and

Tolvanen, 2008]
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2.1.3 Model Evolution in DSM

Model evolution issues in DSM are mainly triggered by two scenarios. First, the
metamodel for a certain domain is not unchangeable, becausetttsd @omain in
practice evolves and users tend to request new concepts and elements to enhance the
expressiveness and power of the DSML. In fact, even model engineers themselves
occasionally create new ideas to refine or extend the DSML, titegrundersanding of
a domainimprovesor when they receivéeedback fromusers Therefore, evolution of
metamodels is inevitable.

When it comes to the model instance level, evolution occurs more frequently. Just
like programmers need to change their programs ynpdyase of software development
for different purposes, models are often evolved by users as well. Actually, one of the
main advantages of using DSM is reflected in this evolution scenario. Because
traditionally, programmers need to understand the sourde end make necessary
changes according to a new requirement. In the context of DSM, the same change can be
realized by modifying models at a high level of abstraction with less effort and then re
generating the code into a new version automatically.

The metamodel evolution problem has been investigated w[&gsinkle, 2003]
but the importance of evolution at the model instance level should not be ignored,
because it directly relates to the main benefit of using DSM, and it is targeted for end
users ad their usage experience. This dissertation focuses on supporting the evolution

problems at the model instance level.
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2.2  Metamodeling and Tools
In the previous sections, most of the discussion on MDE and foSied on a
high level description and background introduction. This section will first present the
basic fourlayer modeling architecture used in the MDE community, serving as a formal
summary of MDE, followed by an introduction to tools that supporMbE and DSM

ideas.

2.2.1 Four-Layer Modeling Architecture

The classical architecture of MDE has been defined using four different layers, as
shown in Figure 2.1The topmost layer (i.e.M3 or Metametamodel layer) is a core
modeling language that conforms to itself, which can be appliddfioe other modeling
languagesfor different domains (i.e., to define other metamodels)forms the
foundation for the wholdMDE architecture The common modelg languages at this
layer are MOF, Ecore, and KM3ouault and Beivin, 2006] The second layer is the
metamodellayer ©r M2). The models at this layer are defined using the modeling
language at M3 and therefore are instances of the-mmeti@model. Thewre defined to
precisely specify different application domains. Models at the M1 level will conform to
the M2 metamodels. The M1 models represent what users create and manipulate the
underlying real system. Each model is built based on a certain metagwdelming to
all the syntax and static semantics constraints. In many cases, a single system can be
specified by multiple models either under the same metamodel or different ones, for the
purpose of modeling different components and perspectivieslly, the realworld

system isat the MO layer which is mapped and generated from models at M1. One
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important criterion to evaluate the mappings between M1 and MO is that for questions
about the realvorld system at MO, it must be possible to retrieve thevarss from

models at M1. This is called the substitution princ[plertev et al., 2006]

M3 Meta-metamodel

A

M2 M etamodel A

[ Modeling
| Environment

[ Metamodeling
e Tool

M1 Model “_

1 ™ Code
P Generator

MO System re —>» Conformsto
——————————————— » Relationship between model layers and tools

Figure 2.1i Four layers modeling architecture and tool support

The creation of the final realorld system follows a tegown approach, starting
from defining the models at higher layers, to deriving and generating artifacts in the
lower layer. To ease the whole workflow, metamodeling tools have been implemented to
supprt the specification of each layer and the transitions as shown in Figure 2.1.
Generally speaking, a metamodeling tool has its own M3 modeling language embedded,
and provides a metamodeling environment to enable users to create metamodels at the
M2 layer.The modeling environment (i.e., emder modeling editors) at M1 can often be
automatically generated from the metamodel. The transition to the final MO layer is
carried out by code generators for each metamodel or model translators embedded in the

modeling environment.
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2.2.2 Metamodelingrools

There are several key characteristics that nidSM took possesssuch as
generative capabilities (i.e., to automatically generate the model editor or generator from
the metanodel), change management (i.e., a runtime facility to support change
notifications in models), model serialization (i.e., used to make models persistent), and
plug-in capabilities (i.e., to provide an extension mechanism to enrich the functionality of
the tool). Examples ofmetamodeling tools are described in ttesnainder of this
subsection

Generic Modeling EnvironmeniThe Generic Modeling Environment (GME)
[Léleczi et al., 2001] is a metamodeling tool to define DSMLs for different domains. The
metamodkng language is based on the UML class diagram notation and OCL
constraints. The metamodels specifying the domain concepts are used to automatically
generate the target domaspecific environment. The generated donspecific
environment is then used boiild domain models that are stored in a model database or in
XML format.

GME has an extensible architecture that uses the Component Object Model
(COM) [COM, 201] for integration. External components can be written in any
language that supports COM (e.G.-++, Visual Basic, C#). GME has many advanced
features. A builin constraint manager enforces all domain constraints during model
building. GME supports multiple viewpoint modeling. It provides metamodel
composition for reusing and combining existing deling languages and language

concepts[Karsai et al., 2004]It also supports model libraries for reuse at the model
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level. All GME modeling languages provide type inheritance. Model visualization is
customizable through decorator interfaces.

Graphical Maleling Framework.The Graphical Modeling Framework (GMF
[Moore et al., 2004; GMF, 2011s a metamodeling todbased on Eclipse [Eclipse,
2017, which is a part of the Eclipse Modeling Proj¢EMP) [EMP, 201]. It includes
three key components to defineDSML: the domain model (i.e., the abstract syntax for
the domain defined by Ecore [Budinsky et 2004]), the graphical definition model (i.e.,
the concrete syntax for the domain, such as the figures, retbsiks used to display
the models on thdiagram), and the tooling definition model (i.e., to specify the palette,
creation tools, and actions for the graphical elements in the editor). These three models
can be integrated together and used to automatically generate a graphical modeling
environmat for aparticulardomain.

Because GMF is part of the EMP, most of the other existing technologies based
on EMP can be applied to the models built in GMF. For instance, the M2M project
(model to model transformation) [M2M, 201 and M2T project (model taext
transformation) [M2T, 2011can assist the general model transformation or code
generation tasks.

Generic Eclipse Modeling Systerithe Generic Eclipse Modeling System
(GEMS) [GEMS, 201; White et al., 200-4] is an opensource metamodeling tool in
Eclipse. The goal of GEMS is to bridge the gap between the communities experienced
with visual metamodeling tools, such as GME, and those built around the Eclipse
modeling technologies, such as the Eclipse Modeling Framework (EMF) [Budinsky et al.,

04] and GMr. Thus, domain experts that use GEMS can create an Ebhgssed
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graphical modeling tool without knowing the core components of EMP such as EMF,
Graphical Hitor Framework (GEF) [GEF, 201and GMF.In addition toautomatically
generating the modeling thdGEMS also integrates a constraint checking mechanism to
enable users to better reason about the models. The layout and appearance of models and
the modeling tool can be controlled and customized through stylesheets. Moreover,
GEMS provides a facility t@apture the events occurring in the model editing process
which is very useful for the work in this dissertati@xtensions can be made to GEMS
through the traditional Eclipse plug mechanism. The researththis dissertatiomwill

be implemented anelvaluated in GEMS.

2.3  Model Transformation and Model Transformation Languages

Model transformatn has been aoretechnology since themergenceof MDE
and DSM[Sendall and Keaczynski, 2003]Examples of model transformatiamclude
code generation from models, model synchronizadimh mapping, model evolution, and
reverse engineeringdlthough the use of a model transformation language has been
introduced in Section 1.3 athed main approach to support model transformation
processes, other alternatives are also available to implement the same tasks.

The first approach is tmmanipulaé andaccess the internatructure of amodel
instancedirectly using an API provided by aokt modeling tool,and encode the
transformation procedures in a GPL. This approach is not feasibémdarsers who do

not have programming experience, because
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GPLs lack the higlevel abstractions that are needed by -esérs to specify
transformationsIn addition, the power of #&ransformation is often restricted by the
supported API withinthe modeling tool.

Many modeling tools support importing and exporting madstances in the
form of XMLI. It is alsopossible to use existing XMtools (e.g., XSLTXSLT, 2011) to
perform model transformations outside aihadeling tool using XMl as an intermediate
representatiorAlthough XSLT can be used to transform models, it is tightly coupled to
XML, requiring experience to define the transformations usingepts at a lower level
of abstraction. In addition, transformations performed outside of a modeling tool exert a
potential risk that the models being transformed cannot be imported or exported correctly
with future versions of the tool.

By comparison, MTE raise the level of abstraction by providing a set of language
constructs specific to the model transformation tasks, playing an increasingly significant

role in various model transformation activities.

2.3.1 Categories of Model Transformation Languages

Many MTLs have been invented with different features and charactefigl®s
and Gorp, 2005Czarnecki and Helsen, 2006They can be classified into different
categories. Understandingethcategories is important for users to choose the most
appropriate MTLs for different scenarios. Some main categories will be discussed in the
following.

Exogenous versus endogenoés introduced in Section 1.3, MTLs can be

classified into exogenous MTla:md endogenous MTLs based on the difference between
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the source and target metamodels. Exogenous MTLs can be applied to handle tasks such
as model migration (i.e., changing models conforming to the source version of a
metamodel into models conforming to evolved version of the metamodel) and model
mapping (i.e., relating and transforming models between two different domains).
Endogenous MTLs fit the problems of model refactoring (i.e., optimizing the internal
structure of a model) and scalability (i.e.Jagging or reducing the model from a base
state) very well. The key characteristic of exogenous MTLs is that the expressive
language constructs to define the mappings between two metamodels are always
available (e.g., fr om ythetretatioBships arsl assdcisitians u s e
between two domains. For endogenous MTLs, the most important part of the language is
the ility to create/read/update/deleteodels (CRUD). Because endogenous model
transformation tasks focus on changing the sourceshfomin one state to another state,
or from one configuration to another, it is thus very essential to support various language
constructs to perform the transformation with complex computation and rich constraints.
Textual versus graphical.extual MTLshave their own grammar and keywords,
and users can write the desired transformation rules in blocks or funcagpical
graphical MTL usually defines a transformation rule as a LHS-Ifefid side) graph
representing the source model and a RHS @tghd side) graph representing the target
model. Then, the engine automatically matches the LHS graph in a model and changes it
into the desired RHS graph. Compared with textual MTLs, it is easier to define specific
model patterns using graphs, leading teiraplification of the trasformation rules in

many cases.
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Imperative versus declarativ&éhe imperative style uses highly reusable granular
language constructs thate capable abutlining the details of each model transformation
step For example, AspedDriented Modeling (AOM)Balasubramanian et al., 2006
Gray et al., 200[Lis an important model transformation scenario, wheahances the
modularity at the model level by allowing the separation of condemsaspects) from
the models representirtbe base system. To weave an aspect to a base model, a typical
imperative MTL enables users to specify precisely where to locate the correct part of the
base model that needs the aspect, and how exactly the aspect should be weven step
step. Using dectative MTLs, users focus omhatto do instead ohow. In other words,
declarative MTLs express the logic of a transformation without describing its control
flow. The typical example of using a declarative MTL is to specify what kind of elements
in a soure domain should be mapped to a target domain, without caring about how the
mappings and translations are implemented. AlthodgbtlarativeMTLs have many
advantageghey are not the best choice for adkcenarios (e.g., transforming an attribute
based on ertain computations is hard to represent declarativdigwever, he
imperative style should not be discounted entirilyfact, both styles are not mutually
exclusive, and a number of MTLs include both mechanisms to specify transformation

rules, offerirg the appropriate level of granularity as the situation demands.

2.3.2 Examples of MTLs
Three concrete examples of MTLs will be shown in this section, which cover the

main categories mentioned in the previous section
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Atlas Transformation Language (ATLATL [Jouault et al., 2008}s a textual
MTL, designed and implementednder theEclipse Modelto-Model transformation
(M2M) project [M2M, 2011], conforming to the proposed standdmg OMG - the
Query/View/Transformatin (QVT) [QVT, 2011] Both declarative and imperative
language constructs are available in ATL, which makes it a hybrid MTL that can be
applied to both endogenous and exogenous model transformation tasks. However, ATL is
more appropriate to handle exogesomodel transformation scenarios because its
execution engine is based on model rewriting rather thaotatse changing. Figure 2.2
shows an excerpt of model transformation rules written in ATL. The main blocks in an
ATL program are the rules, specifying to transform a model element from one
metamodel to another (e.g., Member2Male). Inside a rule, constraints on the rules (e.qg.,
not s.isFemale() ) and the specific transformation process (digiName < -
s.firstName + A A + ) are defined. Hperl aenve as function

calls in an ATL transformation, which can contain the basic logic and control statements.

helper context Families!Member def: isFemale() : Boolean =
if not self.familyMother.ocllsUndefined() then

true
else
if not self.familyDa ughter.oclisUndefined() then
true
else
false
endif
endif;

rule Member2Male {
from
s : Families!Member (not s.isFemale())
to
t: Persons!Male (
fullName < - s.firstName +'' + s.familyName
)

}
Figure 2.20 An excerpt olanATL trarsformation rule
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ATL has been implemented in Eclipse with a development toolkit plugin. A
library of existing transformations is available to reuse ff&fL Transformation Zoo,
2011] which contans successful transformation scenarios in many domains.

Embedded Constraint Language (ECECL [Gray et al., 2006jwas designed
and implemented to solve endogenous model transformation problems, supporting the in
place modifications on source models. E&fiplies and extends OCL, and supports three
types of operations: 1) Model collection can be used to navigate the source model and
group the model elements sharing the common features or satisfying the common criteria
together. Model collection provides axpressive way to filter desired model elements
from a largescale source model; 2) Model selection operates on the collected model
elements and further locates the target model elements to be transformed. The selection
process can be based on eithereba@uation of a logical expression or the matching of a
specified pattern; 3) Model transformation carries out the final transformation task on the
selected model elements. The transformation can be applied to both nodes and
connections, being capable ofiding, removing, and changing the structure and
attributes. Figure 2.3 is an excerpt of an ECL example. An aspect in ECL is used to
specify a crosscutting concern across a model hierarchyFiflkd®atal aspect collects
all the atoms in the model, selectmseDataat oms wi t h tdamldonamd be
executes thé&ddCondstrategy. A strategy in ECL is a set of transformation operations,
which in this example, creates a n€anditionatom, a new connection, as well as setting
up the attributes of eacdondtion atom.

ECL is fully implemented with a transformation engine called the Constraint

Specification Weaver (SAW) in GME. Although ECL was originally designed to
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handle aspeatriented modelingproblems, it has been extended and applied to other
general model evolution tasks such as model scalafpility et al., 2008]and model

refactoring [Zhang et al., 2005] Because ECL focuses on the same set of model
evolution problems as this dissertatimsearch, the comparison between ECL and the

result from this research will be made in a future chapter.

aspect FindDatal(atomName, condName, condEXxpr : string)

{

atoms() - >select(a | a.kind() == "Data" and
a.name() == "datal") - >AddCond("DatalCond", " value<200");

}

strategy AddCond(condName, condEXpr : string)
{

declare p : model,
declare data, pre : atom;

data := self;

p := parent();

pre := p.addAtom("Condition", condName);
pre.setAttribute("Kind", "PreCondition™);

pre.s etAttribute("Expression”, condExpr);
p.addConnection("AddCondition", pre, data);

}

Figure 2.3" An excerpt of an ECL transformation rule

Graph Rewriting and Transformation (GReAGReAT [Balasubramanian et al.,
2006-a] is a graphical language toespfy model transformations. GReAT is a set of three

sublanguages: 1) The pattern specification language defines the pattern to be matched in

the source model. A pattern consists of nodes and edges that must be present in the

model, as well as the assdmas and containment relationships. Users can also specify
negative application conditions that restrict the presence of certain patterns; 2) The

transformation rule in GReAT is the basic transformation entity, which contains the
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pattern to be matched, dma set of actions to be executed. Additionally, guards can be
defined as part of the transformation rule to determine whether the actions should be
executed based on the evaluation of the logical expression; 3) GReAT also contains a
control flow languagedo handle the larger and more complex transformation scenarios,
such as how to sequence the execution of the rules, how to execute the rules in parallel
with nondeterminism, how to control the hierarchy of the transformation rules using
blocks, and how tamplement recursion when executing the rules. The execution engine
of GReAT is built within GME using graph mapping and rewriting. Figure 2.4 shows an
example of a GReAT transformation rule. It binds all the instanc€dasts A Class B

Class Cthat sasfy the given containment relationships (i.€lass Ccan contain
instances o€lass AandClass B and connections can exist between instanc€dasis A

andClass B, and creates the ndtemelements in the container (i.€lass .
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Figure 2.4i An excerpt of a GReAT transformation rule
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2.4  EndUserProgramming (EUP)

The concept of Entllser Programming (EUP) can be traced back to th®s196
[Martin, 1967] James Martin present eMe mbstdevelopi si on
languages that the scientist, the architect, the teacher, and the layman cathase w
being computer expert¥he language for each user musaenatural as poss&to him.

The statistician must talk to his terminalthe language of statisticEhe civil engineer
must use théanguage of civil engineering/nen a man learns his profession he must
learn the probleroriented languages to go with that professighlartin, 1967]

EndUsers are defined as the final users of application programs and software,
who have not necessarily been taught or trained how to write code and programs in
traditional programming languages. EUP aims at enabling this group of useses tioeu
software in their daily life and work, and also participate in the creation, modification,
and maintenance of software applications. The most representative example of EUP is a
spreadsheet applicatiofRothermel et al., 2001]Users who are not pmdsional
developers can process tables of complex data, and create automated calculation behavior
without significant knowledge of a programming language.

Supporting EUP exerts a significant influence on the whole software community.
According to the resech done by the U.S. Bureau of Census and Bureau of Labor
[Scaffidi et al., 2005] there are 3 million professional software developers and
programmers in the U.S., while over 12 million people say that they do programming at
work, and over 50 million spadsheet and database users exist. Therefore, the total
number of enduser programmers in the U.S. alone is several times the number of

professional programmers. Theseend er sé i nvol vement in progr
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substantially to the application ohains, because 1) emsers know their domains and
problems best, so they can create the specific solutions to solve their own problems
without talking or explaining to a programmer, avoiding the potential communication
gaps; 2) after endsers receive tlreown programs and applications, they can also be
responsible for the maintenance, rather than simply complaining about the software and
seeking help from professional developers,
3) the software systems desggl with eneuser programming capability can be simpler

and less complex, due to the fact that professional programmers only need to focus on
implementing the general functions, while the -eisérs take care of using these general
functions to realize thespecific needfLieberman et al., 2006]

However, the benefits of EUP do not come for free. Problems and cost can also be
caused by applying EUP. The first and foremost problem associated with EUP is the
quality of the applications built by endsers. Wihout professional training, enders are
likely to produce errors and bugs, which can have significant impact (e.g., a numerical
error in a spreadsheet can lead to fatal failures in many areas). In addition, security
cannot be guaranteed in the applicas developed by engsers, because they may lack
the necessary knowledge on how to test and secure their applications, or in some other
cases, the security control is not even exposed teuseis. In some cases, the cost of
quality and security issues rcaveigh much more than the benefits gained from EUP
[Harrison, 2004]

In summary, while it is significant and beneficial to support EUP and enable users
to participate in software development process, ensuring the quality and security of

software applicatins built by eneusers is indispensible.
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2.4.1 Examples of EUP

The approach to support model evolution used in this dissertation shares some
features of EUP. In this section, we choose some typical and successful esxaopl
further illustrate the idea of EUP.

Programming By Example (PBE)BE[Cypher, 1993]s a technique for teaching
computers new behaviors by demonstrating actions on concrete examples. A program can
be generalized from the recorded actions duringlémonstration, which is applicable to
accomplish the same task to other examples. The goal of PBE is to make programming
easier than learning and using traditional programming languages. A popular PBE
application domain was roboti¢slarayanan et al., 20]. By moving and operating the
robots through a series of teaching, guiding, and-p&ok steps, the configurations and
desired sequential actions for the robot can be completed.

What You See Is What You Get (WYSIWMG)SIWYG [Rothermel et al., 2001]
represents a technique that enables users to edit certain content (e.g., text, graphs,
models) in a form that is exactly the same as it will appear in the final finished version or
product. WYSIWYG intends to directly control and manipulate the propertiesi@st
cases the layout) of the final product without learning and using thelelel
implementation details. For instance, users can adopt Microsoft Word to configure the
layout of a document by checking the final document appearance directly, while the
special layout control code has to be inserted into the document using [aaBXX,

2011] Another good example is that a number of Jave GUI editors are available (e.g.,
NetBeangNetBeans, 2011]Eclipse Visual EditofEclipse VE, 2011)to handle thealva

GUI interface design by dragging and dropping the various GUI control elements on the
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canvas directly. The underlying executable implementation in Java code is generated
automatically. WYSIWYG can also go beyond the layout configuration. Google App
Inventor[Google App Inventor, 20113llows users to create Andriod applications in the
same draganddrop manner, so that even young people who have no programming
experiences can develop mobile applications for their own needs.

Visual Programming Languagé¥PL) and DSMVPLs [Myers, 1986]let users
create programs by using graphical elements and constructs rather than textual
expressions. B a s epicture is wadrtln & thousdnel avord®h avtP,L sfi A a n
make the specification of certain applicationsrendirect and endser friendly. For
instance, the Microsoft Visual Programming Langufid& VPL, 2011]is a graphical
development environment designed to create datdfl@sed programming models;
KTechlab [KTechlab, 2011]Juses flowcharts to progm micra@ontrollers graphically;
OpenMusic[Agon, 1998]is a visual programming language for music composition
applications. DSM, by comparison, shares similar features as VPLs that both rely on the
graphical representations. However, although a DSML can be eoegid type of VPL,
the main difference between a VPL and a DSML is that a DSML raises the level of
abstraction by generating the ldevel software artifacts, while VPLs are usually
independent languages or development environments. When it comes tdisgdpoP,

both are effective approaches.



45

CHAPTER 3
MODEL TRANSFORMATION BY DEMONSTRATION:

AN END-USER CENTRIC MODEL TRANSFORMATION APPROACH

This chapter presents the main contribution of this dissertatiomModel
Transformation By DemonstratiofMTBD), which is an endiser centric approach to
implementmodel transformation. The basic goals and Héyel description of the idea
are discussed first, before a detailed explanation of each step and implementation
component. A formal description of the approach is also given, which defines the
functionality d the approach precisely. In order to highlight the unique features and
contribution of MTBD, related work will be discussed and compared, followed by

concluding remarks that are presented at the end of the chapter.

3.1  Overview ofMTBD
The main difficulty of learning and using MTLs to support model evolution, as
discussed in Chapter 1, results from the steep learning curve of MTLs and the challenge
of understanding the metamodetsrrectly. Therefore, the goal of the new model
transformation approach presented in this dissertation is to isolate users from learning any
MTLs or knowing any metamodels, to make the activity of performing model

transformations more engser centric.
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The idea of MTBD derives from PBE. Although PBE focuses on enabling users to
teach a computer new behaviors by demonstrating actions on concrete examples, MTBD
concentrates on a more specific programming scenario to allow users to implement model
transformabn tasks by demonstrating how to transform and evolve models on concrete
model instances.

The basic ideaf MTBD is that instead of manually writing transformation rules
in a specific model transformation language, users demonstrate how a model
transforméon should be done by directly editing (e.g., add, delete, connect, update) a
concrete model instance to simulate the desired model transformation process. A
recording and inference engine has been developed to capture all user operations
performed duringthe demonstration. After the recording process has completed, the
inferenceengine optimizes the recorded operations and infers a transformation pattern
that specifies the precondition of the transformation and the sequence of actions needed
to realize tle transformationin order to make the inferred transformation pattern more
accurate, users are allowed to make refinements on the pattern through dialogs and
wizard interfacesThe finalizedpatternis stored in the repository, and can be exechyed
the execution engine bynatching the precondition ia givenmodel instanceand then
replaying the actions to execute the transformaéiotions During the execution of a
transformation pattern, constraint checking ensures that the execution does nothgolate
metamodel definition of the domain.

The design and implementation of MTBD is independent from any MTLs, and

metamodel information is not exposed to users during the whole MTBD process, so that
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users can be isolated from learning MTLs or understandetgmodel definitions. More

details about each step of MTBD will be presented in the nex$ectinns.

3.2  MTBD Process and Implementation
Figure 3.1 shows the highvel overview of MTBD, which is aanplete model
transformation framework that allows users to specify a model transformation, as well as

to execute the generated transformation pattern in any desired model instances.

User MT Specification
Demonstration
. Operation 45 - Operation & Pattern ~ User
REC Recording ﬁ Optimization @ Inference § Refinement

Pattern
Repository

=

Correctness ¥ Execution
Checking “ .= Control

Figure 3.1i High-level overview of MTBD process

The implementation of MTBD is a pltig called Model TransformatieB8cribe
(MT-Scribe)to GEMS in Eclipse. This subection will present each of the steps and the
associated implementation details.

User DemonstratiorAuse 6 s demonstration provides t

pattern analysis and inference, so accurately demonstrating a concrete model
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transformation process is the first and foremost step. The demonstration is given by
directly editing a model instande the model editoto simulate a transformation task.

Six different types of operations can be performed and demonstrated: 1) add a model
element (i.e., node), 2) remove a model element, 3) change the attribute of a model
element, 4) add a new connection, &npve a connection, and 6) change the attribute of

a connection. Users can change any model from the source state to the target state using
these operations.

The implementation of the demonstration is enabled in the GEMS model editor.
Figure 3.2 shows anngoing demonstration in the modeling language EmFucpfM™in
et al., 2011a).

The key of the demonstrationis that it shouldbe sufficient to reflect the
transformation purpose accuratellyor example, if a model transformation scenario
requires replacingllamodel elements oElemTypel andElemType2 with other types
of elements, the demonstration must cover replacing both types of elements, rather than
only replacing one of them. On the other hand, -@le&monstration should also be
avoided. In other wordghe demonstration should be as short and concise as possible,
which means that it is not necessaoycovermultiple instances othe same type of
changes needed in the entire model instance. For exampeplace all the elements of
ElemTypel containedin the root of the modelnstead of manually deleting every
ElemTypel and adding a new type of elemedémonstrating only one replacement is
enough, because one replacement already contains the necessary information about how

the transformation should Iperformedn other locations
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Figure 3.2° An ongoing demonstration and the Operation Recording view

During the demonstration, users are expected to perform operationsiyanon
model elements and connectiprizut also on their attributes, so that the attribute
transformation can be realizedn most model evolution activities, attribute
transformation is an essential task, because the attributes in the target modelnare ofte
based on the computation using one or more attributes in the source model. To support
this type of scenarionaattribute refactoring editor has been develogetillustrated in
Figure 3.3, the attribute refactoring editorabls users to access allghattributes in the
current model editor and specify the desired transformatxpnessionge.g., string and
arithmetic computation).During the demonstrationa user specifies the attribute

computation with the concrete valusmsd obtains the concretestdts but the generic and
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metamodel level transformation rules can be inferred from it [&te¥.computation can

either be based on single attribute value assignment, or the combination of multiple
attribute values from different model elements and cotnmes. The attribute refactoring

editor also provides a mechanism to let users create a temporary data pair, with a given
name and a value. The creation of the temporarymhatas actually used to simulate the

user input process, and the data can bedus any attribute configuration and
computation process through the entire demonstration. The creation of the temporary data
will be generalized as a user input action and will display an input box when the final

pattern is executed.

= Attribute Refactoring &J
Existing Items ||| Atribute Value =
ADC Annotation N/A
Resolution Tags
sampling Ra.te issubtype false
Downsampling abstract false
Interrupt ID ModellinkTarget |
name - [T
AnalogValue = VISIbI.|It)f_Id tru.e
Output2Input : AnalogValue -» | location Point(0,.
Func2HW : ADC -> ADC BortType S —
ReadAcc size Dimensi _
ADCValue Ll m 3
AccValue
FuncZHW : ReadAce -> ECU2 || Mame Value
Analysis
Display
name
ADC B
4 n 3
100+ 2| Add Value
[ Reset ] I Evaluate ‘ I 0K ‘ I Cancel ‘

Figure 331 Theattribute refactoring editor

Because the demonstration is based on the concrete model instances, users are

fully isolated from metamodel definitions and MTL concepts, which allow them to think
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about theransformation or evolution probleasingthe concepts they are most familiar
with.

Operation Recording. User demonstration reflects the intention of the
transformation. To infer this intention accurately, the detailed information about each
operation perfomed during the demonstration should be recorded accordifigly.
information to be recorded includes the elements and connections being involved directly
during the demonstration, but also the context informafitverefore, an event listener
has been daloped to monitor all the operations occurring in the model editor and collect
the information for each operation in sequencesEMS, an extension point is available
to capture all the events occurring in the editor. The event listener extends thssoexten
point and stores all the needed information, and displays it iOgeeation Recording
view (the bottom part of Figure 3.2), where users can track all the operations being
recorded during the demonstratidable3.1 shows the six types of operatidhat a user
may perform and the related information that needs to be recorded. Each recorded
operation is encapsulated into an object, similar to the Command pattern [Gamma et al.,
1995]. The final list of these objects represents the sequence of opertte user
performed during the demonstration.

Operation Optimization The list of recorded operations indicates how a
transformation should be performed. However, not all operations in the list are
meaningful. Users may perform useless or inefficient raipes during the
demonstration. For instance, without a careful design, it is possible that a user first adds a
new element and modifies its attributes, and then deletes it in another operation later,

with the result being that all the operations regaydhis element actually did not take
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effect in the transformation process and therefore are meaningless. The presence of
meaningless operations not only has the potential to make the inferred transformation
preconditions inaccurate, but also exerts a tneganfluence on the performance of a
transformation, especially when it executes on a large model instance. Thus, an
optimization that eliminates all meaningless operations is automatically done after the
recording.An optimization algorithm has been dgged and implemented to detect the

meaningless operations and elimethem, which will be presented in Section. 3.3

Table3.1

The types of operations and the relatettext information recorded

Operation Type Information Recorded

Add an Element Location of the parent element and its meta type
The newly added element and its meta type

Remove an Element | Location of the element being removed and its meta type

Modify an Element Location of the element being modified and its meta type
The attribute name, the old value and the new value

Add a Connection Location of the parent source and target elements and their

types
The newly added connection and its meta type

Remove a Connection Location of the connection being modified and its meta type

Modify a Connection | Location of the connection being modified and its meta type
The attribute name, the old value and the new value

Pattern Inference With an optimized listof recorded operations, the initial
transformation can be inferred. Because the MTBD approach does not rely T agy
it is not necessary to generate specific transformation rules, although that is possible.
Instead, a general transformation patterinferred, which is invisible to endsers so
that they are fully isolated from knowing MTLs or any implementation details. The

transformation pattern describes the precondition of a transformationwfherg the
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transformation should be performed) and #rctions of a transformation (i.éow the
transformation should be realized). The precondition is defined by specifying the required
model elements and connections, with the constraints on them (e.g., the type of the
element must b&lemTypel ). The actons specify the sequence of operations to be
executed on the elements and connectidastifiedin the precondition. By analyzing the
recorded operations, the related refarmation of model elements and connections is
extracted to construct the precdrah, andthe actions are generatby generalizing the
recorded operation sequence.

The pattern inferred in this step is an initial version, which means that the
precondition is the weakest precondition for the transformation and the set of actions is
specific to the operations performed during the demonstration. For instance, if a user
performed an operation to remoaeelementof Elem Type 1 from the root of the model
instance, and another operation to add a new eleaidikem Type 2 in the root,the
inferred precondition is that the model instance should contain at least an et&fment
ElemType 1 in the root so that the delete operation could be executed on it. In other
words, satisfying the weakest precondition means that a model instance contains the
minimally sufficient elements for each operation to be execatecectly. Obviously,
such kind of precondition is not restrictive enough in practice. In many cases, more
specific constraints are needed for the precondition from the aspects of both stmatture a
attribute, which cannot be inferred directly from the demonstration. For instance, the
element ofElemType 1 should be removed only whemcertain attribute valug¢e.qg.,
load ) is less thari00, or only whernit is connected to another elemefElemTypel .

Similarly, theinitially inferred transformation actions are just the same as the operations
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in the recorded operation set. However, sometimes this kind of repetition is not generic
enough to refl ect Thus ausareentest secared aftar the e nt i
inference of the initial transformation pattern to let users make the pattern more accurate.
User refinementThe initial pattern inferred is specific to the demonstration and is
usually not practical and accurate enough, due to théatiom on the expressiveness of
the user demonstratioithus, MTBD allows userso refine the inferred transformation
by providing more feedback for the desired transformation scerBhniee types of
refinement can be performed: 1) refinement on the tstraicprecondition, 2) refinement
on the attribute precondition, and 3) refinement on the transformation actions. In order to
keep users at the appropriate level of abstraction without knowing MTLs or metamodel
definition, all the refinements can be donerough interfaces that only expose
information from the demonstration on the concrete model instances.
The refinement on the structural precondition aims to restrict the required model
elements and connections to be included when matching a model traatgorpattern.
From the example mentioned in the previous-sedtion, after a user demonstrates
removal of an element &lemTypel , the structural precondition inferred only contains
oneElemTypel . If the desired transformation scenario is to removedlg@ment only
when it is connected to anothElemTypel trough a connection, users can refine the
inferred transformation pattern by including the additional required elements or
connections. The refinement can be done directly in the model editor, btirgekbe
concrete elements or connections and confirming their containment usingdickne

pop-up menu in the editor, as shown in Figure 3.4.
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Figure 3.4i Refine structural precondition by confirming containment

The refinement on an attribute precondition enables users to give constraints on
the attributes of model elements and connections specified in the structural precondition.
When matching a transformation pattern in a elomstance, after the structure is
matched, all the constraints on the attributes must be satisfied as well. The constraints on
attributes are specified using logical expressions. For instance, if the desired model
transformation scenario is to remokzée mrype 1 only whenload < 100 , users can
find out the element dElemType 1 in the precondition specification dialog, select the
attrilohdu,tée fiiol | owed by g<sMW0.n@ The exmpgtersasii
based on multiple attributes on different moeleiments and connections. For example, if
ElemType 1, ElemType 2, and ElemType 3 are involved in the precondition, the

constraint can bHemmpaldoaddtyElers p aypeée Xlopad axg i
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ElemType3.doad . 0 The refinement i s dgore 85Then a di
upperleft lists all the recorded operations in the demonstration. By clicking on a specific
operation, all the model elements involved will be listed, so that a usdocate the
elements for which they want to provide more constraintsil&iy, by clicking on a

certain element, all its attributes and associated values are listed. Users can select certain
attributes and type the necessary restrictions. Also, constraints can be given on the
attributes that are not defined in the metamodeth as the number of outgoing or
incoming connections. Through this interface, users continue to work at the model
instance level to give specific preconditions on the elements they considered in the
demonstration. The metaformation and generic comgiion will be inferred and stored

in the transformation pattern automaliga with the information on the lovevel
implementation and metamodel definition being hidden.

The inferred sequence of transformation actions also can be refined by users. The
mog typical scenario is to identify the generic operations that should be repeated
according to the available model elements and connections. An illustrative example of
this refinement is when a user wants to remove all the elemefiemiTypel in the
root of the model instance. Instead of demonstrating the removal of all the elements, the
demonstration is done by only removing one of them. In the initially inferred
transformation actions, only a single operation (i.e., renid@m1 ) is included. Without
refinement, the execution of the transformation pattern will only trigger the removal of a
singleElemType 1, rather than deleting all of those contained in the root of the model as
expected. Therefore, users can refine the transformation actions, by madnking t

operation generic. A generic operation means that during an execution of a
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transformation pattern, the operation should be executed repeatedly by matching the
related precondition in the current model until no more matches can be made. The
identification of generic operations can be accomplished by marking the list of

transformation actions in a dialog, as shown in Figure 3.6.

= Precondition Specification &J
Element Selection Precondition Combination
No. Type Elements - Precondition Root
5 ELEM_REMOV... Location: name.Site3(Root.Site]  Removed Element: name(Gat EventChannel Out Cann-1
6 COMMN_ADDED  Connection: EC2GW  Source: name.Site3. EventChannel(Root.Si
7 COMMN_ADDED  Connection: EC2GW  Source: name.name.Site3.name(Root.EQ4
.c m 3
Element Type
name EQALFolder
Gateway4 Gateway
narne EventChannel
name Root
Attribute Value -
narne Gatewayd E
abstract false
issubtype false
location Point(D, 0} il
Gatewayd.name = "NewGateway'| Out_Conn 1 5 Add Remove

[ oK I I Cancel

Figure 3.5 Precondition specification dialog

Pattern Repository.After the user refinement, the transformation pattern will be
finalized and stored in the pattern repository for future Beeause the transformation
pattern is represented by different types of objects (i.e., precondition objects,
transformation action objex), the current implementation of MTBD serializes all the

objects in a transformation pattern and stores them locally.
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f = ldentify Generic Operations [iz-,r

No.  Type Element
1 ELEM_ADDED Location: EQALRoot.EQALRoot{Root.EQALFolder) N
2 ELEM_ATTRI_CHAMNGED Location: EQALRoot.Sitel (Root.Site)  Attribute: name
3 ELEM_ADDED Location: EQALRoot.Sitel (Root.Site)  Mew Element: r
4 ELEM_ATTRI_CHAMNGED Location: EQALRoot.Sitel .EventChannel(Root.Site.Evel

7] 5 ELEM_ADDED Location: EQALRoot.Sitel (Root.Site)  Mew Element: r

V| 6 ELEM_ATTRI_CHAMNGED Location: EQALRoot.Sitel . Gatewayl (Root.Site. Gateway

| 0K | | Cancel

Figure 3.6 Generic operations identification dialog

Pattern ExecutionThe final generated pattermsthe repositorycan be executed
on any model instances. Because a pattern consists of the precondition and the
transformation actions, the execution starts with matching the precondition in the new
model instance and then des out the transformation actions on the matched locations
of the model. The precondition matching is done by traversing the model instance to
search all locations thaatisfy boththe structural and attribute preconditioriBecause
both the preconditioand the model instance can be regarded as graphs, the precondition
matching problem could be solved by using graph matching theories [Varréet al., 2005].
A backtracking algorithm has been developed to match a prigioonith a given model
instance, as psented in Section 3.2 notification is given if no matching locations are
found. In MTBD, a matching location is defined as a part or substructure of a model that
contains all the model elements and connections required in the precondition thas satisf

all the constraints given in the wuseros

r
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After a matching location is found, the transformation actions can be executed
with the matched model elements and connectibroperations are identified as generic,
the execution engine will rematthe related part of the precondition, and execute these

operations as long as additional matching can be made.

= Replay Task ﬁ

Select Task:

CreateADC
ApplyBuffering
ApplyBuffering
MNewDemo
ScaleEm-1
ScaleEm-2
ScaleEm-3

Description: 5

[ Rin ][ Remove |[ Cancel

Figure 3.7i Execution contrdér dialog

Execution ControlUsers can select the pattern in hecution controlledialog
shown in Figure 3.70 execute an inferred transformation pattern from the repository.
Users carselect multiple pattern execute in sequencehich is particularly useful
when a model transformation task is divided by-taslis and specified by different
demonstrations. In additiomhe total times for executinthe selected pattern(s) can be
specified because in some use cases (e.g., model scalability), a transformation pattern(s)
needs to be executed multiple times to ¢sfarm the model to a specific state and
configuration. Moreover, users can customize part of the model instance to execute the

pattern. By default, a transformation pattern will be executed in the root of the current
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model instance and matched in the whuledel. Users are also allowed to select a partial
model as an input base to match a transformation pattern.

CorrectnesChecking.The location matching the precondition guarantees that all
transformation actions can be executed with necessary openaitds satisfied
constraints However, it does not ensure that executing them will not violate the
metamodel definition or external constraints, because the implementation of executing
the actions is based dhe low-level model manipulatio®PIs provided by GES that
could be applied without the monitoring of the GEMS checking mechariiberefore,
the execution of each transformation action will be logged and the model instance
correctness checking is performed after every execution. If a certain actioevitiiat
metamodel definition, all executed actions are undone and the whole transformation is
cancelled with the model instance being rolled back to the initial stBezause the
transformation actions have been encapsulated as objects in the Commeamy bt

undo process implementedirectly.

3.3  Formal Specification of MTBD
As a new model transformation approach that is at a higher level of abstraction
than MTLs, MTBD provides an enaser centrisolution to handle model transformation
problems. Different from MTLs that have weléfined language syntax and semantics to
precisely reflect the power and functionality, the usage and power of MTBD cannot be
expressed directly in a similar way. Themefoa formal specification of MTBD is
presented in this section, for the purpose of accurately describing the process of MTBD

and defining its power and full functionality.
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Using the description of MTBD provided in Sectior2,3a formal model of the

MTBD has been built as Stuple:
o |2 o o © o ©
MTBD = (D,,, TG(M,,D,,),v (M,,D,).F(P.T),x(M ,PiT)) (1)
where:

1 M; is a model conformant to the metamobligta

1 M; is a model also conformant to the metamddeta

-

1 D_ is a sequence of model modificationsecorded during a user

m
demamstration of a transformation on the modéi,

1 TG(Mi,Sm) is a generalization function that producesimitial set ofmodel
transformationactions 'I? that can be applied to any model conformant to

Meta. The transformabn is produced by generalizing the series of

-
modifications,D,,, that were applied ti;.
\ %
17 v(M,,D,) is an inference function that extracts a set of preconditims,

A4
needed in orderot generalize andpaly the modifcations,D,,, to another
model.
1 f(F\;,'F’) is an optional manual tngformation and precondition re&@ment

function that allows the domain expert to modify the transformation and

preconditions inferred byfG and » . Thi s funct i med prod
transformation,ﬁ, and set of preconditiorﬁli.

- o
T x(M;,Pi,Ti) is a transformatin function that applies the reéd generalized

transformation,ﬁ, to a modelMV;, if the preconditionsF\;iare met byM;.
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3.3.1 OperationDemonstration an&Recording

The goal of MTBD is to allow users to express domain knowledge regarding a
functon, K(M;). That is, the useis describing a domaispecific function that can be
applied to a model imrder to achieve a domaspecifc goal. A critical component of
MTBD is that the domain function (transformation) is expressed in terms of the nstatio
in the modeling language and not the notations used to describe the metatetalel,

MTBD captures domain functions as transformations that can be applied to
models that adhere to the metamodégta, of the target domain. The d$ir step in

MTBD is for a user to apply the domain functid€(M;) to a model, so that the MTBD
engine ca capture the set of model modﬁtions,Sm. The process begins by the user or

an external signal initiating a recording process. During the recopdowess, the user
applies the domain functiok(M;), to the modellM;:

KM+ M 2)

K: MetaY Meta (3)

The domain function takes an initial mod#f;, as input, and produces a new
model, M;, as output. Although it is possible thgt and M; are notconformant to the
same metamodeMeta, thisdissertatiorexplicitly focuses and enforces this assumption.
Equation 3 shows that the domain function must represent an endogenous model

transformation that maps a model in one metamodel to a model in teersstaimodel.

3.3.2 Operation Optimization

-
The set of modification®,, potentially can contain meaningless operations due

to a usersd6 careless design o fdevelopedl domonst r
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-
remove these meaningless operations and optibjzeas shown in Algorithm 1. The

algorithm traverses the whole recorded operation list, and seeks the meaningless
operation pairs on the same model element or connectidnasuemoving after adding,

or multiple modifications without making changes between source and target states.

for eachop in the input operation list
switch (op.type)
caseADD_ELEM:
for eachop_temp after the current op in thst |
if op_temp.type == REMOVE_ELENNd op_temp removes what op added

and the element was not referred in between
then remove both op and op_temp from the list
end for
caseMODIFY_ELEM:
traverse the final model instance and search the element being modified
if not foundthen remove op from the list
if foundthen compare the attribute value with the value stored in op
if differentthen removeop from the list
caseADD_CONN:
for eachop_temp after the current op in the list
if op_temp.type == REMOVE_CONANd op_temp removes what op added
and the element was not referred in between
then remove both op and op_temp from the list
end for
caseMODIFY_CONN:
traverse the final model instance and search the connection being modified
if not foundthen remove op from opList
if foundthen compare its attribute value with the value stored in op
if differentthen remove op from opList
end for

Algorithm 17 Optimize Operation List
3.3.3 Pattern Inference
After the recording proces the MTBD engine possesses a seriespaimized

model modiications Bm, thatexpress the application of the domain functiivi)), to a

specfic model. The next step of MTBD is to use pattern inference to generalize and

describe thelomain function as a model transformation. A critical aspect of this process
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is that the transformation must be expressed in terms of the general metamodel notations
captured inMeta, rather than a spdit  mo d e | 6 s M. eTheeimferemde sstep

produces a model transformation, which we deserds a tupte

o
Transforméon = <P'F> 4)

\
where P is a set of preconditions that must be met in order to apply the transformation

produced by functiorv , andT is the set of generalized model niocktions that

transform the source model to the desired target mgadetiuced by functio@G. In
terms of the domain function?\,; describes the domain knowledge regarditg
circumstances in whickk(M;) can be appliedand T defines what to do when these

circumstances are met. For examplethia previousexample from Sectiof3.2, P is the

precondition thathe element must be corated to another element atite loadattribute

is above a set threshoIWhere'F representshe modificationsieeded in order ttemove
or replace the element

As mentioned in the previous ssbction, he preconditionsan be subdividd
into two types:

Structural preconditionsthat govern the types of elements, the containment
relationships, and connection relationships that must exist within the model.
structural preconditions take the form of assertions on the hierarchy or tionnec
relationships that must be present in the model. A hierarchical precond®@onis
described as a vector:

Pe=To, T1,..., Th (5)

whereTy is the type of a element that is directly mod#d by one or more operations in
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Sm, T, is the type of the parent @, T» is the type of the parent @i, and so forth to the

root element. In order for this precondition to hold in an arbitrary mdjekn instance
of the typeTy, contained within an element of typg must exist. Moredrmally, given
an elementg, in a modelM; that conforms to the metamod®leta, a hierarchical
preconditionPe, is sdisfied bye if:

V (e, Ti) = (typde) ==Ti)~ (V(&+1, Tis1)) (6)

é\V (e, T,) = #rue), true
P =i
a(&) :'otherwise false

(7)

A connection precondition is anothdorm of a structural precondition.
Connection preconditions dictate the associations that must be present in the model. A
connection preconditio®g, is defned as a-3uple:

Pc=<Pg, Pg, Ti> (8)
where Pg specifies a structural precondition thatust be met for an element to be
considered the source elent of a connection to be moeii; Peis a precondition that
must be met for an element to be considered the target element of the connection; and
is the type of connection that must existween the elements that satisfy the source and
target structural preconditions. In order for a connectigietween two elements,and
g, to satisfyPg:

&Pe, (e) DPg () D(type(c) = ), true
PG :ipei (e;) DPe (&) D(type(c;) = ), true (9)
%otherwise false

\ %
The inferencev (M,,D,,) function evaluates each change D, that occurred.

From these changes, structural preconditions are extracted as follows:

1 Added Elements~or each model elemesf that is added to the model as a
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child of g, a preconditiorPg is created. The type vector fBg cagures the
types of elements that are visited from traversing fepto the root of the
model.Typ is set to the type d.

f Removed Elementdf an elementeg is removed from the model, a
preconditionPeg, is created. The type vector fée captures the fyes of
elements that are visited from traversing fraio the root of the modeTy is
set to the type oé.

1 Added ConnectionsEach new connectiorg;, that is added from model
elemente to g produces a new preconditid?g. The type vector for the
source elementPg captures the types of elements that are visited from
traversing the source element to the root of the model. The type vector for the
target elementPg, captures the types of elements that are visited from
traversing the target elementttee root of the modet, is set to0 to indicate
that no existing connection is required between the elements that $aisfy
andPe..

1 Removed Connectiongach deleted connectio;, that previously started
from model elemeng and ended at model etentg produces a new precon
dition, Pg. The type vector for the source elem®st captures the types of
elements that are visited from traversing the source element to the root of the
model. The type vector for the target elemdpdy, captures the tygs of
elements that are visited from traversing from the target element to the root of

the modelT;is set to the type af.
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1 Changed Element Attribute an element, has an attribute value changed,

a preconditionPg,, is created. The type vectarrfPeg, captures the types of
elements that are visited from traversing fraio the root of the modely is
set to the type oé.

1 Changed Connection Attributeff a connection ¢, has an attribute value

changed, a poonditionPg, is created. Theype vector for the source element

Pg captures the types of elements that are visited from traversing the source
element to the root of the model. The type vector for the target eldmaent
captures the types of elements that are visited from traversadatiget
element to the root of the modé&|is set to the type af.

Attribute preconditionsspecify the required values of attributes on thedel
elementghat a transformation withpply. The attribute preconditiondg, are specified as
tuples

AG = <Ps, Expr> (20)
wherePg is a structural precondition specifying the source model element to which the
attribute precondition must be checked. THpr component speci#s a mathematical
expression over the attributesaf element that satisig. Currently, the attribute must
be a primitive value andny logical and arithmetic expressiare supported.

Complete structural and attribute preconditions arecadiffito infer automatically.
Simple algorithms can extract preconditions that spetliy minimum number of
required model elements and connections, amdxact value of one or more element
attributes. However, these algorithms are often too exclusive and generate preconditions

that require exact matching dfie structure anall attribute valies. Ideally, attribute






