
CSeR: A Code Editor For Tracking And
Highlighting Detailed Clone Differences
Ferosh Jacob, Jeff Gray - {jacobf, gray}@cis.uab.edu - University of Alabama at Birmingham
Daqing Hou - dhou@clarkson.edu - Clarkson University

Introduction
We designed and implemented a code editor
named CSeR (Code Structure Reuse), which
keeps a record of clones created by “Copy and
Paste” operations. In addition, CSeR detects
and highlights the changes made to a clone
with distinct colors using an edit-based algo-
rithm. An empirical study was conducted with
37 test cases collected from both industry and
research projects to test the robustness and use-
fulness of the tool. A total of 533 changes
were identified and categorized into 20 dif-
ferent types. A comparative study with re-
lated tools is included, which demonstrates the
uniqueness of CSeR.

Implementation
CSeR is implemented as an Eclipse plugin
that extends the Java editor without disturb-
ing any of its existing features. The changes
will be shown directly in the Eclipse code ed-
itor. Changes representing inserted or new
(AST) nodes are shown in green, removed
nodes in red, updated nodes in yellow, and
moved nodes in blue. Mouse hover events
will reveal more details about the change.

Copy and Paste operations are tracked within
the development environment and the copied
and pasted code is identified. The initial step
requires parsing the code of a class to ob-
tain subtrees to build up the correspondences
among the clones. When a class is modified
within a code editor, the smallest block that
contains the change will be identified and the
corresponding block will be compared to iden-
tify what kind of change has been made.

Example Scenario
A study of the two classes (SetFilterWizardPage, ExclusionInclusionDialog) reveals
that there is a good chance that the two classes were copied and pasted from each other.
A screen shot of the intermediate state of the editing process is shown in Figure CSerView.

a) External View b) Outline,Source View

c) CSeRView

In the figure above, the change marked ‘1’ is categorized as an update change (change of superclass
from StatusDialog to NewElementWizardPage). The changes shown in green represent new
code. For example, ‘2’ is a new field and ‘6’ and ‘7’ are two newly added parameters. Code that
remains unchanged is shown normally, e.g., those lines near ‘3’. The two changes marked ‘4’ and ‘5’
correspond to the deletion of two parameters before and after entryToEdit, respectively. Finally,
the change marked ‘8’ indicates a move operation from several lines above. In case of update and
delete changes, the original code can be seen within a popup box when the mouse is positioned
near the marker, as shown in change ‘1’.

Validation
Robustness The kinds of edits that CSeR supports are shown in Table 1. For every edit, there will
be one goal, which is the purpose of editing while there can be different ways to achieve it, actions.
Names refer to anything that is not a keyword in Java. Names can be method names, class names,
and variable names. Lists correspond to structures which appear between list delimiters such
as {}s surrounding lists of statements and the ()s surrounding lists of parameters. List elements
are delimited by single characters such as “;”s between statements and “,”s between parameters.

No Type Goal Description Action Description Implemented
1

Names

Creating a name Paste or Type
√

2 Replacing part Paste or Type
√

3 Correcting typos Backspace and Type
√

4 Replacing name Backspace, Type or Paste
√

5 Removing name Backspace, Delete or Type
√

6 Splitting a name Type in between
√

7 Renaming Using tools ×
8

Lists

Creating a new list Type or Paste
√

9 Inserting a new element Type or Paste
√

10 Removing an element Delete, Type or Backspace
√

11 Moving an element Cut and Paste or Copy Paste and Delete
√

12 Removing entire list Backspace or Delete
√

13 Flattening a list inside a list Backspace or Delete
√

14
Expressions

Inserting a new expression Type or Paste
√

15 Updating an expression Type or Paste
√

16 Removing an expression Delete, Type or Backspace
√

17 Moving an expression Cut and Paste or Copy Paste and Delete
√

18 Comments Comment code Type Line or Block comment
√

19 Creating annotations ×
20 Inside expressions Type Block comments

√

21 Keywords Insert keyword ×
22 Update keyword ×
23 modify keyword ×

No Change Distribution Description Internal Distribution

Update (49 %, 261)
1 Variable Name (V) 49 %
2 Variable Type (T) 26 %
3 Method (M) 15 %
4 Literal (L) 8 %
5 Other (O) <2 %

Delete (33 %, 177)

6 Statement (S) 40 %
7 Method Declaration (M) 28 %
8 Field Declaration (F) 21 %
9 Expression (E) 8 %
10 Parameter (P) < 1 %
11 Class Declaration (C) < 1 %

Insert (16 %, 82)

12 Statement (S) 46 %
16 Field Declaration (F) 26 %
15 Method Declaration (M) 14 %
13 Parameter (P) 10 %
14 Expression (E) 2 %
17 Class Declaration (C) 2 %

Move (2 %, 13)

18 Method Declaration (M) 54 %
19 Statement (S) 39 %
20 Class Declaration (C) 7 %

Table 1. Common code edits and CSeR Table 2. Summary of the 533 changes

Experiment Results Table 2 shows change classification from the test cases (37 pairs of cloned
classes and code fragments) collected from three sources: Eclipse, more specifically from JDT UI,
JDT Core and SWT projects; JavaLobby Community Platform (JLCP), a project that aims to write
a number of components to produce a free Java Portal site based on an internal forum system; re-
search literature (10 pairs of clones). The clones from the literature deal with extreme cases, and
also from diverse domains.

Future Work
Clone groups. CSeR considers clones in pairs.
Clone groups refer to cases where there are
more than two clones. A better design for CSeR
would be to connect all the clones together as
a group and support viewing the difference of
a file with respect to any other clone within a
clone group.
Tracking code and inferring templates. Consider
a scenario in which a developer is working on
a large file and something is not working and
he is not sure what he has changed. CSeR
could be extended to track changes of code be-
tween two time frames of editing. CSeR can
even provide a capability to go back before an
edit. Since CSeR calculates the editing regions
in clones, we can integrate it with the Eclipse
template feature. For example, while pasting a
few lines of code, an option is provided to acti-
vate CSeR templates. CSeR calculates the edit-
ing regions and passes the information to the
template model to form a new template.

1


