CSeR: A Code Editor For Tracking And
Highlighting Detailed Clone Differences s gftgim“-®

Ferosh Jacob, Jeft Gray - {jacobf, gray}@cis.uab.edu - University of Alabama at Birmingham
Daging Hou - dhou@clarkson.edu - Clarkson University

Introduction Example Scenario
We designed and implemented a code editor A study of the two classes (SetFilterWizardPage, ExclusionInclusionDialog) reveals
named CSeR (Code Structure Reuse), which that there is a good chance that the two classes were copied and pasted from each other.
keeps a record of clones created by “Copy and A screen shot of the mtermed1ate state of the editing process is shown in Figure CSerView.
Paste” operations. In addition, CSeR detects ——— e
and highlights the changes made to a clone e s s g s
with distinct colors using an edit-based algo- — — e et / fowtene s
rithm. An empirical study was conducted with i o
37 test cases collected from both industry and e |
research projects to test the robustness and use- | - — e J
fulness of the tool. A total of 533 changes S a— N e R
were identified and categorized into 20 dif- N 1l
ferent types. A COmparative Study Wlth re- oty e " e stostogey o
lated tools is included, which demonstrates the e I

a) External View b) Outline,Source View

uniqueness of CSeR.

5 public class ExclusionInclusionDialog extends StatusDialog -[1 {NewElementWizardPage->5tatusDialog}
Press 'F2° for focus

private static class ExclusionInclusionLabelProvider extends LabelProvider {

Implementathn ;:I private Image fElementImage;
. . . . i~ public ExclusionInclusionLabelProvider({ImageDescriptor descriptor) {
CSeR is implemented as an Eclipse plugin s LncgeDescriptorRegtstry registry= JovaPlugin. et InageDescriptorkegistry()
that extends the Java editor without disturb-]
ing any of its existing features. The changes 7 P eturn fevementinage; ot
. . . . 71 1
will be shown directly in the Eclipse code ed- 7 |
. . . * public 5tring %]E‘I:Textl::ﬂhject Elemer'_lt} { .
ltor. Changes representlng lnserted Oor new -. , return BasicElementLabels.getfilePattern{(5tring) element);
(AST) nodes are shown in green, removed 42
nOdeS in red, updated nOdeS in yellOW’ and 7 . L DiglogEield £Incl B . 2'|:|r'i~..'-::te static final 5tring PAGE_MNAME="SctFilterWizardPoge™;
. 28 private ListDialogFie nclusionPatternlis '
moved nodes in blue. Mouse hover events s private ListDialogField fExclusionPatternlist; e 72 o o
will reveal more details about the change. 2 private IProject fCurrProject;
public class TestWorldApp | public class TestWorldApp | &5 private IContainer fCurrSourcefFolder;
public static void main (String[] args) { public static void main (String[] args) { i private static final int I0X_ADD= @:
. [, (121D N EEE TR g8 private static final int IOX_ADD _MULTIPLE= 1;
System.out.println("Test Worl Sys terrl out. ntln(Hellg\Wcrld) ;
| I Ii:t:zi | I 03h35| : | 29 pr‘iuute 51:1]1:?:: ;inu:: ir'lt }fgi_ggffg;fz,. 3
53.50) l private static final 1int - =
} \} niz;.'_za\ /E 4 5 .

public ExclusionInclusionDialog(Shell parent,CPListElement EntryT{:Ed., boolean focusOnExcluded® {

94 E-LJII:IEF'I::I'JEFEH‘E. T
— 'r- fCurrElement= entryToEdit; &

Che;k\l;c:;;jn Chec;’;ion CheckPosition ChockPosition setTitle{NewNizardMessages.ExclusionInclusionDialog_title);
52129 0350 103,39 a22.1% c) CSeRView
| Checkpostions In the figure above, the change marked ‘1" is categorized as an update change (change of superclass
cseR Databse from StatusDialog to NewElementWizardPage). The changes shown in green represent new

code. For example, 2’ is a new field and ‘6" and 7" are two newly added parameters. Code that
remains unchanged is shown normally, e.g., those lines near ‘3’. The two changes marked ‘4" and ‘5’
correspond to the deletion of two parameters before and atter ent ryToEdit, respectively. Finally,
the change marked ‘8" indicates a move operation from several lines above. In case of update and
delete changes, the original code can be seen within a popup box when the mouse is positioned
near the marker, as shown in change ‘1’

Copy and Paste operations are tracked within
the development environment and the copied
and pasted code is identified. The initial step
requires parsing the code of a class to ob-
tain subtrees to build up the correspondences
among the clones. When a class is modified
within a code editor, the smallest block that

contains the change will be identified and the Validati
corresponding block will be compared to iden- aliagation

tity what kind ot change has been made. Robustness The kinds of edits that CSeR supports are shown in Table 1. For every edit, there will
be one goal, which is the purpose of editing while there can be different ways to achieve it, actions.
Names refer to anything that is not a keyword in Java. Names can be method names, class names,
and variable names. Lists correspond to structures which appear between list delimiters such
Future Work as {}s surrounding lists of statements and the ()s surrounding lists of parameters. List elements
are delimited by single characters such as “;”s between statements and “,”s between parameters.

Clone groups. CSeR considers clones in pairs.

o Tron Sl Too e e No Change Distribution Description Internal Distribution
Clone groups refer to cases where there are I Creating a name Paste o Type y 1 Variable Name (V) 00
. cpracis par asie of Aype 2 Update (49 %, 261) Variable Type (T 26 %
more than two clones. A better design for CSeR S Names Somecting ypos Packspaceand Type v 1L 157
l d b 11 h 1 h 5 Removing name Backspace: Delete or Type Vi 1 Literal (L) 5 O/f,)
wou e to connect all the clones together as ; Colitig - name Tope in berween v 5 Other (O) 2%
a group and support viewing the difference of 4 Creating s e T Trpesr Pack 7 : Statement §)__ 40%
. . . . 9 Inserting a new element Type or Paste vV 3 Delete (33 %, 177) Fijlt ¥ Cﬁ)ed:faiirc?sc()g)() 5710 /O
d flle Wlth reSpeCt tO any Othel‘ ClOIle Wlthln a 10 Lists Removing an element Delete, Type or Backspace v 9 T3] 8%0
11 Moving an ele.mer.lt Cut and Paste or Copy Paste and Delete Va 10 Pafameter) 1%
clone group. 13 Flatienin list nside alst_Backepace or Delete y 1 Do (] S17
Tracking code and inferring templates. Consider B oresions §mg 2 new expression Type or Pare v 12 Statement (5) 1%
. 16 Removing an expression Delete, Type or Backspace ¥ 16 Insert (16 %, 82) Feld Declaratlon. ®) 26 %
a SCeENario 1n Wthh d developer 1S Work]-ng on 17 Moving an expression Cut and Paste or Copy Paste and Delete v 15 Method Declaration (M) 14 %
. . . . 18 C Comment code Type Line or Block comment N ii]I;arame?er (PE) 120 //O
d large flle and SOmethlng 1S nOt WOI'klng and 19 omments Creating annotations X xpression ().
. 20 Inside expressions Type Block comments Va 17 Class Declaration (C) 2%
he is not sure what he has changed. CSeR 2 s Insertkeyword X . Method Declaration (M 549
2 ! Upplsize ey . 19 Statement (5) 2 39 %
could be extended to track changes of code be- 23 modity keyword : 20 MOveR®1Y) s Declaration (O 7%
tween two time frames of edltlng CSeR can Table 1. Common code edits and CSeR Table 2. Summary of the 533 Changes
even provide a capability to go back before an
edit. Since CSeR calculates the editing regions Experiment Results Table 2 shows change classification from the test cases (37 pairs of cloned
in clones, we can integrate it with the Eclipse classes and code fragments) collected from three sources: Eclipse, more specifically from JDT U],
template feature. For example, while pastinga | ' JDT Core and SWT projects; JavaLobby Community Platform (JLCP), a project that aims to write
few lines of code, an option is provided to acti- | | 3 number of components to produce a free Java Portal site based on an internal forum system; re-
vate CSeR templates. CSeR calculates the edit- search literature (10 pairs of clones). The clones from the literature deal with extreme cases, and
ing regions and passes the information to the also from diverse domains.

template model to form a new template.

