Stocks@home

Volunteer Computing and Wall Street

Procedure

Create a volunteer computing

ObJeCtlve I t f t k I I 1. Install nOde'jS = C' [localhost:8888/start
application 10r Stock analysis 2. Implement server framework Stocks@h Client e T The data were collected on a
- - - ocks@home Clien . ; - single device running multiple
3. Program function to calculate exponential moving averages - .
4. Program MACD analysis function Scaleability My Project! instances of the Stocks@home
L] G\ .
5. Implement requestTask request handler to distribute tasks to £ 1000 This is my senior project... web client ho.sted Ioc.ally to
: % nalysis m e-
the client from the server 4 a0 Analysis Complete... — ncoming. emulate multiple devices
ACT: Invest, price i i ing.
Abstract 6. Implement reportResult request handler to collect responses gggggg ‘ Avesh, price Ineremse incoming collaborating over the internet.
fr'Om the C|IentS fOl' anaIyS|S %26000 ’ Q [] Elements Network Sources Timeline Profiles Resources Audits | C Th t t k f th
1 1 - - - I I S 6.9987685379214462' 6:7883385874355597’ 6:41435711949225793 5.68347
applications today. However, a large portion of their data cycles is 8. Program an xmlhttp request in the client code to call the ;ggggg STEli5 T sa0rar2, Lo 0s00ssearsseriess, <o, 15477513670404151, I'Octst@ ome IS?rvetr aE
WaSted during idle time' The purpose Of thiS prOjeCt iS to Create a requeStTaSk handler in Order to Obtain the StOCk tiCker for ig O 1 2 3 4 5 ;E ézzs:nSRﬁt?::;gsged h*:;:;.)://SB.amazona'w's.cor“./victor—sui/EQR.csv“s179 C Ierl] S. O CordT]p ﬁ eds OC d
browser page that can take advantage of these wasted cycles, analysis. Clients count=179. snizljells lraleliallyy teizae

as more clients were added.
However, as more clients were
added the test device struggled
to provide the resources
needed to drive each client. A
performance plateau was
oy experienced at four clients. The
nedusstror freporcResule received | sos:. system’s CPU ran at 100%
during all three four-client trials.

About to route a request fTor /sreportResult
Request handler ‘'reportResult' was called.
Value is 0.2962325362244833 of STZ

using them to analyze stock price trends. Multiple machines will 9. Implement a callback in this request to perform another
analyze individual stocks and send their results to a central xmihttp request to get and analyze the stock data stored on
server, which will then determine the most profitable investment the Amazon web server using the obtained stock ticker
strategies from the compiled data. 10.Implement another callback to launch the reportResult handler
Following the naming convention of popular volunteer computing to post the response to the server once calculations are
projects such as SETI@home, this program will be called completed

stocks@home. Stocks@home has the potential to have 11.Have the requestTask function call itself recursively until the
processing power of a supercomputer for a fraction of the cost server sends out an ‘all-done’ message

due to the prevalence of consumer computers and web browser 12.Display result to clients

users. The only limit to its computational capabillities is the 13.Compile stock data from finance.yahoo.com and upload it to

number of contributing users. the Amazon web server
14.Run finished program and record the time taken to analyze all

the stocks in the server for different numbers of clients

» [808.13, 93.83, 91.61, 81.82, 91.9V8, 83.8, 95.31, 96.49, 856.82, 94.8,
96.19, 95.19, 86.31, 92.52, 89.83, &88.%91, 88.1, 93, 92.323, 58.79, 9é
86.53, 87.74, 85.86, 84.51, 87.46, 86.88, 83.68, 84.21, 86.68, 92.24
93.82, 94.85, 96.41, 95.v6, 895.82, 82.45, 91.14, 85.47, 85.34, 86.37
88.19, 99.75, 82, 91.8, 98.3, 87.24, 86.72, 94.87, 896.74, 9%9.56, 101
96.35, 98.16, 85.85, 97.56, 898.75, 88.5, 99.55, 98.97, 96.1, 98.28,
91.5, 88.42, 92.1, 83.4, 82.87, 96.83, 92.76, 91.22, 91.27, 88.17, &
94.56, 93.61, 85.89, 96.57.]

Received POST data chunk "'"0.08201521385853511%202"'.
About to route a request fTor /sreportResult

Request handler ‘'reportResult' was called.

Value is 0.08201521385853511 of GLWwW

Request fTor /srequestTask received

About to route a request Tor /SsrequestTask

Request handler 'requestTask' was called.

31118 31734 30463 31105
27086 27013 26823 26974
26046 24819 25616 25494
25718 24924 25361 25335

B~ W ON -

*Tested on a mid-2010 MacBook Pro on Safari 8.03. Smaller completion times indicate greater processing speeds.

Introduction

 The large demand for processing power is often fulfilled by
expensive supercomputers

* Volunteer computing: A central server sends many clients
small tasks, receives responses from those clients, and
compiles those responses into a useful result

* In this case, each client is a device whose processing power

Stocks@home takes less time to complete the
stock analysis as more clients are added and is a
successful implementation of the volunteer
computing design. With further testing and design,
it could potentially analyze thousands of stocks

function requestTask(response, postData) {
console.log("Request handler 'requestTask' was called.");

1f(count<tickers.length) {
console.log('Count is ' +count);
var string = "http://s3.amazonaws.com/victor-sui/"+tickers[count]+'.csv¥'+count;
response.writeHead(200, {"Content-Type": "text/plain"});
response.end(string);
console.log('URL sent: '+string);

Each task is stored in the server, ready to
be sent out for completion

has been donated by a volunteer

Benefits of volunteer computing:

Little upkeep cost, volunteers pay for power costs
Little startup cost, volunteers pay for devices
Self-sustaining, volunteers maintain their own devices

count = count + 1;
}
else {
console.log('Finished');
response.writeHead(200, {"Content-Type": "text/plain"});
response.end("FINISHED");

}
}

everyday with little-to-no upkeep costs.

« Self-adapting, volunteers naturally upgrade their own devices
or upgrade the hardware/software in their devices

function getStockirl (cal Lback){ = Further op’Fimizing dee .
var dat; * |[mplementing security measures to prevent malicious/
fraudulent responses
= Testing over multiple devices and device types
xmlhttp=new XMLHttpRequest(); = Testing with greater volumes of data

xmlhttp.open("GET" , "http://localhost : 8888/ requestTask" , true); » Using real-time price data as opposed to archived data

— Server

I 1

T 1

The server
sends each task
to a client, which
returns a
response back
to the server.

xmlLhttp.onreadystatechange = function() {
1f(amlhttp.readyState=4 && xmlhttp.status=200) {
1f(xmlhttp. responseText=="FINISHED") {
complete=true;

console.log("FINISHED");
}
if(!complete) {

console.log('Stock URL retrieved: '+xmlhttp.responseText);

counti+; Anderson, D.P.; Korpela, E.; Walton, R., "High

* Quantitative analysis: Prediction of stock price trends solely
using historical pricing data

» MACD analysis: method of quantitative analysis of stock price
trends

* Node.js is an open-source, cross-platform runtime environment
for server-side applications.

= Asynchronous I/O model: makes use of non-blocking calls to
keep programs running efficiently.

The server
compiles the
responses and
sends the final

console.log("count= "+count);

performance task distribution for volunteer
computing," e-Science and Grid Computing, 2005. First
International Conference on , vol., no., pp.8 pp.,203, 1-1

$("#content™) . html(xmlhttp.responseText.split('%')[0]);
count=parseInt(xmlhttp.responseText.split('%')[1]);
dat = getStockData(xmlhttp.responseText.split('%')[@], callback, parseInt(xm

= Async functions can be started and set aside until they are o b sl e e | Gy July 2005 doi: 10.1109/E-SCIENCE.2005.51
fr? E[Tr:ZI?rteeantime the program moves onto other methods clients }
.) * T else et . Stefan Tilkov, Steve Vinoski, "Node.js: Using JavaScript to
: . This all occurs asynchronousl console.log('loading Stock URL...');
- Thethprggram continuously moves forward when using async y Y , o oo pRect B Build High-Performance Network Programs", IEEE Internet
methods

Computing, vol.14, no. 6, pp. 80-83, November/
December 2010, doi:10.1109/MI1C.2010.145

xmlLhttp.setRequestHeader("Content-type", "application/x-www-form-urlencoded");
xmlhttp.send();

}

