
Future Research

Web browsers are some of the most frequently used computer
applications today. However, a large portion of their data cycles is
wasted during idle time. The purpose of this project is to create a
browser page that can take advantage of these wasted cycles,
using them to analyze stock price trends. Multiple machines will
analyze individual stocks and send their results to a central
server, which will then determine the most profitable investment
strategies from the compiled data.
Following the naming convention of popular volunteer computing
projects such as SETI@home, this program will be called
stocks@home. Stocks@home has the potential to have
processing power of a supercomputer for a fraction of the cost
due to the prevalence of consumer computers and web browser
users. The only limit to its computational capabilities is the
number of contributing users.

 Create a volunteer computing
application for stock analysis

Sample Code

Anderson, D.P.; Korpela, E.; Walton, R., "High
 performance task distribution for volunteer
 computing," e-Science and Grid Computing, 2005. First
 International Conference on , vol., no., pp.8 pp.,203, 1-1
 July 2005 doi: 10.1109/E-SCIENCE.2005.51

Stefan Tilkov, Steve Vinoski, "Node.js: Using JavaScript to

 Build High-Performance Network Programs", IEEE Internet
 Computing, vol.14, no. 6, pp. 80-83, November/
 December 2010, doi:10.1109/MIC.2010.145

Introduction

Abstract

Procedure
1.  Install node.js
2.  Implement server framework
3.  Program function to calculate exponential moving averages
4.  Program MACD analysis function
5.  Implement requestTask request handler to distribute tasks to

the client from the server
6.  Implement reportResult request handler to collect responses

from the clients for analysis
7.  Create code for client html webpage
8.  Program an xmlhttp request in the client code to call the

requestTask handler in order to obtain the stock ticker for
analysis.

9.  Implement a callback in this request to perform another
xmlhttp request to get and analyze the stock data stored on
the Amazon web server using the obtained stock ticker

10. Implement another callback to launch the reportResult handler
to post the response to the server once calculations are
completed

11. Have the requestTask function call itself recursively until the
server sends out an ‘all-done’ message

12. Display result to clients
13. Compile stock data from finance.yahoo.com and upload it to

the Amazon web server
14. Run finished program and record the time taken to analyze all

the stocks in the server for different numbers of clients
 Conclusion

Stocks@home takes less time to complete the
stock analysis as more clients are added and is a
successful implementation of the volunteer
computing design. With further testing and design,
it could potentially analyze thousands of stocks
everyday with little-to-no upkeep costs.

§  Further optimizing code
§  Implementing security measures to prevent malicious/

fraudulent responses
§  Testing over multiple devices and device types
§  Testing with greater volumes of data
§  Using real-time price data as opposed to archived data

Background Info
§  Quantitative analysis: Prediction of stock price trends solely

using historical pricing data
§  MACD analysis: method of quantitative analysis of stock price

trends
§  Node.js is an open-source, cross-platform runtime environment

for server-side applications.
§  Asynchronous I/O model: makes use of non-blocking calls to

keep programs running efficiently.
§  Async functions can be started and set aside until they are

complete
§  In the meantime, the program moves onto other methods
§  The program continuously moves forward when using async

methods

Time Taken to Complete
(ms)

Clients Trial 1 Trial 2 Trial 3 Mean
1 31118 31734 30463 31105
2 27086 27013 26823 26974
3 26046 24819 25616 25494
4 25718 24924 25361 25335

 Objective

Tasks

Server

Client Client

Results

Each task is stored in the server, ready to
be sent out for completion

The server
sends each task
to a client, which
returns a
response back
to the server.

The server
compiles the
responses and
sends the final
result back to the
clients

Design
•  The large demand for processing power is often fulfilled by

expensive supercomputers
•  Volunteer computing: A central server sends many clients

small tasks, receives responses from those clients, and
compiles those responses into a useful result

•  In this case, each client is a device whose processing power
has been donated by a volunteer

•  Benefits of volunteer computing:
•  Little upkeep cost, volunteers pay for power costs
•  Little startup cost, volunteers pay for devices
•  Self-sustaining, volunteers maintain their own devices
•  Self-adapting, volunteers naturally upgrade their own devices

or upgrade the hardware/software in their devices

*Tested on a mid-2010 MacBook Pro on Safari 8.03. Smaller completion times indicate greater processing speeds.

References

Data Analysis
The data were collected on a
single device running multiple
instances of the Stocks@home
web client hosted locally to
emulate multiple devices
collaborating over the internet.

The time taken for the
Stocks@home server and
clients to complete stock
analysis gradually decreased
as more clients were added.
However, as more clients were
added the test device struggled
to provide the resources
needed to drive each client. A
performance plateau was
experienced at four clients. The
system’s CPU ran at 100%
during all three four-client trials.

*This all occurs asynchronously

