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Abstract. Aspect orientation has been used to improve the modularization of 

crosscutting concerns that emerge at different levels of software abstraction. 
Although initial research was focused on imparting aspect-oriented (AO) 

capabilities to programming languages, the paradigm was later on extended to 
software artifacts that appear at higher levels of abstraction (e.g., models). In 
particular, the Model-Driven Engineering (MDE) paradigm has largely 

benefitted from the inclusion of aspect-oriented techniques. In a converse 
way, we believe it may also be productive to investigate how MDE 

techniques can be adopted to benefit the development of aspect-oriented 

tools. The main objective of this paper is to show how MDE techniques can 

be used to improve the construction of aspect weavers for General-Purpose 
Languages (GPLs) through reusable models and transformations. The 
approach described in the paper uses models to capture the concepts of 

various Aspect-Oriented Programming (AOP) language constructs at a 
metamodeling level. These models are then mapped to concrete weavers for 

GPLs through a combination of higher-order model transformation and 
program transformation rules. A generic extension to the framework further 

supports reusability of artifacts among weavers during the construction 

process. Aspect weavers for FORTRAN and Object Pascal have been 
constructed using the framework, and their features evaluated against several 

case study applications. 

Keywords: model transformation, program transformation, model 
engineering, aspect-oriented software development, generative programming 

1 Introduction 

The history of software development paradigms suggests that a new paradigm often 

has its genesis in programming languages and then moves up to design and analysis 

(e.g., structured programming preceded structured design and analysis, and object-

oriented programming predated object-oriented design and modeling). This same 

pattern can also be observed with respect to aspect orientation. Most of the early work 

on aspects was heavily concentrated on issues at the coding phase of the software 



lifecycle [1], and gradually propagated to other phases (e.g., requirement, design / 

modeling [2, 3, 4]). Similar to the benefits that aspects can offer to modeling, we 

believe there are distinct advantages that Model-Driven Engineering (MDE) [5] can 

provide to impart aspect-oriented capabilities to programming languages. 

Specifically, we have been constructing aspect weavers for various programming 

languages using a program transformation approach. From our experience, we have 

found that MDE provides a capability to isolate the dependence on specific 

transformation engines and enable the generation of aspect weavers from high-level 
models. The next subsection outlines the challenges of creating aspect weavers that 

we have observed from our experience. 

 

1.1 Challenges of aspect weaver construction 

 

As a result of programming language research over the past fifty years, a veritable 

“Tower of Babel” exists with multiple billions of lines of legacy code maintained in 

hundreds of different languages [6]. In fact, legacy languages are estimated to account 

for a large percentage of existing production software [7]. Yet, the majority of 

Aspect-Oriented Programming (AOP) [1] research is focused on just a few modern 

languages, such as Java. A generalized approach that brings aspects to legacy 

software is still missing. A naïve proposal would attempt to migrate legacy code into 
a modern object-oriented language like Java, such that existing tools (e.g., AspectJ 

[8]) could be applied. However, such a proposition is often not possible due to 

technical, cultural and political concerns within the institution that owns the legacy 

code [7]. Rather than bringing the code to existing Java-based weavers, an alternative 

is to take AOP principles to the legacy languages and tool environments. Given the 

large number of languages in use, a solution that mitigates the effort needed to create 

each new weaver is more desirable than an approach that manually recreates a weaver 

from scratch for each legacy language. 

There are several key challenges towards providing an initial methodology that 

allows usage of aspects in languages other than Java. We have identified four main 

obstacles toward adoption of aspects for legacy software. The first two challenges 
(Challenge C1 and C2) are not the primary contribution of this paper and have been 

addressed in the past with existing technologies. A summary of these challenges are: 

 

• Challenge C1 - The Parser Construction Problem: Building a parser for a toy 

language, or a subset of an existing language, is not difficult. But, designing a 

parser that is capable of handling millions of lines of production legacy code is an 

onerous task. As observed by Lämmel and Verhoef [6], the dominant factor in 

producing a renovation tool is constructing the parser. Software developers who 

want to explore modern restructuring capabilities in legacy systems will require 

industrial-scale parsers to allow them to evaluate the feasibility of adoption 

within their organization. Incomplete parsers for small research prototypes will 
not scale and may leave a negative first impression of aspects. 

• Challenge C2 - The Weaver Construction Problem: When a new program 

restructuring or modularization idea is conceived (e.g., AOP), it is often desired 

to impart the idea to older legacy applications. In order to realize such an 

objective, a capability is needed to perform the underlying transformations and 



rewrites on a syntax-tree or on an abstract model. This requires considerable 

effort to provide a sound and scalable infrastructure for program transformation.  

 

Challenge C1 and Challenge C2 can be addressed by using program transformation 

techniques [9, 12]. Firstly, full-fledged parsers available in program transformation 

frameworks can be reused to assist in constructing aspect weavers. Secondly, program 

transformation engines generally have support for low-level rewriting (i.e., by using 

term-rewriting or graph-rewriting) that can be used to construct aspect weavers for 

multiple GPLs.  

However, it is often the case that the integration efforts to support a core set of 

transformations are repeated for each language to which the new idea is applied. Such 

repetition of effort is unfortunate and strongly suggests the need for further 
generalization of transformation objectives. Moreover, the abstraction level at which 

most transformation systems operate is too low for software developers who are 

familiar with the concepts of AOP, but unaware of the accidental complexities of 

program transformation. In our previous work [12], we provided initial solutions to 

the first two challenges related to parsing and weaving for a specific language (i.e., 

Object Pascal). The main contributions of this paper focus on the two additional 

challenges that are introduced as follows: 

 

• Challenge C3 – Accidental Complexity of Transformation Specifications: An 

inherent difficulty associated with using program transformation engines is the 

low-level of abstraction at which a transformation rule is specified. 
Transformation rules typically quantify over the grammar elements (e.g., 

terminals, production rules, non-terminals) of a programming language rather 

than the conceptual elements in the language domain (e.g., objects, methods). 

Therefore, it is highly desirable to hide the accidental complexities of program 

transformation systems from AOP end-users and instead provide a conceptual 

aspect layering on top of an underlying program transformation system. 

• Challenge C4 – Language-Independent Generalization of Transformation 
Objectives: Although most program transformation engines provide a general 

toolkit with pre-existing parsers, the transformation rules that actually perform 

the desired restructuring are encoded to the productions of a specific concrete 

syntax (i.e., grammar of base language). Thus, all of the effort that is placed into 

creating the transformations to enable weaving for a given language cannot be 

reused for another language. A key research contribution of this paper is an 

approach that adopts an abstract syntax to increase the level of reuse of aspect 

transformation rules across multiple languages. The contribution uses higher-

order transformations to evolve abstract transformations into more specialized 

versions that are specific to a particular programming language. 

 

In Section 2, Challenge C3 is addressed by providing an aspect layering on top of a 

program transformation system. This aspect layering is realized by using model-

driven language engineering techniques [21]. In particular, a model-driven front-end 

is built on top of a program transformation engine that transforms an aspect model to 

a model that represents the concept of program transformation rules. Such a 

convenience layer assists in removing the idiosyncrasies of the underlying 



transformation technology. Section 3 shows how the model-driven front-end is 

generalized to accommodate a family of related GPLs. This is achieved by using 

specific techniques like metamodel extension [22]. Within the context of the 

generalized framework of Section 3, Challenge C4 is addressed by constructing a 

library of generic higher-order model transformations that make use of the concrete 

syntax of the base language to generate lower-order program transformation rules. 

We applied our approach by constructing aspect weavers for languages like Object 

Pascal (a language popularized by Borland’s Delphi) and FORTRAN 90. Both 
weavers share a generic front-end and the core set of aspect weaving transformations 

was  reused during the construction process for each weaver.  

Currently, the framework addresses the domain representing the imperative class 

of languages and is not evaluated against logic based or functional languages like 

Prolog or ML. From our understanding, the generalization should be restricted within 

a particular class of languages (e.g., imperative, functional, or logic based) to extract 

maximum commonality. The results presented in this research are based on the 

assumption that these languages share a certain degree of commonality and should be 

regarded as a stepping stone for a more comprehensive solution that requires 

extensive validation. 

 

1.2  Overview of paper contents 
 

The next section of the paper introduces our model-driven framework for constructing 

aspect weavers. Section 3 discusses generalization of the model-driven weaving 

framework. In Section 4, a series of case studies demonstrating Aspect Pascal and 

Aspect FORTRAN illustrate what can be achieved with the approach. A brief 

comparison of related work is summarized in Section 5, with concluding remarks, 

lessons learned, and future work appearing in Section 6. 

2 Model-Driven Aspect Weaving Framework 

This section introduces an extensible and scalable model-driven framework for 

developing aspect weavers for general-purpose programming languages (GPLs). The 

framework can be used to construct weavers for object-oriented languages (e.g., C++, 

Java or Object Pascal) and older legacy languages (e.g., C, FORTRAN or COBOL). 

Figure 1 represents an overview of the model-driven aspect weaving framework. 

The scalability of the framework is provided by using a powerful program 

transformation engine (PTE); namely, the Design Maintenance System (DMS) [9], 

which represents the back-end of our framework (item 3 in Figure 1). DMS provides 

support for mature language tools (e.g., lexers, parsers, and analyzers) for more than a 

dozen programming languages. It has been used to parse several million lines of code 

written in any of these languages. The adoption of DMS as a back-end provides a 

solution to Challenge C1 (parser construction problem) through immediate 

availability of industrial-scale parsers. DMS also provides functionality for 
transforming a program after it has been parsed. Through transformation rules and a 

rich API of transformation functions, DMS offers a solution to Challenge C2 (weaver 

construction problem). Thus, Challenge C1 and Challenge C2 as enumerated in 

Section 1.1 are gratuitously resolved through adoption of a mature program 

transformation engine into the weaver construction framework [12]. However, the 



low-level representation of transformation rules introduces new accidental 

complexities that make it difficult for programmers to specify aspects at this level. 

A model-driven front-end (item 1 in Figure 1) raises the level of abstraction and 

hides the accidental complexities that are generally associated with a program 

transformation system. The core of the framework is a higher-order transformation 

rule generator (item 2 in Figure 1) that produces program transformation rules from 

an aspect program. The aspect code is initially parsed by the front-end and later 

processed by the program transformation rule generator. The result is a set of 
generated program transformation rules that accomplish weaving of the source aspect 

for a specific language. As shown in Figure 1, the program transformation back-end 

takes the generated transformation rules and the source program as its inputs and 

weaves aspects into the source program to produce the transformed target program. 

The model-driven front-end offers a solution to Challenge 3 (accidental complexity) 

because it hides the complexity of using a program transformation system in its native 

form. 

The following subsections discuss each of the key components (shown as items 

1, 2, and 3) of this framework in detail, including their primary benefits and internal 

mechanisms. The subsections also outline the reasons behind choosing each of these 

components and explain why it is desirable to follow an MDE philosophy to construct 

aspect weavers for GPLs. The following subsection introduces the technical details of 
a weaver built from a program transformation engine. 

 

 
 

Figure 1: Overview of our model-driven aspect weaver framework 



2.1 Background - Program transformation back-end 

Fradet and Südholt were among the first to observe that aspect weaving can be 

performed using a general transformation framework for a specific programming 

language [10]. Similarly, Aßmann and Ludwig provided an early demonstration of 

aspect weaving using graph rewriting [11]. Most PTEs support a term-rewriting or 
graph-rewriting engine such that transformation rules can be constructed that realize 

the weaving of aspects into a source program. In our previous work, we demonstrated 

how a PTE can be used to construct an aspect weaver for Object Pascal [12]. Instead 

of re-inventing a new weaving engine for each new programming language of 

interest, our objective is to leverage a PTE that provides powerful pattern matching, 

and term-rewriting capabilities required for aspect weaving. 

There are several program transformation engines available with each having 

their own advantages and disadvantages. In addition to DMS, other popular examples 

include ASF+SDF [13] and TXL [14]. We chose DMS for the back-end of our 

framework because of the maturity of the tool (e.g., DMS has been used on several 

large-scale industrial software renovation projects [15]) and the immediate 

availability of a large collection of pre-constructed domains (i.e., lexers, parsers, and 
analysis tools) for various programming languages. From our survey of the available 

transformation tools, DMS was the only tool to supply an Object Pascal and 

FORTRAN domain that was ready for immediate use to support our experimentation. 

 
 

    

 

 

 

Figure 2: Overview of back-end transformation process 

Transformation 

Engine 

Domain  

Definitions 

Pretty  

Printer 

Symbol 
Table 

Parser 

AST 

Graph  

 

Source 

Program 

Analyzer 

parser 
definitions 

Target 

Program 

unparser 

definitions 

Program 

Transformation Rules 



Figure 2 presents an overview of the back-end transformation process (previously 

shown as item 3 in Figure 1). The program transformation rule (shown in general in 

Figure 2 with a specific example in Listing 1) is written in the DMS Rule 

Specification Language (RSL) and processed by the back-end transformation engine 

to perform the actual rewriting. RSL provides basic primitives for describing the 

numerous transformations that are to be performed across the entire code base of an 

application. An RSL program consists of declarations of patterns, rules, conditions, 

and rule sets using the external form (i.e., concrete syntax) defined by a language 
domain.  

 

 

default base domain ObjectPascal. 

private rule insert_probe(stmt_list: statement_list):  

function_body  �  function_body 

= "begin \stmt_list end"  �  

  "begin WriteLn(\"Entering Method\"); \stmt_list end". 

public ruleset TraceAllFunctions = {insert_probe} 

 

Listing 1: A simple example of a program transformation rule that traces 

function executions 

 

Although term-rewriting has several application domains (e.g., code migration, code 

refactoring or program refinement), the particular example in Listing 1 highlights an 

aspect-oriented style. The first line of this transformation rule resolves the domain 

(i.e., language) to which the rule can be applied. In this case, a tracing probe is 
inserted before the execution of all functions written in Object Pascal. The statement 

list that appears inside of a function body is passed as a parameter to this rule. Note 

that a rule is typically used as a rewrite specification that maps from a left-hand side 

(source) syntax tree expression to a right-hand side (target) syntax tree expression 

(syntactically denoted by “�” in RSL). The insert_probe rule matches all 

function body declarations in the source program and adds a WriteLn statement 

before the execution of the original statement list. Rules can be combined into rule 

sets that form a transformation strategy by defining a collection of transformations 

that can be applied to a syntax tree. As shown in Figure 2, these transformations along 

with the source program are syntactically checked and statically analyzed to ensure 

the expected weaving behavior. However, RSL rules are typically hardcoded and 

dependent on the grammar of the base language. For instance, all text highlighted in 

bold in Listing 1 corresponds either to terminal or to non-terminal symbols in the 

Object Pascal grammar. 

Challenges of program transformation engine usage 

Program transformation engines (PTEs) offer several advantages, especially with 

respect to reusable parsers and a weaving engine. However, to provide advanced 

aspect weaving capabilities (e.g., like that of AspectJ), the underlying rewrite rules 
can become significantly more complex than what is shown in Listing 1. For 



example, to provide reflective capabilities like thisJoinPoint or to perform 
signature matching with wildcards, more complicated transformation rules are 

required. Such rules generally use exit functions to do static analysis on the 

underlying AST [12]. This requires a thorough understanding of the various term 

rewriting semantics specific to a particular PTE. Moreover, the rewrite rules are often 

tied to the grammar of the base language (as highlighted in bold in Listing 1), which 

impedes reusability when the base language changes. Thus, using a tool like DMS to 

construct aspect weavers requires knowledge of the base language grammar (concrete 

syntax), and of the core machinery provided by DMS. However, the design decision 

to use a transformation engine is particularly useful to challenge C1 and C2. Hence, a 

suitable solution is desired such that program transformation systems can be used not 
only by language researchers, but by a larger audience through mainstream software 

development. In our previous research in constructing an aspect weaver for Object 

Pascal using DMS [12], we observed these broader challenges and recognized that an 

appropriate front-end support alongside a systematic code generator was needed to 

bring program transformation systems closer to mainstream software development. 

The proper selection of an appropriate front-end and program transformation rule 

generator can hide the accidental complexity associated with PTEs. Nevertheless, 

aspect weavers can still leverage the power of PTEs to perform the lower-level 

complex code transformation. In the following subsection, we introduce our 

investigation into a model-driven front-end and discuss the primary benefits offered 

by MDE in the overall context of the framework. 

2.2 Model-driven Front-end 

There are many ways to design the front-end of an aspect language. In some 

examples, the language format is expressed in raw XML [18], but in other cases it is 

expressed in a more sophisticated declarative language [19]. Through our 

investigation in the design of various aspect languages, we realized that the 

declarative nature of expressing aspects (e.g., as popularized by pointcuts in AspectJ) 

has a common language-independent characteristic. For example, the concepts of join 

points, pointcuts and advice can be adapted to many aspect language designs within 

the same paradigm. Metamodels can precisely capture these concepts and their 

relations. 

In addition, a model-driven front-end (item 1 in Figure 1) is well-suited for 

abstracting the various semantics associated with PTEs. MDE provides an abstraction 

layer that can be mapped down to lower-level transformation rules. Combining the 

technical spaces of MDE and PTE offers more possibilities than each considered 

separately. 

Figure 3 shows an excerpt of the abstract syntax of an aspect language in the 

form of a metamodel represented as a collection of three class diagrams. This 

metamodel illustrates the specification of Aspect Pascal, which is an aspect language 

we defined for Object Pascal. An aspect described in this language consists of 

Pointcuts and Advice. They together constitute the fundamental elements for 

defining an aspect-oriented language (influenced by the asymmetric AspectJ style). 

As evident in Figure 3, an aspect can have multiple pointcuts and multiple 

advice. 



An Advice, defined as an abstract class in the metamodel, can be further 

categorized as a BeforeAdvice, AfterAdvice or AroundAdvice. An advice 

can have advice parameters and an advice body (i.e., a list of statements). Every 

advice parameter has a type and an associated name that is used for passing the 

context information. Every advice statement conforms to the grammar of the base 

language. Because the back-end program transformation engine already has the 

parser/analyzer available for managing the base language, the body of the advice is 

typically delegated to the back-end for further processing. Such delegation of an 

advice body reduces the complexity of the metamodel by not including every possible 

program construct that belongs to the base GPL. These program fragments are 

referenced in the front-end metamodel as OpaqueStatements (i.e., statements 

that are not handled by the front-end). In addition to OpaqueStatement, there are 

other special statements: the loop statement and the proceed statement. The 

proceed statement is generally used in the bodies of an around advice and the 

loop statement is a new join point that captures additional weaving operations (e.g., 

monitoring timing statistics around a FORTRAN “do loop” for performance 

evaluation). An example of a loop statement is given in Section 4. 

 

Figure 3: Subset of Aspect Pascal metamodel represented as a class diagram 
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Pointcuts consist of pointcut expressions, which can, for instance, be further 

expressed as call expressions, with expressions or execution expressions. Pointcut 
expressions form the key for pattern matching in the lower-level transformation rule. 

All pointcut expressions are derived from the abstract Expression class. As seen 

in Figure 3, both the call and exec expressions are derived from Expression 

and both reference the type pattern FunctionOrProcSignature, which 

identifies the prototype declaration (i.e., signature) for a function or procedure defined 

in Object Pascal. This type pattern is particularly useful for pattern matching. 

Although call and exec are the two most common forms of pointcut expressions, 

new expressions can be experimented with and derived from the base Expression 

class template. For example, Object Pascal allows the definition of with 

expressions that are used to control the execution of code within a specific context. 

Other pointcut expressions available in the join point model of the base language can 

be similarly added to the metamodel of the front-end aspect language. Wildcards are 
also allowed and examples are given in Section 4. 

The pointcut expressions are translated to RSL patterns or rules that do the actual 

pattern matching. The front-end AOP layer is simply a façade to the back-end PTE. It 

helps to hide the accidental complexity associated with PTEs (Challenge C3) and also 

provides a platform to experiment with new AOP language constructs that can be 

suitably translated to back-end rewrite rules. The translation mechanism that 

generates the back-end RSL rules from the front-end aspect language is explained in 

detail in Section 2.3 and Section 3.2. 

 

Implementing the front-end aspect language  

 

The first step in implementing a front-end is to create a metamodel that defines the 

abstract syntax of the aspect language. The KM3 [20] (Kernel MetaMetaModel) is 

used for this purpose. Although other MDE tools can be used to define the 

metamodel, we chose KM3 because it has the added advantage of being independent 

of the concrete MDE technology (e.g., the Eclipse Modeling Framework or OMG’s 

Meta-Object Facility). The example snippet in Figure 4 demonstrates how KM3 is 

used to define the Aspect Pascal metamodel.  

Figure 4 shows a snippet of the KM3 specification used to implement the 

metamodel introduced in Figure 3. The AspectPascal class contains references to 

other classes; namely, the core elements Pointcut and Advice. The 

oppositeOf construct is used to maintain reverse navigational links for efficient 

traversal purposes required during model transformation (Section 2.3).  

In addition to the abstract syntax shown as a metamodel in KM3, the concrete 

syntax of the aspect language is specified using a grammar-like notation - TCS [23] 

(Textual Concrete Syntax). Figure 5 illustrates how the concrete syntax of different 

metamodel elements (e.g., Aspects, Pointcuts, and Advice) is expressed in TCS. In 

TCS, every class represented in the KM3 specification has its corresponding template 
definition. It also introduces other terminal tokens like separators, brackets and 

semicolons that are required to describe the concrete syntax of the aspect language but 

are not captured in the abstract syntax of the metamodel. Thus, TCS gives the 

structure of the source aspect language. In addition, context information can also be 

passed and stored in the symbol table for further analysis. The choice of the particular 

MDE technology described in this paper (e.g., TCS, KM3 and ATL are part of the 



overall AMMA platform) is provided only as a proof of concept. Alternative model-

driven technologies may be used to implement the aspect metamodel.  

 
class AspectPascal extends LocatedElement { 

   attribute name : String; 

   reference domain container : Domain; 

   reference pointcuts[1-*] container : Pointcut oppositeOf aspect; 

   reference advice[1-*] container : Advice oppositeOf aspect; 

} 

class Pointcut extends Element { 

   attribute name : String; 

   reference aspect : AspectPascal oppositeOf pointcut; 

   reference paramdefs[*] container : ParameterDef; 

   reference exprs[1-*] container : Expression oppositeOf pointcut; 

} 

abstract class Advice extends LocatedElement { 

   reference aspect : AspectPascal oppositeOf advice; 

   reference pointcut : Pointcut; 

   reference paramdefs[*] container : ParameterDef; 

   reference stmts[1-*] container : Statement; 

} 

 

Figure 4: KM3 specification (snippet) for Aspect Pascal 
 

 
template AspectPascal main 

 :  "aspect" name "{" pointcut advice "}" 

 ; 

template Pointcut context addToContext 

 :  "pointcut" name "(" paramdefs{separator = ","} ")" 

    ":" exprs {separator = "&&"} ";" 

 ; 

template Advice abstract; 

 

template BeforeAdvice 

 :  "before" "(" paramdefs {separator = ","} ")" ":" 

          ...   

       ; 

template AfterAdvice 

 :  "after"  "(" paramdefs {separator = ","} ")" ":" 

           ...   

       ; 

Figure 5: TCS specification (snippet) for Aspect Pascal 

 

The front-end would be incomplete without appropriate code generators that 

transform the front-end aspect language to its corresponding target language. In our 

model-driven framework, the back-end is the transformation language of the PTE; 

specifically, the DMS RSL in our case. The following section demonstrates how RSL 

transformation rules are generated from the front-end aspect specification. 



2.3  Program transformation rule generator 

The program transformation rule generator (shown as item 2 in Figure 1) represents 

the core of the framework and embodies a higher-order transformation (i.e., a model 

transformation rule is used to generate program transformation rules). As mentioned 

earlier, the front-end aspect language is only a façade to the back-end PTE and all 
pointcut declarations and advice code present in the source aspect language are 

eventually translated to target RSL code that consists of RSL patterns, external 

conditions and rewrite rules. Therefore, the goal of the program transformation rule 

generator is to synthesize transformation engine specific weaving code (RSL) from 

the front-end representation defined by a higher-order aspect specification. 

 

Target metamodel for RSL 

 

In order to realize a systematic translation from a higher-order aspect language to a 

lower-order transformation language, it is necessary to define a metamodel for the 

back-end program transformation engine. The target RSL metamodel serves two basic 

purposes: firstly, it allows experimenting with new aspect languages (e.g., Aspect 
Ruby or Aspect FORTRAN) and new aspect constructs (e.g., loops) without changing 

the model for the back-end PTE. In this case, the commonalities of different aspect 

languages for various GPLs can be generalized in a generic aspect metamodel. The 

differences can be captured using metamodel extensions; however, no change is 

required for the target metamodel. This helps to improve the generality of the 

framework. 

Secondly, instead of an ad hoc technique, a metamodel allows more sophisticated 

translations where complex pointcut expressions and join point shadows (areas in the 

source where join points may emerge) [40] from the front-end aspect language could 

be mapped correspondingly to patterns and rules in the back-end RSL language. The 

presence of a target metamodel provides an internal representation of the back-end 
transformation language (RSL) that can be used to validate the generated lower-order 

transforms. For future experimental purposes, the presence of a RSL metamodel may 

also permit bidirectional mappings (currently, the mapping is unidirectional, from 

Aspect-to-RSL). In such a scenario, given a generated RSL program as input, the 

corresponding aspect specification for a different GPL may be recovered, provided a 

mapping exists between RSL and the GPL.  

To capture the essential concepts of the DMS RSL, an RSL metamodel has been 

created in KM3, illustrated by a class diagram in Figure 6. As noted earlier, RSL 

consists of elements like patterns, rules, conditions, and rule-sets, which are captured 

in this metamodel. The complete KM3 and TCS specification for the RSL metamodel 

is available at [30]. It should be noted that the target metamodel defines the essence 

(i.e., concepts and relations) of a domain without concern for semantics. In our case, 
the semantics of the various components of the source aspect metamodel is captured 

in the mapping to RSL defined as an ATL transformation. ATL [24] is the model 

transformation language of AMMA. The semantics of the aspect language is thus 

captured in terms of the semantics of RSL, which is in turn processed by DMS. Case 

studies are presented in Section 4, where complete scenarios describing this model-to-

model transformation are explained with concrete examples. 

 



 
Figure 6: Subset of the RSL metamodel (as a class diagram) 

 

Model transformation using ATL 

 

Given the definition of the source and target metamodels, it is possible to generate 

RSL program transformation rules from an aspect program using model 

transformations. Figure 7 explains the complete model transformation scenario in our 

framework. In this figure, M1, M2, and M3 are the three modeling levels in the 

grammarware [28] and MDE technical spaces (TS). From the grammarware TS, the 

front-end aspect source file is initially injected into a source aspect model using TCS. 

The aspect model is then transformed into a target RSL model using a model 

transformation defined in ATL. This ATL transformation forms the core of the 
program transformation rule generation process. After translation, the generated RSL 

model belonging to the MDE TS is extracted (using TCS) into the target RSL 

program in the grammarware TS. 

To modularize the RSL generation process, the framework defines a library of 

ATL transformations with each transformation corresponding to a primitive pointcut 

specification (e.g., call, execution). For a given aspect, the corresponding ATL 

transformation rule is automatically invoked depending on the pointcut specification 

used in the aspect. The higher-order ATL transformation generates the lower-order 

RSL transformation that eventually performs the aspect weaving. The collective set of 

all higher-order model transformations is assembled in a transformation library that 

implements the semantics of the source aspect language. 
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Figure 7: Model transformation scenario for generating RSL rules from aspects 

 

Figure 8 depicts a snippet of a sample ATL transformation from the core 

transformation library. This particular transformation evaluates a call expression in 

the source aspect, and generates the corresponding RSL transformation rule. The ATL 

helper function EvalCallExpr is used for this purpose. The transformation maps 

individual elements from the source aspect metamodel to the target RSL metamodel. 

For example, Aspect Pascal model elements like advice (Line 10, Figure 8) and 

pointcuts (Line 11, Figure 8) are mapped to RSL elements like patterns, conditions 

and rules (i.e., RSL elements in Figure 6). Similarly, before advice statements (Line 

25, Figure 8) from the source aspect language are mapped to RSL patterns. The 

relationships between the source aspect model elements to the target RSL model 
elements can be one-to-one, one-to-many, many-to-one or many-to-many. This 

depends on the type of pointcut expressions used in the source aspect program.  

It should be noted that the source metamodel to describe these pointcut 

expressions (see Section 2.2) is completely independent of the target RSL language. 

In addition, it is structurally and semantically similar to a traditional AOP language, 

like AspectJ. This metamodel captures all the essential concepts of AOP (as 

influenced by AspectJ) - join points, pointcuts and advice. The actual transformation 

on the source code is performed using RSL rules that are generated from the higher-

order aspect language using ATL. These ATL transformations implement the 

semantics of the source aspect language and all corresponding mapping information 

from source to target are embedded in the ATL specifications. 
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1. module AspectPascal2RSL; 

2. create OUT : RSL from IN : APascal; 

3. rule APascal2RSL { 

4.     from 

5.         s : APascal!APascal 

6.     to 

7.         t : RSL!RSL ( 

8.             dname <- 'ObjectPascal', 

9.             elems <- Sequence { 

10.                        s.advice, 

11.                        s.pointcut->collect(e | 

  12.                           thisModule.EvalCallExpr(e) 

  13.                        ), 

  14.                       ... 

15.            }, 

16.            ruleset <- rs 

17.         ), 

18.       rs : RSL!RuleSet ( 

19.            name <- s.name, 

20.            rules <- s.pointcut->collect(e|e.name) 

21.         ) 

22. } 

23. rule BeforeAdvice2Pattern { 

24.     from 

25.         s : APascal!BeforeAdvice 

26.     to 

27.         t : RSL!Pattern ( 

28.             name  <- 'before_advice_stmt_list' 

29.             ptype <- 'statement_list', 

30.             ptext <-  spt 

31.         ), 

  32.       spt : RSL!SimplePatternText ( 

  33.             ptext <- s.stmts->iterate(...) 

34.         ) 

35. } 

-- [original code omitted for brevity] 

 

 

Figure 8: ATL transformation (snippet) from Aspect Pascal to RSL 

 

The generated RSL is not shown here because it is internal to the framework (i.e., 
users of the framework do not see any of the intermediate transformation rules); 

however, interested readers who want to view the generated artifacts may refer to the 

GenAWeave website [30], which represents the project webpage and includes video 

demonstrations, papers, and all of the source. In addition to the website reference, the 

case studies presented in Section 4 also serve as specific examples for describing the 

complete transformation scenario illustrated in this section. 

 

Benefits of using a Model-Driven front-end 

 

There are several advantages of using a model-driven front-end layered on top of a 

program transformation engine. PTEs typically work at a lower-level of abstraction 

and are a useful research tool for language researchers. Software developers who are 

not familiar with PTEs and willing to experiment with AspectJ- like languages will 



find it increasingly difficult to express aspects in the form of transformation (rewrite) 

rules. For example if one looks into the generated transformation rules as presented in 

[12, 30], it is obvious that the complexity of these rules is orders of magnitude higher 

than the declarative aspect specification that corresponds to the same rewrite rule. 

Moreover, the transformation rule forces the user to have detailed knowledge of the 

underlying grammar production rules and the associated parsing techniques. In other 

words, these minute details are the core accidental complexity that alienates PTEs 

from mainstream software development. In this research, one of the primary 
challenges (Challenge C3) has been to make PTEs available for general-purpose 

software maintenance and development. An MDE based approach helped us to realize 

this goal. By capturing the key concepts associated with AOP as higher-order models 

(e.g., as expressed in KM3/TCS) and using model transformation rules (ATL) to 

generate lower-order program transformation rules (RSL), the technique hides the 

accidental complexities of PTEs, but still leverages the powerful transformation 

capabilities required to carry out weaving. Thus, the end-user is oblivious to the low-

level program transformation machinery and only works at a conceptual level he or 

she is familiar with. A model-driven front-end helped us to bridge the gap between 

PTE and AOP. 

 

Remaining challenges to be addressed in the framework 
 

The model-driven weaver generation framework presented in this section offers a 

solution to the challenge of using a program transformation engine to implement an 

aspect weaver. The section provided a discussion of the key parts of the framework, 

including the front-end aspect language, the transformation rule generator and the 

back-end weaving engine. The context of the discussion was centered on the creation 

of a weaver for a single base language, such as Object Pascal, to address Challenge 

C3 (accidental complexity) from Section 1.1. However, an additional challenge 

remains. As mentioned in the beginning of this section, a program written in RSL or 

any other term-rewriting engine is typically tied to the grammar of the source program 

(i.e., the RSL example in Listing 1 has Object Pascal grammar productions appearing 
throughout the transformation rule). Moreover, there are variations in design from one 

aspect language to another, even if a common generic part is shared. Unless carefully 

designed, the front-end, the core transformation libraries, and the back-end modules 

are rendered unusable when constructing a new weaver in another context (i.e., a new 

aspect language or a new base programming language). The goal of any extensible 

framework is to not construct a single fixed solution (i.e., constructing each new 

weaver from scratch) after enough knowledge, time, and effort have been spent. The 

next section discusses how this framework was made more generic to support reuse in 

new contexts. Thus, instead of building a new weaver from scratch, the benefit from 

the experience gained in a previous construction can be reused and applied toward the 

construction of a new weaver for a programming language even in a different 
paradigm. 

 

3 Extending to a Generic Framework 

Generalizing the framework presented in Section 2 to accommodate a broad range of 

GPLs is challenging due to the dissimilarities among various programming languages. 



Yet, many languages in the same paradigm (e.g., structured or object-oriented) may 

share common concepts at an abstract level such that parts of the framework can be 

reused. Unfortunately, most aspect weavers are built from scratch with little emphasis 

on reusing the existing knowledge or framework already available for constructing a 

weaver for a particular GPL. Previous research towards constructing aspect weavers 

for multiple languages has been based on the following approaches: 

 

• Common Intermediate Language: Weave.NET is a load-time weaver that 
allows aspects and components to be written in a variety of .Net based languages 

[18]. It takes an existing .Net binary component as input with crosscutting 

specifications provided in an XML file. The behavior (i.e., implementation-

specific advice code) of an aspect is provided separately in another .Net 

assembly. Weave.NET recreates the input assembly, but in this regenerated 

version, join points are bound to behavior in the aspect assembly as specified in 

the XML aspect file. Because all transformations are done at the intermediate 

language (IL), it serves as a language-independent weaver. In addition to 

Weave.NET, Loom.Net [41] is another aspect weaving tool that targets the .Net 

framework. It uses metadata and reflection mechanisms to weave into the .Net 

assemblies. 

• Generic Source Model: SourceWeave.Net uses a generic architecture that is 

built on top of CodeDOM, which is the .NET standard for representing source 

code models [17]. Using SourceWeave.NET, a developer can write base and 

aspect components in standard C#, VB.NET and J#. An XML descriptor file is 

used to specify the interaction between the aspects and representative 

components. The technique uses a mapping to identify join point shadows and 

uses a “pointcut-to-join point binding” to isolate parts of the source. 

Comparative discussion of AOP frameworks to support multiple GPLs 

Each of these representative approaches provides a distinguishing set of strengths and 

weaknesses. For example, Weave.Net offers a strong solution to Challenge C1 

(parser construction problem) because of the availability of pre-existing industrial 

scale parsers within the .Net Framework. SourceWeave.Net is weak on Challenge C1 

due to the limited availability of CodeDOM providers beyond a handful of languages 
(e.g., mainly C#, J#, and VB.Net). However, both approaches are weak on Challenge 

C3 (accidental complexity) because of the reduced expressiveness (or increased 

verbosity) of raw XML to specify aspects in each of the frameworks. 

The representation of the underlying abstract source model also contributes to 

several differences affecting the solutions to each challenge. Because of its reliance 

on CodeDOM, SourceWeave.Net has limitations in terms of expressiveness. C# maps 

reasonably well to CodeDOM, but that is not true for all GPLs. It remains to be 

determined if either CodeDOM or .Net CLI are applicable to a large class of legacy 

languages (e.g., COBOL, FORTRAN, C, or Object Pascal) whose language 

definitions are very different from the expectations of CLI or CodeDOM. Moreover, a 

considerable engineering effort would be required if all programming languages were 
forced to conform to a generic source model or compiled to a common IL. Further, 



such an approach would ignore all of the effort that has already been spent in 

constructing lexers, parsers, analyzers and other tools for these languages. 

Another interesting tool that supports the use of language-independent 

abstractions of the base program is the Compose* compiler [44]. During compilation, 

the language-independent model of the base program is generated, which is then 

processed by the compiler for weaving aspects. The model is finally mapped back to 

the base program. Although the Compose* compiler does not aim to support multiple 

language front-ends, the same core can be used for multiple base languages. 
While investigating a generic aspect weaving framework, we realized these 

challenges and discovered a solution whereby the model-driven weaver framework 

uses the existing parsers of DMS, but extracts the commonalities among these 

languages. Although such a framework does not automate all the tasks involved in 

creating an aspect weaver (i.e., making it language-independent), our generalized 

framework can considerably reduce the weaver construction effort by reusing the 

shared or common parts among different aspect weavers through abstract models and 

corresponding model transformations (please see Section 4.3 for a discussion of 

experimental results). 

Moreover, because DMS provides support for 23 different programming 

languages (including legacy languages like COBOL, FORTRAN, and C), a generic 

front-end with a reusable code generator that translates our front-end aspect language 
to DMS RSL can make use of all the parsers and analyzers that are already available 

within each of the language domains supported by DMS. In addition, we may also 

consider changing the back-end if another PTE supports other languages that we 

would like to use. The solution approach introduced in this section addresses the 

obstacles toward weaver construction enumerated in Challenge C4 (generalization of 

transformation objectives). 

3.1 Support for a Generic Front-End 

The first step towards a generalized model-driven weaver framework is to design a 

generic aspect front-end that can be shared among various GPLs. If the AspectJ 

definition of an aspect is used as a focus point for discussion, every language that is 

integrated into the framework must define the meaning of a join point model (JPM), 

pointcuts, and advice within the language context. Such a notion can be defined 
abstractly such that each new aspect language inherits and extends this common 

definition. 

Reconsidering the Aspect Pascal metamodel of Figure 3, it can be observed that 

metamodel elements such as pointcut, advice, abstract expressions, and abstract 

statements are actually generic in the Aspect Pascal metamodel. Thus, instead of 

modeling these elements as part of the Aspect Pascal metamodel, they can be 

extracted to a common generic core. However, there may be differences in the 

concrete syntax of certain model elements. For example, concrete statements and 

expressions may vary from one GPL to another. In such cases, the differences can be 

captured in individual metamodel extensions [22] and commonality can be shared 

using a general metamodel. To explain this concept, this subsection will summarize 
the construction of aspect weavers for two different GPLs (i.e., Object Pascal and 



FORTRAN) using the framework. The example shows how languages across 

different paradigms can share AOP concepts through metamodel extension. 

Figure 9
1
 shows the class diagram representing the new Aspect Pascal metamodel 

that extends the core GAspect (Generic Aspect) metamodel. The latter captures all of 

the essential concepts that are intrinsic to any aspect-oriented language influenced by 

the asymmetric AspectJ style. For example, the core model elements such as pointcuts 

and advice belong to GAspect. There are also abstract placeholders for expressions 

and statements in GAspect. Although the figure does not show a metamodel for a Join 
Point Model, a further enhancement in this direction could be made in the future to 

define different JPMs. 

 

 
 

Figure 9: Class Diagram (snippet) of Aspect Pascal (top) extending from a 

common Generic Aspect metamodel (bottom) 
 

Every language-specific expression and statement must extend from these abstract 

definitions. For example, a concrete execution expression join point or a call 

expression join point for any aspect-oriented language (AOL) must be derived from 

the abstract expression join point of GAspect. In Figure 9, the call expression 

and exec expression of Aspect Pascal inherits from FuncOrProcDefExpr 

(which itself is derived from the abstract Expression class) and references the 

                                                        
1 Typically in UML, inheritance is drawn from top to bottom. However, the inheritance 

relationship for Aspect Pascal is shown in reverse to denote its extension from the generic 

aspect metamodel and also to accommodate all of the elements in the limited space. 
However, this does not affect the common understanding of the UML notation used. 
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FuncOrProcSignature type pattern. The type pattern captures the concrete 

syntax (i.e., signature) for expressing functions or procedures in Object Pascal and is 
dependent on the grammar of the base language. For every new language, the 

concrete syntax of type pattern varies. The dotted rectangle in Figure 9 depicts all 

those points of variability that are specific to Aspect Pascal. 

Because most programming languages have some form of support for loops, we 

have introduced the notion of a loop execution join point in the generic metamodel. 

Concrete loop statements belonging to the base AOL must be derived from the 

abstract LoopStatement of GAspect. The Aspect Pascal metamodel shows support 

for while loop and for loop join points that are extended from the abstract loop 

execution join point present in GAspect. The concept of a loop execution join point is 

not present in AspectJ, but has been found to be useful for monitoring high-

performance scientific applications [25]. 

Furthermore, a join point for capturing with expressions in Object Pascal is 

introduced in the Aspect Pascal metamodel. An example of a crosscutting concern 

based on a with expression join point is given in [12]. In a similar way, the entire 

join point model for an AOL can be constructed by adding concrete extensions from 

the abstract GAspect metamodel. Moreover, the technique allows experimentation 

with new features (e.g., loop execution join point) to be added to an existing AOL. 

Such an addition is beneficial if the aspect language evolves. The Aspect Pascal 
metamodel shown here is only a snippet of the original. The complete KM3 and TCS 

specifications are available at [30]. 

 

 

Figure 10: Metamodel (snippet) of Aspect FORTRAN (top) conforming to a 

common Generic Aspect metamodel (bottom) 

 

Figure 10 shows the corresponding metamodel for Aspect FORTRAN. Similar to 

Aspect Pascal, the Aspect FORTRAN metamodel is extended from the generic core 
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GAspect. However, the points of variability (shown by the enclosing dotted rectangle) 

for this metamodel exist in their concrete syntax. In the case of Aspect FORTRAN, 

the call, exec and withincode expressions reference subroutine/function 

definitions unlike the procedure/function definitions in the Aspect Pascal metamodel. 

Moreover, the concrete function definitions for Aspect FORTRAN and Aspect Pascal 

are different due to the dissimilarity in their underlying grammar. The TCS 

specification in Figure 11 shows this variability of concrete syntax for the two 

metamodels.  

 
1. template FuncDef 
2. :  "FUNCTION" name "(" paramdefs{separator = ","} ")" 
3. ; 
4. template SubDef 
5. :  "SUBROUTINE" name "(" paramdefs{separator = ","} ")" 
6. ; 

 
1. template FuncDef 
2. :  "function" (isDefined(classifier) ? classifier ".") 
3.     name "(" paramdefs{separator = ";"} ")" 
4. ; 
5. template ProcDef 
6. :  "procedure" (isDefined(classifier) ? classifier ".") 
7.     name "(" paramdefs{separator = ";"} ")" 
8. ; 

 

Figure 11: TCS specification showing differences in concrete syntax for 

Aspect FORTRAN (top) and Aspect Pascal metamodel (bottom) 

 

Figure 11 shows the differences in the concrete syntax of 

function/subroutine/procedure declarations for Aspect FORTRAN and Aspect Pascal. 
The upper half represents the TCS specification of Aspect FORTRAN 

function/subroutine declaration whereas the bottom half shows the corresponding 

function/procedure declaration for Aspect Pascal. All points of variation between the 

two metamodels are captured in their corresponding extended metamodel (dotted 

rectangle) whereas the commonality is captured in the generic aspect metamodel. 

Generally, the point of variation between two aspect languages will be in their formal 

syntactic representation. 

In addition, GAspect also captures certain program fragments belonging to a GPL 

that may not be analyzed or parsed by the front-end. Instead, these program fragments 

are delegated to the back-end PTE for parsing and analysis. Such fragments typically 

appear in the body of advice code and are referenced as OpaqueStatements. This 

considerably reduces the complexity of the aspect metamodel as several language 

constructs of the base language need not be parsed or analyzed by the front-end. 

Instead, the back-end PTE that already has the capability (parser/analyzer) to process 

the base language (Object Pascal / FORTRAN) can handle such program fragments. 

An example of using OpaqueStatement is shown in the case study of Section 4. 

The construction of a generic aspect metamodel helps to generalize the 

commonalities among distinct aspect languages. Each common concept may be 

refined using language-specific metamodel extensions. Furthermore, an extension of 

GAspect may categorize commonalities within a paradigm that can be reused (e.g., a 



metamodel named Object-Oriented that extends GAspect with common OO concepts, 

which is then extended by concrete OO languages). This was one of the important 

lessons learned in using MDE during the course of this research and can significantly 

improve the genericity of the metamodel. The issue of additional specialization of the 

GAspect metamodel is further discussed in Section 6.1 as a future enhancement. 

3.2  Generalizing the Rule Generator Design 

The goal of the program transformation rule generator (item 2 in Figure 1) is to 

translate a given aspect to a corresponding program transformation rule (e.g., RSL). 

This role is handled by an assembly of transformation libraries written in ATL. In the 

context of a generic framework, it is desirable to reuse as much of the transformation 

library code as possible when constructing an aspect weaver for a new GPL. To 

realize this objective, the transformation libraries must follow a general guideline 

(similar to a generic API) that ensures maximum reusability. 

The guideline ensures that every transformation rule that captures the semantics 

of a particular weaving intent must conform to a generic rule interface. For example, 

an RSL rule that captures the semantics of a method invocation join point (i.e., to 

capture a particular method call and trigger advice) should conform to a generic 
method invocation rule interface that the back-end transformation engine expects. 

Generally, the back-end rewrite rules are parameterized and expect a set of parameters 

that would be used during the transformation. Thus, it is important to normalize the 

parameter structure to a common interface specification. These parameters are 

determined by the semantics of the joinpoint that is to be encoded in a program 

transformation rule. By conforming to this generic interface, model transformation 

libraries written for various GPLs may share a generalized common pattern. For 

example, to represent a method call join point, the back-end program transformation 

rule should conform to a generic rule interface called generic_advice_call, 

which accepts the following five named-parameters: program_root_, 

method_id_, proceed_call_, before_advice_ and after_advice_. 

The first two named parameters refer to the abstract syntax of the program under 

consideration, program_root_ captures the root of  the tree and method_id_ 

captures the current method being advised. The rest of the named parameters capture 

the semantics of this join point. Every named parameter has a type associated with it, 

which is determined by the concrete syntax (grammar) of the base GPL. For example, 

for a FORTRAN 90 program, this generic function should be encoded as follows: 

 
{name � type} 
generic_advice_call  ( 

{ program_root_  � Fortran90_program }, 

{ method_id_     � Name}, 

{ proceed_       � Name}, 

{ before_advice_ � execution_part_construct_list }, 

{ after_advice_  � execution_part_construct_list }, 

) � Fortran90_program  



One may note that although the types (shown in italics) are concrete, the rule 

interface is abstract. This generalization is necessary to address Challenge C4 

(language-independent generalization of transformation objectives) and facilitate the 

ATL rule generator to program to a common rule interface that can be reused among 

various GPLs. At this point, one may recollect from Listing 1 how RSLs or any term-

rewrite rules are tied to the concrete syntax of the base programming language. The 

proceed_ is internally used to determine if the advice is an around advice that 

makes a call to proceed. Similarly, for an Object Pascal program, the 

generic_advice_call is encoded as follows: 

 
{name � type} 
generic_advice_call  ( 

{ program_root_  � ObjectPascal }, 

{ method_id_     � IDENTIFIER}, 

{ proceed_       � IDENTIFIER}, 

{ before_advice_ � statement_list }, 

{ after_advice_  � statement_list }, 

) � ObjectPascal 

 

For every join point in our AOP language model, we have developed a set of 

formal rule interfaces to which each corresponding ATL transformation must conform 

(i.e., there is a separate rule interface for method execution or loop execution join 

point). The generic rule interfaces not only enforce the code generators for different 

aspect weavers to adhere to a known abstract interface, but also considerably reduce 

the development time and effort to transfer knowledge from one rule generator to 

another. 

Figure 12 and Figure 13 show comparative snippets of the higher-order model 

transformation rules (ATL specification) for translating a method call join point 

written in Aspect Pascal or Aspect FORTRAN to a corresponding lower-order 

program transformation rule (RSL rewrite specification). Each of the ATL 

specifications (Figures 12 and 13) consist of several smaller ATL rules that together 

perform the actual transformation on the metamodel. For example, the rules 

AfterAdvice2Pattern, BeforeAdvice2Pattern and 

PointCutToExternalPattern (as shown in Figures 12 and 13) are used to 

construct the ATL specification for translating a method call join point. However, this 

is only a subset; the complete ATL specification is available at [30]. The individual 

rules (e.g., AfterAdvice2Pattern, BeforeAdvice2Pattern) are fired 

whenever a corresponding model element (e.g., model elements like 

BeforeAdvice, AfterAdvice in the Aspect Pascal metamodel) in the source 

metamodel is reached.  

Both of these higher-order transformation rules conform to an abstract structure 

(generic rule interface) that drives the ATL rule generator. As a direct benefit of 
forcing the ATL transformations to conform to a common structure or interface, the 

model transformation rules presented in Figures 12 and 13 appear distinctly similar. 

For example, all of the three rules (i.e., AfterAdvice2Pattern, 

BeforeAdvice2Pattern and PointCutToExternalPattern) have the same 

left-hand-side (LHS), such that the main difference lies in their concrete syntax (i.e., 

the grammar of the two languages). 



 

 
rule BeforeAdvice2Pattern { 

 from 

  s : APascal!BeforeAdvice 

 to 

  t : RSL!Pattern ( 

   phead  <- ph, 

   ptoken <- 'statement_list', 

                     ptext  <- spt 

  ), 

  ph : RSL!PatternHead ( 

   name <- 'before_advice_stmt' 

  ), 

... 

  ) 

} 

rule AfterAdvice2Pattern { 

 from 

  s : APascal!AfterAdvice 

 to 

  t : RSL!Pattern ( 

   phead  <- ph, 

   ptoken <- 'statement_list', 

                     ptext  <- spt 

  ), 

  ph : RSL!PatternHead ( 

   name <- 'after_advice_stmt' 

  ), 

            ... 

} 

lazy rule PointCutToExternalPattern { 

 from 

  s : APascal!Pointcut 

 to 

  t : RSL!ExternalPattern ( 

   dname  <- 'ObjectPascal', 

   eptext <- 'around_advice_call', 

   ptoken <- 'ObjectPascal', 

   phead  <-  ph 

  ), 

  ph : RSL!PatternHead ( 

   name   <- 'around_advice_call', 

   params <-  Sequence {pp1,pp2,pp3,pp4,pp5,pp6} 

  ), 

  pp1 : RSL!PatternParameter ( 

   name    <- 'program', 

   referTo <- 'ObjectPascal' 

  ), 

  pp2 : RSL!PatternParameter ( 

   name    <- 'method_name', 

   referTo <- 'IDENTIFIER' 

  ), 

  pp3 : RSL!PatternParameter ( 

   name    <- 'proceed_call', 

   referTo <- 'IDENTIFIER' 

  ), 

... 

} 

Figure 12: ATL specification (snippet) used to generate lower-order 

transformation rules (RSL) for weaving an Object Pascal source program 

 

 



 
rule BeforeAdvice2Pattern { 

 from 

  s : AFortran!BeforeAdvice 

 to 

  t : RSL!Pattern ( 

   phead  <- ph, 

   ptoken <- 'execution_part_construct_list', 

                     ptext  <- spt 

  ), 

  ph : RSL!PatternHead ( 

   name <- 'before_advice_stmt' 

  ), 

... 

} 

 

rule AfterAdvice2Pattern { 

 from 

  s : AFortran!AfterAdvice 

 to 

  t : RSL!Pattern ( 

   phead  <- ph, 

   ptoken <- 'execution_part_construct_list', 

                     ptext  <- spt 

  ), 

  ph : RSL!PatternHead ( 

   name <- 'after_advice_stmt' 

  ), 

... 

} 

 

lazy rule PointCutToExternalPattern { 

 from 

  s : AFortran!Pointcut 

 to 

  t : RSL!ExternalPattern ( 

   dname  <- 'FORTRAN', 

   eptext <- 'around_advice_call', 

   ptoken <- 'Fortran90_program', 

   phead  <- ph 

  ), 

  ph : RSL!PatternHead ( 

   name   <-   'around_advice_call', 

   params <- Sequence {pp1,pp2,pp3,pp4,pp5,pp6} 

  ), 

  pp1 : RSL!PatternParameter ( 

   name    <- 'program', 

   referTo <- 'Fortran90_program' 

  ), 

  pp2 : RSL!PatternParameter ( 

   name    <- 'method_name', 

   referTo <- 'NAME' 

  ), 

  pp3 : RSL!PatternParameter ( 

   name    <- 'proceed_call', 

   referTo <- 'NAME' 

  ), 

... 
} 

Figure 13: ATL specification (snippet) used to generate lower-order 

transformation rules (RSL) for weaving a FORTRAN source program 

 



For example, in the ATL rule BeforeAdvice2Pattern, the before advice in the 

source aspect metamodel is mapped to a RSL pattern in the target RSL metamodel 

that consists of a pattern head (phead), a pattern token (ptoken) and the pattern 

text (ptext). Similarly, a RSL external pattern is translated from a source pointcut 

specification and has the same LHS signature (dname, eptext, ptoken, phead) 

for both Object Pascal and FORTRAN generators. The main difference lies in the 

concrete syntax (right-hand side) of the base language grammar as referred in the 

transformation rules (e.g., an execution_part_construct_list in 

FORTRAN is similar to a statement_list in Object Pascal). Obviously, there 

are other non-terminal and terminal tokens in both the Object Pascal and FORTRAN 

grammar that have similar structural representation and meaning, but differ by name 

in their grammar form. The strategy is always to follow a common abstract structure 
(or substructure) to translate a particular join point from an aspect description to RSL. 

However, in certain cases, where the difference in signature or concrete syntax 

between two language grammars differs significantly, it may not be directly possible 

to map to a generic interface. Instead, the mapping can then conform to sub-structures 

or sub-interfaces.  

 

Steps to Construct a New Weaver 

 

Using the current methodology, in order to construct a new weaver for a language that 

is not supported by the framework, the following steps have to be performed: 

 

• The aspect metamodel extension for the new language must be designed. 

Firstly, the new weaver should extend the language-specific aspect 

metamodel for the new language by inheriting from the generic aspect 

metamodel provided by the framework. Figures 9 and 10 show how this 

extension is done for Object Pascal and FORTRAN. This metamodel 

represents the abstract syntax of the newly constructed aspect language and 

is implemented using KM3, as shown in Figure 4. However, in some 

situations, representing common concepts between aspect languages may 

require the extension of the generic aspect metamodel. 

• After the abstract syntax is defined, the corresponding concrete syntax that 

defines the syntactic structure of the aspect language should be designed. In 

our case, this was done using TCS, as shown in Figure 5. The choice of the 
metamodeling technology may slightly alter these first two steps. 

• Apart from the generic metamodel, the framework provides a library of 

model transformation rules (i.e., ATL rules) that need to be customized 

based on the design of the new aspect language. Figures 12 and 13 show 

snippets of ATL transformation rules that are customized for Object Pascal 

and FORTRAN. In general, the model transformation rules differ in their 

concrete syntactical representation from one language to another and this 

difference is shown in Figure 17. In our future work, we plan to automate 

this customization by capturing the differences using a model mapper, 

thereby reducing the accidental complexity associated in this step. 

• No changes are required for the back-end rules metamodel. After the model 
transformation rules are defined, the corresponding program transformation 

rules can be generated, as shown in Figure 7. The generated program 



transformation rules perform the actual weaving on the source code. The 

weaver constructor can automate this entire process by providing appropriate 

Ant scripts [30] such that the end-user is fully oblivious to the two-level 

transformations (i.e., first model transformation and then program 

transformation) taking place. This virtually completes the tasks for 

constructing a new weaver. 

• The end-user only has to write their aspect program as shown in Listing 3 or 

Listing 5; they are shielded from the internal complexities. The opaque 
statements appearing in the aspect program thrust some accidental 

complexity on the end-user, which is a limitation of the current 

implementation, but is intended to reduce the burden of the front-end parser. 

 

As an alternative approach to model-to-model (M2M) transformation followed by 

TCS extraction, an interesting technique that can be used is model-to-text (M2T) 

transformation [37]. In the M2T approach, models of particular software solutions are 

refined and transformed into source code (e.g., Java, C++). Such transformations 

generally make use of “templates.” A template is a text sequence interspersed with 

commands that extract information from a model. The Jet or Acceleo template 

languages can be used for such a purpose [37]. We recognize that this is an interesting 
solution and could serve as an alternative approach towards constructing the RSL rule 

generator. However, using M2T, we may lose the precise concept mapping between 

the source and the target model, and rely on mapping concepts to strings. 

Nevertheless, many alternative approaches can still benefit from the technique 

described in this paper. 

In the following section, we present two case studies that use our model-driven 

aspect weaving framework to construct aspect weavers for two different GPLs. In 

particular, we construct aspect weavers for Object Pascal and FORTRAN and make 

comparative studies of reuse of their front-end, the rule generator and the back-end. 

The observations made in the case studies help to illustrate the potential of the 

techniques presented so far. It also reveals some of the limitations of the current 

implementation of the framework and offers lessons learned during the process that 
can be applied for future improvements.  

 

4 Case Studies – Object Pascal and FORTRAN 

In order to experiment with the approach presented in the previous sections, we 

constructed two aspect weavers – one for Object Pascal and another for FORTRAN – 

using our generic model-driven framework. A subset (e.g., primitive pointcuts like 

call, execution, loop) of standard AOP features was built into both weavers in an 
AspectJ-like style. The FORTRAN weaver was constructed after the completion of 

the Aspect Pascal weaver and reused several functionalities, code and knowledge 

from the previous construction without much alteration to the core artifacts. For 

example, both weavers shared the generic front-end, which constituted around 50% of 

the overall front-end lines of code (LOC) written in KM3 and TCS. Moreover, the 

FORTRAN weaver reused 30% of the Object Pascal rule generator code without any 

alteration, and another 25% with minor customization. Most of the time and effort on 

building the FORTRAN weaver was spent on understanding the concrete syntax of 

the language and on the conceptual design of the weaver. The rest of the section is 



devoted to evaluating the basic functionalities of these weavers through sample case 

study applications.  

4.1 Object Pascal Weaver Examples 

The initial experimentation towards evaluating our Aspect Pascal weaver was realized 

within the scope of a commercial distributed application written in Object Pascal. The 

case study application and all the examples discussed here were first introduced in 

[12]. One specific application used for evaluation was a utility that assisted in 

upgrading a database after a schema change. The first example presented in this 

section is concerned with updating a processing dialog meter within the schema 
evolution tool. The second example relates to synchronization between various 

database error-handlers. 

4.1.1 Processing Dialog Meter 

Utilities such as a schema evolution tool provide feedback to the user in the form of a 

processing dialog, or meter, which indicates the progress of the overall task. The 

updating of the progress meter represents a crosscutting concern because the code to 

increment the meter is spread across the methods that perform much of the 

functionality (e.g., deleting database triggers, compiling new stored procedures, and 

other evolution tasks). Lines 2-8 in Listing 2 contain a redundant code fragment that 

appears in 62 different places of the schema evolution utility. This code is necessary 

to update the processing dialog after each database evolution task is completed. 

Technically, this happens after every call to the predefined Inc procedure. 

 
1. Inc(TotalInsertionsPerformed); 

2. if not ProcDlg1.Process(TotalInsertionsPerformed /   
3.          TotalInsertionsCalculated) then 
4.   begin 
5.     ProcDlg1.Canceled := True; 
6.     Result := True; 
7.   exit; 
8. end; // if not Process 

 

Listing 2: Progress meter updating 

 

Listing 3 shows the UpdateProgressMeter aspect that encapsulates the 

crosscutting concern shown in Listing 2. The pointcut IncrCall_ captures all calls 

to procedure Inc. The advice code shown between Lines 5-13 is triggered after the 

“procedure call join point” is reached. It may be noted that the entire conditional ‘if 

statement’ (defined internally as an OpaqueStatement between <! and !>) is not 

parsed by the front-end but delegated to the back-end parser. 

 

 

 



1. aspect UpdateProgressMeter  
2.   begin 
3.     pointcut IncrCall_() :  
             call(procedure  *.Inc(Integer)); 

4.  
5.    after() : IncrCall_() 
6.    begin 
7.      <!if not ProcDlg1.Process(TotalInsertionsPerformed /     

8.            TotalInsertionsCalculated) then 
9.       begin 
10.         ProcDlg1.Canceled := True; 
11.         Result := True; 
12.       exit; 
13.    end;!> 
13.    end 

14. end 

 

Listing 3: Aspect to capture progress meter updating 

 

Following TCS injection on the above source program (Listing 3), the corresponding 

Aspect Pascal model is generated (shown in Figure 14). The model (represented in 

XMI format) conforms to the APascal and GAspect metamodels introduced in Section 

3 (this representation is never seen by the end-user). After applying an ATL 

transformation (method call) to this Aspect Pascal model, the resulting RSL model is 

generated that conforms to the target RSL metamodel. Finally, the lower-order RSL 

transformation rule is extracted from the RSL model using TCS extraction. The 

complete RSL model and the RSL transformation rule are available at [30]. Note that 
the complete transformation scenario was initially introduced in Section 2.3 of the 

paper (also refer to Figure 7) and is fully automated using Ant scripts. 

 
<APascal xmlns="APascal" xmlns:_1="GAspect" name="UpdateProgressMeter"> 

  <domain name="ObjectPascal"/> 

  <pointcut name=" IncrCall_"> 
    <pctexpr xsi:type="CallExpr"> 

      <funcOrProcSig xsi:type="ProcedureDef" name="Inc" classifier="*"> 

        <paramdefs name="*" type="Integer"/> 

      </funcOrProcSig> 

    </pctexpr> 

  </pointcut> 

  <advice xsi:type="_1:BeforeAdvice" pctname="//@pointcut.0"> 

    <advStmt xsi:type="_1:OpaqueStatement" stmt="..."/> 

  </advice> 

</APascal> 

Figure 14: Aspect Pascal model (snippet) generated from  

Aspect Pascal source program 

 

The next example in our case study shows how a synchronization aspect is captured 

using the Aspect Pascal weaver constructed from our model-driven framework. 



4.1.2 Database Error Handler Synchronization 

Often, a commercial application must support databases from several different 

vendors (e.g., Oracle, Interbase, and SQL Server). In such a situation, exception 

handling of database errors is a major difficulty because each database has its own 

way of raising exceptions. The same conceptual error (e.g., a null value in a required 
field) may be raised in completely different ways with dissimilar error codes. 

Moreover, the exception handling code must be thread-safe because numerous clients 

may access the database at the same time. The addition of this concurrency concern 

resulted in a manual invasive change to over 20 classes in the schema evolution utility 

[12]. An example error handler is shown in Listing 4. In this listing, lines 3-4 and 6-8 

represent a single synchronization concern. Furthermore, this exact code is replicated 

in all of the entry and exit points of each type of error handler. Line 5 represents the 

actual database error handing code which is omitted for brevity. 

 
1. function TExNullField.Handle(ServerType: TServerType; 

   E : EDBEngineError) : Integer; 

2.  begin 
3.     TExHandleColl(Collection).LockHandle; 
4.     try 
5.       <database error handling code omitted here> 
6.       finally 
7.         TExHandleColl(Collection).UnLockHandle; 
8.     end; 
9.  end; 

Listing 4: Synchronization in a database error handler 

Listing 5 shows the aspect to support a synchronization concern as stated above. The 

pointcut funcHandler_ captures execution of all database handler functions.  

 
1. aspect SyncDBErrHandler  
2.   begin 
3.    pointcut funcHandler_() : 

execution(function *.Handle(..)); 

4.    void around() : funcHandler_()   
5.      begin 
6.       <!TExHandleColl(Collection).LockHandle;!> 
7.       try  
8.          proceed (); 
9.          finally 
10.            <!TExHandleColl(Collection).UnLockHandle;!>         
11.       end; 

12.   end 
13. end 

Listing 5. Aspect to capture synchronization in a database error handler 

 

Synchronization is realized by an around advice that wraps calls to the LockHandle 

and UnlockHandle methods inside a try/finally block. The proceed 

statement allows the database error handling code to execute normally within the 



synchronization aspect. We applied the same steps as in the previous example to 

separate this concern from the main code base. The example shows another special 

case of using opaque statements that are not part of the aspect metamodel. Such 

statements are not parsed by the front-end and instead delegated to the back-end 

transformation engine for further processing. This may add some accidental 

complexity for the end-user who needs to have prior knowledge about which concrete 

syntax are supported by the metamodel and which are actually delegated as opaque 

statements. This is a limitation in the implementation of the current approach but 
intended to keep the syntax of the aspect language separated from the syntax of the 

base language. The idea is to parse the base language syntax using the already 

available back-end parser (i.e., without having to extend them with new constructs) 

and implement the front-end parser incrementally to handle aspect-specific constructs. 

We recognize that the use of notation <!..!> raises the accidental complexity for the 

end-user and is not a desirable solution. In future implementation, we intend to 

improve the representation of opaque statements such that it is oblivious to the end-

user. 

The Aspect Pascal model shown in Figure 15 is obtained by applying TCS 

injection on the above source program. The complete ATL transformation (method 

exec) and generated RSL code is available at [30]. It should be noted that it is this 

lower-order RSL code that does the actual weaving on the base program, but the 
general user of this framework is oblivious to its presence. Instead, the front-end 

aspect language acts as a façade to the back-end PTE and hides all the accidental 

complexity associated with it (Challenge C3). 

The XMI (Figure 14 and Figure 15) is only an internal representation of the 

Aspect Pascal model and is used for analyzing and transforming the aspect 

specification. A software developer does not see this internal representation. 

However, the information is useful for more advanced users (e.g., weaver constructor) 

for debugging and analysis purposes. 

 
<APascal xmlns="APascal" xmlns:_1="GAspect" name="SyncDBErrHandler"> 

  <domain name="ObjectPascal"/> 

  <pointcut name="funcHandler_"> 

    <pctexpr xsi:type="ExecExpr"> 

      <funcOrProcSig xsi:type="FunctionDef" name="Handle" classifier="*"> 

        <paramdefs name="*" type="*"/> 

      </funcOrProcSig> 

    </pctexpr> 

  </pointcut> 

  <advice xsi:type="_1:AroundAdvice" pctname="//@pointcut.0"> 

    <advStmt xsi:type="_1:OpaqueStatement" stmt="..."/> 

    <advStmt xsi:type="_1:TryCatchFinallyStatement"> 

      <stmts xsi:type="_1:ProccedStatement"/> 

      <finallyStmts xsi:type="_1:OpaqueStatement" stmt="..."/> 

    </advStmt> 

  </advice> 

</APascal> 

Figure 15: Aspect Pascal model (snippet) generated from 

 Aspect Pascal source program 

 



4.2 FORTRAN Weaver Examples 

Although most AOP research is centered around Java, we believe several numerical 

and scientific computing applications that are written in legacy languages like 

FORTRAN can benefit from AOP. There has been prior AOP / metaprogramming 

research conducted in the area of parallel programming [45, 47], especially with 
optimization of FORTRAN code [46]. To evaluate our framework in this regard, we 

constructed a FORTRAN weaver and was able to reuse a majority of the code 

generator libraries that were previously written for Object Pascal. The front-end of the 

FORTRAN weaver is based on the same Generic Aspect Metamodel that was used by 

the Object Pascal weaver. We evaluated our weaver in a FORTRAN application using 

the Message Passing Interface (MPI) [29] written for high-performance scientific 

computing. The first example shows how a security concern can be weaved into such 

applications and the second example illustrates how to monitor and weave an aspect 

around loops. 

4.2.1 Security Aspect 

MPI is a library specification for message-passing and is largely used in high-

performance scientific computing applications [29]. MPI provides more than 125 core 

functions that include all the basic functionalities to assist in writing parallel 

programs. There are several implementations of MPI written in various languages 

(e.g., C, FORTRAN, C++ and Java). In order to provide security to FORTRAN-based 

MPI applications, it is often required to encrypt/decrypt messages while they are sent 

or received across the network. Listing 6 shows a snippet of a FORTRAN MPI 

program, in which lines 9 and 12 illustrate how a security concern (i.e., a call to the 

encrypt function) is added before each call to MPI_SEND. The implementation of 

the security concern is scattered over the entire code base for all messages that require 

encryption during MPI_SEND. 

Listing 7 shows the aspect program required to enable security for all messages 

during MPI message send and receive. The pointcut captures all calls to MPI_SEND 

and passes the message to be encrypted as an argument. In a similar way, security to 

messages may be enabled during calls to MPI_RECV. The internal representation of 

the generated artifacts (e.g., Aspect FORTRAN model, RSL model and RSL 

transformation rule) is not shown here but the transformation process is similar to 

previous descriptions. 

  



1.    program send_recv_with_MPI 

2.    ...! original code 

3.    real :: a_msg 

4.    real :: b_msg 

5.    ...! original code 

6.    allocate (a_msg(msg_len)) 

7.    allocate (b_msg(msg_len)) 

8.    ... 

9.    call encrypt(a_msg) 

10.    call MPI_SEND(a_msg,...) 

11.    ... 

12.    call encrypt(b_msg) 

13.    call MPI_SEND(b_msg,...) 

14.    ... 

15.    deallocate (a_msg) 

16.    deallocate (b_msg) 

17.    ...! original code 

18.    End 

Listing 6. Encryption of messages during MPI_SEND 

 

 
1.   aspect enable_encryption  

2.     pointcut mpi_send_(real :: orig_msg) ::  

3.       call(MPI_SEND(real,*)) && args(orig_msg) 

4.     before(real :: orig_msg):: mpi_send_(orig_msg)  

5.       call encrypt(orig_msg) 

6.     endbefore 

7.   endaspect 

Listing 7. Aspect to enable encryption during MPI Calls 

4.2.2 Join Point for Loops 

It is often desired to monitor the performance of loops for some high-performance 
scientific applications. Harbulot et. al. first introduced this concept in an extension to 

AspectJ [25]. We borrowed from their definition and added this feature into our 

FORTRAN and Object Pascal weavers. According to our definition, the join point for 

a loop has the following signature: 

 
<loop_name>(init::<val>, exit::<val>, stride::<val>) 

 

Init specifies the loop initialization value, exit specifies the loop termination 

value and stride specifies the loop increment counter. Listing 8 shows an 

implementation of MPI_GATHER written in FORTRAN.  

 
  



1.    program gather_vector 

2.    ... ! original code 
3.    parameter(niters=10) 
4.    parameter(xmax=100,ymax=100) 
5.    parameter (totelem=xmax*ymax) 
6.    ... 
7.    ! start timer 
8.    time_begin = MPI_Wtime() 
9.    do iter = 1,niters 
10.      ... 
11.        do i=1,totelem 
12.           ... 
13.        enddo            
14.    enddo 
15.    ! stop timer 
16.    time_end = MPI_Wtime() 
17.    ... ! original code 
18.    end 

Listing 8: Adding a timer around do loops 

 

 
  aspect AddTimerAroundLoops  

    pointcut loop_timer_() ::     

      execution(do(init::1,exit::10,stride:*)) 

    around():: loop_timer_()  

      time_begin = MPI_Wtime() 

      call proceed()       

      time_end = MPI_Wtime() 

    endaround 

  endaspect 

 

Listing 9: Aspect to add a timer around do Loops 

 
In MPI, messages can be forwarded by intermediate nodes where they are split (for 

scatter) or concatenated (for gather). Often, it is required to measure timing statistics 

around critical parts of program execution. One such case is shown in Listing 8. Lines 

9-14 show the execution of the outer do loop, which has initial value as 1, exit value 

as 10 and a default stride as 1. In a manual approach, it is required to invasively add 

the timer information (Lines 8 and 16 shown in italics) and change the source program 
at every place whenever the program runs into the execution of a loop join point that 

matches the loop conditions. 

Listing 9 shows the aspect program that can automatically add the timing 

functions during the execution of the loop join point. The join point for loops matches 

any loop expression in the base program that satisfies the loop initialization value, the 

loop finalization value (exit) and the loop stride value. The wildcard ‘*’ may be 

interpreted as ‘any.’ Currently, both integer and string value types are supported, but 

future extensions can support other value types. However, as a side effect, the 

behavior of a base program may be altered if there are logical errors (init=1, 

exit=1, stride=2) in the loop expression and there is a corresponding match. 

Such a situation may be avoided in the future by adding semantic validations to the 
existing pattern matching functionality. 



<AFortran xmlns="AFortran" xmlns:_1="GAspect" name="AddTimerAroundLoops"> 

 <domain name="FORTRAN"/> 

 <pointcut name="loop_timer_"> 

  <pctexpr xsi:type="_1:LoopExpr"> 

   <loopStmt xsi:type="DoLoop"> 

      <loopInitCond xsi:type="1:IntLoopInitCond" condition="1"/> 

      <loopExitCond xsi:type="1:IntLoopExitCond" condition="10"/> 

      <loopStrideCond xsi:type="1:StringLoopStrideCond" condition="*"/> 

   </loopStmt> 

  </pctexpr> 

 </pointcut> 

 <advice xsi:type="_1:AroundAdvice" pctname="//@pointcut.0"> 

  <advStmt xsi:type="_1:OpaqueStatement" stmt="time_begin = MPI_Wtime()"/> 

  <advStmt xsi:type="_1:ProceedStatement"> 

  <advStmt xsi:type="_1:OpaqueStatement" stmt="time_end = MPI_Wtime()"/> 

  </advice> 

</AFortran> 

 

Figure 16: Aspect FORTRAN model generated from source aspect program 

 

The Aspect FORTRAN model (XML format) corresponding to the aspect 

specification (Listing 9) is shown in Figure 15. The model conforms to the Aspect 

FORTRAN metamodel from Figure 10. The corresponding ATL transformation for 

loops and the generated RSL code can be found at the project website [30].  

 

4.3 Discussion of Experimental Results 
 

In terms of reusability, all the examples listed in Section 4 reuse the same generic 

aspect metamodel (GAspect). Moreover, the ATL transformation for translating a 

particular join point reveals non-trivial reuse among weavers constructed for different 

GPLs. This was illustrated in Section 3.2 through Figures 12 and 13 (i.e., an ATL 

transformation for translating a method call join point in FORTRAN and 

Object Pascal). In that particular example, 230 lines of model transformation code 

(out of 280 LOC) were reused without any modification. The remaining 50 LOC were 

reused with minor customization.  

Similarly, for translating a loop execution join point in FORTRAN 

and Object Pascal, 265 LOC out of 305 were reused without any modification, while 

the remaining 40 LOC were reused with minor customization. Examples of an ATL 

rule for translating a loop execution join point for Object Pascal is shown 

in [30]. 

A visual comparison between the ATL rules (loop execution join 

point) for Object Pascal and FORTRAN weavers is shown in Figure 17
2
, which 

suggests the level of reuse among the two ATL rules. This level of reuse is a direct 
benefit of using the framework, which enforces the model transformation rules to 

conform to a common abstract structure. The yellow lines show the difference 

between two rules, which is mostly due to the dissimilarity in the grammars (terminal 

and non-terminal symbols) of the two languages (Object Pascal and FORTRAN). 

Although these parts seem to be tangled in the current implementation (weak 

copy/paste reusability), a future improvement (strong reuse) would capture the 

                                                        
2  In the right-hand side of Figure 17, there is an extra carriage return on line 220 that caused 

the gray line to appear in the left-hand side of the figure. 



mapping information (i.e., the concrete syntax or grammars of the base languages) in 

a model weaver [39] and apply the mapping information to automatically generate 

part of this model transformation library. From our own experience in constructing 

aspect weavers using the generalized framework, we realized that a large part of the 

generic front-end and program transformation rule generator is reusable across 

languages with little customization. A comparative analysis between other ATL rules 

for the Aspect Pascal and Aspect FORTRAN weaver is available at the GenAWeave 

website [30].  
   

 

  Figure 17: A comparative analysis of model transformation rules 

 

Likewise, the front-end of all weavers share a generic metamodel (i.e., GAspect). Out 

of 550 LOC used for defining the front-end metamodel (KM3 and TCS 

specifications), nearly 280 LOC were shared among the two weavers. However, it 

should be noted that the current weavers have limited functionalities and the reuse 

may decrease with mutually exclusive functionalities (e.g., with join point is present 

only in Object Pascal and not in FORTRAN). Nevertheless, the purpose of the Aspect 

Pascal and Aspect FORTRAN weavers were to experimentally evaluate the generality 
of the model-driven framework for building aspect weavers. The main objective was 

to evaluate the reusability of features that can be shared among multiple weavers 

without writing them from scratch. In the current stage of our investigation, we have 

adopted a simple join point model (a subset of AspectJ) with primitive pointcuts like 

call, execution, loop, withincode, with, within and args and advice 

declarations like before, after and around. It was observed that the Aspect 

FORTRAN weaver that was constructed after the completion of the Aspect Pascal 

weaver reused a majority of the available front-end artifacts (e.g., generic metamodel 

and ATL specifications).  

In addition to front-end reuse, the framework provides a reusable library of back-

end external functions that can be used to provide low-level transformation support 
for new aspect weaver construction. These functions provide efficient tree traversal 

strategies in addition to AST manipulation [12]. Currently, there are 11 such functions 

that are shared by the Object Pascal and FORTRAN weavers. However, not all 

external functions are reusable or shared, especially, the ones that are dependent on 



the syntax of the base language. In such cases, the functions adopted by multiple 

weavers generally use identical algorithms and conform to a common abstract 

structure to increase their reusability.  

Figure 18 shows the reusability summary for the FORTRAN and Object Pascal 

weavers. It can be observed that the front-end reusability is considerably larger than 

the back-end reusability. Overall, approximately 55-65% of the artifacts were reused 

between the two weavers. 

 

 
 

Figure 18: Reusability summary for FORTRAN and Object Pascal weavers 

 

 

4.4 Limitations to Current Framework 
 

Although more advanced pointcuts like control flow (cflow) and reflection 

(thisJoinPoint) were omitted from the current investigation due to limited 

control flow analysis in DMS for Object Pascal and FORTRAN, future research aims 

to introduce them at a later stage. It should be noted that the join point model in our 

implementation is AST based, where join points are mapped to specific nodes or 

control points in the AST. Using the underlying AST based infrastructure, a control 

flow graph for a specific language in DMS can be implemented by using an attribute 

grammar evaluator that propagates control points around the AST and assembles 

those control points into a completed graph. Additional context information like 

thisJoinPoint can be added at specific nodes or control points in the AST. One 

can construct these evaluators by using a DMS Control Flow graph domain and a 

supporting library of control flow graph facilities that it provides. These evaluators 

are currently available off-the-shelf for the more popular C++, C and Java domains. 

Since building an attribute evaluator for Object Pascal and FORTRAN is purely 

engineering and less scientific in nature, we chose to introduce them at a later stage. 
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However, we understand that with the addition of reflective capabilities and more 

advanced pointcut mechanisms, there might be a reduction in the overall reusability of 

model transformation rules in another language or platform context, but the goal of 

this research has been to show a technique to construct reusable aspect weavers by 

utilizing most of the software artifacts (e.g., existing parsers and analysis engines) that 

are already available for a variety of legacy and modern programming languages. The 

science and theory to construct such tools are already well-established and it would 

require considerable engineering effort to build them from scratch without gaining 
any additional scientific knowledge. On the other hand, new language-independent 

techniques like .Net CLI / CodeDOM are not always feasible to support various 

legacy languages like FORTRAN, COBOL and Object Pascal due to their non-

conformance to the .Net specification. Unless those languages are forced to comply 

with a language-independent CLI specification, new experimentation to impart AOP 

features to such languages is very challenging. Currently, DMS provides more mature 

analysis engines for languages like C++ and Java. As part of possible future 

extensions, we plan to experiment with such advanced pointcut mechanisms (cflow, 

reflection ) for these two languages. Another limitation in our current aspect 

metamodel is the absence of inter-type declaration (ITD). This was primarily due to 

the reason that we intended to experiment with a smaller subset of AOP language 

features and introduce others gradually at a later stage. This was more of a design 
choice than a limitation of the framework or the underlying program transformation 

engine, which has the necessary machinery to support ITDs. 

Language-specific weavers will have a distinct advantage in their initial 

implementation of new features because they are direct extensions of their base 

language (low complexity). However, if one has to repeat those features in another 

language and platform context, there is no technique to support reuse of such features 

(low reusability). In our framework, the complexity is high on the part of the weaver 

constructor because of multiple levels of transformation. However, it is possible to 

pass on already implemented features from one language to another (high reusability). 

From the end-user’s point of view, the complexity is similar for both language-

specific and language-independent techniques, except the fact that a better mechanism 
is needed to handle opaque statements (i.e., statements that are not parsed by the 

front-end). 

5 Related Work 

 

In addition to Weave.Net [18], SourceWeave.Net [17], and Compose* [44] (presented 

in Section 3), another framework that aims toward language-independent AOP is 

Aspicere [16]. Currently, Aspicere’s weaver transforms a C program by manipulating 
an XML-representation of its Abstract Syntax Tree (AST), but future extensions aim 

to combine Aspicere with the Gnu Compiler Collection (GCC). The technique plans 

to introduce two new intermediate representations: GENERIC and GIMPLE trees. 

Each different language front-end produces a forest of GENERIC trees, which are 

then turned into GIMPLE for optimizations and eventually fed to the back-ends. 

Aspicere aims at expressing the weaver’s semantics in terms of generic trees that can 

eventually lead to language-independent AOP. 

An initial prototype that brings aspects to COBOL was developed through a 

collaboration of academic and industrial partners [31]. The implementation reuses a 



pre-existing COBOL front-end to construct an AST that is persisted as XML. The 

Aspect COBOL weaver operates on the XML representation using a DOM-based 

approach. The weaver has similar semantics to AspectJ join points [8], but uses an 

imperative language that is closer to COBOL syntax. The weaver provides ad hoc 

type analysis (e.g., use-to-def site navigation) for more sophisticated data join points. 

A related challenge emerging from representing the source model in the form of 

an XML representation (as seen in Weave.Net, SourceWeave .Net, and AspectCobol) 

concerns the issue of scalability. The verbosity of an XML code representation may 
hamper the size of an application that can be weaved. It has been reported that an 

XML representation is up to 50 times larger than other internal representations and 

much slower to transform [32]. The verbosity of XML may influence the ability of 

SourceWeave.Net, Aspicere and AspectCobol to handle very large applications. 

More recently, Heidenreich et al. showed a generic approach for implementing 

aspect orientation for arbitrary languages using invasive software composition. 

However, their technique is more useful for declarative DSLs than for GPLs [26]. 

Morin et al. presented a generic aspect-oriented modeling framework to represent 

aspects that can be adapted to any modeling domain [27]. Although our work tends to 

capture the generality of aspect languages and not individual aspects, nevertheless, it 

can gain interesting insights from such an approach. 

Within the AOSD-Europe project, a metamodel for aspect-oriented programming 
languages was developed [42]. The metamodel presented in that project consisted of 

four different metamodels; namely, the join point metamodel, join point selector 

metamodel, selector advice binding metamodel and advice metamodel. We believe 

this to be useful information and may be used to enhance the metamodel described in 

this paper. 

A recent addition to the class of language extension tools is MetaBorg [33], 

which provides an ability to embed domain-specific languages into general-purpose 

languages. However, the embedding permitted by MetaBorg is focused on localized 

adaptations, and cannot accommodate the global effects of aspects. MetaBorg also 

requires specific transformation rules to be written for each GPL. Based on the 

MetaBorg approach, an extensible kernel language for multi-language AOP called 
Reflex was developed [43]. 

In [34], advanced pattern detection techniques are suggested by applying a logic-

based query language that uses concrete source code templates to match against a 

combination of structural and behavioral program representations, including call-

graphs, points-to analysis results and abstract syntax trees. This is similar to the rule 

specification language available in DMS that is used for pattern matching. RSL also 

provides external patterns and conditions that make calls to external functions written 

in DMS PARLANSE (a parallel language for manipulating symbolic expressions) for 

more advanced program analysis. 

Ramos et al. propose a framework for expressing patterns as model-snippets and 

show how pattern matching can be performed with model-snippets for any given 
metamodel [35]. In our current framework, all pattern matching and analysis is done 

through the back-end, where the metamodel is used to express the front-end aspect 

language and its generic extensions. All of the higher-order aspect specifications are 

translated to lower-order back-end program transformation code that does the actual 

weaving. 

 



6 Conclusion 
 

The research presented in this paper raised several key challenges (identified in 
Section 1.1) in designing a generic framework to construct aspect weavers. In 

particular, the paper describes a model-driven framework that combines program 

transformation with model-driven engineering to construct aspect weavers for modern 

and legacy programming languages. We showed how Challenges C1 (parser 

construction problem) and C2 (weaver construction problem) were resolved through 

adoption of a mature program transformation engine as the back-end of the 

framework. The paper also illustrated how accidental complexities (Challenge C3) 

that are generally associated with a program transformation system can be reduced 

using a model-driven front-end. The last challenge (Challenge C4) deals with 

generality, reusability, and transfer of knowledge from one weaver to another. In our 

opinion, this is the most difficult challenge of the four. We demonstrated that by 

making the front-end generic, along with a systematic program transformation rule 
generator, significant inroads have been made to address this challenge. To evaluate 

the usefulness of the generic framework, two aspect weavers were constructed for 

Object Pascal and FORTRAN. The FORTRAN weaver was built after the successful 

construction of the Object Pascal weaver. When constructing the second weaver, we 

observed that we could reuse more than 50% of the artifacts (generic front-end and 

rule generator) that were created during the construction of the Aspect Pascal weaver. 

The current approach is focused on a simple join point model. More advanced 

pointcuts like control flow and reflective techniques like thisJoinPoint are 

currently not available. However, with the availability of a mature control flow 

analysis engine for Object Pascal and FORTRAN in DMS, we can extend the weavers 

to support advanced aspect language features. Note that most of the analysis and 

pattern matching is realized through the back-end program transformation engine and 

the front-end only acts as a wrapper to the back-end. If the back-end PTE can support 

advanced program analysis, it is possible to wrap those features through the front-end, 

avoiding all the accidental complexities (Challenge C3) that are generally associated 

with complex PTEs.  

In summary, this research provides an initial solution to several challenges listed 
in Section 1 by reusing most of the existing software artifacts (e.g., lexers, parsers, 

analyzers, evaluators) that are already available for a variety of GPLs. Thus, our 

framework enables new experimentation with advanced software engineering 

principles like AOP for existing legacy languages. The research also addresses new 

challenges that arise from the usage of complex PTEs like DMS by providing a 

suitable front-end that hides most of the accidental complexity. 

 

 

6.1 Lessons Learned 

 

In this section, we summarize the seven main lessons that we have learned while 

working on the research presented in this paper. These lessons are enumerated below: 

 

• Lesson 1 - Generalizing the front-end: We realized that parts of the aspect 

language front-end can be reused by making it generic. By generalizing the 

front-end metamodel, several aspect languages can extend a single core (e.g., 



GAspect) while the differences can be captured within their specific part. The 

solution can be achieved using MDE techniques like metamodel extension. 

• Lesson 2 - Improving the generic metamodel: The current generic metamodel 

(i.e., GAspect) generalizes what is common between APascal and AFortran 

(i.e., the aspect languages for Object Pascal, and FORTRAN). Figure 19a 

shows this current design. If we consider the construction of ARuby (i.e., an 

aspect language for Ruby) using our framework, this new language could 

directly extend GAspect as shown in Figure 19a. However, it is expected that 
both ARuby and APascal will have some commonality (e.g., related to the 

object paradigm) not shared with AFortran. Figure 19b shows the structure of 

the new improved design. The commonalities between APascal and ARuby 

are extracted into OO-A (the common object-oriented constructs of ARuby 

and APascal), which extends GAspect. In [36], a proposal for typing models as 

a collection of interconnected objects is discussed. The formalism described 

there is an extension to object-oriented typing, but suitable to a model-oriented 

context. Our approach of defining an abstract metamodel and its conformance 

between other metamodels via metamodel extensions is similar to the concept 

described in [36]. 

 

 
 

               a) Current design of front-end                               b) Improved design of front-end 

                metamodel                                                                    metamodel 

 

Figure 19: Improving the front-end metamodel design 

 

• Lesson 3 – Use of generic interfaces in the rule generator: The concept of 
generic interface was introduced in Section 3.2 to generalize the design of the 

rule generator. As a result, the rule generator library can be reused across 

languages with minimum customization. 

• Lesson 4 - Modeling can be suitably applied to PTEs: From our research, we 

realized that it is possible to model and transform program transformation 

rewrite-rules using MDE. The combination of both technical spaces offers 

more possibilities than each considered separately. 

• Lesson 5 - Changing the target PTE: The source aspect metamodel need not 

be altered even if one chooses to opt for a different target PTE (e.g., 

ASF+SDF). In such a case, a new PTE metamodel needs to be developed, as 

well as a new rule generator for this new target. We expect that it may be 
possible to generalize part of the transformation code by introducing a PTE 

pivot metamodel that abstracts common properties of many PTEs. 

GAspect

APascal ARuby AFortran

GAspect

APascal ARuby

AFortranOO-A



• Lesson 6 - Changing the source language: Conversely, for every new aspect 

language, one needs to add the appropriate metamodel extensions to the 

GAspect metamodel, but no change to the target metamodel is needed. 

• Lesson 7 - Automation of rule generator: We realized that most of the time 

and effort on building a new weaver is spent on understanding the concrete 

syntax of the base language. We believe that it should be possible to extract 

the join point model from transformation rules, and model it in terms of the 

concrete syntax. Then, a significant part of the transformations could be 

automatically generated. 

 

6.2 Future Work and Possible Extensions 

 

The following represent areas of future investigation that can extend the capabilities 

of the model-driven weaver construction techniques introduced in this paper: 

 

• Improving reusability: We would like to improve the reusability of features 

among aspect weavers by further enhancements to the existing design of our 

framework. For example, we would like to create a generic metamodel for 

object-oriented constructs, from which the weavers constructed for object-
oriented languages can inherit. Similarly, we would like to create a generic 

metamodel for Join Point Models (JPMs). All weavers can inherit from the 

generic JPM, and (if required) add new join point extensions to their specific 

JPM. 

• Constructing weavers for other GPLs: Another possible extension of our 

work is to construct aspect weavers for other GPLs including object-oriented 

scripting languages like Ruby, JavaScript and Python. We can also 

experiment with adding new types of join points (e.g., loops and conditional 

statements) to existing general-purpose programming languages like Java 

and C++. 

• Applying the approach to DSALs: Although the majority of research in the 
AOSD community focuses on general-purpose aspect languages (e.g. 

AspectJ), there have been a number of influential investigations on domain-

specific aspect languages (DSALs) (e.g., COOL for concurrency 

management and RIDL for serialization [38]). So far, we have only 

considered the construction of general-purpose aspect languages using our 

framework, but it would be interesting to investigate how the framework can 

also accommodate the development of weavers targeting DSALs. 
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