
• The transformation rules are often tied to the base
language specification

• The end-programmers have little knowledge of the
parsing algorithms and other low-level transformation
constructs associated with the system

• The transformations are hard to construct; e.g., a simple
rule to add a tracing functionality before every method
execution in a C++ application looks like:

patternpattern probe_id_pattern1(): probe_id_pattern1(): unqualified_idunqualified_id = " printf ".= " printf ".
rulerule insert_probe1(s: insert_probe1(s: statement_seqstatement_seq):):

function_bodyfunction_body --> > function_bodyfunction_body
= " { = " { \\s } " s } " -->>
"{ "{ \\probe_id_pattern1probe_id_pattern1\\((\\)()(\\"Entering Method…"Entering Method…\\"); { "); { \\s } }".s } }".

• The transformations applied to one domain may have
similarities with another; however, the tool builder often
creates new tools from scratch without preserving and
reusing the knowledge gained from previous construction

File Name : AbstractSync.gl

aspect generic_synchronize {

before(): execution (mname@meth_signature) {

// insert base language specific lock statement

}

after(): execution (mname@meth_signature) {

// insert base language specific unlock statement

}

A Language-Independent Approach Towards Software Maintenance using
Grammar Adapters

A LanguageA Language--Independent Approach Towards Software Maintenance using Independent Approach Towards Software Maintenance using
Grammar AdaptersGrammar Adapters

Suman Roychoudhury (roychous@cis.uab.edu) Advisor: Jeff Gray University of Alabama at BirminghamSuman Roychoudhury (roychous@cis.uab.edu) Advisor: Jeff Gray University of Alabama at Birmingham

http://http://www.cis.uab.edu/gray/Research/GenAWeavewww.cis.uab.edu/gray/Research/GenAWeave

A generic platform to construct reusable design maintenance tools that aid software developers in preserving source code at an appropriate level of language abstraction.

Cobol

Legacy

Software

Fortran

Object Pascal

80% of IT systems are
still running on legacy

platforms.

Several Billion Lines of
legacy source code

Migration is not an
easy task !

Infrastructure, money
effort already invested

Challenges with Legacy System Adaptation

We can’t throw them away !
Neither can we rewrite the
whole legacy application,
potential risk is high at no

additional business
functionality!

Modern tools and
methodologies are needed
to reduce maintenance cost

and effort

Can we extend support for
refactoring, AOP and other

Software Engineering
techniques to these systems?

Need to Extend Maintenance Tool Support Generative Reuse using a Transformation System

• Capture and reuse artifact generation knowledge
• Generative Programming techniques are used to synthesize code

from procedures using Lambda calculus
• Utilize a mature program transformation engine (Semantic Designs’

DMS), which provides highly scalable parsers for a large set of legacy
languages

However, transformation systems can be hard to use and understand because they
are not at an appropriate level of abstraction for general software development.

Complexities with Transformation Systems Generic Reuse using Grammar Adapters

Need to increase the level
of abstraction and reuse
the core transformations
functions across language
domains

Program
Transformation

System

Aspect WeaversRefactoring Tools

Low Level xForm
constructs

High level language
constructs

Legacy Software

Reuse of core set of transformations
for each new tool

Grammar Adapters

Example Case Study + Implementation Details

The following example shows an
extension of basic AOP features in
a legacy based application. The
examples use complex program
transformation rules to show the
usefulness of grammar adapters as
a language-independent approach
to construct transformation maps
for generic reuse.

Example:

Synchronization is an important
aspect in the design of complex,
concurrent embedded systems.
The following code fragments show
synchronization of database error
handling objects written in Object
Pascal and Java.

Tasks:

1.To separate the locking aspect
(shown in red) using rewrite
rules for both Object Pascal
and Java

2.To extract the commonalities
between the rules and create
a transformation map using
grammar adapters

3.To specify a high-level aspect
language to abstract the
transformation rules for the
end-programmers

File Name : CLAS_HandleDBError.pas

….
function TExDBError.Handle(ServerType:

TServerType; E: EDBEngineError) : Integer;
begin

TExHandleCollection(Collection).LockHandle;
try

<database error handling code omitted here>
finally

TExHandleCollection(Collection).UnLockHandle;
end;
….

end;

File Name : CLAS_HandleDBError.java

….
public Integer HandleDBError(TServerType

ServerType, EDBEngineError E)
{

ErrorHandlerCollection.LockHandle(Collection);
try {

<database error handling code omitted here>
}
finally {
ErrorHandlerCollection.UnLockHandle(Collection);
}
….

}

Sample Object Pascal Code

File Name : SyncObjectPascalMethods.rsl

rule sync_OP_meths (sl:stmt_list, id:IDENTIFIER,
fps: formal_params, frt:func_result_type):

qual_func_header_decl -> qual_func_header_decl =
"function \method_id\(\id\) \fps : \frt ;

begin \sl end;" ->
"function \method_id\(\id\) \fps : \frt ;

begin \LockStmt\(\);
try \sl
finally \UnLockStmt\(\);

end;"
…

File Name : SyncJavaMethods.rsl

rule sync_Java_meths (s_seq:stmt_seq,m_mods:
meth_modifiers, t:type,id:IDENTIFIER,
fp:fparams) :

method_declaration -> method_declaration =
"\m_mods \type \method_id\(\id\) \fp

{ \s_seq } ;" ->
"\m_mods \type \method_id\(\id\) \fp

{ \LockStmt\(\);
try { \s_seq }
finally { \\UnLockStmt\(\) }

}; "
…

File Name : SyncTransformationMap.ag

st_list@ag stml_list@OP
ID_list@ag id@OP
param_list@ag paramformal_params@OP
ret_type@ag func_result_type@OP
meth_signature@ag

qual_func_header_decl@OP
……….

st_list@ag stmt_seq@Java
ID_list@ag id@Java
param_list@ag fparams@Java
ret_type@ag type@Java
meth_signature@ag

method_declaration@Java
……….

High level abstract aspect

High Level System Overview + References

Pretty printer definitions

Domain
Definition

Lexer/
Parser

Transformation
Engine

Domain
Description

Source
Code

Internal Graph
Representation Internal Graph

Representation

Unparser

Formatter

Parser
Definition

Transforms

Analyzers

Target

Display

High Level
Abstract

Language Source
Attribute
Evaluator

RSL
Rules

DMS
Transformation

Engine

Lexer

Parser

Lambda f(x)

Base Language
Source

Transformed Source

Pattern Instantiation

FRONT END

BACK END

Grammar
Adapter

• Generic reuse of the core transformations for faster tool development
• A high level language to drive the low level transforms for end-programmers
• Lower engineering cost raising reliability, performance and quality of software

Key References:
• Ira Baxter, Christopher Pidgeon, and Michael Mehlich, “DMS: Program

Transformation for Practical Scalable Software Evolution,” International Conference
on Software Engineering (ICSE), Edinburgh, Scotland, May 2004, pp. 625-634

• Jeff Gray, and Suman Roychoudhury, “A Technique for Constructing Aspect Weavers
using a Program Transformation Engine,” AOSD ’04, International Conference on
Aspect-Oriented Software Development, Lancaster, UK, March 22-26 , 2004, pp. 36-45

• Jeff Gray, Jing Zhang, Yuehua Lin, Suman Roychoudhury, Hui Wu Rajesh Sudarsan,
Aniruddha Gokhale, Sandeep Neema, Feng Shi, and Ted Bapty, “Model-Driven
Program Transformation of a Large Avionics Framework,” Generative Programming
and Component Engineering (GPCE 2004), Springer-Verlag LNCS, Vancouver, BC,
October 2004.

• Ralf Lämmel, “Grammar Adaptation,” Intl. Symposium of Formal Methods Europe
(FME), Springer-Verlag LNCS 2021, Berlin, Germany, March 2001, pp. 550–570.

Advantages

File Name : GenericSyncRule.rsl

rule sync_generic (sL:st_list,
id:ID_list, pl: param_list,
rt:ret_type):

std_func_decl -> std_fun_decl =
"\meth_signature\(\id\,\pl\,\rt)

\std_start \sL \std_end" ->
"\meth_signature\(\id\,\pl\,\rt)

\std_start
\LockStmt\(\);

\try_finally_decl \sL
\UnLockStmt\(\);

\std_end"

Synchronization Rules for Object Pascal Extract commonalities in the transformation map

Sample Java Code Synchronization Rules for Java

