
• The transformation rules are often tied to the base 
language specification

• The end-programmers have little knowledge of the 
parsing algorithms and other low-level transformation 
constructs associated with the system

• The transformations are hard to construct;  e.g., a simple 
rule to add a tracing functionality before every method 
execution in  a C++ application looks like:

patternpattern probe_id_pattern1(): probe_id_pattern1(): unqualified_idunqualified_id = " printf ".= " printf ".
rulerule insert_probe1(s: insert_probe1(s: statement_seqstatement_seq): ): 

function_bodyfunction_body --> > function_bodyfunction_body
= " { = " { \\s } " s } " -->>
"{ "{ \\probe_id_pattern1probe_id_pattern1\\((\\)()(\\"Entering Method…"Entering Method…\\"); { "); { \\s } }".s } }".

• The transformations applied to one domain may have 
similarities with another; however, the tool builder often 
creates new tools from scratch without preserving and 
reusing the knowledge gained from previous construction

File Name : AbstractSync.gl

aspect generic_synchronize {

before(): execution (mname@meth_signature) {

// insert base language specific lock statement

}

after():  execution (mname@meth_signature) {

// insert base language specific unlock statement

} 
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A generic platform to construct reusable design maintenance tools that aid software developers in preserving source code at an appropriate level of language abstraction.
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Need to Extend Maintenance Tool Support Generative Reuse using a Transformation System

• Capture and reuse artifact generation knowledge
• Generative   Programming techniques are used to synthesize code 

from procedures using Lambda calculus
• Utilize a mature program transformation engine (Semantic Designs’ 

DMS), which provides  highly scalable parsers for a large set of legacy 
languages

However, transformation systems can be hard to use and understand because they 
are not at an appropriate level of abstraction for general software development.

Complexities with Transformation Systems Generic Reuse using Grammar Adapters 
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Example Case Study + Implementation Details

The following example shows an  
extension of basic AOP features in 
a legacy based application. The 
examples use complex program 
transformation rules to show the 
usefulness of grammar adapters as 
a language-independent approach 
to construct transformation maps 
for generic reuse.

Example:

Synchronization is an important 
aspect in the design of complex, 
concurrent embedded systems. 
The following code fragments show 
synchronization of database error 
handling objects written in Object 
Pascal and Java.

Tasks:

1.To separate the locking aspect
(shown in red) using rewrite 
rules for both Object Pascal 
and Java 

2.To extract the commonalities 
between the rules and create 
a transformation map using 
grammar adapters

3.To specify a high-level aspect                                            
language to abstract the 
transformation rules for the 
end-programmers

File Name : CLAS_HandleDBError.pas

….
function TExDBError.Handle(ServerType:   

TServerType; E: EDBEngineError) : Integer;
begin

TExHandleCollection(Collection).LockHandle;
try

<database error handling code omitted here>
finally

TExHandleCollection(Collection).UnLockHandle;
end;
….

end;

File Name : CLAS_HandleDBError.java

….
public Integer HandleDBError(TServerType    

ServerType, EDBEngineError E)
{

ErrorHandlerCollection.LockHandle(Collection);
try {

<database error handling code omitted here>
}
finally {
ErrorHandlerCollection.UnLockHandle(Collection);
}
….

}

Sample Object Pascal Code

File Name : SyncObjectPascalMethods.rsl

rule sync_OP_meths (sl:stmt_list, id:IDENTIFIER,
fps: formal_params, frt:func_result_type):

qual_func_header_decl -> qual_func_header_decl =  
"function \method_id\(\id\) \fps : \frt ;               

begin \sl end;" -> 
"function \method_id\(\id\) \fps : \frt ;

begin \LockStmt\(\);
try \sl
finally \UnLockStmt\(\);

end;"
…

File Name : SyncJavaMethods.rsl

rule sync_Java_meths (s_seq:stmt_seq,m_mods:
meth_modifiers, t:type,id:IDENTIFIER,
fp:fparams) : 

method_declaration -> method_declaration =  
"\m_mods \type \method_id\(\id\) \fp 

{ \s_seq } ;" ->
"\m_mods \type \method_id\(\id\) \fp 

{ \LockStmt\(\);
try { \s_seq }
finally { \\UnLockStmt\(\) }

}; "
…

File Name : SyncTransformationMap.ag

st_list@ag stml_list@OP 
ID_list@ag id@OP 
param_list@ag paramformal_params@OP 
ret_type@ag func_result_type@OP 
meth_signature@ag 

qual_func_header_decl@OP 
……….

st_list@ag stmt_seq@Java
ID_list@ag id@Java
param_list@ag fparams@Java
ret_type@ag type@Java
meth_signature@ag                       

method_declaration@Java
……….

High level abstract aspect

High Level System Overview + References
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• Generic reuse of the core transformations for faster tool development
• A high level language to drive the low level transforms for end-programmers
• Lower engineering cost raising reliability, performance and quality of software
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Advantages

File Name : GenericSyncRule.rsl

rule sync_generic (sL:st_list, 
id:ID_list, pl: param_list, 
rt:ret_type):

std_func_decl -> std_fun_decl =  
"\meth_signature\(\id\,\pl\,\rt)               

\std_start \sL \std_end" -> 
"\meth_signature\(\id\,\pl\,\rt)

\std_start 
\LockStmt\(\);

\try_finally_decl \sL
\UnLockStmt\(\);

\std_end"

Synchronization Rules for Object Pascal Extract commonalities in the transformation map

Sample Java Code Synchronization Rules for Java


