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COMPUTER AND INFORMATION SCIENCES 

 

ABSTRACT 

 

Legacy software affects critical functions of our daily lives (e.g., general 

commercial transactions, scientific applications and military defense systems), and 

represents a significant investment by government, scientific and corporate institutions. 

As a consequence of the longevity of such systems, existing legacy software is subject to 

decay over a period of time, making it increasingly difficult to address changing 

stakeholder requirements. Modern research approaches for software engineering and 

programming language design, such as aspect-oriented software development (AOSD), 

have been investigated as effective techniques for improving modularization of software. 

However, a general trend in research for supporting aspects has focused primarily on Java 

as the target programming language, neglecting the multiple billions of lines of existing 

code written in other languages. Rather than bringing the legacy code to existing Java-

based weavers, a viable alternative is to take Aspect-Oriented Programming (AOP) 

principles to the legacy languages and tool environments.  

Given the large number of programming languages currently in use, a solution 

that mitigates the effort needed to create each new aspect weaver is more desirable than 

an approach that manually recreates a weaver from scratch for each legacy language. The 

research presented in this dissertation utilizes Program Transformation Engines (PTEs) to 

construct aspect weavers for legacy languages. A core focus of the research is a generic 

platform that permits reusability of software artifacts among aspect weavers constructed 
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for various General-Purpose Languages (GPLs). In addition, the research described in 

this dissertation aims to eliminate the accidental complexities that are typically associated 

with using PTEs. In order to fulfill these two objectives, the research utilizes a model-

driven front-end that is layered on top of the program transformation based back-end. 

Specifically, the research makes a contribution by combining Model-Driven Engineering 

(MDE) with PTE to construct aspect weavers for GPLs through models and program 

transformations. The approach described in the dissertation uses models to capture the 

essence of various AOP language constructs at a higher-level of abstraction. These 

models are then mapped to concrete weavers for GPLs through a combination of higher-

order model transformation and program transformation rules. A generic extension to the 

framework further supports reusability of artifacts among weavers during the 

construction process. In addition, the framework allows experimentation with new AOP 

constructs (e.g., loops) and helps to evolve commercial and scientific software (e.g., 

Blitz++, HPL) maintained in legacy languages like Object Pascal, C and FORTRAN. The 

research presented in this dissertation outlines several challenges that were identified in 

providing a generic platform to create aspect weavers and demonstrates how each of 

those challenges was mitigated during the course of this research. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

A long-standing goal of software engineering is to construct software that is easily 

modified and extended. The desired result is to achieve modularization such that a change 

in a design decision is isolated to one location of a program [Parnas, 1972]. The 

proliferation of software in everyday life (e.g., embedded systems in avionics software 

[Sharp, 2000], and software that enables commercial transactions [Arranga, 2000]) has 

augmented the conformity and invisibility of software. As demands for software increase, 

future requirements will necessitate new strategies for improved modularization and 

restructuring in order to support the requisite adaptations [Chaplin et al., 2001; Masuhara 

and Kiczales, 2003; Cazzola et al., 2005]. 

Moreover, software maintenance is a very costly and time consuming part of the 

software life cycle [Schach and Tomer, 2000]. The problems are even more compelling 

when maintaining legacy code [Ulrich, 2002], which adds a significant cost to many 

engineering organizations [Capra et al., 2007]. Recent IT market research [McKinsey, 

2004; CHAOS, 2006] shows that customization, including legacy modernization and 

integration projects, represents more than 50% of the annual $230 billion spent on all 

software budgets. Average maintenance costs are higher than development costs. This is 

because organizations spend an enormous amount of time and money to understand the 

details of implementing a software system before deciding what changes were needed to 
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realize them. Over a period of twenty years of research in the field of software 

maintenance, Lehman et al. published the eight Laws of Evolution [Lehman et al., 1997]. 

Key findings of his research include that maintenance is really a series of evolutionary 

developments and that maintenance decisions are aided by understanding what happens 

to systems (and software) over time. Lehman et al. demonstrated that systems must be 

continually adapted, else they become progressively less satisfactory and are subject to 

decay over a period of time. Moreover, as they evolve, systems become more complex 

unless some action is taken to reduce the complexity.  

 

Figure 1-1 – The current state of legacy software 

 

Figure 1-1 shows this current state of legacy software. Presently, there are literally 

multiple billions of lines of legacy code maintained in hundreds of disparate languages 

and paradigms [Lämmel and Verhoef, 2001]. Such an enormous amount of legacy code 

exists in large proportions in commercial, embedded and scientific domains. In fact, a 

Commercial + Scientific  

Applications 
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     of COBOL Source 

Migration is not an  

easy task! 
     Infrastructure, money,  

     effort already spent 

COBOL 

Legacy 

Software 
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Gartner report, as cited in [Ulrich, 2002], estimates that there are at least 200-250 billion 

lines of existing COBOL code in production use (of course, the total amount of legacy 

code is much higher when other languages are considered). A considerable amount of 

time, effort and money have been invested in building large infrastructure to construct 

legacy software.  

In spite of the significant investments and proliferation of legacy software 

systems, the majority of language researchers and tool vendors have focused their 

attention on just a few popular languages, such as C++ and Java. A naïve proposal would 

attempt to migrate the existing legacy code into a modern object-oriented language like 

Java. Such a proposition is often not possible due to cultural and political concerns within 

the institution that owns the legacy system [Ulrich, 2002]. There is a strong need for 

improving the process of software maintenance by using modern software engineering 

tools and advanced modularization techniques that may reduce development time, save 

valuable labor resources, and improve the quality of the software system [Schutter and 

Adams, 2007].  

 

1.1 Tools and Techniques to Support Modularization of Legacy Software 

To support software adaptation and evolution of legacy software [Baxter, 1992], 

new paradigms such as Aspect-Oriented Software Development (AOSD) 

(http://www.aosd.net), have shown initial promise in assisting a developer in isolating 

points of variation and configurability [Filman et al., 2004]. It has been observed that 

some programming languages provide modularization mechanisms that force other non-

orthogonal concerns to be scattered and tangled across a code base [Tarr et al., 1999; 
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Giese and Vilbig, 2006]. For example, a credit card processing system‟s core concern 

would process payments, while its system-level concerns would handle logging, 

transaction integrity, authentication, security and performance. Many such concerns tend 

to affect multiple implementation modules. Using current object-oriented programming 

methodologies, these non-orthogonal concerns span over multiple modules, resulting in 

systems that are harder to design, understand, implement, and evolve.  

Aspects are a new language construct for cleanly separating concerns that 

crosscut the modularization boundaries of an implementation [Kiczales et al., 2001]. In a 

fundamentally new way, aspects permit a software developer to quantify, from a single 

location, the effect of a concern across a body of code [Filman and Friedman, 2004], thus 

improving overall modularization. A translator called a weaver is responsible for merging 

the separated aspects with the base code. The focus of the research presented in this 

dissertation is primarily based on the idea of constructing aspect weavers for multiple 

legacy languages using a generalized approach. 

An additional approach for improving software modularization is refactoring, 

which has been defined as “the process of changing a software system in such a way that 

it does not alter the external behavior of the code, yet improves its internal structure” 

[Fowler et al., 1999]. Refactoring has transitioned from research into everyday software 

practice as an effective means for evolving software and improving modularization 

[Opdyke, 1992; Mens and Tourwe, 2003; Dig and Johnson, 2005]. Refactoring features 

are built into many modern development environments (e.g., Java refactoring support in 

Eclipse – http://www.eclipse.org). However, like AOSD, mature refactoring engines 
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support only a couple of prominent languages; consequently, many other languages are 

ignored, resulting in an inability to apply modern principles to legacy source. 

Research into software transformation techniques, and the resulting tools 

supporting the underlying science, has enhanced the ability to modify the structure and 

function of a software representation in order to address changing stakeholder 

requirements [Griswold and Notkin, 1993]. Such software transformation techniques can 

be categorized as being either horizontal, or vertical [Czarnecki and Helsen, 2006]. The 

research into horizontal transformation pertains to modification of a software artifact at 

the same abstraction level. This is the typical connotation when one thinks of the term 

transformation, with examples being code refactoring at the implementation level 

[Fowler et al., 1999], and model transformation at a higher design level [Agrawal, 2003]. 

Horizontal transformation systems often lead to invasive composition of the software 

artifact [Aßmann, 2003]. Vertical transformation is typically more appropriately called 

translation (or synthesis) because a new artifact is being synthesized from a different 

abstraction level (e.g., model-driven software synthesis [Neema et at., 2002], and reverse 

engineering). Vertical transformations are more generative in nature [Czarnecki and 

Eisenecker, 2000]. There has been prior research that combines both levels as 

demonstrated by [Gray et al., 2003], i.e., horizontal transformation from the investigation 

into aspect model weaving, and vertical translation from model-driven code generation. 

Typically, Program Transformation Engines (PTEs) are well-suited for modifying 

artifacts at a lower-level of abstraction (i.e., program source code) [Baxter et al., 2004]. 

Model-Driven Engineering (MDE) is useful for transforming artifacts at a higher-level of 

abstraction (i.e., software modeling level) [Schmidt, 2006]. An investigation of the 
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underlying science that combines these two technical spaces (i.e., source code and 

software models) may realize more benefits than each considered separately. Therefore, 

transformation techniques that operate jointly at both levels of software abstraction can 

benefit from the collective usage of both PTEs and MDE. This is exactly the vision of the 

research presented in this dissertation. The research utilizes the combined power of 

mature PTEs and MDE tools to modernize legacy software artifacts. Higher-order 

transforms at the modeling level are used to generate lower-order transforms operating at 

the source code level.  

In particular, the research described in this dissertation provides a general 

framework to construct aspect weavers based on model-driven program transformation 

for legacy software artifacts. The term framework is both conceptual and practical in 

nature. The conceptual part of the framework refers to the preferred approach towards 

constructing aspect weavers in a generalized way. According to [Fayad and Schmidt, 

1997], “A framework is a reusable, „semi-complete‟ application that can be specialized to 

produce custom applications.” In the context of the above definition, the practical nature 

of the GenAWeave framework refers to the reusable design that includes a generic 

metamodel and model transformation libraries that produce concrete program 

transformation rules for various General-Purpose Languages (GPLs). In addition, the 

framework provides extension points that allow new features to be added to existing 

weavers. 

One of the aims of a general framework is to define a set of reusable components 

(i.e., generic transformations and generic metamodel) that can be suitably applied across 
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a wide of range of languages. However, there are several key challenges towards the 

construction of a generic framework and are summarized in the following section. 

 

1.2 Challenges of Language-Independent Legacy Modernization 

As a result of programming language research over the past fifty years, a veritable 

“Tower of Babel” exists with multiple billions of lines of legacy code maintained in 

hundreds of different languages [Lämmel and Verhoef, 2001]. In fact, legacy languages 

are estimated to account for a large percentage of existing production software [Ulrich, 

2002]. Yet, the majority of Aspect-Oriented Programming (AOP) [Kiczales et al., 1997] 

research is focused on just a few modern languages, such as Java. A generalized approach 

that brings aspects to legacy software is still missing. An attempt to migrate legacy code 

into modern object-oriented languages is often resisted by organizations because of their 

prior investments to build such systems. Moreover, migration is a complex task and may 

induce new undesirable faults that were not earlier present in a stable legacy code base. 

 Rather than bringing the code to existing Java-based weavers, an alternative is to 

take AOP principles to the legacy languages and tool environments [Schutter and Adams, 

2007; Gray and Roychoudhury, 2004]. Given the large number of languages in use, a 

solution that mitigates the effort needed to create each new weaver is more desirable than 

an approach that manually recreates a weaver from scratch for each legacy language. 

Programming languages can be clustered into classes with structural and/or semantic 

similarities and the knowledge that is gained while constructing a weaver for one specific 

language can be reused during another construction for a different language. However, 

there are several key challenges to providing an initial methodology that allows 
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experimentation with aspects in languages other than Java. Some of the research 

questions that immediately follow are:  

 Is there a technique to construct aspect weavers for legacy languages without 

extending or inventing a new parser (or compiler) from scratch? 

 Can such a construction be supported in a more generic or language-

independent way?     

 Can the knowledge of building a weaver from a previous construction be re-

used in a different language and platform context? 

This core set of questions lead to four major obstacles toward adoption of aspects 

for legacy software. These obstacles and challenges are summarized in the remainder of 

this subsection. 

Challenge C1 - The Parser Construction Problem: Building a parser for a toy 

language, or a subset of an existing language, is not difficult. However, designing a 

parser that is capable of handling millions of lines of production legacy code is an 

onerous task. As observed in [Lämmel and Verhoef, 2001], “Measuring this and other 

projects, it became clear to us that the total effort of writing a grammar by hand is orders 

of magnitude larger than constructing the renovation tools themselves. So the dominant 

factor in producing a renovation tool is constructing the parser.” Moreover, constructing 

analysis and modification tools for software assets is a laborious process. The first thing 

that is required to implement a new maintenance tool is the underlying parser for a 

specific programming language. Parser development for any of the legacy languages in 

use today implies a major up-front investment [Lämmel and Verhoef, 2001]. For 

assessment purposes, software developers who want to explore the capabilities of aspects 
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in legacy systems will require industrial-scale parsers to allow them to evaluate the 

feasibility of adoption within their organization. Incomplete parsers for small research 

prototypes will not scale and may leave a negative first impression of aspects. 

Challenge C2 - The Weaver Construction Problem: When a new program 

restructuring or modularization idea is conceived (e.g., AOP), it is often desired to impart 

the idea to older legacy applications. In order to realize such an objective, a capability is 

needed to perform the underlying transformations and rewrites on a syntax tree or on an 

abstract model. This is not an easy task and requires considerable effort to provide a 

sound infrastructure for program transformation.  However, it is often the case that the 

integration efforts to support a core set of transformations are repeated for each language 

to which the new idea is applied. Such repetition of effort is unfortunate and strongly 

suggests the need for further generalization of transformation objectives. 

Challenge C1 and part of Challenge C2 can be addressed by using program 

transformation techniques [Gray and Roychoudhury, 2004], where, full-fledged parsers 

available in program transformation frameworks can be reused to assist in constructing 

aspect weavers. PTEs generally have support for low-level rewriting (i.e., by using term-

rewriting or graph-rewriting [Aßmann and Ludwig, 1999]) that can be used to construct 

aspect weavers for multiple GPLs. However, the abstraction level at which these 

transformation systems operate is too low for general-purpose software development. 

Moreover, the core set of transformations has to be customized for each language. These 

two additional challenges are discussed in the following paragraphs. 

 Challenge C3 – Accidental Complexities of Transformation Specifications: An 

inherent difficulty associated with using program transformation engines is the low-level 
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of abstraction at which a transformation rule is specified. Due to many accidental 

complexities, program transformations typically are at an improper level of abstraction 

for general use by programmers. It is therefore desirable to provide a higher-level of 

abstraction to the user. The research presented in this dissertation increases the level of 

abstraction of transformation rules in the form of a high-level aspect language that is used 

to specify the aspect program that facilitates software adaptation. 

Challenge C4 – Language-Independent Generalization of Transformation 

Objectives: Although most program transformation engines provide a general toolkit with 

pre-existing parsers, the transformation rules that actually perform the desired 

restructuring are encoded to the productions of a specific concrete syntax (i.e., grammar 

of the base language; the term base language refers to the language for which the aspect 

weaver is constructed). Thus, all of the effort that is placed into creating the 

transformations to enable weaving cannot be reused in other language domains. A key 

research contribution of this dissertation is an approach that brings higher-order 

transformations at the modeling level to increase the level of reuse among concrete 

lower-order transformation rules across multiple languages. 

 

1.3 Research Objectives and Contributions 

The research described in this dissertation makes a contribution to evolving 

maintenance goals of legacy software systems by adopting an aspect-oriented approach. 

The direction of the research focuses on constructing a generalized aspect-weaving 

framework based on model-driven program transformation that is applicable to legacy 

software artifacts. The intellectual merit of this research is an investigation of the 
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underlying science to support reusable generic transformations to improve the modularity 

and adaptive maintenance of legacy software. The following objectives represent the core 

contributions of the research: 

 An exploration of the underlying science to support an abstract source model, 

generic transformations, and high-level aspect language as a foundation for 

generic software transformation and analysis; 

 A generative methodology to permit construction of aspect weavers for 

multiple languages; provide a language experimentation environment for 

investigating ideas in new paradigms without constructing all of the 

underlying parsing and transformation mechanisms from scratch. 

The research will guide tool developers to extend support for AOP in legacy 

languages by adopting the generalized weaver construction framework described in this 

dissertation. The scalability of the framework is provided by using a powerful PTE, 

namely, the Design Maintenance System (DMS) [Baxter et al., 2004], which represents 

the back-end of the framework. DMS provides support for mature language tools (e.g., 

lexers, parsers, and analyzers) for more than a dozen programming languages. It has been 

used to parse several million lines of code written in many of these languages. A 

background discussion of DMS is provided in Chapter 2.  

The adoption of DMS as a back-end provides a solution to Challenge C1 through 

immediate availability of industrial-scale parsers. DMS also provides functionality for 

transforming a program after it has been parsed. In particular, the Rule Specification 

Language (RSL, introduced in Chapter 2) available in DMS provides the low-level 

support required to modify the source program. RSL offers a partial solution to Challenge 
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C2. Thus, Challenge C1 and part of Challenge C2 as enumerated in Section 1.1 are 

gratuitously resolved through the adoption of a mature program transformation engine 

into the weaver construction framework [Gray and Roychoudhury, 2004].  

However, there remain additional challenges that are typically associated with any 

PTE. For example, the RSL used in DMS works at a low-level of abstraction. That is, 

users of RSL need to understand the grammar of the base language and the underlying 

parsing algorithms in order to write transformation rules required to modify the source 

programs. This introduces unavoidable accidental complexities and makes it increasingly 

difficult for general developers to specify aspects (i.e., transformation objectives) at this 

low-level (Challenge C3). The research presented in this dissertation makes a 

contribution towards resolving this challenge by providing a high-level aspect language 

on top of RSL (i.e., a façade to RSL) that hides all of the accidental complexities and 

minute details associated with RSL.  

Moreover, the transformation rules that are constructed to perform aspect weaving 

are generally tied to the grammar of the base language. Such tight coupling of RSL with 

the base language grammar impedes reusability because all of the previously constructed 

rules to enable weaving cannot be reused in other language domains (Challenge C4).  

The research presented here makes a key contribution towards resolving Challenge C4 by 

providing a generative technique where higher-order transformation rules specified at the 

modeling level are used to generate concrete lower-order RSL transformation rules 

working at the source code level. These higher-order model transformation rules are 

simpler than RSL and can be reused in other language domains. The next section gives an 
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overview of the research and outlines how the remaining chapters are organized in this 

dissertation. 

 

1.4 Overview of the Research 

To provide a platform to explore a generalized mechanism for constructing aspect 

weavers for GPLs, the research combines two key techniques, namely model-driven 

engineering and program transformation. Figure 1-2 shows a high-level overview of the 

framework. A model-driven front-end (item 1 in Figure 1-2) is used to capture the syntax 

of an aspect program in the form of an aspect model. The aspect model in turn conforms 

to an aspect metamodel that is defined using the ATLAS Model Management 

Architecture (AMMA, discussed in Chapter 2) [Kurtev et al., 2006].  

.  

Figure 1-2 - Overview of model-driven aspect weaver framework 
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The high-level aspect language is used to raise the level of abstraction and hide 

the accidental complexities that are associated with the RSL program transformation 

rules processed by the back-end (item 3 in Figure 1-2) of the framework. As a direct 

benefit of using an aspect language, users can specify their weaving intent at a higher-

level of abstraction instead of using low-level RSL code (i.e., a solution to Challenge 

C3).  

The heart of the framework is a higher-order program transformation rule 

generator (item 2 in Figure 1-2) that produces program transformation rules (RSL) from 

an input aspect program (i.e., a solution to Challenge C4). Much of the program 

transformation rule generator can be reused from one GPL to another (discussed in detail 

in Chapter 4). The aspect code is initially parsed by the front-end and later analyzed by 

the rule generator. The result is a set of generated RSL rules that serve as input along 

with the source program to the back-end PTE to accomplish the desired weaving. A more 

detailed description of the framework will be discussed in Chapter 4 of the dissertation. 

Each of the key components (shown as items 1, 2, and 3 in Figure1-2) of this 

framework will be discussed in detail in Chapters 2, 3 and 4, including their primary 

benefits and internal mechanisms. The future chapters will also outline the reasons 

behind choosing each of these core components and explain why it is desirable to follow 

a combined MDE / Program Transformation philosophy to construct aspect weavers for 

GPLs.  

Figure 1-3 provides an overview of the topics discussed in the dissertation. 

Chapter 2 introduces the necessary background information to provide the reader with a 

better understanding of other sections of the dissertation. The first part of Chapter 2 
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introduces the concepts behind AOP and aspect weaving. The chapter also introduces the 

key components of a PTE, specifically, RSL and other key features of DMS that are 

useful in transforming source code. The last part of Chapter 2 introduces MDE, in 

general, and the AMMA toolsuite [Kurtev et al., 2006], in particular. 

 

Figure 1-3 - Overview of topics discussed in dissertation 

 

Chapter 3 describes how individual weavers for specific programming languages 

can be constructed by the use of program transformation techniques alone. The chapter 

describes in detail the construction of an aspect weaver for Object Pascal and provides 

several case study examples. The chapter also describes a technique to construct an 

aspect weaver for C++ templates and how scientific computing application such as 

Blitz++ [Veldhuizen, 1998] can benefit from this technique. Finally, the chapter presents 

a well-known scientific computing library - High Performance Linpack (HPL) 
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Benchmark [Petitet et al., 2004], and demonstrates how specialization of HPL can be 

accomplished using program transformation techniques. All of these examples give 

evidence for the usefulness of a program transformation based approach to modularize 

legacy software, ranging from commercial to high-performance computing domains.  

Chapter 4 is the core of the research and describes how the model-driven 

approach that is layered on top of program transformation engines is used to construct 

reusable, extensible and partly generic aspect weavers for GPLs. The chapter describes in 

detail the front-end architecture, the back-end architecture and the program 

transformation rule generator used in the framework. The chapter also provides useful 

statistics used to evaluate the framework by constructing aspect weavers for Object 

Pascal and FORTRAN. 

Chapter 5 outlines some of the existing limitations of this work and provides a 

roadmap for future extensions and possible areas of applicability. Chapter 6 offers a 

concluding summary of the research contributions. There are also several appendices: 

Appendix A-E provides the implementation-specific source code used to construct the 

front-end and back-end of the GenAWeave framework. Appendix F shows 

implementation details of the low-level DMS external functions required to specialize 

HPL [Petitet et al., 2004]. 
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CHAPTER 2 

 

BACKGROUND 

 

 

 

The contribution of this dissertation represents research that unites MDE 

[Schmidt, 2006] and program transformation techniques [Baxter et al., 2004; Gray and 

Roychoudhury, 2004] to support AOP [Kiczales et al., 1997; Filman et al., 2004] among 

modern and legacy programming languages. This chapter provides a background 

discussion of the three different technologies involved in this research. Section 2.1 

presents the general concepts of AOP. Section 2.2 describes the underlying construction 

mechanism for different types of aspect weavers. Specifically, the section describes the 

current state-of-the-art techniques adopted by various researchers to construct aspect 

weavers. Section 2.3 introduces DMS, which is the low-level PTE used in this research. 

Section 2.4 introduces MDE and in particular the AMMA toolsuite, which forms the 

front-end of the generic aspect weaving framework. 

 

2.1 Aspect-Oriented Programming 

AOP is a programming technique that allows programmers to modularize 

crosscutting concerns (i.e., program features that cut across the typical divisions of 

modularity, such as logging [Laddad, 2003]). Such features often cannot be cleanly 

decomposed from the rest of the system in both the design and implementation, and result 

in either scattering or tangling of source code [Kiczales et al., 1997]. In AOP, 

http://en.wikipedia.org/wiki/Modularity_%28programming%29
http://en.wikipedia.org/w/index.php?title=Scattering_%28programming%29&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Tangling_%28programming%29&action=edit&redlink=1
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crosscutting concerns are encapsulated in separate reusable modules called aspects. The 

AOP paradigm was introduced to strengthen the notion of separation of concerns (SOC) 

[Tarr et al., 1999; Giese and Vilbig, 2006], which necessitates breaking down a program 

into distinct parts with minimum overlap in functionality. The term SOC is believed to be 

coined by Edsger Dijkstra in his 1974 paper “On the Role of Scientific Thought,” which 

was later published in [Dijkstra, 1982]. 

 

2.1.1 Separation of Concerns 

The principle of SOC states that a model of an application should be organized as 

a set of distinct modular units where each unit encapsulates one particular concern or 

functionality of the application. A concern is any piece of interest or focus in a program. 

The advantage of this approach is that the description of a feature is localized and is 

therefore more easily adapted.  

Many SOC approaches have been proposed during the past several years, such as 

Subject-Oriented Programming and design [Ossher et al., 1994], Feature-Oriented 

Programming [Batory, 2003], Composition Filters [Bergmans and Aksit, 2001] and 

Multidimensional Separation of Concerns [Tarr et al., 1999]. However, the focus of the 

research in this dissertation is centered around AOP [Kiczales et al., 1997], in particular, 

by providing a generic framework to extend AOP support for legacy and modern 

programming languages.  

The challenge addressed by AOP arises from the fact there are certain concerns in 

an application that are typically crosscutting and are difficult to separate. For instance, if 

writing an application for handling employee records, the bookkeeping and indexing of 
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such records is a core concern, while logging a history of changes to the employee 

database, or an authentication system, would be crosscutting since they overlap more 

parts of the program. These concerns are typically tangled or scattered across the system 

and are difficult to separate from the core functionality. Figure 2-1 illustrates the 

undesired effect of crosscutting concerns and suggests a possible solution. 

 

Figure 2-1 – AOP and separation of concerns  

 

The above figure shows two modules of the same application. Each module 

addresses several concerns or functionality in the application. Some of these 

functionalities are cleanly captured in each module (i.e., the isolated square boxes) while 

others spread across the module boundaries. For example, the concern CC1 which exists 

in Module A is also scattered and tangled across Module B. Similarly, concern CC2 

which exists in Module B is scattered and tangled across Module A. Ideally, it is desired 

that concerns (features) that are encapsulated in a single modular unit do not spread 

across features that are encapsulated in a different modular unit. Unfortunately, this is 

  

Module A Module B 

CC2 

Crosscutting concerns 

CC1/CC2 superimposed on  

Modules A and B 

 

 

Concern CC2 Concern CC1 

CC1 
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usually not possible with crosscutting concerns using traditional programming constructs. 

A more common situation is the one shown in Figure 2-1 where a crosscutting concern 

CC1 in modular unit A is scattered across (crosscuts) the features of module B. A more 

desired solution is schematically shown in the right side of the figure. In this case, the 

crosscutting concerns CC1 and CC2 are captured in a separate aspect module and are 

then superimposed or weaved into modules A and B. Such separation of crosscutting 

concerns is the main motivation behind AOP. 

 

2.1.2 Crosscutting Concerns and the Join Point Model 

The undesired consequence that crosscutting concerns can cause to software 

systems can multiply with the size of the application.  In fact, crosscutting concerns are 

treated as second class citizens in most languages and there is no explicit representation 

for their modularization. For example, logging the method entry and exit points in a very 

large system may lead to scattering of the logging concern across other useful features 

present in the code base [Eaddy et al., 2007]. This may introduce unnecessary cohesion 

in the system resulting in poor modularization [Schach, 1996]. In addition to logging, 

examples of other crosscutting concerns that are difficult to modularize using traditional 

object-oriented languages are security checks, transaction management, pre-fetching and 

disk quota operations [Coady and Kiczales, 2003]. It is often desirable to have a way to 

create a single separate module that describes all of the functionality of a crosscutting 

concern. 

Aspect-oriented techniques provide new language constructs to cleanly separate 

concerns that crosscut the modularization boundaries of an implementation. In a 
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fundamentally new way, aspects permit a software developer to quantify, from a single 

location, the effect of a concern across a body of code, thus improving the modularization 

of crosscutting concerns. Some of the common constructs in AOP approaches, such as 

AspectJ (an aspect language for Java) [Kiczales et al., 2001], include the following: 

Join Point: Specific points of the execution in a program, such as a method 

invocation or a particular exception being thrown. Join points typically express 

the location of crosscutting concerns. 

Pointcut: Means of identifying a set of join points through a predicate expression. 

Advice: Defines actions to be performed at associated join points. Advice 

represents the behavior of crosscutting concerns. 

Inter-type declarations: The ability of aspects to add methods, constructors and 

fields to existing types. They can also be used to implement interfaces and to 

declare super-types. However, inter-type declarations are not investigated in the 

research presented in this dissertation and may be explored in future. 

Aspect: A modularization of a concern for which the implementation might cut 

across multiple boundaries; generally defined by pointcuts and advice. 

Using the above terminology, an example as shown in Figure 2-2 depicts a simple 

logging aspect in AspectJ. The pointcut log captures all join points that correspond to 

calls on public BizObject methods (the „*‟ represents a wildcard, and „..‟ represents 

any number of parameters). 

The before and the after advice binds the pointcut to specific actions to be 

performed just before and after each join point is reached (i.e., before and after 

BizObject‟s method call invocation). The entire crosscutting concern is captured in a 
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single aspect called Logger. The different constructs introduced in this example 

illustrate the benefit of AOP in modularizing systems that exhibit such crosscutting. 

Thus, instead of a scattered representation of a logging concern, aspects help to 

modularize concerns by capturing them in separate modules [Laddad, 2003]. This 

directly improves software maintainability by reducing the code size and improving the 

code comprehensibility. Separation of crosscutting concerns also makes the system easier 

to change and evolve. As an indirect effect, reduced code may also lead to a smaller 

memory footprint that can increase the performance of software.  

1. aspect Logger { 
2.   pointcut log(): call(public * BizObject.*(..)); 
3.   before(): log() { 
4.      System.out.println("before calling BizObject methods"); 
5.    } 
6.   after(): log() { 
7.      System.out.println("after calling BizObject methods"); 
8.    } 
10. } 

Figure 2-2- AspectJ specification to capture logging in BizObject‟s methods 

 

2.2 Aspect Weaving 

The term “Aspect Weaving” refers to combining aspects (i.e., crosscutting 

features) with non-crosscutting pieces of source code that together perform the desired 

functionality as specified by the system requirement. The tool that is responsible for 

merging the separated aspects with the base code is called an aspect weaver. Since the 

inception of AOP, there has been significant research in weaver implementation and 

corresponding aspect weavers exist for several modern programming languages like C++ 

and Java (e.g., AspectJ [Kiczales et al., 2001] – a tool for weaving aspects into Java-

based applications). However, there has been less research focus in applying the benefits 
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of AOP to other legacy languages like FORTRAN, Pascal or COBOL. Therefore, the 

primary focus of the research described in this dissertation is to investigate appropriate 

techniques to extend AOP support to other legacy languages.  

The different strategies that are often applied to construct aspect weavers vary 

with the underlying low-level support. Moreover, weaving could be performed during 

pre-processing time, during compilation, by a post-compile processor, at load or run-time 

or using a combination of these approaches. Runtime weaving is also known as dynamic 

weaving while weaving done pre, post or during compilation time is sometimes referred 

to as static weaving. Existing software transformation techniques to enable AOP for 

legacy languages can be classified as: 

• object-based transforms, such as a visitor object applied to an object model 

• intermediate representations that permit primitive transformations to be applied 

to a set of languages (e.g., .Net CodeDOM [Thai and Lam, 2003]) 

• XML-based transforms that use an XML DOM structure [Germon, 2001] 

• term rewriting, such as a transformation rule [Klint et al., 2004] 

 

2.2.1 Current State of the Art in Legacy AOP Modernization 

This section discusses briefly the current state-of-the-art examples of the above 

techniques within the context of the enumerated challenges as introduced in Chapter 1. 

SourceWeave.Net: SourceWeave.Net [Jackson and Clarke, 2004] is built on top 

of CodeDOM, which is the .NET standard for representing source code as abstract syntax 

trees (ASTs) [Thai and Lam, 2003]. Using SourceWeave.NET, a developer can write 

base and aspect components in standard C#, VB.NET and J#. An XML descriptor file is 
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used to specify the interaction between the aspects and representative components. The 

technique uses a mapping to identify Join Point Shadows (JPS) (areas in the source where 

one or more join points may emerge) and uses a “pointcut-to-join point binding” to 

isolate parts of the source. 

Weave.Net: Weave.NET is a load-time weaver that allows aspects and 

components to be written in a variety of .Net based languages [Lafferty and Cahill, 

2003]. It takes an existing .Net binary component as input with crosscutting 

specifications provided in an XML file. The behavior (implementation-specific advice 

code) of an aspect is provided separately in another .Net assembly. Weave.NET recreates 

the input assembly, but in this regenerated version, join points are bound to behavior in 

the aspect assembly as specified in the XML aspect file. Because all transformations are 

done at the intermediate language (IL), it serves as a language-independent weaver. 

AspectCOBOL: An initial prototype that brings aspects to COBOL was 

developed through a collaboration of academic and industrial partners [Lämmel and 

Schutter, 2005]. The implementation reuses a pre-existing COBOL front-end to construct 

an AST that is persisted as XML. The AspectCOBOL weaver operates on the XML 

representation using a DOM-based approach. The weaver has similar semantics to 

AspectJ pointcuts [Colyer et al., 2004], but uses an imperative language that is closer to 

COBOL syntax. The weaver provides ad hoc type analysis (e.g., use-to-def site 

navigation) for more sophisticated data join points. 

Aspicere combined with GCC 4.0: Aspicere is an aspect language for C, but 

future extensions aim to combine Aspicere with GCC4.0 to introduce two new 

intermediate representations: GENERIC and GIMPLE trees [Adams, 2005]. Each 
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different language front-end produces a forest of GENERIC trees, which are then turned 

into GIMPLE for optimizations and eventually fed to the back-ends. Aspicere aims at 

providing the weaver‟s semantics as expressed in terms of generic trees that can 

eventually lead to language-independent AOP. 

The focus of the research described in this dissertation is primarily based on term 

rewriting systems or program transformation engines that offer scalable parsers for a 

variety of legacy languages and a powerful low-level infrastructure to modify source 

programs. The following section provides a comparative discussion between the current 

state-of-the-art AOP transformation tools and the term rewriting system primarily used in 

this research. 

 

2.2.2 Comparative Discussion of AOP Tools to Support Legacy Languages 

From a comparative discussion of these representative approaches, each provides 

a distinguishing set of strengths and weaknesses. For example, Weave.Net offers a strong 

solution to Challenge C1 because of the availability of pre-existing industrial scale 

parsers (however, Weave.Net is limited to applications hosted within .Net). 

Comparatively, SourceWeave.Net is weak on Challenge C1 due to the limited 

availability of CodeDOM providers beyond a handful of languages. 

The representation of the underlying abstract source model contributes to several 

differences affecting the solutions to each challenge. Because of its reliance on 

CodeDOM, SourceWeave.Net has limitations in terms of expressiveness. C# constructs 

map reasonably well to CodeDOM, but that is not true of all .Net constructs. The 

proposed Aspicere project seems similar in respect to the SourceWeave.Net approach 
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with their GCC4.0 GENERIC trees closely related to the CodeDOM abstract source 

model. It remains to be shown if either CodeDOM or GCC4.0 GENERIC trees are 

applicable to a large class of legacy languages like COBOL, FORTRAN and Object 

Pascal. Moreover, a considerable engineering effort would be required if all 

programming languages were forced to conform to a generic source model or compiled to 

a common intermediate language. Further, such an approach would ignore all of the 

effort that has already been spent in constructing lexers, parsers, analyzers and other tools 

for these languages. 

A related challenge emerging from the source model concerns the issue of 

scalability. The verbosity of an XML code representation may hamper the size of an 

application that can be weaved. It has been reported that an XML representation is up to 

50 times larger than other internal representations and much slower to transform 

[Germon, 2001]. This may influence the ability of SourceWeave.Net and AspectCOBOL 

to handle very large applications. This is not a problem for Weave.Net, which weaves 

into the IL. 

The research described in this dissertation provides a more general approach for 

mitigating the challenges described in Chapter 1 by constructing a generic framework to 

extend AOP in legacy languages using term rewriting and MDE [Roychoudhury, 2004; 

Roychoudhury et al., 2007]. The weaving is achieved during pre-processing time. Term 

rewriting is a paradigm that is used in fields such as program transformation and theorem 

proving [Klint et al., 2004]. In term rewriting, rules define a refinement to a structure by 

specifying a pattern to be matched and the resulting effect. The choice of term rewriting 

over object-based or XML-based transforms is supported by the following observations: 
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 A mature program transformation system that performs term rewriting (e.g., the 

Design Maintenance System (DMS) [Baxter et al., 2004]) can ease the 

construction effort for weavers of legacy languages by offering a direct solution to 

Challenges C1 and C2. Such systems provide availability of industrial scale 

parsers for multiple legacy languages, as well as an underlying low-level 

transformation engine to restructure source code. 

 The term rewriting model offers a complex JPS (e.g., nested conditional 

statements, as discussed in [Sullivan et al., 2005]) and a rich pointcut to join point 

binding that is informed by join point context information. However, PTEs don‟t 

provide explicit representation of JPS, rather such join points can be located using 

external functions written for the transformation engine. 

 Term rewriting offers powerful pattern matching and efficient tree traversal 

strategies (e.g., using visitors over ASTs) that can scale to several million lines of 

code. 

 With term rewriting, internal Application Programming Interfaces (APIs) are 

available to modify ASTs in an arbitrary manner, thereby allowing more complex 

and flexible transforms required by legacy applications (e.g., aspects and loops 

[Harbulot and Gurd, 2005]). 

 In contrast to the verbose AST representation in XML-based approaches, DMS 

provides internal data structures (e.g., hypergraphs) to represent the underlying 

AST. This offers an improved level of optimization to support parsing and 

transforming large legacy applications. 
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In the following section, the PTE used in this research is introduced. This 

provides the necessary background information required to understand the inner workings 

of the underlying PTE as it is used throughout the dissertation. 

2.3 Program Transformation - Design Maintenance System 

The Design Maintenance System (DMS) [Baxter et al., 2004] is a program 

transformation system and re-engineering toolkit developed by Semantic Designs 

(www.semdesigns.com). The core component of DMS is a term rewriting engine that 

provides powerful pattern matching and source translation capabilities. In DMS 

terminology, a language domain represents all of the tools (e.g., lexer, parser, pretty 

printer) for performing translation within a specific programming language. DMS 

provides pre-constructed domains for several dozen languages. 

The DMS Rule Specification Language (RSL) provides basic primitives for 

describing numerous transformations that are to be performed across the entire code base 

of an application. The RSL consists of declarations of patterns, rules, conditions, and rule 

sets using the external form (concrete syntax) defined by a language domain. Patterns 

describe the form of a syntax tree. They are used for matching purposes to find a syntax 

tree having a specified structure. Patterns are often used on the right-hand side of a rule to 

describe the resulting syntax tree after a transformation rule is applied. The RSL rules 

describe a directed pair of corresponding syntax trees. A rule is typically used as a rewrite 

specification that maps from a left-hand side (source) syntax tree expression to a right-

hand side (target) syntax tree expression. Rules can be combined into sets of rules that 

together form a transformation strategy by defining a collection of transformations that 

can be applied to a syntax tree. The patterns and rules can have associated conditions that 
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describe restrictions on when a pattern legally matches a syntax tree, or when a rule is 

applicable on a syntax tree. Typically, a large collection of RSL files are needed to 

describe the full set of transformations on a base program. 

In addition to the RSL, a language called PARLANSE (PARallel LANguage for 

Symbolic Expressions) is available in DMS. Transformation functions can be written in 

PARLANSE to traverse and manipulate the parse tree at a finer level of granularity than 

provided by RSL. PARLANSE is a functional language for writing transformation rules 

as external patterns to provide deeper structural transformation. The DMS rules, along 

with the corresponding PARLANSE code, represent the core transformations required for 

aspect weaving. However, due to the very low-level nature of the rewrite rules, it is not 

desirable that programmers be required to write their specifications using term-rewriting 

or PARLANSE-specific functions. Instead, a high-level aspect language (similar to 

AspectJ) that hides the accidental complexities of RSL and PARLANSE from the 

programmer can be used to specify the weaving (please see Chapter 4). Some of the key 

features of DMS are discussed in the following sub-section. 

 

2.3.1 DMS Key Features and Support for Abstract Syntax Trees  

DMS supports full UNICODE-based parser and lexer generation with automatic 

error recovery. The parser technology is based on Generalized LR parsing [López, 1992], 

and can handle any context-free language, even with ambiguities. Pretty-printer 

generation converts Abstract Syntax Trees (ASTs) back to a properly formatted legal 

source file, according to specified layout information, including source comments. DMS 

also provides a multi-pass attribute-evaluator [Paakki, 1995; Alblas, 1991] generation 
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from the language grammar, to allow arbitrary analysis (including name/type analysis 

procedures) to be specified in terms of the concrete grammar provided. In addition, DMS 

provides sophisticated symbol-table construction facilities for global, local, inherited, 

overloaded and other language-dependent name lookup and namespace management 

rules.  

DMS is designed to work on large-scale source systems with up to several million 

lines of source code across tens of thousands of source files having multiple languages at 

the same time. It runs either on a single processor system or on symmetric multiple 

processor workstations for enhanced performance. 

For DMS, each domain may have several representations. Each representation is a 

set of explicitly declared hypergraph nodes that can be composed to represent domain 

instance fragments. The hypergraph interface provides primitives for arbitrary 

manipulation of such graphs, including crossing boundaries between graph nodes from 

different representations. The AST Interface is designed to support trees that represent 

string-based languages, as definable via the DMSStringGrammar domain.  

The DMSStringGrammar domain, given a particular grammar, automatically 

defines the AST representation for that string language, essentially based on the terminals 

and non-terminals of the supplied grammar. Some of the important operations on ASTs 

provided by DMS are ScanTreeNodes, FindChildWithProperty,  

GetNthChild, CopyTree and FindParentWithProperty. The AST function 

FindChildWithProperty applies the property function (i.e., a visitor function) to 

every node in an in-order walk of the tree. If the function returns true after any call, the 

rest of the tree walk is skipped and the node is returned as a result; otherwise, a void node 
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is returned as a result. The property function will only be called once for each node, even 

if the tree shares substructure. This function is very useful for pattern matching and is 

used in several places in the low-level implementation of the aspect weaver. 

2.3.2 Specifying Rewrites using DMS Rule Specification Language 

 

Figure 2-3 presents an overview of the back-end transformation process. The 

program transformation rule (shown in general in Figure 2-3 with a specific example in 

Figure 2-4) is written in the RSL and processed by the back-end transformation engine to 

perform the actual rewriting.  

 

 

    

Figure 2-3- Overview of back-end transformation process 

 

Although term rewriting has several application domains (e.g., code migration, 

code refactoring or program refinement), the particular example in Figure 2-4 highlights 

Analyzer 

 
unparser 

definitions 

AST 

Graph  

Parser 

Source 

Program 

Symbol 

Table 

Pretty  

Printer 

Domain  

Definitions 

Target 

Program 

parser 

definitions 

 
Transformation 

Engine 

Program 

Transformation Rules 



  32  

an aspect-oriented style. As stated earlier, an RSL transformation rule consists of 

declarations of patterns, rules, conditions, and rule sets using the concrete syntax defined 

by a language domain. The first line of this transformation rule resolves the domain (i.e., 

language) to which the rule can be applied. In this case, a tracing probe is inserted before 

the execution of all functions written in Object Pascal. The statement list (stmt_list) 

that appears inside of a function body is passed as a parameter to this rule (Line 2). Note 

that a rule is typically used as a rewrite specification that maps from a left-hand side 

(source) syntax tree expression to a right-hand side (target) syntax tree expression 

(syntactically denoted by “” in RSL). The insert_probe rule matches all function 

body declarations in the source program and adds a ShowMesssage dialog box before 

the execution of the original statement list (i.e., \stmt_list, Line 4). In this way, a 

simple tracing probe is added at the beginning of all function execution. Rules can be 

combined into rule sets that form a transformation strategy by defining a collection of 

transformations that can be applied to a syntax tree. 

1. default base domain ObjectPascal. 

2. private rule insert_probe(stmt_list: statement_list):  

3. function_body    function_body 

4. = "begin \stmt_list end"    

5.   "begin ShowMessage(\"Entering Method\"); \stmt_list end". 

6. public ruleset TraceAllFunctions = {insert_probe} 

 

Figure 2-4- A simple example of a program transformation rule that illustrates aspect 

weaving of before advice 

 

These transforms along with the source program are syntactically checked and 

statically analyzed to ensure the expected weaving behavior. However, RSL rules are 
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typically hardcoded and dependent on the grammar of the base language (i.e., all text 

highlighted in bold in Figure 2-4 corresponds either to a terminal or non-terminal symbol 

in the Object Pascal grammar). The dependence of RSL on the base language grammar 

hinders rule reusability (i.e., in case the above functionality needs to be added for a 

different programming language, the RSL shown in Figure 2-4 cannot be reused directly). 

 

2.3.3 Other Program Transformation Engines 

In addition to DMS, there are a few other program transformation systems, 

namely ASF+SDF [van den Brand et al., 2002], TXL [Cordy et al., 2002] and Stratego 

[Visser, 2001] that offer similar capabilities to restructure the underlying source program.  

The ASF+SDF Meta-Environment is an Integrated Development Environment 

(IDE) and toolset for interactive program analysis and transformation. It combines SDF 

(Syntax Definition Formalism), ASF (Algebraic Specification Formalism) and other 

technologies. Some of the features available in ASF+SDF are program analysis, program 

transformation, generation of IDEs, visualization of parse trees and pretty printer 

generation. 

Tree TRANSformation Language (TXL) is a unique programming language 

specifically designed to support computer software analysis and source transformation 

tasks [Cordy et al., 2002]. It is a hybrid functional/rule-based language with unification, 

implied iteration and deep pattern matching. Each TXL program has two components: A 

description of the structures to be transformed that are specified as a directly interpreted 

Backus-Naur Form (BNF) grammar, in context-free ambiguous form; and a set of 

structural transformation rules specified by example as pattern/replacement pairs 
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combined using functional programming. The formal semantics and implementation of 

TXL are based on formal tree rewriting, but the trees are largely hidden from the user due 

to the by-example style of rule specification. 

Stratego is a language and toolset for program transformation [Visser, 2001]. The 

Stratego language provides rewrite rules for expressing basic transformations, 

programmable rewriting strategies for controlling the application of rules, concrete 

syntax for expressing the patterns of rules in the syntax of the object language, and 

dynamic rewrite rules for expressing context-sensitive transformations, thus supporting 

the development of transformation components at a high-level of abstraction. 

DMS was chosen for this research because of the maturity of the tool, as 

compared to other transformation engines, and the immediate availability of a large 

collection of pre-constructed domains. We have the confidence that many of the pre-

existing parsers that have been defined in DMS are capable of parsing large-scale 

industrial legacy software. There are many well-defined language definitions provided 

within DMS that have been used to parse multiple-millions of lines of commercial code. 

It is possible that the technique described in this paper could also apply to other 

transformation systems. For the technique described in this thesis to have a real impact, 

the ability to parse large code bases in multiple languages is paramount toward providing 

a framework for injecting aspects into legacy systems. 

 In the following section we introduce model-driven engineering as the basis for 

providing a suitable front-end to program transformation systems. This particularly 

addresses Challenges C3 and C4 that were introduced in Chapter 1. 
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2.4 Model-Driven Engineering - AMMA 

A large body of research in the area of Aspect-Oriented Modeling (AOM, 

http://www.aspect-modeling.org) has focused on new notations and weaving tools that 

improve the ability to express a design within a model through composition of separate 

concerns. In the research presented in this dissertation, we examine the converse – that is, 

how modeling can improve aspect orientation. Specifically, the research makes a 

contribution by showing how MDE [Schmidt, 2006] is used to construct new aspect 

weavers for General-Purpose Languages (GPLs) through models and transformations. To 

provide the necessary background information of our desired choice of MDE toolkit, in 

this section, we introduce the Atlas Model Management Architecture platform (AMMA) 

[Kurtev et al., 2006]. AMMA is a suite of MDE tools that can be used to implement 

domain-specific languages (DSLs) [Mernik et al., 2005] as well as high-level aspect 

languages useful for constructing the front-end of an aspect weaver. AMMA is designed 

and developed by the ATLAS Team (INRIA and LINA), and is composed of several 

elements: Kernel Meta-Meta Model (KM3) [Jouault and Bézivin, 2006], Textual 

Concrete Syntax (TCS) [Jouault et al., 2006], Atlas Transformation Language (ATL) 

[Jouault and Kurtev, 2005] and a few other tools (e.g., Atlas Model Weaver (AMW) 

[Jossic et al., 2007], Model Discovery [MoDisco, 2008]). 

 

2.4.1 Kernel Meta-Meta Model 

KM3 [Jouault and Bézivin, 2006] is a platform-independent language 

(metamodeling platform) to write metamodels, and thus to define the abstract syntax of 

DSLs. The purpose of KM3 is to give a relatively simple solution to define the Domain 
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Definition MetaModel (DDMM) of a DSL. The DDMM of KM3 is a meta-metamodel, 

and is defined in KM3 itself, just like the grammar of Backus-Naur Form (BNF) may be 

described in BNF itself.  

KM3 uses concepts like class, attribute, and references and is structurally close to 

the Object Management Group‟s Meta-Object Facility [OMG MOF, 2003] and Eclipse‟s 

Ecore [Budinsky et al., 2003]. Mappings to and from MOF 1.4 and Ecore have been 

defined in ATL, making KM3 usable with tools like the Eclipse Modeling Framework 

(EMF) [Budinsky et al., 2003] and Netbean‟s Metadata Repository (MDR). As a meta-

metamodel, KM3 is simpler than MOF 1.4, MOF 2.0 [OMG MOF, 2003] and Ecore. It 

contains only 14 classes whereas, for instance, Ecore has 18 classes and MOF 1.4 has 28 

classes. Only the core concepts of these other meta-metamodels are available in KM3. 

The KM3 specification for the high-level aspect language used in the front-end of this 

framework is shown in Chapter 4 (also, please see Appendices A and B). 

 

2.4.2 Textual Concrete Syntax 

TCS enables the specification of textual concrete syntax for DSLs by attaching 

syntactic information to metamodels [Jouault et al., 2006]. Unlike KM3, which uses an 

object-oriented syntax to specify the abstract definition of metamodels, TCS uses a 

grammar-like notation to specify the corresponding concrete syntax for metamodels. 

Thus, KM3 along with TCS provides the complete language description for a DSL.  

Two of the basic TCS constructs are Primitive Templates and Class Templates.  

Primitive Templates specify the lexer token corresponding to a given metamodel 

DataType, identified by its name. More than one primitive template may be defined for a 



  37  

single data type. This is typically the case for strings where one template is used to 

represent identifiers and a second one is used to represent string literals. Exactly one 

primitive template may be declared as default for each data type. Class Templates specify 

how classes are represented. This specification consists of a sequence of syntactic 

elements that are: keywords and special symbols. A Class Template has the same name 

as its corresponding Class. Exactly one class template must be declared as main. The 

main class template corresponds to the root of the model. In contrast to primitive 

templates, only one class template can be defined for each class in the metamodel. An 

example of TCS specification is shown in Appendices A and B. 

 

2.4.3 ATLAS Transformation Language 

ATL is a model transformation language and toolkit developed by the ATLAS 

Group (INRIA & LINA) [Jouault and Kurtev, 2005]. ATL provides ways to produce a set 

of target models from a set of source models. ATL is developed on top of the Eclipse 

platform; the ATL Integrated Environment (IDE) provides a number of standard 

development tools (e.g., syntax highlighting, debugger) that aims to ease development of 

ATL transformations.  

ATL is applied in a transformational pattern as shown in Figure 2-5. In this figure, 

the Grammarware [Klint et al., 2005] technical space (TS) refers to the text-based 

languages and tools, and the MDE or modelware TS refers to the class of model-based 

languages and tools used in software engineering. As shown in Figure 2-5, transition 

from one TS to another is achieved by means of TCS Injection or TCS Extraction. During 

TCS injection, a source program is converted to a source model, while, during TCS 
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extraction, a target program is extracted from a target model. M1, M2 and M3 are the 

three modeling levels present at these two TS. In the transformational pattern shown in 

Figure 2-5, a source model Ms is transformed into a target model Mt. The transformation 

is driven by a transformation specification (or a transformation program) ms2mt.atl 

written in the ATL language. The source and target models and the transformation 

specification (ms2mt.atl) conform to their metamodels MMs, MMt and ATL, 

respectively. Finally, all the respective metamodels conform to the common MOF meta-

metamodel. Detail description about the model transformation process applicable to the 

current GenAWeave framework is described in Chapter 4. An example of a model 

transformation rule is presented in Appendix D. 
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Figure 2-5- An example of ATL transformation 

 

ATL transformations are unidirectional, operating on read-only source models 

and producing a write-only target model. During the execution of a transformation the 
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source model may be navigated but changes are not allowed. The target model cannot be 

navigated. A bidirectional transformation is implemented as a combination of 

transformations, one for each direction. 

 

2.4.4 Related Work 

MDE refers to the systematic use of models as primary engineering artifacts 

throughout the engineering lifecycle of a software system. As a related idea, Model-

driven Architecture (MDA) is a conceptual software design approach launched by the 

Object Management Group (OMG, http://www.omg.org) that supports MDE. MDA 

provides a set of guidelines for structuring specifications expressed as models. It also 

provides standards for engineering model-driven artifacts that are expressed using the 

Meta-Object Facility (MOF). There are two versions of MOF, namely Essential MOF 

(EMOF) and Complete MOF (CMOF). In addition, models can be expressed in the 

Unified Modeling Language (UML, http://www.uml.org/) and transformations on models 

can be expressed using Query View Transformations (QVT) [OMG QVT, 2001].  

In addition to OMG‟s MDA initiative, the Eclipse Modeling Framework (EMF) is 

an Eclipse Modeling project that provides a Java implementation of the basic principles 

of model engineering. EMF is based on the Ecore meta-metamodel. The Graphical 

Modeling Framework (GMF, http://www.eclipse.org/gmf/) is an Eclipse Modeling 

project, which can be used to specify graphical syntax for Ecore metamodels.  

The Generic Modeling Environment (GME) [Lédeczi et al., 2001] is a 

configurable toolkit for creating domain-specific modeling (DSM) [Gray et al., 2007] and 

program synthesis environments. The configuration is accomplished through metamodels 
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specifying the modeling language of the application domain. The metamodel contains all 

the syntactic, semantic, and presentation information regarding the domain. The 

metamodeling language is based on the UML class diagram notation and Object 

Constraint Language (OCL) constraints [OMG OCL, 2001]. Although the metamodeling 

language in GME is visual (UML classes), AMMA based metamodeling is textual and is 

well-suited for describing the high-level aspect language presented in this dissertation.  

Another interesting toolkit that can be used for developing DSLs is LISA [Mernik 

et al., 2002], which provides a generic interactive environment for programming 

language development. Using formal language specifications of a particular programming 

language, LISA can produce a language-specific environment that includes an editor, a 

compiler/interpreter and other graphical tools. 

Our choice of AMMA was influenced by the fact that the different tools available 

in AMMA can be applied equally to both OMG‟s MOF and the open source EMF (i.e., 

independent of the underlying metamodeling platform). In addition, AMMA provides a 

powerful model transformation language (ATL) that is useful for translating models 

specified in a high-level aspect language to models specified in the low-level RSL 

language. Moreover, KM3 and TCS help with the design of our textual based high-level 

aspect language, which is used in the front-end of our framework. 

In the following chapter we introduce program transformation based aspect 

weaving using low-level rewrite specifications that are applicable to several GPLs (e.g., 

Object Pascal, C and C++ Templates). The technique introduced in Chapter 3 forms the 

basis of constructing aspect weavers using program transformation rules and is evaluated 

across commercial and high-performance scientific computing domains. 
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CHAPTER 3 

 

PROGRAM TRANSFORMATION BASED  

ASPECT WEAVER CONSTRUCTION 

 

 

 

A systematic approach towards realizing a generic framework for language-

independent program transformation requires the ability to capture the knowledge for 

language-specific transforms. This chapter discusses in detail the construction technique 

for language-specific aspect weavers.  In particular, the chapter introduces aspect 

weavers specific to programming languages like Object Pascal and C++ template 

libraries, which are applicable to commercial and scientific computing domains [Gray 

and Roychoudhury, 2004]. In addition, initial results about a slightly different 

construction technique (i.e., scientific library construction) for composing High 

Performance Linpack (HPL) libraries are also presented [Petitet et al., 2004]. All of the 

above mentioned techniques use DMS as a low-level transformation engine [Baxter et al., 

2004].  

Section 3.1 provides a detailed description of our PTE based technique to 

construct an aspect weaver for Object Pascal, which is validated against a commercial 

case study application. Section 3.2 discusses the design of an aspect language for C++ 

templates and also presents the underlying technique for weaving into C++ templates.  

Section 3.3 offers several examples of crosscutting concerns identified in a scientific 

library, namely Blitz++ [Veldhuizen, 1998] and demonstrates improved modularization 
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of such libraries using AOP and generative programming techniques [Czarnecki and 

Eisenecker, 2000]. The section also presents a PTE-based specialization technique used 

to improve the construction of a high-performance scientific library, namely HPL.  

 

3.1 An Aspect Weaver for Object Pascal 

This section describes the crosscutting concerns that were identified in a 

distributed application implemented in Object Pascal. Three different utility applications 

within this suite each had their share of problems with respect to scattered and tangled 

code. The utilities that serve as the case study for this research were implemented in 42K 

source lines of Object Pascal. This section provides a general discussion of several 

crosscutting concerns that were identified. Other crosscutting concerns exist in these 

utilities (e.g., database access control logic that is spread over a dozen classes), but this 

section focuses only on a subset of all identified aspects. For each concern, the number of 

times that the implementation redundantly appears is provided, which implies the amount 

of code that can be removed when modularized as aspects (e.g., the code in Figure 3-1 

appears 62 times and contains about 5 lines of code per case). 

 

3.1.1 Crosscutting Concerns in Object Pascal Application 

Four specific examples of crosscutting concerns as identified in an Object Pascal 

application are described below: 

Progress Dialog Meter: The Database Manager is a utility that assists customers 

in upgrading to a new database schema after installing an update to the application 

software. It manages the schema evolution problem by converting a database instance to 
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a new schema [Bounif and Pottinger, 2006]. Utilities like the Database Manager often 

provide feedback to the user in the form of a processing dialog, or meter, which indicates 

the progress of the overall task. The updating of the progress meter represents a 

crosscutting concern because the code to increment the meter is spread across the 

methods that perform much of the functionality (e.g., deleting database triggers, 

compiling new stored procedures, and other evolution tasks). Figure 3-1 contains a 

redundant code fragment that appears in 62 different places of the Database Manager. 

This code is necessary to update the processing dialog after each database evolution task 

is completed. 

1. Inc(TotalInserts); 

2. if not ProcDlg.Process(TotalInserts/TotalCalc) then 

3.    begin 

4.      ProcDlg.Canceled := True; 

5.      Result := True; 

6.      exit; 

7.    end;    // if not Process 

Figure 3-1 – Progress meter updating 

 

Replication of exception handling code can have negative consequences [Lippert 

and Lopes, 2000]. With respect to error handling in the Database Manager, the code 

fragment in Figure 3-2 appears 33 times in various methods in order to stop the 

processing dialog after an exception. However, it would be desirable to create a single 

separate module that describes all of the functionality of updating the progress meter. 

1. on E : Exception do 

2.   begin 

3.     dmSERVERS.HandleException(E); 

4.     dmSERVERS.ProcDlg.Canceled := True; 

5.   end; 

Figure 3-2 – Exception handling code for processing dialog 
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 Logging of SQL Query Statements: Another crosscutting concern that is 

scattered throughout the Database Manager is the logging of SQL code. As the Database 

Manager utility upgrades the customer’s database to a new schema, all of the SQL 

commands that are generated to perform the upgrade are logged to a file so that they can 

be examined later in the event of a problem (please see the code fragment in Figure 3-3). 

Although a special logging object was created, the numerous places and contexts where 

the object is called may vary. In fact, the methods of the logging object are invoked in 

over 50 different places in the Database Manager. Please notice that the logging call is 

also context-dependent and parameterized by the name of the query object. The ability to 

collect the logging actions in a single module would aid in better separation of this 

canonical logging concern. Unfortunately, for Object Pascal and most other programming 

languages, there are no language constructs to provide these desired capabilities. 

 

1. with dmSERVERS.qryCreateTriggers do 

2. begin 

3.    <statements that build a SQL Create Trigger> 

4.  

5.    LogSQL.AddSQL(dmSERVERS.qryCreateTriggers, True); 

6.    ExecSQL; 

7. end; 

Figure 3-3 – Logging of SQL query Data Definition Language (DDL) statements 

 

 Language Internationalization Utility: There are several tasks involved in 

internationalizing software. One technique is to represent all translations of each text 

string in a resource Dynamic Link Library (DLL). The creation of this library, however, 

requires a tool that assists in the management of all of the different strings for all of the 

supported written languages. The Language Internationalization tool supports such a task. 

The implementation of the Language Internationalization tool resulted in 24 classes.  
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Several of the classes interact with all of the controls within a Graphical User 

Interface (GUI) and update a database during any modification to GUI widgets. Among 

all of the events that are processed in the application, a dirty bit is used to keep track of 

whether a modification is made to a widget.  

1. // The user wants to perform another search 

   // using the same search criteria 

2. procedure TLangInt.SearchAgainClick(Sender: TObject); 

3. begin 

 

4.   // Perform an update if an edit occurred that might 

5.   // change the focus of the listview 

6.   if EditMadeDirtyBit then  

7.       SaveDBControls; 

8. ... 

9. end; 

Figure 3-4 – Preamble for widget button clicks 

 

There are 29 unique places in the source code of the Language 

Internationalization utility where access to the Boolean variable EditMadeDirtyBit 

is made. There were only two different contexts in which the EditMadeDirtyBit 

was accessed. One context simply dealt with setting the value to true or false, based upon 

a particular situation, and involved lazy-writing of the edit. This was spread across 

several diverse classes and represented 9 of the places where this concern occurred. The 

other context in which access to the dirty bit appeared dealt with performing a specific 

action based upon the value of EditMadeDirtyBit. The code for deciding the next 

action, based on the value of the bit, was identical in each source code location and 

always occurred as the first statement in a widget-click event handler (see Figure 3-4).  

Thus, this other redundant code was found in 20 different places in the Language 

Internationalization tool. Any modification or change to the way in which a text string 
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was stored often required a change to the way in which this concern was implemented. 

This required adaptations to many locations in the code in order to make the change. 

Forgetting to update the change in any one of these places could result in a loss, or 

corruption, of data during the modification of a language string. 

Database Error Handler Synchronization: Often, a commercial application 

must work with databases from several different vendors (e.g., Oracle, Interbase, and 

SQL Server). In such a situation, exception handling of database errors is a major 

difficulty because each database has its own way of raising exceptions. The same 

conceptual error (e.g., a null in a required field) may be raised in completely different 

ways with dissimilar error codes. The application, however, must make this transparent 

while interpreting the exception to provide a meaningful message back to the end-user. 

To accomplish this transparency, a database error handling DLL was created and 

integrated into the main application. This library contained 23 classes. The majority of 

these classes were responsible for handling specific types of exceptions using the Chain 

of Responsibility pattern [Gamma et al., 1994]. After the code was created for the error 

handlers, a new requirement was added. It was determined that the exception handling 

code must be thread-safe because numerous clients would be accessing the database at 

the same time. The addition of this concurrency concern resulted in a manual invasive 

change to over 20 classes. An example error handler is shown in Figure 3-5. In that 

figure, lines 4-5 and 7-9 represent this single synchronization concern. Furthermore, this 

exact code is replicated in all of the entry and exit points of each type of error handler. 
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1. function TExNullField.Handle(ServerType: TServerType; 

2.                              E : EDBEngineError) : Integer; 

3.  begin 

4.    TExHandleCollection(Collection).LockHandle; 

5.    try 

6.      <database error handling code omitted here> 

7.    finally 

8.      TExHandleCollection(Collection).UnLockHandle; 

9.    end; 

10. end; 

Figure 3-5 – Synchronization in a database error handler 

 

3.1.2 Weaver Transformation Rules for the Object Pascal Case Studies 

The purpose of this section is to introduce the low-level DMS program 

transformation rules that will drive the aspect weaving process for the Object Pascal 

weaver. Each of the crosscutting concerns identified in Section 3.1.1 is revisited to 

demonstrate the use of RSL to weave in each concern. In each case, there are two key 

parts to the weaving process: 1) the identification of the join points in the source AST 

that match a given pattern; and, 2) specifying rewrite rules to operate on those points to 

derive a new representation (i.e., adding advice). 

Weaving the Progress Meter Dialog: Figure 3-6 presents the complete RSL 

transformation rule for weaving the processing meter concern described in Figure 3-1. On 

the first line of this transformation rule, the domain to which the rule can be applied is 

identified (in this case Object Pascal). Patterns describe the form of a syntax tree. Often, 

they are used for matching purposes to find a syntax tree having a specified structure (as 

such, they provide a type of quantification across a code base [Filman and Friedman, 

2004]). Additionally, patterns can appear on the right-hand side (target) of a rule to 

describe the resulting syntax tree after the rule is applied. Patterns can be combined to 

form larger patterns.  
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The advice pattern in Figure 3-6 specifies the statement associated with the 

advice of the processing dialog concern (here, advice is just a user-defined name for a 

pattern – the word “advice” has no formal semantics within RSL, but is so named 

because it conceptually represents the concern that is to be weaved). The code that is 

associated with the advice pattern is the same conditional statement from Figure 3-1. The 

Object Pascal grammar defines the if_statement and statement_list 

production rules that are evident in the pattern and rule specifications. Throughout the 

paper, parts of the Object Pascal grammar are italicized and RSL reserved words are 

boldfaced in order to highlight the differences. No visual adornments are given to the 

regular Object Pascal source code.  

1. default base domain Object Pascal. 

2.  

3. pattern advice(): if_statement =  

4.  

5.   "if not ProcDlg1.Process (TotalInserts/TotalCalc) then 

6.      begin 

7.        ProcDlg1.Canceled := True; 

8.        Result := True; 

9.        exit; 

10.      end;". 

11.  

12. rule probe_progress_meter(): statement_list -> statement_list = 

13.  

14.   "Inc(TotalInserts);" 

15.  ->  

16.   "Inc(TotalInserts); \advice\(\);". 

17.  

18. public ruleset applyrules =  { probe_progress_meter }. 

Figure 3-6 – Transformation rule for updating progress meter 

 

The RSL rules describe a directed pair of corresponding syntax trees. A rule is 

typically used as a rewrite specification that maps from a left-hand side (source) syntax 

tree expression to a right-hand side (target) syntax tree expression. The rule 

probe_progress_meter isolates each node (call to function Inc) that increments 
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the database insertion counter. At each join point, the advice pattern is weaved into the 

progress meter. In this case, the former statement_list associated in the increment 

statement is rewritten (syntactically denoted by “�” in RSL) to a new 

statement_list that appends the advice to the increment. Rules can be combined 

into rule sets that form a transformation strategy by defining a collection of 

transformations that can be applied to a syntax tree.  

Meta-variables are used as placeholders for sub-trees, and specified using an 

escape syntax (i.e., “\identifier”). An RSL meta-variable can represent the tree 

defined by a pattern or a parameter to a rule. In Figure 3-6, the meta-variable reference 

“\advice\(\)” names the tree that is associated with the advice pattern and appended 

to the increment statement. In the next subsection, Figure 3-7 contains parameters (e.g., 

\id1, \id2, and \slist) to the probe_logging rule that serve as placeholders to 

holes that are filled during the term rewrite process. 

SQL Logging Transformations: Surprisingly, separating the logging of the SQL 

data definition commands, as shown in Figure 3-3, was the most difficult aspect to 

represent in the RSL. The difficulty stemmed from the with construct in Object Pascal, 

which is a shorthand notation for referencing fields within an object by setting a context 

block. 

The with statement of Figure 3-3 (Line 1) provides a context for accessing the 

fields of the query object (e.g., dmSERVERS.qryCreateTriggers) without having 

to prefix each reference in the block with the object name. Yet, the logging call that was 

embedded in this context required the name of the bounded query object. The trick for the 

RSL logging rules, as shown in Figure 3-7, is to trace back to the with statement that 
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contains the query object. This is accomplished with an external pattern called 

add_log_stmt.  

1. default base domain Object Pascal. 

2.  

3. external pattern add_log_stmt (slist1:statement_list,  

slist2:statement_list, 

id1:IDENTIFIER,                 

id2:IDENTIFIER): statement_list = 'add_log_statement'  

in domain Object Pascal. 

 

4. pattern advice(id1:IDENTIFIER, id2:IDENTIFIER): 

5.         statement_list = "LogSQL.AddSQL (\id1.\id2 , True);". 

6.  

7. pattern func_call_sig(): "ExecSQL". 

8.  

9. rule probe_logging(id1:IDENTIFIER,id2:IDENTIFIER, 

slist:statement_list): with_statement -> with_statement = 

 

10.  "with \id1 . \id2 do 

11.    begin 

12.       \slist 

13.    end" 

14.  ���� 
15.  "with \id1 . \id2 do 

16.    begin  

17.       \add_log_stmt\(\slist \, \advice\(\id1 \,\id2\) \, 

             \id2 \,\func_call_sig\(\)\) 

18.    end". 

19.  

20. public ruleset applyrules =  { probe_logging }. 

Figure 3-7 – Transformation rule for SQL logging 

 

There are certain things that cannot be specified in the RSL, such as tree-walking 

strategies. In such cases, it is possible to write external functions that escape from the 

RSL and return a value. In DMS, exit functions are written in a functional language 

called PARLANSE, which is a parallel language for symbolic expression that provides an 

enriched set of interfaces for performing operations on ASTs. The special parallel 

constructs provided by PARLANSE can offer performance improvements while 

traversing the hierarchical tree structure during pattern search [Baxter et al., 2004]. 

Within the AOSD community, there has been extensive research in adaptive and strategic 
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programming to address traversal strategies [Lämmel et al., 2003; Lieberherr et al., 

2001], but there was no mechanism to apply these ideas directly to RSL. 

 

1.(lambda (function boolean AST:Node )function 

2.   (value (local (;; );; 

3.      (;; 

4.          (ifthen(== ~t (AST:ContainsString ?)) 

5.            (;; 

6.              (= search_string (AST:GetString ?)) 

7.              (ifthen (== (@ search_string)  

8.               arguments:4)  (return ~t)) ifthen 

9.             );; 

10.          )ifthen  

11.          (return ~f) 

12.        );;  

13.      )local 

14.      ~f 

15.   )value 

16.)lambda  

… 

Figure 3-8 – Visitor function written in PARLANSE 

 

The objective of the add_log_stmt external pattern is to insert a new log 

statement before every call to the ExecSQL statement. However, the parameters to be 

logged come from the variable access definition that is attached to the with statement.  

The visitor function used to find child nodes that match the pattern 

func_call_sig can be found in Figure 3-8. Note that the fourth argument that is 

passed to the external pattern is the function call identifier ExecSQL. The visitor returns 

true whenever it finds a match to this call statement in the syntax tree. From the external 

pattern, all matching placeholders are returned and the right-hand side (RHS) of the rule 

weaves in the advice to transform the original syntax tree. 

Transforming Dirty Bits: Recall from Section 3.1.1 that a dirty bit was used to 

determine if a lazy-write was needed to update the state of a database as a result of an edit 

to a language string. That concern required a simple conditional statement to be attached 
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to the beginning of all widget “Click” event handlers. Figure 3-9 is an RSL 

transformation that provides support for weaving this aspect into the source code of the 

Language Internationalization utility. 

The advice pattern in Figure 3-9 represents the simple conditional statement 

that is to be prefixed to the widget Click methods. The patterns isClick and click 

are used to identify the placeholder in the source AST. The left-hand side (LHS) of the 

rule probe_dirty_bit transforms the source syntax tree to its new representation 

depending on the external condition func_sig_has_click, which is invoked from 

the isClick pattern. Note that external conditional functions are coded in PARLANSE. 

This external condition is needed to match the wildcard “*Click” specification. It is not 

possible within RSL to look into the contents of a syntax-tree node, but this can be 

accomplished in an external condition. 

The function func_sig_has_click (line 2, Figure 3-9) takes two arguments. 

The first argument is the identifier node that denotes places of interest in the search 

process. The second argument is a constant identifier string that is used to match the 

place holders in the source tree. The DMS transformation engine will continue to apply 

all sets of rules until no rules can be fired. It is possible to have an infinite set of rewrites 

if the transformations are not monotonically decreasing (i.e., when one stage of 

transformation continuously introduces new trees that can also be the source of further 

pattern matches). Notice that there is a condition specified at the bottom of Figure 3-9 

(line 29). This condition describes a constraint stating that the set of rules should be 

applied only to those join points where a transformation has not occurred already. 

Specifically, it states that the rules should be applied when it is not the case that the 
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advice is already prefixed to a statement list. The transformation rule will be applied only 

once to each Click event handler. Without this condition, the rules would be applied 

iteratively and fall into an infinite loop. 

1.  default base domain Object Pascal. 

 

2.  external condition func_sig_has_click(id1:IDENTIFIER,  

3.                                        id2:IDENTIFIER)  

4.                    = 'func_sig_has_click'. 

 

5.  pattern advice(slist:statement_list) : statement_list = 

 

6.    "if EditMadeDirtyBit then  

7.        SaveDBControls; 

8.     \slist". 

 

9.  pattern isClick(id:IDENTIFIER): IDENTIFIER 

10.               = id if func_sig_has_click(click(), id). 

11. 

12. pattern click (): I DENTIFIER = "Click". 

13.  

14. rule probe_dirty_bit (id1:IDENTIFIER, id2:IDENTIFIER, 

15.                      fps:formal_parameters, 

16.                      slist:statement_list):  

17.   implementation_decl -> implementation_decl = 

18. 

19.  "procedure \id1 . \isClick\(\id2\)  \fps ; 

20.   begin  

21.     \slist 

22.   end;" 

23. -> 

24.  "procedure \id1 . \id2   \fps ; 

25.   begin 

26.     \advice\(\slist\) 

27.   end;". 

28. 

29. if ~[modslist:statement_list .slist matches  

30.            "\:statement_list \advice\(\modslist\)"]. 

31. 

32. public ruleset applyrules =  { probe_dirty_bit }. 

Figure 3-9 – RSL rule for weaving dirty bits 

 

Figure 3-10 shows the PARLANSE function that is used to perform the wildcard 

pattern matching. It utilizes the pre-defined DMS StringScan and ASTInterface 

libraries to perform the scanning operation over the placeholders. The function returns 
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true if it finds a slot as specified by the pattern click. The advice is applied to all 

placeholders that match this given pattern.  

1.  (define func_sig_has_click 

2.   (lambda Registry:MatchingCondition 

3.    (let (;;(= [const_string (reference string)]   

4.                            (AST:GetString arguments:1)) 

5.            (= [search_string (reference string)]   

6.                            (AST:GetString arguments:2)) 

7.            (= [scanner StringScan:Scan ]     

8.            (StringScan:MakeScan search_string)) 

9.         );; 

10. 

11.       (value   

12.         (while (== (StringScan:End? (. scanner)) ~f) 

13.        (ifthenelse   

14.                (StringScan:MatchString? (. scanner) 

15.                   const_string)  

16.                   (return ~t)  

17.            (StringScan:Advance (. scanner))  

18.        )ifthenelse  

19.       )while 

20.      ~f 

21.        )value 

22.    )let 

23.   )lambda 

24.  )define 

Figure 3-10 – PARLANSE external condition function func_sig_has_click 

 

Error Handling Transformation: The concurrency control concern from Figure 

3-5 can be weaved using RSL in a style similar to those transformations already shown 

and is illustrated in Figure 3-11. 

In the transformation of Figure 3-11, the try/finally block (lines 14-18) that 

implements the concurrency control is wrapped around the critical section of the source 

code. The original critical section is denoted by the statement_list that is 

represented by the slist meta-variable (line 15) in the transformation. The pattern 

probe_handle (line 3) identifies the slot from the function signature (line 27) where 

the advice needs to be applied (i.e., function name with a signature like *.Handle). The 
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lock (line 9) and the unlock (line 6) patterns are then inserted before and after the 

critical section of the source code. The RHS of the rule probe_synchronize (line 

20) rewrites the entire function definition and inserts the RSL pattern advice (line 12) 

in the function body. The conditional constraint in line 37 denotes the condition when 

this rule can be applied. 

1.  default base domain Object Pascal. 

2. 

3.  pattern probe_handle(id:IDENTIFIER): 

4.          qualified_identifier = "\id.Handle". 

5 

6.  pattern unlock():statement = 

7.          "TExHandleCollection(Collection).UnLockHandle". 

8. 

9.  pattern lock():  statement =                     

10.         "TExHandleCollection(Collection).LockHandle". 

11. 

12. pattern advice(slist:statement_list): statement_list = 

13.   "\lock\(\); 

14.     try 

15.        \slist 

16.     finally   

17.        \unlock\(\); 

18.     end;". 

19.  

20. rule probe_synchronize(slist:statement_list, 

21.                        id:IDENTIFIER, 

22.                        fps:formal_parameters, 

23.                        frt:function_result_type): 

24. 

25.    implementation_decl -> implementation_decl = 

26.  

27.   "function \probe_handle\(\id\) \fps : \frt ; 

28.    begin 

29.      \slist 

30.    end;" 

31. ->  

32.   "function \probe_handle\(\id\) \fps : \frt ; 

33.    begin 

34.      \advice\(\slist\) 

35.    end;". 

36.  

37. if ~[modsList:statement_list .slist matches  

38.            "\:statement_list  \advice\(\modsList\)"]. 

39.  

40. public ruleset applyrules =  { probe_synchronize }. 

Figure 3-11 – RSL rule for modularizing synchronization 
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In another context of using a different GPL, Section 3.2 discusses the techniques 

to modularize C++ templates using AOP and program transformation. 

 

3.2 Weaving into C++ Template Libraries 

Aspects have the potential to interact with many different kinds of language 

constructs in order to modularize crosscutting concerns. Although several aspect 

languages have demonstrated advantages in applying aspects to traditional 

modularization boundaries (e.g., object-oriented hierarchies), additional language 

concepts such as parametric polymorphism can also benefit from aspects. Many popular 

programming languages support parametric polymorphism (e.g., C++ templates), but 

with the emergence of generics in Java 5, the combination of aspects and generics is a 

topic in need of further investigation. The section enumerates the general challenges of 

uniting aspects with C++ templates. It also emphasizes the need for new language 

constructs to extend AOP support to C++ templates and provides an initial solution to 

realize this goal. 

The most detailed discussion of aspects and C++ templates is described in 

[Lohmann et al., 2004], within the context of AspectC++ (an aspect language for C++) 

[Spinczyk et al., 2002]. The effort to add aspects to templates in AspectC++ has been 

partitioned along two complimentary dimensions:  

• Weaving advice into template bodies 

• Using templates in the bodies of aspects 

Where as the AspectC++ work has focused along the second dimension (i.e., 

using templates in the aspect body), the key contribution of this section is a deeper 
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investigation along the first dimension (i.e., weaving advice in the template body). In 

addition, the research enumerates a key challenge pertaining to C++ templates. Although 

a template is instantiated in multiple places, it may be the case that the crosscutting 

feature is required in only a subset of those instances. For example, it may be required to 

weave in vector templates of type int only (i.e., vector<int>), leaving vectors of all 

other types unchanged.  Additional language features are required to describe such 

specific intentions and is explained in detail in the following sections.  

 

3.2.1 Simple Pointcut Expressions for C++ Templates 

This section introduces several essential concepts of AOP for C++ templates. An 

application of the Standard Template Library (STL) [Josuttis, 1999] vector class is 

presented, along with a description of a program transformation technique for 

modularizing a crosscutting concern among vector instances. Initially, some of the 

elementary pointcut language constructs for C++ templates are introduced in Section 

3.2.1. Section 3.2.2 motivates the need for advanced pointcuts for C++ templates and 

presents our approach to support this technique. 

Figure 3-12 shows a simple implementation of class Foo that uses several 

instances of the STL vector class. The join point model and pointcut language are 

explained in terms of actual template definitions. The listing is purposely simplified so 

that the concepts are not complicated by peripheral details. There are three fields defined 

in Foo, either of type vector<int> or vector<float>. The methods getMyInts 

and getMyFloats return the corresponding vector field, and the method addFloats 

adds a new floating point number to a given floating point vector 
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1. #include <vector> 
2. using namespace std; 
3.  
4. class Foo { 
5.   public: 
6.      vector<int> getMyInts(); 
7.      vector<float> getMyFloats(); 
8.      void addMyFloats(vector<float>,float); 
9.   protected: 
10.      vector<int> myInts; 
11.      vector<float>  myFloats;  
12.      vector<float>  someOtherFloats;  
13.   }; 
14.    
15.   vector<int> Foo::getMyInts() { 
16.        return myInts;  
17.   } 
18.   vector<float> Foo::getMyFloats(){ 
19.        return myFloats;  
20.   } 
21.   void Foo::addFloats(vector<float> any,float aFloat) { 
22.        any.push_back(aFloat); 
23.   } 
24.   ...  

 

Figure 3-12 – An example class with multiple template instantiations 

 

Using Foo as a reference for discussion, some of the primitive pointcut 

expressions defined in our aspect language for C++ templates are explained below: 

• A primitive get for the field myFloats is captured by the following pointcut 

expression:  

 

  get(vector<*> Foo::myFloats) or  

            get(vector<float> Foo::myFloats) 

Note the wildcard “*” refers to any vector type.  

• The execution of all “getters” (i.e., getMyInts and getMyFloats) is 

matched by the pointcut expression:  

           execution(vector<*> Foo::get*(..)). 

                                                

 

The expression “get*” matches all “get” methods. 
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• However, to match the execution of a specific get method (e.g., getMyInts), 

the above pointcut expression can be rewritten as: 

  execution(vector<int> Foo::getMyInts(..)). 

 
      

Here, instead of using a wildcard, we specify the exact method signature. 

• Similarly, a call to the method addFloats is matched by the pointcut 

expression: 

call(void Foo::addFloats(vector<float>,float)). 

        

  A key challenge that is addressed in the design of the pointcut language occurs 

from the realization that a template can be instantiated in multiple places, yet it may be 

the case that the crosscutting feature is required in only a subset of those instances. A 

generalized pointcut expression that quantifies over specific types may capture several 

unintended instantiations. For example, if there are multiple vector<float> fields 

defined in class Foo, it may be required to log a call only to the push_back method for 

the field myFloats, and leave other vector<float> fields (e.g., 

someOtherFloats) unaltered. 

The flexibility to quantify over specific template instances provides additional 

power towards AOP in C++ templates that is not limited to specific types. However, a 

language mechanism is needed to define the quantification scope of a pointcut with 

respect to the semantics of C++ templates. The following section motivates the need for 

advanced pointcut expressions for C++ templates through a preliminary example. 
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3.2.2 Advanced Pointcut for C++ Templates 

A fragment of the actual STL vector class definition is presented in Figure 3-13a, 

which shows the implementation of two vector-specific operations, push_back and 

pop_back. The sample code in Figure 3-13b illustrates the use of a vector in an 

application program. In this simple application, three different types of vector instances 

are declared (i.e., vectors of type int, char, and float). The push_back method is 

invoked on each vector instance to insert an element of a different type. 

1. template <class T> 

2. class vector{  

3. //... 

4.  

5. public: 

6. void push_back 
7.       (const T& x ) { 

8. // insert element at end 

9.   if (finish !=    

10.     end_of_storage){   
11.  construct(finish, x); 
12.       finish++; 
13.     } else 
14.   insert_aux(end(), x); 
15.    } 
16. } 
17.void pop_back() { 
18.// erase element at end 
19.  if (!empty()) 
20. erase(end() - 1); 

21.} 
22.// ... 
23.// other implementation 
24.// details omitted here 
25.};  
 

1. class A { 

2. vector<int> fi1; 
3. vector<float> fi2; 
4. void foo() {    

5.    vector<int> ai; 
6.    //... 

7.    ai.push_back(1); 

8.    fi1.push_back(2); 

9.    fi2.push_back(3.0); 

10.   //... 
11.  } 
12.};      
 

1. class B { 

2. vector<char> bc; 
3. vector<int> fi; 
4. void bar() { 

5.    vector<int> bi; 
6.    vector<float> bf; 
7.    //... 

8.    bc.push_back('a'); 

9.    bi.push_back(1); 

10.   bf.push_back(2.0); 
11.   //... 
12.  } 
13.    }; 

 

a - STL vector implementation           b - Application using STL vectors 

 

Figure 3-13- STL vector class and its usage 

 

 

Considering the canonical logging example, suppose that important data in 

specific vector instances needs to be recorded whenever the contents of the vector are 

changed. That is, within the context of an STL vector class, a requirement may state that 
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logging is to occur for all items added to each execution of the push_back method, but 

only for specific instantiations. For example, it may be desired to log only vector fields of 

type <int> in class A (e.g., field fi1 in class A) without affecting other local vector 

instantiations of type int in class A or B (e.g., those appearing in the local scope of 

method foo in class A or method bar in class B). 

In order to record or log the contents of a given vector instance, the push_back 

method as defined in the original vector template (Figure 3-13a) must be adapted. 

However, any change to this base template definition will affect all instantiations that 

reference the original vector template. For example, if logging support is added to the 

push_back method in the original vector template, all instantiations of vector (e.g., 

fields fi1, fi2 in class A, fields bc, fi in class B, or method variables bi or bf in 

class B) will automatically implement support for logging. But, according to the 

requirement, it is only desired to capture logging to specific instances of the vector (e.g., 

fields of type vector <int>) and not to all its instances. This challenge is addressed 

using Template Subtyping. 

Template Subtyping: In order to affect only int instances of the given vector 

template in fields of class A (or fields of class B) and leave other types (e.g., float, 

char) of vector instances unaltered, a new subtype vector$1 is constructed, which 

inherits from the original vector template. The log statement is then added to the over-

written push_back method of the vector$1 template. The top-half of Figure 3-14 

shows the adapted definition of the push_back method in this vector$1 template. 

Note that the method call log.add(x) is added at the beginning of the push_back 

method in Figure 3-14. Finally, all field references in class A and B of type 
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vector<int> are updated with this new vector$1 template (shown in the middle of 

Figure 3-14). However, all other references to the original vector template are left 

unaltered (e.g., field fi2 or method variable ai in class A).  

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 3-14- STL vector$1 class with updated references in Application instances 

 

Although template specialization seems related to template subtyping, there could 

be instances where specialization may fail. For example, if only a particular instance of a 

specific type needs to be adapted (i.e., only the field fi1 in class A), specialization 

techniques would fail as any specialization will be universally applied to all references of 

type vector<int> (e.g., method variable ai in class A). However, using template 

subtyping, only the functions that need to be adapted are transformed with respect to the 

1. class B { 

2. vector<char> bc; 

3. vector$1<int> fi; 
4. void bar() { 

5.      vector<int> bi; 

6.      vector<float> bf; 

7.      //... 

8.    } 

9. }; 

1. template <class T> 

2. class vector$1 : public vector<T> {    ...       

3.    public: 

4.    void vector$1::push_back(const T& x ) {      
5.          log.add(x); 
6.        __super::push_back(x);  
7.    } 

8.    vector$1<T>& vector$1<T>::operator= 
                  (const vector<T>& _Right) { 

9.        __super::operator=(_Right); 

10.      return (*this); 
11.} ... 
12. 

1. class A { 

2. vector$1<int> fi1; 
3. vector<float> fi2; 

4. void foo() { 

5.    vector<int> ai; 

6.    //...  

7.    } 

8. }; 

1 pointcut push_back_method(): 
2 execution(A::* <- 
3  vector<int>::push_back(..)); 

1 pointcut push_back_method(): 
2 execution(B::*<- 
3  vector<int>::push_back(..));  
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new aspect semantics, but the rest of the class template remains unchanged. The scoping 

rules required to describe the context of a given pointcut expression with respect to C++ 

templates are discussed further. 

Scoping Rules for Templates: Figure 3-15 illustrates the scoping rules for 

templates.  

 

Scope Designator Description 

 C::* All global template instantiations of class C 

(fields) 

* C.*(..)::* All local template instantiations within all 

methods of class C 

(C::*  || * C.*(..)::*) All template instantiations (both global and 

local) within class C 

C.M(..)::* 

 

All local template instantiations within method 

M of class C 

* C.*(..)::V 

 

Any template instantiation that is referenced by 

a variable V in all methods of class C 

* C.M(..)::V Template instantiation that is referenced by a 

variable V in method M of class C 

Figure 3-15- Scope designators in pointcut expressions 

 

From the categorization of scope designators shown in Figure 3-15, the example 

from Figure 3-14 can be re-visited to observe the scoping rules for classes A and B in the 

application program. At the bottom of Figure 3-14, two pointcut specifications are shown 

that capture the logging concern for specific vector instances depending on the scoping 

rule applied to the base class template. The pointcut in the bottom-left of Figure 3-14 can 

be read as, “select all fields of type vector<int> in class A that lead to an execution 

of the push_back method.” Similarly, the pointcut in the bottom-right of Figure 3-14 
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can be read as, “select all fields of type vector<int> in class B that lead to an 

execution of the push_back method.”  

To illustrate this scoping rule further, additional examples are provided in Figures 

3-16 through 3-20. Each pointcut definition is progressively more focused in limiting the 

scope of the join points that are captured (i.e., from a pointcut that captures all vectors of 

any type in any class, down to a pointcut that specifies a specific instance in a distinct 

method). Figure 3-16 offers an example of the aspect language to add the logging 

statement to the push_back method in all vectors of any type from any class. The 

pointcut push_back_method represents the points of execution where the advice 

is to be applied. In the pointcut expression, vector<*> denotes all types of vector 

instances. 

1.  template <class T> 
2.  aspect InsertPushBackLogToAllVector { 
3.    pointcut push_back_method(const T& x): 
4.       execution(vector<*>::push_back(..)) &&  args(x); 
5.    before(const T& x):push_back_method(x) { 
6.      log.add(x); 
7.     } 
8. } 

 

Figure 3-16 - Aspect specification for inserting the push_back log to all vectors of 

ANY type in ANY class 

 

Figure 3-17 defines a pointcut that specifies the execution join point for the 

push_back method of all vectors of type int. The low-level implementation details 

involving the program transformation rules to automate the required changes to the 

template class and application program will be shown in Section 3.2.3. 
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1. pointcut push_back_method(): 
2.   execution(vector<int>::push_back(..));  

Figure 3-17- Pointcut specification for weaving into all vectors of type int in ANY 

class 

 

To add finer granularity, Figure 3-18 describes the pointcut specification for 

execution of all vectors of type int in class A. To be more specific in limiting the 

scope of a pointcut, Figure 3-19 defines a pointcut capturing all int vectors in method 

foo that are defined in class A. 

1. pointcut push_back_method(): 
2.   execution((A::*  || * A.*(..)::*)<- 
3.              vector<int>::push_back(..)); 

Figure 3-18- Pointcut specification for weaving into all vectors of type int in class A 

 

1. pointcut push_back_method(): 
2.   execution(* A.foo(..)::*<- 
3.               vector<int>::push_back(..)); 

Figure 3-19- Pointcut specification for weaving into all vectors of type int in method 

foo of class A 

 

Figure 3-20 is the most specific pointcut expression. It will only match a 

particular template instance ai whose type is of vector<int> and is defined within 

the scope of method foo of class A. 

1. pointcut push_back_method(): 
2.   execution(* A.foo(..))::ai<- 
3.               vector<int>::push_back(..)); 

Figure 3-20- Pointcut specification for weaving into vectors of type int and referenced 

by variable ai in method foo of class A 
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3.2.3 Template Weaving using Program Transformation 

The aspect language shown in the previous section illustrates the high-level 

language specifically constructed to handle C++ templates. In this section, emphasis is 

placed on the low-level implementation details used to automate the weaving process 

through a program transformation engine.  

STL

STL’STL-RSL 

Binding

App-RSL

Binding

STL’’
STL

Application New Application

App Xform 
Rules

STL Copy
Rules

Aspect 
Specification

Translator 

DMS TRANSFORMATION 
ENGINE1

56

4

3

2

 

Figure 3-21- Overview of template weaving process 

 

Figure 3-21 presents an overview of the automated transformation process that 

uses the DMS program transformation system as its underlying engine. One of the major 

components involved in the implementation of the weaver is the translator (bottom of 

figure), which parses and translates a high-level aspect language into low-level rewrite 

rules (i.e., referenced as items #5 and #6). This facilitates the application programmers to 

specify their intent using a high-level aspect language and remain oblivious to the 

existence of a low-level transformation engine. 
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The heart of the weaving process (core infrastructure) is the DMS transformation 

engine, which takes the source files and the generated rules as input. The user provides 

three different source files as input to the transformation process: the original STL source 

code (shown as item #1 in Figure 3-21), an application program based on the STL 

instances (shown as item #2), and a high-level aspect language specification (examples 

shown in Section 3.2.2) used to describe the specific crosscutting concern with respect to 

template instantiations. 

The translator includes a lexer, parser, and pattern evaluator (i.e., pattern parser 

and attribute evaluator) that takes the aspect specification and instantiates two different 

sets of parameterized transformation rules (i.e., STL copy rules and App transformation 

rules, shown separately as #5 and #6 in Figure 3-21). The pointcut expressions are bound 

to the corresponding transformation rules that are instantiated for matching patterns. The 

STL copy rules generate a subtype copy of the original STL class template by inheriting 

from the base template. The crosscutting concerns are weaved into this new subtype by 

overwriting appropriate methods as defined in the STL-RSL Binding. Note that each 

subtype copy rule encapsulates only one crosscutting concern for each specific template 

type (e.g., vector<float>). Therefore, it is desired to generate only one subtype 

copy for every type, each of which has one specific concern weaved into its base 

definition (shown as #3). However, if multiple concerns crosscut a specific type, then the 

corresponding subtype copy should also replicate this behavior by encapsulating multiple 

crosscutting concerns weaved into one copy. Similar to the STL-RSL Binding, the App-

RSL Binding transformation modifies the user application program (shown as #2) based 

on the App transformation rules, and generates the new application (shown as #4) that is 
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able to be compiled as a pre-processing phase and executed along with the generated 

subtype STL copies. The remainder of this section provides a discussion of the 

transformation rules that implement these ideas. 

Transformation Rules for Template Weaving: Figure 3-22 (STL template 

subtype copy rule, also shown as #5 in Figure 3-21) shows the low-level RSL 

specification for weaving a logging concern into the push_back method in an STL 

vector class. Two steps are involved in the weaving process: 1) make a subtype copy 

of the original vector template class, and 2) insert the logging statement into appropriate 

places in the abstract syntax tree. The first line of the rule establishes the default base 

language domain (e.g., C++) to which the transformations are applied. 

1.    default base domain Cpp. 
2.    pattern log_statement(): statement_seq = "log.add(x);". 
3.    pattern weaved_method_name(): identifier = "push_back". 
4.    pattern new_template_name(): identifier = "vector$1". 
 

5.    external pattern copy_template 
6.       ( td : template_declaration, 

7.         st : statement_seq, 

8.         method_name : identifier,  

9.         template_name : identifier ):  

10.   template_declaration = 'copy_template' in domain Cpp.  
11.      
12.rule insert_log_to_template 
13.   ( td : template_declaration ):  
14.     template_declaration -> template_declaration 
15.   = td ->     
16.     copy_template (td, log_statement(),  
17.                    weaved_method_name(),   

                       new_template_name()). 
 

18.public ruleset applyrules = { insert_log_to_template }. 

Figure 3-22- DMS transformation rules for weaving log statement into push_back 

method 

 

  Pattern log_statement in line 2 represents the log statement that will be 

inserted before the execution of the push_back method. Pattern 
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weaved_method_name in line 3 defines the name of the method that will be 

transformed (i.e., push_back in this case). Pattern new_template_name in line 4 

specifies the new name for the vector (i.e., vector$1). 

As stated earlier, exit functions (i.e., external patterns and functions) in DMS are 

written in PARLANSE, which use internal APIs for performing various traversal and tree 

operations on the parsed AST. In this example, the external pattern copy_template 

(line 5 of Figure 3-22) is a PARLANSE function that performs the actual process of 

subtyping, naming, and weaving. 

This external pattern takes four input parameters: 1) a template declaration to be 

operated on, 2) a statement sequence representing the advice, 3) a method name where 

the advice is to be weaved, and 4) a new name for the template subtype. The rule 

insert_log_to_template on line 12 triggers the transformation on the vector 

class by invoking the specified external pattern. 

After applying this rule to the code fragment shown in Figure 3-23, a new 

template class named vector$1 (inherited from vector) will be generated with the 

logging statement inserted at the beginning of the push_back method (i.e., the 

automated result is the same as found in Figure 3-14). At this stage, the weaving process 

is still not complete because the application program also needs to be updated to 

reference the new vector$1 instance.  
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1.    default base domain Cpp. 
2.    pattern pointcut( id : identifier ):  
3.         declaration_statement = "vector<int> \id;". 

4.  

5.    pattern advice( id : identifier ):  
6.         declaration_statement = "vector$1<int> \id;". 
7.  

8.    external pattern replace_vector_instance 
9.          ( cd  : class_declaration, 

10.        ds1 : declaration_statement, 
11.        ds2 : declaration_statement ):  
12.        class_declaration = 'replace_vector_instance'  
13.                                         in domain Cpp.  
14. 
15.rule replace_template_instance 
16.    ( cd : class_declaration, id : identifier): 
17.     
18.      class_declaration -> class_declaration 
19.    = cd -> replace_vector_instance 
20.           (cd,pointcut(id),advice(id)). 
21.public ruleset applyrules = {replace_template_instance}. 

Figure 3-23- DMS transformation rules to update the application program 

 

The DMS transformation rule to update the corresponding application program 

(App transformation rule, also shown as #6 in Figure 3-21) is specified in Figure 3-23. 

Pattern pointcut (lines 2 and 3) identifies the condition under which the rule will be 

applied (i.e., in this case, all int vector declarations). Pattern advice (lines 5 and 6) 

defines the name of the new transformed type (vector$1<int>). After applying this 

particular rule (line 21) to a given user application, the external pattern 

replace_vector_instance replaces the type of every template instantiation 

declared as type vector<int> into an instance of type vector$1<int>.  

Sections 3.1 and 3.2 primarily focused on constructing aspect weavers by 

applying program transformation rules on Object Pascal and C++ Templates respectively. 

These sections also described some of the AOP language extensions required to support 

aspect weaving in the case of C++ templates. In the following section, application of 

program transformation systems to improve the modularization and construction of 
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scientific libraries will be discussed. First, we introduce Blitz++ [Veldhuizen, 1998], 

which is a C++ template based library used for numerical computing applications and 

shows how AOP can improve the modularity of such libraries. Second, we discuss a 

technique to construct or compose scientific libraries based on specialization for a given 

architecture. The latter technique is not directly related to AOP, but nevertheless, it shows 

the usefulness of program transformation for constructing such systems. 

 

3.3 Adaptation and Specialization of Scientific Libraries 

Scientific computing was an initial application domain for the early examples of 

AOP [Irwin et al., 1997]. However, aside from an application of AspectJ [Kiczales et al., 

2001] to an implementation of JavaMPI [Harbulot and Gurd, 2004], AOP has not been 

applied or investigated deeply within the area of scientific computing. This is primarily 

due to the fact that such applications are typically written in FORTRAN, C, or C++, but 

the center of AOP research has largely remained focused on Java-based implementations. 

Nevertheless, there is a strong potential for impact if aspects can be used to improve the 

modularization of scientific computing applications written in languages other than Java. 

 

3.3.1 Aspects in Blitz++ 

Optimizing performance, while preserving the benefits of programming language 

abstractions, is a major hurdle faced in scientific computing [Skjellum et al., 2004; 

Quinlan et al. 2004; Veldhuizen and Dennis Gannon, 1998]. Object-Oriented 

Programming Languages (OOPLs) have popularized useful features (e.g., inheritance and 

polymorphism) in the development of complex scientific problems. However, the 
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performance bottleneck associated with OOPLs has been a major concern among High-

Performance Computing (HPC) researchers. Alternatively, languages such as FORTRAN 

have dominated the numerical computing domain, even though the primitive 

programming constructs in such languages make applications difficult to maintain and 

evolve. 

Compiler extensions (e.g., High Performance C++ [Johnson and Gannon, 1997] and 

High Performance Java [Getov et al., 1998]) and scientific libraries (e.g., POOMA 

[Reynders et al., 1996], MTL [Siek and Lumsdaine, 1998], and Blitz++ [Veldhuizen, 

1998]) have been developed to extend the benefits of object-oriented programming to the 

scientific domain. In particular, Blitz++ is a popular scientific package that has specific 

abstractions (e.g., arrays, matrices, and tensors) that support parametric polymorphism 

through C++ templates. The goal of the Blitz++ project was to develop techniques that 

enable C++ to compete or exceed the speed of FORTRAN for numerical computing. 

Blitz++ arrays offer functionality and efficiency, but without any language extensions. 

The Blitz++ library is able to parse and analyze array expressions at compile-time and 

perform loop transformations. Blitz++ currently provides dense vectors and 

multidimensional arrays, in addition to matrices, random number generators, and tiny 

vectors. The overall size of the Blitz++ library is approximately 115K source lines of 

code (SLOCs). Moreover, there are several additional source code directories that serve 

as benchmarks and test cases. 

Although Blitz++ makes extensive use of templates for array and vector 

implementation, the issue addressed in this paper is the ability to apply AOP concepts to 

large scientific template libraries like Blitz++. This section contains a description of some 
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of the array and vector implementation templates in Blitz++, and identifies several 

crosscutting features in the current Blitz++ implementation. The general approach could 

be applied to other libraries that use parametric polymorphism implemented in languages 

such as Ada or Java. 

The first example in this section represents the common case of a debugging 

precondition that appears in array-impl.h and resize.cc. These files primarily represent 

arrays whose dimensions are unknown at compile-time and require resizing during 

runtime. In addition, there are several methods that perform block reduction operations 

and conversions to and from a matrix and vector.  

A second crosscutting feature in array-impl.h is setupStorage, which is used 

for initial memory allocation for arrays and appears in both array-impl.h and resize.cc. 

The third example is based on redundant assertion checks on the lower and upper 

bounds of an array during instantiation. It appears 46 times in array-impl.h and is similar 

in concept to redundant assertion checking described by Lippert and Lopes [Lippert and 

Lopes, 2000]. 

Precondition and setupStorage Aspects: The Blitz++ library has a 

debugging mode that is enabled by defining the preprocessor directive BZ_DEBUG. In 

this mode, an application executes slowly because Blitz++ performs precondition and 

bounds checking on the array index. Under this condition, if an error or fault is detected 

by the system, the program halts and displays an error message. Figure 3-24 shows a 

sample precondition check for an array implementation. The rank of the vector influences 

the precondition to be checked. 



  74  

Another aspect that crosscuts the array implementation boundaries is 

setupStorage. The method is called to allocate memory for any new array. However, 

any missing length arguments will have their value taken from the last argument in the 

parameter list. For example, Array<int,3> A(32,64) will create a 32x64x64 

array, which is handled by the routine setupStorage. Both the BZPRECONDITION 

(lines 7 and 15 of Figure 3-24) and setupStorage (lines 9 and 17) can be individually 

considered as two different pieces of advice applied to the same pointcut (i.e., the former 

as before advice and the latter as after advice). 

Figure 3-25 presents the corresponding aspect specification for the crosscutting 

concern identified in Figure 3-24. This allows the separation of crosscutting concerns 

from the base code (Figure 3-24) and encapsulates them as aspects (Figure 3-25) to be 

woven using a low-level translator and weaver.  

The BZPRECONDITION statement (line 4 in Figure 3-25) and the 

setupStorage statement (line 7 in Figure 3-25) form part of the before and the 

after advice. The pointcut ArrayConstructor refers to execution of all Array 

constructors defined in any Array type (denoted by the wildcard *). However, if it is 

desired to match only arrays of type Array<int>, more selective pointcuts can be 

used. The function call thisJoinPoint.getArgs().length will return the 

length of the parameter list in the Array constructor. 
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1.  template<typename T_expr>  
2.    _bz_explicit Array (_bz_ArrayExpr<T_expr> expr); 
 
3.  Array(int length0, int length1,  
4.        GeneralArrayStorage<N_rank> storage = GeneralArrayStorage<N_rank>()) 
5.   : storage_(storage) 
6.   { 
7.     BZPRECONDITION(N_rank >= 2);  
8.     // implementation code omitted 
9.     setupStorage(1); 
10.   } 
11.   Array(int length0, int length1, int length2, 
12.        GeneralArrayStorage<N_rank> storage = GeneralArrayStorage<N_rank>()) 
13.   : storage_(storage) 
14.   { 
15.     BZPRECONDITION(N_rank >= 3); 
16.     // implementation code omitted  
17.     setupStorage(2); 
18.   } 

Figure 3-24- Precondition check and setupStorage in Blitz++ array implementation 

 

 

1. aspect InsertBZPreCon_MemAllocation { 

2.  pointcut ArrayConstructor(): execution(Array<*>::Array(..)); 
 

3.  before(): ArrayConstructor() { 
4.     BZPRECONDITION(N_rank  >= thisJoinPoint.getArgs().length());     

5.  } 

6.  after(): ArrayConstructor() { 

7.     setupStorage(thisJoinPoint.getArgs().length()-1); 

8.  } 

9. } 

Figure 3-25- Aspect specification for precondition and memory allocation in templates 

 

 Redundant Assertion Checking: Another crosscutting feature present in Blitz++ 

is assertion checking, which is used to evaluate the size or range of array instances. To 

detect errors in ranges, each array allocation makes an implicit call to 

assertInRange, which checks the lower and upper bounds of an array instance. 

This particular assertion is defined in all array template specifications, according 

to a general pattern as shown in Figure 3-26 (e.g., assertInRange in lines 3 and 7). 

However, note that the number of index parameters passed to the assertInRange 

routine implicitly depends on the size of the TinyVector. For example, as presented in 
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Figure 3-26, to allocate a TinyVector of size 1 requires only one parameter (i.e., 

index[0]) to be passed to assertInRange. Similarly, for a different allocation size 

of N, the range will be checked on index[0], index[1], ... ,index[N-1]. This kind of 

assertion is repeated 46 times in array-impl.h and is context-dependent on the size of each 

template container.  

1. template<int N_rank2> T_numtype operator()  
2.                      (TinyVector<int,1> index) const { 
3.     assertInRange(index[0]); 
4.     return data_[index[0] * stride_[0]]; 
5. } 
6. T_numtype operator() (TinyVector<int,2> index) const { 
7.     assertInRange(index[0], index[1]);  
8.     return data_[index[0] * stride_[0] +  index[1] * stride_[1]]; 
9. }  

Figure 3-26- Redundant assertion check on base template specification 

 

 

 

To avoid the crosscutting assertion checking in every definition of an array 

implementation, the aspect specification (as defined in Figure 3-27) will weave this 

concern into the template code. The operator pointcut refers to all operator methods in 

the array implementation class. The getParamList special construct (line 7 of Figure 

3-27) returns the list of index parameters for each call to assertInRange. 

1. aspect AssertInRange { 
2.  

3.   pointcut operator (): 
4.    execution(Array<*>::operator()(..)); 

5.  

6.   before(): operator() { 
7.     assertInRange(thisJoinPoint.getParamList());  

8.   } 

9. } 

Figure 3-27- Aspect specification for redundant assertion checks 
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Crosscutting Generic Functions: This subsection discusses the combination of 

AOP with other generative programming techniques [Czarnecki and Eisenecker, 2000]. 

In Blitz++, templates such as binary and unary operations for arrays and vectors are 

synthesized from a code generator implemented in several C++ routines. For 

consideration in this section, attention is focused on a specific set of unary vector 

(mathematical) operations in a template specification, which are generated to the 

vecuops.cc source file in the Blitz++ library containing approximately 12K SLOCs. Most 

of these mathematical operations (e.g., log, sqrt, sin, floor, fmod) have the same 

syntactic structure and can be specified concisely in the form of a pattern. An analysis of 

the generation process revealed that the entire template specification is essentially a 

cross-product between the set of defined mathematical operations (λ) and a base template 

(β) that represents the general pattern structure. As observed, the set of mathematical 

functions crosscut the entire unary vector general pattern. 

If λ1, λ2,...λn represent the set of mathematical operations (e.g., log, sqrt, sin) 

that crosscut the partial base template structure β (whole of Figure 3-28), then the code 

generated as the cross-product of λ and β can be represented as λ1β + λ2β +... + λnβ. The 

partial string identifier OPERATION (highlighted in bold in Figure 3-28) identifies the 

locations in the partial base template structure where the mathematical operations must be 

woven to generate the whole template structure (i.e., ∑ λ x β = 12k SLOCs). The concept 

here is somewhat different than standard AOP practice and more analogous to generative 

programming, but the idea of a cross-product between a set of mathematical operations 

and a base pattern is germane to the overall process of template weaving. Although this 

example is based on vector operations using mathematical functions, similar situations 
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(e.g., operations on Blitz++ arrays) exist in several other generated template 

specifications in the Blitz++ library. 

1. template<class P_numtype1> 
2. inline _bz_VecExpr   <_bz_VecExprUnaryOp <VectorIterConst<P_numtype1>, 
3.                       _bz_OPERATION<P_numtype1>>> 
4.  
5. OPERATION(Vector<P_numtype1>& d1)  
6. { 
7.   typedef bz_VecExprUnaryOp <VectorIterConst<P_numtype1>,    
8.                               _bz_OPERATION<P_numtype1>> T_expr;  
9.   return _bz_VecExpr <T_expr> (T_expr (d1.begin())); 
10. } 

Figure 3-28- Subset of base pattern used to generate the vector operation template 

 

The transformation rule describing the weaving of the mathematical functions 

with the base pattern is shown in Figure 3-29. The first line of the rule identifies the 

programming language (base domain) of the transformed source, which is C++ in 

Blitz++. Lines 3-8 use patterns for matching a syntax tree with a specified structure. The 

rule as shown in Line 11 describes a directed pair of corresponding syntax trees. The 

right-hand side of the rule specification uses an external function (i.e., 

generate_template_code in Line 27) to generate code. The first parameter to this 

external function is a template definition (β). The second and third parameters are the two 

annotated markers in the source AST that need to be replaced with the enumerated 

mathematical operations. The fourth and subsequent parameters are the set of generic 

mathematical operations (e.g., log, sin, sqrt) to be woven into the base pattern during 

code generation. Using the above rule specification and the base pattern as shown in 

Listing 6, nearly 12K source lines of code are generated which resembles the entire set of 

unary mathematical operations present in the Blitz++ library. 
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1   default base domain Cpp. 
2  
3   pattern aspect_op():    identifier = "OPERATION". 
4   pattern aspect_bz_op(): identifier = "_bz_OPERATION".   
5  
6   pattern op1(): identifier = "log". 
7   pattern op2(): identifier = "sin". 
8   pattern op3(): identifier = "sqrt". 
9   ... 
10    
11   rule generate_vec_template (td:template_declaration):  
12       declaration_seq -> declaration_seq 
13       = 
14   td -> generate_template_code (td, aspect_op(),     
15      aspect_bz_op(), op1(), op2(), op3(),...) 

Figure 3-29- Rules used to generate mathematical operations using a base template 

definition 

 

 

In the following section we analyze a popular scientific computing library, 

namely, High Performance Linpack (HPL) Benchmark [Petitet et al., 2004] and discuss 

how program transformation techniques can improve the modularity and construction 

effort of such libraries. 

 

3.3.2 Specializing HPL using Program Transformation 

Given the abundance of legacy code available in the scientific computing domain, 

there have been several constructive efforts made within the software engineering 

community to reduce the cost of development and the life-cycle maintenance of such 

systems. This section discusses how software product line architecture can be adopted 

and generative component engineering [Czarnecki and Eisenecker, 2000] can be applied 

during the development and maintenance of scientific computing libraries. In particular, 

we investigate a well-known scientific computing library - High Performance Linpack 

Benchmark [Petitet et al., 2004], and demonstrate how specialization of HPL for a given 
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architecture can improve its comprehensibility, reduce its memory footprint and thereby 

improve its overall performance, portability and maintenance costs. 

HPL is a software package that solves a random dense linear system (LU 

factorization) on distributed-memory architectures [Petitet et al., 2004]. The HPL 

software package requires the availability of an implementation of either the Basic Linear 

Algebra Subprograms (BLAS) [Dongarra, 2002] or the Vector Signal Image Processing 

Library (VSIPL, http://www.vsipl.org/). Machine-specific as well as generic 

implementations of the BLAS and VSIPL are available for a large variety of systems. 

Furthermore, BLAS can be categorized into FBLAS (a FORTRAN implementation of 

BLAS) or CBLAS (a C implementation of BLAS) [Dongarra, 2002]. Depending on the 

machine architecture and the availability of the type of BLAS (either FBLAS or CBLAS) 

or VSIPL, the software package mostly relies on preprocessor directives to make specific 

calls to appropriate linear algebra subroutines.  

A mechanism that can automatically specialize (i.e., deconstruct and reconstruct) 

the library based on the underlying machine architecture and the availability of the type 

of linear algebra package can greatly reduce the lines of code in HPL, thereby improve its 

comprehensibility and reduce its overall memory footprint. DMS is used as the 

underlying transformation engine to achieve this goal.  

The current macro-based implementation of HPL showing its dependence on the 

specific linear algebra library is presented in Figure 3-30. The figure shows a specific 

code snippet of one of the BLAS libraries that uses preprocessor directives to make 

appropriate calls to BLAS or VSIPL subroutines. 
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1. #ifdef HPL_CALL_CBLAS 

2.     cblas_dgemm( ORDER, TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, 

      BETA, C, LDC ); 

3. #endif 

4. #ifdef HPL_CALL_VSIPL 

5.     if( ORDER == HplColumnMajor ) 

6.     { 

7.          HPL_dgemm0( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,  

8.                      BETA, C, LDC ); 

9.     } 

10.     else 

11.     { 

12.          HPL_dgemm0( TRANSB, TRANSA, N, M, K, ALPHA, B, LDB, A, LDA,  

13.                      BETA,C, LDC ); 

14.     } 

15. #endif 

16. #ifdef HPL_CALL_FBLAS 

17.      double          alpha = ALPHA, beta = BETA; 

18. #ifdef StringSunStyle 

19. #ifdef HPL_USE_F77_INTEGER_DEF 

20.      F77_INTEGER     IONE = 1; 

21. #else 

22.      int             IONE = 1; 

23. #endif 

24. ... 

Figure 3-30- Preprocessor directives in a HPL software package 

 

The various preprocessor directives that conditionally check for the specific type 

of linear algebra subroutine make the code increasingly difficult to maintain. Any new 

functionality that needs to be added later on must include such macro-based conditional 

checks. This significantly increases the overall size of the software although a 

considerable part of it is never processed. Therefore, a technique than can automatically 

specialize the library depending on the available architecture is better suited for future 

maintenance. In addition, such specialization reduces the overall size of the library 

(Figure 3-33) that may lead to better understanding of the core functionalities of the 

software. Moreover, a smaller memory footprint can also result in general improvement 

in performance of HPL (Figure 3-34).  
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Figure 3-31- Specialization overview of HPL software package 

 

Figure 3-31 provides an overview of the specialization technique applied to HPL. 

Step one denotes the deconstruction process that removes all preprocessor directives (i.e., 

relating to the type of linear algebra subroutine) from the existing HPL package. The 

resultant HPL core is then specialized (i.e., reconstructed) depending on the underlying 

hardware and software architecture. This produces a family of HPL packages (i.e., a 

software product line) with appropriate calls to specific linear algebra subroutines. 

In order to realize this goal, the program transformation rule as shown in Figure 

3-32 serves as the initial solution.  
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1.  external pattern remove_macro(tran_unit:translation_unit,id:identifier): 

2.            translation_unit = 'remove_macro' in domain Cpp~ISO14882c1998.   

 

3.  external pattern add_macro(tran_unit:translation_unit,id:identifier): 

4.            translation_unit = 'add_macro' in domain Cpp~ISO14882c1998.   

 

5.  pattern FBLAS(): identifier = "HPL_CALL_FBLAS".  

6.  pattern CBLAS(): identifier = "HPL_CALL_CBLAS".  

7.  pattern VSIPL(): identifier = "HPL_CALL_VSIPL".  

 

8.  rule del_cblas(t_u: translation_unit): translation_unit -> translation_unit 

9.  = t_u -> remove_macro(t_u,CBLAS()) 

10. if tran_unit ~= remove_macro(t_u,CBLAS()).    

 

11. rule del_vsip(t_u: translation_unit): translation_unit -> translation_unit 

12.  = t_u -> remove_macro(t_u,VSIPL()) 

13. if t_u ~= remove_macro(t_u,VSIPL()).    

 

14. rule del_fblas(t_u: translation_unit): translation_unit -> translation_unit 

15.  = t_u -> remove_macro(t_u,FBLAS()) 

16. if t_u ~= remove_macro(t_u,FBLAS()).    

 

17. rule add_cblas(t_u: translation_unit): translation_unit -> translation_unit 

18.  = t_u -> add_macro(t_u,CBLAS()) 

19. if t_u ~= add_macro(t_u,CBLAS()).    

 

20. rule add_vsip(t_u: translation_unit): translation_unit -> translation_unit 

21.  = t_u -> add_macro(t_u,VSIPL()) 

22. if t_u ~= add_macro(t_u,VSIPL()).    

 

23. rule add_fblas(t_u: translation_unit): translation_unit -> translation_unit 

24.  = t_u -> add_macro(t_u,FBLAS()) 

25. if t_u ~= add_macro(t_u,FBLAS()).    

 

Figure 3-32- Transformation rule for specializing macro definitions in HPL 

 

The transformation uses two external patterns (remove_macro and 

add_macro) to substitute appropriate preprocessor directives (i.e., 

HPL_CALL_FBLAS, HPL_CALL_CBLAS or HPL_CALL_VSIPL) from the HPL 

software package. The external patterns are implemented as PARLANSE functions and 

are shown in Appendix F. Step one involves the execution of the rules del_cblas, 

del_fblas and del_vsipl and step two involves the execution of the architecture-

specific rule (i.e., either of add_cblas or add_fblas or add_vsipl). The rules 

are subsequently processed by DMS to achieve the desired specialization. 
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Figure 3-33 shows the overall size of the HPL BLAS library before and after 

specialization with CBLAS. The CBLAS version HPL comparatively contains very few 

lines of code compared to the original version. 

Size of HPL BLAS (before) Size of HPL BLAS (after) 

  Number of lines of code:               1719 

  Number of directive lines:              390 

  Number of empty lines:                  172 

  Number of comment lines:              731 

  Number of empty comment lines:   327 

  Number of lines of code:                 40 

  Number of directive lines:               50 

  Number of empty lines:                   10 

  Number of comment lines:             731 

  Number of empty comment lines:  327 

   Total number of lines:                   3339   Total number of lines:                   1158 

Figure 3-33- Comparing size of HPL BLAS library before and after specialization 

 

Figure-3-34 shows the time analysis and performance analysis graphs between 

HPL-ALL and HPL-CBLAS for a fixed block size of 112, row-major process mapping of 

4x8 (PxQ) and variable matrix dimension of 10000 to 60000 (NxN) square matrix. It may 

be noted that HPL-CBLAS is a specialized version of HPL that only contains calls to the 

HPL-CBLAS linear algebra package. 

From the graph shown in Figure 3-34, it is observed that for small matrix 

dimensions (10000 – 20000), HPL-CBLAS gives an improved performance over HPL-

ALL. However, as the dimension increases, the performance eventually evens out. The 

increased performance for HPL-CBLAS for small matrix dimensions may be attributed to 

the reduced complexity of the code due to removal of preprocessor directives from the 

base HPL package. This allows the compiler (preprocessor) and the runtime system to 

process fewer tasks (conditional checks) that results in an overall increase of initial 
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performance. Obviously as the matrix size increases, these gains are weighted out as 

compared to other tasks that lead to both versions performing similarly.  
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Figure 3-34- Time and performance analysis between HPL-ALL vs. HPL-CBLAS 

 

 Although the performance increase is a beneficial side-effect, the main advantage 

of HPL specialization is the improved comprehensibility of the software package (i.e., 
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better understanding of the complex scientific library). In addition, the reduced size of the 

library may make it easier to maintain and evolve the software package. 

 

3.4 Related Work 

It is commonly known within the AOSD community that aspect weaving can be 

performed using a general transformation framework for a specific programming 

language. This observation was first made by Fradet and Südholt as an early position 

paper [Fradet and Südholt, 1998]. In similar work, a detailed description of a weaver for a 

declarative language was provided by Lämmel [Lämmel, 1999], which used functional 

meta-programs to weave aspects. The ideas described in this chapter are not focused on 

foundations of transformation systems, but rather the scalability to which legacy 

languages can be supported by existing transformation engines. 

Several researchers have contributed valuable results in the area of language 

extension frameworks. As an example, the Jakarta Tool Suite (JTS) contains the basic 

tools to support the addition of new programming features to Java [Batory et al., 1998]. 

JTS assists in the construction of new pre-processors for DSLs that are transformed into 

Java. Another tool, called JastAdd, is a weaver and compiler construction system for Java 

based on AST transformation using JavaCC [Hedin and Magnusson, 2003]. Although all 

of these tools have advanced technologies for extension and analysis, these efforts are 

still bound to a specific language (i.e., Java). In the GENOA system, Devanbu has 

observed that many program analysis tools offer a fixed-point solution such that their 

internal structure is unusable in other similar contexts. For example, the parser, type 

checker, and parse-tree analysis algorithms for a C++ metrics tool are often not reused in 
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other C++ static analysis tools [Devanbu, 1999]. GENOA claims to have support for re-

targetable front-ends, but it is not evident that GENOA provides a diverse set of 

commercial-grade parsers to realize this claim. 

At the AOSD web site (http://www.aosd.net/), several weaver research prototypes 

are described for various languages. Aside from AspectJ [Kiczales et al., 2001], perhaps 

the most mature of these is AspectC++ [Spinczyk et al., 2002]. As noted in the 

introduction of Section 3.2, a discussion of templates and aspects in AspectC++ within 

the context of generative programming is discussed in [Lohmann et al., 2004]. The focus 

of the AspectC++ work is on the interesting notion of incorporating parametric 

polymorphism into the bodies of advice. In contrast, the focus of C++ template weaving 

is a deeper discussion of the complimentary idea of weaving crosscutting features into the 

implementation of template libraries.  

 In addition to AspectJ and AspectC++, the following weaver prototypes have 

been implemented and available for download: 

• Apostle for Smalltalk [Apostle, 2008] 

• JBoss-AOP: Java based AOP for the JBoss application server [JBoss, 2008] 

• PostSharp for Microsoft .NET [PostSharp, 2008] 

• AspectR for Ruby [AspectR, 2008] 

There are numerous efforts that support construction of aspect-specific weavers 

for a specific programming language. The capabilities offered by these tools and 

frameworks permit new aspect languages to be developed to extend a specific base 

programming language. An aspect-specific framework is described in [Constantinides et 

al., 2002], which is concerned primarily with issues of concurrent programming (e.g., 
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synchronization, scheduling). Associated with the goals of the concurrency framework, 

the concept of composing multiple aspect-specific languages is explored in [Brichau, 

2002]. Related to this aspect-specific language area, the XAspects effort provides a 

capability for exploration of new domain-specific aspect languages (DSALs) [Shonle et 

al., 2003]. The XAspects work, however, also is limited to Java development. 

In Chapter 2, we discussed the work of several researchers who have identified 

the benefits of language-independent aspect weaving and applicable to modern 

programming languages within the .Net framework. Although similar to intent to our 

goals, the approach described in this research is applicable toward large legacy systems 

that were developed prior to the existence of .Net.   

Within the scientific computing domain, ROSE provides optimizations using 

source-to-source transformation of ASTs for C++ applications [Veldhuizen and Dennis 

Gannon, 1998]. The transformations are expressed using a DSL [Schordan and Quinlan, 

2003]. The type of transformations performed by ROSE are focused solely on 

optimization issues of scientific libraries and are not applicable to the kinds of 

transformations we advocate in this paper to improve the modularization of crosscutting 

concerns in scientific code bases. Another interesting notion of crosscutting concerns that 

may apply within the scientific computing domain is to identify parallelism within blocks 

of sequential code. In [Chalabine and Kessler, 2006], Chalabine and Kessler have 

suggested seven different forms of interdependent concerns that are necessary to 

introduce parallelism within sequential programs. In addition to Blitz++ and HPL, future 

work will also explore the idea of improving the modularity and comprehensibility of 
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other scientific libraries like POOMA [Reynders et al., 1996] and MTL [Siek and 

Lumsdaine, 1998]. 

 

3.5 Limitations of Program Transformation Engines 

This chapter showed the benefits of using program transformation engines (PTEs) 

in modularizing large software systems written in a variety of programming languages. 

Generally, the PTEs are used to construct language-specific aspect weavers and applied 

to software systems in both commercial and scientific domains. In addition to aspect 

weaver construction, certain specialization techniques could also be applied using PTEs 

to reduce the complexities of scientific libraries (e.g., HPL) that help to improve 

comprehensibility of such complex systems. Program transformation engines like DMS 

or ASF+SDF provide direct availability of scalable parsers and an underlying low-level 

transformation framework (e.g., term rewriting, RSL, PARLANSE and AST Interface) to 

modify the underlying source programs (i.e., by modifying the AST). This low-level 

transformation framework can form the basis of constructing aspect weavers.  

However, a PTE-based weaver construction process raises new challenges and 

faces inherent accidental complexities (Challenge C3); i.e., the rewrite rules used to 

modify base programs are difficult to compose, which makes it accessible to only 

language researchers and is generally hard to comprehend by average software 

developers. Moreover, the rewrite rules are often tied to the grammar of the source 

language (e.g., Object Pascal), which impedes reusability when this language changes 

(Challenge C4). In addition, the entire weaver is rendered unusable if one switches to a 

new transformation engine during weaver evolution. Furthermore, to provide advanced 
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aspect weaving capabilities (like that of AspectJ), the underlying rewrite rules can 

become significantly complex. For example, to provide reflective capabilities like 

thisJoinPoint or to perform signature matching with wildcards, more complicated 

transformation rules are required. Such rules generally use exit functions (written in 

PARLANSE) to do static analysis on the underlying AST. This requires a thorough 

understanding of the various term rewriting semantics specific to a particular PTE. Thus, 

in order to use a tool like DMS to construct aspect weavers requires knowledge of the 

base language grammar, and of the core machinery provided by DMS. These additional 

challenges make program transformation systems typically accessible only to language 

researchers with less penetration in mainstream software development. To summarize, 

these limitations are listed as follows: 

• The rewrite rules used to modify base programs are difficult to compose, which 

makes it accessible to only language researchers (accidental complexities) 

• The transformation rules are tied to the grammar of a specific language (language-

specific) 

• The entire weaver is rendered unusable if the base transformation engine is 

replaced with another one (interoperability problem) 

• The PTE may be proprietary, i.e., may not be available for use by all desired 

parties (e.g., DMS). 

Therefore, although program transformation engines (as illustrated in this chapter) 

provide solutions to Challenges C1 and C2, they fail to provide a reasonable solution to 

challenges like C3 and C4 (please refer to all the challenges C1 - C4 in Chapter 1). 
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To eliminate some of the accidental complexities associated with PTEs, but still 

leverage the power of such systems, the next chapter provides a generic approach towards 

constructing aspect weavers for GPLs. Specifically, the approach uses a layered 

architecture and combines MDE with program transformation techniques to construct 

aspect weavers. The introduction of a model-driven front-end has several benefits in the 

overall context of providing a generic framework for aspect weaver construction, as 

discussed in detail in Chapter 4. 
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CHAPTER 4 

 

GENERIC ASPECT WEAVER FRAMEWORK BASED ON  

MODEL-DRIVEN PROGRAM TRANSFORMATION  

 

 

 

Aspect orientation has been used to improve modeling through modularization of 

crosscutting concerns that emerge at higher-levels of abstraction. A large body of 

research in this area of AOM has focused on new notations [Clarke and Baniassad, 2005] 

and weaving tools [Gray et al., 2003] that improve the ability to express a design within a 

model through composition of separate concerns. In this chapter, we examine the 

converse – that is, how modeling can improve aspect orientation. Specifically, this 

chapter makes a contribution by showing how MDE in combination with PTE is used to 

construct new aspect weavers for GPLs through models and transformations. The 

approach described in the chapter uses models to capture the essence of various AOP 

constructs at an abstract level. These models are then mapped to concrete weavers for 

GPLs through a combination of higher-order model transformation and lower-level 

program transformation rules. A generic extension to the framework further supports 

reusability of artifacts among weavers during the construction process. Aspect weavers 

for FORTRAN and Object Pascal were constructed to evaluate the framework, and their 

features were assessed against several case study applications. 
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4.1 Role of MDE in Aspect Weaver Construction 

The history of software development paradigms reveals that a new paradigm often 

has its genesis in programming languages and then moves up to design and analysis (e.g., 

structured programming preceded structured design and analysis, and object-oriented 

programming predated object-oriented design and modeling). This same progression can 

also be observed with respect to aspect orientation. Most of the early work on aspects was 

heavily concentrated on issues at the coding phase of the software lifecycle [Kiczales et 

al., 1997]. There were, however, initial efforts that focused on applying advanced 

separation of concerns in earlier phases of the software lifecycle. One of the first 

examples of this type of work was described by [Clarke et al., 1999], where a new way to 

carve a system into a set of elemental parts in order to support crosscutting concerns was 

applied at the design level. Since then, the area of AOM has grown to support several 

workshops [AOM, 2008; Models and Aspects, 2008], journal special issues [Object 

Technology, 2007; IJSEKE, 2006], and books [Clarke and Baniassad, 2005; Jacobson 

and Ng, 2005] on the topic. A broad range of contributions in this area have emerged, 

such as extensions to UML to support aspects [Ho et al., 2002; Stein et al., 2002], new 

notations for aspect-oriented design [France et al., 2004], model composition rules that 

define weaving semantics [Reddy et al., 2006], and tool support for aspect modeling 

[Gray et al., 2001; Cottenier et al., 2007, Lahire et al., 2007, Ubayashi et al., 2006]. 

Among all of the AOM contributions, a general observation is that it can be advantageous 

to apply aspects at levels closer to the problem space (e.g., analysis, design, and 

modeling), in addition to the solution space (e.g., implementation and coding). 
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Similar to AOM‟s focus on the benefits that aspects offer to modeling, we believe 

there are also advantages that MDE [Schmidt, 2006] can provide for aspect orientation. 

Specifically, in Chapter 3 of the dissertation, it was demonstrated how aspect weavers for 

various programming languages can be constructed using a program transformation 

approach. However, the use of a PTE raises new challenges that could be best realized by 

adopting a MDE based approach. In particular, MDE provides a capability to isolate the 

dependence on specific transformation engines by decoupling the source aspect language 

from the target PTE language and enabling the construction of aspect weavers from high-

level aspect specifications and metamodels. The decoupling ensures that the source 

aspect metamodel does not need to be altered even if one chooses to opt for a different 

target PTE, only a new PTE metamodel needs to be developed. Conversely, for every 

new language, one needs to add the appropriate metamodel extensions to the base aspect 

metamodel, but no change to the target metamodel is needed. Another advantage is that 

both the aspect language (source) and rules language (target) can evolve independent of 

each other. This leads to new features being added to the weaver with minimum cost on 

maintenance (i.e., only new mappings are added). The next sub-section summarizes all 

the challenges that were raised in Chapter 1 and provides a solution by means of the 

GenAWeave framework. 

 

4.1.1 Challenges and Overview of GenAWeave Framework 

There were four major challenges that were identified in Chapter 1 that led toward 

adoption of aspects for legacy languages. They were Challenge C1 – the parser 

construction problem, Challenge C2 – the weaver construction problem, Challenge C3 – 
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accidental complexities of transformation specifications and Challenge C4 – language-

independent generalization of transformation objectives.  
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Figure 4-1 – Overview of our model-driven aspect weaver framework 

 

Figure 4-1 represents the high-level architecture of the GenAWeave framework 

that offers solutions to these challenges. Each of these challenges (C1-C4) shown in the 

figure maps to a key process in the GenAWeave framework. For example, the adoption 

of DMS as a back-end transformation engine provides a solution to Challenge C1 (parser 

construction problem) through immediate availability of industrial-scale parsers. Through 

transformation rules and a rich API of transformation functions, DMS also offers a partial 

solution to Challenge C2 (weaver construction problem). However, the low-level 

representation of transformation rules introduces accidental complexities (Challenge C3) 

that make it difficult for programmers to specify aspects at this level. Moreover, the 
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rewrite rules are often tied to the grammar of the source language (e.g., Object Pascal), 

which impedes reusability when this language changes (Challenge C4).  

To address these challenges, a model-driven approach is used as part of the front-

end of the framework. In particular, a high-level aspect language that conforms to an 

aspect metamodel is used to raise the abstraction level of transformation rules. A model 

transformation library that translates higher-order aspect models to lower-order RSL 

models constitutes the heart of the framework. The generality of the framework is 

provided by a generic aspect metamodel that captures the commonalities of different 

aspect languages for various GPLs. The differences are captured using metamodel 

extensions. Moreover, the model transformation library provides additional generality 

that allows them to be reused among multiple aspect weavers. This generality is 

accomplished by enforcing the higher-order model transformation rules to conform to a 

generic interface (i.e., abstract structure). Thus, the MDE-based approach offers a 

solution to Challenge C3 (accidental complexities) and Challenge C4 (generalization of 

transformation objectives).  

 

4.1.2 Program Transformation Back-End 

It was first observed in [Fradet and Südholt, 1998] that aspect weaving can be 

performed using a general transformation framework. Aßmann and Ludwig provided an 

early demonstration of aspect weaving using graph rewriting [Aßmann and Ludwig, 

1999]. Most PTEs support a term-rewriting or graph-rewriting engine such that 

transformation rules can be constructed that realize the weaving of aspects into a source 

program [Baxter et al., 2004; Cordy et al., 2002; van den Brand et al., 2002; Visser, 
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2001]. In Chapter 3, we demonstrated how a PTE can be used to construct an aspect 

weaver for Object Pascal [Gray and Roychoudhury, 2004] and C++ templates 

[Roychoudhury et al., 2008].  

The technique from Chapter 3 uses program transformation rewrite rules to locate 

crosscutting concerns and weave aspects into source code. As shown in the right-hand 

side of Figure 4-1, the input source is initially tokenized (i.e., using a lexer) and parsed 

(i.e., using a parser) to produce an AST. The AST is then statically analyzed and concrete 

program transformation rules (i.e., RSL) are used to identify points of interest in the AST 

that represents a particular crosscutting concern. As mentioned earlier in Chapter 2, RSL 

typically consist of patterns, conditions, rules and rulesets that together perform the 

desired pattern matching on the source AST. Frequently, exit functions in the form of 

PARLANSE external functions [Baxter et al., 2004; Gray and Roychoudhury, 2004] are 

used in conjunction with RSL to perform complex pattern matching and weaving. After a 

desired match is found, the AST is accordingly modified (i.e., weaved) and prettyprinted 

to produce the transformed target program. 

  

4.1.3  Challenges of Program Transformation Engine Usage 

In spite of source code modification capabilities, PTEs are often difficult to use 

and require sufficient knowledge of the underlying parsing techniques, language 

grammar, and proprietary languages (e.g., RSL and PARLANSE). Thus, PTEs generally 

tend to operate at a level that is not appropriate for general software development. 

Moreover, to provide advanced aspect weaving capabilities (e.g., like that of AspectJ), 

the underlying rewrite rules can become significantly complex. For example, to provide 
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reflective capabilities like thisJoinPoint or to perform signature matching with 

wildcards, complex transformation rules are required. Such rules generally use exit 

functions to do static analysis on the underlying AST [Gray and Roychoudhury, 2004]. 

This requires a thorough understanding of the various term rewriting semantics specific 

to a particular PTE. Moreover, the rewrite rules are often tied to the grammar of the base 

language (as highlighted in bold in Figure 2-4), which impedes reusability when the base 

language changes. Thus, using a tool like DMS to construct aspect weavers requires 

knowledge of the base language grammar (concrete syntax), and of the core machinery 

provided by DMS. These additional complexities make program transformation systems 

typically accessible only to language researchers and hampers PTE penetration in 

mainstream software development. 

In our initial research in constructing an aspect weaver for Object Pascal using 

DMS [Gray and Roychoudhury, 2004], we observed these broader challenges and 

recognized that an appropriate front-end support alongside a systematic code generator 

was needed to bring program transformation systems closer to mainstream software 

development. The proper selection of an appropriate front-end and program 

transformation rule generator can hide the accidental complexities associated with PTEs. 

Nevertheless, aspect weavers can still leverage the power of PTEs to perform the 

complex code transformation. In the following section, we introduce our investigation 

into a model-driven front-end and discuss the primary benefits offered by MDE in the 

overall context of the framework. 
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4.2 Model-Driven Front-End 

There are many ways to design the front-end of an aspect language. In some 

examples, the language format is expressed in raw XML [Lafferty and Cahill, 2003], but 

in other cases it is expressed in a more sophisticated declarative language [Lämmel, 

1999]. Through our investigation in the design of various aspect languages, we realized 

that the declarative nature of expressing aspects (e.g., as popularized by pointcuts in 

AspectJ) has a common language-independent characteristic. For example, the concepts 

of join points, pointcuts and advice can be adapted to many aspect language designs 

within the same language paradigm. Metamodels can precisely capture these concepts 

and their relations. 

In addition, a model-driven front-end is well-suited for abstracting the various 

semantics associated with PTEs. MDE provides an abstraction layer that can be mapped 

down to program transformation rules. Combining the technical spaces of MDE and 

program transformation offers more possibilities than each considered separately. 

 

4.2.1 Metamodel for Front-End Aspect Language 

Figure 4-2 shows an excerpt of the abstract syntax of an aspect language in the 

form of a metamodel represented as a collection of three class diagrams. This metamodel 

illustrates the specification of Aspect Pascal, which is an aspect language we defined for 

Object Pascal. An aspect described in this language consists of Pointcuts and 

Advice. They together constitute the fundamental elements for defining an aspect-

oriented language (influenced by the asymmetric AspectJ style). As evident in Figure 4-2, 

an aspect can have multiple pointcuts and multiple advice.  
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Figure 4-2 – Subset of Aspect Pascal metamodel represented as a class diagram 

 

 

An Advice, defined as an abstract class in the metamodel, can be further 

categorized as BeforeAdvice, AfterAdvice or AroundAdvice. An advice can 

have advice parameters and an advice body (i.e., a list of statements). Every advice 

parameter has a type and a name associated with them and is used for passing the context 

information (e.g., passing the parameter type to pointcut expressions). Every advice 

statement conforms to the grammar of the base language. Because the back-end program 

transformation engine already has the parser/analyzer available for managing the base 

language, the body of the advice is typically delegated to the back-end for further 
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processing. Such late binding of an advice body reduces the complexity of the metamodel 

by not including every possible program construct that belongs to the base GPL. These 

program fragments are referenced in the front-end metamodel as OpaqueStatements 

(i.e., statements that are not handled by the front-end). In addition to 

OpaqueStatement, there are other special statements: loop statement and proceed 

statement. Proceed statement is generally used in bodies of around advice. An 

example of a loop statement is given in Section 4.5. 

Pointcuts consist of pointcut expressions, which can, for instance, be further 

expressed as call expressions, with expressions or execution expressions. Pointcut 

expressions form the key for pattern matching. All pointcut expressions are derived from 

the abstract Expression class. As seen in Figure 4-2, both the CallExpr and 

ExecExpr expressions are derived from Expression and both reference the type 

pattern FunctionOrProcSignature, which identifies the prototype declaration 

(i.e., signature) for a function or procedure defined in Object Pascal. This is particularly 

useful for pattern matching. Although call and exec may be the two most common 

forms of pointcut expressions, new expressions can be experimented with and derived 

from the base Expression class template. For example, Object Pascal allows the 

definition of with expressions that are used to pass the context information from parent 

to child objects. Other pointcut expressions available in the join point model of the base 

language can be similarly added to the metamodel of the front-end aspect language. 

Wildcards are also allowed and examples are given in Section 4.5. 

The pointcut expressions are translated to RSL patterns or rules that do the actual 

pattern matching on the source code. The front-end AOP layer is simply a façade to the 
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back-end program transformation engine. It helps to hide the accidental complexities 

associated with PTEs (Challenge C3) and also provides a platform to experiment with 

new AOP language constructs that can be suitably translated to back-end rewrite rules. 

The translation mechanism that generates the back-end RSL rules from the front-end 

aspect language is explained in detail in Section 4.3 and Section 4.4. 

 

4.2.2 Implementing the Front-End Aspect Language with AMMA 

 

As explained in Chapter 2, AMMA [Kurtev et al., 2006] is a suite of MDE tools 

that can be used to implement the aspect language described in Figure 4-2. The first step 

in creating a front-end is to create a metamodel that defines the abstract syntax of the 

aspect language. The KM3 [Jouault and Bézivin, 2006] language within AMMA may be 

used for this purpose. Although other MDE tools can be used to define the metamodel, 

we chose KM3 because it has the added advantage of being independent of the concrete 

MDE technology (e.g., the Eclipse Modeling Framework – EMF, or OMG‟s Meta-Object 

Facility - MOF). In addition to technology independence, KM3 also provides a simple 

textual syntax that is well-suited for defining the metamodel described in Figure 4-2. The 

example in Figure 4-3 demonstrates how KM3 is used to define the Aspect Pascal 

metamodel. 
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class AspectPascal extends LocatedElement { 

   attribute name : String; 

   reference domain container : Domain; 

   reference pointcuts[1-*] container : Pointcut oppositeOf aspect; 

   reference advice[1-*] container : Advice oppositeOf aspect; 

} 

class Pointcut extends Element { 

   attribute name : String; 

   reference aspect : AspectPascal oppositeOf pointcut; 

   reference paramdefs[*] container : ParameterDef; 

   reference exprs[1-*] container : Expression oppositeOf pointcut; 

} 

abstract class Advice extends LocatedElement { 

   reference aspect : AspectPascal oppositeOf advice; 

   reference pointcut : Pointcut; 

   reference paramdefs[*] container : ParameterDef; 

   reference stmts[1-*] container : Statement; 

} 

 

 

Figure 4-3 - KM3 specification (snippet) for Aspect Pascal 

 

 

Figure 4-3 shows a snippet of the KM3 code used to implement the metamodel 

specification introduced in Figure 4-2. The AspectPascal class contains references to 

other classes; namely, the core elements Pointcut and Advice. The oppositeOf 

construct is used to maintain reverse navigational links for efficient traversal purposes 

required during model transformation (Section 4.3). Thus, instead of representing the 

model as a tree, the oppositeOf reference helps to maintain the metamodel as a graph 

that can be traversed in the opposite direction, if necessary. Generally, advice and 

pointcuts can be traversed in both directions (i.e., from the parent AspectPascal 

class to the child Pointcut or Advice class, and vice versa). Similarly, pointcut 

exprs can be traversed in the reverse direction. The complete KM3 specification for the 

Aspect Pascal metamodel is available in Appendix A. 

In addition to the abstract syntax shown as a metamodel in KM3, the concrete 

syntax of the aspect language is specified in a separate model. To express this model, 
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AMMA offers TCS [Jouault et al., 2006], which uses a grammar-like notation to describe 

the syntax of a language. Figure 4-4 shows an excerpt of the Aspect Pascal concrete 

syntax defined in TCS. This figure illustrates how the concrete syntax of different 

metamodel elements (e.g., Aspects, Pointcuts, and Advice) is expressed in TCS. In TCS, 

every class represented in the KM3 specification has its corresponding template 

definition. It also introduces other terminal tokens like separators, brackets and 

semicolons that are required to describe the concrete syntax of the aspect language but 

are not captured in the abstract syntax of the metamodel. Thus, TCS gives the structure of 

the source aspect language. In addition, context information can also be passed and stored 

in the symbol table for further analysis. The complete TCS specification for the Aspect 

Pascal metamodel is shown in Appendix A. 

 
Template AspectPascal main 

 :  "aspect" name "{" pointcut advice "}" 

 ; 

template Pointcut context addToContext 

 :  "pointcut" name "(" paramdefs{separator = ","} ")" 

    ":" exprs {separator = "&&"} ";" 

 ; 

template Advice abstract; 

 

template BeforeAdvice 

 :  "before" "(" paramdefs {separator = ","} ")" ":" 

         ...   

      ; 

template AfterAdvice 

 :  "after"  "(" paramdefs {separator = ","} ")" ":" 

          ...   

      ; 

 

Figure 4-4 - TCS specification (snippet) for Aspect Pascal 

 

 

The front-end would be incomplete without appropriate code generators that 

transform the front-end aspect language to its corresponding target language. In our 
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model-driven GenAWeave framework, the back-end is the transformation language of 

the PTE; specifically, the RSL. The following section demonstrates how RSL 

transformation rules are generated from the front-end aspect specification. 

 

4.3 Model Transformation  

This section describes the model transformations rules that appropriately translate 

a given aspect specification to its corresponding rule specification. Both the source (high-

level aspect language) and target (low-level RSL) languages are defined using a 

metamodel based approach. The translated RSL rules are subsequently processed by 

DMS to perform the actual weaving for a source program written in a specified GPL. The 

following sub-sections discuss in detail the model transformation approach and begin 

with an introduction of the program transformation rule generator. 

 

4.3.1 Program Transformation Rule Generator 

 

The program transformation rule generator (shown as item 2 in Figure1-2 and also 

shown as Generic Model Transform Library in Figure 4-1) represents the core of the 

framework and embodies a higher-order transformation (i.e., a model transformation rule 

is used to generate program transformation rules). As mentioned earlier, the front-end 

aspect language is only a façade to the back-end PTE and all pointcut declarations and 

advice code present in the source aspect language are eventually translated to target RSL 

code that consists of RSL patterns, external conditions and rewrite rules. Therefore, the 

goal of the program transformation rule generator is to synthesize transformation engine 
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specific weaving code (RSL) from the front-end representation defined by a higher-order 

aspect specification. 

 

4.3.2 Target Metamodel for RSL 

 

In order to realize a systematic translation from a high-level aspect language to a 

low-level transformation language, it is necessary to define a metamodel for the back-end 

program transformation engine. The target RSL metamodel serves two basic purposes. 

Firstly, it allows experimenting with new aspect languages (e.g., Aspect Ruby or Aspect 

FORTRAN) and new aspect constructs (e.g., loops) without changing the model for the 

back-end PTE. In this case, the commonalities of different aspect languages for various 

GPLs can be captured in a generic aspect metamodel. The differences can be captured 

using metamodel extensions; however, no change is required for the target metamodel. 

This helps to improve the generality of the framework.  

Secondly, instead of an ad hoc technique, a metamodel allows more sophisticated 

translations where complex pointcut expressions and join point shadows (areas in the 

source where join points may emerge) from the front-end aspect language could be 

correspondingly mapped to patterns and rules in the back-end RSL language. The 

presence of a target metamodel provides an internal representation of the back-end 

transformation language (RSL) that can be used to validate the generated lower-order 

transforms. For future experimental purposes, the presence of a RSL metamodel may also 

permit bidirectional mappings (currently, the mapping is unidirectional, from Aspect-to-

RSL). In such a scenario, given a generated RSL program as input, the corresponding 
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aspect specification for a different GPL may be recovered, provided a mapping exists 

between RSL and the GPL.  

To capture the essential concepts of RSL, an RSL metamodel has been created in 

KM3, illustrated by a class diagram in Figure 4-5. As noted earlier, RSL consists of 

elements like patterns, rules, conditions, and rule-sets, which are captured in this 

metamodel. The complete KM3 and TCS specification for the RSL metamodel is 

available in Appendix C. It should be noted that the target metamodel defines the essence 

(i.e., concepts and relations) of a domain without concern for semantics. In our case, the 

semantics of the various components of the source aspect metamodel are captured in the 

mapping to RSL defined as an ATL transformation. ATL is the model transformation 

language of AMMA [Jouault and Kurtev, 2005]. The semantics of the aspect language is 

thus captured in terms of the semantics of RSL, which is in turn processed by DMS. Case 

studies are presented in Section 4.5, where complete scenarios describing this model to 

model transformation are explained with concrete examples. 
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Figure 4-5 - Subset of the RSL metamodel (as a class diagram) 
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The following section describes the model transformation technique that uses 

ATL as the core artifact to transform the source aspect model to the target RSL model. 

 

4.3.3 Model Transformation using ATL 

 

Given the definition of the source and target metamodels, it is possible to generate 

RSL program transformation rules from an aspect program using model transformations.  
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Figure 4-6 - Model transformation scenario for generating RSL rules from aspects 

 

Figure 4-6 explains the complete model transformation scenario in the 

GenAWeave framework. In this figure, M1, M2, and M3 are the three modeling levels in 

the Grammarware [Klint et al., 2005] and MDE technical spaces (TS). From the 

Grammarware TS, the front-end aspect source file is initially injected into a source aspect 

model using TCS. The aspect model is then transformed into a target RSL model using a 
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model transformation defined in ATL. This ATL transformation forms the core of the 

program transformation rule generation process. After translation, the generated RSL 

model belonging to the MDE TS is extracted (using TCS) into the target RSL program in 

the Grammarware TS. 

To modularize the RSL generation process, the framework defines a library of 

ATL transformations with each transformation corresponding to a primitive pointcut 

specification (e.g., call, execution). For a given aspect, the corresponding ATL 

transformation rule is automatically invoked depending on the pointcut specification used 

in the aspect. The higher-order ATL transformation generates the lower-order RSL 

transformation that eventually performs the aspect weaving. The collective set of all 

model transformation rules is assembled in a transformation library that implements the 

semantics of the source aspect language. 

Figure 4-7 depicts a snippet of a sample ATL transformation from the core 

transformation library. This particular transformation evaluates a call expression in the 

source aspect, and generates the corresponding RSL transformation rule. The ATL helper 

function EvalCallExpr is used for this purpose. The transformation maps individual 

elements from the source aspect metamodel to the target RSL metamodel. For example, 

Aspect Pascal model elements like advice (Line 10, Figure 4-7) and pointcuts (Line 11, 

Figure 4-7) are mapped to RSL elements like patterns, conditions and rules (i.e., RSL 

elements in Figure 4-5). Similarly, before advice statements (Line 25, Figure 4-7) from 

the source aspect language are mapped to RSL patterns. The relationships between the 

source aspect model elements to the target RSL model elements can be one-to-one, one-
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to-many, many-to-one or many-to-many. This depends on the type of pointcut expression 

used in the source aspect program.  

1. module AspectPascal2RSL; 

2. create OUT : RSL from IN : APascal; 

3. rule APascal2RSL { 

4.     from 

5.         s : APascal!APascal 

6.     to 

7.         t : RSL!RSL ( 

8.             dname <- 'ObjectPascal', 

9.             elems <- Sequence { 

10.                        s.advice, 

11.                        s.pointcut->collect(e | 

12.                           thisModule.EvalCallExpr(e) 

13.                        ), 

14.                       ... 

15.            }, 

16.            ruleset <- rs 

17.         ), 

18.       rs : RSL!RuleSet ( 

19.            name <- s.name, 

20.            rules <- s.pointcut->collect(e|e.name) 

21.         ) 

22. } 

23. rule BeforeAdvice2Pattern { 

24.     from 

25.         s : APascal!BeforeAdvice 

26.     to 

27.         t : RSL!Pattern ( 

28.             name  <- 'before_advice_stmt_list' 

29.             ptype <- 'statement_list', 

30.             ptext <-  spt 

31.         ), 

32.       spt : RSL!SimplePatternText ( 

33.             ptext <- s.stmts->iterate(...) 

34.         ) 

35. } 

-- [original code omitted for brevity] 

 

 

Figure 4-7 - ATL transformation (snippet) from Aspect Pascal to RSL 

 

 

It should be noted that the source aspect metamodel to describe these pointcut 

expressions is completely independent of the target RSL language. Additionally, the 

aspect metamodel is structurally and semantically similar to a traditional AOP language, 
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like AspectJ. This metamodel captures many of the essential concepts of AOP 

(influenced by the asymmetric AspectJ style) - join points, pointcuts and advice. The 

actual transformation on the source code is performed using RSL rules that are generated 

from the higher-order aspect language using ATL. These ATL transformations 

implement the semantics of the source aspect language and all corresponding mapping 

information from source to target are embedded in the ATL specifications. 

The generated RSL is not shown here because it is internal to the framework (i.e., 

users of the framework do not see any of the intermediate transformation rules); however, 

interested readers who want to view the generated artifacts may refer to the GenAWeave 

website [GenAWeave, 2008], which represents the project webpage for the framework 

and includes video demonstrations, papers, and all of the source. In addition to the 

website reference, the experimental case studies presented in Section 4.5 also serve as 

specific examples for describing the complete transformation scenario illustrated in this 

section. 

 

4.3.4 Remaining Challenges to be Addressed by the Framework 

 

The model-driven weaver generation framework presented in this section offers a 

solution to the challenge of using a program transformation engine to implement an 

aspect weaver. The previous sections provided a discussion of the key parts of the 

framework, including the front-end aspect language, the transformation rule generator 

and the back-end weaving engine. The context of the discussion was centered on the 

creation of a weaver for a single base language, such as Object Pascal, to address 

Challenge C3 (accidental complexities). However, an additional challenge remains. As 
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mentioned in the beginning of this chapter, a program written in RSL or any other term-

rewriting engine is typically tied to the grammar of the source program (i.e., the RSL 

examples presented in Chapter 3 have grammar productions appearing throughout the 

transformation rule). Moreover, there are variations in design from one aspect language 

to another, even if a common generic part is shared. Unless carefully designed, the front-

end, the core transformation libraries, and the back-end modules are rendered unusable 

when constructing a new weaver in another context (i.e., a new aspect language for a new 

base programming language). The goal of any extensible framework is to avoid 

constructing a single fixed-point solution (i.e., constructing each new weaver from 

scratch) after enough knowledge, time, and effort have been spent. The next section 

discusses how this framework was made more generic to support reuse in new contexts. 

Thus, instead of building a new weaver from scratch, the benefit from the experience 

gained in a previous construction can be reused and applied toward the construction of a 

new weaver for a different programming language. 

 

4.4 Extending to a Generic Framework 

Generalizing the framework presented in Section 4.3 to accommodate a broad 

range of GPLs is challenging due to the dissimilarities among various programming 

languages. Yet, many languages in the same paradigm (e.g., structured or object-oriented) 

may share common concepts at an abstract level such that parts of the framework can be 

reused. Unfortunately, most aspect weavers are built from scratch with little emphasis on 

reusing the existing knowledge or framework already available for constructing a weaver 

for a particular GPL.  
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In Section 2.2.1 of Chapter 2, several techniques toward language-independent 

legacy modernization were discussed. Section 2.2.2 presented a comparative study about 

the strengths and weaknesses of these techniques. From this comparative study, we 

realized that although the prevailing .Net/CLI based techniques serves well for modern 

programming languages, they fail to address legacy languages like FORTRAN, COBOL 

and Object Pascal due to their non-conformance with .Net specification. Moreover, such 

an approach would ignore all available artifacts that are already available for these 

languages. While investigating a generic aspect weaving framework, we understood these 

challenges and discovered a solution whereby the model-driven weaver framework uses 

the existing parsers of DMS, but extracts out the commonalities among weavers 

constructed for various GPLs. Although our approach does not automate all the tasks 

involved in creating an aspect weaver (i.e., making it language-independent), 

GenAWeave can considerably reduce the weaver construction effort by reusing the 

shared or common parts among different aspect weavers through abstract models and 

corresponding model transformations. 

Moreover, because DMS provides support for 23 different programming 

languages (including legacy languages like COBOL, FORTRAN, and C), a generic front-

end with a reusable code generator that translates our front-end aspect language to RSL 

can make use of all the parsers and analyzers that are already available within each of the 

language domains supported by DMS. In addition, we may also consider changing the 

back-end if another PTE supports other languages that we would like to use. The solution 

approach introduced in this section addresses the obstacles toward weaver construction 

enumerated in Challenge C4 (generalization of transformation objectives). 
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4.4.1 Support for a Generic Aspect Front-End 

The first step toward a generalized model-driven weaver framework is to design a 

generic aspect front-end that can be shared among various GPLs. If the AspectJ definition 

of an aspect is used, every language that is integrated into the framework must define the 

meaning of a join point model (JPM), pointcuts, and advice within the language context. 

Such a notion can be defined abstractly such that each new aspect language inherits and 

extends this common definition. As such, a full generic source model is not needed when 

the notion of join points is considered to occur within limited boundaries of a program 

(e.g., method execution, method invocation, memory allocation), which is a concept 

shared by most languages. An abstract join point model for the model-driven weaver 

framework only considers a small subset of concepts shared across most languages in a 

common paradigm. 

Reconsidering the Aspect Pascal metamodel of Figure 4-2, it can be observed that 

metamodel elements such as pointcut, advice, abstract expressions, and abstract 

statements are actually generic in the Aspect Pascal metamodel. Thus, instead of 

modeling these elements as part of the Aspect Pascal metamodel, they can be extracted to 

a common generic core. However, there may be differences in the concrete syntax of 

certain model elements. For example, concrete statements and expressions may vary from 

one GPL to another. In such cases, the differences can be captured in individual 

metamodel extensions [Barbero et al., 2007] and commonality can be shared using a 

general metamodel. To explain this concept, this section will summarize the construction 

of aspect weavers for two different GPLs (i.e., Object Pascal, and FORTRAN) using the 
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GenAWeave framework. The example shows how languages across different paradigms 

can even share AOP concepts through metamodel extension. 

Figure 4-8 shows the class diagram representing the new Aspect Pascal 

metamodel that extends from the core GAspect metamodel. The latter captures all of the 

essential concepts that are intrinsic to most aspect-oriented languages (influenced by the 

asymmetric AspectJ style). For example, the core model elements such as pointcuts and 

advice belong to GAspect. There are also abstract placeholders for expressions and 

statements in GAspect. Although the figure does not show a metamodel for JPM, a 

further enhancement in this direction could be made in the future. 

Every language-specific expression and statement must extend from these abstract 

definitions. For example, a concrete execution expression join point or a call 

expression join point for any Aspect-Oriented Language (AOL) must be derived from the 

abstract expression join point of GAspect. In Figure 4-8, the CallExpr expression 

and ExecExpr expression of Aspect Pascal inherits from FuncOrProcDefExpr 

(which itself is derived from the abstract Expression class) and references the 

FuncOrProcSignature type pattern. The type pattern captures the concrete syntax 

(i.e., signature) for expressing functions or procedures in Object Pascal and is dependent 

on the grammar of the base language. For every new language, the concrete syntax of the 

type pattern varies. The dotted rectangle in Figure 4-8 depicts all those points of 

variability that are specific to Aspect Pascal. 
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Figure 4-8 - Class Diagram (snippet) of Aspect Pascal extending from a common  

                        Generic Aspect metamodel 

 

Because most programming languages have some form of support for loops, we 

have introduced the notion of a loop execution join point in the generic 

metamodel. Concrete loop statements belonging to the base AOL must be derived from 

the abstract LoopStatement of GAspect. The Aspect Pascal metamodel shows 

support for while loop and for loop join points that are extended from the abstract 

loop execution join point present in GAspect. The concept of a loop 

execution join point is not present in AspectJ, but has been found to be useful 

for monitoring high-performance scientific applications [Harbulot and Gurd, 2005]. 
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Furthermore, a join point for capturing with expressions in Object Pascal is 

introduced in the Aspect Pascal metamodel. An example of a crosscutting concern based 

on a with expression join point is given in [Gray and Roychoudhury, 2004]. In a similar 

way, the entire join point model for an aspect-oriented language can be constructed by 

adding concrete extensions from the abstract GAspect metamodel. Moreover, the 

technique allows experimentation with new features (e.g., loop execution join 

point) to be added to an existing AOL. Such an addition is beneficial if the aspect 

language should evolve. The Aspect Pascal metamodel shown here is only a snippet of 

the original. The complete KM3 and TCS specification of Aspect Pascal is available in 

Appendix A. 

Figure 4-9 shows the corresponding metamodel for Aspect FORTRAN. Similar to 

Aspect Pascal, the Aspect FORTRAN metamodel is extended from the generic core 

GAspect. However, the points of variability (shown by the enclosed dotted rectangle) for 

this metamodel exist in their concrete syntax. In the case of Aspect FORTRAN, the 

call, exec and withincode expressions reference subroutine/function definitions 

unlike the procedure/function definitions in the Aspect Pascal metamodel. Moreover, the 

concrete function definitions for Aspect FORTRAN and Aspect Pascal are different due 

to the dissimilarity in their underlying grammar. The TCS specification in Figure 4-10 

shows this variability of concrete syntax for the two metamodels.  
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Figure 4-9 - Metamodel (snippet) of Aspect FORTRAN conforming to a common  

                        Generic Aspect metamodel 

 

 

 
1. template FuncDef 
2. :  "FUNCTION" name "(" paramdefs{separator = ","} ")" 
3. ; 
4. template SubDef 
5. :  "SUBROUTINE" name "(" paramdefs{separator = ","} ")" 
6. ; 

 
1. template FuncDef 
2. :  "function" (isDefined(classifier) ? classifier ".") 
3.     name "(" paramdefs{separator = ";"} ")" 
4. ; 
5. template ProcDef 
6. :  "procedure" (isDefined(classifier) ? classifier ".") 
7.     name "(" paramdefs{separator = ";"} ")" 
8. ; 

 

Figure 4-10 - TCS specification showing differences in concrete syntax for Aspect  

                          FORTRAN (top) and Aspect Pascal metamodel (bottom) 
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The top-half of Figure 4-10 shows the concrete syntax of function/subroutine 

definitions for Aspect FORTRAN. The bottom-half shows the corresponding concrete 

syntax for Aspect Pascal. All points of variation between the two metamodels are 

captured in their corresponding extended metamodel (dotted rectangle), but the 

commonality is captured in the generic aspect metamodel. The complete KM3 and TCS 

specification of Aspect FORTRAN is available in Appendix B. 

In addition, GAspect also captures certain program fragments belonging to a GPL 

that may not be analyzed or parsed by the front-end. Instead, these program fragments are 

delegated to the back-end PTE for parsing and analysis. Such fragments typically appear 

in the body of advice code and are referenced as OpaqueStatements. This 

considerably reduces the complexity of the aspect metamodel as several language 

constructs of the base language need not be parsed or analyzed by the front-end. Instead, 

the back-end PTE that already has the capability (parser/analyzer) to process the base 

language (Object Pascal / FORTRAN) can handle such program fragments. An example 

of using OpaqueStatement is shown in the experimental case study of Section 4.5. 

The construction of a generic aspect metamodel helps to generalize the 

commonalities among distinct aspect languages. Each common concept may be refined 

using language-specific metamodel extensions. Furthermore, an extension of GAspect 

may categorize commonalities within a paradigm that can be reused (e.g., a metamodel 

named Object-Oriented that extends GAspect with common OO concepts, which is then 

extended by concrete OO languages). This was one of the important lessons learned 

during the course of this research and can significantly improve the genericity of the 

metamodel.  
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4.4.2 Generalizing the Rule Generator Design 

 

The goal of the program transformation rule generator is to translate a given 

aspect to a corresponding program transformation rule (e.g., RSL). This role is handled 

by an assembly of transformation libraries written in ATL. In the context of a generic 

framework, it is desirable to reuse as much of the transformation library code as possible 

when constructing an aspect weaver for a new GPL. To realize this objective, the 

transformation libraries must follow a general guideline (similar to a generic API) that 

ensures maximum reusability. 

The guideline ensures that every transformation rule that captures the semantics 

of a particular weaving intent must conform to a generic interface. For example, an RSL 

rule that captures the semantics of a method invocation join point (i.e., to trap a particular 

method call and trigger advice) should conform to a generic method invocation interface 

that the back-end transformation engine expects. By conforming to this generic interface, 

model transformation libraries written for various GPLs share a generalized common 

pattern. For example, a method call join point for any GPL should conform to a generic 

method call interface named generic_advice_call, which accepts the following 

five named-parameters: program_root_, method_id_, proceed_call_, 

before_advice_ and after_advice_. The parameter types to 

generic_advice_call function are determined by the concrete syntax (grammar) 

of the base GPL. For example, for a FORTRAN 90 program, this generic function should 

be encoded as:  {name  type} 
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generic_advice_call  ( 

{ program_root_   Fortran90_program }, 

{ method_id_      Name}, 

{ proceed_        Name }, 

{ before_advice_  execution_part_construct_list }, 

{ after_advice_   execution_part_construct_list }, 

)  Fortran90_program 

 

One may note that although the types (shown in italics) are concrete, the interface 

is abstract. This generalization is necessary to address Challenge C4 and facilitate the 

ATL rule generator to program to a common interface that can be reused among various 

GPLs. At this point, one may recollect from Chapter 3 how RSLs or any term-rewrite 

rules are tied to the concrete syntax of the base programming language. The proceed_ 

is internally used to determine if the advice is an around advice that makes a call to 

proceed. Similarly, for an Object Pascal program, the generic_advice_call is 

encoded as follows: 

generic_advice_call  ( 

{ program_root_    ObjectPascal }, 

{ method_id_       IDENTIFIER}, 

{ proceed_         IDENTIFIER }, 

{ before_advice_   statement_list }, 

{ after_advice_    statement_list }, 

)  ObjectPascal 

 

For every join point in the AOP language model, a set of formal interfaces to 

which each corresponding ATL transformation must conform have been developed (i.e., 

there is a separate generic interface for method execution or loop execution 

join point). The generic interfaces not only enforce the code generators for different 

aspect weavers to adhere to a known abstract interface, but also considerably reduces the 

development time and effort to transfer knowledge from one rule generator to another 

(please see Section 4.5.4 for evidence that supports this claim). 
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Figure 4-11 and Figure 4-12 show comparative snippets of the model 

transformation rules (ATL specifications) for translating a method call join point written 

in Aspect Pascal or Aspect FORTRAN to a corresponding program transformation rule 

(RSL rewrite specification). Each of the ATL specifications (Figures 4-11 and 4-12) 

consist of several smaller ATL rules that together perform the actual transformation. For 

example, the rules AfterAdvice2Pattern, BeforeAdvice2Pattern and 

PointCutToExternalPattern (as shown in Figures 4-11 and 4-12) are used to 

construct the ATL specification for translating method call join point. However, this is 

only a subset; the complete ATL specification is available at Appendix D. The individual 

rules (e.g., AfterAdvice2Pattern, BeforeAdvice2Pattern) are fired 

whenever a corresponding model element (e.g., model elements like BeforeAdvice, 

AfterAdvice in the Aspect Pascal metamodel) in the source metamodel is reached.  

Both of these higher-order model transformation rules conform to an abstract 

structure (generic interface) that drives the ATL rule generator. As a direct benefit of 

forcing the ATL transformations to conform to a common structure or interface, the 

model transformation rules presented in Figures 4-11 and 4-12 appear distinctly similar. 

For example, all of the three rules (i.e., AfterAdvice2Pattern, 

BeforeAdvice2Pattern and PointCutToExternalPattern) have the same 

Left-Hand Side (LHS), where as the main difference lies in their concrete syntax (i.e., the 

grammar of the two languages).  
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rule BeforeAdvice2Pattern { 

 from 

  s : APascal!BeforeAdvice 

 to 

  t : RSL!Pattern ( 

   phead  <- ph, 

   ptoken <- 'statement_list', 

                   ptext  <- spt 

  ), 

  ph : RSL!PatternHead ( 

   name <- 'before_advice_stmt' 

  ), 

... 

} 

rule AfterAdvice2Pattern { 

 from 

  s : APascal!AfterAdvice 

 to 

  t : RSL!Pattern ( 

   phead  <- ph, 

   ptoken <- 'statement_list', 

                   ptext  <- spt 

  ), 

  ph : RSL!PatternHead ( 

   name <- 'after_advice_stmt' 

  ), 

            ... 

} 

lazy rule PointCutToExternalPattern { 

 from 

  s : APascal!Pointcut 

 to 

  t : RSL!ExternalPattern ( 

   dname  <- 'ObjectPascal', 

   eptext <- 'around_advice_call', 

   ptoken <- 'ObjectPascal', 

   phead  <-  ph 

  ), 

  ph : RSL!PatternHead ( 

   name   <- 'around_advice_call', 

   params <-  Sequence {pp1,pp2,pp3,pp4,pp5,pp6} 

  ), 

  pp1 : RSL!PatternParameter ( 

   name    <- 'program', 

   referTo <- 'ObjectPascal' 

  ), 

  pp2 : RSL!PatternParameter ( 

   name    <- 'method_name', 

   referTo <- 'IDENTIFIER' 

  ), 

  pp3 : RSL!PatternParameter ( 

   name    <- 'proceed_call', 

   referTo <- 'IDENTIFIER' 

  ), 

... 

} 

Figure 4-11 - ATL specification used to generate lower-order transformation rules (RSL)  

                       for weaving Object Pascal source program 
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rule BeforeAdvice2Pattern { 

 from 

  s : AFortran!BeforeAdvice 

 to 

  t : RSL!Pattern ( 

   phead  <- ph, 

   ptoken <- 'execution_part_construct_list', 

                   ptext  <- spt 

  ), 

  ph : RSL!PatternHead ( 

   name <- 'before_advice_stmt' 

  ), 

... 

} 

rule AfterAdvice2Pattern { 

 from 

  s : AFortran!AfterAdvice 

 to 

  t : RSL!Pattern ( 

   phead  <- ph, 

   ptoken <- 'execution_part_construct_list', 

                   ptext  <- spt 

  ), 

  ph : RSL!PatternHead ( 

   name <- 'after_advice_stmt' 

  ), 

... 

} 

lazy rule PointCutToExternalPattern { 

 from 

  s : AFortran!Pointcut 

 to 

  t : RSL!ExternalPattern ( 

   dname  <- 'FORTRAN', 

   eptext <- 'around_advice_call', 

   ptoken <- 'Fortran90_program', 

   phead  <- ph 

  ), 

  ph : RSL!PatternHead ( 

   name   <-   'around_advice_call', 

   params <- Sequence {pp1,pp2,pp3,pp4,pp5,pp6} 

  ), 

  pp1 : RSL!PatternParameter ( 

   name    <- 'program', 

   referTo <- 'Fortran90_program' 

  ), 

  pp2 : RSL!PatternParameter ( 

   name    <- 'method_name', 

   referTo <- 'NAME' 

  ), 

  pp3 : RSL!PatternParameter ( 

   name    <- 'proceed_call', 

   referTo <- 'NAME' 

  ), 

... 
} 

Figure 4-12 - ATL specification used to generate lower-order transformation rules (RSL)  

                       for weaving FORTRAN source program 
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To further understand the mapping, in the ATL rule 

BeforeAdvice2Pattern, the before advice in the source aspect metamodel is 

mapped to a RSL pattern in the target RSL metamodel that consists of a pattern head 

(phead), a pattern token (ptoken) and the pattern text (ptext). Similarly, a RSL 

external pattern is translated from a source pointcut specification and has the 

same LHS signature (dname, eptext, ptoken, phead) for both Object Pascal and 

FORTRAN generators. The main difference lies in the concrete syntax (Right-Hand Side) 

of the base language grammar as referred in the transformation rules where an 

execution_part_construct_list in FORTRAN is mapped as a 

statement_list in Object Pascal. Obviously, there are other non-terminal and 

terminal tokens in both the Object Pascal and FORTRAN grammar that have similar 

structural representation and meaning but differ by name in their BNF form. The strategy 

is always to follow a common abstract structure (or substructure) to translate a particular 

join point from an aspect description to RSL. However, in certain cases, where the 

difference in signature or concrete syntax between two language grammars differs 

significantly, it may not be directly possible to map to a generic interface. Instead, the 

mapping can then conform to sub-structures or sub-interfaces.  

Although the current construction technique requires the transformation library to 

be recreated manually by updating the concrete syntax, a possible extension could be to 

apply this mapping information automatically (e.g., by using model weaving [Jossic et. 

al., 2007]) to generate part of this library. From our own experience in constructing 

aspect weavers using the generalized framework, we realized that a large part of the 
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generic front-end and program transformation rule generator could be reused across 

languages with little customization (please see Section 4.5.4). 

In the following section we present some interesting case studies that use the 

model-driven aspect weaving framework to construct aspect weavers for two different 

GPLs. In particular, we construct aspect weavers for Object Pascal and FORTRAN and 

make comparative studies of reuse of their front-end, the rule generator and the back-end. 

The observations made in the case studies help to validate the techniques presented so 

far. They also reveal some of the limitations of the technique and the lessons learned 

during the process that can be applied for future improvements. 

 

4.4.3 Support for a Reusable Back-End 

 In addition to the generic front-end support along with a reusable model 

transformation library, GenAWeave provides support for a partially reusable back-end. 

The back-end consists of various external (helper) functions that are called by the 

generated program transformation rules (RSL). These external functions are generally 

used for traversing the AST and locating join points in the AST to apply transformations. 

The external functions are written in PARLANSE and internally use several APIs present 

in the DMSRuleSpecificationLanguage and DMSStringGrammar domain 

[Baxter et al., 2004]. Most of the pattern matching and transformation on the underlying 

AST is achieved by a combination of RSL and PARLANSE helper functions. Therefore, 

an important task in constructing a weaver for a particular GPL is to provide support for 

these helper functions that are internally called by the generated RSL.  
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 To support back-end construction, GenAWeave provides a reusable library of 

external functions that can be used to construct part of the low-level weaving 

infrastructure for a given weaver. Figure 4-13 provides an example of a reusable external 

function written in PARLANSE, which can be used by any weaver within the 

GenAWeave framework. This particular function (name_ends_with) is useful for 

matching identifiers (e.g., function name) whose name ends with a given input. This is 

equivalent to a wildcard search (e.g., *name ) in an aspect program.   

 

  (define name_ends_with 

     (lambda Registry:MatchingCondition 

     (let (;; (= [search_string (reference string)]  

              (Graph:HGHandling:GetString arguments:1))               

          [sub_string string] 

          [search_string_size natural] 

          [search_id_size natural] 

          [start_index natural] 

      );; 

      (value 

    (;;  

          (= search_string_size  

             (size (@(AST:GetString arguments:1)))) 

          (= search_id_size (size  

             (@(AST:GetString arguments:2)))) 

          (= start_index  

             (- search_string_size search_id_size)) 

          (= sub_string (Strings:Substring 

             (AST:GetString arguments:1) 

          (+ start_index 1) search_id_size)) 

                        

     (ifthen(== sub_string  

     (@(AST:GetString arguments:2))) 

       (return ~t) 

     )ifthen      

          

    (return ~f) 

    );; 

    ~f 

      )value 

       )let 

       )lambda 

    )define 

 

Figure 4-13 – Reusable external function in the GenAWeave framework 
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In Figure 4-13, arguments:2 indicates the location where the search is to be 

conducted, while arguments:1 is the given input to be matched. In addition to the 

example shown in Figure 4-13, GenAWeave provides other similar functions used for 

wildcard matching for identifiers (e.g., name_begins_with, name_contains). 

Appendix E provides more examples of reusable helper routines that are available in the 

GenAWeave framework. However, there are other external functions that are not 

completely reusable and depend on the grammar of the base language. Nevertheless, 

these routines, which implement a particular join point, generally conform to identical 

pattern matching algorithms (e.g., a function call join point, a loop 

execution join point in languages A and B). Examples of external functions for 

loop execution join point for Object Pascal and FORTRAN are given in 

Appendix E. 

 

4.5  Experimental Evaluation – Object Pascal and FORTRAN Weavers  

In order to experiment with the approach presented in the previous sections, two 

aspect weavers were constructed – one for Object Pascal and another for FORTRAN 

using the GenAWeave framework. A subset (e.g., primitive pointcuts like call, 

execution, loop, withincode, and args) of standard AOP features was built into 

both weavers in an AspectJ-like style. The FORTRAN weaver was constructed after the 

completion of the Aspect Pascal weaver and reused several functionalities, code and 

knowledge from the previous construction without much alteration to the core artifacts. 

For example, both weavers shared the generic front-end, which constituted around 50% 

of the overall front-end LOC (written in KM3 and TCS). Moreover, the FORTRAN 
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weaver reused 60% of the Object Pascal rule generator code without any alteration, and 

an additional 25% with minor customization. A detailed discussion of experimental 

results is given in Section 4.5.4. Most of the time and effort on building the FORTRAN 

weaver was spent on understanding the concrete syntax of the language and on the 

conceptual design of the weaver. The rest of the section is devoted to evaluating the basic 

functionalities of these weavers through sample case study applications.  

 

4.5.1 Object Pascal Weaver  

The initial experimentation towards evaluating our Aspect Pascal weaver was 

realized within the scope of a commercial distributed application written in Object 

Pascal. The case study application and all the examples discussed here were first 

introduced in [Gray and Roychoudhury, 2004] and also presented in Chapter 3. One 

specific application used for evaluation was a utility that assisted in upgrading a database 

after a schema change. The first example presented in this section is concerned with 

updating a processing dialog meter within the schema evolution tool. The second 

example relates to synchronization between various database error handlers. These 

Object Pascal examples were earlier introduced in Chapter 3. However, the technique 

presented there directly used program transformation rules instead of a high-level aspect 

language based on a model-driven approach. 

Processing Dialog Meter: Figure 3-1 in Chapter 3 described the crosscutting 

concern that was present in a progress dialog meter in the database schema evolution 

utility. Figure 4-14 shows the UpdateProgressMeter aspect that encapsulates the 

crosscutting concern in a separate module. The pointcut IncrCall_ captures all calls to 
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procedure Inc. The advice code shown between Lines 5-11 is triggered once this 

“procedure call join point” is reached. It may be noted that the entire “if statement” 

(Lines 5-11 defined internally as an OpaqueStatement) is not parsed by the front-end 

but delegated to the back-end parser. The aspect conforms to the Aspect Pascal 

metamodel and any syntactic errors are reported back to the user. 

 
1. aspect UpdateProgressMeter { 
2.   pointcut IncrCall_() : call(procedure  *.Inc(Integer)); 
3.   after() : IncrCall_() 
4.   { 
5.      if not ProcDlg1.Process(TotalInsertionsPerformed /     

6.            TotalInsertionsCalculated) then 
7.       begin 
8.         ProcDlg1.Canceled := True; 
9.         Result := True; 
10.      exit; 

11.    end; 

12.  } 

13. } 

 

Figure 4-14 - Aspect to capture progress meter updating 

 

Following TCS injection on the aspect from Figure 4-14, the corresponding 

Aspect Pascal model is generated (shown in Figure 4-15). The model (represented in 

XML format) conforms to the APascal and GAspect metamodels introduced in Section 

4.4. After applying the ATL transformation (a method call join pint) on this 

Aspect Pascal model, the resulting RSL model is generated that conforms to the target 

RSL metamodel. Finally, the lower-order RSL transformation rule is extracted from the 

RSL model using TCS extraction. The resultant RSL model and the RSL transformation 

rules are available in [GenAWeave, 2008]. Note that the complete transformation 

scenario was initially introduced in Section 4.3 (also refer to Figure 4-6) and is fully 

automated using Another Neat Tool (ANT) scripts (http://ant.apache.org/). More details 
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about Ant scripts and integration of the framework within Eclipse are given in Section 

4.6. 

 
<APascal xmlns="APascal" xmlns:_1="GAspect" name="UpdateProgressMeter"> 

  <domain name="ObjectPascal"/> 

  <pointcut name=" IncrCall_"> 

    <pctexpr xsi:type="CallExpr"> 

      <funcOrProcSig xsi:type="ProcedureDef" name="Inc" classifier="*"> 

        <paramdefs name="*" type="Integer"/> 

      </funcOrProcSig> 

    </pctexpr> 

  </pointcut> 

  <advice xsi:type="_1:BeforeAdvice" pctname="//@pointcut.0"> 

    <advStmt xsi:type="_1:OpaqueStatement" stmt="..."/> 

  </advice> 

</APascal> 

 

Figure 4-15 - Aspect Pascal model generated from Aspect Pascal source program 

 

 

The next example in our case study shows how a synchronization aspect is 

captured using the Aspect Pascal weaver constructed from our model-driven framework. 

Database Error Handler Synchronization: Synchronization and thread safety 

issues are often considered as a major concern in software development because they are 

difficult to modularize with traditional object-oriented techniques. Such concerns end up 

scattered across many modules and tangled with other concerns of the system. An 

example of a concurrency concern was presented in Figure 3-5.  

Figure 4-16 shows the aspect to support a synchronization concern. The pointcut 

funcHandler_ captures execution of all database handler functions. Synchronization 

is realized by an around advice that wraps calls to the LockHandle and 

UnlockHandle methods inside a try/finally block. The proceed statement 

allows the database error handling code to execute normally within the synchronization 
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aspect. We applied the same steps as in the previous example to separate this concern 

from the main code base. 

 
1. aspect SyncDBErrHandler { 
2.    pointcut funcHandler_() : 

execution(function *.Handle(..)); 

3.    void around() : funcHandler_()   
4.    { 
5.       TExHandleColl(Collection).LockHandle; 
6.       try  
7.          proceed (); 
8.          finally 
9.            TExHandleColl(Collection).UnLockHandle; 
10.    end; 

11. } 

12. } 

 

Figure 4-16 - Aspect to capture synchronization in a database error handler 

 

 

The Aspect Pascal model shown in Figure 4-17 is obtained by applying TCS 

injection on the aspect from Figure 4-16. The complete ATL transformation used to 

translate this aspect (method execution join point) along with all other 

associated artifacts is available at the GenAWeave project website [GenAWeave, 2008]. 

It should be noted that it is this lower-order RSL code that does the actual weaving on the 

base program, but the general user of this framework is oblivious to its presence. Instead, 

the front-end aspect language acts as a façade to the back-end PTE and hides all the 

accidental complexities associated with it (Challenge C3).  

The XML representation shown in Figure 4-17 is only an internal representation 

of the Aspect Pascal model and is generally used for analyzing and transforming the 

aspect specification. A software developer does not see this internal representation. 

However, the information is useful for more advanced users who want to construct aspect 

weavers for different GPLs using the technique described in this chapter. 
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<APascal xmlns="APascal" xmlns:_1="GAspect" name="SyncDBErrHandler"> 

  <domain name="ObjectPascal"/> 

  <pointcut name="funcHandler_"> 

    <pctexpr xsi:type="ExecExpr"> 

      <funcOrProcSig xsi:type="FunctionDef" name="Handle"   

        classifier="*"> 

        <paramdefs name="*" type="*"/> 

      </funcOrProcSig> 

    </pctexpr> 

  </pointcut> 

  <advice xsi:type="_1:AroundAdvice" pctname="//@pointcut.0"> 

    <advStmt xsi:type="_1:OpaqueStatement" stmt="..."/> 

    <advStmt xsi:type="_1:TryCatchFinallyStatement"> 

      <stmts xsi:type="_1:ProccedStatement"/> 

      <finallyStmts xsi:type="_1:OpaqueStatement" stmt="..."/> 

    </advStmt> 

  </advice> 

</APascal> 

Figure 4-17 – Generated Aspect Pascal model from Aspect Pascal source program 

 

4.5.2 FORTRAN Weaver  

Although most of the AOP research is centered around Java, we believe several 

numerical and scientific computing applications that are written in legacy languages like 

FORTRAN can benefit from AOP. We constructed a FORTRAN weaver using the 

generic model-driven framework and were able to reuse a majority of the code generator 

libraries that were previously written for Object Pascal. The front-end of the FORTRAN 

weaver is based on the same generic aspect metamodel that was used by the Object 

Pascal weaver. We evaluated our weaver within the scope of several FORTRAN 

programs that internally used the Message Passing Interface (MPI) [Gropp et al., 1996]. 

The first example shows how a security concern can be weaved into such programs and 

the second example illustrates how to monitor and weave an aspect around loops. 

Security Aspect: MPI is a library specification for message-passing and is largely 

used in high-performance scientific computing applications [Gropp et al., 1996]. MPI 

provides more than 125 core functions that include all the basic functionalities to assist in 
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writing parallel programs. There are several implementations of MPI written in various 

languages (e.g., C, FORTRAN, C++ and Java). In order to provide security to 

FORTRAN-based MPI programs, it is often required to encrypt/decrypt messages while 

they are sent or received across the network. Figure 4-18 shows a snippet of a FORTRAN 

MPI program, in which lines 9 and 12 illustrate how a security concern (i.e., a call to the 

encrypt function) is added before each call to MPI_SEND. The implementation of the 

security concern is scattered over the entire code base for all messages that require 

encryption during MPI_SEND. 

1.    program send_recv_with_MPI 
2.    ...! original code 
3.    real :: a_msg 
4.    real :: b_msg 
5.    ...! original code 
6.    allocate (a_msg(msg_len)) 
7.    allocate (b_msg(msg_len)) 
8.    ... 
9.    call encrypt(a_msg) 
10. call MPI_SEND(a_msg,...) 

11. ... 

12. call encrypt(b_msg) 

13. call MPI_SEND(b_msg,...) 

14. ... 

15. deallocate (a_msg) 

16. deallocate (b_msg) 

17. ...! original code 

18. end 

 

Figure 4-18 - Encryption of messages during MPI_SEND 

 

Figure 4-19 shows the aspect program required to enable security for all messages 

during MPI message send and receive. The pointcut captures all calls to MPI_SEND and 

passes the message to be encrypted as an argument. In a similar way, security to 

messages may be enabled during calls to MPI_RECV. The internal representation of the 

generated artifacts (e.g., Aspect FORTRAN model, RSL model and RSL transformation 
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rule) is not shown here but the transformation process is similar to previous descriptions 

and available on the GenAWeave project website [GenAWeave, 2008]. 

 
1. aspect enable_encryption { 
2.    pointcut mpi_send_(real :: orig_msg) :  
3.         call(MPI_SEND(real,*)) && args(orig_msg); 
4.    before(real :: orig_msg): mpi_send_(orig_msg)  
5.    { 
6.         call encrypt(orig_msg ) 
7.    } 
8. } 

Figure 4-19 - Aspect to enable encryption during MPI calls 

 

4.5.3 Join Point for Loops 

It is often desired to monitor the performance of loops for some high-performance 

scientific applications. Harbulot et al. first introduced this concept in an extension to 

AspectJ [Harbulot and Gurd, 2005]. We borrowed from their definition and added this 

feature into our FORTRAN and Object Pascal weavers. According to our definition, the 

join point for a loop has the following signature: 

 

<loop_name>(init::<val>, exit::<val>, stride::<val>) 
 

Init specifies the loop initialization value, exit specifies the loop termination 

value and stride specifies the loop increment counter.  

Figure 4-20 shows an implementation of MPI_GATHER written in FORTRAN. 

In MPI, messages can be forwarded by intermediate nodes where they are split (for 

scatter) or concatenated (for gather). Often it is required to measure timing statistics 

around critical parts of program execution. One such case is shown in Figure 4-20. Lines 

9-14 shows the execution of the outer do loop which has initial value as 1, exit value as 

10 and a default stride as 1. In a manual approach, it is required to invasively add the 
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timer (Lines 8 and 16) and change the source program at every place whenever the 

program runs into the execution of a loop join point that matches the given loop 

condition. 

 
1.    program gather_vector 
2.    ... ! original code 
3.    parameter(niters=10) 
4.    parameter(xmax=100,ymax=100) 
5.    parameter (totelem=xmax*ymax) 
6.    ... ! original code omitted 
7.    ! start timer 
8.    time_begin = MPI_Wtime() 
9.    do iter = 1,niters 
10.    ... 

11.    do i=1,totelem 

12.      ... 

13.    enddo            

14. enddo 

15. ! stop timer 

16. time_end = MPI_Wtime() 

17. ... ! original code omitted 

18. end 

Figure 4-20 - Adding timer around do loops 

 

Figure 4-21 shows the aspect program that can automatically add the timing 

functions during the execution of the loop join point. The join point for loops matches 

any loop expression in the base program that satisfies the loop initialization value, the 

loop finalization value (exit) and the loop stride value. Note that the variables defined in 

the advice code (Lines 6-8) are generally not validated by the front-end and are delegated 

to the PTE for semantic validation. The wildcard „*‟ may be interpreted as „any‟. 

Currently, both integer and string value types are supported, but future extensions can 

support other value types. However, as a side effect, the behavior of a base program may 

be altered if there are logical errors (e.g., init=1, exit=1, stride=2) in the loop 

expression and there is a corresponding match. Such a situation may be avoided in the 
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future by adding semantic validations to the existing pattern matching functionality. In 

addition, future requirements may alter the semantics of the loop join point by including 

the variable names in the pointcut specification.  

 
1.   aspect AddTimerAroundLoops  
2.   { 
3.      pointcut loop_timer_() :      

  execution(do(init::1,exit::10,stride:*)); 

4.      void around(): loop_timer_()  
5.      { 
6.         time_begin = MPI_Wtime() 
7.         proceed()       
8.         time_end = MPI_Wtime() 
9.      } 
10.   } 

 

Figure 4-21 - Aspect to add timer around do loops 

 
<AFortran xmlns="AFortran" xmlns:_1="GAspect"  

name="AddTimerAroundLoops"> 

 <domain name="FORTRAN"/> 

 <pointcut name="loop_timer_"> 

  <pctexpr xsi:type="_1:LoopExpr"> 

   <loopStmt xsi:type="DoLoop"> 

      <loopInitCond xsi:type="1:IntLoopInitCond" condition="1"/> 

      <loopExitCond xsi:type="1:IntLoopExitCond" condition="10"/> 

      <loopStrideCond xsi:type="1:StringLoopStrideCond"   

       condition="*"/> 

   </loopStmt> 

  </pctexpr> 

 </pointcut> 

 <advice xsi:type="_1:AroundAdvice" pctname="//@pointcut.0"> 

  <advStmt xsi:type="_1:OpaqueStatement" stmt="time_begin =   

    MPI_Wtime()"/> 

  <advStmt xsi:type="_1:ProceedStatement"> 

  <advStmt xsi:type="_1:OpaqueStatement" stmt="time_end =  

    MPI_Wtime()"/> 

  </advice> 

</AFortran> 

 

Figure 4-22 - Aspect FORTRAN model generated from source aspect program 

 

 

The Aspect FORTRAN model (XML format) corresponding to the aspect 

program of Figure 4-21 is shown in Figure 4-22. The model conforms to the Aspect 
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FORTRAN metamodel shown in Figure 4-9. The corresponding ATL transformation for 

loop execution join point is available in Appendix D. The generated RSL 

code can be found at the project website [GenAWeave, 2008].  

 

4.5.4 Discussion of Experimental Results 

In terms of reusability, all the examples listed in Section 4.5 reuse the same 

generic aspect metamodel (GAspect). Moreover, the ATL transformation for translating a 

particular join point reveals non-trivial reuse among weavers constructed for different 

GPLs. This was illustrated in Section 4.4.2 through Figures 4-11 and 4-12 (i.e., an ATL 

transformation for translating a method call join point in FORTRAN and 

Object Pascal). In that particular example, 230 lines of model transformation code (out of 

280 LOC) were reused without any modification. The remaining 50 LOC were reused 

with minor customization.  

Similarly, for translating a loop execution join point in FORTRAN 

and Object Pascal, 265 LOC out of 305 were reused without any modification, while the 

remaining 40 LOC were reused with minor customization. Examples of an ATL rule for 

translating a loop execution join point for Object Pascal is shown in 

Appendix D.  

A visual comparison between ATL rules (loop execution join point) 

for Object Pascal and FORTRAN weavers is shown in Figure 4-23, which suggests the 

level of reuse among the two ATL rules. This level of reuse is a direct benefit of using 

the GenAWeave framework, which enforces the model transformation rules to conform 

to a common abstract structure. The difference between the rules is due to the 
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dissimilarity in the grammar of Object Pascal and FORTRAN (highlighted in Figure 4-

23). A comparative analysis between other ATL rules for the Aspect Pascal and Aspect 

FORTRAN weaver is available at the GenAWeave website [GenAWeave, 2008].  

 

Figure 4-23 – A comparative analysis of model transformation rules 

 

Likewise, the front-end of all weavers share a generic metamodel (i.e., GAspect). 

Out of 550 LOC used for defining the front-end metamodel (KM3 and TCS 

specifications), nearly 280 LOC were shared among the two weavers. However, it should 

be noted that the current weavers have limited functionalities and the reuse may decrease 

with mutually exclusive functionalities (e.g., with join point is present only in Object 

Pascal and not in FORTRAN). Nevertheless, the purpose of the Aspect Pascal and Aspect 

FORTRAN weavers were to experimentally evaluate the generality of our model-driven 

framework for building aspect weavers. The main objective was to evaluate the 

reusability of features that can be shared among multiple weavers without writing them 

from scratch. In the current stage of our investigation, we have adopted a simple join 
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point model (a subset of AspectJ) with primitive pointcuts like call, execution, 

loop, withincode, with, within and args and advice declarations like before, 

after and around. It was observed that the Aspect FORTRAN weaver that was 

constructed after the completion of the Aspect Pascal weaver reused a majority of the 

available front-end artifacts (e.g., generic metamodel and ATL specifications).  

In addition to front-end reuse, GenAWeave provides a reusable library of back-

end external functions (please see Section 4.4.3) that can be used to provide low-level 

transformation support for every aspect weaver. Currently, there are 11 such functions 

that are shared by the Object Pascal and FORTRAN weavers. A few of these shared 

functions are shown in Appendix E.1. However, not all external functions are reusable or 

shared, especially, the ones that are dependent on the syntax of the base language. In such 

cases, the functions adopted by multiple weavers generally use identical algorithms and 

conform to a common abstract structure (please see Appendix E.2 for such an example).  

Figure 4-24 shows the reusability summary for the FORTRAN and Object Pascal 

weavers. It can be observed that the front-end reusability is considerably larger than the 

back-end reusability, overall nearly 55-65% of the artifacts are reused. Moreover, it 

should be noted that the two languages (i.e., Object Pascal and FORTRAN) are 

distinctively dissimilar in syntax and belong to two different paradigms (i.e., object-

oriented and procedural). It is expected that the reusability will increase among languages 

that belong to the same paradigm (e.g., object-oriented).  
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Figure 4-24 – Reusability summary for FORTRAN and Object Pascal weavers 

 

Although more advanced pointcuts like control flow (cflow) and reflection 

(thisJoinPoint) were omitted from the current investigation due to limited 

static/control flow analysis in DMS for Object Pascal and FORTRAN, future research 

aims to introduce them at a later stage. Currently, DMS provides more mature analysis 

engines for languages like C++ and Java. As part of possible future extensions, it is 

planned to experiment with such advanced pointcut mechanisms (cflow, 

reflection, loops) for these two languages. 

 

4.6       Integrating the GenAWeave Framework within Eclipse 

The GenAWeave framework is integrated within the Eclipse IDE as shown in 

Figure 4-25. The individual aspect weavers could be run using Ant scripts available in the 

project website [GenAWeave, 2008]. The scripts take the input source file and the aspect 
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program as input and through a chain of transformation processes (model transformation 

followed by program transformation) produces the transformed target program. Both the 

ATL model transformation engine and DMS PTE are invoked within the Eclipse IDE. 

 

Figure 4-25 – GenAWeave framework within Eclipse 

 

Moreover, there is a separate editor available for specifying aspects for source 

GPLs. The editor provides an outline view for the individual aspect programs, and any 

syntax errors present within the program can be displayed to the user (e.g., in Figure 4-

26, the editor indicates the misspelling of the pointcut name timer_around_loops). 

In addition, the aspect code can be presented in different colors and fonts using the 

standard syntax highlighting feature present within the editor. Figure 4-26 shows how the 

outline view, syntax highlighting and syntax errors are displayed within the editor for a 

given aspect program. 
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Figure 4-26 – Syntax errors displayed within the editor 

 

4.7       Related Work 

 

Section 2.2.2 presented a comparative discussion of language-independent 

modernization tools to support AOP. This section provides other related work towards 

generic AOP adoption and corresponding tool support. In a recent paper, Heidenreich et 

al. showed a generic approach for implementing aspect orientation for arbitrary 

languages using invasive software composition [Heidenreich et al., 2007]. However, their 

technique is more useful for declarative DSLs than for GPLs . 

Morin et al. presented a generic aspect-oriented modeling framework to represent 

aspects that can be adapted to any modeling domain [Morin et al., 2007]. Although our 

work tends to capture the generality of aspect languages and not individual aspects, 

nevertheless, it can gain interesting insights from such an approach. 

A recent addition to the class of language extension tools is MetaBorg 

[Bravenboer and Visser, 2004], which provides an ability to embed domain-specific 

languages into general purpose languages. However, the embedding permitted by 
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MetaBorg is focused on localized adaptations, and cannot accommodate the global 

effects of aspects. MetaBorg also requires specific transformation rules to be written for 

each GPL. 

An initiative to develop an Abstract Syntax Tree Metamodel (ASTM) for GPLs 

has been proposed in OMG‟s Architecture-Driven Modernization program [OMG ADM, 

2008]. The work described in this research may be benefited from this initiative although 

the primary focus of this dissertation is based on General-Purpose Aspect Languages 

(GPALs). 

In [Roover et al., 2007], advanced pattern detection techniques are suggested by 

applying a logic-based query language that uses concrete source code templates to match 

against a combination of structural and behavioral program representations, including 

call-graphs, points-to analysis results and abstract syntax trees. This is similar to the rule 

specification language available in DMS that is used for pattern matching. RSL also 

provides external patterns and conditions that make calls to external functions written in 

PARLANSE for more advanced program analysis and transformation. 

Ramos et al. proposed a framework for expressing patterns as model-snippets and 

showed how pattern matching can be performed with model-snippets for any given 

metamodel [Ramos et al., 2007]. In our current framework, all pattern matching and 

analysis is done through the back-end where the metamodel is used to express the front-

end aspect language and its generic extensions. Eventually, all of the higher-order aspect 

specifications are translated to lower-order back-end program transformation code that 

does the actual weaving. 
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As an alternative approach to model-to-model (M2M) transformation followed by 

TCS extraction, an interesting technique that can be used is model-to-text (M2T) 

transformation [Eclipse M2T, 2007]. In the M2T approach, models of particular software 

solutions are refined and transformed into software source code (e.g. Java, C++). Such 

transformations generally make use of “templates.” A template may be generally 

described as a text sequence interspersed with commands that extract information from a 

model. The Jet or Acceleo template language can be used for such a purpose [Eclipse 

M2T, 2007]. We recognize that this is an interesting solution and could serve as an 

alternative approach towards constructing the RSL rule generator. However, using M2T, 

we may loose a precise concept mapping between the source and the target model, and 

rely on mapping concepts to strings. Nevertheless, any alternative approach can still 

benefit from the technique described in this dissertation.  

The goal of this research has been to reuse most of the software tools and artifacts 

(e.g., existing parsers and analysis engines) that are already available for a variety of 

legacy and modern programming languages. The science and theory to construct such 

tools are already well-established and it would require considerable engineering effort to 

build them from scratch without gaining any additional scientific knowledge. On the 

other hand, new language-independent techniques like .Net CLI / CodeDOM are not 

always feasible to support various legacy languages like FORTRAN, COBOL and Object 

Pascal due to their non-conformance to .Net specification. Unless those languages are 

forced to comply with a language-independent CLI specification, new experimentation to 

impart AOP features to them is virtually impossible. 
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The research presented in this dissertation provides an initial solution to such 

challenges by reusing most of the existing software artifacts (e.g., lexers, parsers, 

analyzers, evaluators) that are already available for a variety of GPLs. Thus, it enables 

new experimentation with advanced software engineering principles like AOP for 

existing legacy languages. The research also addresses new challenges that arise from the 

usage of complex PTEs like DMS by providing a suitable front-end that hides most of the 

accidental complexities that are generally associated with them. 
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CHAPTER 5 

 

FUTURE WORK 

 

 

 

This chapter outlines research directions that will be investigated as part of future 

work. In particular, future research goals are based on three specific directions:  

1. Improve the generality of the framework. 

2. Apply and evaluate the framework towards construction of other aspect 

weavers for legacy and modern programming languages.  

3. Investigate other software engineering techniques like generalized refactoring 

and generic aspect mining based on the knowledge gained in developing a 

generic framework for aspect weaving. Both of these techniques may help to 

improve the quality of a software system and can benefit from a model-driven 

program transformation based approach presented in this dissertation.  

Future enhancements towards improving the generality of the framework are 

listed below:  

 To improve the reusability of the generic aspect metamodel, research into the 

idea of metamodel inheritance will be explored. This will assist tool 

developers to group commonalities among various GPLs into individual 

metamodels that could be inherited or extended by language-specific 

metamodels.  
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 To improve the reusability of the ATL rule generator, the idea of rule 

inheritance will be explored. Using rule inheritance some of the common 

features among model transformation rules can be extracted. In addition, a 

weaving model using AMW [Jossic et. al., 2007] is proposed to automate the 

construction of the ATL rule generator. This could partially remove the 

manual construction effort of the ATL rules from one GPL to another.  

To evaluate the framework further, the following steps are proposed:  

 Constructing aspect weavers for other legacy and modern GPLs.  

 Applying the approach to domain-specific aspect languages (DSALs). 

 Applying the approach towards high-performance scientific computing 

applications, especially towards specialization of scientific libraries.  

 

5.1 Improving Reusability of the Generic Aspect Metamodel 

Future research goals aim to improve the reusability of features among aspect 

weavers by further enhancement to the existing design of the generic aspect weaving 

framework. For example, it is desired to create a generic metamodel for Object-Oriented 

constructs, from which the weavers constructed for Object-Oriented languages can 

inherit.  

The current generic metamodel (i.e., GAspect) generalizes what is common 

between APascal and AFortran (i.e., abbreviation of Aspect Pascal and Aspect 

FORTRAN, the aspect languages for Object Pascal and FORTRAN, respectively). Figure 

5-1a shows this current design. In the future, if the construction of ARuby (i.e., an aspect 

language for Ruby) is considered using the GenAWeave framework, this new language 
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could directly extend from GAspect as shown in Figure 5-1a. However, it is expected that 

both ARuby and APascal will have some commonality (e.g., related to the object 

paradigm) not shared with AFortran. Figure 5-1b shows the improved metamodel design. 

The commonalities between APascal and ARuby are extracted into OO-A (the common 

object-oriented constructs of ARuby and APascal), which extends GAspect. In [Steel and 

Jézéquel, 2007], a proposal for typing models as a collection of interconnected objects is 

discussed. The formalism described there is an extension to object-oriented typing, 

however suitable to a model-oriented context. The proposed approach of defining an 

abstract metamodel and its conformance with another metamodel via metamodel 

extensions is similar to the concept described in [Steel and Jézéquel, 2007]. Similarly, it 

is desired to create a generic metamodel for JPMs. All weavers can inherit from the 

generic JPM, and (if required) add new join point extensions to their specific JPM. 

GAspect

APascal ARuby AFortran

GAspect

APascal ARuby

AFortranOO-A

 
        

a – Current metamodel design          b – Improved metamodel design 

Figure 5-1 – Improving the front-end metamodel design 

 

5.2 Improving Reusability of ATL Rule Generator 

The current design of the ATL rule generator uses generic interfaces to enforce a 

common structure among ATL rules from one GPL to another. However, using rule 
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inheritance the design could be further enhanced, as demonstrated in [Mernik et al., 2002; 

Jouault and Kurtev, 2005]. An example of rule inheritance is shown in Figure 5-2. In the 

example, ATL rule A is defined as abstract while rule B is extended from A. 

Similarly, rule C is inherited from rule B. Thus, rule inheritance will allow certain 

rules that have similar functionality (e.g., an ATL rule for translating a loop join point for 

Object Pascal and FORTRAN) to be defined as generic (i.e., abstract) and concrete rules 

belonging to concrete weavers could extend from it. This will improve the reusability of 

model transformation rules used in this framework. 

1.    abstract rule A { 
2.       from [fromA] 
3.       using [usingA] 
4.       to [toA] 
5.       do [doA] 
6.    } 
7.  
8.    rule B extends A { 
9.        from [fromB] 
10.     using [usingB] 

11.     to [toB] 

12.     do [doB] 

13.  } 

14.   

15.  rule C extends B { 

16.     from [fromC] 

17.     using [usingC] 

18.     to [toC] 

19.     do [doC] 

20.     } 

Figure 5-2 – An example showing ATL rule inheritance 

 

 In addition to rule inheritance, a proposal to automate the ATL rule construction 

effort will also be explored. Currently, although a large percentage of the model 

transformation rules conform to a specific structure and can be significantly reusable for 

a particular join point, one has to still customize them partly for those parts that depend 
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on the concrete syntax of the source language. For example, among the ATL rules 

presented in Figures 4-11 and 4-12 in Chapter 4, part of the difference is because of the 

dissimilarity in certain grammar symbols for Object Pascal and FORTRAN (e.g., 

execution_part_construct_list, statement_list, IDENTIFIER, 

NAME). In the future, it is proposed to capture these variable grammar parts in a separate 

weaving model that conforms to a weaving metamodel in AMW [Jossic et. al., 2007]. 

This will remove any manual customization of ATL rules and help to further automate 

the rule construction process. It may be noted that AMW is a MDE-based tool for 

establishing relationships (i.e., links) between models. Specific examples of use cases 

using AMW are available at [AMW Use Case, 2008]. 

 

5.3 Constructing Weavers for other GPLs 

Another possible extension of our work is to construct aspect weavers for other 

GPLs including object-oriented scripting languages like Ruby and Python. In addition, 

future directions in this area intend to experiment with adding new types of join points 

(e.g., loops) to existing GPLs like Java and C++. Advanced pointcuts like cflow and 

certain reflective techniques like thisJoinPoint would also be taken up as part of 

future work. This could serve as a future evaluation platform for the framework. Some 

steps have already been taken in this direction. Besides Object Pascal and FORTRAN, 

aspect-oriented metamodels for Java and C++ have already been constructed and are 

available at the GenAWeave project website [GenAWeave, 2008]. 
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5.4 Applying the approach to DSALs 

Although the majority of research in the AOSD community focuses on general-

purpose aspect languages (e.g., AspectJ), there have been a number of influential research 

efforts on domain-specific aspect languages (DSALs) (e.g., COOL for concurrency 

management and RIDL for serialization [Lopes, 1997]). So far we have only considered 

the construction of GPALs using our framework, but it would be interesting to investigate 

how the framework can also accommodate the development of weavers targeting DSALs. 

In particular, future research will apply the GenAWeave framework towards the 

construction of an aspect weaver for the ANTLR grammar (ANother Tool for Language 

Recognition) [ANTLR, 2008], which is a DSL used for LR based parser generators. The 

proposed work would be similar to AspectG [Wu et al., 2005], however the underlying 

technique would be different (i.e., the proposed research would use the GenAWeave 

framework instead). This would help us to compare the two techniques and their relative 

ease of use in constructing aspect weavers. 

 

5.5 Applying the Approach to Scientific Computing Applications 

Scientific computing applications like Blitz++ [Veldhuizen, 1998] and HPL [Petitet et 

al., 2004] play a critical role in solving several challenging problems within the high-

performance scientific computing domain. The research presented in this dissertation has 

demonstrated techniques to improve the modularization of such applications. The 

GenAWeave framework could be applied suitably to weave in aspects that are identified 

in Blitz++; however, there is an equal need to extend the framework for non-AOP based 

transformations. For example, the transformations to specialize HPL are different in 
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intent than what is generally supported in an aspect-oriented language. Therefore, another 

possible extension of the GenAWeave framework will be to support DSLs to capture 

language constructs suitable for applying non-AOP based transformation techniques (e.g., 

specialization of HPL described in Chapter 3). However, such techniques are not just 

limited to libraries like HPL but can be applied to other scientific computing libraries like 

Matrix Template Library (MTL) [Siek and Lumsdaine, 1998] and POOMA [Reynders et 

al., 1996]. Nevertheless, the translation scheme from the high-level DSL to low-level 

RSL would be very similar to the one used in the current GenAWeave framework. 

Another interesting concept that is not explored in the current GenAWeave framework is 

multi-language weaving. Some programs, especially in the field of scientific computing, 

may have mixed-mode syntax, i.e., one language embed in another (e.g., FORTRAN 

calls inside a C program). In such cases, it may be required to weave in the language 

specific parts and write aspects having mixed-mode syntax. Future experimentation using 

GenAWeave may add such functionality to support mixed-mode weaving. 

 

5.6 Generic Refactoring and Generic Aspect-Mining Engines based on  

Model-Driven Program Transformation 

 

Similar to aspect weaving, refactoring [Fowler et al., 1999] can also improve 

modularization and readability of legacy software. Although the core idea behind 

refactoring (e.g., rename method, extract method, pull up method to a superclass and 

push down method to a subclass) is language-independent, current refactoring tools are 

generally tied to the source language. Therefore, the time and effort spent in constructing 

a refactoring tool for one language is almost wasted when applied to a different language 

context. A generalized framework that can capture the semantics of refactoring rules in 
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an abstract metamodel can improve the reusability and construction effort of refactoring 

engines. We believe that the knowledge gained during the current research in developing 

a generic framework for aspect weavers can be suitably applied to realize a similar goal 

to construct generic refactoring engines. Such an approach could also explore a model-

driven metamodel based front-end with low-level program transformation support at the 

back-end. However, such techniques would necessitate more sophisticated control flow 

and data flow analysis that can be interchangeably used across GPLs.  

The current GenAWeave framework does not support aspect mining, which is a 

technique to identify crosscutting concerns in an existing software system [Roy et al., 

2007]. Aspect mining enforces software systems to comply with an aspect-oriented 

design. Most of the aspects that were identified in the various case study applications 

during the course of this research were done manually. A future extension to 

automatically identify aspects in existing legacy applications can act as a complement to 

the current aspect weaving framework. Moreover, the analysis techniques (e.g., identifier 

analysis, fan-in analysis and dynamic analysis) [Roy et al., 2007] are fairly language-

independent and their intensions may be captured with suitable high-level language 

specifications. Therefore, as part of future research directions, both generic refactoring 

and generic aspect mining techniques will be investigated, which can serve as valuable 

extensions to the existing GenAWeave aspect weaver framework. 
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CHAPTER 6 

 

CONCLUSION 

 

 

 

Given the historical tendency of languages to evolve by adopting new paradigms, 

it is reasonable to assume that aspect-oriented concepts will be integrated into many more 

programming languages. To expedite this adoption, tools and frameworks that provide 

assistance for program restructuring are needed [Griswold and Notkin, 1993]. This will 

help early adopters assess the feasibility of AOSD within their own organization. 

However, the general focus of AOP has been based on a few popular programming 

languages like C++ and Java, neglecting the multiple billion lines of legacy code that 

exist in other languages. Given the large number of languages in use, a solution that 

mitigates the effort needed to create each new aspect weaver is more desirable than an 

approach that manually recreates a weaver from scratch for each legacy language. 

However, such a proposition raises several new challenges that represent the key focus of 

the research presented in this dissertation. Specifically, the research demonstrates how 

modern software engineering techniques like modeling combined with program 

transformation can assist in promoting aspect orientation in a generalized way for legacy 

languages. 
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6.1 Challenges addressed by the GenAWeave Framework 

The research presented in this dissertation raised several key challenges 

(identified in Chapter 1) in designing a generic framework to construct aspect weavers. In 

particular, the research demonstrated an approach that combines PTEs with MDE to 

construct aspect weavers for modern and legacy programming languages. The unification 

of PTEs with MDE offered more possibilities to address the challenges raised in Chapter 

1 than each of the two techniques considered separately. 

It is our contention that initial efforts to bring aspect orientation to legacy systems 

should be robust and mature to the degree that they can be applied readily to large pre-

existing applications. The scalability of such a requirement demands the availability of 

parsers that have been proven capable of handling large collections of source code. Toy 

parsers will only frustrate users to the point of potential abandonment of adoption. A 

mature PTE like DMS offers a repository of complete parsers and a program 

transformation language (i.e., RSL) for manipulating syntax trees. These two features 

help to reduce significantly the effort required to construct new weavers. Chapters 3 and 

4 of the dissertation presented several case studies to demonstrate how RSL 

transformation rules could be used to construct aspect weavers for various GPLs (e.g., 

Object Pascal, C++ templates and FORTRAN). Thus, Challenges C1 (parser 

construction problem) and C2 (weaver construction problem) were addressed through 

adoption of a mature program transformation engine (i.e., DMS) as the back-end of the 

framework. However, a PTE-based weaver construction process raises new challenges 

and faces inherent accidental complexities; i.e., the transformation rules used to modify 

base programs are difficult to compose, which makes it accessible to only language 
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researchers and is generally hard to comprehend by average software developers. The 

research described in this dissertation illustrated how these accidental complexities 

(Challenge C3) that are generally associated with a PTE can be eliminated using a model-

driven front-end (Chapter 4).  

We believe that the development of each new weaver should minimize the 

duplication of effort from an earlier weaver construction. However, the dependence of 

weaver transformation rules on the grammar of the base GPL (e.g., Object Pascal) makes 

a previously constructed weaver almost impossible to be applied in a different language 

context. This concern was raised as Challenge C4 that deals with generality, reusability, 

and transfer of knowledge from one weaver to another. In our opinion this is the most 

difficult challenge of the four. The research demonstrated that by making the front-end 

generic, along with a systematic program transformation rule generator, significant 

inroads could be made to address this challenge. To evaluate the usefulness of the generic 

framework, two aspect weavers were constructed for Object Pascal, and FORTRAN. The 

FORTRAN weaver was built after the successful construction of the Object Pascal 

weaver. When constructing the second weaver, it was observed that more than 50% of the 

artifacts (generic front-end and rule generator) that were created during the construction 

of the first could be reused. All these results and experiments are available in the 

GenAWeave project website [GenAWeave, 2008].  

The current approach has been evaluated against a simple join point model. More 

advanced pointcuts like control flow and reflective techniques like thisJoinPoint 

are currently not available in GenAWeave. However, with the availability of a mature 

static/control flow analysis engine for Object Pascal and FORTRAN in DMS, 
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GenAWeave can be extended to support advanced aspect language features. This 

limitation will be addressed later as a part of future work. It may be noted that most of the 

analysis and pattern matching is realized through the back-end RSL/PARLANSE code 

and the front-end only acts as a wrapper to the back-end. If the back-end PTE can support 

advanced program analysis, it would not be difficult to wrap those features through the 

front-end, avoiding all the accidental complexities (Challenge C3) that are generally 

associated with complex PTEs. The complete source code for the GenAWeave 

framework, several case study examples and video demonstrations are available at the 

project web site [GenAWeave, 2008]. The following section presents a summary of the 

important lessons that we learned throughout the course of this research. 

 

6.2   Lessons Learned 

In this section, we summarize the seven main lessons that we have learned while 

working on the research presented in this dissertation. These lessons are enumerated 

below: 

 Lesson 1 - Generalizing the weaver front-end: During the course of the research, it 

has been realized that parts of the aspect language front-end can be reused by 

making it generic. By generalizing the front-end metamodel, several aspect 

languages can extend a single core (e.g., GAspect) while the differences can be 

captured within their specific part. The solution can be achieved using MDE 

techniques like metamodel extension. 

 Lesson 2 - Improving the generic metamodel: The current generic metamodel (i.e., 

GAspect) generalizes what is common between APascal and AFortran (i.e., the 
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aspect languages for Object Pascal, and FORTRAN). However, an extension of 

GAspect may categorize commonalities within a paradigm that can be reused (e.g., 

a metamodel named Object-Oriented that extends GAspect with common OO 

concepts, which is then extended by concrete OO languages). The idea was 

introduced in Chapter 5 (Section 5.1). 

 Lesson 3 – Use of generic interfaces in the rule generator: The concept of a 

generic interface was introduced in Chapter 4 to generalize the design of the rule 

generator. As a result, the rule generator library (i.e., model transformation rules 

for translating specific join points like call, loop and execution) can be 

reused across languages with minimum customization. 

 Lesson 4 - Modeling can be suitably applied to PTEs: From our research, it has 

been realized that higher-order model transformation rules could be used to 

generate lower-order program transformation rules. Thus, it is possible to model 

and automate the creation of low-level program transformation rules using MDE. 

The combination of both PTE and MDE (i.e., two distinct technical spaces) offers 

more possibilities than each considered separately. 

 Lesson 5 - Changing the target PTE: The source aspect metamodel need not be 

altered even if one chooses to opt for a different target PTE (e.g., ASF+SDF [van 

den Brand et al., 2002]). In such a case, a new PTE metamodel needs to be 

developed, as well as a new rule generator for this new target. It is expected that it 

may be possible to generalize part of the transformation code by introducing a PTE 

pivot metamodel that abstracts common properties of many PTEs. It may be noted 
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that MDE is about platform independence and the ability to support multiple PTEs 

is another benefit of the approach described in this dissertation. 

 Lesson 6 - Changing the source language: Conversely, for every new aspect 

language, one needs to add the appropriate metamodel extensions to the GAspect 

metamodel, but no change to the target metamodel is needed. 

 Lesson 7 - Automation of rule generator: During the construction of the ATL rule 

generator, it was realized that most of the time and effort on building a new weaver 

for a particular GPL was spent on understanding the concrete syntax or grammar of 

the base language. We believe that it is possible to extract the join point model 

from transformation rules, and model it in terms of the concrete syntax. A future 

proposal towards this direction is discussed in Chapter 5 (Section 5.2).  
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The individual specifications within this Appendix show the KM3 and TCS 

specifications for the Aspect Pascal weaver that is extended from the Generic Aspect 

(GAspect) metamodel.  

 

A.1. Generic Aspect Metamodel KM3 Specification 

 The following represents the complete KM3 specification for the GAspect 

metamodel. Note the GAspect metamodel is common to both Aspect Pascal and Aspect 

FORTRAN weaver specifications. 

 

 

package GAspect { 

 

    abstract class LocatedElement { 

    attribute location[0-1] : String; 

    attribute commentsBefore[*] ordered : String; 

    attribute commentsAfter[*] ordered : String; 

    } 

 

    class GAspect extends LocatedElement { 

         attribute name : String; 

    reference domain container : Domain; 

    reference pointcut[*] container : Pointcut oppositeOf aspect; 

    reference advice[*] container : Advice oppositeOf aspect; 

    } 

 

    class Domain extends LocatedElement { 

    attribute name : String; 

    } 

 

    abstract class Element extends LocatedElement { 

    attribute name : String; 

    } 

 

    class Parameter extends LocatedElement { 

    attribute name : String; 

    } 

     

    abstract class ParameterDef extends LocatedElement { 

    attribute name : String; 

    attribute type : String; 

    } 
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    class Pointcut extends Element { 

    reference aspect : GAspect oppositeOf pointcut; 

    reference paramdefs[*] container : ParameterDef; 

    reference pctexpr[*] container : Expression oppositeOf    

         pointcut; 

    } 

 

    abstract class Advice extends LocatedElement { 

    reference aspect : GAspect oppositeOf advice; 

    reference pctname : Element; 

    reference paramdefs[*] container : ParameterDef; 

    reference advStmt[*] container : Statement; 

    } 

 

    class BeforeAdvice extends Advice { } 

     

    class AfterAdvice extends Advice { } 

        

    class AroundAdvice extends Advice { } 

    abstract class Expression extends LocatedElement { 

    reference pointcut : Pointcut oppositeOf pctexpr; 

    } 

     

    class ArgsExpr extends Expression { 

    attribute name : String; 

    } 

 

    abstract class Statement extends LocatedElement { } 

     

    class ProccedStatement extends Statement { } 

 

    abstract class LoopStatement extends Statement { 

    reference loopInitCondition container : LoopInitCondition; 

    reference loopExitCondition container : LoopExitCondition; 

    reference loopStrideCondition container : LoopStrideCondition; 

    } 

 

    abstract class LoopInitCondition extends LocatedElement { } 

 

    abstract class LoopExitCondition extends LocatedElement { } 

 

    abstract class LoopStrideCondition extends LocatedElement {  } 

 

    class IntegerLoopInitCondition extends LoopInitCondition { 

    attribute condition : Integer; 

    } 

 

    class IntegerLoopExitCondition extends LoopExitCondition { 

    attribute condition : Integer; 

    } 

 

    class IntegerLoopStrideCondition extends LoopStrideCondition { 

    attribute condition : Integer; 

    } 

 

    class StringLoopInitCondition extends LoopInitCondition { 

    attribute condition : String; 
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    } 

 

    class StringLoopExitCondition extends LoopExitCondition { 

    attribute condition :String; 

    }     

 

 

    class StringLoopStrideCondition extends LoopStrideCondition { 

    attribute condition :String; 

    } 

 

    class OpaqueStatement extends Statement { 

    attribute  stmt : String; 

    } 

 

    class TryCatchFinallyStatement extends Statement { 

     reference stmts[1-*] ordered container : Statement; 

    reference finallyStmts[*] ordered container : Statement; 

    reference catchStmts[*] ordered container : CatchStatement; 

    } 

 

    class CatchStatement extends LocatedElement { 

    reference  stmts[*] container : Statement; 

    reference exceptions[*]  container : ParameterDef; 

    } 

 

    class LoopExpr extends Expression { 

    reference loopStmt container : LoopStatement; 

    } 

 

} 

 

package PrimitiveTypes { 

   datatype Boolean; 

 datatype Integer; 

 datatype String; 

} 

 

A.2. Aspect Pascal KM3 Specification 

 The following represents the complete KM3 specification for the Aspect Pascal 

metamodel, which is extended from the GAspect metamodel. 

 

package APascal { 

 

    class APascal extends GAspect { } 

 

    abstract class FuncOrProcDefExpr extends Expression { 

         reference funcOrProcSig container : FunctionOrProcSignature; 

    } 



  178  

 

    class ExecExpr extends FuncOrProcDefExpr { } 

 

    class WithinCodeExpr extends FuncOrProcDefExpr { } 

 

    abstract class FunctionOrProcSignature extends LocatedElement { 

    attribute name : String; 

    } 

 

    abstract class FunctionOrProcDef extends FunctionOrProcSignature { 

    attribute classifier[0-1] : String; 

    reference paramdefs[*] container : OPParamDef; 

    } 

 

    class FunctionDef extends FunctionOrProcDef { } 

 

    class ProcedureDef extends FunctionOrProcDef { } 

 

    class RoutineDef extends FunctionOrProcDef { 

     attribute wildcard[0-1] : String; 

    } 

     

    class OPParamDef extends ParameterDef { } 

 

    class CallExpr extends Expression { 

         reference funcOrProcSig container : FunctionOrProcSignature; 

    }     

 

    class FunctionOrProcCallExpr extends FunctionOrProcSignature { 

    reference params[*]  container : Parameter; 

    } 

 

    class WithExpr extends Expression { 

   attribute parent : String; 

        attribute child : String; 

    } 

 

    class ForLoop extends LoopStatement { } 

 

    class WhileLoop extends LoopStatement { } 

 

} 

 

A.3. Aspect Pascal TCS Specification 

The following shows the TCS specification for the Aspect Pascal metamodel. The 

lexical part is not included here but available at [GenAWeave, 2008]. 

 

syntax APascal { 

 

 primitiveTemplate identifier for String default using NAME: 

  value = "%token%"; 
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 primitiveTemplate stringSymbol for String using STRING: 

  value = "%token%", 

  serializer="'\'' + %value%.toCString() + '\''"; 

 

 primitiveTemplate integerSymbol for Integer default using INT: 

  value = "Integer.valueOf(%token%)"; 

 

 primitiveTemplate floatSymbol for Double default using FLOAT: 

  value = "Double.valueOf(%token%)"; 

 

 template Expression abstract; 

 

 template ParameterDef abstract; 

 

 template Element abstract; 

 

 template Advice abstract; 

 

 template Statement abstract; 

 

 template Domain 

  :  "domain" name ";" 

  ; 

 

 template Pointcut context addToContext 

  :  "pointcut" name "(" paramdefs{separator = ","} ")" 

      ":" pctexpr{separator = "&&"} ";" 

  ; 

 

 template BeforeAdvice 

  :  "before" "(" paramdefs{separator = ","} ")" ":" 

           pctname{refersTo = name} 

           "(" paramdefs{separator = ","} ")" 

        "{" 

      advStmt 

         "}" 

  ; 

 

 template AfterAdvice 

  :  "after" "(" paramdefs{separator = ","} ")" ":" 

           pctname{refersTo = name} 

           "(" paramdefs{separator = ","} ")" 

        "{" 

       advStmt 

         "}" 

  ; 

 

 template AroundAdvice 

  :  "around" "(" paramdefs{separator = ","} ")" ":" 

           pctname{refersTo = name} 

           "(" paramdefs{separator = ","} ")" 

        "{" 

      advStmt 

                "}" 

  ; 
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 template OpaqueStatement 

  :  stmt {as = stringSymbol} ";" 

  ; 

 

 template ProccedStatement 

  :  "proceed" "("  ")" ";" 

  ; 

 

template LoopStatement abstract; 

 

 template LoopExpr 

      :  "execution" "(" loopStmt ")" 

      ; 

 

     template LoopInitCondition abstract; 

 

     template LoopExitCondition abstract; 

 

     template LoopStrideCondition abstract; 

 

     template IntegerLoopInitCondition 

      :  "init" ":" condition 

      ; 

 

     template IntegerLoopExitCondition 

      :  "exitcond" ":" condition 

      ; 

 

     template IntegerLoopStrideCondition 

      :  "stride" ":" condition 

      ; 

 

     template StringLoopInitCondition 

      :  "init" ":" condition 

      ; 

    

template StringLoopExitCondition 

      :  "exitcond" ":" condition 

      ; 

 

     template StringLoopStrideCondition 

      :  "stride" ":" condition 

      ; 

 

 template TryCatchFinallyStatement 

      :  "try" "{" 

    stmts 

   "}" catchStmts 

   (isDefined(finallyStmts) ? 

    "finally" "{" 

     finallyStmts 

    "}" 

   ) 

  ; 
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 template Parameter 

  :  name 

  ; 

 

 template CatchStatement 

      :  "catch" "(" exceptions ")" "{" stmts "}" 

  ; 

 

     template ArgsExpr 

      :  "args" "(" name ")" 

      ; 

 

 template APascal main 

  :  domain "aspect" name "{" pointcut advice "}" 

  ; 

 

 template WithExpr 

     :  "with" "(" parent "." child ")" 

      ; 

 

 template ExecExpr 

      :  "execution" "(" funcOrProcSig ")" 

      ; 

  

template WithinCodeExpr 

      :  "withincode" "(" funcOrProcSig ")" 

      ; 

 

 template CallExpr 

      :  "call" "(" funcOrProcSig ")" 

      ; 

 

 template FunctionOrProcSignature abstract; 

 

 template FunctionOrProcCallExpr 

  :  name "(" params{separator = ","} ")" 

  ; 

 

 template FuncOrProcDefExpr abstract; 

 

 template FunctionOrProcDef abstract; 

 

 template FunctionDef 

  :  "function" 

     (isDefined(classifier) ? classifier ".") 

     name "(" paramdefs{separator = ";"} ")" 

  ; 

 

 template ProcedureDef 

  :  "procedure" 

     (isDefined(classifier) ? classifier ".") 

     name "(" paramdefs{separator = ";"} ")" 

  ; 
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template RoutineDef 

  :  wildcard 

     (isDefined(classifier) ? classifier ".") 

     name "(" paramdefs{separator = ";"} ")" 

  ; 

 

 template OPParamDef 

  :  name ":" type 

  ; 

 

 

 template ForLoop 

      :  "for" "(" loopInitCondition "," loopExitCondition ")" 

      ; 

 

     template WhileLoop 

      : "while" "(" loopExitCondition ")" 

      ; 

 

--- For Lexical Specification, refer to [GenAWeave, 2008] ---- 

 

} 
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The individual specifications within this Appendix show the KM3 and TCS 

specifications for the Aspect FORTRAN weaver that is extended from the Generic 

Aspect metamodel (GAspect).  

 

B.1. Aspect FORTRAN KM3 Specification 

 The following represents the complete KM3 specification for the Aspect 

FORTRAN metamodel, which is extended from the GAspect metamodel. The GAspect 

metamodel was earlier presented in Appendix A.1. and is not shown here. 

 

package AFortran { 

 

    class AFortran extends GAspect { } 

 

    abstract class FuncOrSubDefExpr extends Expression { 

         reference func_sub_Sig container : FuncOrSubSignature; 

    } 

 

    class ExecExpr extends FuncOrSubDefExpr { } 

 

    class WithinCodeExpr extends FuncOrSubDefExpr { } 

 

    class NotWithinCodeExpr extends FuncOrSubDefExpr { } 

 

    abstract class FuncOrSubSignature extends LocatedElement { 

    attribute name : String; 

    } 

 

    abstract class FuncOrSubDef extends FuncOrSubSignature { 

    reference paramdefs[*]  container : FortranParamDef; 

    } 

 

    class FuncDef extends FuncOrSubDef { } 

 

    class SubDef extends FuncOrSubDef { } 

 

    class FortranParamDef extends ParameterDef { } 

 

    class CallExpr extends Expression { 

    reference func_sub_Sig container : FuncOrSubSignature; 

    } 
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    class FuncOrSubCallExpr extends FuncOrSubSignature { 

    reference params[*]  container : Parameter; 

    } 

 

    class DoLoop extends LoopStatement { } 

} 

 

 

 

B.2. Aspect FORTRAN TCS Specification 

The following shows the TCS specification for the Aspect FORTRAN 

metamodel. The lexical part is not included here but available at [GenAWeave, 2008]. 

 

syntax AFortran { 

 

 primitiveTemplate identifier for String default using NAME: 

  value = "%token%"; 

 

 primitiveTemplate stringSymbol for String using STRING: 

  value = "%token%", 

  serializer="'\'' + %value%.toCString() + '\''"; 

 

 primitiveTemplate integerSymbol for Integer default using INT: 

  value = "Integer.valueOf(%token%)"; 

 

 primitiveTemplate floatSymbol for Double default using FLOAT: 

  value = "Double.valueOf(%token%)"; 

 

 template Expression abstract; 

 

 template ParameterDef abstract; 

 

 template Element abstract; 

 

 template Advice abstract; 

 

 template Statement abstract; 

 

 template Domain 

  :  "domain" name ";" 

  ; 

 

 template Pointcut context addToContext 

  :  "pointcut" name "(" paramdefs{separator = ","} ")" 

       ":" pctexpr{separator = "&&"} ";" 

  ; 
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 template BeforeAdvice 

  :  "before" "(" paramdefs{separator = ","} ")" ":" 

        pctname{refersTo = name} 

        "(" paramdefs{separator = ","} ")" 

       "{" 

    advStmt 

       "}" 

  ; 

 

 template AfterAdvice 

  :  "after" "(" paramdefs{separator = ","} ")" ":" 

        pctname{refersTo = name} 

        "(" paramdefs{separator = ","} ")" 

       "{" 

     advStmt 

       "}" 

  ; 

 

 template AroundAdvice 

  :  "around" "(" paramdefs{separator = ","} ")" ":" 

        pctname{refersTo = name} 

        "(" paramdefs{separator = ","} ")" 

       "{" 

    advStmt 

          "}" 

  ; 

 

 template Parameter 

  :  name 

  ; 

 

 template OpaqueStatement 

  :  stmt {as = stringSymbol} ";" 

  ; 

 

 template ProccedStatement 

  :  "proceed" "("  ")" ";" 

  ; 

 

      template LoopStatement abstract; 

 

 template LoopExpr 

      :  "execution" "(" loopStmt ")" 

      ; 

 

template LoopInitCondition abstract; 

 

     template LoopExitCondition abstract; 

 

     template LoopStrideCondition abstract; 

 

     template IntegerLoopInitCondition 

      : "init" ":" condition 

      ; 
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     template IntegerLoopExitCondition 

      : "exitcond" ":" condition 

      ; 

 

     template IntegerLoopStrideCondition 

      : "stride" ":" condition 

      ; 

 

template StringLoopInitCondition 

      : "init" ":" condition 

      ; 

 

template StringLoopExitCondition 

      : "exitcond" ":" condition 

      ; 

 

     template StringLoopStrideCondition 

      : "stride" ":" condition 

      ; 

 

    template ArgsExpr 

      : "args" "(" name ")" 

      ; 

 

template AFortran main 

  :  domain "aspect" name "{" pointcut advice "}" 

  ; 

 

template FuncOrSubSignature abstract; 

 

 template ExecExpr 

      :  "execution" "(" func_sub_Sig ")" 

      ; 

  

template WithinCodeExpr 

      :  "withincode" "(" func_sub_Sig ")" 

      ; 

 

 template NotWithinCodeExpr 

     :  "!" "withincode" "(" func_sub_Sig ")" 

      ; 

 

 template CallExpr 

      :  "call" "(" func_sub_Sig ")" 

      ; 

 

 

 template FuncOrSubCallExpr 

  :  "CALL" name "(" params{separator = ","} ")" 

  ; 

 

 template FuncOrSubDefExpr abstract; 

 

 template FuncOrSubDef abstract; 
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 template FuncDef 

  :  "FUNCTION" name "(" paramdefs{separator = ","} ")" 

  ; 

 

 template SubDef 

  :  "SUBROUTINE" name "(" paramdefs{separator = ","} ")" 

  ; 

 

 template FortranParamDef 

  : type name 

  ; 

 

 template DoLoop 

: "do" "(" loopInitCondition "," loopExitCondition ","  

           loopStrideCondition")" 

     ; 

 

--- For Lexical Specification, refer to [GenAWeave, 2008] ---- 

 

} 
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The individual specifications within this Appendix show the KM3 and TCS 

specifications for the target RSL used by the back-end PTE.  

 

C.1. KM3 Specification for RSL 

 The following represents the complete KM3 specification for RSL. 

 

package RSL { 

 

 abstract class LocatedElement { 

  attribute location : String; 

  attribute commentsBefore[*] ordered : String; 

  attribute commentsAfter[*] ordered : String; 

 } 

 

     abstract class RSLelements extends LocatedElement { 

      reference rsl : RSL oppositeOf rslelems; 

     }  

  

 class RSL extends LocatedElement { 

         reference domain container : Domain; 

         reference rslelems[*] container : RSLelements oppositeOf  

                                              rsl; 

  reference ruleset container : RuleSet; 

 } 

 

 class Domain extends LocatedElement { 

  attribute dname : String; 

 } 

 

 class Pattern extends RSLelements { 

  reference phead container : PatternHead; 

  attribute ptoken : String; 

  reference ptext container : PatternText; 

 } 

 

 abstract class PatternText extends LocatedElement { 

       attribute ptext : String; 

} 

 

 class SimplePatternText extends PatternText { } 

 

 class ConditionalPatternText extends PatternText { 

       reference pref container : PatternRef; 

     } 
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class ExternalPattern extends Pattern { 

  attribute dname : String; 

  attribute eptext : String; 

 } 

  

 class PatternHead extends LocatedElement { 

      attribute name: String; 

  reference params[*] container : PatternParameter; 

 } 

  

 class PatternParameter extends LocatedElement { 

  attribute name : String;  

  attribute referTo : String;  

 } 

  

 class Condition extends RSLelements { 

  reference chead container : ConditionHead; 

  attribute ctext  : String;   

 } 

  

 class ConditionHead extends LocatedElement { 

     attribute name: String; 

  reference params[*] container : ConditionParameter; 

 } 

  

 class ConditionParameter extends LocatedElement { 

  attribute name : String;  

  attribute referTo : String;  

 } 

 

 class Rule extends RSLelements { 

  attribute rname : String; 

  reference params[*] container : RuleParameter; 

  attribute type : String; 

  reference r_lhs_pattern container : RuleLHS; 

  reference r_rhs_pattern container : RuleRHS;  

 } 

 

 class RuleParameter extends LocatedElement { 

  attribute name : String;  

  attribute referTo : String;  

 } 

 

 class RuleLHS extends LocatedElement {   

  reference ruletext container : RuleText;  

 } 

 

 class RuleRHS extends LocatedElement { 

  reference ruletext container : RuleText; 

  reference condition[*] container: RuleCondition;  

    

 } 

  

     abstract class RuleText extends LocatedElement { 

          attribute text : String; 

     } 
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     class SimpleRuleText extends RuleText { }  

  

 class IDRuleText extends RuleText { }  

  

 class ComplexRuleText extends RuleText { 

         reference pref container : PatternRef;  

     }     

     

 abstract class RuleCondition extends LocatedElement { 

  attribute lhs:String; 

  reference pref container : PatternRef;     

 } 

  

class RuleEqCondition extends RuleCondition { } 

 

 class RuleNotEqCondition extends RuleCondition { } 

  

 abstract class Parameter extends LocatedElement { 

  attribute name : String;   

 }  

  

 class PatternRef extends Parameter { 

  reference params[*] container : Parameter; 

 } 

 

 class RealParameter extends Parameter { }  

 

 class RuleSet extends LocatedElement { 

  attribute rsname : String; 

  attribute rname[*] : String;   

 } 

  

} 

 

package PrimitiveTypes { 

 datatype Boolean; 

 datatype Integer; 

 datatype String; 

} 

 

 

C.2. TCS Specification for RSL 

 The following shows the TCS specification for RSL. Note that the source 

metamodels (concrete syntax) for Aspect Pascal and Aspect FORTRAN do not require 

the capture of any pretty printing information. However, the target RSL metamodel 

requires the capture of formatting information (e.g., indentIncr = 1) to decorate the 

generated output (RSL code). 
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syntax RSL { 

 

 primitiveTemplate identifier for String default using NAME: 

  value = "%token%"; 

 

 primitiveTemplate stringSymbol for String using STRING: 

  value = "%token%", 

  serializer="'\'' + %value%.toCString() + '\''"; 

 

primitiveTemplate treeFragmentSymbol for String using     

      TREEFRAGMENT: 

  value = "%token%"; 

 

 primitiveTemplate integerSymbol for Integer default using INT: 

  value = "Integer.valueOf(%token%)"; 

 

 primitiveTemplate floatSymbol for Double default using FLOAT: 

  value = "Double.valueOf(%token%)"; 

 

 template RSL main 

  :  [domain rslelems ] {nbNL = 2,indentIncr = 0,  

                                   startNL = false}  

     [ruleset]{nbNL = 1,indentIncr = 0}  

  ; 

 template RSLelements abstract; 

  

 template Domain  

  :  "default" "base" "domain" dname "." 

  ; 

 

 template ExternalPattern  

  :  "external" "pattern" phead ":"  

     ptoken ["="] {nbNL = 1,indentIncr = 1} eptext {as =  

                             stringSymbol} "in" "domain" dname "."  

  ; 

 

 template Pattern abstract 

  :  "pattern" phead ":" 

     ptoken  ["=" ptext  "."] 

  ; 

 

 template PatternText abstract; 

 

 template SimplePatternText 

  :  ptext{as = treeFragmentSymbol} 

  ; 

 

 template ConditionalPatternText 

  :  ptext "if" pref        

  ; 

   

 template PatternHead  

  :  name "(" params{separator = ","} ")"  

  ; 
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 template PatternParameter 

  : name ":" referTo 

  ; 

 

 template Condition  

  :  "external" "condition" chead  

     "=" ctext {as = stringSymbol} "." 

  ; 

 

 template ConditionHead  

  :  name "(" [params{separator = ","} ")"] {indentIncr = 1} 

  ; 

   

 template ConditionParameter 

  :  name ":" referTo 

  ; 

 

 template Rule  

  : "rule" rname "("  

    [params{separator = ","} ")"]{indentIncr = 1} ":"  

    [type "->" type]  "="  

         [r_lhs_pattern]  "->" 

    [r_rhs_pattern "."] 

  ; 

 

 template RuleParameter 

  :  name ":" referTo 

  ; 

   

 template RuleLHS 

  :  ruletext 

  ; 

 

 template RuleRHS 

  :  ruletext [condition] {indentIncr = 0} 

  ; 

   

 template RuleText abstract; 

  

 template SimpleRuleText 

  :  text{as = treeFragmentSymbol} 

  ; 

   

 template IDRuleText 

  :  text 

  ; 

   

 template ComplexRuleText 

  :  pref   

  ; 

     

 template RuleCondition abstract; 

  

 template RuleEqCondition 

  :  "if" lhs "==" pref 

  ;   
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 template RuleNotEqCondition 

  :  "if" lhs "~=" pref 

  ;   

 

 template Parameter abstract; 

 

 template PatternRef 

  :  name "(" params{separator = ","} ")"  

  ;     

  

 template RealParameter 

  :  name 

  ; 

   

 template RuleSet  

  :  "public" "ruleset" rsname "=" "{" rname 

               {separator = ","} "}" "." 

       

  ; 

 

--- For Lexical Specification, refer to [GenAWeave, 2008] ---- 

 

} 
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APPENDIX D 

 

MODEL TRANSFORMATION RULES FOR ASPECT PASCAL  

AND ASPECT FORTRAN WEAVER  
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The individual specifications within this Appendix show the model 

transformation rules for the Aspect Pascal and Aspect FORTRAN weavers. The visual 

comparisons between the model transformation rules for the two weavers are available at 

the GenAWeave project website [GenAWeave, 2008]. 

 

D.1. ATL Rule for Translating Call Expression Join Point in Aspect Pascal 

 The following ATL rule shows the complete specification for translating a 

primitive call expression join point in Aspect Pascal to low-level RSL code. 

 

module APascal2RSL; 

 

create OUT : RSL from IN : APascal; 

 

helper context String 

    def: startsWith(s : String) : Boolean = 

        s.size() <= self.size() and self.substring(1, s.size()) = s; 

 

helper context String 

    def: endsWith(s : String) : Boolean = 

        let start : Integer = self.size() - s.size() + 1 in 

            start > 0 and self.substring(start, self.size()) = s; 

 

rule ApDomain2RSLDomain { 

 from 

  s : APascal!Domain 

 to 

  t : RSL!Domain ( 

   dname <- s.name 

  ) 

} 

 

rule APascal2RSL { 

 from 

  s: APascal!APascal 

 to 

  t: RSL!RSL ( 

   domain <-  s.domain, 

   rslelems <- Sequence { 

     s.advice, 

               thisModule.PointCutExprToMethodName(             

                              s.pointcut->first().pctexpr->first()), 

     thisModule.PointCutExprToWithinCode(                   

                              s.pointcut->first().pctexpr->last()), 
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     s.pointcut->collect(e |   

                              thisModule.PointCutToExternalPattern(e)), 

          s.pointcut->collect(e |              

                              thisModule.PointCutToRule(e)) 

     }, 

   ruleset <- rs 

   ), 

   rs : RSL!RuleSet ( 

   rsname <- s.name, 

   rname <- s.pointcut->collect(e|e.name) 

  ) 

} 

 

rule BeforeAdvice2Pattern { 

 from 

  s : APascal!BeforeAdvice 

 to 

  t : RSL!Pattern ( 

   phead <- ph, 

   ptoken <- 'statement_list', 

       ptext <- spt 

  ), 

  ph : RSL!PatternHead ( 

   name <- 'before_advice_stmt' 

  ), 

  spt : RSL!SimplePatternText ( 

   ptext <- s.advStmt->iterate( 

e; acc : String = '' | acc + if acc = ''  

     then '' else '\r\n\t' endif + e.stmt 

   ) 

  ) 

} 

 

rule GenerateAfterAdviceDummy extends BeforeAdvice2Pattern { 

 from 

  s : APascal!BeforeAdvice ( 

not s.aspect.advice->exists(e |  

              e.oclIsKindOf(APascal!AfterAdvice)) 

  ) 

 to 

  t : RSL!Pattern, 

  at : RSL!Pattern ( 

   rsl <- s.aspect, 

   phead <- aph, 

   ptoken <- 'statement_list', 

       ptext <- aspt 

  ), 

  aph : RSL!PatternHead ( 

   name <- 'after_advice_stmt' 

  ), 

  aspt : RSL!SimplePatternText ( 

   ptext <- '' 

  ) 

} 
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rule AfterAdvice2Pattern { 

 from 

  s : APascal!AfterAdvice 

 to 

  t : RSL!Pattern ( 

   phead <- ph, 

   ptoken <- 'statement_list', 

   ptext <- spt 

  ), 

  ph : RSL!PatternHead ( 

   name <- 'after_advice_stmt' 

  ), 

  spt : RSL!SimplePatternText ( 

   ptext <- s.advStmt->iterate( 

                           e; acc : String = '' | acc + if acc     

                             = '' then '' else '\r\n\t' endif + e.stmt 

   ) 

  ) 

} 

 

rule GenerateBeforeAdviceDummy extends AfterAdvice2Pattern{ 

 from 

  s : APascal!AfterAdvice ( 

   not s.aspect.advice->exists(e |  

                           e.oclIsKindOf(APascal!BeforeAdvice)) 

  ) 

 to 

  t : RSL!Pattern, 

  bt: RSL!Pattern ( 

   rsl <- s.aspect, 

   phead <- bph, 

   ptoken <- 'statement_list', 

       ptext <- bspt 

  ), 

  bph : RSL!PatternHead ( 

   name <- 'before_advice_stmt' 

  ), 

  bspt : RSL!SimplePatternText ( 

   ptext <- '' 

  ) 

} 

 

lazy rule PointCutToExternalPattern { 

 from 

  s : APascal!Pointcut 

 to 

  t : RSL!ExternalPattern ( 

   dname <-  'ObjectPascal', 

   eptext <- 'around_advice_call', 

   ptoken <- 'ObjectPascal', 

   phead <- ph 

  ), 

  ph : RSL!PatternHead ( 

   name <-   'around_advice_call', 

   params <- Sequence {pp1,pp2,pp3,pp4,pp5,pp6} 

  ), 

  pp1 : RSL!PatternParameter ( 
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   name <- 'program', 

   referTo <- 'ObjectPascal' 

  ), 

  pp2 : RSL!PatternParameter ( 

   name <- 'method_name', 

   referTo <- 'IDENTIFIER' 

  ), 

  pp3 : RSL!PatternParameter ( 

   name <- 'proceed_call', 

   referTo <- 'IDENTIFIER' 

  ), 

  pp4 : RSL!PatternParameter ( 

   name <- 'proceed_bef', 

   referTo <- 'statement_list' 

  ), 

  pp5 : RSL!PatternParameter ( 

   name <- 'proceed_aft', 

   referTo <- 'statement_list' 

  ), 

  pp6 : RSL!PatternParameter ( 

   name <- 'withincode', 

   referTo <- 'IDENTIFIER' 

  ) 

} 

 

lazy rule PointCutExprToWithinCode { 

 from 

  s : APascal!Expression 

 to 

  t : RSL!Pattern ( 

   ptext <- spt , 

   ptoken <- 'IDENTIFIER', 

   phead <- ph 

  ), 

  ph : RSL!PatternHead ( 

   name <-   'within_code' 

  ), 

  spt : RSL!SimplePatternText ( 

  ptext <- if s.pointcut.pctexpr.size() > 1 then 

               ' '+ s.funcOrProcSig.name 

     else ' ' + 'mc_' endif 

 

  ) 

} 

 

 

lazy rule PointCutExprToMethodName { 

 from 

  s : APascal!Expression 

 to 

  t : RSL!Pattern ( 

   ptext <- spt, 

   ptoken <- 'IDENTIFIER', 

   phead <- ph 

  ), 

  ph : RSL!PatternHead ( 

   name <-   'method_name' 
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  ), 

  spt : RSL!SimplePatternText ( 

  ptext <- ' '+ s.funcOrProcSig.name 

  ) 

} 

 

lazy rule PointCutToRule { 

 from 

  s : APascal!Pointcut 

 to 

  t : RSL!Rule ( 

 

    rname <- s.name, 

    type <-   'ObjectPascal', 

    params <- Sequence {rp1}, 

    r_lhs_pattern <- rlhsp, 

    r_rhs_pattern <- rrhsp 

   ), 

   rp1: RSL!RuleParameter ( 

    name <- 'program', 

    referTo <- 'ObjectPascal' 

   ), 

   rlhsp : RSL!RuleLHS ( 

      ruletext <-   irt -- IDRuleText 

   ), 

   irt : RSL!IDRuleText ( 

    text <- 'program' 

   ), 

   rrhsp : RSL!RuleRHS ( 

      ruletext <-   crt, -- ComplexRuleText 

     condition <- Sequence {rcon} 

   ), 

   crt : RSL!ComplexRuleText ( 

    pref <- rule_rhs_pattern 

   ), 

   rule_rhs_pattern : RSL!PatternRef ( 

     name <-   'around_advice_call', 

     params <- Sequence {   

                                                   param1,  

                                                   param2, 

                                                   param3, 

                                                   param4, 

                                                   param5, 

                                                   param6 

 } 

   ), 

   param1 : RSL!RealParameter ( 

       name <- 'program' 

   ), 

   param2 : RSL!PatternRef ( 

       name <- 'method_name' 

   ), 

 

   param3 : RSL!PatternRef ( 

       name <- 'method_name' 

   ), 

   param4 : RSL!PatternRef ( 
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       name <-  'before_advice_stmt' 

   ), 

   param5 : RSL!PatternRef ( 

       name <-  'after_advice_stmt' 

   ), 

   param6 : RSL!PatternRef ( 

       name <-  'within_code' 

   ), 

   rcon :  RSL!RuleNotEqCondition ( 

       lhs <-  ' program', 

       pref <-   rule_rhs_cond 

   ), 

   rule_rhs_cond : RSL!PatternRef ( 

       name <-   around_advice_call', 

       params <- Sequence {p1,p2,p3,p4,p5,p6} 

   ), 

   p1 : RSL!RealParameter ( 

       name <- 'program' 

   ), 

   p2 : RSL!PatternRef ( 

       name <- 'method_name' 

   ), 

 

   p3 : RSL!PatternRef ( 

       name <- 'method_name' 

   ), 

   p4 : RSL!PatternRef ( 

       name <- 'before_advice_stmt' 

   ), 

   p5 : RSL!PatternRef ( 

       name <- 'after_advice_stmt' 

   ), 

   p6 : RSL!PatternRef ( 

       name <- 'within_code' 

   ) 

 

} 

 

 

D.2. ATL Rule for Translating Loop Expression Join Point in Aspect Pascal 

 The following ATL rule shows the complete specification for translating a loop 

expression join point in Aspect Pascal to low-level RSL code. 

 
 

module APascal2RSL; 

 

create OUT : RSL from IN : APascal; 

 

helper context String 

    def: startsWith(s : String) : Boolean = 

        s.size() <= self.size() and self.substring(1, s.size()) = s; 
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helper context String 

    def: endsWith(s : String) : Boolean = 

        let start : Integer = self.size() - s.size() + 1 in 

            start > 0 and self.substring(start, self.size()) = s; 

 

rule APascal2RSL { 

 from 

  s:  APascal!APascal 

 to 

  t:  RSL!RSL ( 

   domain <-  s.domain, 

   rslelems <- Sequence { 

     s.advice, 

     thisModule.PointCutExprToInitExpr(     

                              s.pointcut->first().pctexpr->first()), 

     thisModule.PointCutExprToExitExpr(   

                              s.pointcut->first().pctexpr->first()), 

     thisModule.PointCutExprToWithinCode(   

                              s.pointcut->first().pctexpr->last()), 

     s.pointcut->collect(e |  

                              thisModule.PointCutToExternalPattern(e)), 

           s.pointcut->collect(e |    

                              thisModule.PointCutToRule(e)) 

          }, 

   ruleset <- rs 

  ), 

  rs : RSL!RuleSet ( 

   rsname <- s.name, 

   rname <- s.pointcut->collect(e|e.name) 

  ) 

} 

 

 

rule ApDomain2RSLDomain { 

 from 

  s : APascal!Domain 

 to 

  t : RSL!Domain ( 

   dname <- s.name 

  ) 

} 

 

rule BeforeAdvice2Pattern { 

 from 

  s : APascal!BeforeAdvice 

 to 

  t : RSL!Pattern ( 

   phead <- ph, 

   ptoken <- 'statement_list', 

       ptext <- spt 

  ), 

  ph : RSL!PatternHead ( 

   name <- 'before_advice_stmt' 

  ), 

  spt : RSL!SimplePatternText ( 
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ptext <- s.advStmt->iterate( e; acc : String = '' |  

                    acc + if acc = '' then '' else                 

                      '\r\n\t' endif + e.stmt ) 

  ) 

} 

 

rule GenerateAfterAdviceDummy extends BeforeAdvice2Pattern { 

 from 

  s : APascal!BeforeAdvice ( 

   not s.aspect.advice->exists(e |  

                                   e.oclIsKindOf(APascal!AfterAdvice)) 

  ) 

 to 

  t : RSL!Pattern, 

  at : RSL!Pattern ( 

   rsl <- s.aspect, 

   phead <- aph, 

   ptoken <- 'statement_list', 

       ptext <- aspt 

  ), 

  aph : RSL!PatternHead ( 

   name <- 'after_advice_stmt' 

  ), 

  aspt : RSL!SimplePatternText ( 

   ptext <- '' 

  ) 

} 

 

rule AfterAdvice2Pattern { 

 from 

  s : APascal!AfterAdvice 

 to 

  t : RSL!Pattern ( 

   phead <- ph, 

   ptoken <- 'statement_list', 

      ptext <- spt 

  ), 

  ph : RSL!PatternHead ( 

   name <- 'after_advice_stmt' 

  ), 

  spt : RSL!SimplePatternText ( 

   ptext <- s.advStmt->iterate(e; acc : String = '' |  

                                        acc + if acc = '' then '' else  

                                         '\r\n\t' endif + e.stmt) 

  ) 

} 

 

rule GenerateBeforeAdviceDummy extends AfterAdvice2Pattern{ 

 from 

  s : APascal!AfterAdvice ( 

   not s.aspect.advice->exists(e |  

                            e.oclIsKindOf(APascal!BeforeAdvice)) 

  ) 

 to 

  t : RSL!Pattern, 

  bt: RSL!Pattern ( 

   rsl <- s.aspect, 
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   phead <- bph, 

   ptoken <- 'statement_list', 

       ptext <- bspt 

  ), 

  bph : RSL!PatternHead ( 

   name <- 'before_advice_stmt' 

  ), 

  bspt : RSL!SimplePatternText ( 

   ptext <- '' 

  ) 

} 

 

lazy rule PointCutExprToInitExpr { 

 from 

  s : APascal!Expression 

 to 

  t : RSL!Pattern ( 

   ptext <- spt, 

   ptoken <- 'NATURAL_NUMBER', 

   phead <- ph 

  ), 

  ph : RSL!PatternHead ( 

   name <-   'init' 

  ), 

  spt : RSL!SimplePatternText ( 

  ptext <-  if  

                        s.loopStmt.loopInitCondition.condition. 

                             toString() = '*'  then 

                            '123456789'  

   else           

      s.loopStmt.loopInitCondition.condition. 

     toString() 

        endif 

  ) 

 

} 

 

lazy rule PointCutExprToWithinCode { 

 from 

  s : APascal!Expression 

 to 

  t : RSL!Pattern ( 

   ptext <- spt , 

   ptoken <- 'IDENTIFIER', 

   phead <- ph 

  ), 

  ph : RSL!PatternHead ( 

   name <-   'within_code' 

  ), 

  spt : RSL!SimplePatternText ( 

   ptext <- if s.pointcut.pctexpr.size() > 1 then 

               ' '+ s.funcOrProcSig.name 

     else ' ' + 'wc_' endif 

 

  ) 

} 
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lazy rule PointCutExprToExitExpr { 

 from 

  s : APascal!Expression 

 to 

  t : RSL!Pattern ( 

   ptext <- spt, 

   ptoken <- 'NATURAL_NUMBER', 

   phead <- ph 

  ), 

  ph : RSL!PatternHead ( 

   name <-   'exit' 

  ), 

  spt : RSL!SimplePatternText ( 

  ptext <-  if  

                        s.loopStmt.loopInitCondition.condition. 

                             toString() = '*'  then 

                            '123456789'  

   else           

      s.loopStmt.loopInitCondition.condition. 

     toString() 

        endif 

  ) 

} 

 

lazy rule PointCutToExternalPattern { 

 from 

  s : APascal!Pointcut 

 to 

  t : RSL!ExternalPattern ( 

   dname <-  'ObjectPascal', 

   eptext <- 'around_advice_for', 

   ptoken <- 'ObjectPascal', 

   phead <- ph 

  ), 

  ph : RSL!PatternHead ( 

   name <-   'around_advice_for', 

   params <- Sequence {pp1,pp2,pp3,pp4,pp5,pp6} 

  ), 

  pp1 : RSL!PatternParameter ( 

   name <- 'program', 

   referTo <- 'ObjectPascal' 

  ), 

  pp2 : RSL!PatternParameter ( 

   name <- 'proceed_bef', 

   referTo <- 'statement_list' 

  ), 

  pp3 : RSL!PatternParameter ( 

   name <- 'proceed_after', 

   referTo <- 'statement_list' 

  ), 

  pp4 : RSL!PatternParameter ( 

   name <- 'withincode', 

   referTo <- 'IDENTIFIER' 

  ), 

  pp5 : RSL!PatternParameter ( 

   name <- 'init', 

   referTo <- 'NATURAL_NUMBER' 
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  ), 

  pp6 : RSL!PatternParameter ( 

   name <- 'exit', 

   referTo <- 'NATURAL_NUMBER' 

  ) 

} 

 

lazy rule PointCutToRule { 

 from 

  s : APascal!Pointcut 

 to 

  t : RSL!Rule ( 

 

    rname <- s.name, 

    type <-   'ObjectPascal', 

    params <- Sequence {rp1}, 

    r_lhs_pattern <- rlhsp, 

    r_rhs_pattern <- rrhsp 

   ), 

   rp1: RSL!RuleParameter ( 

    name <- 'program', 

    referTo <- 'ObjectPascal' 

   ), 

   rlhsp : RSL!RuleLHS ( 

    ruletext <-   irt  

   ), 

   irt : RSL!IDRuleText ( 

    text <- 'program' 

   ), 

   rrhsp : RSL!RuleRHS ( 

    ruletext <-   crt,  

    condition <- Sequence {rcon} 

   ), 

   crt : RSL!ComplexRuleText ( 

    pref <- rule_rhs_pattern 

   ), 

   rule_rhs_pattern : RSL!PatternRef ( 

    name <-   'around_advice_for', 

    params <-  Sequence {  

                                             param1, 

   param2, 

   param3, 

   param4, 

   param5, 

   param6 

  } 

   ), 

   param1 : RSL!RealParameter ( 

         name <- 'program' 

   ), 

   param2 : RSL!PatternRef ( 

       name <- 'before_advice_stmt' 

   ), 

 

   param3 : RSL!PatternRef ( 

       name <- 'after_advice_stmt' 

   ), 
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   param4 : RSL!PatternRef ( 

       name <- 'within_code' 

   ), 

   param5 : RSL!PatternRef ( 

       name <- 'init' 

   ), 

   param6 : RSL!PatternRef ( 

       name <- 'exit' 

   ), 

   rcon :  RSL!RuleNotEqCondition ( 

       lhs <- 'program', 

       pref <- rule_rhs_cond 

   ), 

   rule_rhs_cond : RSL!PatternRef ( 

       name <-  'around_advice_for', 

       params <- Sequence {p1,p2,p3,p4,p5,p6} 

   ), 

   p1 : RSL!RealParameter ( 

       name <- 'program' 

   ), 

   p2 : RSL!PatternRef ( 

       name <- 'before_advice_stmt' 

   ), 

 

   p3 : RSL!PatternRef ( 

       name <- 'after_advice_stmt' 

   ), 

   p4 : RSL!PatternRef ( 

       name <- 'within_code' 

   ), 

   p5 : RSL!PatternRef ( 

       name <- 'init' 

   ), 

   p6 : RSL!PatternRef ( 

       name <- 'exit' 

   ) 

} 

 

 

D.3. ATL Rule for Translating Loop Expression Join Point in Aspect FORTRAN 

 The following ATL rule shows the complete specification for translating a loop 

expression join point in Aspect FORTRAN to RSL code.  

 

module AFortran2RSL; 

 

create OUT : RSL from IN : AFortran; 

 

helper context String 

    def: startsWith(s : String) : Boolean = 

        s.size() <= self.size() and self.substring(1, s.size()) = s; 
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helper context String 

    def: endsWith(s : String) : Boolean = 

        let start : Integer = self.size() - s.size() + 1 in 

            start > 0 and self.substring(start, self.size()) = s; 

 

 

rule AFortran2RSL { 

 from 

  s:  AFortran!AFortran 

 to 

  t:  RSL!RSL ( 

   domain <-  s.domain, 

   rslelems <- Sequence { 

     s.advice, 

     thisModule.PointCutExprToInitExpr(  

                              s.pointcut->first().pctexpr->first()), 

          thisModule.PointCutExprToExitExpr(    

                              s.pointcut->first().pctexpr->first()), 

          thisModule.PointCutExprToWithinCode(   

                              s.pointcut->first().pctexpr->last()), 

            s.pointcut->collect(e |   

                              thisModule.PointCutToExternalPattern(e)), 

     s.pointcut->collect(e |   

                              thisModule.PointCutToRule(e)) 

     }, 

   ruleset <- rs 

  ), 

  rs : RSL!RuleSet ( 

   rsname <- s.name, 

   rname <- s.pointcut->collect(e|e.name) 

  ) 

} 

 

rule AFDomain2RSLDomain { 

 from 

  s : AFortran!Domain 

 to 

  t : RSL!Domain ( 

   dname <- s.name 

  ) 

} 

 

rule BeforeAdvice2Pattern { 

 from 

  s : AFortran!BeforeAdvice 

 to 

  t : RSL!Pattern ( 

   phead <- ph, 

   ptoken <- 'execution_part_construct_list', 

       ptext <- spt 

  ), 

  ph : RSL!PatternHead ( 

   name <- 'before_advice_stmt' 

  ), 

  spt : RSL!SimplePatternText ( 

   ptext <- s.advStmt->iterate( 

                                    e; acc : String = '' | acc + if acc  



  210  

                                      = '' then '' else '\r\n\t' endif               

                                          + e.stmt 

                                        ) 

  ) 

} 

 

rule GenerateAfterAdviceDummy extends BeforeAdvice2Pattern { 

 from 

  s : AFortran!BeforeAdvice ( 

   not s.aspect.advice->exists(e |  

                               e.oclIsKindOf(AFortran!AfterAdvice)) 

  ) 

 to 

  t : RSL!Pattern, 

  at : RSL!Pattern ( 

   rsl <- s.aspect, 

   phead <- aph, 

   ptoken <- 'execution_part_construct_list', 

       ptext <- aspt 

  ), 

  aph : RSL!PatternHead ( 

   name <- 'after_advice_stmt' 

  ), 

  aspt : RSL!SimplePatternText ( 

   ptext <- '' 

  ) 

} 

 

rule AfterAdvice2Pattern { 

 from 

  s : AFortran!AfterAdvice 

 to 

  t : RSL!Pattern ( 

   phead <- ph, 

   ptoken <- 'execution_part_construct_list', 

       ptext <- spt 

  ), 

  ph : RSL!PatternHead ( 

   name <- 'after_advice_stmt' 

  ), 

  spt : RSL!SimplePatternText ( 

   ptext <- s.advStmt->iterate( 

                                    e; acc : String = '' | acc + if acc  

                                      = '' then '' else '\r\n\t' endif               

                                          + e.stmt 

                                        ) 

  ) 

} 

 

rule GenerateBeforeAdviceDummy extends AfterAdvice2Pattern{ 

 from 

  s : AFortran!AfterAdvice ( 

   not s.aspect.advice->exists(e |  

                               e.oclIsKindOf(AFortran!BeforeAdvice)) 

  ) 

 to 

  t : RSL!Pattern, 
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  bt: RSL!Pattern ( 

   rsl <- s.aspect, 

   phead <- bph, 

   ptoken <- 'execution_part_construct_list', 

       ptext <- bspt 

  ), 

  bph : RSL!PatternHead ( 

   name <- 'before_advice_stmt' 

  ), 

  bspt : RSL!SimplePatternText ( 

   ptext <- '' 

  ) 

} 

 

lazy rule PointCutExprToInitExpr { 

 from 

  s : AFortran!Expression 

 to 

  t : RSL!Pattern ( 

   ptext <- spt, 

   ptoken <- 'LABEL', 

   phead <- ph 

  ), 

  ph : RSL!PatternHead ( 

   name <-   'init' 

  ), 

  spt : RSL!SimplePatternText ( 

  ptext <-    if                  

                           s.loopStmt.loopInitCondition.condition. 

                              toString() = '*'  then 

        '12345' 

     else                           

                                s.loopStmt.loopInitCondition.condition. 

                                   toString() 

     endif 

  ) 

 

} 

 

lazy rule PointCutExprToExitExpr { 

 from 

  s : AFortran!Expression 

 to 

  t : RSL!Pattern ( 

   ptext <- spt, 

   ptoken <- 'LABEL', 

   phead <- ph 

  ), 

  ph : RSL!PatternHead ( 

   name <-   'exit' 

  ), 

  spt : RSL!SimplePatternText ( 

  ptext <-    if                  

                           s.loopStmt.loopInitCondition.condition. 

                              toString() = '*'  then 

        '12345' 

     else                           
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                                s.loopStmt.loopInitCondition.condition. 

                                   toString() 

     endif 

  ) 

 

} 

 

lazy rule PointCutExprToWithinCode { 

 from 

  s : AFortran!Expression 

 to 

  t : RSL!Pattern ( 

   ptext <- spt , 

   ptoken <- 'NAME', 

   phead <- ph 

  ), 

  ph : RSL!PatternHead ( 

   name <-   'within_code' 

  ), 

  spt : RSL!SimplePatternText ( 

  ptext <- if s.pointcut.pctexpr.size() > 1 then 

               ' '+ s.func_sub_Sig.name 

     else ' ' + 'wc_' endif 

 

  ) 

} 

 

lazy rule PointCutToExternalPattern { 

 from 

  s : AFortran!Pointcut 

 to 

  t : RSL!ExternalPattern ( 

   dname <-  'FORTRAN', 

   eptext <- 'around_advice_do', 

   ptoken <- 'Fortran90_program', 

   phead <- ph 

  ), 

  ph : RSL!PatternHead ( 

   name <-   'around_advice_do', 

   params <- Sequence {pp1,pp2,pp3,pp4,pp5,pp6} 

  ), 

  pp1 : RSL!PatternParameter ( 

   name <- 'program', 

   referTo <- 'Fortran90_program' 

  ), 

  pp2 : RSL!PatternParameter ( 

   name <- 'proceed_bef', 

   referTo <- 'execution_part_construct_list' 

  ), 

  pp3 : RSL!PatternParameter ( 

   name <- 'proceed_after', 

   referTo <- 'execution_part_construct_list' 

  ), 

  pp4 : RSL!PatternParameter ( 

   name <- 'withincode', 

   referTo <- 'NAME' 

  ), 
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  pp5 : RSL!PatternParameter ( 

   name <- 'init', 

   referTo <- 'LABEL' 

  ), 

  pp6 : RSL!PatternParameter ( 

   name <- 'exit', 

   referTo <- 'LABEL' 

  ) 

} 

 

lazy rule PointCutToRule { 

 from 

  s : AFortran!Pointcut 

 to 

  t : RSL!Rule ( 

 

    rname <- s.name, 

    type <-   'Fortran90_program', 

    params <- Sequence {rp1}, 

    r_lhs_pattern <- rlhsp, 

    r_rhs_pattern <- rrhsp 

   ), 

   rp1: RSL!RuleParameter ( 

    name <- 'program', 

    referTo <- 'Fortran90_program' 

   ), 

   rlhsp : RSL!RuleLHS ( 

     ruletext <-   irt -- IDRuleText 

   ), 

   irt : RSL!IDRuleText ( 

    text <- 'program' 

   ), 

   rrhsp : RSL!RuleRHS ( 

     ruletext <-   crt, -- ComplexRuleText 

    condition <- Sequence {rcon} 

   ), 

   crt : RSL!ComplexRuleText ( 

    pref <- rule_rhs_pattern 

   ), 

   rule_rhs_pattern : RSL!PatternRef ( 

    name <-   'around_advice_do', 

    params <- Sequence {    

   param1, 

   param2, 

   param3, 

   param4, 

   param5, 

   param6 

 } 

   ), 

   param1 : RSL!RealParameter ( 

       name <- 'program' 

   ), 

   param2 : RSL!PatternRef ( 

       name <- 'before_advice_stmt' 

   ), 
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   param3 : RSL!PatternRef ( 

       name <- 'after_advice_stmt' 

   ), 

   param4 : RSL!PatternRef ( 

       name <- 'within_code' 

   ), 

   param5 : RSL!PatternRef ( 

       name <- 'init' 

   ), 

   param6 : RSL!PatternRef ( 

       name <- 'exit' 

   ), 

   rcon :  RSL!RuleNotEqCondition ( 

       lhs <-  'program', 

       pref <-  rule_rhs_cond 

   ), 

   rule_rhs_cond : RSL!PatternRef ( 

       name <-   'around_advice_do, 

       params <-  Sequence {p1,p2,p3,p4,p5,p6} 

   ), 

   p1 : RSL!RealParameter ( 

       name <- 'program' 

   ), 

   p2 : RSL!PatternRef ( 

       name <- 'before_advice_stmt' 

   ), 

 

   p3 : RSL!PatternRef ( 

       name <- 'after_advice_stmt' 

   ), 

   p4 : RSL!PatternRef ( 

       name <- 'within_code' 

   ), 

   p5 : RSL!PatternRef ( 

       name <- 'init' 

   ), 

   p6 : RSL!PatternRef ( 

       name <- 'exit' 

   ) 

} 
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The PARLANSE external functions that are reusable or shared among multiple 

weavers are shown in Appendix E.1.  

 

E.1. PARLANSE Reusable External Functions 

 The following PARLANSE external functions are useful for traversing the AST 

and match conditions specified by the RSL. The function name_begins_with is 

useful for matching names (e.g., function name, identifiers), which begin with the given 

input. This is equivalent to a wildcard search  name* in an aspect program. 

 

 

(define name_begins_with 

    (lambda Registry:MatchingCondition 

    (let (;; (= [search_string (reference string)]  

            (Graph:HGHandling:GetString arguments:1))   

            [start_index natural] 

      );; 

      (value 

     (;;  

       (= start_index  

         (Strings:Find  

           (AST:GetString arguments:1)  

           (AST:GetString arguments:2))) 

       (ifthen(== 1 start_index) 

         (return ~t) 

       )ifthen 

     );; 

    ~f 

     )value 

    )let 

    )lambda 

)define       

 

 

 

The function name_contains is useful for matching names (e.g., method 

name, identifiers), which include the given input. This is equivalent to a wildcard search  

*name* in an aspect program. 
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(define name_contains 

      (lambda Registry:MatchingCondition 

       (let (;;  

            (= [search_string (reference string)] 

            (Graph:HGHandling:GetString arguments:1))   

                              

         [start_index natural] 

     );; 

     (value 

   (;;  

                     (= start_index  

                  (Strings:Find  

                    (AST:GetString arguments:1)  

                    (AST:GetString arguments:2))) 

                (ifthen(> start_index 0) 

                  (return ~t) 

                )ifthen 

   );; 

   ~f 

  )value 

       )let 

      )lambda 

  )define 

 

The following external function GetChildFromParent is a helper routine 

useful for finding a child node with a given property from the parent node. 

 
 

(define GetChildFromParent  

    (lambda (function AST:Node  

         (structure 

      [parent_tree AST:Node] 

      [node_type natural]  

    )structure 

         critical                   

         )function 

    (let [child_node AST:Node] 

  (value 

     (;;  

        (= child_node (AST:FindChildWithProperty  

           parent_tree 

       (lambda (function boolean AST:Node 

       )function 

         (value (local (;; );;  

       (;;        

          (ifthen  

          (== (AST:GetNodeType ?) node_type) 

          (return ~t) 

         )ifthen 

         (return ~f) 

       );;  
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     )local 

      ~f 

         )value  

       )lambda  

     )         

        )   

      );; 

     child_node 

  )value 

     )let 

  )lambda 

)define 

 

 

 

The external function GetParentFromChild is a helper routine useful for 

finding a parent node with a given property from the child node. 

 

(define GetParentFromChild  

   (lambda (function AST:Node  

         (structure 

       [child_tree AST:Node] 

       [node_type natural] 

         )structure 

         critical                   

        )function 

   (let [parent_node AST:Node] 

      (value 

     (;;  

      (= parent_node  

        (AST:FindParentWithProperty  child_tree 

     (lambda (function boolean AST:Node 

     )function 

     (value (local (;; );;  

    (;;          

      (ifthen  

       (== (AST:GetNodeType ?) node_type) 

       (return ~t) 

      )ifthen 

      (return ~f) 

    );;  

        )local 

   ~f 

      )value  

     )lambda  

    )         

        )  

     );; 

     parent_node 

   )value 

     )let 

  )lambda 

)define 
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The PARLANSE external functions that are algorithm-specific or grammar-

dependent are shown in Appendix E.2. Reuse among these functions is more at the 

conceptual level. 

 

E.2. PARLANSE External Function for Loop Execution Join Point 

 The two external functions presented in Appendix E.2 show the internal details 

for implementing a loop execution join point for Object Pascal (for_loop) 

and FORTRAN (do_loop), respectively. Both these functions follow similar search 

algorithms. Thus, in order to implement a loop execution join point for a new 

language L, the external function for L should also follow the same conceptual algorithm 

and abstract program structure as used by the previous weavers. A careful observation 

reveals the dependency on the underlying grammar symbols (e.g., 

GrammarConstants:NodeTypes:_for_statement_1, 

GrammarConstants:NodeTypes:_block_do_construct_2) for the two 

external functions. However, the algorithm remains conceptually the same. 

(define around_advice_for 

  (lambda Registry:CreatingPattern 

 (value (local (;;  

       (= [proc_def_node AST:Node] AST:VoidNode) 

       (= [func_def_node AST:Node] AST:VoidNode)                       

       (= [for_stmt_node AST:Node] AST:VoidNode ) 

       (= [init_node AST:Node] AST:VoidNode) 

       (= [exit_node AST:Node] AST:VoidNode) 

       (= [slist_node AST:Node] AST:VoidNode)                     

       [parent AST:Node] 

       [representation_instance AST:RepresentationInstance] 

       [new_node AST:Node] 

       [new_node_1 AST:Node] 

       [empty_node AST:Node] 

       [semicolon AST:Node] 

       (= [ctr natural] 0)                 

       (= [withincode_node AST:Node] AST:VoidNode) 

     );; 
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     (;;                 

     (= representation_instance  

     (AST:GetForestRepresentationInstance  

     (AST:GetForest arguments:1 )   

     (AST:GetRepresentation arguments:1)))             

     (= empty_node (AST:CreateNode representation_instance   

     GrammarConstants:NodeTypes:_empty_statement_1))            

     (= semicolon (AST:CreateNode representation_instance  453)) 

 

     (AST:ScanTreeNodes  arguments:1 

  (lambda (function boolean AST:Node 

  )function 

   (value (local (;; );;  

   (;;           

   (ifthen (== (AST:GetNodeType ?)  

    GrammarConstants:NodeTypes:_IDENTIFIER) 

     (ifthen (== (@(AST:GetString ?))  

      (@(AST:GetString arguments:4))) 

       (;; 

       (= proc_def_node  

       (GetParentFromChild  

       ? GrammarConstants:NodeTypes: 

       _implementation_declaration_6)) 

       (= func_def_node  

       (GetParentFromChild   

       ? GrammarConstants:NodeTypes: 

       _implementation_declaration_7))     

       );; 

     )ifthen 

   )ifthen 

   (return ~t) 

   );;  

  )local 

  ~t 

      )value  

    )lambda  

  ) 

      

(ifthenelse(~= proc_def_node AST:VoidNode) 

      (= withincode_node proc_def_node) 

      (ifthen(~= func_def_node AST:VoidNode) 

       (= withincode_node func_def_node) 

      )ifthen 

      )ifthenelse 

    

(ifthen (== withincode_node AST:VoidNode) 

      (= withincode_node arguments:1) 

      )ifthen 

 

      (AST:ScanTreeNodes  withincode_node 

      (lambda (function boolean AST:Node 

      )function 

      (value (local (;; );;  

   (;;            

     (ifthen (== (AST:GetNodeType ?)  

     GrammarConstants:NodeTypes:_for_statement_1)     

      (;;          
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  (= init_node 

  (GetChildFromParent   

  (AST:GetNthChild ? 4)  

  GrammarConstants:NodeTypes:_NATURAL_NUMBER)) 

  (= exit_node  

  (GetChildFromParent   

  (AST:GetNthChild ? 6)  

  GrammarConstants:NodeTypes:_NATURAL_NUMBER))    

 

  (ifthen (!! 

    (!! (&&  

        (== (AST:GetNatural init_node)  

        (AST:GetNatural arguments:5)) 

     (== (AST:GetNatural exit_node)  

     (AST:GetNatural arguments:6)) 

        )&& 

        (&& (== 123456789  

        (AST:GetNatural arguments:5)) 

     (== (AST:GetNatural exit_node)  

     (AST:GetNatural arguments:6)) 

        )&&   

    )!! 

        (&& (== (AST:GetNatural init_node)  

        (AST:GetNatural arguments:5)) 

        (== 123456789  

        (AST:GetNatural arguments:6)) 

        )&&     

     )!! 

         (;; 

  (= ctr (+ ctr 1)) 

  (= for_stmt_node AST:VoidNode)                                                                                          

  (= for_stmt_node  (GetParentFromChild  

       init_node GrammarConstants: 

          NodeTypes:_for_statement_1)) 

  (= slist_node (GetParentFromChild  ? 

   GrammarConstants:NodeTypes:_statement_list_2))    

            

    (ifthen (~= for_stmt_node AST:VoidNode) 

    (;; 

      (= new_node  

      (AST:CreateNode representation_instance  

      GrammarConstants:NodeTypes:_statement_list_2))  

      (= new_node_1  

      (AST:CreateNode representation_instance 

      GrammarConstants:NodeTypes:_statement_list_2))  

      (= parent (AST:GetParent for_stmt_node))  

      (AST:ConnectNthChild new_node 1 arguments:2) 

      (AST:ConnectNthChild new_node 2 empty_node ) 

     (AST:ConnectNthChild new_node 3 new_node_1)                   

          (AST:ConnectNthChild new_node_1 1 for_stmt_node ) 

      (AST:ConnectNthChild new_node_1 2 semicolon ) 

      (AST:ConnectNthChild new_node_1 3 arguments:3 )      

      (AST:ReplaceNthChild parent 1 new_node) 

      (AST:ReplaceNthChild slist_node 2 empty_node)    

            );; 

     ) 

    );; 
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   )ifthen           

       );; 

      )ifthen          

    (return ~t) 

    );;  

   )local 

  ~t 

       )value  

      )lambda  

     ) 

    (return arguments:1)          

     );;   

     )local 

     (void AST:Node) 

   )value   

  )lambda 

 )define  

 

The following external function is used to implement a do loop execution join 

point in FORTRAN. It is similar to the previous function, but instead of for loop (as 

in case of Object Pascal), it searches for do loop in FORTRAN programs. 

 

 

(define around_advice_do 

  (lambda Registry:CreatingPattern 

   (value (local (;;  

   (= [sub_def_node AST:Node] AST:VoidNode) 

   (= [func_def_node AST:Node] AST:VoidNode)                     

   (= [do_stmt_node AST:Node] AST:VoidNode) 

   (= [init_node AST:Node] AST:VoidNode) 

   (= [exit_node AST:Node] AST:VoidNode)                     

   (= [withincode_node AST:Node] AST:VoidNode) 

   [parent AST:Node] 

   [representation_instance AST:RepresentationInstance] 

   [new_node_1 AST:Node]                     

   [new_node_2 AST:Node]                     

                    

   );;  

   (;;     

    (= representation_instance  

    (AST:GetForestRepresentationInstance  

    (AST:GetForest arguments:1 )   

    (AST:GetRepresentation arguments:1)))      

 

    (AST:ScanTreeNodes  arguments:1 

 

    (lambda (function boolean AST:Node 

    )function 
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    (value (local (;; );;  

  (;;            

    (ifthen (==  

    (AST:GetNodeType ?)  

    GrammarConstants:NodeTypes:_NAME) 

    (ifthen (==  

    (@(AST:GetString ?)) 

    (@(AST:GetString arguments:4))) 

    (;;                      

       (= sub_def_node  

       (GetParentFromChild  ?  

            GrammarConstants:NodeTypes: 

       _subroutine_subprogram_1)) 

       (= func_def_node  

       (GetParentFromChild  ?  

            GrammarConstants:NodeTypes:             

            _function_subprogram_1)) 

     );; 

    )ifthen 

   )ifthen 

   (return ~t) 

   );;  

 local 

 ~t 

    )value  

   )lambda  

  

(ifthenelse(~= sub_def_node AST:VoidNode)                

  (= withincode_node sub_def_node) 

     (ifthen(~= func_def_node AST:VoidNode) 

        (= withincode_node func_def_node) 

     )ifthen 

   )ifthenelse    

   (ifthen (== withincode_node AST:VoidNode)      

   (= withincode_node arguments:1)  

   )ifthen 

      

   (AST:ScanTreeNodes  withincode_node 

  (lambda (function boolean AST:Node 

  )function 

   (value (local (;; );;  

    (;;           

   (ifthen (== (AST:GetNodeType ?)  

    GrammarConstants:NodeTypes:_loop_control_1)   

     (;;        

   (= init_node (GetChildFromParent   

   (AST:GetNthChild ? 4)  

   GrammarConstants:NodeTypes:_LABEL)) 

   (= exit_node (GetChildFromParent   

   (AST:GetNthChild ? 6)  

   GrammarConstants:NodeTypes:_LABEL))    

            (ifthen  

             (!! 

     (!!        

                       (&& (== (AST:GetNatural init_node)  

            (AST:GetNatural arguments:5)) 

       (== (AST:GetNatural exit_node)  
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       (AST:GetNatural arguments:6)) 

        )&& 

        (&& (== 12345 (AST:GetNatural arguments:5)) 

       (== (AST:GetNatural exit_node)  

       (AST:GetNatural arguments:6)) 

       )&&   

           )!! 

       (&&  (== (AST:GetNatural init_node)  

            (AST:GetNatural arguments:5)) 

        (== 12345 (AST:GetNatural arguments:6)) 

       )&& 

         )!! 

         (;;  

                     (ifthen (~= init_node AST:VoidNode)                        

        (= do_stmt_node  (GetParentFromChild  

        init_node GrammarConstants:NodeTypes: 

        _block_do_construct_2)) 

      )ifthen 

  

               (ifthen (~= do_stmt_node AST:VoidNode) 

        (;; 

         (= new_node_1 (AST:CreateNode  

         representation_instance  

         GrammarConstants:NodeTypes: 

         _execution_part_construct_list_2))   

         (= new_node_2 (AST:CreateNode  

         representation_instance   

                        GrammarConstants:NodeTypes: 

         _execution_part_construct_list_2))     

         (= parent (AST:GetParent do_stmt_node)) 

  

               (AST:ConnectNthChild new_node_1 1 arguments:2) 

         (AST:ConnectNthChild new_node_1 2 new_node_2) 

         (AST:ConnectNthChild new_node_2 1 do_stmt_node) 

          (AST:ConnectNthChild new_node_2 2 arguments:3)   

         (AST:ReplaceNthChild parent 1 new_node_1)  

        );; 

        ) 

           );; 

               )ifthen                                 

                 );; 

              )ifthen          

    (return ~t) 

    );;  

    )local 

   ~t 

    )value  

   )lambda  

  )              

  (return arguments:1)          

  );;   

  )local 

  (void AST:Node) 

     )value   

  )lambda 

)define  
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The DMS PARLANSE functions required to specialize HPL are shown in this 

Appendix. 

 

F.1. PARLANSE External Function to Remove Macro Definitions from HPL 

 The following PARLANSE external function is used to remove macro definitions 

from HPL. Note that the function is actually called from the RSL shown in Figure 3-32. 

 

(define remove_macro 

  (lambda Registry:CreatingPattern 

 (value (local (;;  

       [empty_node AST:Node] 

       [representation_instance AST:RepresentationInstance] 

       [search_string (reference string)] 

       [comment_string string] 

       [out_file_name string] 

       [dir_name string] 

       [if_dir_node AST:Node] 

       [scanner StringScan:Scan] 

       [last_index natural] 

       [first_index natural] 

       [search_node AST:Node] 

       [comments CommentHashTree:SequenceOfComments] 

       [check_string string] 

       [rem_comments string] 

       [flag boolean] 

       (= [output_stream OutputStream:OutputStream]  

       OutputStream:VoidOutputStream) 

      );; 

 (;;            

  (= out_file_name (@ (AST:GetAbstractFileName arguments:1)))       

       (= first_index (Strings:LastIndex (. out_file_name) "\")) 

  (= dir_name (Strings:Segment (. out_file_name) 1 first_index)) 

  (= dir_name (concatenate dir_name (@  

  (AST:GetString arguments:2))))       

  (= last_index (Strings:Find (. out_file_name) (.`.c')))    

  (= out_file_name (Strings:Segment  

  (. out_file_name) first_index last_index))      

  (= out_file_name (concatenate out_file_name 

  (@ (AST:GetString arguments:2)))) 

  (= out_file_name (concatenate dir_name out_file_name))    

  (= output_stream (OutputStream:OpenFile (. out_file_name))) 
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       (AST:ScanTreeNodes  arguments:1         

  

  (lambda (function boolean AST:Node 

  )function 

   (value (local (;; );;  

   (;;   

   (= flag ~f) 

   (= rem_comments `') 

   (= comment_string `') 

   (= representation_instance  

   (AST:GetForestRepresentationInstance  

   (AST:GetForest arguments:1 )   

   (AST:GetRepresentation arguments:1)))      

   (= empty_node (AST:CreateNode representation_instance  

   GrammarConstants:NodeTypes:_identifier))  

    (ifthen(== ~t (AST:ContainsString ?)) 

   (;; 

   (= search_string (AST:GetString ?))     

   (ifthen (== (@ search_string) (@  

   (AST:GetString arguments:2))) 

   (;;           

     

   (= search_node (AST:GetParent (AST:GetParent ?))) 

   (= if_dir_node (AST:GetFirstChild  

   (AST:GetFirstChild search_node))) 

     

        (ifthen(== ~t (AST:HasPreComments if_dir_node)) 

      (;;          

      (= flag ~t) 

         (= comments (AST:GetPreComments if_dir_node))  

            

        (do [c natural] 1 (coerce natural  

             (upperbound (@ comments) 1)) 1 

             (;;  

             (= rem_comments (concatenate rem_comments 

             comments:c:CommentString)) 

(= rem_comments (append rem_comments "~l"))      

(= check_string (Strings:Segment 

             (. comments:c:CommentString) 1 12)) 

             (ifthen(== check_string `//>>>>>>HPL_') 

               (;; 

                (= rem_comments  

                (append rem_comments "~s")) 

                (= rem_comments (append rem_comments "~s")) 

                (= rem_comments (append rem_comments "~s")) 

                (= rem_comments (append rem_comments "~s")) 

                (= rem_comments (append rem_comments "~s")) 

                (= rem_comments (append rem_comments "~s")) 

               );; 

             )ifthen': 

             );;                 

            )do 

          );; 

         )ifthen          

     

    (= comment_string (concatenate `//>>>>>>' 

    (@ search_string))) 
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    (= comment_string  

    (concatenate comment_string  

    `<<<<<<<<<MARKER>>>>>>>>'))     

    (ifthen(== ~t flag) 

      (;;            

        (= comment_string (concatenate rem_comments  

        comment_string)) 

        (AST:SetUnitPreComment if_dir_node (. `')) 

      );; 

    )ifthen     

    (AST:SetString empty_node (. comment_string )) 

    (Registry:Print  

      (. `Cpp~~ISO14882c1998')  

         Registry:DefaultSyntaxTreeDomainRepresentation  

         search_node 

         output_stream)     

    (OutputStream:Put output_stream (.`$******$')) 

    (OutputStream:PutNewline output_stream)       

    (AST:ReplaceTree search_node empty_node)      

    (return ~t)           

    );; 

  )ifthen                 

      );; 

  )ifthen  

  );;  

 )local 

 ~t 

     )value  

   )lambda  

)define  

 

 

F.2. PARLANSE External Function to Specialize HPL  

 The following PARLANSE external function is used to specialize or add specific 

macros to the core HPL library based on the requirement (e.g., CBLAS, FBLAS or 

VSIPL).  

 

 

(define add_macro 

  (lambda Registry:CreatingPattern 

 (value (local (;;  

       [empty_node AST:Node] 

       [representation_instance AST:RepresentationInstance]                   

       [search_comments CommentHashTree:SequenceOfComments] 

       [comment_string string] 

       [input_file_name string] 

       [dir_name string]                     

       [last_index natural] 

       [first_index natural] 
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       [Line string] 

       [temp_line string]                     

       [comments CommentHashTree:SequenceOfComments] 

       [input_stream InputStream:InputStream] 

       [scanner StringScan:Scan ] 

       [string_len natural] 

       [rem_comments string] 

       [flag boolean] 

            

       );;  

   (;; 

  (= Line `') 

  (= flag ~f) 

  (= comment_string (concatenate `//>>>>>>'  

  (@ (AST:GetString arguments:2))))        

  (= comment_string (concatenate comment_string 

  `<<<<<<<<<MARKER>>>>>>>>')) 

  (= input_file_name (@ (AST:GetAbstractFileName arguments:1))) 

             

  (= first_index (Strings:LastIndex (. input_file_name) "\")) 

  (= dir_name (Strings:Segment (. input_file_name) 1 first_index)) 

  (= dir_name (concatenate dir_name (@  

       (AST:GetString arguments:2))))       

  (= last_index (Strings:Find (. input_file_name) (.`.c')))  

      

  (= input_file_name (Strings:Segment  

  (. input_file_name) first_index last_index))    

    

  (= input_file_name (concatenate input_file_name  

  (@ (AST:GetString arguments:2)))) 

  (= input_file_name (concatenate dir_name input_file_name)) 

  (= input_stream (InputStream:OpenFileUsingDefaultEncoding  

  (. input_file_name)))     

  (try (loop (;;  

              (= Line (InputStream:GetLine input_stream))                

              (= temp_line (concatenate temp_line Line)) 

              (= temp_line (append temp_line "~l")) 

        );; 

       )loop 

       (ifthenelse (== (exception) InputStream:EndOfInputStream) 

      (acknowledge 

        (;; 

     (= temp_line (concatenate temp_line `'))  

     ; make a dummy line to indicate EOF seen   

        );; 

      ) ; no more input 

   (propagate) 

       )ifthenelse 

       )try  

 

       (AST:ScanTreeNodes  arguments:1 

 

  (lambda (function boolean AST:Node 

  )function 

   (value (local (;; );;  

   (;; 

   (= Line `') 
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    (= flag ~f) 

      (ifthen(== ~t (AST:HasPreComments ?)) 

       (;; 

       (= comments (AST:GetPreComments ?))          

       (= rem_comments `') 

       (do [c natural] 1 (coerce natural  

       (upperbound (@ comments) 1)) 1 

         (;;                  

      (ifthenelse (== comments:c:CommentString  

                         comment_string) 

          (;; 

            (= flag ~t) 

     (= last_index (Strings:Find  

     (. temp_line) (.`$******$'))) 

     (= Line (Strings:Segment (. temp_line) 1  

     (-- last_index))) 

     (= Line (concatenate rem_comments Line)) 

     (= rem_comments `') 

     (= scanner (StringScan:MakeScan (.  

                         temp_line))) 

     (= string_len 0) 

     (while (== (StringScan:End? (. scanner)) ~f) 

       (;;        

       (= string_len (++ string_len)) 

       (StringScan:Advance (. scanner)) 

       );;  

     )while        

     (= temp_line (Strings:Segment (. temp_line) 

       (+ last_index 8) string_len))   

               );; 

          (;;                

            (= rem_comments (concatenate rem_comments 

             comments:c:CommentString)) 

            (= rem_comments (append rem_comments "~l"))   

          );; 

     )ifthenelse          

         );; 

        )do 

       );; 

     )ifthen          

     (ifthen(== ~t flag) 

     (;; 

     (= Line (concatenate Line rem_comments)) 

     (AST:SetUnitPreComment ? (. Line)) 

     );; 

    )ifthen 

   );;  

  )local 

  ~t 

      )value  

    )lambda  

  )define  
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