
GENAWEAVE: A GENERIC ASPECT WEAVER FRAMEWORK BASED ON

MODEL-DRIVEN PROGRAM TRANSFORMATION

by

SUMAN ROYCHOUDHURY

JEFF GRAY, COMMITTEE CHAIR

PURUSHOTHAM BANGALORE

BARRETT BRYANT

MARJAN MERNIK

ANTHONY SKJELLUM

RANDY SMITH

A DISSERTATION

Submitted to the graduate faculty of The University of Alabama at Birmingham,

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

BIRMINGHAM, ALABAMA

2008

Copyright by

Suman Roychoudhury

2008

iii

GENAWEAVE: A GENERIC ASPECT WEAVER FRAMEWORK BASED ON

MODEL-DRIVEN PROGRAM TRANSFORMATION

SUMAN ROYCHOUDHURY

COMPUTER AND INFORMATION SCIENCES

ABSTRACT

Legacy software affects critical functions of our daily lives (e.g., general

commercial transactions, scientific applications and military defense systems), and

represents a significant investment by government, scientific and corporate institutions.

As a consequence of the longevity of such systems, existing legacy software is subject to

decay over a period of time, making it increasingly difficult to address changing

stakeholder requirements. Modern research approaches for software engineering and

programming language design, such as aspect-oriented software development (AOSD),

have been investigated as effective techniques for improving modularization of software.

However, a general trend in research for supporting aspects has focused primarily on Java

as the target programming language, neglecting the multiple billions of lines of existing

code written in other languages. Rather than bringing the legacy code to existing Java-

based weavers, a viable alternative is to take Aspect-Oriented Programming (AOP)

principles to the legacy languages and tool environments.

Given the large number of programming languages currently in use, a solution

that mitigates the effort needed to create each new aspect weaver is more desirable than

an approach that manually recreates a weaver from scratch for each legacy language. The

research presented in this dissertation utilizes Program Transformation Engines (PTEs) to

construct aspect weavers for legacy languages. A core focus of the research is a generic

platform that permits reusability of software artifacts among aspect weavers constructed

iv

for various General-Purpose Languages (GPLs). In addition, the research described in

this dissertation aims to eliminate the accidental complexities that are typically associated

with using PTEs. In order to fulfill these two objectives, the research utilizes a model-

driven front-end that is layered on top of the program transformation based back-end.

Specifically, the research makes a contribution by combining Model-Driven Engineering

(MDE) with PTE to construct aspect weavers for GPLs through models and program

transformations. The approach described in the dissertation uses models to capture the

essence of various AOP language constructs at a higher-level of abstraction. These

models are then mapped to concrete weavers for GPLs through a combination of higher-

order model transformation and program transformation rules. A generic extension to the

framework further supports reusability of artifacts among weavers during the

construction process. In addition, the framework allows experimentation with new AOP

constructs (e.g., loops) and helps to evolve commercial and scientific software (e.g.,

Blitz++, HPL) maintained in legacy languages like Object Pascal, C and FORTRAN. The

research presented in this dissertation outlines several challenges that were identified in

providing a generic platform to create aspect weavers and demonstrates how each of

those challenges was mitigated during the course of this research.

v

DEDICATION

This work is dedicated to my beloved dad − I miss you in every moment of my life and I

wish you were here to see my dreams come true.

My mom − Without your blessings and unconditional love,

I would have never reached my goal.

My wife, Mohua – You supported me in every little thing that came my way

 and sacrificed a part of your life for the sake of mine. I hope I can

 make your dreams come true through mine.

My brother and sister-in-law − I was never short of encouragement and

 advice whenever I needed some, thank you for being there always.

vi

ACKNOWLEDGEMENTS

Foremost, I would like to thank my advisor, Dr. Jeff Gray, for providing me with

an opportunity to complete my Ph.D. thesis at the University of Alabama at Birmingham.

I especially want to thank him for his continuous support and able guidance that made

this work possible. Dr. Gray has been actively interested in my work and has always been

available to advise me. I am very grateful for his patience, motivation, enthusiasm, and

immense knowledge in the field of Computer Science, in particular, Software

Engineering and Aspect-Oriented Programming that, taken together, make him a great

advisor.

I would like to thank Dr. Anthony Skjellum and Dr. Purushotham Bangalore for

providing me with an opportunity to collaborate and conduct research in the field of high-

performance computing. Throughout the several research meetings we held together, I

gained immense knowledge that contributed to my own research, especially how

advanced software engineering principles could be applied to applications belonging to

high-performance computing. I am indebted to their valuable insights and thoughtful

advice during the course of my research.

I would like to thank Dr. Barrett Bryant for his course on Compiler Design that

helped me to understand the various technologies that I used in my research. I should also

mention that Dr. Bryant and Dr. Skjellum have often performed the role as my co-

advisors and I would regularly seek their kind advice to fulfill my research and career

goals.

vii

I would like to extend my appreciation to Dr. Marjan Mernik and Dr. Randy

Smith for accepting my invitation to serve on my thesis committee and thereby providing

me with valuable feedback to improve my research work.

I must sincerely thank Dr. Frédéric Jouault for his time and effort in assisting me

to overcome some of the difficult challenges that I was facing during the later stages of

my research. To Dr. Ira Baxter, I greatly appreciate your guidance on DMS and thank

you for the speedy response to all of my intricate questions that you answered with

minute detail and care.

I am also thankful to all the faculty members of the Computer and Information

Sciences Department at UAB, for the various courses they offered, which helped me to

broaden my knowledge and decide upon my research topic.

I would like to thank Rosanne Brill, Jim Sahaj, Sudeep Sabnis, Nguyen Long,

David Barron, Ken Lidster, Roger Andrews and all my fellow colleagues at Synergex

who provided me with valuable internship experience. The internship was a great

learning experience and I gained valuable knowledge working with their core compiler

team.

To my fellow coworkers at UAB, Robert Tairas, Shairaj Sheikh, Rajesh Sudarsan,

Nikhil Garge, Premkumar Somasundaram, Jing Zhang, Dr. Faizan Javed, Dr. Hui Wu,

Dr. Yuehua Lin, Dr. Shih-hsi Liu, Dr. Carl Wu, Dr. Francisco Hernandez and Ritu Arora,

I thoroughly enjoyed working with you all and will carry the wonderful memories of the

time we spent together for the rest of my life.

Finally, this dissertation research would not have been completed without the

caring and able support from the Computer and Information Sciences Department,

viii

especially Dr. John Johnstone, Janet Tatum, Kathy Baier and Fran Fabrizio, I am grateful

for your care and help.

ix

TABLE OF CONTENTS

 Page

ABSTRACT ... iii

DEDICATION ...v

ACKNOWLEDGEMENTS ... vi

LIST OF FIGURES ... xiii

LIST OF ABBREVIATIONS ... xvii

CHAPTER

1 INTRODUCTION ..1

1.1 Tools and Techniques to Support Modularization of Legacy Software3

1.2 Challenges of Language-Independent Legacy Modernization7

1.3 Research Objectives and Contributions ..10

1.4 Overview of the Research ...13

2 BACKGROUND ...17

2.1 Aspect-Oriented Programming ...17

 2.1.1 Separation of Concerns ..18

 2.1.2 Crosscutting Concerns and the Join Point Model20

2.2 Aspect Weaving ..22

 2.2.1 Current State-of-the-Art in Legacy AOP Modernization23

 2.2.2 Comparative Discussion of AOP Tools to Support

 Legacy Languages ...25

2.3 Program Transformation - Design Maintenance System28

 2.3.1 DMS Key Features and Support for Abstract Syntax Trees29

 2.3.2 Specifying Rewrites using DMS Rule Specification Language31

 2.3.3 Other Program Transformation Engines ..33

2.4 Model-Driven Engineering - AMMA ...35

 2.4.1 Kernel Meta-Meta Model ..35

2.4.2 Textual Concrete Syntax ..36

2.4.3 ATLAS Transformation Language ..37

2.4.4 Related Work ...39

x

 TABLE OF CONTENTS (Continued)

Page

CHAPTER

3 PROGRAM TRANSFORMATION BASED ASPECT WEAVER

 CONSTRUCTION ..41

3.1 An Aspect Weaver for Object Pascal..42

 3.1.1 Crosscutting Concerns in Object Pascal Application42

3.1.2 Weaver Transformation Rules for the Object Pascal

 Case Studies ..47

3.2 Weaving into C++ Template Libraries ..56

 3.2.1 Simple Pointcut Expressions for C++ Templates57

 3.2.2 Advanced Pointcut for C++ Templates ..60

 3.2.3 Template Weaving using Program Transformation66

3.3 Adaptation and Specialization of Scientific Libraries71

 3.3.1 Aspects in Blitz++ ..71

 3.3.2 Specializing HPL using Program Transformation79

3.4 Related Work ..86

3.5 Limitations of Program Transformation Engines ...89

4 GENERIC ASPECT WEAVER FRAMEWORK BASED ON

 MODEL-DRIVEN PROGRAM TRANSFORMATION92

4.1 Role of MDE in Aspect Weaver Construction ...93

 4.1.1 Challenges and Overview of GenAWeave Framework94

 4.1.2 Program Transformation Back-End ..96

 4.1.3 Challenges of Program Transformation Engine Usage97

4.2 Model-Driven Front-End ..99

 4.2.1 Metamodel for Front-End Aspect Language99

4.2.2 Implementing the Front-End Aspect Language with AMMA 102

4.3 Model Transformation ..105

 4.3.1 Program Transformation Rule Generator105

4.3.2 Target Metamodel for RSL ...106

4.3.3 Model Transformation using ATL ..108

4.3.4 Remaining Challenges to be Addressed by the Framework111

4.4 Extending to a Generic Framework ..112

 4.4.1 Support for a Generic Aspect Front-End ..114

 4.4.2 Generalizing the Rule Generator Design ..120

 4.4.3 Support for a Reusable Back-End ...126

4.5 Experimental Evaluation – Object Pascal and FORTRAN Weavers128

 4.5.1 Object Pascal Weaver .. 129

 4.5.2 FORTRAN Weaver ..133

 4.5.3 Join Point for Loops ..135

 4.5.4 Discussion of Experimental Results ...138

xi

 TABLE OF CONTENTS (Continued)

Page

CHAPTER

4.6 Integrating the GenAWeave Framework within Eclipse141

4.7 Related Work ..143

5 FUTURE WORK ...147

5.1 Improving Reusability of the Generic Aspect Metamodel148

5.2 Improving Reusability of the ATL Rule Generator149

5.3 Constructing Weavers for other GPLs ..151

5.4 Applying the approach to DSALs ...152

5.5 Applying the approach to Scientific Computing Applications152

5.6 Generic Refactoring and Generic Aspect-Mining Engines based on

 Model-Driven Program Transformation ...153

6 CONCLUSION ..155

6.1 Challenges addressed by the GenAWeave Framework156

6.2 Lessons Learned..158

LIST OF REFERENCES ...161

APPENDIX

 A ASPECT PASCAL METAMODEL SPECIFICATIONS174

A.1 Generic Aspect Metamodel KM3 Specification175

A.2 Aspect Pascal KM3 Specification ..177

A.3 Aspect Pascal TCS Specification ...178

B ASPECT FORTRAN METAMODEL SPECIFICATIONS183

B.1 Aspect FORTRAN KM3 Specification..184

B.2 Aspect FORTRAN TCS Specification ...185

C RSL METAMODEL SPECIFICATION FOR BACK-END PTE189

C.1 KM3 Specification for RSL ...190

C.2 TCS Specification for RSL ..192

xii

 TABLE OF CONTENTS (Continued)

Page

APPENDIX

D MODEL TRANSFORMATION RULES FOR ASPECT PASCAL

 AND ASPECT FORTRAN WEAVER ..196

D.1 ATL Rule for Translating Call Expression Join Point in

 Aspect Pascal ...197

D.2 ATL Rule for Translating Loop Expression Join Point in

 Aspect Pascal ...202

D.3 ATL Rule for Translating Loop Expression Join Point in

 Aspect FORTRAN ...208

E BACK-END WEAVER TRANSFORMATION FUNCTIONS215

E.1 PARLANSE Reusable External Functions216

E.2 PARLANSE External Function for Loop Execution Join Point219

F DMS PARLANSE FUNCTIONS TO SPECIALIZE HPL225

F.1 PARLANSE External Function to Remove

 Macro Definitions from HPL ...226

F.2 PARLANSE External Function to Specialize HPL228

xiii

 LIST OF FIGURES

Figure Page

1-1 The current state of legacy software ...2

1-2 Overview of model-driven aspect weaver framework ...13

1-3 Overview of topics discussed in dissertation ...15

2-1 AOP and separation of concerns ..19

2-2 AspectJ specification to capture logging in BizObject’s methods22

2-3 Overview of back-end transformation process ...31

2-4 A simple example of a program transformation rule that illustrate

 aspect weaving of before advice ..32

2-5 An example of ATL transformation ...38

3-1 Progress meter updating ...43

3-2 Exception handling code for processing dialog ...43

3-3 Logging of SQL query Data Definition Language (DDL) statements44

3-4 Preamble for widget button clicks ..45

3-5 Synchronization in a database error handler ..47

3-6 Transformation rule for updating progress meter ...48

3-7 Transformation rule for SQL logging ..50

3-8 Visitor function written in PARLANSE ..51

3-9 RSL rule for weaving dirty bits ..53

3-10 PARLANSE external condition function func_sig_has_click54

xiv

3-11 RSL rule for modularizing synchronization ..55

3-12 An example class with multiple template instantiations58

3-13 STL vector class and its usage ..60

3-14 STL vector$1 class with updated references in Application instances62

3-15 Scope designators in pointcut expressions ..63

3-16 Aspect specification for inserting the push_back log to all

 vectors of ANY type in ANY class...64

3-17 Pointcut specification for weaving into all vectors of type

 int in ANY class ..65

3-18 Pointcut specification for weaving into all vectors of

 type int in class A ..65

3-19 Pointcut specification for weaving into all vectors of type

 int in method foo of class A ..65

3-20 Pointcut specification for weaving into vectors of type int and

 referenced by variable ai in method foo of class A ...65

3-21 Overview of template weaving process ..66

3-22 DMS transformation rules for weaving log statement

 into push_back method ..68

3-23 DMS transformation rules to update the application program70

3-24 Precondition check and setupStorage in Blitz++

 array implementation ...75

3-25 Aspect specification for precondition and memory

 allocation in templates ...75

3-26 Redundant assertion check on base template specification76

3-27 Aspect specification for redundant assertion checks ..76

3-28 Subset of base pattern used to generate the vector operation template78

3-29 Rules used to generate mathematical operations using a base

 template definition ...79

xv

3-30 Preprocessor directives in a HPL software package ...81

3-31 Specialization overview of HPL software package ...82

3-32 Transformation rule for specializing macro definitions in HPL83

3-33 Comparing size of HPL BLAS library before and after specialization84

3-34 Time and performance analysis between HPL-ALL vs. HPL-CBLAS85

4-1 Overview of our model-driven aspect weaver framework95

4-2 Subset of Aspect Pascal metamodel represented as a class diagram100

4-3 KM3 specification (snippet) for Aspect Pascal ...103

4-4 TCS specification (snippet) for Aspect Pascal ..104

4-5 Subset of the RSL metamodel (as a class diagram) ..107

4-6 Model transformation scenario for generating RSL rules from aspects108

4-7 ATL transformation (snippet) from Aspect Pascal to RSL110

4-8 Class Diagram (snippet) of Aspect Pascal extending from a common

 Generic Aspect metamodel ..116

4-9 Metamodel (snippet) of Aspect FORTRAN conforming to a common

 Generic Aspect metamodel ..118

4-10 TCS specification showing differences in concrete syntax for Aspect

 FORTRAN (top) and Aspect Pascal metamodel (bottom)118

4-11 ATL specification used to generate lower-order

 transformation rules (RSL) for weaving Object Pascal source program123

4-12 ATL specification used to generate lower-order transformation

 rules (RSL) for weaving FORTRAN source program ..124

4-13 Reusable external function in the GenAWeave framework127

4-14 Aspect to capture progress meter updating ..130

4-15 Aspect Pascal model generated from Aspect Pascal source program131

xvi

4-16 Aspect to capture synchronization in a database error handler132

4-17 Generated Aspect Pascal model from Aspect Pascal source program133

4-18 Encryption of messages during MPI_SEND ...134

4-19 Aspect to enable encryption during MPI calls ..135

4-20 Adding timer around do loops ...136

4-21 Aspect to add timer around do loops ...137

4-22 Aspect FORTRAN model generated from source aspect program137

4-23 A comparative analysis of model transformation rules139

4-24 Reusability summary for FORTRAN and Object Pascal weavers141

4-25 GenAWeave framework within Eclipse ..142

4-26 Syntax errors displayed within the editor ..143

5-1 Improving the front-end metamodel design ..149

5-2 An example showing ATL rule inheritance ..150

xvii

LIST OF ABBREVIATIONS

ANT Another Neat Tool

AMMA ATLAS Model Management Architecture

AMW Atlas Model Weaver

ANTLR ANother Tool for Language Recognition

AOL Aspect-Oriented Language

AOM Aspect-Oriented Modeling

AOP Aspect-Oriented Programming

AOSD Aspect-Oriented Software Development

API Application Programming Interface

ASF Algebraic Specification Formalism

AST Abstract Syntax Tree

ASTM Abstract Syntax Tree Metamodel

ATL Atlas Transformation Language

BLAS Basic Linear Algebraic Subprograms

BNF Backus-Naur Form

CBLAS C implementation of BLAS

CLI Common Language Infrastructure

CMOF Complete Meta-Object Facility

DDL Data Definition Language

DDMM Domain Definition Metamodel

xviii

DLL Dynamic Link Library

DMS Design Maintenance System

DOM Document Object Model

DSAL Domain-Specific Aspect Language

DSL Domain-Specific Language

DSM Domain-Specific Modeling

EMF Eclipse Modeling Framework

EMOF Essential Meta-Object Facility

FBLAS Fortran implementation of BLAS

GME Generic Modeling Environment

GMF Graphical Modeling Framework

GPAL General-Purpose Aspect Language

GPL General-Purpose Language

GUI Graphical User Interface

HPL High Performance Linpack

IDE Integrated Development Environment

IL Intermediate Language

JPM Join Point Model

JPS Join Point Shadows

JTS Jakarta Tool Suite

KM3 Kernel Meta-Meta Model

LOC Lines of Code

MDA Model-Driven Architecture

xix

MDE Model-Driven Engineering

MDR Metadata Repository

MOF Meta-Object Facility

MPI Message Passing Interface

OCL Object Constraint Language

OMG Object Management Group

PARLANSE PARallel LANguage for Symbolic Expressions

PTE Program Transformation Engine

QVT Query View Transformations

RSL Rule Specification Language

SDF Syntax Definition Formalism

SOC Separation of Concerns

SQL Structured Query Language

STL Standard Template Library

TCS Textual Concrete Syntax

TS Technical Space

TXL Tree TRANSformation Language

UML Unified Modeling Language

VSIPL Vector Signal Image Processing Library

 1

CHAPTER 1

INTRODUCTION

A long-standing goal of software engineering is to construct software that is easily

modified and extended. The desired result is to achieve modularization such that a change

in a design decision is isolated to one location of a program [Parnas, 1972]. The

proliferation of software in everyday life (e.g., embedded systems in avionics software

[Sharp, 2000], and software that enables commercial transactions [Arranga, 2000]) has

augmented the conformity and invisibility of software. As demands for software increase,

future requirements will necessitate new strategies for improved modularization and

restructuring in order to support the requisite adaptations [Chaplin et al., 2001; Masuhara

and Kiczales, 2003; Cazzola et al., 2005].

Moreover, software maintenance is a very costly and time consuming part of the

software life cycle [Schach and Tomer, 2000]. The problems are even more compelling

when maintaining legacy code [Ulrich, 2002], which adds a significant cost to many

engineering organizations [Capra et al., 2007]. Recent IT market research [McKinsey,

2004; CHAOS, 2006] shows that customization, including legacy modernization and

integration projects, represents more than 50% of the annual $230 billion spent on all

software budgets. Average maintenance costs are higher than development costs. This is

because organizations spend an enormous amount of time and money to understand the

details of implementing a software system before deciding what changes were needed to

 2

realize them. Over a period of twenty years of research in the field of software

maintenance, Lehman et al. published the eight Laws of Evolution [Lehman et al., 1997].

Key findings of his research include that maintenance is really a series of evolutionary

developments and that maintenance decisions are aided by understanding what happens

to systems (and software) over time. Lehman et al. demonstrated that systems must be

continually adapted, else they become progressively less satisfactory and are subject to

decay over a period of time. Moreover, as they evolve, systems become more complex

unless some action is taken to reduce the complexity.

Figure 1-1 – The current state of legacy software

Figure 1-1 shows this current state of legacy software. Presently, there are literally

multiple billions of lines of legacy code maintained in hundreds of disparate languages

and paradigms [Lämmel and Verhoef, 2001]. Such an enormous amount of legacy code

exists in large proportions in commercial, embedded and scientific domains. In fact, a

Commercial + Scientific

Applications

 200 Billion Lines

 of COBOL Source

Migration is not an

easy task!
 Infrastructure, money,

 effort already spent

COBOL

Legacy

Software

FORTRAN

Object Pascal

 3

Gartner report, as cited in [Ulrich, 2002], estimates that there are at least 200-250 billion

lines of existing COBOL code in production use (of course, the total amount of legacy

code is much higher when other languages are considered). A considerable amount of

time, effort and money have been invested in building large infrastructure to construct

legacy software.

In spite of the significant investments and proliferation of legacy software

systems, the majority of language researchers and tool vendors have focused their

attention on just a few popular languages, such as C++ and Java. A naïve proposal would

attempt to migrate the existing legacy code into a modern object-oriented language like

Java. Such a proposition is often not possible due to cultural and political concerns within

the institution that owns the legacy system [Ulrich, 2002]. There is a strong need for

improving the process of software maintenance by using modern software engineering

tools and advanced modularization techniques that may reduce development time, save

valuable labor resources, and improve the quality of the software system [Schutter and

Adams, 2007].

1.1 Tools and Techniques to Support Modularization of Legacy Software

To support software adaptation and evolution of legacy software [Baxter, 1992],

new paradigms such as Aspect-Oriented Software Development (AOSD)

(http://www.aosd.net), have shown initial promise in assisting a developer in isolating

points of variation and configurability [Filman et al., 2004]. It has been observed that

some programming languages provide modularization mechanisms that force other non-

orthogonal concerns to be scattered and tangled across a code base [Tarr et al., 1999;

 4

Giese and Vilbig, 2006]. For example, a credit card processing system‟s core concern

would process payments, while its system-level concerns would handle logging,

transaction integrity, authentication, security and performance. Many such concerns tend

to affect multiple implementation modules. Using current object-oriented programming

methodologies, these non-orthogonal concerns span over multiple modules, resulting in

systems that are harder to design, understand, implement, and evolve.

Aspects are a new language construct for cleanly separating concerns that

crosscut the modularization boundaries of an implementation [Kiczales et al., 2001]. In a

fundamentally new way, aspects permit a software developer to quantify, from a single

location, the effect of a concern across a body of code [Filman and Friedman, 2004], thus

improving overall modularization. A translator called a weaver is responsible for merging

the separated aspects with the base code. The focus of the research presented in this

dissertation is primarily based on the idea of constructing aspect weavers for multiple

legacy languages using a generalized approach.

An additional approach for improving software modularization is refactoring,

which has been defined as “the process of changing a software system in such a way that

it does not alter the external behavior of the code, yet improves its internal structure”

[Fowler et al., 1999]. Refactoring has transitioned from research into everyday software

practice as an effective means for evolving software and improving modularization

[Opdyke, 1992; Mens and Tourwe, 2003; Dig and Johnson, 2005]. Refactoring features

are built into many modern development environments (e.g., Java refactoring support in

Eclipse – http://www.eclipse.org). However, like AOSD, mature refactoring engines

 5

support only a couple of prominent languages; consequently, many other languages are

ignored, resulting in an inability to apply modern principles to legacy source.

Research into software transformation techniques, and the resulting tools

supporting the underlying science, has enhanced the ability to modify the structure and

function of a software representation in order to address changing stakeholder

requirements [Griswold and Notkin, 1993]. Such software transformation techniques can

be categorized as being either horizontal, or vertical [Czarnecki and Helsen, 2006]. The

research into horizontal transformation pertains to modification of a software artifact at

the same abstraction level. This is the typical connotation when one thinks of the term

transformation, with examples being code refactoring at the implementation level

[Fowler et al., 1999], and model transformation at a higher design level [Agrawal, 2003].

Horizontal transformation systems often lead to invasive composition of the software

artifact [Aßmann, 2003]. Vertical transformation is typically more appropriately called

translation (or synthesis) because a new artifact is being synthesized from a different

abstraction level (e.g., model-driven software synthesis [Neema et at., 2002], and reverse

engineering). Vertical transformations are more generative in nature [Czarnecki and

Eisenecker, 2000]. There has been prior research that combines both levels as

demonstrated by [Gray et al., 2003], i.e., horizontal transformation from the investigation

into aspect model weaving, and vertical translation from model-driven code generation.

Typically, Program Transformation Engines (PTEs) are well-suited for modifying

artifacts at a lower-level of abstraction (i.e., program source code) [Baxter et al., 2004].

Model-Driven Engineering (MDE) is useful for transforming artifacts at a higher-level of

abstraction (i.e., software modeling level) [Schmidt, 2006]. An investigation of the

 6

underlying science that combines these two technical spaces (i.e., source code and

software models) may realize more benefits than each considered separately. Therefore,

transformation techniques that operate jointly at both levels of software abstraction can

benefit from the collective usage of both PTEs and MDE. This is exactly the vision of the

research presented in this dissertation. The research utilizes the combined power of

mature PTEs and MDE tools to modernize legacy software artifacts. Higher-order

transforms at the modeling level are used to generate lower-order transforms operating at

the source code level.

In particular, the research described in this dissertation provides a general

framework to construct aspect weavers based on model-driven program transformation

for legacy software artifacts. The term framework is both conceptual and practical in

nature. The conceptual part of the framework refers to the preferred approach towards

constructing aspect weavers in a generalized way. According to [Fayad and Schmidt,

1997], “A framework is a reusable, „semi-complete‟ application that can be specialized to

produce custom applications.” In the context of the above definition, the practical nature

of the GenAWeave framework refers to the reusable design that includes a generic

metamodel and model transformation libraries that produce concrete program

transformation rules for various General-Purpose Languages (GPLs). In addition, the

framework provides extension points that allow new features to be added to existing

weavers.

One of the aims of a general framework is to define a set of reusable components

(i.e., generic transformations and generic metamodel) that can be suitably applied across

 7

a wide of range of languages. However, there are several key challenges towards the

construction of a generic framework and are summarized in the following section.

1.2 Challenges of Language-Independent Legacy Modernization

As a result of programming language research over the past fifty years, a veritable

“Tower of Babel” exists with multiple billions of lines of legacy code maintained in

hundreds of different languages [Lämmel and Verhoef, 2001]. In fact, legacy languages

are estimated to account for a large percentage of existing production software [Ulrich,

2002]. Yet, the majority of Aspect-Oriented Programming (AOP) [Kiczales et al., 1997]

research is focused on just a few modern languages, such as Java. A generalized approach

that brings aspects to legacy software is still missing. An attempt to migrate legacy code

into modern object-oriented languages is often resisted by organizations because of their

prior investments to build such systems. Moreover, migration is a complex task and may

induce new undesirable faults that were not earlier present in a stable legacy code base.

 Rather than bringing the code to existing Java-based weavers, an alternative is to

take AOP principles to the legacy languages and tool environments [Schutter and Adams,

2007; Gray and Roychoudhury, 2004]. Given the large number of languages in use, a

solution that mitigates the effort needed to create each new weaver is more desirable than

an approach that manually recreates a weaver from scratch for each legacy language.

Programming languages can be clustered into classes with structural and/or semantic

similarities and the knowledge that is gained while constructing a weaver for one specific

language can be reused during another construction for a different language. However,

there are several key challenges to providing an initial methodology that allows

 8

experimentation with aspects in languages other than Java. Some of the research

questions that immediately follow are:

 Is there a technique to construct aspect weavers for legacy languages without

extending or inventing a new parser (or compiler) from scratch?

 Can such a construction be supported in a more generic or language-

independent way?

 Can the knowledge of building a weaver from a previous construction be re-

used in a different language and platform context?

This core set of questions lead to four major obstacles toward adoption of aspects

for legacy software. These obstacles and challenges are summarized in the remainder of

this subsection.

Challenge C1 - The Parser Construction Problem: Building a parser for a toy

language, or a subset of an existing language, is not difficult. However, designing a

parser that is capable of handling millions of lines of production legacy code is an

onerous task. As observed in [Lämmel and Verhoef, 2001], “Measuring this and other

projects, it became clear to us that the total effort of writing a grammar by hand is orders

of magnitude larger than constructing the renovation tools themselves. So the dominant

factor in producing a renovation tool is constructing the parser.” Moreover, constructing

analysis and modification tools for software assets is a laborious process. The first thing

that is required to implement a new maintenance tool is the underlying parser for a

specific programming language. Parser development for any of the legacy languages in

use today implies a major up-front investment [Lämmel and Verhoef, 2001]. For

assessment purposes, software developers who want to explore the capabilities of aspects

 9

in legacy systems will require industrial-scale parsers to allow them to evaluate the

feasibility of adoption within their organization. Incomplete parsers for small research

prototypes will not scale and may leave a negative first impression of aspects.

Challenge C2 - The Weaver Construction Problem: When a new program

restructuring or modularization idea is conceived (e.g., AOP), it is often desired to impart

the idea to older legacy applications. In order to realize such an objective, a capability is

needed to perform the underlying transformations and rewrites on a syntax tree or on an

abstract model. This is not an easy task and requires considerable effort to provide a

sound infrastructure for program transformation. However, it is often the case that the

integration efforts to support a core set of transformations are repeated for each language

to which the new idea is applied. Such repetition of effort is unfortunate and strongly

suggests the need for further generalization of transformation objectives.

Challenge C1 and part of Challenge C2 can be addressed by using program

transformation techniques [Gray and Roychoudhury, 2004], where, full-fledged parsers

available in program transformation frameworks can be reused to assist in constructing

aspect weavers. PTEs generally have support for low-level rewriting (i.e., by using term-

rewriting or graph-rewriting [Aßmann and Ludwig, 1999]) that can be used to construct

aspect weavers for multiple GPLs. However, the abstraction level at which these

transformation systems operate is too low for general-purpose software development.

Moreover, the core set of transformations has to be customized for each language. These

two additional challenges are discussed in the following paragraphs.

 Challenge C3 – Accidental Complexities of Transformation Specifications: An

inherent difficulty associated with using program transformation engines is the low-level

 10

of abstraction at which a transformation rule is specified. Due to many accidental

complexities, program transformations typically are at an improper level of abstraction

for general use by programmers. It is therefore desirable to provide a higher-level of

abstraction to the user. The research presented in this dissertation increases the level of

abstraction of transformation rules in the form of a high-level aspect language that is used

to specify the aspect program that facilitates software adaptation.

Challenge C4 – Language-Independent Generalization of Transformation

Objectives: Although most program transformation engines provide a general toolkit with

pre-existing parsers, the transformation rules that actually perform the desired

restructuring are encoded to the productions of a specific concrete syntax (i.e., grammar

of the base language; the term base language refers to the language for which the aspect

weaver is constructed). Thus, all of the effort that is placed into creating the

transformations to enable weaving cannot be reused in other language domains. A key

research contribution of this dissertation is an approach that brings higher-order

transformations at the modeling level to increase the level of reuse among concrete

lower-order transformation rules across multiple languages.

1.3 Research Objectives and Contributions

The research described in this dissertation makes a contribution to evolving

maintenance goals of legacy software systems by adopting an aspect-oriented approach.

The direction of the research focuses on constructing a generalized aspect-weaving

framework based on model-driven program transformation that is applicable to legacy

software artifacts. The intellectual merit of this research is an investigation of the

 11

underlying science to support reusable generic transformations to improve the modularity

and adaptive maintenance of legacy software. The following objectives represent the core

contributions of the research:

 An exploration of the underlying science to support an abstract source model,

generic transformations, and high-level aspect language as a foundation for

generic software transformation and analysis;

 A generative methodology to permit construction of aspect weavers for

multiple languages; provide a language experimentation environment for

investigating ideas in new paradigms without constructing all of the

underlying parsing and transformation mechanisms from scratch.

The research will guide tool developers to extend support for AOP in legacy

languages by adopting the generalized weaver construction framework described in this

dissertation. The scalability of the framework is provided by using a powerful PTE,

namely, the Design Maintenance System (DMS) [Baxter et al., 2004], which represents

the back-end of the framework. DMS provides support for mature language tools (e.g.,

lexers, parsers, and analyzers) for more than a dozen programming languages. It has been

used to parse several million lines of code written in many of these languages. A

background discussion of DMS is provided in Chapter 2.

The adoption of DMS as a back-end provides a solution to Challenge C1 through

immediate availability of industrial-scale parsers. DMS also provides functionality for

transforming a program after it has been parsed. In particular, the Rule Specification

Language (RSL, introduced in Chapter 2) available in DMS provides the low-level

support required to modify the source program. RSL offers a partial solution to Challenge

 12

C2. Thus, Challenge C1 and part of Challenge C2 as enumerated in Section 1.1 are

gratuitously resolved through the adoption of a mature program transformation engine

into the weaver construction framework [Gray and Roychoudhury, 2004].

However, there remain additional challenges that are typically associated with any

PTE. For example, the RSL used in DMS works at a low-level of abstraction. That is,

users of RSL need to understand the grammar of the base language and the underlying

parsing algorithms in order to write transformation rules required to modify the source

programs. This introduces unavoidable accidental complexities and makes it increasingly

difficult for general developers to specify aspects (i.e., transformation objectives) at this

low-level (Challenge C3). The research presented in this dissertation makes a

contribution towards resolving this challenge by providing a high-level aspect language

on top of RSL (i.e., a façade to RSL) that hides all of the accidental complexities and

minute details associated with RSL.

Moreover, the transformation rules that are constructed to perform aspect weaving

are generally tied to the grammar of the base language. Such tight coupling of RSL with

the base language grammar impedes reusability because all of the previously constructed

rules to enable weaving cannot be reused in other language domains (Challenge C4).

The research presented here makes a key contribution towards resolving Challenge C4 by

providing a generative technique where higher-order transformation rules specified at the

modeling level are used to generate concrete lower-order RSL transformation rules

working at the source code level. These higher-order model transformation rules are

simpler than RSL and can be reused in other language domains. The next section gives an

 13

overview of the research and outlines how the remaining chapters are organized in this

dissertation.

1.4 Overview of the Research

To provide a platform to explore a generalized mechanism for constructing aspect

weavers for GPLs, the research combines two key techniques, namely model-driven

engineering and program transformation. Figure 1-2 shows a high-level overview of the

framework. A model-driven front-end (item 1 in Figure 1-2) is used to capture the syntax

of an aspect program in the form of an aspect model. The aspect model in turn conforms

to an aspect metamodel that is defined using the ATLAS Model Management

Architecture (AMMA, discussed in Chapter 2) [Kurtev et al., 2006].

.

Figure 1-2 - Overview of model-driven aspect weaver framework

 14

The high-level aspect language is used to raise the level of abstraction and hide

the accidental complexities that are associated with the RSL program transformation

rules processed by the back-end (item 3 in Figure 1-2) of the framework. As a direct

benefit of using an aspect language, users can specify their weaving intent at a higher-

level of abstraction instead of using low-level RSL code (i.e., a solution to Challenge

C3).

The heart of the framework is a higher-order program transformation rule

generator (item 2 in Figure 1-2) that produces program transformation rules (RSL) from

an input aspect program (i.e., a solution to Challenge C4). Much of the program

transformation rule generator can be reused from one GPL to another (discussed in detail

in Chapter 4). The aspect code is initially parsed by the front-end and later analyzed by

the rule generator. The result is a set of generated RSL rules that serve as input along

with the source program to the back-end PTE to accomplish the desired weaving. A more

detailed description of the framework will be discussed in Chapter 4 of the dissertation.

Each of the key components (shown as items 1, 2, and 3 in Figure1-2) of this

framework will be discussed in detail in Chapters 2, 3 and 4, including their primary

benefits and internal mechanisms. The future chapters will also outline the reasons

behind choosing each of these core components and explain why it is desirable to follow

a combined MDE / Program Transformation philosophy to construct aspect weavers for

GPLs.

Figure 1-3 provides an overview of the topics discussed in the dissertation.

Chapter 2 introduces the necessary background information to provide the reader with a

better understanding of other sections of the dissertation. The first part of Chapter 2

 15

introduces the concepts behind AOP and aspect weaving. The chapter also introduces the

key components of a PTE, specifically, RSL and other key features of DMS that are

useful in transforming source code. The last part of Chapter 2 introduces MDE, in

general, and the AMMA toolsuite [Kurtev et al., 2006], in particular.

Figure 1-3 - Overview of topics discussed in dissertation

Chapter 3 describes how individual weavers for specific programming languages

can be constructed by the use of program transformation techniques alone. The chapter

describes in detail the construction of an aspect weaver for Object Pascal and provides

several case study examples. The chapter also describes a technique to construct an

aspect weaver for C++ templates and how scientific computing application such as

Blitz++ [Veldhuizen, 1998] can benefit from this technique. Finally, the chapter presents

a well-known scientific computing library - High Performance Linpack (HPL)

 16

Benchmark [Petitet et al., 2004], and demonstrates how specialization of HPL can be

accomplished using program transformation techniques. All of these examples give

evidence for the usefulness of a program transformation based approach to modularize

legacy software, ranging from commercial to high-performance computing domains.

Chapter 4 is the core of the research and describes how the model-driven

approach that is layered on top of program transformation engines is used to construct

reusable, extensible and partly generic aspect weavers for GPLs. The chapter describes in

detail the front-end architecture, the back-end architecture and the program

transformation rule generator used in the framework. The chapter also provides useful

statistics used to evaluate the framework by constructing aspect weavers for Object

Pascal and FORTRAN.

Chapter 5 outlines some of the existing limitations of this work and provides a

roadmap for future extensions and possible areas of applicability. Chapter 6 offers a

concluding summary of the research contributions. There are also several appendices:

Appendix A-E provides the implementation-specific source code used to construct the

front-end and back-end of the GenAWeave framework. Appendix F shows

implementation details of the low-level DMS external functions required to specialize

HPL [Petitet et al., 2004].

 17

CHAPTER 2

BACKGROUND

The contribution of this dissertation represents research that unites MDE

[Schmidt, 2006] and program transformation techniques [Baxter et al., 2004; Gray and

Roychoudhury, 2004] to support AOP [Kiczales et al., 1997; Filman et al., 2004] among

modern and legacy programming languages. This chapter provides a background

discussion of the three different technologies involved in this research. Section 2.1

presents the general concepts of AOP. Section 2.2 describes the underlying construction

mechanism for different types of aspect weavers. Specifically, the section describes the

current state-of-the-art techniques adopted by various researchers to construct aspect

weavers. Section 2.3 introduces DMS, which is the low-level PTE used in this research.

Section 2.4 introduces MDE and in particular the AMMA toolsuite, which forms the

front-end of the generic aspect weaving framework.

2.1 Aspect-Oriented Programming

AOP is a programming technique that allows programmers to modularize

crosscutting concerns (i.e., program features that cut across the typical divisions of

modularity, such as logging [Laddad, 2003]). Such features often cannot be cleanly

decomposed from the rest of the system in both the design and implementation, and result

in either scattering or tangling of source code [Kiczales et al., 1997]. In AOP,

http://en.wikipedia.org/wiki/Modularity_%28programming%29
http://en.wikipedia.org/w/index.php?title=Scattering_%28programming%29&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Tangling_%28programming%29&action=edit&redlink=1

 18

crosscutting concerns are encapsulated in separate reusable modules called aspects. The

AOP paradigm was introduced to strengthen the notion of separation of concerns (SOC)

[Tarr et al., 1999; Giese and Vilbig, 2006], which necessitates breaking down a program

into distinct parts with minimum overlap in functionality. The term SOC is believed to be

coined by Edsger Dijkstra in his 1974 paper “On the Role of Scientific Thought,” which

was later published in [Dijkstra, 1982].

2.1.1 Separation of Concerns

The principle of SOC states that a model of an application should be organized as

a set of distinct modular units where each unit encapsulates one particular concern or

functionality of the application. A concern is any piece of interest or focus in a program.

The advantage of this approach is that the description of a feature is localized and is

therefore more easily adapted.

Many SOC approaches have been proposed during the past several years, such as

Subject-Oriented Programming and design [Ossher et al., 1994], Feature-Oriented

Programming [Batory, 2003], Composition Filters [Bergmans and Aksit, 2001] and

Multidimensional Separation of Concerns [Tarr et al., 1999]. However, the focus of the

research in this dissertation is centered around AOP [Kiczales et al., 1997], in particular,

by providing a generic framework to extend AOP support for legacy and modern

programming languages.

The challenge addressed by AOP arises from the fact there are certain concerns in

an application that are typically crosscutting and are difficult to separate. For instance, if

writing an application for handling employee records, the bookkeeping and indexing of

 19

such records is a core concern, while logging a history of changes to the employee

database, or an authentication system, would be crosscutting since they overlap more

parts of the program. These concerns are typically tangled or scattered across the system

and are difficult to separate from the core functionality. Figure 2-1 illustrates the

undesired effect of crosscutting concerns and suggests a possible solution.

Figure 2-1 – AOP and separation of concerns

The above figure shows two modules of the same application. Each module

addresses several concerns or functionality in the application. Some of these

functionalities are cleanly captured in each module (i.e., the isolated square boxes) while

others spread across the module boundaries. For example, the concern CC1 which exists

in Module A is also scattered and tangled across Module B. Similarly, concern CC2

which exists in Module B is scattered and tangled across Module A. Ideally, it is desired

that concerns (features) that are encapsulated in a single modular unit do not spread

across features that are encapsulated in a different modular unit. Unfortunately, this is

Module A Module B

CC2

Crosscutting concerns

CC1/CC2 superimposed on

Modules A and B

Concern CC2 Concern CC1

CC1

 20

usually not possible with crosscutting concerns using traditional programming constructs.

A more common situation is the one shown in Figure 2-1 where a crosscutting concern

CC1 in modular unit A is scattered across (crosscuts) the features of module B. A more

desired solution is schematically shown in the right side of the figure. In this case, the

crosscutting concerns CC1 and CC2 are captured in a separate aspect module and are

then superimposed or weaved into modules A and B. Such separation of crosscutting

concerns is the main motivation behind AOP.

2.1.2 Crosscutting Concerns and the Join Point Model

The undesired consequence that crosscutting concerns can cause to software

systems can multiply with the size of the application. In fact, crosscutting concerns are

treated as second class citizens in most languages and there is no explicit representation

for their modularization. For example, logging the method entry and exit points in a very

large system may lead to scattering of the logging concern across other useful features

present in the code base [Eaddy et al., 2007]. This may introduce unnecessary cohesion

in the system resulting in poor modularization [Schach, 1996]. In addition to logging,

examples of other crosscutting concerns that are difficult to modularize using traditional

object-oriented languages are security checks, transaction management, pre-fetching and

disk quota operations [Coady and Kiczales, 2003]. It is often desirable to have a way to

create a single separate module that describes all of the functionality of a crosscutting

concern.

Aspect-oriented techniques provide new language constructs to cleanly separate

concerns that crosscut the modularization boundaries of an implementation. In a

 21

fundamentally new way, aspects permit a software developer to quantify, from a single

location, the effect of a concern across a body of code, thus improving the modularization

of crosscutting concerns. Some of the common constructs in AOP approaches, such as

AspectJ (an aspect language for Java) [Kiczales et al., 2001], include the following:

Join Point: Specific points of the execution in a program, such as a method

invocation or a particular exception being thrown. Join points typically express

the location of crosscutting concerns.

Pointcut: Means of identifying a set of join points through a predicate expression.

Advice: Defines actions to be performed at associated join points. Advice

represents the behavior of crosscutting concerns.

Inter-type declarations: The ability of aspects to add methods, constructors and

fields to existing types. They can also be used to implement interfaces and to

declare super-types. However, inter-type declarations are not investigated in the

research presented in this dissertation and may be explored in future.

Aspect: A modularization of a concern for which the implementation might cut

across multiple boundaries; generally defined by pointcuts and advice.

Using the above terminology, an example as shown in Figure 2-2 depicts a simple

logging aspect in AspectJ. The pointcut log captures all join points that correspond to

calls on public BizObject methods (the „*‟ represents a wildcard, and „..‟ represents

any number of parameters).

The before and the after advice binds the pointcut to specific actions to be

performed just before and after each join point is reached (i.e., before and after

BizObject‟s method call invocation). The entire crosscutting concern is captured in a

 22

single aspect called Logger. The different constructs introduced in this example

illustrate the benefit of AOP in modularizing systems that exhibit such crosscutting.

Thus, instead of a scattered representation of a logging concern, aspects help to

modularize concerns by capturing them in separate modules [Laddad, 2003]. This

directly improves software maintainability by reducing the code size and improving the

code comprehensibility. Separation of crosscutting concerns also makes the system easier

to change and evolve. As an indirect effect, reduced code may also lead to a smaller

memory footprint that can increase the performance of software.

1. aspect Logger {
2. pointcut log(): call(public * BizObject.*(..));
3. before(): log() {
4. System.out.println("before calling BizObject methods");
5. }
6. after(): log() {
7. System.out.println("after calling BizObject methods");
8. }
10. }

Figure 2-2- AspectJ specification to capture logging in BizObject‟s methods

2.2 Aspect Weaving

The term “Aspect Weaving” refers to combining aspects (i.e., crosscutting

features) with non-crosscutting pieces of source code that together perform the desired

functionality as specified by the system requirement. The tool that is responsible for

merging the separated aspects with the base code is called an aspect weaver. Since the

inception of AOP, there has been significant research in weaver implementation and

corresponding aspect weavers exist for several modern programming languages like C++

and Java (e.g., AspectJ [Kiczales et al., 2001] – a tool for weaving aspects into Java-

based applications). However, there has been less research focus in applying the benefits

 23

of AOP to other legacy languages like FORTRAN, Pascal or COBOL. Therefore, the

primary focus of the research described in this dissertation is to investigate appropriate

techniques to extend AOP support to other legacy languages.

The different strategies that are often applied to construct aspect weavers vary

with the underlying low-level support. Moreover, weaving could be performed during

pre-processing time, during compilation, by a post-compile processor, at load or run-time

or using a combination of these approaches. Runtime weaving is also known as dynamic

weaving while weaving done pre, post or during compilation time is sometimes referred

to as static weaving. Existing software transformation techniques to enable AOP for

legacy languages can be classified as:

• object-based transforms, such as a visitor object applied to an object model

• intermediate representations that permit primitive transformations to be applied

to a set of languages (e.g., .Net CodeDOM [Thai and Lam, 2003])

• XML-based transforms that use an XML DOM structure [Germon, 2001]

• term rewriting, such as a transformation rule [Klint et al., 2004]

2.2.1 Current State of the Art in Legacy AOP Modernization

This section discusses briefly the current state-of-the-art examples of the above

techniques within the context of the enumerated challenges as introduced in Chapter 1.

SourceWeave.Net: SourceWeave.Net [Jackson and Clarke, 2004] is built on top

of CodeDOM, which is the .NET standard for representing source code as abstract syntax

trees (ASTs) [Thai and Lam, 2003]. Using SourceWeave.NET, a developer can write

base and aspect components in standard C#, VB.NET and J#. An XML descriptor file is

 24

used to specify the interaction between the aspects and representative components. The

technique uses a mapping to identify Join Point Shadows (JPS) (areas in the source where

one or more join points may emerge) and uses a “pointcut-to-join point binding” to

isolate parts of the source.

Weave.Net: Weave.NET is a load-time weaver that allows aspects and

components to be written in a variety of .Net based languages [Lafferty and Cahill,

2003]. It takes an existing .Net binary component as input with crosscutting

specifications provided in an XML file. The behavior (implementation-specific advice

code) of an aspect is provided separately in another .Net assembly. Weave.NET recreates

the input assembly, but in this regenerated version, join points are bound to behavior in

the aspect assembly as specified in the XML aspect file. Because all transformations are

done at the intermediate language (IL), it serves as a language-independent weaver.

AspectCOBOL: An initial prototype that brings aspects to COBOL was

developed through a collaboration of academic and industrial partners [Lämmel and

Schutter, 2005]. The implementation reuses a pre-existing COBOL front-end to construct

an AST that is persisted as XML. The AspectCOBOL weaver operates on the XML

representation using a DOM-based approach. The weaver has similar semantics to

AspectJ pointcuts [Colyer et al., 2004], but uses an imperative language that is closer to

COBOL syntax. The weaver provides ad hoc type analysis (e.g., use-to-def site

navigation) for more sophisticated data join points.

Aspicere combined with GCC 4.0: Aspicere is an aspect language for C, but

future extensions aim to combine Aspicere with GCC4.0 to introduce two new

intermediate representations: GENERIC and GIMPLE trees [Adams, 2005]. Each

 25

different language front-end produces a forest of GENERIC trees, which are then turned

into GIMPLE for optimizations and eventually fed to the back-ends. Aspicere aims at

providing the weaver‟s semantics as expressed in terms of generic trees that can

eventually lead to language-independent AOP.

The focus of the research described in this dissertation is primarily based on term

rewriting systems or program transformation engines that offer scalable parsers for a

variety of legacy languages and a powerful low-level infrastructure to modify source

programs. The following section provides a comparative discussion between the current

state-of-the-art AOP transformation tools and the term rewriting system primarily used in

this research.

2.2.2 Comparative Discussion of AOP Tools to Support Legacy Languages

From a comparative discussion of these representative approaches, each provides

a distinguishing set of strengths and weaknesses. For example, Weave.Net offers a strong

solution to Challenge C1 because of the availability of pre-existing industrial scale

parsers (however, Weave.Net is limited to applications hosted within .Net).

Comparatively, SourceWeave.Net is weak on Challenge C1 due to the limited

availability of CodeDOM providers beyond a handful of languages.

The representation of the underlying abstract source model contributes to several

differences affecting the solutions to each challenge. Because of its reliance on

CodeDOM, SourceWeave.Net has limitations in terms of expressiveness. C# constructs

map reasonably well to CodeDOM, but that is not true of all .Net constructs. The

proposed Aspicere project seems similar in respect to the SourceWeave.Net approach

 26

with their GCC4.0 GENERIC trees closely related to the CodeDOM abstract source

model. It remains to be shown if either CodeDOM or GCC4.0 GENERIC trees are

applicable to a large class of legacy languages like COBOL, FORTRAN and Object

Pascal. Moreover, a considerable engineering effort would be required if all

programming languages were forced to conform to a generic source model or compiled to

a common intermediate language. Further, such an approach would ignore all of the

effort that has already been spent in constructing lexers, parsers, analyzers and other tools

for these languages.

A related challenge emerging from the source model concerns the issue of

scalability. The verbosity of an XML code representation may hamper the size of an

application that can be weaved. It has been reported that an XML representation is up to

50 times larger than other internal representations and much slower to transform

[Germon, 2001]. This may influence the ability of SourceWeave.Net and AspectCOBOL

to handle very large applications. This is not a problem for Weave.Net, which weaves

into the IL.

The research described in this dissertation provides a more general approach for

mitigating the challenges described in Chapter 1 by constructing a generic framework to

extend AOP in legacy languages using term rewriting and MDE [Roychoudhury, 2004;

Roychoudhury et al., 2007]. The weaving is achieved during pre-processing time. Term

rewriting is a paradigm that is used in fields such as program transformation and theorem

proving [Klint et al., 2004]. In term rewriting, rules define a refinement to a structure by

specifying a pattern to be matched and the resulting effect. The choice of term rewriting

over object-based or XML-based transforms is supported by the following observations:

 27

 A mature program transformation system that performs term rewriting (e.g., the

Design Maintenance System (DMS) [Baxter et al., 2004]) can ease the

construction effort for weavers of legacy languages by offering a direct solution to

Challenges C1 and C2. Such systems provide availability of industrial scale

parsers for multiple legacy languages, as well as an underlying low-level

transformation engine to restructure source code.

 The term rewriting model offers a complex JPS (e.g., nested conditional

statements, as discussed in [Sullivan et al., 2005]) and a rich pointcut to join point

binding that is informed by join point context information. However, PTEs don‟t

provide explicit representation of JPS, rather such join points can be located using

external functions written for the transformation engine.

 Term rewriting offers powerful pattern matching and efficient tree traversal

strategies (e.g., using visitors over ASTs) that can scale to several million lines of

code.

 With term rewriting, internal Application Programming Interfaces (APIs) are

available to modify ASTs in an arbitrary manner, thereby allowing more complex

and flexible transforms required by legacy applications (e.g., aspects and loops

[Harbulot and Gurd, 2005]).

 In contrast to the verbose AST representation in XML-based approaches, DMS

provides internal data structures (e.g., hypergraphs) to represent the underlying

AST. This offers an improved level of optimization to support parsing and

transforming large legacy applications.

 28

In the following section, the PTE used in this research is introduced. This

provides the necessary background information required to understand the inner workings

of the underlying PTE as it is used throughout the dissertation.

2.3 Program Transformation - Design Maintenance System

The Design Maintenance System (DMS) [Baxter et al., 2004] is a program

transformation system and re-engineering toolkit developed by Semantic Designs

(www.semdesigns.com). The core component of DMS is a term rewriting engine that

provides powerful pattern matching and source translation capabilities. In DMS

terminology, a language domain represents all of the tools (e.g., lexer, parser, pretty

printer) for performing translation within a specific programming language. DMS

provides pre-constructed domains for several dozen languages.

The DMS Rule Specification Language (RSL) provides basic primitives for

describing numerous transformations that are to be performed across the entire code base

of an application. The RSL consists of declarations of patterns, rules, conditions, and rule

sets using the external form (concrete syntax) defined by a language domain. Patterns

describe the form of a syntax tree. They are used for matching purposes to find a syntax

tree having a specified structure. Patterns are often used on the right-hand side of a rule to

describe the resulting syntax tree after a transformation rule is applied. The RSL rules

describe a directed pair of corresponding syntax trees. A rule is typically used as a rewrite

specification that maps from a left-hand side (source) syntax tree expression to a right-

hand side (target) syntax tree expression. Rules can be combined into sets of rules that

together form a transformation strategy by defining a collection of transformations that

can be applied to a syntax tree. The patterns and rules can have associated conditions that

 29

describe restrictions on when a pattern legally matches a syntax tree, or when a rule is

applicable on a syntax tree. Typically, a large collection of RSL files are needed to

describe the full set of transformations on a base program.

In addition to the RSL, a language called PARLANSE (PARallel LANguage for

Symbolic Expressions) is available in DMS. Transformation functions can be written in

PARLANSE to traverse and manipulate the parse tree at a finer level of granularity than

provided by RSL. PARLANSE is a functional language for writing transformation rules

as external patterns to provide deeper structural transformation. The DMS rules, along

with the corresponding PARLANSE code, represent the core transformations required for

aspect weaving. However, due to the very low-level nature of the rewrite rules, it is not

desirable that programmers be required to write their specifications using term-rewriting

or PARLANSE-specific functions. Instead, a high-level aspect language (similar to

AspectJ) that hides the accidental complexities of RSL and PARLANSE from the

programmer can be used to specify the weaving (please see Chapter 4). Some of the key

features of DMS are discussed in the following sub-section.

2.3.1 DMS Key Features and Support for Abstract Syntax Trees

DMS supports full UNICODE-based parser and lexer generation with automatic

error recovery. The parser technology is based on Generalized LR parsing [López, 1992],

and can handle any context-free language, even with ambiguities. Pretty-printer

generation converts Abstract Syntax Trees (ASTs) back to a properly formatted legal

source file, according to specified layout information, including source comments. DMS

also provides a multi-pass attribute-evaluator [Paakki, 1995; Alblas, 1991] generation

 30

from the language grammar, to allow arbitrary analysis (including name/type analysis

procedures) to be specified in terms of the concrete grammar provided. In addition, DMS

provides sophisticated symbol-table construction facilities for global, local, inherited,

overloaded and other language-dependent name lookup and namespace management

rules.

DMS is designed to work on large-scale source systems with up to several million

lines of source code across tens of thousands of source files having multiple languages at

the same time. It runs either on a single processor system or on symmetric multiple

processor workstations for enhanced performance.

For DMS, each domain may have several representations. Each representation is a

set of explicitly declared hypergraph nodes that can be composed to represent domain

instance fragments. The hypergraph interface provides primitives for arbitrary

manipulation of such graphs, including crossing boundaries between graph nodes from

different representations. The AST Interface is designed to support trees that represent

string-based languages, as definable via the DMSStringGrammar domain.

The DMSStringGrammar domain, given a particular grammar, automatically

defines the AST representation for that string language, essentially based on the terminals

and non-terminals of the supplied grammar. Some of the important operations on ASTs

provided by DMS are ScanTreeNodes, FindChildWithProperty,

GetNthChild, CopyTree and FindParentWithProperty. The AST function

FindChildWithProperty applies the property function (i.e., a visitor function) to

every node in an in-order walk of the tree. If the function returns true after any call, the

rest of the tree walk is skipped and the node is returned as a result; otherwise, a void node

 31

is returned as a result. The property function will only be called once for each node, even

if the tree shares substructure. This function is very useful for pattern matching and is

used in several places in the low-level implementation of the aspect weaver.

2.3.2 Specifying Rewrites using DMS Rule Specification Language

Figure 2-3 presents an overview of the back-end transformation process. The

program transformation rule (shown in general in Figure 2-3 with a specific example in

Figure 2-4) is written in the RSL and processed by the back-end transformation engine to

perform the actual rewriting.

Figure 2-3- Overview of back-end transformation process

Although term rewriting has several application domains (e.g., code migration,

code refactoring or program refinement), the particular example in Figure 2-4 highlights

Analyzer

unparser

definitions

AST

Graph

Parser

Source

Program

Symbol

Table

Pretty

Printer

Domain

Definitions

Target

Program

parser

definitions

Transformation

Engine

Program

Transformation Rules

 32

an aspect-oriented style. As stated earlier, an RSL transformation rule consists of

declarations of patterns, rules, conditions, and rule sets using the concrete syntax defined

by a language domain. The first line of this transformation rule resolves the domain (i.e.,

language) to which the rule can be applied. In this case, a tracing probe is inserted before

the execution of all functions written in Object Pascal. The statement list (stmt_list)

that appears inside of a function body is passed as a parameter to this rule (Line 2). Note

that a rule is typically used as a rewrite specification that maps from a left-hand side

(source) syntax tree expression to a right-hand side (target) syntax tree expression

(syntactically denoted by “” in RSL). The insert_probe rule matches all function

body declarations in the source program and adds a ShowMesssage dialog box before

the execution of the original statement list (i.e., \stmt_list, Line 4). In this way, a

simple tracing probe is added at the beginning of all function execution. Rules can be

combined into rule sets that form a transformation strategy by defining a collection of

transformations that can be applied to a syntax tree.

1. default base domain ObjectPascal.

2. private rule insert_probe(stmt_list: statement_list):

3. function_body  function_body

4. = "begin \stmt_list end" 

5. "begin ShowMessage(\"Entering Method\"); \stmt_list end".

6. public ruleset TraceAllFunctions = {insert_probe}

Figure 2-4- A simple example of a program transformation rule that illustrates aspect

weaving of before advice

These transforms along with the source program are syntactically checked and

statically analyzed to ensure the expected weaving behavior. However, RSL rules are

 33

typically hardcoded and dependent on the grammar of the base language (i.e., all text

highlighted in bold in Figure 2-4 corresponds either to a terminal or non-terminal symbol

in the Object Pascal grammar). The dependence of RSL on the base language grammar

hinders rule reusability (i.e., in case the above functionality needs to be added for a

different programming language, the RSL shown in Figure 2-4 cannot be reused directly).

2.3.3 Other Program Transformation Engines

In addition to DMS, there are a few other program transformation systems,

namely ASF+SDF [van den Brand et al., 2002], TXL [Cordy et al., 2002] and Stratego

[Visser, 2001] that offer similar capabilities to restructure the underlying source program.

The ASF+SDF Meta-Environment is an Integrated Development Environment

(IDE) and toolset for interactive program analysis and transformation. It combines SDF

(Syntax Definition Formalism), ASF (Algebraic Specification Formalism) and other

technologies. Some of the features available in ASF+SDF are program analysis, program

transformation, generation of IDEs, visualization of parse trees and pretty printer

generation.

Tree TRANSformation Language (TXL) is a unique programming language

specifically designed to support computer software analysis and source transformation

tasks [Cordy et al., 2002]. It is a hybrid functional/rule-based language with unification,

implied iteration and deep pattern matching. Each TXL program has two components: A

description of the structures to be transformed that are specified as a directly interpreted

Backus-Naur Form (BNF) grammar, in context-free ambiguous form; and a set of

structural transformation rules specified by example as pattern/replacement pairs

 34

combined using functional programming. The formal semantics and implementation of

TXL are based on formal tree rewriting, but the trees are largely hidden from the user due

to the by-example style of rule specification.

Stratego is a language and toolset for program transformation [Visser, 2001]. The

Stratego language provides rewrite rules for expressing basic transformations,

programmable rewriting strategies for controlling the application of rules, concrete

syntax for expressing the patterns of rules in the syntax of the object language, and

dynamic rewrite rules for expressing context-sensitive transformations, thus supporting

the development of transformation components at a high-level of abstraction.

DMS was chosen for this research because of the maturity of the tool, as

compared to other transformation engines, and the immediate availability of a large

collection of pre-constructed domains. We have the confidence that many of the pre-

existing parsers that have been defined in DMS are capable of parsing large-scale

industrial legacy software. There are many well-defined language definitions provided

within DMS that have been used to parse multiple-millions of lines of commercial code.

It is possible that the technique described in this paper could also apply to other

transformation systems. For the technique described in this thesis to have a real impact,

the ability to parse large code bases in multiple languages is paramount toward providing

a framework for injecting aspects into legacy systems.

 In the following section we introduce model-driven engineering as the basis for

providing a suitable front-end to program transformation systems. This particularly

addresses Challenges C3 and C4 that were introduced in Chapter 1.

 35

2.4 Model-Driven Engineering - AMMA

A large body of research in the area of Aspect-Oriented Modeling (AOM,

http://www.aspect-modeling.org) has focused on new notations and weaving tools that

improve the ability to express a design within a model through composition of separate

concerns. In the research presented in this dissertation, we examine the converse – that is,

how modeling can improve aspect orientation. Specifically, the research makes a

contribution by showing how MDE [Schmidt, 2006] is used to construct new aspect

weavers for General-Purpose Languages (GPLs) through models and transformations. To

provide the necessary background information of our desired choice of MDE toolkit, in

this section, we introduce the Atlas Model Management Architecture platform (AMMA)

[Kurtev et al., 2006]. AMMA is a suite of MDE tools that can be used to implement

domain-specific languages (DSLs) [Mernik et al., 2005] as well as high-level aspect

languages useful for constructing the front-end of an aspect weaver. AMMA is designed

and developed by the ATLAS Team (INRIA and LINA), and is composed of several

elements: Kernel Meta-Meta Model (KM3) [Jouault and Bézivin, 2006], Textual

Concrete Syntax (TCS) [Jouault et al., 2006], Atlas Transformation Language (ATL)

[Jouault and Kurtev, 2005] and a few other tools (e.g., Atlas Model Weaver (AMW)

[Jossic et al., 2007], Model Discovery [MoDisco, 2008]).

2.4.1 Kernel Meta-Meta Model

KM3 [Jouault and Bézivin, 2006] is a platform-independent language

(metamodeling platform) to write metamodels, and thus to define the abstract syntax of

DSLs. The purpose of KM3 is to give a relatively simple solution to define the Domain

 36

Definition MetaModel (DDMM) of a DSL. The DDMM of KM3 is a meta-metamodel,

and is defined in KM3 itself, just like the grammar of Backus-Naur Form (BNF) may be

described in BNF itself.

KM3 uses concepts like class, attribute, and references and is structurally close to

the Object Management Group‟s Meta-Object Facility [OMG MOF, 2003] and Eclipse‟s

Ecore [Budinsky et al., 2003]. Mappings to and from MOF 1.4 and Ecore have been

defined in ATL, making KM3 usable with tools like the Eclipse Modeling Framework

(EMF) [Budinsky et al., 2003] and Netbean‟s Metadata Repository (MDR). As a meta-

metamodel, KM3 is simpler than MOF 1.4, MOF 2.0 [OMG MOF, 2003] and Ecore. It

contains only 14 classes whereas, for instance, Ecore has 18 classes and MOF 1.4 has 28

classes. Only the core concepts of these other meta-metamodels are available in KM3.

The KM3 specification for the high-level aspect language used in the front-end of this

framework is shown in Chapter 4 (also, please see Appendices A and B).

2.4.2 Textual Concrete Syntax

TCS enables the specification of textual concrete syntax for DSLs by attaching

syntactic information to metamodels [Jouault et al., 2006]. Unlike KM3, which uses an

object-oriented syntax to specify the abstract definition of metamodels, TCS uses a

grammar-like notation to specify the corresponding concrete syntax for metamodels.

Thus, KM3 along with TCS provides the complete language description for a DSL.

Two of the basic TCS constructs are Primitive Templates and Class Templates.

Primitive Templates specify the lexer token corresponding to a given metamodel

DataType, identified by its name. More than one primitive template may be defined for a

 37

single data type. This is typically the case for strings where one template is used to

represent identifiers and a second one is used to represent string literals. Exactly one

primitive template may be declared as default for each data type. Class Templates specify

how classes are represented. This specification consists of a sequence of syntactic

elements that are: keywords and special symbols. A Class Template has the same name

as its corresponding Class. Exactly one class template must be declared as main. The

main class template corresponds to the root of the model. In contrast to primitive

templates, only one class template can be defined for each class in the metamodel. An

example of TCS specification is shown in Appendices A and B.

2.4.3 ATLAS Transformation Language

ATL is a model transformation language and toolkit developed by the ATLAS

Group (INRIA & LINA) [Jouault and Kurtev, 2005]. ATL provides ways to produce a set

of target models from a set of source models. ATL is developed on top of the Eclipse

platform; the ATL Integrated Environment (IDE) provides a number of standard

development tools (e.g., syntax highlighting, debugger) that aims to ease development of

ATL transformations.

ATL is applied in a transformational pattern as shown in Figure 2-5. In this figure,

the Grammarware [Klint et al., 2005] technical space (TS) refers to the text-based

languages and tools, and the MDE or modelware TS refers to the class of model-based

languages and tools used in software engineering. As shown in Figure 2-5, transition

from one TS to another is achieved by means of TCS Injection or TCS Extraction. During

TCS injection, a source program is converted to a source model, while, during TCS

 38

extraction, a target program is extracted from a target model. M1, M2 and M3 are the

three modeling levels present at these two TS. In the transformational pattern shown in

Figure 2-5, a source model Ms is transformed into a target model Mt. The transformation

is driven by a transformation specification (or a transformation program) ms2mt.atl

written in the ATL language. The source and target models and the transformation

specification (ms2mt.atl) conform to their metamodels MMs, MMt and ATL,

respectively. Finally, all the respective metamodels conform to the common MOF meta-

metamodel. Detail description about the model transformation process applicable to the

current GenAWeave framework is described in Chapter 4. An example of a model

transformation rule is presented in Appendix D.

M3

M2

M1

MMs(KM3)

Source

Program

EBNFEBNF

Source

Grammar

Ms

MOF

Grammarware TS
Model-Driven Engineering (MDE)

Technical Space (TS)

MMt(KM3)

Mt

Target

Grammar

Target

program

Extraction
Injection

M1 = model level

M2 = metamodel level

M3 = meta-metamodel level

Grammarware TS

Model Tranformation

ATL

ms2mt.atl

Figure 2-5- An example of ATL transformation

ATL transformations are unidirectional, operating on read-only source models

and producing a write-only target model. During the execution of a transformation the

 39

source model may be navigated but changes are not allowed. The target model cannot be

navigated. A bidirectional transformation is implemented as a combination of

transformations, one for each direction.

2.4.4 Related Work

MDE refers to the systematic use of models as primary engineering artifacts

throughout the engineering lifecycle of a software system. As a related idea, Model-

driven Architecture (MDA) is a conceptual software design approach launched by the

Object Management Group (OMG, http://www.omg.org) that supports MDE. MDA

provides a set of guidelines for structuring specifications expressed as models. It also

provides standards for engineering model-driven artifacts that are expressed using the

Meta-Object Facility (MOF). There are two versions of MOF, namely Essential MOF

(EMOF) and Complete MOF (CMOF). In addition, models can be expressed in the

Unified Modeling Language (UML, http://www.uml.org/) and transformations on models

can be expressed using Query View Transformations (QVT) [OMG QVT, 2001].

In addition to OMG‟s MDA initiative, the Eclipse Modeling Framework (EMF) is

an Eclipse Modeling project that provides a Java implementation of the basic principles

of model engineering. EMF is based on the Ecore meta-metamodel. The Graphical

Modeling Framework (GMF, http://www.eclipse.org/gmf/) is an Eclipse Modeling

project, which can be used to specify graphical syntax for Ecore metamodels.

The Generic Modeling Environment (GME) [Lédeczi et al., 2001] is a

configurable toolkit for creating domain-specific modeling (DSM) [Gray et al., 2007] and

program synthesis environments. The configuration is accomplished through metamodels

 40

specifying the modeling language of the application domain. The metamodel contains all

the syntactic, semantic, and presentation information regarding the domain. The

metamodeling language is based on the UML class diagram notation and Object

Constraint Language (OCL) constraints [OMG OCL, 2001]. Although the metamodeling

language in GME is visual (UML classes), AMMA based metamodeling is textual and is

well-suited for describing the high-level aspect language presented in this dissertation.

Another interesting toolkit that can be used for developing DSLs is LISA [Mernik

et al., 2002], which provides a generic interactive environment for programming

language development. Using formal language specifications of a particular programming

language, LISA can produce a language-specific environment that includes an editor, a

compiler/interpreter and other graphical tools.

Our choice of AMMA was influenced by the fact that the different tools available

in AMMA can be applied equally to both OMG‟s MOF and the open source EMF (i.e.,

independent of the underlying metamodeling platform). In addition, AMMA provides a

powerful model transformation language (ATL) that is useful for translating models

specified in a high-level aspect language to models specified in the low-level RSL

language. Moreover, KM3 and TCS help with the design of our textual based high-level

aspect language, which is used in the front-end of our framework.

In the following chapter we introduce program transformation based aspect

weaving using low-level rewrite specifications that are applicable to several GPLs (e.g.,

Object Pascal, C and C++ Templates). The technique introduced in Chapter 3 forms the

basis of constructing aspect weavers using program transformation rules and is evaluated

across commercial and high-performance scientific computing domains.

 41

CHAPTER 3

PROGRAM TRANSFORMATION BASED

ASPECT WEAVER CONSTRUCTION

A systematic approach towards realizing a generic framework for language-

independent program transformation requires the ability to capture the knowledge for

language-specific transforms. This chapter discusses in detail the construction technique

for language-specific aspect weavers. In particular, the chapter introduces aspect

weavers specific to programming languages like Object Pascal and C++ template

libraries, which are applicable to commercial and scientific computing domains [Gray

and Roychoudhury, 2004]. In addition, initial results about a slightly different

construction technique (i.e., scientific library construction) for composing High

Performance Linpack (HPL) libraries are also presented [Petitet et al., 2004]. All of the

above mentioned techniques use DMS as a low-level transformation engine [Baxter et al.,

2004].

Section 3.1 provides a detailed description of our PTE based technique to

construct an aspect weaver for Object Pascal, which is validated against a commercial

case study application. Section 3.2 discusses the design of an aspect language for C++

templates and also presents the underlying technique for weaving into C++ templates.

Section 3.3 offers several examples of crosscutting concerns identified in a scientific

library, namely Blitz++ [Veldhuizen, 1998] and demonstrates improved modularization

 42

of such libraries using AOP and generative programming techniques [Czarnecki and

Eisenecker, 2000]. The section also presents a PTE-based specialization technique used

to improve the construction of a high-performance scientific library, namely HPL.

3.1 An Aspect Weaver for Object Pascal

This section describes the crosscutting concerns that were identified in a

distributed application implemented in Object Pascal. Three different utility applications

within this suite each had their share of problems with respect to scattered and tangled

code. The utilities that serve as the case study for this research were implemented in 42K

source lines of Object Pascal. This section provides a general discussion of several

crosscutting concerns that were identified. Other crosscutting concerns exist in these

utilities (e.g., database access control logic that is spread over a dozen classes), but this

section focuses only on a subset of all identified aspects. For each concern, the number of

times that the implementation redundantly appears is provided, which implies the amount

of code that can be removed when modularized as aspects (e.g., the code in Figure 3-1

appears 62 times and contains about 5 lines of code per case).

3.1.1 Crosscutting Concerns in Object Pascal Application

Four specific examples of crosscutting concerns as identified in an Object Pascal

application are described below:

Progress Dialog Meter: The Database Manager is a utility that assists customers

in upgrading to a new database schema after installing an update to the application

software. It manages the schema evolution problem by converting a database instance to

 43

a new schema [Bounif and Pottinger, 2006]. Utilities like the Database Manager often

provide feedback to the user in the form of a processing dialog, or meter, which indicates

the progress of the overall task. The updating of the progress meter represents a

crosscutting concern because the code to increment the meter is spread across the

methods that perform much of the functionality (e.g., deleting database triggers,

compiling new stored procedures, and other evolution tasks). Figure 3-1 contains a

redundant code fragment that appears in 62 different places of the Database Manager.

This code is necessary to update the processing dialog after each database evolution task

is completed.

1. Inc(TotalInserts);

2. if not ProcDlg.Process(TotalInserts/TotalCalc) then

3. begin

4. ProcDlg.Canceled := True;

5. Result := True;

6. exit;

7. end; // if not Process

Figure 3-1 – Progress meter updating

Replication of exception handling code can have negative consequences [Lippert

and Lopes, 2000]. With respect to error handling in the Database Manager, the code

fragment in Figure 3-2 appears 33 times in various methods in order to stop the

processing dialog after an exception. However, it would be desirable to create a single

separate module that describes all of the functionality of updating the progress meter.

1. on E : Exception do

2. begin

3. dmSERVERS.HandleException(E);

4. dmSERVERS.ProcDlg.Canceled := True;

5. end;

Figure 3-2 – Exception handling code for processing dialog

 44

 Logging of SQL Query Statements: Another crosscutting concern that is

scattered throughout the Database Manager is the logging of SQL code. As the Database

Manager utility upgrades the customer’s database to a new schema, all of the SQL

commands that are generated to perform the upgrade are logged to a file so that they can

be examined later in the event of a problem (please see the code fragment in Figure 3-3).

Although a special logging object was created, the numerous places and contexts where

the object is called may vary. In fact, the methods of the logging object are invoked in

over 50 different places in the Database Manager. Please notice that the logging call is

also context-dependent and parameterized by the name of the query object. The ability to

collect the logging actions in a single module would aid in better separation of this

canonical logging concern. Unfortunately, for Object Pascal and most other programming

languages, there are no language constructs to provide these desired capabilities.

1. with dmSERVERS.qryCreateTriggers do

2. begin

3. <statements that build a SQL Create Trigger>

4.

5. LogSQL.AddSQL(dmSERVERS.qryCreateTriggers, True);

6. ExecSQL;

7. end;

Figure 3-3 – Logging of SQL query Data Definition Language (DDL) statements

 Language Internationalization Utility: There are several tasks involved in

internationalizing software. One technique is to represent all translations of each text

string in a resource Dynamic Link Library (DLL). The creation of this library, however,

requires a tool that assists in the management of all of the different strings for all of the

supported written languages. The Language Internationalization tool supports such a task.

The implementation of the Language Internationalization tool resulted in 24 classes.

 45

Several of the classes interact with all of the controls within a Graphical User

Interface (GUI) and update a database during any modification to GUI widgets. Among

all of the events that are processed in the application, a dirty bit is used to keep track of

whether a modification is made to a widget.

1. // The user wants to perform another search

 // using the same search criteria

2. procedure TLangInt.SearchAgainClick(Sender: TObject);

3. begin

4. // Perform an update if an edit occurred that might

5. // change the focus of the listview

6. if EditMadeDirtyBit then

7. SaveDBControls;

8. ...

9. end;

Figure 3-4 – Preamble for widget button clicks

There are 29 unique places in the source code of the Language

Internationalization utility where access to the Boolean variable EditMadeDirtyBit

is made. There were only two different contexts in which the EditMadeDirtyBit

was accessed. One context simply dealt with setting the value to true or false, based upon

a particular situation, and involved lazy-writing of the edit. This was spread across

several diverse classes and represented 9 of the places where this concern occurred. The

other context in which access to the dirty bit appeared dealt with performing a specific

action based upon the value of EditMadeDirtyBit. The code for deciding the next

action, based on the value of the bit, was identical in each source code location and

always occurred as the first statement in a widget-click event handler (see Figure 3-4).

Thus, this other redundant code was found in 20 different places in the Language

Internationalization tool. Any modification or change to the way in which a text string

 46

was stored often required a change to the way in which this concern was implemented.

This required adaptations to many locations in the code in order to make the change.

Forgetting to update the change in any one of these places could result in a loss, or

corruption, of data during the modification of a language string.

Database Error Handler Synchronization: Often, a commercial application

must work with databases from several different vendors (e.g., Oracle, Interbase, and

SQL Server). In such a situation, exception handling of database errors is a major

difficulty because each database has its own way of raising exceptions. The same

conceptual error (e.g., a null in a required field) may be raised in completely different

ways with dissimilar error codes. The application, however, must make this transparent

while interpreting the exception to provide a meaningful message back to the end-user.

To accomplish this transparency, a database error handling DLL was created and

integrated into the main application. This library contained 23 classes. The majority of

these classes were responsible for handling specific types of exceptions using the Chain

of Responsibility pattern [Gamma et al., 1994]. After the code was created for the error

handlers, a new requirement was added. It was determined that the exception handling

code must be thread-safe because numerous clients would be accessing the database at

the same time. The addition of this concurrency concern resulted in a manual invasive

change to over 20 classes. An example error handler is shown in Figure 3-5. In that

figure, lines 4-5 and 7-9 represent this single synchronization concern. Furthermore, this

exact code is replicated in all of the entry and exit points of each type of error handler.

 47

1. function TExNullField.Handle(ServerType: TServerType;

2. E : EDBEngineError) : Integer;

3. begin

4. TExHandleCollection(Collection).LockHandle;

5. try

6. <database error handling code omitted here>

7. finally

8. TExHandleCollection(Collection).UnLockHandle;

9. end;

10. end;

Figure 3-5 – Synchronization in a database error handler

3.1.2 Weaver Transformation Rules for the Object Pascal Case Studies

The purpose of this section is to introduce the low-level DMS program

transformation rules that will drive the aspect weaving process for the Object Pascal

weaver. Each of the crosscutting concerns identified in Section 3.1.1 is revisited to

demonstrate the use of RSL to weave in each concern. In each case, there are two key

parts to the weaving process: 1) the identification of the join points in the source AST

that match a given pattern; and, 2) specifying rewrite rules to operate on those points to

derive a new representation (i.e., adding advice).

Weaving the Progress Meter Dialog: Figure 3-6 presents the complete RSL

transformation rule for weaving the processing meter concern described in Figure 3-1. On

the first line of this transformation rule, the domain to which the rule can be applied is

identified (in this case Object Pascal). Patterns describe the form of a syntax tree. Often,

they are used for matching purposes to find a syntax tree having a specified structure (as

such, they provide a type of quantification across a code base [Filman and Friedman,

2004]). Additionally, patterns can appear on the right-hand side (target) of a rule to

describe the resulting syntax tree after the rule is applied. Patterns can be combined to

form larger patterns.

 48

The advice pattern in Figure 3-6 specifies the statement associated with the

advice of the processing dialog concern (here, advice is just a user-defined name for a

pattern – the word “advice” has no formal semantics within RSL, but is so named

because it conceptually represents the concern that is to be weaved). The code that is

associated with the advice pattern is the same conditional statement from Figure 3-1. The

Object Pascal grammar defines the if_statement and statement_list

production rules that are evident in the pattern and rule specifications. Throughout the

paper, parts of the Object Pascal grammar are italicized and RSL reserved words are

boldfaced in order to highlight the differences. No visual adornments are given to the

regular Object Pascal source code.

1. default base domain Object Pascal.

2.

3. pattern advice(): if_statement =

4.

5. "if not ProcDlg1.Process (TotalInserts/TotalCalc) then

6. begin

7. ProcDlg1.Canceled := True;

8. Result := True;

9. exit;

10. end;".

11.

12. rule probe_progress_meter(): statement_list -> statement_list =

13.

14. "Inc(TotalInserts);"

15. ->

16. "Inc(TotalInserts); \advice\(\);".

17.

18. public ruleset applyrules = { probe_progress_meter }.

Figure 3-6 – Transformation rule for updating progress meter

The RSL rules describe a directed pair of corresponding syntax trees. A rule is

typically used as a rewrite specification that maps from a left-hand side (source) syntax

tree expression to a right-hand side (target) syntax tree expression. The rule

probe_progress_meter isolates each node (call to function Inc) that increments

 49

the database insertion counter. At each join point, the advice pattern is weaved into the

progress meter. In this case, the former statement_list associated in the increment

statement is rewritten (syntactically denoted by “�” in RSL) to a new

statement_list that appends the advice to the increment. Rules can be combined

into rule sets that form a transformation strategy by defining a collection of

transformations that can be applied to a syntax tree.

Meta-variables are used as placeholders for sub-trees, and specified using an

escape syntax (i.e., “\identifier”). An RSL meta-variable can represent the tree

defined by a pattern or a parameter to a rule. In Figure 3-6, the meta-variable reference

“\advice\(\)” names the tree that is associated with the advice pattern and appended

to the increment statement. In the next subsection, Figure 3-7 contains parameters (e.g.,

\id1, \id2, and \slist) to the probe_logging rule that serve as placeholders to

holes that are filled during the term rewrite process.

SQL Logging Transformations: Surprisingly, separating the logging of the SQL

data definition commands, as shown in Figure 3-3, was the most difficult aspect to

represent in the RSL. The difficulty stemmed from the with construct in Object Pascal,

which is a shorthand notation for referencing fields within an object by setting a context

block.

The with statement of Figure 3-3 (Line 1) provides a context for accessing the

fields of the query object (e.g., dmSERVERS.qryCreateTriggers) without having

to prefix each reference in the block with the object name. Yet, the logging call that was

embedded in this context required the name of the bounded query object. The trick for the

RSL logging rules, as shown in Figure 3-7, is to trace back to the with statement that

 50

contains the query object. This is accomplished with an external pattern called

add_log_stmt.

1. default base domain Object Pascal.

2.

3. external pattern add_log_stmt (slist1:statement_list,

slist2:statement_list,

id1:IDENTIFIER,

id2:IDENTIFIER): statement_list = 'add_log_statement'

in domain Object Pascal.

4. pattern advice(id1:IDENTIFIER, id2:IDENTIFIER):

5. statement_list = "LogSQL.AddSQL (\id1.\id2 , True);".

6.

7. pattern func_call_sig(): "ExecSQL".

8.

9. rule probe_logging(id1:IDENTIFIER,id2:IDENTIFIER,

slist:statement_list): with_statement -> with_statement =

10. "with \id1 . \id2 do

11. begin

12. \slist

13. end"

14. ����
15. "with \id1 . \id2 do

16. begin

17. \add_log_stmt\(\slist \, \advice\(\id1 \,\id2\) \,

 \id2 \,\func_call_sig\(\)\)

18. end".

19.

20. public ruleset applyrules = { probe_logging }.

Figure 3-7 – Transformation rule for SQL logging

There are certain things that cannot be specified in the RSL, such as tree-walking

strategies. In such cases, it is possible to write external functions that escape from the

RSL and return a value. In DMS, exit functions are written in a functional language

called PARLANSE, which is a parallel language for symbolic expression that provides an

enriched set of interfaces for performing operations on ASTs. The special parallel

constructs provided by PARLANSE can offer performance improvements while

traversing the hierarchical tree structure during pattern search [Baxter et al., 2004].

Within the AOSD community, there has been extensive research in adaptive and strategic

 51

programming to address traversal strategies [Lämmel et al., 2003; Lieberherr et al.,

2001], but there was no mechanism to apply these ideas directly to RSL.

1.(lambda (function boolean AST:Node)function

2. (value (local (;;);;

3. (;;

4. (ifthen(== ~t (AST:ContainsString ?))

5. (;;

6. (= search_string (AST:GetString ?))

7. (ifthen (== (@ search_string)

8. arguments:4) (return ~t)) ifthen

9.);;

10.)ifthen

11. (return ~f)

12.);;

13.)local

14. ~f

15.)value

16.)lambda

…

Figure 3-8 – Visitor function written in PARLANSE

The objective of the add_log_stmt external pattern is to insert a new log

statement before every call to the ExecSQL statement. However, the parameters to be

logged come from the variable access definition that is attached to the with statement.

The visitor function used to find child nodes that match the pattern

func_call_sig can be found in Figure 3-8. Note that the fourth argument that is

passed to the external pattern is the function call identifier ExecSQL. The visitor returns

true whenever it finds a match to this call statement in the syntax tree. From the external

pattern, all matching placeholders are returned and the right-hand side (RHS) of the rule

weaves in the advice to transform the original syntax tree.

Transforming Dirty Bits: Recall from Section 3.1.1 that a dirty bit was used to

determine if a lazy-write was needed to update the state of a database as a result of an edit

to a language string. That concern required a simple conditional statement to be attached

 52

to the beginning of all widget “Click” event handlers. Figure 3-9 is an RSL

transformation that provides support for weaving this aspect into the source code of the

Language Internationalization utility.

The advice pattern in Figure 3-9 represents the simple conditional statement

that is to be prefixed to the widget Click methods. The patterns isClick and click

are used to identify the placeholder in the source AST. The left-hand side (LHS) of the

rule probe_dirty_bit transforms the source syntax tree to its new representation

depending on the external condition func_sig_has_click, which is invoked from

the isClick pattern. Note that external conditional functions are coded in PARLANSE.

This external condition is needed to match the wildcard “*Click” specification. It is not

possible within RSL to look into the contents of a syntax-tree node, but this can be

accomplished in an external condition.

The function func_sig_has_click (line 2, Figure 3-9) takes two arguments.

The first argument is the identifier node that denotes places of interest in the search

process. The second argument is a constant identifier string that is used to match the

place holders in the source tree. The DMS transformation engine will continue to apply

all sets of rules until no rules can be fired. It is possible to have an infinite set of rewrites

if the transformations are not monotonically decreasing (i.e., when one stage of

transformation continuously introduces new trees that can also be the source of further

pattern matches). Notice that there is a condition specified at the bottom of Figure 3-9

(line 29). This condition describes a constraint stating that the set of rules should be

applied only to those join points where a transformation has not occurred already.

Specifically, it states that the rules should be applied when it is not the case that the

 53

advice is already prefixed to a statement list. The transformation rule will be applied only

once to each Click event handler. Without this condition, the rules would be applied

iteratively and fall into an infinite loop.

1. default base domain Object Pascal.

2. external condition func_sig_has_click(id1:IDENTIFIER,

3. id2:IDENTIFIER)

4. = 'func_sig_has_click'.

5. pattern advice(slist:statement_list) : statement_list =

6. "if EditMadeDirtyBit then

7. SaveDBControls;

8. \slist".

9. pattern isClick(id:IDENTIFIER): IDENTIFIER

10. = id if func_sig_has_click(click(), id).

11.

12. pattern click (): I DENTIFIER = "Click".

13.

14. rule probe_dirty_bit (id1:IDENTIFIER, id2:IDENTIFIER,

15. fps:formal_parameters,

16. slist:statement_list):

17. implementation_decl -> implementation_decl =

18.

19. "procedure \id1 . \isClick\(\id2\) \fps ;

20. begin

21. \slist

22. end;"

23. ->

24. "procedure \id1 . \id2 \fps ;

25. begin

26. \advice\(\slist\)

27. end;".

28.

29. if ~[modslist:statement_list .slist matches

30. "\:statement_list \advice\(\modslist\)"].

31.

32. public ruleset applyrules = { probe_dirty_bit }.

Figure 3-9 – RSL rule for weaving dirty bits

Figure 3-10 shows the PARLANSE function that is used to perform the wildcard

pattern matching. It utilizes the pre-defined DMS StringScan and ASTInterface

libraries to perform the scanning operation over the placeholders. The function returns

 54

true if it finds a slot as specified by the pattern click. The advice is applied to all

placeholders that match this given pattern.

1. (define func_sig_has_click

2. (lambda Registry:MatchingCondition

3. (let (;;(= [const_string (reference string)]

4. (AST:GetString arguments:1))

5. (= [search_string (reference string)]

6. (AST:GetString arguments:2))

7. (= [scanner StringScan:Scan]

8. (StringScan:MakeScan search_string))

9.);;

10.

11. (value

12. (while (== (StringScan:End? (. scanner)) ~f)

13. (ifthenelse

14. (StringScan:MatchString? (. scanner)

15. const_string)

16. (return ~t)

17. (StringScan:Advance (. scanner))

18.)ifthenelse

19.)while

20. ~f

21.)value

22.)let

23.)lambda

24.)define

Figure 3-10 – PARLANSE external condition function func_sig_has_click

Error Handling Transformation: The concurrency control concern from Figure

3-5 can be weaved using RSL in a style similar to those transformations already shown

and is illustrated in Figure 3-11.

In the transformation of Figure 3-11, the try/finally block (lines 14-18) that

implements the concurrency control is wrapped around the critical section of the source

code. The original critical section is denoted by the statement_list that is

represented by the slist meta-variable (line 15) in the transformation. The pattern

probe_handle (line 3) identifies the slot from the function signature (line 27) where

the advice needs to be applied (i.e., function name with a signature like *.Handle). The

 55

lock (line 9) and the unlock (line 6) patterns are then inserted before and after the

critical section of the source code. The RHS of the rule probe_synchronize (line

20) rewrites the entire function definition and inserts the RSL pattern advice (line 12)

in the function body. The conditional constraint in line 37 denotes the condition when

this rule can be applied.

1. default base domain Object Pascal.

2.

3. pattern probe_handle(id:IDENTIFIER):

4. qualified_identifier = "\id.Handle".

5

6. pattern unlock():statement =

7. "TExHandleCollection(Collection).UnLockHandle".

8.

9. pattern lock(): statement =

10. "TExHandleCollection(Collection).LockHandle".

11.

12. pattern advice(slist:statement_list): statement_list =

13. "\lock\(\);

14. try

15. \slist

16. finally

17. \unlock\(\);

18. end;".

19.

20. rule probe_synchronize(slist:statement_list,

21. id:IDENTIFIER,

22. fps:formal_parameters,

23. frt:function_result_type):

24.

25. implementation_decl -> implementation_decl =

26.

27. "function \probe_handle\(\id\) \fps : \frt ;

28. begin

29. \slist

30. end;"

31. ->

32. "function \probe_handle\(\id\) \fps : \frt ;

33. begin

34. \advice\(\slist\)

35. end;".

36.

37. if ~[modsList:statement_list .slist matches

38. "\:statement_list \advice\(\modsList\)"].

39.

40. public ruleset applyrules = { probe_synchronize }.

Figure 3-11 – RSL rule for modularizing synchronization

 56

In another context of using a different GPL, Section 3.2 discusses the techniques

to modularize C++ templates using AOP and program transformation.

3.2 Weaving into C++ Template Libraries

Aspects have the potential to interact with many different kinds of language

constructs in order to modularize crosscutting concerns. Although several aspect

languages have demonstrated advantages in applying aspects to traditional

modularization boundaries (e.g., object-oriented hierarchies), additional language

concepts such as parametric polymorphism can also benefit from aspects. Many popular

programming languages support parametric polymorphism (e.g., C++ templates), but

with the emergence of generics in Java 5, the combination of aspects and generics is a

topic in need of further investigation. The section enumerates the general challenges of

uniting aspects with C++ templates. It also emphasizes the need for new language

constructs to extend AOP support to C++ templates and provides an initial solution to

realize this goal.

The most detailed discussion of aspects and C++ templates is described in

[Lohmann et al., 2004], within the context of AspectC++ (an aspect language for C++)

[Spinczyk et al., 2002]. The effort to add aspects to templates in AspectC++ has been

partitioned along two complimentary dimensions:

• Weaving advice into template bodies

• Using templates in the bodies of aspects

Where as the AspectC++ work has focused along the second dimension (i.e.,

using templates in the aspect body), the key contribution of this section is a deeper

 57

investigation along the first dimension (i.e., weaving advice in the template body). In

addition, the research enumerates a key challenge pertaining to C++ templates. Although

a template is instantiated in multiple places, it may be the case that the crosscutting

feature is required in only a subset of those instances. For example, it may be required to

weave in vector templates of type int only (i.e., vector<int>), leaving vectors of all

other types unchanged. Additional language features are required to describe such

specific intentions and is explained in detail in the following sections.

3.2.1 Simple Pointcut Expressions for C++ Templates

This section introduces several essential concepts of AOP for C++ templates. An

application of the Standard Template Library (STL) [Josuttis, 1999] vector class is

presented, along with a description of a program transformation technique for

modularizing a crosscutting concern among vector instances. Initially, some of the

elementary pointcut language constructs for C++ templates are introduced in Section

3.2.1. Section 3.2.2 motivates the need for advanced pointcuts for C++ templates and

presents our approach to support this technique.

Figure 3-12 shows a simple implementation of class Foo that uses several

instances of the STL vector class. The join point model and pointcut language are

explained in terms of actual template definitions. The listing is purposely simplified so

that the concepts are not complicated by peripheral details. There are three fields defined

in Foo, either of type vector<int> or vector<float>. The methods getMyInts

and getMyFloats return the corresponding vector field, and the method addFloats

adds a new floating point number to a given floating point vector

 58

1. #include <vector>
2. using namespace std;
3.
4. class Foo {
5. public:
6. vector<int> getMyInts();
7. vector<float> getMyFloats();
8. void addMyFloats(vector<float>,float);
9. protected:
10. vector<int> myInts;
11. vector<float> myFloats;
12. vector<float> someOtherFloats;
13. };
14.
15. vector<int> Foo::getMyInts() {
16. return myInts;
17. }
18. vector<float> Foo::getMyFloats(){
19. return myFloats;
20. }
21. void Foo::addFloats(vector<float> any,float aFloat) {
22. any.push_back(aFloat);
23. }
24. ...

Figure 3-12 – An example class with multiple template instantiations

Using Foo as a reference for discussion, some of the primitive pointcut

expressions defined in our aspect language for C++ templates are explained below:

• A primitive get for the field myFloats is captured by the following pointcut

expression:

 get(vector<*> Foo::myFloats) or

 get(vector<float> Foo::myFloats)

Note the wildcard “*” refers to any vector type.

• The execution of all “getters” (i.e., getMyInts and getMyFloats) is

matched by the pointcut expression:

 execution(vector<*> Foo::get*(..)).

The expression “get*” matches all “get” methods.

 59

• However, to match the execution of a specific get method (e.g., getMyInts),

the above pointcut expression can be rewritten as:

 execution(vector<int> Foo::getMyInts(..)).

Here, instead of using a wildcard, we specify the exact method signature.

• Similarly, a call to the method addFloats is matched by the pointcut

expression:

call(void Foo::addFloats(vector<float>,float)).

 A key challenge that is addressed in the design of the pointcut language occurs

from the realization that a template can be instantiated in multiple places, yet it may be

the case that the crosscutting feature is required in only a subset of those instances. A

generalized pointcut expression that quantifies over specific types may capture several

unintended instantiations. For example, if there are multiple vector<float> fields

defined in class Foo, it may be required to log a call only to the push_back method for

the field myFloats, and leave other vector<float> fields (e.g.,

someOtherFloats) unaltered.

The flexibility to quantify over specific template instances provides additional

power towards AOP in C++ templates that is not limited to specific types. However, a

language mechanism is needed to define the quantification scope of a pointcut with

respect to the semantics of C++ templates. The following section motivates the need for

advanced pointcut expressions for C++ templates through a preliminary example.

 60

3.2.2 Advanced Pointcut for C++ Templates

A fragment of the actual STL vector class definition is presented in Figure 3-13a,

which shows the implementation of two vector-specific operations, push_back and

pop_back. The sample code in Figure 3-13b illustrates the use of a vector in an

application program. In this simple application, three different types of vector instances

are declared (i.e., vectors of type int, char, and float). The push_back method is

invoked on each vector instance to insert an element of a different type.

1. template <class T>

2. class vector{

3. //...

4.

5. public:

6. void push_back
7. (const T& x) {

8. // insert element at end

9. if (finish !=

10. end_of_storage){
11. construct(finish, x);
12. finish++;
13. } else
14. insert_aux(end(), x);
15. }
16. }
17.void pop_back() {
18.// erase element at end
19. if (!empty())
20. erase(end() - 1);

21.}
22.// ...
23.// other implementation
24.// details omitted here
25.};

1. class A {

2. vector<int> fi1;
3. vector<float> fi2;
4. void foo() {

5. vector<int> ai;
6. //...

7. ai.push_back(1);

8. fi1.push_back(2);

9. fi2.push_back(3.0);

10. //...
11. }
12.};

1. class B {

2. vector<char> bc;
3. vector<int> fi;
4. void bar() {

5. vector<int> bi;
6. vector<float> bf;
7. //...

8. bc.push_back('a');

9. bi.push_back(1);

10. bf.push_back(2.0);
11. //...
12. }
13. };

a - STL vector implementation b - Application using STL vectors

Figure 3-13- STL vector class and its usage

Considering the canonical logging example, suppose that important data in

specific vector instances needs to be recorded whenever the contents of the vector are

changed. That is, within the context of an STL vector class, a requirement may state that

 61

logging is to occur for all items added to each execution of the push_back method, but

only for specific instantiations. For example, it may be desired to log only vector fields of

type <int> in class A (e.g., field fi1 in class A) without affecting other local vector

instantiations of type int in class A or B (e.g., those appearing in the local scope of

method foo in class A or method bar in class B).

In order to record or log the contents of a given vector instance, the push_back

method as defined in the original vector template (Figure 3-13a) must be adapted.

However, any change to this base template definition will affect all instantiations that

reference the original vector template. For example, if logging support is added to the

push_back method in the original vector template, all instantiations of vector (e.g.,

fields fi1, fi2 in class A, fields bc, fi in class B, or method variables bi or bf in

class B) will automatically implement support for logging. But, according to the

requirement, it is only desired to capture logging to specific instances of the vector (e.g.,

fields of type vector <int>) and not to all its instances. This challenge is addressed

using Template Subtyping.

Template Subtyping: In order to affect only int instances of the given vector

template in fields of class A (or fields of class B) and leave other types (e.g., float,

char) of vector instances unaltered, a new subtype vector$1 is constructed, which

inherits from the original vector template. The log statement is then added to the over-

written push_back method of the vector$1 template. The top-half of Figure 3-14

shows the adapted definition of the push_back method in this vector$1 template.

Note that the method call log.add(x) is added at the beginning of the push_back

method in Figure 3-14. Finally, all field references in class A and B of type

 62

vector<int> are updated with this new vector$1 template (shown in the middle of

Figure 3-14). However, all other references to the original vector template are left

unaltered (e.g., field fi2 or method variable ai in class A).

Figure 3-14- STL vector$1 class with updated references in Application instances

Although template specialization seems related to template subtyping, there could

be instances where specialization may fail. For example, if only a particular instance of a

specific type needs to be adapted (i.e., only the field fi1 in class A), specialization

techniques would fail as any specialization will be universally applied to all references of

type vector<int> (e.g., method variable ai in class A). However, using template

subtyping, only the functions that need to be adapted are transformed with respect to the

1. class B {

2. vector<char> bc;

3. vector$1<int> fi;
4. void bar() {

5. vector<int> bi;

6. vector<float> bf;

7. //...

8. }

9. };

1. template <class T>

2. class vector$1 : public vector<T> { ...

3. public:

4. void vector$1::push_back(const T& x) {
5. log.add(x);
6. __super::push_back(x);
7. }

8. vector$1<T>& vector$1<T>::operator=
 (const vector<T>& _Right) {

9. __super::operator=(_Right);

10. return (*this);
11.} ...
12.

1. class A {

2. vector$1<int> fi1;
3. vector<float> fi2;

4. void foo() {

5. vector<int> ai;

6. //...

7. }

8. };

1 pointcut push_back_method():
2 execution(A::* <-
3 vector<int>::push_back(..));

1 pointcut push_back_method():
2 execution(B::*<-
3 vector<int>::push_back(..));

 63

new aspect semantics, but the rest of the class template remains unchanged. The scoping

rules required to describe the context of a given pointcut expression with respect to C++

templates are discussed further.

Scoping Rules for Templates: Figure 3-15 illustrates the scoping rules for

templates.

Scope Designator Description

 C::* All global template instantiations of class C

(fields)

* C.*(..)::* All local template instantiations within all

methods of class C

(C::* || * C.*(..)::*) All template instantiations (both global and

local) within class C

C.M(..)::*

All local template instantiations within method

M of class C

* C.*(..)::V

Any template instantiation that is referenced by

a variable V in all methods of class C

* C.M(..)::V Template instantiation that is referenced by a

variable V in method M of class C

Figure 3-15- Scope designators in pointcut expressions

From the categorization of scope designators shown in Figure 3-15, the example

from Figure 3-14 can be re-visited to observe the scoping rules for classes A and B in the

application program. At the bottom of Figure 3-14, two pointcut specifications are shown

that capture the logging concern for specific vector instances depending on the scoping

rule applied to the base class template. The pointcut in the bottom-left of Figure 3-14 can

be read as, “select all fields of type vector<int> in class A that lead to an execution

of the push_back method.” Similarly, the pointcut in the bottom-right of Figure 3-14

 64

can be read as, “select all fields of type vector<int> in class B that lead to an

execution of the push_back method.”

To illustrate this scoping rule further, additional examples are provided in Figures

3-16 through 3-20. Each pointcut definition is progressively more focused in limiting the

scope of the join points that are captured (i.e., from a pointcut that captures all vectors of

any type in any class, down to a pointcut that specifies a specific instance in a distinct

method). Figure 3-16 offers an example of the aspect language to add the logging

statement to the push_back method in all vectors of any type from any class. The

pointcut push_back_method represents the points of execution where the advice

is to be applied. In the pointcut expression, vector<*> denotes all types of vector

instances.

1. template <class T>
2. aspect InsertPushBackLogToAllVector {
3. pointcut push_back_method(const T& x):
4. execution(vector<*>::push_back(..)) && args(x);
5. before(const T& x):push_back_method(x) {
6. log.add(x);
7. }
8. }

Figure 3-16 - Aspect specification for inserting the push_back log to all vectors of

ANY type in ANY class

Figure 3-17 defines a pointcut that specifies the execution join point for the

push_back method of all vectors of type int. The low-level implementation details

involving the program transformation rules to automate the required changes to the

template class and application program will be shown in Section 3.2.3.

 65

1. pointcut push_back_method():
2. execution(vector<int>::push_back(..));

Figure 3-17- Pointcut specification for weaving into all vectors of type int in ANY

class

To add finer granularity, Figure 3-18 describes the pointcut specification for

execution of all vectors of type int in class A. To be more specific in limiting the

scope of a pointcut, Figure 3-19 defines a pointcut capturing all int vectors in method

foo that are defined in class A.

1. pointcut push_back_method():
2. execution((A::* || * A.*(..)::*)<-
3. vector<int>::push_back(..));

Figure 3-18- Pointcut specification for weaving into all vectors of type int in class A

1. pointcut push_back_method():
2. execution(* A.foo(..)::*<-
3. vector<int>::push_back(..));

Figure 3-19- Pointcut specification for weaving into all vectors of type int in method

foo of class A

Figure 3-20 is the most specific pointcut expression. It will only match a

particular template instance ai whose type is of vector<int> and is defined within

the scope of method foo of class A.

1. pointcut push_back_method():
2. execution(* A.foo(..))::ai<-
3. vector<int>::push_back(..));

Figure 3-20- Pointcut specification for weaving into vectors of type int and referenced

by variable ai in method foo of class A

 66

3.2.3 Template Weaving using Program Transformation

The aspect language shown in the previous section illustrates the high-level

language specifically constructed to handle C++ templates. In this section, emphasis is

placed on the low-level implementation details used to automate the weaving process

through a program transformation engine.

STL

STL’STL-RSL

Binding

App-RSL

Binding

STL’’
STL

Application New Application

App Xform
Rules

STL Copy
Rules

Aspect
Specification

Translator

DMS TRANSFORMATION
ENGINE1

56

4

3

2

Figure 3-21- Overview of template weaving process

Figure 3-21 presents an overview of the automated transformation process that

uses the DMS program transformation system as its underlying engine. One of the major

components involved in the implementation of the weaver is the translator (bottom of

figure), which parses and translates a high-level aspect language into low-level rewrite

rules (i.e., referenced as items #5 and #6). This facilitates the application programmers to

specify their intent using a high-level aspect language and remain oblivious to the

existence of a low-level transformation engine.

 67

The heart of the weaving process (core infrastructure) is the DMS transformation

engine, which takes the source files and the generated rules as input. The user provides

three different source files as input to the transformation process: the original STL source

code (shown as item #1 in Figure 3-21), an application program based on the STL

instances (shown as item #2), and a high-level aspect language specification (examples

shown in Section 3.2.2) used to describe the specific crosscutting concern with respect to

template instantiations.

The translator includes a lexer, parser, and pattern evaluator (i.e., pattern parser

and attribute evaluator) that takes the aspect specification and instantiates two different

sets of parameterized transformation rules (i.e., STL copy rules and App transformation

rules, shown separately as #5 and #6 in Figure 3-21). The pointcut expressions are bound

to the corresponding transformation rules that are instantiated for matching patterns. The

STL copy rules generate a subtype copy of the original STL class template by inheriting

from the base template. The crosscutting concerns are weaved into this new subtype by

overwriting appropriate methods as defined in the STL-RSL Binding. Note that each

subtype copy rule encapsulates only one crosscutting concern for each specific template

type (e.g., vector<float>). Therefore, it is desired to generate only one subtype

copy for every type, each of which has one specific concern weaved into its base

definition (shown as #3). However, if multiple concerns crosscut a specific type, then the

corresponding subtype copy should also replicate this behavior by encapsulating multiple

crosscutting concerns weaved into one copy. Similar to the STL-RSL Binding, the App-

RSL Binding transformation modifies the user application program (shown as #2) based

on the App transformation rules, and generates the new application (shown as #4) that is

 68

able to be compiled as a pre-processing phase and executed along with the generated

subtype STL copies. The remainder of this section provides a discussion of the

transformation rules that implement these ideas.

Transformation Rules for Template Weaving: Figure 3-22 (STL template

subtype copy rule, also shown as #5 in Figure 3-21) shows the low-level RSL

specification for weaving a logging concern into the push_back method in an STL

vector class. Two steps are involved in the weaving process: 1) make a subtype copy

of the original vector template class, and 2) insert the logging statement into appropriate

places in the abstract syntax tree. The first line of the rule establishes the default base

language domain (e.g., C++) to which the transformations are applied.

1. default base domain Cpp.
2. pattern log_statement(): statement_seq = "log.add(x);".
3. pattern weaved_method_name(): identifier = "push_back".
4. pattern new_template_name(): identifier = "vector$1".

5. external pattern copy_template
6. (td : template_declaration,

7. st : statement_seq,

8. method_name : identifier,

9. template_name : identifier):

10. template_declaration = 'copy_template' in domain Cpp.
11.
12.rule insert_log_to_template
13. (td : template_declaration):
14. template_declaration -> template_declaration
15. = td ->
16. copy_template (td, log_statement(),
17. weaved_method_name(),

 new_template_name()).

18.public ruleset applyrules = { insert_log_to_template }.

Figure 3-22- DMS transformation rules for weaving log statement into push_back

method

 Pattern log_statement in line 2 represents the log statement that will be

inserted before the execution of the push_back method. Pattern

 69

weaved_method_name in line 3 defines the name of the method that will be

transformed (i.e., push_back in this case). Pattern new_template_name in line 4

specifies the new name for the vector (i.e., vector$1).

As stated earlier, exit functions (i.e., external patterns and functions) in DMS are

written in PARLANSE, which use internal APIs for performing various traversal and tree

operations on the parsed AST. In this example, the external pattern copy_template

(line 5 of Figure 3-22) is a PARLANSE function that performs the actual process of

subtyping, naming, and weaving.

This external pattern takes four input parameters: 1) a template declaration to be

operated on, 2) a statement sequence representing the advice, 3) a method name where

the advice is to be weaved, and 4) a new name for the template subtype. The rule

insert_log_to_template on line 12 triggers the transformation on the vector

class by invoking the specified external pattern.

After applying this rule to the code fragment shown in Figure 3-23, a new

template class named vector$1 (inherited from vector) will be generated with the

logging statement inserted at the beginning of the push_back method (i.e., the

automated result is the same as found in Figure 3-14). At this stage, the weaving process

is still not complete because the application program also needs to be updated to

reference the new vector$1 instance.

 70

1. default base domain Cpp.
2. pattern pointcut(id : identifier):
3. declaration_statement = "vector<int> \id;".

4.

5. pattern advice(id : identifier):
6. declaration_statement = "vector$1<int> \id;".
7.

8. external pattern replace_vector_instance
9. (cd : class_declaration,

10. ds1 : declaration_statement,
11. ds2 : declaration_statement):
12. class_declaration = 'replace_vector_instance'
13. in domain Cpp.
14.
15.rule replace_template_instance
16. (cd : class_declaration, id : identifier):
17.
18. class_declaration -> class_declaration
19. = cd -> replace_vector_instance
20. (cd,pointcut(id),advice(id)).
21.public ruleset applyrules = {replace_template_instance}.

Figure 3-23- DMS transformation rules to update the application program

The DMS transformation rule to update the corresponding application program

(App transformation rule, also shown as #6 in Figure 3-21) is specified in Figure 3-23.

Pattern pointcut (lines 2 and 3) identifies the condition under which the rule will be

applied (i.e., in this case, all int vector declarations). Pattern advice (lines 5 and 6)

defines the name of the new transformed type (vector$1<int>). After applying this

particular rule (line 21) to a given user application, the external pattern

replace_vector_instance replaces the type of every template instantiation

declared as type vector<int> into an instance of type vector$1<int>.

Sections 3.1 and 3.2 primarily focused on constructing aspect weavers by

applying program transformation rules on Object Pascal and C++ Templates respectively.

These sections also described some of the AOP language extensions required to support

aspect weaving in the case of C++ templates. In the following section, application of

program transformation systems to improve the modularization and construction of

 71

scientific libraries will be discussed. First, we introduce Blitz++ [Veldhuizen, 1998],

which is a C++ template based library used for numerical computing applications and

shows how AOP can improve the modularity of such libraries. Second, we discuss a

technique to construct or compose scientific libraries based on specialization for a given

architecture. The latter technique is not directly related to AOP, but nevertheless, it shows

the usefulness of program transformation for constructing such systems.

3.3 Adaptation and Specialization of Scientific Libraries

Scientific computing was an initial application domain for the early examples of

AOP [Irwin et al., 1997]. However, aside from an application of AspectJ [Kiczales et al.,

2001] to an implementation of JavaMPI [Harbulot and Gurd, 2004], AOP has not been

applied or investigated deeply within the area of scientific computing. This is primarily

due to the fact that such applications are typically written in FORTRAN, C, or C++, but

the center of AOP research has largely remained focused on Java-based implementations.

Nevertheless, there is a strong potential for impact if aspects can be used to improve the

modularization of scientific computing applications written in languages other than Java.

3.3.1 Aspects in Blitz++

Optimizing performance, while preserving the benefits of programming language

abstractions, is a major hurdle faced in scientific computing [Skjellum et al., 2004;

Quinlan et al. 2004; Veldhuizen and Dennis Gannon, 1998]. Object-Oriented

Programming Languages (OOPLs) have popularized useful features (e.g., inheritance and

polymorphism) in the development of complex scientific problems. However, the

 72

performance bottleneck associated with OOPLs has been a major concern among High-

Performance Computing (HPC) researchers. Alternatively, languages such as FORTRAN

have dominated the numerical computing domain, even though the primitive

programming constructs in such languages make applications difficult to maintain and

evolve.

Compiler extensions (e.g., High Performance C++ [Johnson and Gannon, 1997] and

High Performance Java [Getov et al., 1998]) and scientific libraries (e.g., POOMA

[Reynders et al., 1996], MTL [Siek and Lumsdaine, 1998], and Blitz++ [Veldhuizen,

1998]) have been developed to extend the benefits of object-oriented programming to the

scientific domain. In particular, Blitz++ is a popular scientific package that has specific

abstractions (e.g., arrays, matrices, and tensors) that support parametric polymorphism

through C++ templates. The goal of the Blitz++ project was to develop techniques that

enable C++ to compete or exceed the speed of FORTRAN for numerical computing.

Blitz++ arrays offer functionality and efficiency, but without any language extensions.

The Blitz++ library is able to parse and analyze array expressions at compile-time and

perform loop transformations. Blitz++ currently provides dense vectors and

multidimensional arrays, in addition to matrices, random number generators, and tiny

vectors. The overall size of the Blitz++ library is approximately 115K source lines of

code (SLOCs). Moreover, there are several additional source code directories that serve

as benchmarks and test cases.

Although Blitz++ makes extensive use of templates for array and vector

implementation, the issue addressed in this paper is the ability to apply AOP concepts to

large scientific template libraries like Blitz++. This section contains a description of some

 73

of the array and vector implementation templates in Blitz++, and identifies several

crosscutting features in the current Blitz++ implementation. The general approach could

be applied to other libraries that use parametric polymorphism implemented in languages

such as Ada or Java.

The first example in this section represents the common case of a debugging

precondition that appears in array-impl.h and resize.cc. These files primarily represent

arrays whose dimensions are unknown at compile-time and require resizing during

runtime. In addition, there are several methods that perform block reduction operations

and conversions to and from a matrix and vector.

A second crosscutting feature in array-impl.h is setupStorage, which is used

for initial memory allocation for arrays and appears in both array-impl.h and resize.cc.

The third example is based on redundant assertion checks on the lower and upper

bounds of an array during instantiation. It appears 46 times in array-impl.h and is similar

in concept to redundant assertion checking described by Lippert and Lopes [Lippert and

Lopes, 2000].

Precondition and setupStorage Aspects: The Blitz++ library has a

debugging mode that is enabled by defining the preprocessor directive BZ_DEBUG. In

this mode, an application executes slowly because Blitz++ performs precondition and

bounds checking on the array index. Under this condition, if an error or fault is detected

by the system, the program halts and displays an error message. Figure 3-24 shows a

sample precondition check for an array implementation. The rank of the vector influences

the precondition to be checked.

 74

Another aspect that crosscuts the array implementation boundaries is

setupStorage. The method is called to allocate memory for any new array. However,

any missing length arguments will have their value taken from the last argument in the

parameter list. For example, Array<int,3> A(32,64) will create a 32x64x64

array, which is handled by the routine setupStorage. Both the BZPRECONDITION

(lines 7 and 15 of Figure 3-24) and setupStorage (lines 9 and 17) can be individually

considered as two different pieces of advice applied to the same pointcut (i.e., the former

as before advice and the latter as after advice).

Figure 3-25 presents the corresponding aspect specification for the crosscutting

concern identified in Figure 3-24. This allows the separation of crosscutting concerns

from the base code (Figure 3-24) and encapsulates them as aspects (Figure 3-25) to be

woven using a low-level translator and weaver.

The BZPRECONDITION statement (line 4 in Figure 3-25) and the

setupStorage statement (line 7 in Figure 3-25) form part of the before and the

after advice. The pointcut ArrayConstructor refers to execution of all Array

constructors defined in any Array type (denoted by the wildcard *). However, if it is

desired to match only arrays of type Array<int>, more selective pointcuts can be

used. The function call thisJoinPoint.getArgs().length will return the

length of the parameter list in the Array constructor.

 75

1. template<typename T_expr>
2. _bz_explicit Array (_bz_ArrayExpr<T_expr> expr);

3. Array(int length0, int length1,
4. GeneralArrayStorage<N_rank> storage = GeneralArrayStorage<N_rank>())
5. : storage_(storage)
6. {
7. BZPRECONDITION(N_rank >= 2);
8. // implementation code omitted
9. setupStorage(1);
10. }
11. Array(int length0, int length1, int length2,
12. GeneralArrayStorage<N_rank> storage = GeneralArrayStorage<N_rank>())
13. : storage_(storage)
14. {
15. BZPRECONDITION(N_rank >= 3);
16. // implementation code omitted
17. setupStorage(2);
18. }

Figure 3-24- Precondition check and setupStorage in Blitz++ array implementation

1. aspect InsertBZPreCon_MemAllocation {

2. pointcut ArrayConstructor(): execution(Array<*>::Array(..));

3. before(): ArrayConstructor() {
4. BZPRECONDITION(N_rank >= thisJoinPoint.getArgs().length());

5. }

6. after(): ArrayConstructor() {

7. setupStorage(thisJoinPoint.getArgs().length()-1);

8. }

9. }

Figure 3-25- Aspect specification for precondition and memory allocation in templates

 Redundant Assertion Checking: Another crosscutting feature present in Blitz++

is assertion checking, which is used to evaluate the size or range of array instances. To

detect errors in ranges, each array allocation makes an implicit call to

assertInRange, which checks the lower and upper bounds of an array instance.

This particular assertion is defined in all array template specifications, according

to a general pattern as shown in Figure 3-26 (e.g., assertInRange in lines 3 and 7).

However, note that the number of index parameters passed to the assertInRange

routine implicitly depends on the size of the TinyVector. For example, as presented in

 76

Figure 3-26, to allocate a TinyVector of size 1 requires only one parameter (i.e.,

index[0]) to be passed to assertInRange. Similarly, for a different allocation size

of N, the range will be checked on index[0], index[1], ... ,index[N-1]. This kind of

assertion is repeated 46 times in array-impl.h and is context-dependent on the size of each

template container.

1. template<int N_rank2> T_numtype operator()
2. (TinyVector<int,1> index) const {
3. assertInRange(index[0]);
4. return data_[index[0] * stride_[0]];
5. }
6. T_numtype operator() (TinyVector<int,2> index) const {
7. assertInRange(index[0], index[1]);
8. return data_[index[0] * stride_[0] + index[1] * stride_[1]];
9. }

Figure 3-26- Redundant assertion check on base template specification

To avoid the crosscutting assertion checking in every definition of an array

implementation, the aspect specification (as defined in Figure 3-27) will weave this

concern into the template code. The operator pointcut refers to all operator methods in

the array implementation class. The getParamList special construct (line 7 of Figure

3-27) returns the list of index parameters for each call to assertInRange.

1. aspect AssertInRange {
2.

3. pointcut operator ():
4. execution(Array<*>::operator()(..));

5.

6. before(): operator() {
7. assertInRange(thisJoinPoint.getParamList());

8. }

9. }

Figure 3-27- Aspect specification for redundant assertion checks

 77

Crosscutting Generic Functions: This subsection discusses the combination of

AOP with other generative programming techniques [Czarnecki and Eisenecker, 2000].

In Blitz++, templates such as binary and unary operations for arrays and vectors are

synthesized from a code generator implemented in several C++ routines. For

consideration in this section, attention is focused on a specific set of unary vector

(mathematical) operations in a template specification, which are generated to the

vecuops.cc source file in the Blitz++ library containing approximately 12K SLOCs. Most

of these mathematical operations (e.g., log, sqrt, sin, floor, fmod) have the same

syntactic structure and can be specified concisely in the form of a pattern. An analysis of

the generation process revealed that the entire template specification is essentially a

cross-product between the set of defined mathematical operations (λ) and a base template

(β) that represents the general pattern structure. As observed, the set of mathematical

functions crosscut the entire unary vector general pattern.

If λ1, λ2,...λn represent the set of mathematical operations (e.g., log, sqrt, sin)

that crosscut the partial base template structure β (whole of Figure 3-28), then the code

generated as the cross-product of λ and β can be represented as λ1β + λ2β +... + λnβ. The

partial string identifier OPERATION (highlighted in bold in Figure 3-28) identifies the

locations in the partial base template structure where the mathematical operations must be

woven to generate the whole template structure (i.e., ∑ λ x β = 12k SLOCs). The concept

here is somewhat different than standard AOP practice and more analogous to generative

programming, but the idea of a cross-product between a set of mathematical operations

and a base pattern is germane to the overall process of template weaving. Although this

example is based on vector operations using mathematical functions, similar situations

 78

(e.g., operations on Blitz++ arrays) exist in several other generated template

specifications in the Blitz++ library.

1. template<class P_numtype1>
2. inline _bz_VecExpr <_bz_VecExprUnaryOp <VectorIterConst<P_numtype1>,
3. _bz_OPERATION<P_numtype1>>>
4.
5. OPERATION(Vector<P_numtype1>& d1)
6. {
7. typedef bz_VecExprUnaryOp <VectorIterConst<P_numtype1>,
8. _bz_OPERATION<P_numtype1>> T_expr;
9. return _bz_VecExpr <T_expr> (T_expr (d1.begin()));
10. }

Figure 3-28- Subset of base pattern used to generate the vector operation template

The transformation rule describing the weaving of the mathematical functions

with the base pattern is shown in Figure 3-29. The first line of the rule identifies the

programming language (base domain) of the transformed source, which is C++ in

Blitz++. Lines 3-8 use patterns for matching a syntax tree with a specified structure. The

rule as shown in Line 11 describes a directed pair of corresponding syntax trees. The

right-hand side of the rule specification uses an external function (i.e.,

generate_template_code in Line 27) to generate code. The first parameter to this

external function is a template definition (β). The second and third parameters are the two

annotated markers in the source AST that need to be replaced with the enumerated

mathematical operations. The fourth and subsequent parameters are the set of generic

mathematical operations (e.g., log, sin, sqrt) to be woven into the base pattern during

code generation. Using the above rule specification and the base pattern as shown in

Listing 6, nearly 12K source lines of code are generated which resembles the entire set of

unary mathematical operations present in the Blitz++ library.

 79

1 default base domain Cpp.
2
3 pattern aspect_op(): identifier = "OPERATION".
4 pattern aspect_bz_op(): identifier = "_bz_OPERATION".
5
6 pattern op1(): identifier = "log".
7 pattern op2(): identifier = "sin".
8 pattern op3(): identifier = "sqrt".
9 ...
10
11 rule generate_vec_template (td:template_declaration):
12 declaration_seq -> declaration_seq
13 =
14 td -> generate_template_code (td, aspect_op(),
15 aspect_bz_op(), op1(), op2(), op3(),...)

Figure 3-29- Rules used to generate mathematical operations using a base template

definition

In the following section we analyze a popular scientific computing library,

namely, High Performance Linpack (HPL) Benchmark [Petitet et al., 2004] and discuss

how program transformation techniques can improve the modularity and construction

effort of such libraries.

3.3.2 Specializing HPL using Program Transformation

Given the abundance of legacy code available in the scientific computing domain,

there have been several constructive efforts made within the software engineering

community to reduce the cost of development and the life-cycle maintenance of such

systems. This section discusses how software product line architecture can be adopted

and generative component engineering [Czarnecki and Eisenecker, 2000] can be applied

during the development and maintenance of scientific computing libraries. In particular,

we investigate a well-known scientific computing library - High Performance Linpack

Benchmark [Petitet et al., 2004], and demonstrate how specialization of HPL for a given

 80

architecture can improve its comprehensibility, reduce its memory footprint and thereby

improve its overall performance, portability and maintenance costs.

HPL is a software package that solves a random dense linear system (LU

factorization) on distributed-memory architectures [Petitet et al., 2004]. The HPL

software package requires the availability of an implementation of either the Basic Linear

Algebra Subprograms (BLAS) [Dongarra, 2002] or the Vector Signal Image Processing

Library (VSIPL, http://www.vsipl.org/). Machine-specific as well as generic

implementations of the BLAS and VSIPL are available for a large variety of systems.

Furthermore, BLAS can be categorized into FBLAS (a FORTRAN implementation of

BLAS) or CBLAS (a C implementation of BLAS) [Dongarra, 2002]. Depending on the

machine architecture and the availability of the type of BLAS (either FBLAS or CBLAS)

or VSIPL, the software package mostly relies on preprocessor directives to make specific

calls to appropriate linear algebra subroutines.

A mechanism that can automatically specialize (i.e., deconstruct and reconstruct)

the library based on the underlying machine architecture and the availability of the type

of linear algebra package can greatly reduce the lines of code in HPL, thereby improve its

comprehensibility and reduce its overall memory footprint. DMS is used as the

underlying transformation engine to achieve this goal.

The current macro-based implementation of HPL showing its dependence on the

specific linear algebra library is presented in Figure 3-30. The figure shows a specific

code snippet of one of the BLAS libraries that uses preprocessor directives to make

appropriate calls to BLAS or VSIPL subroutines.

 81

1. #ifdef HPL_CALL_CBLAS

2. cblas_dgemm(ORDER, TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,

 BETA, C, LDC);

3. #endif

4. #ifdef HPL_CALL_VSIPL

5. if(ORDER == HplColumnMajor)

6. {

7. HPL_dgemm0(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,

8. BETA, C, LDC);

9. }

10. else

11. {

12. HPL_dgemm0(TRANSB, TRANSA, N, M, K, ALPHA, B, LDB, A, LDA,

13. BETA,C, LDC);

14. }

15. #endif

16. #ifdef HPL_CALL_FBLAS

17. double alpha = ALPHA, beta = BETA;

18. #ifdef StringSunStyle

19. #ifdef HPL_USE_F77_INTEGER_DEF

20. F77_INTEGER IONE = 1;

21. #else

22. int IONE = 1;

23. #endif

24. ...

Figure 3-30- Preprocessor directives in a HPL software package

The various preprocessor directives that conditionally check for the specific type

of linear algebra subroutine make the code increasingly difficult to maintain. Any new

functionality that needs to be added later on must include such macro-based conditional

checks. This significantly increases the overall size of the software although a

considerable part of it is never processed. Therefore, a technique than can automatically

specialize the library depending on the available architecture is better suited for future

maintenance. In addition, such specialization reduces the overall size of the library

(Figure 3-33) that may lead to better understanding of the core functionalities of the

software. Moreover, a smaller memory footprint can also result in general improvement

in performance of HPL (Figure 3-34).

 82

Figure 3-31- Specialization overview of HPL software package

Figure 3-31 provides an overview of the specialization technique applied to HPL.

Step one denotes the deconstruction process that removes all preprocessor directives (i.e.,

relating to the type of linear algebra subroutine) from the existing HPL package. The

resultant HPL core is then specialized (i.e., reconstructed) depending on the underlying

hardware and software architecture. This produces a family of HPL packages (i.e., a

software product line) with appropriate calls to specific linear algebra subroutines.

In order to realize this goal, the program transformation rule as shown in Figure

3-32 serves as the initial solution.

HPL-ALL

 HPL

 Core

1 Macro Extraction

Remove all preprocessor

directives, i.e., calls to

FBLAS, CBLAS and VSIPL

HPL-CBLAS

2 Specialization

Specialize to HPL-CBLAS,

HPL-FBLAS, HPL-VSIPL,

 i.e., a software product line

HPL-FBLAS

HPL-VSIPL

 83

1. external pattern remove_macro(tran_unit:translation_unit,id:identifier):

2. translation_unit = 'remove_macro' in domain Cpp~ISO14882c1998.

3. external pattern add_macro(tran_unit:translation_unit,id:identifier):

4. translation_unit = 'add_macro' in domain Cpp~ISO14882c1998.

5. pattern FBLAS(): identifier = "HPL_CALL_FBLAS".

6. pattern CBLAS(): identifier = "HPL_CALL_CBLAS".

7. pattern VSIPL(): identifier = "HPL_CALL_VSIPL".

8. rule del_cblas(t_u: translation_unit): translation_unit -> translation_unit

9. = t_u -> remove_macro(t_u,CBLAS())

10. if tran_unit ~= remove_macro(t_u,CBLAS()).

11. rule del_vsip(t_u: translation_unit): translation_unit -> translation_unit

12. = t_u -> remove_macro(t_u,VSIPL())

13. if t_u ~= remove_macro(t_u,VSIPL()).

14. rule del_fblas(t_u: translation_unit): translation_unit -> translation_unit

15. = t_u -> remove_macro(t_u,FBLAS())

16. if t_u ~= remove_macro(t_u,FBLAS()).

17. rule add_cblas(t_u: translation_unit): translation_unit -> translation_unit

18. = t_u -> add_macro(t_u,CBLAS())

19. if t_u ~= add_macro(t_u,CBLAS()).

20. rule add_vsip(t_u: translation_unit): translation_unit -> translation_unit

21. = t_u -> add_macro(t_u,VSIPL())

22. if t_u ~= add_macro(t_u,VSIPL()).

23. rule add_fblas(t_u: translation_unit): translation_unit -> translation_unit

24. = t_u -> add_macro(t_u,FBLAS())

25. if t_u ~= add_macro(t_u,FBLAS()).

Figure 3-32- Transformation rule for specializing macro definitions in HPL

The transformation uses two external patterns (remove_macro and

add_macro) to substitute appropriate preprocessor directives (i.e.,

HPL_CALL_FBLAS, HPL_CALL_CBLAS or HPL_CALL_VSIPL) from the HPL

software package. The external patterns are implemented as PARLANSE functions and

are shown in Appendix F. Step one involves the execution of the rules del_cblas,

del_fblas and del_vsipl and step two involves the execution of the architecture-

specific rule (i.e., either of add_cblas or add_fblas or add_vsipl). The rules

are subsequently processed by DMS to achieve the desired specialization.

 84

Figure 3-33 shows the overall size of the HPL BLAS library before and after

specialization with CBLAS. The CBLAS version HPL comparatively contains very few

lines of code compared to the original version.

Size of HPL BLAS (before) Size of HPL BLAS (after)

 Number of lines of code: 1719

 Number of directive lines: 390

 Number of empty lines: 172

 Number of comment lines: 731

 Number of empty comment lines: 327

 Number of lines of code: 40

 Number of directive lines: 50

 Number of empty lines: 10

 Number of comment lines: 731

 Number of empty comment lines: 327

 Total number of lines: 3339 Total number of lines: 1158

Figure 3-33- Comparing size of HPL BLAS library before and after specialization

Figure-3-34 shows the time analysis and performance analysis graphs between

HPL-ALL and HPL-CBLAS for a fixed block size of 112, row-major process mapping of

4x8 (PxQ) and variable matrix dimension of 10000 to 60000 (NxN) square matrix. It may

be noted that HPL-CBLAS is a specialized version of HPL that only contains calls to the

HPL-CBLAS linear algebra package.

From the graph shown in Figure 3-34, it is observed that for small matrix

dimensions (10000 – 20000), HPL-CBLAS gives an improved performance over HPL-

ALL. However, as the dimension increases, the performance eventually evens out. The

increased performance for HPL-CBLAS for small matrix dimensions may be attributed to

the reduced complexity of the code due to removal of preprocessor directives from the

base HPL package. This allows the compiler (preprocessor) and the runtime system to

process fewer tasks (conditional checks) that results in an overall increase of initial

 85

performance. Obviously as the matrix size increases, these gains are weighted out as

compared to other tasks that lead to both versions performing similarly.

HPL-ALL vs HPL-CBLAS Time Analysis (NxTime)

0

200

400

600

800

1000

Matrix Dimension NxN

T
im

e
 (

S
e

c
o

n
d

s
)

HPL-ALL

HPL-CBLAS

HPL-ALL 14.58 41.51 177.11 877.12

HPL-CBLAS 5.5 19.01 97.01 878.57

5000 10000 20000 40000

HPL-ALL vs HPL-CBLAS Performance Analysis (NxGFlops)

0

10

20

30

40

50

60

Matrix Dimension NxN

G
F

lo
p

s

HPL-ALL

HPL-CBLAS

HPL-ALL 5.719 16.11 30.02 48.54 54.91

HPL-CBLAS 15.23 34.82 54.88 48.57 56.93

5000 10000 20000 40000 60000

Figure 3-34- Time and performance analysis between HPL-ALL vs. HPL-CBLAS

 Although the performance increase is a beneficial side-effect, the main advantage

of HPL specialization is the improved comprehensibility of the software package (i.e.,

 86

better understanding of the complex scientific library). In addition, the reduced size of the

library may make it easier to maintain and evolve the software package.

3.4 Related Work

It is commonly known within the AOSD community that aspect weaving can be

performed using a general transformation framework for a specific programming

language. This observation was first made by Fradet and Südholt as an early position

paper [Fradet and Südholt, 1998]. In similar work, a detailed description of a weaver for a

declarative language was provided by Lämmel [Lämmel, 1999], which used functional

meta-programs to weave aspects. The ideas described in this chapter are not focused on

foundations of transformation systems, but rather the scalability to which legacy

languages can be supported by existing transformation engines.

Several researchers have contributed valuable results in the area of language

extension frameworks. As an example, the Jakarta Tool Suite (JTS) contains the basic

tools to support the addition of new programming features to Java [Batory et al., 1998].

JTS assists in the construction of new pre-processors for DSLs that are transformed into

Java. Another tool, called JastAdd, is a weaver and compiler construction system for Java

based on AST transformation using JavaCC [Hedin and Magnusson, 2003]. Although all

of these tools have advanced technologies for extension and analysis, these efforts are

still bound to a specific language (i.e., Java). In the GENOA system, Devanbu has

observed that many program analysis tools offer a fixed-point solution such that their

internal structure is unusable in other similar contexts. For example, the parser, type

checker, and parse-tree analysis algorithms for a C++ metrics tool are often not reused in

 87

other C++ static analysis tools [Devanbu, 1999]. GENOA claims to have support for re-

targetable front-ends, but it is not evident that GENOA provides a diverse set of

commercial-grade parsers to realize this claim.

At the AOSD web site (http://www.aosd.net/), several weaver research prototypes

are described for various languages. Aside from AspectJ [Kiczales et al., 2001], perhaps

the most mature of these is AspectC++ [Spinczyk et al., 2002]. As noted in the

introduction of Section 3.2, a discussion of templates and aspects in AspectC++ within

the context of generative programming is discussed in [Lohmann et al., 2004]. The focus

of the AspectC++ work is on the interesting notion of incorporating parametric

polymorphism into the bodies of advice. In contrast, the focus of C++ template weaving

is a deeper discussion of the complimentary idea of weaving crosscutting features into the

implementation of template libraries.

 In addition to AspectJ and AspectC++, the following weaver prototypes have

been implemented and available for download:

• Apostle for Smalltalk [Apostle, 2008]

• JBoss-AOP: Java based AOP for the JBoss application server [JBoss, 2008]

• PostSharp for Microsoft .NET [PostSharp, 2008]

• AspectR for Ruby [AspectR, 2008]

There are numerous efforts that support construction of aspect-specific weavers

for a specific programming language. The capabilities offered by these tools and

frameworks permit new aspect languages to be developed to extend a specific base

programming language. An aspect-specific framework is described in [Constantinides et

al., 2002], which is concerned primarily with issues of concurrent programming (e.g.,

 88

synchronization, scheduling). Associated with the goals of the concurrency framework,

the concept of composing multiple aspect-specific languages is explored in [Brichau,

2002]. Related to this aspect-specific language area, the XAspects effort provides a

capability for exploration of new domain-specific aspect languages (DSALs) [Shonle et

al., 2003]. The XAspects work, however, also is limited to Java development.

In Chapter 2, we discussed the work of several researchers who have identified

the benefits of language-independent aspect weaving and applicable to modern

programming languages within the .Net framework. Although similar to intent to our

goals, the approach described in this research is applicable toward large legacy systems

that were developed prior to the existence of .Net.

Within the scientific computing domain, ROSE provides optimizations using

source-to-source transformation of ASTs for C++ applications [Veldhuizen and Dennis

Gannon, 1998]. The transformations are expressed using a DSL [Schordan and Quinlan,

2003]. The type of transformations performed by ROSE are focused solely on

optimization issues of scientific libraries and are not applicable to the kinds of

transformations we advocate in this paper to improve the modularization of crosscutting

concerns in scientific code bases. Another interesting notion of crosscutting concerns that

may apply within the scientific computing domain is to identify parallelism within blocks

of sequential code. In [Chalabine and Kessler, 2006], Chalabine and Kessler have

suggested seven different forms of interdependent concerns that are necessary to

introduce parallelism within sequential programs. In addition to Blitz++ and HPL, future

work will also explore the idea of improving the modularity and comprehensibility of

 89

other scientific libraries like POOMA [Reynders et al., 1996] and MTL [Siek and

Lumsdaine, 1998].

3.5 Limitations of Program Transformation Engines

This chapter showed the benefits of using program transformation engines (PTEs)

in modularizing large software systems written in a variety of programming languages.

Generally, the PTEs are used to construct language-specific aspect weavers and applied

to software systems in both commercial and scientific domains. In addition to aspect

weaver construction, certain specialization techniques could also be applied using PTEs

to reduce the complexities of scientific libraries (e.g., HPL) that help to improve

comprehensibility of such complex systems. Program transformation engines like DMS

or ASF+SDF provide direct availability of scalable parsers and an underlying low-level

transformation framework (e.g., term rewriting, RSL, PARLANSE and AST Interface) to

modify the underlying source programs (i.e., by modifying the AST). This low-level

transformation framework can form the basis of constructing aspect weavers.

However, a PTE-based weaver construction process raises new challenges and

faces inherent accidental complexities (Challenge C3); i.e., the rewrite rules used to

modify base programs are difficult to compose, which makes it accessible to only

language researchers and is generally hard to comprehend by average software

developers. Moreover, the rewrite rules are often tied to the grammar of the source

language (e.g., Object Pascal), which impedes reusability when this language changes

(Challenge C4). In addition, the entire weaver is rendered unusable if one switches to a

new transformation engine during weaver evolution. Furthermore, to provide advanced

 90

aspect weaving capabilities (like that of AspectJ), the underlying rewrite rules can

become significantly complex. For example, to provide reflective capabilities like

thisJoinPoint or to perform signature matching with wildcards, more complicated

transformation rules are required. Such rules generally use exit functions (written in

PARLANSE) to do static analysis on the underlying AST. This requires a thorough

understanding of the various term rewriting semantics specific to a particular PTE. Thus,

in order to use a tool like DMS to construct aspect weavers requires knowledge of the

base language grammar, and of the core machinery provided by DMS. These additional

challenges make program transformation systems typically accessible only to language

researchers with less penetration in mainstream software development. To summarize,

these limitations are listed as follows:

• The rewrite rules used to modify base programs are difficult to compose, which

makes it accessible to only language researchers (accidental complexities)

• The transformation rules are tied to the grammar of a specific language (language-

specific)

• The entire weaver is rendered unusable if the base transformation engine is

replaced with another one (interoperability problem)

• The PTE may be proprietary, i.e., may not be available for use by all desired

parties (e.g., DMS).

Therefore, although program transformation engines (as illustrated in this chapter)

provide solutions to Challenges C1 and C2, they fail to provide a reasonable solution to

challenges like C3 and C4 (please refer to all the challenges C1 - C4 in Chapter 1).

 91

To eliminate some of the accidental complexities associated with PTEs, but still

leverage the power of such systems, the next chapter provides a generic approach towards

constructing aspect weavers for GPLs. Specifically, the approach uses a layered

architecture and combines MDE with program transformation techniques to construct

aspect weavers. The introduction of a model-driven front-end has several benefits in the

overall context of providing a generic framework for aspect weaver construction, as

discussed in detail in Chapter 4.

 92

CHAPTER 4

GENERIC ASPECT WEAVER FRAMEWORK BASED ON

MODEL-DRIVEN PROGRAM TRANSFORMATION

Aspect orientation has been used to improve modeling through modularization of

crosscutting concerns that emerge at higher-levels of abstraction. A large body of

research in this area of AOM has focused on new notations [Clarke and Baniassad, 2005]

and weaving tools [Gray et al., 2003] that improve the ability to express a design within a

model through composition of separate concerns. In this chapter, we examine the

converse – that is, how modeling can improve aspect orientation. Specifically, this

chapter makes a contribution by showing how MDE in combination with PTE is used to

construct new aspect weavers for GPLs through models and transformations. The

approach described in the chapter uses models to capture the essence of various AOP

constructs at an abstract level. These models are then mapped to concrete weavers for

GPLs through a combination of higher-order model transformation and lower-level

program transformation rules. A generic extension to the framework further supports

reusability of artifacts among weavers during the construction process. Aspect weavers

for FORTRAN and Object Pascal were constructed to evaluate the framework, and their

features were assessed against several case study applications.

 93

4.1 Role of MDE in Aspect Weaver Construction

The history of software development paradigms reveals that a new paradigm often

has its genesis in programming languages and then moves up to design and analysis (e.g.,

structured programming preceded structured design and analysis, and object-oriented

programming predated object-oriented design and modeling). This same progression can

also be observed with respect to aspect orientation. Most of the early work on aspects was

heavily concentrated on issues at the coding phase of the software lifecycle [Kiczales et

al., 1997]. There were, however, initial efforts that focused on applying advanced

separation of concerns in earlier phases of the software lifecycle. One of the first

examples of this type of work was described by [Clarke et al., 1999], where a new way to

carve a system into a set of elemental parts in order to support crosscutting concerns was

applied at the design level. Since then, the area of AOM has grown to support several

workshops [AOM, 2008; Models and Aspects, 2008], journal special issues [Object

Technology, 2007; IJSEKE, 2006], and books [Clarke and Baniassad, 2005; Jacobson

and Ng, 2005] on the topic. A broad range of contributions in this area have emerged,

such as extensions to UML to support aspects [Ho et al., 2002; Stein et al., 2002], new

notations for aspect-oriented design [France et al., 2004], model composition rules that

define weaving semantics [Reddy et al., 2006], and tool support for aspect modeling

[Gray et al., 2001; Cottenier et al., 2007, Lahire et al., 2007, Ubayashi et al., 2006].

Among all of the AOM contributions, a general observation is that it can be advantageous

to apply aspects at levels closer to the problem space (e.g., analysis, design, and

modeling), in addition to the solution space (e.g., implementation and coding).

 94

Similar to AOM‟s focus on the benefits that aspects offer to modeling, we believe

there are also advantages that MDE [Schmidt, 2006] can provide for aspect orientation.

Specifically, in Chapter 3 of the dissertation, it was demonstrated how aspect weavers for

various programming languages can be constructed using a program transformation

approach. However, the use of a PTE raises new challenges that could be best realized by

adopting a MDE based approach. In particular, MDE provides a capability to isolate the

dependence on specific transformation engines by decoupling the source aspect language

from the target PTE language and enabling the construction of aspect weavers from high-

level aspect specifications and metamodels. The decoupling ensures that the source

aspect metamodel does not need to be altered even if one chooses to opt for a different

target PTE, only a new PTE metamodel needs to be developed. Conversely, for every

new language, one needs to add the appropriate metamodel extensions to the base aspect

metamodel, but no change to the target metamodel is needed. Another advantage is that

both the aspect language (source) and rules language (target) can evolve independent of

each other. This leads to new features being added to the weaver with minimum cost on

maintenance (i.e., only new mappings are added). The next sub-section summarizes all

the challenges that were raised in Chapter 1 and provides a solution by means of the

GenAWeave framework.

4.1.1 Challenges and Overview of GenAWeave Framework

There were four major challenges that were identified in Chapter 1 that led toward

adoption of aspects for legacy languages. They were Challenge C1 – the parser

construction problem, Challenge C2 – the weaver construction problem, Challenge C3 –

 95

accidental complexities of transformation specifications and Challenge C4 – language-

independent generalization of transformation objectives.

Symbol

Table

ATL Model

Transformation

Engine

Pretty

Printer

DMS Program

Transformation

Engine

Generic

Model Transform

Library

Concrete

RSL Transform

Lexer/

Parser

Domain

Reader

Aspect

Source

Program

AST

Graph

Unparser

definitions

Parser

definitions

C2

C1

C1

Model-Driven Front-End Program Transformation based Back-End

Generic Aspect

Metamodel

Aspect Source

Metamodel

Aspect Source

Model

RSL

Metamodel

RSL

Model

Input

Source

Program

Analyzer

Transformed

Target

Program

C4

C4

C2

C2

C3 C3

C3C3

C1

Figure 4-1 – Overview of our model-driven aspect weaver framework

Figure 4-1 represents the high-level architecture of the GenAWeave framework

that offers solutions to these challenges. Each of these challenges (C1-C4) shown in the

figure maps to a key process in the GenAWeave framework. For example, the adoption

of DMS as a back-end transformation engine provides a solution to Challenge C1 (parser

construction problem) through immediate availability of industrial-scale parsers. Through

transformation rules and a rich API of transformation functions, DMS also offers a partial

solution to Challenge C2 (weaver construction problem). However, the low-level

representation of transformation rules introduces accidental complexities (Challenge C3)

that make it difficult for programmers to specify aspects at this level. Moreover, the

 96

rewrite rules are often tied to the grammar of the source language (e.g., Object Pascal),

which impedes reusability when this language changes (Challenge C4).

To address these challenges, a model-driven approach is used as part of the front-

end of the framework. In particular, a high-level aspect language that conforms to an

aspect metamodel is used to raise the abstraction level of transformation rules. A model

transformation library that translates higher-order aspect models to lower-order RSL

models constitutes the heart of the framework. The generality of the framework is

provided by a generic aspect metamodel that captures the commonalities of different

aspect languages for various GPLs. The differences are captured using metamodel

extensions. Moreover, the model transformation library provides additional generality

that allows them to be reused among multiple aspect weavers. This generality is

accomplished by enforcing the higher-order model transformation rules to conform to a

generic interface (i.e., abstract structure). Thus, the MDE-based approach offers a

solution to Challenge C3 (accidental complexities) and Challenge C4 (generalization of

transformation objectives).

4.1.2 Program Transformation Back-End

It was first observed in [Fradet and Südholt, 1998] that aspect weaving can be

performed using a general transformation framework. Aßmann and Ludwig provided an

early demonstration of aspect weaving using graph rewriting [Aßmann and Ludwig,

1999]. Most PTEs support a term-rewriting or graph-rewriting engine such that

transformation rules can be constructed that realize the weaving of aspects into a source

program [Baxter et al., 2004; Cordy et al., 2002; van den Brand et al., 2002; Visser,

 97

2001]. In Chapter 3, we demonstrated how a PTE can be used to construct an aspect

weaver for Object Pascal [Gray and Roychoudhury, 2004] and C++ templates

[Roychoudhury et al., 2008].

The technique from Chapter 3 uses program transformation rewrite rules to locate

crosscutting concerns and weave aspects into source code. As shown in the right-hand

side of Figure 4-1, the input source is initially tokenized (i.e., using a lexer) and parsed

(i.e., using a parser) to produce an AST. The AST is then statically analyzed and concrete

program transformation rules (i.e., RSL) are used to identify points of interest in the AST

that represents a particular crosscutting concern. As mentioned earlier in Chapter 2, RSL

typically consist of patterns, conditions, rules and rulesets that together perform the

desired pattern matching on the source AST. Frequently, exit functions in the form of

PARLANSE external functions [Baxter et al., 2004; Gray and Roychoudhury, 2004] are

used in conjunction with RSL to perform complex pattern matching and weaving. After a

desired match is found, the AST is accordingly modified (i.e., weaved) and prettyprinted

to produce the transformed target program.

4.1.3 Challenges of Program Transformation Engine Usage

In spite of source code modification capabilities, PTEs are often difficult to use

and require sufficient knowledge of the underlying parsing techniques, language

grammar, and proprietary languages (e.g., RSL and PARLANSE). Thus, PTEs generally

tend to operate at a level that is not appropriate for general software development.

Moreover, to provide advanced aspect weaving capabilities (e.g., like that of AspectJ),

the underlying rewrite rules can become significantly complex. For example, to provide

 98

reflective capabilities like thisJoinPoint or to perform signature matching with

wildcards, complex transformation rules are required. Such rules generally use exit

functions to do static analysis on the underlying AST [Gray and Roychoudhury, 2004].

This requires a thorough understanding of the various term rewriting semantics specific

to a particular PTE. Moreover, the rewrite rules are often tied to the grammar of the base

language (as highlighted in bold in Figure 2-4), which impedes reusability when the base

language changes. Thus, using a tool like DMS to construct aspect weavers requires

knowledge of the base language grammar (concrete syntax), and of the core machinery

provided by DMS. These additional complexities make program transformation systems

typically accessible only to language researchers and hampers PTE penetration in

mainstream software development.

In our initial research in constructing an aspect weaver for Object Pascal using

DMS [Gray and Roychoudhury, 2004], we observed these broader challenges and

recognized that an appropriate front-end support alongside a systematic code generator

was needed to bring program transformation systems closer to mainstream software

development. The proper selection of an appropriate front-end and program

transformation rule generator can hide the accidental complexities associated with PTEs.

Nevertheless, aspect weavers can still leverage the power of PTEs to perform the

complex code transformation. In the following section, we introduce our investigation

into a model-driven front-end and discuss the primary benefits offered by MDE in the

overall context of the framework.

 99

4.2 Model-Driven Front-End

There are many ways to design the front-end of an aspect language. In some

examples, the language format is expressed in raw XML [Lafferty and Cahill, 2003], but

in other cases it is expressed in a more sophisticated declarative language [Lämmel,

1999]. Through our investigation in the design of various aspect languages, we realized

that the declarative nature of expressing aspects (e.g., as popularized by pointcuts in

AspectJ) has a common language-independent characteristic. For example, the concepts

of join points, pointcuts and advice can be adapted to many aspect language designs

within the same language paradigm. Metamodels can precisely capture these concepts

and their relations.

In addition, a model-driven front-end is well-suited for abstracting the various

semantics associated with PTEs. MDE provides an abstraction layer that can be mapped

down to program transformation rules. Combining the technical spaces of MDE and

program transformation offers more possibilities than each considered separately.

4.2.1 Metamodel for Front-End Aspect Language

Figure 4-2 shows an excerpt of the abstract syntax of an aspect language in the

form of a metamodel represented as a collection of three class diagrams. This metamodel

illustrates the specification of Aspect Pascal, which is an aspect language we defined for

Object Pascal. An aspect described in this language consists of Pointcuts and

Advice. They together constitute the fundamental elements for defining an aspect-

oriented language (influenced by the asymmetric AspectJ style). As evident in Figure 4-2,

an aspect can have multiple pointcuts and multiple advice.

 100

+name : String

AspectPascal

Advice

+aspect1

+advices*

AroundAdviceBeforeAdvice AfterAdvice

Statement

+advice

1

+stmts *

+name : String

Pointcut

+aspect

1
+pointcuts*

Expression

+pointcut1

+expressions*

+advice +pointcut

Advice

Statement

+advice1

+stmts*

ParamDef

+advice

1

+paramdefs*

LoopStatement OpaqueStatement ProceedStatement

+name : String

Pointcut

Expression

+pointcut1

+expressions*

CallExpr WithExpr ExecExpr

FunctionOrProcSignature

1
1

11
0- 0-

Figure 4-2 – Subset of Aspect Pascal metamodel represented as a class diagram

An Advice, defined as an abstract class in the metamodel, can be further

categorized as BeforeAdvice, AfterAdvice or AroundAdvice. An advice can

have advice parameters and an advice body (i.e., a list of statements). Every advice

parameter has a type and a name associated with them and is used for passing the context

information (e.g., passing the parameter type to pointcut expressions). Every advice

statement conforms to the grammar of the base language. Because the back-end program

transformation engine already has the parser/analyzer available for managing the base

language, the body of the advice is typically delegated to the back-end for further

 101

processing. Such late binding of an advice body reduces the complexity of the metamodel

by not including every possible program construct that belongs to the base GPL. These

program fragments are referenced in the front-end metamodel as OpaqueStatements

(i.e., statements that are not handled by the front-end). In addition to

OpaqueStatement, there are other special statements: loop statement and proceed

statement. Proceed statement is generally used in bodies of around advice. An

example of a loop statement is given in Section 4.5.

Pointcuts consist of pointcut expressions, which can, for instance, be further

expressed as call expressions, with expressions or execution expressions. Pointcut

expressions form the key for pattern matching. All pointcut expressions are derived from

the abstract Expression class. As seen in Figure 4-2, both the CallExpr and

ExecExpr expressions are derived from Expression and both reference the type

pattern FunctionOrProcSignature, which identifies the prototype declaration

(i.e., signature) for a function or procedure defined in Object Pascal. This is particularly

useful for pattern matching. Although call and exec may be the two most common

forms of pointcut expressions, new expressions can be experimented with and derived

from the base Expression class template. For example, Object Pascal allows the

definition of with expressions that are used to pass the context information from parent

to child objects. Other pointcut expressions available in the join point model of the base

language can be similarly added to the metamodel of the front-end aspect language.

Wildcards are also allowed and examples are given in Section 4.5.

The pointcut expressions are translated to RSL patterns or rules that do the actual

pattern matching on the source code. The front-end AOP layer is simply a façade to the

 102

back-end program transformation engine. It helps to hide the accidental complexities

associated with PTEs (Challenge C3) and also provides a platform to experiment with

new AOP language constructs that can be suitably translated to back-end rewrite rules.

The translation mechanism that generates the back-end RSL rules from the front-end

aspect language is explained in detail in Section 4.3 and Section 4.4.

4.2.2 Implementing the Front-End Aspect Language with AMMA

As explained in Chapter 2, AMMA [Kurtev et al., 2006] is a suite of MDE tools

that can be used to implement the aspect language described in Figure 4-2. The first step

in creating a front-end is to create a metamodel that defines the abstract syntax of the

aspect language. The KM3 [Jouault and Bézivin, 2006] language within AMMA may be

used for this purpose. Although other MDE tools can be used to define the metamodel,

we chose KM3 because it has the added advantage of being independent of the concrete

MDE technology (e.g., the Eclipse Modeling Framework – EMF, or OMG‟s Meta-Object

Facility - MOF). In addition to technology independence, KM3 also provides a simple

textual syntax that is well-suited for defining the metamodel described in Figure 4-2. The

example in Figure 4-3 demonstrates how KM3 is used to define the Aspect Pascal

metamodel.

 103

class AspectPascal extends LocatedElement {

 attribute name : String;

 reference domain container : Domain;

 reference pointcuts[1-*] container : Pointcut oppositeOf aspect;

 reference advice[1-*] container : Advice oppositeOf aspect;

}

class Pointcut extends Element {

 attribute name : String;

 reference aspect : AspectPascal oppositeOf pointcut;

 reference paramdefs[*] container : ParameterDef;

 reference exprs[1-*] container : Expression oppositeOf pointcut;

}

abstract class Advice extends LocatedElement {

 reference aspect : AspectPascal oppositeOf advice;

 reference pointcut : Pointcut;

 reference paramdefs[*] container : ParameterDef;

 reference stmts[1-*] container : Statement;

}

Figure 4-3 - KM3 specification (snippet) for Aspect Pascal

Figure 4-3 shows a snippet of the KM3 code used to implement the metamodel

specification introduced in Figure 4-2. The AspectPascal class contains references to

other classes; namely, the core elements Pointcut and Advice. The oppositeOf

construct is used to maintain reverse navigational links for efficient traversal purposes

required during model transformation (Section 4.3). Thus, instead of representing the

model as a tree, the oppositeOf reference helps to maintain the metamodel as a graph

that can be traversed in the opposite direction, if necessary. Generally, advice and

pointcuts can be traversed in both directions (i.e., from the parent AspectPascal

class to the child Pointcut or Advice class, and vice versa). Similarly, pointcut

exprs can be traversed in the reverse direction. The complete KM3 specification for the

Aspect Pascal metamodel is available in Appendix A.

In addition to the abstract syntax shown as a metamodel in KM3, the concrete

syntax of the aspect language is specified in a separate model. To express this model,

 104

AMMA offers TCS [Jouault et al., 2006], which uses a grammar-like notation to describe

the syntax of a language. Figure 4-4 shows an excerpt of the Aspect Pascal concrete

syntax defined in TCS. This figure illustrates how the concrete syntax of different

metamodel elements (e.g., Aspects, Pointcuts, and Advice) is expressed in TCS. In TCS,

every class represented in the KM3 specification has its corresponding template

definition. It also introduces other terminal tokens like separators, brackets and

semicolons that are required to describe the concrete syntax of the aspect language but

are not captured in the abstract syntax of the metamodel. Thus, TCS gives the structure of

the source aspect language. In addition, context information can also be passed and stored

in the symbol table for further analysis. The complete TCS specification for the Aspect

Pascal metamodel is shown in Appendix A.

Template AspectPascal main

 : "aspect" name "{" pointcut advice "}"

 ;

template Pointcut context addToContext

 : "pointcut" name "(" paramdefs{separator = ","} ")"

 ":" exprs {separator = "&&"} ";"

 ;

template Advice abstract;

template BeforeAdvice

 : "before" "(" paramdefs {separator = ","} ")" ":"

 ...

 ;

template AfterAdvice

 : "after" "(" paramdefs {separator = ","} ")" ":"

 ...

 ;

Figure 4-4 - TCS specification (snippet) for Aspect Pascal

The front-end would be incomplete without appropriate code generators that

transform the front-end aspect language to its corresponding target language. In our

 105

model-driven GenAWeave framework, the back-end is the transformation language of

the PTE; specifically, the RSL. The following section demonstrates how RSL

transformation rules are generated from the front-end aspect specification.

4.3 Model Transformation

This section describes the model transformations rules that appropriately translate

a given aspect specification to its corresponding rule specification. Both the source (high-

level aspect language) and target (low-level RSL) languages are defined using a

metamodel based approach. The translated RSL rules are subsequently processed by

DMS to perform the actual weaving for a source program written in a specified GPL. The

following sub-sections discuss in detail the model transformation approach and begin

with an introduction of the program transformation rule generator.

4.3.1 Program Transformation Rule Generator

The program transformation rule generator (shown as item 2 in Figure1-2 and also

shown as Generic Model Transform Library in Figure 4-1) represents the core of the

framework and embodies a higher-order transformation (i.e., a model transformation rule

is used to generate program transformation rules). As mentioned earlier, the front-end

aspect language is only a façade to the back-end PTE and all pointcut declarations and

advice code present in the source aspect language are eventually translated to target RSL

code that consists of RSL patterns, external conditions and rewrite rules. Therefore, the

goal of the program transformation rule generator is to synthesize transformation engine

 106

specific weaving code (RSL) from the front-end representation defined by a higher-order

aspect specification.

4.3.2 Target Metamodel for RSL

In order to realize a systematic translation from a high-level aspect language to a

low-level transformation language, it is necessary to define a metamodel for the back-end

program transformation engine. The target RSL metamodel serves two basic purposes.

Firstly, it allows experimenting with new aspect languages (e.g., Aspect Ruby or Aspect

FORTRAN) and new aspect constructs (e.g., loops) without changing the model for the

back-end PTE. In this case, the commonalities of different aspect languages for various

GPLs can be captured in a generic aspect metamodel. The differences can be captured

using metamodel extensions; however, no change is required for the target metamodel.

This helps to improve the generality of the framework.

Secondly, instead of an ad hoc technique, a metamodel allows more sophisticated

translations where complex pointcut expressions and join point shadows (areas in the

source where join points may emerge) from the front-end aspect language could be

correspondingly mapped to patterns and rules in the back-end RSL language. The

presence of a target metamodel provides an internal representation of the back-end

transformation language (RSL) that can be used to validate the generated lower-order

transforms. For future experimental purposes, the presence of a RSL metamodel may also

permit bidirectional mappings (currently, the mapping is unidirectional, from Aspect-to-

RSL). In such a scenario, given a generated RSL program as input, the corresponding

 107

aspect specification for a different GPL may be recovered, provided a mapping exists

between RSL and the GPL.

To capture the essential concepts of RSL, an RSL metamodel has been created in

KM3, illustrated by a class diagram in Figure 4-5. As noted earlier, RSL consists of

elements like patterns, rules, conditions, and rule-sets, which are captured in this

metamodel. The complete KM3 and TCS specification for the RSL metamodel is

available in Appendix C. It should be noted that the target metamodel defines the essence

(i.e., concepts and relations) of a domain without concern for semantics. In our case, the

semantics of the various components of the source aspect metamodel are captured in the

mapping to RSL defined as an ATL transformation. ATL is the model transformation

language of AMMA [Jouault and Kurtev, 2005]. The semantics of the aspect language is

thus captured in terms of the semantics of RSL, which is in turn processed by DMS. Case

studies are presented in Section 4.5, where complete scenarios describing this model to

model transformation are explained with concrete examples.

-dname : String

RSL

+name : String

RuleSet

+rsl

1

+ruleset

*

+dname : String

+tokens : String

ExternalPattern

Rule

+dname : String

+tokens : String

ExternalCondition

+name : String

+type : String

Element

Condition

+rsl1

+elems*

Pattern

+rulesets1

+rules*

Figure 4-5 - Subset of the RSL metamodel (as a class diagram)

 108

The following section describes the model transformation technique that uses

ATL as the core artifact to transform the source aspect model to the target RSL model.

4.3.3 Model Transformation using ATL

Given the definition of the source and target metamodels, it is possible to generate

RSL program transformation rules from an aspect program using model transformations.

M3

M2

M1

AspectPascal

Metamodel

MyAspect.ap

AP program

EBNFEBNF

AspectPascal

Grammar

MyAspectPascal

Model

KM3

Grammarware TS
Model-Driven Engineering (MDE)

Technical Space (TS)

RSL

Metamodel

MyRsl

Model

RSL.g

Grammar

MyRsl.rsl

RSL program

TCS Extraction
TCS Injection

M1 = terminal model level;
M2 = metamodel level;

M3 = meta-metamodel level

Grammarware TS

Aspect2RSL.atl

Transformation

M3

M2

M1

AspectPascal

Metamodel

MyAspect.ap

AP program

EBNFEBNF

AspectPascal

Grammar

MyAspectPascal

Model

KM3

Grammarware TS
Model-Driven Engineering (MDE)

Technical Space (TS)

RSL

Metamodel

MyRsl

Model

RSL.g

Grammar

MyRsl.rsl

RSL program

TCS Extraction
TCS Injection

M1 = terminal model level;
M2 = metamodel level;

M3 = meta-metamodel level

Grammarware TS

Aspect2RSL.atl

Transformation

Figure 4-6 - Model transformation scenario for generating RSL rules from aspects

Figure 4-6 explains the complete model transformation scenario in the

GenAWeave framework. In this figure, M1, M2, and M3 are the three modeling levels in

the Grammarware [Klint et al., 2005] and MDE technical spaces (TS). From the

Grammarware TS, the front-end aspect source file is initially injected into a source aspect

model using TCS. The aspect model is then transformed into a target RSL model using a

 109

model transformation defined in ATL. This ATL transformation forms the core of the

program transformation rule generation process. After translation, the generated RSL

model belonging to the MDE TS is extracted (using TCS) into the target RSL program in

the Grammarware TS.

To modularize the RSL generation process, the framework defines a library of

ATL transformations with each transformation corresponding to a primitive pointcut

specification (e.g., call, execution). For a given aspect, the corresponding ATL

transformation rule is automatically invoked depending on the pointcut specification used

in the aspect. The higher-order ATL transformation generates the lower-order RSL

transformation that eventually performs the aspect weaving. The collective set of all

model transformation rules is assembled in a transformation library that implements the

semantics of the source aspect language.

Figure 4-7 depicts a snippet of a sample ATL transformation from the core

transformation library. This particular transformation evaluates a call expression in the

source aspect, and generates the corresponding RSL transformation rule. The ATL helper

function EvalCallExpr is used for this purpose. The transformation maps individual

elements from the source aspect metamodel to the target RSL metamodel. For example,

Aspect Pascal model elements like advice (Line 10, Figure 4-7) and pointcuts (Line 11,

Figure 4-7) are mapped to RSL elements like patterns, conditions and rules (i.e., RSL

elements in Figure 4-5). Similarly, before advice statements (Line 25, Figure 4-7) from

the source aspect language are mapped to RSL patterns. The relationships between the

source aspect model elements to the target RSL model elements can be one-to-one, one-

 110

to-many, many-to-one or many-to-many. This depends on the type of pointcut expression

used in the source aspect program.

1. module AspectPascal2RSL;

2. create OUT : RSL from IN : APascal;

3. rule APascal2RSL {

4. from

5. s : APascal!APascal

6. to

7. t : RSL!RSL (

8. dname <- 'ObjectPascal',

9. elems <- Sequence {

10. s.advice,

11. s.pointcut->collect(e |

12. thisModule.EvalCallExpr(e)

13.),

14. ...

15. },

16. ruleset <- rs

17.),

18. rs : RSL!RuleSet (

19. name <- s.name,

20. rules <- s.pointcut->collect(e|e.name)

21.)

22. }

23. rule BeforeAdvice2Pattern {

24. from

25. s : APascal!BeforeAdvice

26. to

27. t : RSL!Pattern (

28. name <- 'before_advice_stmt_list'

29. ptype <- 'statement_list',

30. ptext <- spt

31.),

32. spt : RSL!SimplePatternText (

33. ptext <- s.stmts->iterate(...)

34.)

35. }

-- [original code omitted for brevity]

Figure 4-7 - ATL transformation (snippet) from Aspect Pascal to RSL

It should be noted that the source aspect metamodel to describe these pointcut

expressions is completely independent of the target RSL language. Additionally, the

aspect metamodel is structurally and semantically similar to a traditional AOP language,

 111

like AspectJ. This metamodel captures many of the essential concepts of AOP

(influenced by the asymmetric AspectJ style) - join points, pointcuts and advice. The

actual transformation on the source code is performed using RSL rules that are generated

from the higher-order aspect language using ATL. These ATL transformations

implement the semantics of the source aspect language and all corresponding mapping

information from source to target are embedded in the ATL specifications.

The generated RSL is not shown here because it is internal to the framework (i.e.,

users of the framework do not see any of the intermediate transformation rules); however,

interested readers who want to view the generated artifacts may refer to the GenAWeave

website [GenAWeave, 2008], which represents the project webpage for the framework

and includes video demonstrations, papers, and all of the source. In addition to the

website reference, the experimental case studies presented in Section 4.5 also serve as

specific examples for describing the complete transformation scenario illustrated in this

section.

4.3.4 Remaining Challenges to be Addressed by the Framework

The model-driven weaver generation framework presented in this section offers a

solution to the challenge of using a program transformation engine to implement an

aspect weaver. The previous sections provided a discussion of the key parts of the

framework, including the front-end aspect language, the transformation rule generator

and the back-end weaving engine. The context of the discussion was centered on the

creation of a weaver for a single base language, such as Object Pascal, to address

Challenge C3 (accidental complexities). However, an additional challenge remains. As

 112

mentioned in the beginning of this chapter, a program written in RSL or any other term-

rewriting engine is typically tied to the grammar of the source program (i.e., the RSL

examples presented in Chapter 3 have grammar productions appearing throughout the

transformation rule). Moreover, there are variations in design from one aspect language

to another, even if a common generic part is shared. Unless carefully designed, the front-

end, the core transformation libraries, and the back-end modules are rendered unusable

when constructing a new weaver in another context (i.e., a new aspect language for a new

base programming language). The goal of any extensible framework is to avoid

constructing a single fixed-point solution (i.e., constructing each new weaver from

scratch) after enough knowledge, time, and effort have been spent. The next section

discusses how this framework was made more generic to support reuse in new contexts.

Thus, instead of building a new weaver from scratch, the benefit from the experience

gained in a previous construction can be reused and applied toward the construction of a

new weaver for a different programming language.

4.4 Extending to a Generic Framework

Generalizing the framework presented in Section 4.3 to accommodate a broad

range of GPLs is challenging due to the dissimilarities among various programming

languages. Yet, many languages in the same paradigm (e.g., structured or object-oriented)

may share common concepts at an abstract level such that parts of the framework can be

reused. Unfortunately, most aspect weavers are built from scratch with little emphasis on

reusing the existing knowledge or framework already available for constructing a weaver

for a particular GPL.

 113

In Section 2.2.1 of Chapter 2, several techniques toward language-independent

legacy modernization were discussed. Section 2.2.2 presented a comparative study about

the strengths and weaknesses of these techniques. From this comparative study, we

realized that although the prevailing .Net/CLI based techniques serves well for modern

programming languages, they fail to address legacy languages like FORTRAN, COBOL

and Object Pascal due to their non-conformance with .Net specification. Moreover, such

an approach would ignore all available artifacts that are already available for these

languages. While investigating a generic aspect weaving framework, we understood these

challenges and discovered a solution whereby the model-driven weaver framework uses

the existing parsers of DMS, but extracts out the commonalities among weavers

constructed for various GPLs. Although our approach does not automate all the tasks

involved in creating an aspect weaver (i.e., making it language-independent),

GenAWeave can considerably reduce the weaver construction effort by reusing the

shared or common parts among different aspect weavers through abstract models and

corresponding model transformations.

Moreover, because DMS provides support for 23 different programming

languages (including legacy languages like COBOL, FORTRAN, and C), a generic front-

end with a reusable code generator that translates our front-end aspect language to RSL

can make use of all the parsers and analyzers that are already available within each of the

language domains supported by DMS. In addition, we may also consider changing the

back-end if another PTE supports other languages that we would like to use. The solution

approach introduced in this section addresses the obstacles toward weaver construction

enumerated in Challenge C4 (generalization of transformation objectives).

 114

4.4.1 Support for a Generic Aspect Front-End

The first step toward a generalized model-driven weaver framework is to design a

generic aspect front-end that can be shared among various GPLs. If the AspectJ definition

of an aspect is used, every language that is integrated into the framework must define the

meaning of a join point model (JPM), pointcuts, and advice within the language context.

Such a notion can be defined abstractly such that each new aspect language inherits and

extends this common definition. As such, a full generic source model is not needed when

the notion of join points is considered to occur within limited boundaries of a program

(e.g., method execution, method invocation, memory allocation), which is a concept

shared by most languages. An abstract join point model for the model-driven weaver

framework only considers a small subset of concepts shared across most languages in a

common paradigm.

Reconsidering the Aspect Pascal metamodel of Figure 4-2, it can be observed that

metamodel elements such as pointcut, advice, abstract expressions, and abstract

statements are actually generic in the Aspect Pascal metamodel. Thus, instead of

modeling these elements as part of the Aspect Pascal metamodel, they can be extracted to

a common generic core. However, there may be differences in the concrete syntax of

certain model elements. For example, concrete statements and expressions may vary from

one GPL to another. In such cases, the differences can be captured in individual

metamodel extensions [Barbero et al., 2007] and commonality can be shared using a

general metamodel. To explain this concept, this section will summarize the construction

of aspect weavers for two different GPLs (i.e., Object Pascal, and FORTRAN) using the

 115

GenAWeave framework. The example shows how languages across different paradigms

can even share AOP concepts through metamodel extension.

Figure 4-8 shows the class diagram representing the new Aspect Pascal

metamodel that extends from the core GAspect metamodel. The latter captures all of the

essential concepts that are intrinsic to most aspect-oriented languages (influenced by the

asymmetric AspectJ style). For example, the core model elements such as pointcuts and

advice belong to GAspect. There are also abstract placeholders for expressions and

statements in GAspect. Although the figure does not show a metamodel for JPM, a

further enhancement in this direction could be made in the future.

Every language-specific expression and statement must extend from these abstract

definitions. For example, a concrete execution expression join point or a call

expression join point for any Aspect-Oriented Language (AOL) must be derived from the

abstract expression join point of GAspect. In Figure 4-8, the CallExpr expression

and ExecExpr expression of Aspect Pascal inherits from FuncOrProcDefExpr

(which itself is derived from the abstract Expression class) and references the

FuncOrProcSignature type pattern. The type pattern captures the concrete syntax

(i.e., signature) for expressing functions or procedures in Object Pascal and is dependent

on the grammar of the base language. For every new language, the concrete syntax of the

type pattern varies. The dotted rectangle in Figure 4-8 depicts all those points of

variability that are specific to Aspect Pascal.

 116

+name : String

GAspect

Advice

1
*

AroundAdviceBeforeAdvice AfterAdvice

Statement

1*

+name : String

Pointcut

1

*

Expression

ArgsExprLoopExpr

AspectPascal

LoopStatement

FuncOrProcDefExpr

CallExprWithinCodeExpr ExecExpr

1

*

WhileLoopForLoop WithExpr

FuncOrProcSignature

FuncDef ProcDef

Figure 4-8 - Class Diagram (snippet) of Aspect Pascal extending from a common

 Generic Aspect metamodel

Because most programming languages have some form of support for loops, we

have introduced the notion of a loop execution join point in the generic

metamodel. Concrete loop statements belonging to the base AOL must be derived from

the abstract LoopStatement of GAspect. The Aspect Pascal metamodel shows

support for while loop and for loop join points that are extended from the abstract

loop execution join point present in GAspect. The concept of a loop

execution join point is not present in AspectJ, but has been found to be useful

for monitoring high-performance scientific applications [Harbulot and Gurd, 2005].

 117

Furthermore, a join point for capturing with expressions in Object Pascal is

introduced in the Aspect Pascal metamodel. An example of a crosscutting concern based

on a with expression join point is given in [Gray and Roychoudhury, 2004]. In a similar

way, the entire join point model for an aspect-oriented language can be constructed by

adding concrete extensions from the abstract GAspect metamodel. Moreover, the

technique allows experimentation with new features (e.g., loop execution join

point) to be added to an existing AOL. Such an addition is beneficial if the aspect

language should evolve. The Aspect Pascal metamodel shown here is only a snippet of

the original. The complete KM3 and TCS specification of Aspect Pascal is available in

Appendix A.

Figure 4-9 shows the corresponding metamodel for Aspect FORTRAN. Similar to

Aspect Pascal, the Aspect FORTRAN metamodel is extended from the generic core

GAspect. However, the points of variability (shown by the enclosed dotted rectangle) for

this metamodel exist in their concrete syntax. In the case of Aspect FORTRAN, the

call, exec and withincode expressions reference subroutine/function definitions

unlike the procedure/function definitions in the Aspect Pascal metamodel. Moreover, the

concrete function definitions for Aspect FORTRAN and Aspect Pascal are different due

to the dissimilarity in their underlying grammar. The TCS specification in Figure 4-10

shows this variability of concrete syntax for the two metamodels.

 118

+name : String

GAspect

Advice

1*

AroundAdviceBeforeAdvice AfterAdvice

Statement

1*

+name : String

Pointcut

1

*

Expression

ArgsExprLoopExpr

AspectFORTRAN

LoopStatement

FuncOrSubDefExpr

CallExprWithinCodeExpr ExecExpr

1

*

DoLoop

FuncOrProcSignature

FuncDef SubDef

Figure 4-9 - Metamodel (snippet) of Aspect FORTRAN conforming to a common

 Generic Aspect metamodel

1. template FuncDef
2. : "FUNCTION" name "(" paramdefs{separator = ","} ")"
3. ;
4. template SubDef
5. : "SUBROUTINE" name "(" paramdefs{separator = ","} ")"
6. ;

1. template FuncDef
2. : "function" (isDefined(classifier) ? classifier ".")
3. name "(" paramdefs{separator = ";"} ")"
4. ;
5. template ProcDef
6. : "procedure" (isDefined(classifier) ? classifier ".")
7. name "(" paramdefs{separator = ";"} ")"
8. ;

Figure 4-10 - TCS specification showing differences in concrete syntax for Aspect

 FORTRAN (top) and Aspect Pascal metamodel (bottom)

 119

The top-half of Figure 4-10 shows the concrete syntax of function/subroutine

definitions for Aspect FORTRAN. The bottom-half shows the corresponding concrete

syntax for Aspect Pascal. All points of variation between the two metamodels are

captured in their corresponding extended metamodel (dotted rectangle), but the

commonality is captured in the generic aspect metamodel. The complete KM3 and TCS

specification of Aspect FORTRAN is available in Appendix B.

In addition, GAspect also captures certain program fragments belonging to a GPL

that may not be analyzed or parsed by the front-end. Instead, these program fragments are

delegated to the back-end PTE for parsing and analysis. Such fragments typically appear

in the body of advice code and are referenced as OpaqueStatements. This

considerably reduces the complexity of the aspect metamodel as several language

constructs of the base language need not be parsed or analyzed by the front-end. Instead,

the back-end PTE that already has the capability (parser/analyzer) to process the base

language (Object Pascal / FORTRAN) can handle such program fragments. An example

of using OpaqueStatement is shown in the experimental case study of Section 4.5.

The construction of a generic aspect metamodel helps to generalize the

commonalities among distinct aspect languages. Each common concept may be refined

using language-specific metamodel extensions. Furthermore, an extension of GAspect

may categorize commonalities within a paradigm that can be reused (e.g., a metamodel

named Object-Oriented that extends GAspect with common OO concepts, which is then

extended by concrete OO languages). This was one of the important lessons learned

during the course of this research and can significantly improve the genericity of the

metamodel.

 120

4.4.2 Generalizing the Rule Generator Design

The goal of the program transformation rule generator is to translate a given

aspect to a corresponding program transformation rule (e.g., RSL). This role is handled

by an assembly of transformation libraries written in ATL. In the context of a generic

framework, it is desirable to reuse as much of the transformation library code as possible

when constructing an aspect weaver for a new GPL. To realize this objective, the

transformation libraries must follow a general guideline (similar to a generic API) that

ensures maximum reusability.

The guideline ensures that every transformation rule that captures the semantics

of a particular weaving intent must conform to a generic interface. For example, an RSL

rule that captures the semantics of a method invocation join point (i.e., to trap a particular

method call and trigger advice) should conform to a generic method invocation interface

that the back-end transformation engine expects. By conforming to this generic interface,

model transformation libraries written for various GPLs share a generalized common

pattern. For example, a method call join point for any GPL should conform to a generic

method call interface named generic_advice_call, which accepts the following

five named-parameters: program_root_, method_id_, proceed_call_,

before_advice_ and after_advice_. The parameter types to

generic_advice_call function are determined by the concrete syntax (grammar)

of the base GPL. For example, for a FORTRAN 90 program, this generic function should

be encoded as: {name  type}

 121

generic_advice_call (

{ program_root_  Fortran90_program },

{ method_id_  Name},

{ proceed_  Name },

{ before_advice_  execution_part_construct_list },

{ after_advice_  execution_part_construct_list },

)  Fortran90_program

One may note that although the types (shown in italics) are concrete, the interface

is abstract. This generalization is necessary to address Challenge C4 and facilitate the

ATL rule generator to program to a common interface that can be reused among various

GPLs. At this point, one may recollect from Chapter 3 how RSLs or any term-rewrite

rules are tied to the concrete syntax of the base programming language. The proceed_

is internally used to determine if the advice is an around advice that makes a call to

proceed. Similarly, for an Object Pascal program, the generic_advice_call is

encoded as follows:

generic_advice_call (

{ program_root_  ObjectPascal },

{ method_id_  IDENTIFIER},

{ proceed_  IDENTIFIER },

{ before_advice_  statement_list },

{ after_advice_  statement_list },

)  ObjectPascal

For every join point in the AOP language model, a set of formal interfaces to

which each corresponding ATL transformation must conform have been developed (i.e.,

there is a separate generic interface for method execution or loop execution

join point). The generic interfaces not only enforce the code generators for different

aspect weavers to adhere to a known abstract interface, but also considerably reduces the

development time and effort to transfer knowledge from one rule generator to another

(please see Section 4.5.4 for evidence that supports this claim).

 122

Figure 4-11 and Figure 4-12 show comparative snippets of the model

transformation rules (ATL specifications) for translating a method call join point written

in Aspect Pascal or Aspect FORTRAN to a corresponding program transformation rule

(RSL rewrite specification). Each of the ATL specifications (Figures 4-11 and 4-12)

consist of several smaller ATL rules that together perform the actual transformation. For

example, the rules AfterAdvice2Pattern, BeforeAdvice2Pattern and

PointCutToExternalPattern (as shown in Figures 4-11 and 4-12) are used to

construct the ATL specification for translating method call join point. However, this is

only a subset; the complete ATL specification is available at Appendix D. The individual

rules (e.g., AfterAdvice2Pattern, BeforeAdvice2Pattern) are fired

whenever a corresponding model element (e.g., model elements like BeforeAdvice,

AfterAdvice in the Aspect Pascal metamodel) in the source metamodel is reached.

Both of these higher-order model transformation rules conform to an abstract

structure (generic interface) that drives the ATL rule generator. As a direct benefit of

forcing the ATL transformations to conform to a common structure or interface, the

model transformation rules presented in Figures 4-11 and 4-12 appear distinctly similar.

For example, all of the three rules (i.e., AfterAdvice2Pattern,

BeforeAdvice2Pattern and PointCutToExternalPattern) have the same

Left-Hand Side (LHS), where as the main difference lies in their concrete syntax (i.e., the

grammar of the two languages).

 123

rule BeforeAdvice2Pattern {

 from

 s : APascal!BeforeAdvice

 to

 t : RSL!Pattern (

 phead <- ph,

 ptoken <- 'statement_list',

 ptext <- spt

),

 ph : RSL!PatternHead (

 name <- 'before_advice_stmt'

),

...

}

rule AfterAdvice2Pattern {

 from

 s : APascal!AfterAdvice

 to

 t : RSL!Pattern (

 phead <- ph,

 ptoken <- 'statement_list',

 ptext <- spt

),

 ph : RSL!PatternHead (

 name <- 'after_advice_stmt'

),

 ...

}

lazy rule PointCutToExternalPattern {

 from

 s : APascal!Pointcut

 to

 t : RSL!ExternalPattern (

 dname <- 'ObjectPascal',

 eptext <- 'around_advice_call',

 ptoken <- 'ObjectPascal',

 phead <- ph

),

 ph : RSL!PatternHead (

 name <- 'around_advice_call',

 params <- Sequence {pp1,pp2,pp3,pp4,pp5,pp6}

),

 pp1 : RSL!PatternParameter (

 name <- 'program',

 referTo <- 'ObjectPascal'

),

 pp2 : RSL!PatternParameter (

 name <- 'method_name',

 referTo <- 'IDENTIFIER'

),

 pp3 : RSL!PatternParameter (

 name <- 'proceed_call',

 referTo <- 'IDENTIFIER'

),

...

}

Figure 4-11 - ATL specification used to generate lower-order transformation rules (RSL)

 for weaving Object Pascal source program

 124

rule BeforeAdvice2Pattern {

 from

 s : AFortran!BeforeAdvice

 to

 t : RSL!Pattern (

 phead <- ph,

 ptoken <- 'execution_part_construct_list',

 ptext <- spt

),

 ph : RSL!PatternHead (

 name <- 'before_advice_stmt'

),

...

}

rule AfterAdvice2Pattern {

 from

 s : AFortran!AfterAdvice

 to

 t : RSL!Pattern (

 phead <- ph,

 ptoken <- 'execution_part_construct_list',

 ptext <- spt

),

 ph : RSL!PatternHead (

 name <- 'after_advice_stmt'

),

...

}

lazy rule PointCutToExternalPattern {

 from

 s : AFortran!Pointcut

 to

 t : RSL!ExternalPattern (

 dname <- 'FORTRAN',

 eptext <- 'around_advice_call',

 ptoken <- 'Fortran90_program',

 phead <- ph

),

 ph : RSL!PatternHead (

 name <- 'around_advice_call',

 params <- Sequence {pp1,pp2,pp3,pp4,pp5,pp6}

),

 pp1 : RSL!PatternParameter (

 name <- 'program',

 referTo <- 'Fortran90_program'

),

 pp2 : RSL!PatternParameter (

 name <- 'method_name',

 referTo <- 'NAME'

),

 pp3 : RSL!PatternParameter (

 name <- 'proceed_call',

 referTo <- 'NAME'

),

...
}

Figure 4-12 - ATL specification used to generate lower-order transformation rules (RSL)

 for weaving FORTRAN source program

 125

To further understand the mapping, in the ATL rule

BeforeAdvice2Pattern, the before advice in the source aspect metamodel is

mapped to a RSL pattern in the target RSL metamodel that consists of a pattern head

(phead), a pattern token (ptoken) and the pattern text (ptext). Similarly, a RSL

external pattern is translated from a source pointcut specification and has the

same LHS signature (dname, eptext, ptoken, phead) for both Object Pascal and

FORTRAN generators. The main difference lies in the concrete syntax (Right-Hand Side)

of the base language grammar as referred in the transformation rules where an

execution_part_construct_list in FORTRAN is mapped as a

statement_list in Object Pascal. Obviously, there are other non-terminal and

terminal tokens in both the Object Pascal and FORTRAN grammar that have similar

structural representation and meaning but differ by name in their BNF form. The strategy

is always to follow a common abstract structure (or substructure) to translate a particular

join point from an aspect description to RSL. However, in certain cases, where the

difference in signature or concrete syntax between two language grammars differs

significantly, it may not be directly possible to map to a generic interface. Instead, the

mapping can then conform to sub-structures or sub-interfaces.

Although the current construction technique requires the transformation library to

be recreated manually by updating the concrete syntax, a possible extension could be to

apply this mapping information automatically (e.g., by using model weaving [Jossic et.

al., 2007]) to generate part of this library. From our own experience in constructing

aspect weavers using the generalized framework, we realized that a large part of the

 126

generic front-end and program transformation rule generator could be reused across

languages with little customization (please see Section 4.5.4).

In the following section we present some interesting case studies that use the

model-driven aspect weaving framework to construct aspect weavers for two different

GPLs. In particular, we construct aspect weavers for Object Pascal and FORTRAN and

make comparative studies of reuse of their front-end, the rule generator and the back-end.

The observations made in the case studies help to validate the techniques presented so

far. They also reveal some of the limitations of the technique and the lessons learned

during the process that can be applied for future improvements.

4.4.3 Support for a Reusable Back-End

 In addition to the generic front-end support along with a reusable model

transformation library, GenAWeave provides support for a partially reusable back-end.

The back-end consists of various external (helper) functions that are called by the

generated program transformation rules (RSL). These external functions are generally

used for traversing the AST and locating join points in the AST to apply transformations.

The external functions are written in PARLANSE and internally use several APIs present

in the DMSRuleSpecificationLanguage and DMSStringGrammar domain

[Baxter et al., 2004]. Most of the pattern matching and transformation on the underlying

AST is achieved by a combination of RSL and PARLANSE helper functions. Therefore,

an important task in constructing a weaver for a particular GPL is to provide support for

these helper functions that are internally called by the generated RSL.

 127

 To support back-end construction, GenAWeave provides a reusable library of

external functions that can be used to construct part of the low-level weaving

infrastructure for a given weaver. Figure 4-13 provides an example of a reusable external

function written in PARLANSE, which can be used by any weaver within the

GenAWeave framework. This particular function (name_ends_with) is useful for

matching identifiers (e.g., function name) whose name ends with a given input. This is

equivalent to a wildcard search (e.g., *name) in an aspect program.

 (define name_ends_with

 (lambda Registry:MatchingCondition

 (let (;; (= [search_string (reference string)]

 (Graph:HGHandling:GetString arguments:1))

 [sub_string string]

 [search_string_size natural]

 [search_id_size natural]

 [start_index natural]

);;

 (value

 (;;

 (= search_string_size

 (size (@(AST:GetString arguments:1))))

 (= search_id_size (size

 (@(AST:GetString arguments:2))))

 (= start_index

 (- search_string_size search_id_size))

 (= sub_string (Strings:Substring

 (AST:GetString arguments:1)

 (+ start_index 1) search_id_size))

 (ifthen(== sub_string

 (@(AST:GetString arguments:2)))

 (return ~t)

)ifthen

 (return ~f)

);;

 ~f

)value

)let

)lambda

)define

Figure 4-13 – Reusable external function in the GenAWeave framework

 128

In Figure 4-13, arguments:2 indicates the location where the search is to be

conducted, while arguments:1 is the given input to be matched. In addition to the

example shown in Figure 4-13, GenAWeave provides other similar functions used for

wildcard matching for identifiers (e.g., name_begins_with, name_contains).

Appendix E provides more examples of reusable helper routines that are available in the

GenAWeave framework. However, there are other external functions that are not

completely reusable and depend on the grammar of the base language. Nevertheless,

these routines, which implement a particular join point, generally conform to identical

pattern matching algorithms (e.g., a function call join point, a loop

execution join point in languages A and B). Examples of external functions for

loop execution join point for Object Pascal and FORTRAN are given in

Appendix E.

4.5 Experimental Evaluation – Object Pascal and FORTRAN Weavers

In order to experiment with the approach presented in the previous sections, two

aspect weavers were constructed – one for Object Pascal and another for FORTRAN

using the GenAWeave framework. A subset (e.g., primitive pointcuts like call,

execution, loop, withincode, and args) of standard AOP features was built into

both weavers in an AspectJ-like style. The FORTRAN weaver was constructed after the

completion of the Aspect Pascal weaver and reused several functionalities, code and

knowledge from the previous construction without much alteration to the core artifacts.

For example, both weavers shared the generic front-end, which constituted around 50%

of the overall front-end LOC (written in KM3 and TCS). Moreover, the FORTRAN

 129

weaver reused 60% of the Object Pascal rule generator code without any alteration, and

an additional 25% with minor customization. A detailed discussion of experimental

results is given in Section 4.5.4. Most of the time and effort on building the FORTRAN

weaver was spent on understanding the concrete syntax of the language and on the

conceptual design of the weaver. The rest of the section is devoted to evaluating the basic

functionalities of these weavers through sample case study applications.

4.5.1 Object Pascal Weaver

The initial experimentation towards evaluating our Aspect Pascal weaver was

realized within the scope of a commercial distributed application written in Object

Pascal. The case study application and all the examples discussed here were first

introduced in [Gray and Roychoudhury, 2004] and also presented in Chapter 3. One

specific application used for evaluation was a utility that assisted in upgrading a database

after a schema change. The first example presented in this section is concerned with

updating a processing dialog meter within the schema evolution tool. The second

example relates to synchronization between various database error handlers. These

Object Pascal examples were earlier introduced in Chapter 3. However, the technique

presented there directly used program transformation rules instead of a high-level aspect

language based on a model-driven approach.

Processing Dialog Meter: Figure 3-1 in Chapter 3 described the crosscutting

concern that was present in a progress dialog meter in the database schema evolution

utility. Figure 4-14 shows the UpdateProgressMeter aspect that encapsulates the

crosscutting concern in a separate module. The pointcut IncrCall_ captures all calls to

 130

procedure Inc. The advice code shown between Lines 5-11 is triggered once this

“procedure call join point” is reached. It may be noted that the entire “if statement”

(Lines 5-11 defined internally as an OpaqueStatement) is not parsed by the front-end

but delegated to the back-end parser. The aspect conforms to the Aspect Pascal

metamodel and any syntactic errors are reported back to the user.

1. aspect UpdateProgressMeter {
2. pointcut IncrCall_() : call(procedure *.Inc(Integer));
3. after() : IncrCall_()
4. {
5. if not ProcDlg1.Process(TotalInsertionsPerformed /

6. TotalInsertionsCalculated) then
7. begin
8. ProcDlg1.Canceled := True;
9. Result := True;
10. exit;

11. end;

12. }

13. }

Figure 4-14 - Aspect to capture progress meter updating

Following TCS injection on the aspect from Figure 4-14, the corresponding

Aspect Pascal model is generated (shown in Figure 4-15). The model (represented in

XML format) conforms to the APascal and GAspect metamodels introduced in Section

4.4. After applying the ATL transformation (a method call join pint) on this

Aspect Pascal model, the resulting RSL model is generated that conforms to the target

RSL metamodel. Finally, the lower-order RSL transformation rule is extracted from the

RSL model using TCS extraction. The resultant RSL model and the RSL transformation

rules are available in [GenAWeave, 2008]. Note that the complete transformation

scenario was initially introduced in Section 4.3 (also refer to Figure 4-6) and is fully

automated using Another Neat Tool (ANT) scripts (http://ant.apache.org/). More details

 131

about Ant scripts and integration of the framework within Eclipse are given in Section

4.6.

<APascal xmlns="APascal" xmlns:_1="GAspect" name="UpdateProgressMeter">

 <domain name="ObjectPascal"/>

 <pointcut name=" IncrCall_">

 <pctexpr xsi:type="CallExpr">

 <funcOrProcSig xsi:type="ProcedureDef" name="Inc" classifier="*">

 <paramdefs name="*" type="Integer"/>

 </funcOrProcSig>

 </pctexpr>

 </pointcut>

 <advice xsi:type="_1:BeforeAdvice" pctname="//@pointcut.0">

 <advStmt xsi:type="_1:OpaqueStatement" stmt="..."/>

 </advice>

</APascal>

Figure 4-15 - Aspect Pascal model generated from Aspect Pascal source program

The next example in our case study shows how a synchronization aspect is

captured using the Aspect Pascal weaver constructed from our model-driven framework.

Database Error Handler Synchronization: Synchronization and thread safety

issues are often considered as a major concern in software development because they are

difficult to modularize with traditional object-oriented techniques. Such concerns end up

scattered across many modules and tangled with other concerns of the system. An

example of a concurrency concern was presented in Figure 3-5.

Figure 4-16 shows the aspect to support a synchronization concern. The pointcut

funcHandler_ captures execution of all database handler functions. Synchronization

is realized by an around advice that wraps calls to the LockHandle and

UnlockHandle methods inside a try/finally block. The proceed statement

allows the database error handling code to execute normally within the synchronization

 132

aspect. We applied the same steps as in the previous example to separate this concern

from the main code base.

1. aspect SyncDBErrHandler {
2. pointcut funcHandler_() :

execution(function *.Handle(..));

3. void around() : funcHandler_()
4. {
5. TExHandleColl(Collection).LockHandle;
6. try
7. proceed ();
8. finally
9. TExHandleColl(Collection).UnLockHandle;
10. end;

11. }

12. }

Figure 4-16 - Aspect to capture synchronization in a database error handler

The Aspect Pascal model shown in Figure 4-17 is obtained by applying TCS

injection on the aspect from Figure 4-16. The complete ATL transformation used to

translate this aspect (method execution join point) along with all other

associated artifacts is available at the GenAWeave project website [GenAWeave, 2008].

It should be noted that it is this lower-order RSL code that does the actual weaving on the

base program, but the general user of this framework is oblivious to its presence. Instead,

the front-end aspect language acts as a façade to the back-end PTE and hides all the

accidental complexities associated with it (Challenge C3).

The XML representation shown in Figure 4-17 is only an internal representation

of the Aspect Pascal model and is generally used for analyzing and transforming the

aspect specification. A software developer does not see this internal representation.

However, the information is useful for more advanced users who want to construct aspect

weavers for different GPLs using the technique described in this chapter.

 133

<APascal xmlns="APascal" xmlns:_1="GAspect" name="SyncDBErrHandler">

 <domain name="ObjectPascal"/>

 <pointcut name="funcHandler_">

 <pctexpr xsi:type="ExecExpr">

 <funcOrProcSig xsi:type="FunctionDef" name="Handle"

 classifier="*">

 <paramdefs name="*" type="*"/>

 </funcOrProcSig>

 </pctexpr>

 </pointcut>

 <advice xsi:type="_1:AroundAdvice" pctname="//@pointcut.0">

 <advStmt xsi:type="_1:OpaqueStatement" stmt="..."/>

 <advStmt xsi:type="_1:TryCatchFinallyStatement">

 <stmts xsi:type="_1:ProccedStatement"/>

 <finallyStmts xsi:type="_1:OpaqueStatement" stmt="..."/>

 </advStmt>

 </advice>

</APascal>

Figure 4-17 – Generated Aspect Pascal model from Aspect Pascal source program

4.5.2 FORTRAN Weaver

Although most of the AOP research is centered around Java, we believe several

numerical and scientific computing applications that are written in legacy languages like

FORTRAN can benefit from AOP. We constructed a FORTRAN weaver using the

generic model-driven framework and were able to reuse a majority of the code generator

libraries that were previously written for Object Pascal. The front-end of the FORTRAN

weaver is based on the same generic aspect metamodel that was used by the Object

Pascal weaver. We evaluated our weaver within the scope of several FORTRAN

programs that internally used the Message Passing Interface (MPI) [Gropp et al., 1996].

The first example shows how a security concern can be weaved into such programs and

the second example illustrates how to monitor and weave an aspect around loops.

Security Aspect: MPI is a library specification for message-passing and is largely

used in high-performance scientific computing applications [Gropp et al., 1996]. MPI

provides more than 125 core functions that include all the basic functionalities to assist in

 134

writing parallel programs. There are several implementations of MPI written in various

languages (e.g., C, FORTRAN, C++ and Java). In order to provide security to

FORTRAN-based MPI programs, it is often required to encrypt/decrypt messages while

they are sent or received across the network. Figure 4-18 shows a snippet of a FORTRAN

MPI program, in which lines 9 and 12 illustrate how a security concern (i.e., a call to the

encrypt function) is added before each call to MPI_SEND. The implementation of the

security concern is scattered over the entire code base for all messages that require

encryption during MPI_SEND.

1. program send_recv_with_MPI
2. ...! original code
3. real :: a_msg
4. real :: b_msg
5. ...! original code
6. allocate (a_msg(msg_len))
7. allocate (b_msg(msg_len))
8. ...
9. call encrypt(a_msg)
10. call MPI_SEND(a_msg,...)

11. ...

12. call encrypt(b_msg)

13. call MPI_SEND(b_msg,...)

14. ...

15. deallocate (a_msg)

16. deallocate (b_msg)

17. ...! original code

18. end

Figure 4-18 - Encryption of messages during MPI_SEND

Figure 4-19 shows the aspect program required to enable security for all messages

during MPI message send and receive. The pointcut captures all calls to MPI_SEND and

passes the message to be encrypted as an argument. In a similar way, security to

messages may be enabled during calls to MPI_RECV. The internal representation of the

generated artifacts (e.g., Aspect FORTRAN model, RSL model and RSL transformation

 135

rule) is not shown here but the transformation process is similar to previous descriptions

and available on the GenAWeave project website [GenAWeave, 2008].

1. aspect enable_encryption {
2. pointcut mpi_send_(real :: orig_msg) :
3. call(MPI_SEND(real,*)) && args(orig_msg);
4. before(real :: orig_msg): mpi_send_(orig_msg)
5. {
6. call encrypt(orig_msg)
7. }
8. }

Figure 4-19 - Aspect to enable encryption during MPI calls

4.5.3 Join Point for Loops

It is often desired to monitor the performance of loops for some high-performance

scientific applications. Harbulot et al. first introduced this concept in an extension to

AspectJ [Harbulot and Gurd, 2005]. We borrowed from their definition and added this

feature into our FORTRAN and Object Pascal weavers. According to our definition, the

join point for a loop has the following signature:

<loop_name>(init::<val>, exit::<val>, stride::<val>)

Init specifies the loop initialization value, exit specifies the loop termination

value and stride specifies the loop increment counter.

Figure 4-20 shows an implementation of MPI_GATHER written in FORTRAN.

In MPI, messages can be forwarded by intermediate nodes where they are split (for

scatter) or concatenated (for gather). Often it is required to measure timing statistics

around critical parts of program execution. One such case is shown in Figure 4-20. Lines

9-14 shows the execution of the outer do loop which has initial value as 1, exit value as

10 and a default stride as 1. In a manual approach, it is required to invasively add the

 136

timer (Lines 8 and 16) and change the source program at every place whenever the

program runs into the execution of a loop join point that matches the given loop

condition.

1. program gather_vector
2. ... ! original code
3. parameter(niters=10)
4. parameter(xmax=100,ymax=100)
5. parameter (totelem=xmax*ymax)
6. ... ! original code omitted
7. ! start timer
8. time_begin = MPI_Wtime()
9. do iter = 1,niters
10. ...

11. do i=1,totelem

12. ...

13. enddo

14. enddo

15. ! stop timer

16. time_end = MPI_Wtime()

17. ... ! original code omitted

18. end

Figure 4-20 - Adding timer around do loops

Figure 4-21 shows the aspect program that can automatically add the timing

functions during the execution of the loop join point. The join point for loops matches

any loop expression in the base program that satisfies the loop initialization value, the

loop finalization value (exit) and the loop stride value. Note that the variables defined in

the advice code (Lines 6-8) are generally not validated by the front-end and are delegated

to the PTE for semantic validation. The wildcard „*‟ may be interpreted as „any‟.

Currently, both integer and string value types are supported, but future extensions can

support other value types. However, as a side effect, the behavior of a base program may

be altered if there are logical errors (e.g., init=1, exit=1, stride=2) in the loop

expression and there is a corresponding match. Such a situation may be avoided in the

 137

future by adding semantic validations to the existing pattern matching functionality. In

addition, future requirements may alter the semantics of the loop join point by including

the variable names in the pointcut specification.

1. aspect AddTimerAroundLoops
2. {
3. pointcut loop_timer_() :

 execution(do(init::1,exit::10,stride:*));

4. void around(): loop_timer_()
5. {
6. time_begin = MPI_Wtime()
7. proceed()
8. time_end = MPI_Wtime()
9. }
10. }

Figure 4-21 - Aspect to add timer around do loops

<AFortran xmlns="AFortran" xmlns:_1="GAspect"

name="AddTimerAroundLoops">

 <domain name="FORTRAN"/>

 <pointcut name="loop_timer_">

 <pctexpr xsi:type="_1:LoopExpr">

 <loopStmt xsi:type="DoLoop">

 <loopInitCond xsi:type="1:IntLoopInitCond" condition="1"/>

 <loopExitCond xsi:type="1:IntLoopExitCond" condition="10"/>

 <loopStrideCond xsi:type="1:StringLoopStrideCond"

 condition="*"/>

 </loopStmt>

 </pctexpr>

 </pointcut>

 <advice xsi:type="_1:AroundAdvice" pctname="//@pointcut.0">

 <advStmt xsi:type="_1:OpaqueStatement" stmt="time_begin =

 MPI_Wtime()"/>

 <advStmt xsi:type="_1:ProceedStatement">

 <advStmt xsi:type="_1:OpaqueStatement" stmt="time_end =

 MPI_Wtime()"/>

 </advice>

</AFortran>

Figure 4-22 - Aspect FORTRAN model generated from source aspect program

The Aspect FORTRAN model (XML format) corresponding to the aspect

program of Figure 4-21 is shown in Figure 4-22. The model conforms to the Aspect

 138

FORTRAN metamodel shown in Figure 4-9. The corresponding ATL transformation for

loop execution join point is available in Appendix D. The generated RSL

code can be found at the project website [GenAWeave, 2008].

4.5.4 Discussion of Experimental Results

In terms of reusability, all the examples listed in Section 4.5 reuse the same

generic aspect metamodel (GAspect). Moreover, the ATL transformation for translating a

particular join point reveals non-trivial reuse among weavers constructed for different

GPLs. This was illustrated in Section 4.4.2 through Figures 4-11 and 4-12 (i.e., an ATL

transformation for translating a method call join point in FORTRAN and

Object Pascal). In that particular example, 230 lines of model transformation code (out of

280 LOC) were reused without any modification. The remaining 50 LOC were reused

with minor customization.

Similarly, for translating a loop execution join point in FORTRAN

and Object Pascal, 265 LOC out of 305 were reused without any modification, while the

remaining 40 LOC were reused with minor customization. Examples of an ATL rule for

translating a loop execution join point for Object Pascal is shown in

Appendix D.

A visual comparison between ATL rules (loop execution join point)

for Object Pascal and FORTRAN weavers is shown in Figure 4-23, which suggests the

level of reuse among the two ATL rules. This level of reuse is a direct benefit of using

the GenAWeave framework, which enforces the model transformation rules to conform

to a common abstract structure. The difference between the rules is due to the

 139

dissimilarity in the grammar of Object Pascal and FORTRAN (highlighted in Figure 4-

23). A comparative analysis between other ATL rules for the Aspect Pascal and Aspect

FORTRAN weaver is available at the GenAWeave website [GenAWeave, 2008].

Figure 4-23 – A comparative analysis of model transformation rules

Likewise, the front-end of all weavers share a generic metamodel (i.e., GAspect).

Out of 550 LOC used for defining the front-end metamodel (KM3 and TCS

specifications), nearly 280 LOC were shared among the two weavers. However, it should

be noted that the current weavers have limited functionalities and the reuse may decrease

with mutually exclusive functionalities (e.g., with join point is present only in Object

Pascal and not in FORTRAN). Nevertheless, the purpose of the Aspect Pascal and Aspect

FORTRAN weavers were to experimentally evaluate the generality of our model-driven

framework for building aspect weavers. The main objective was to evaluate the

reusability of features that can be shared among multiple weavers without writing them

from scratch. In the current stage of our investigation, we have adopted a simple join

 140

point model (a subset of AspectJ) with primitive pointcuts like call, execution,

loop, withincode, with, within and args and advice declarations like before,

after and around. It was observed that the Aspect FORTRAN weaver that was

constructed after the completion of the Aspect Pascal weaver reused a majority of the

available front-end artifacts (e.g., generic metamodel and ATL specifications).

In addition to front-end reuse, GenAWeave provides a reusable library of back-

end external functions (please see Section 4.4.3) that can be used to provide low-level

transformation support for every aspect weaver. Currently, there are 11 such functions

that are shared by the Object Pascal and FORTRAN weavers. A few of these shared

functions are shown in Appendix E.1. However, not all external functions are reusable or

shared, especially, the ones that are dependent on the syntax of the base language. In such

cases, the functions adopted by multiple weavers generally use identical algorithms and

conform to a common abstract structure (please see Appendix E.2 for such an example).

Figure 4-24 shows the reusability summary for the FORTRAN and Object Pascal

weavers. It can be observed that the front-end reusability is considerably larger than the

back-end reusability, overall nearly 55-65% of the artifacts are reused. Moreover, it

should be noted that the two languages (i.e., Object Pascal and FORTRAN) are

distinctively dissimilar in syntax and belong to two different paradigms (i.e., object-

oriented and procedural). It is expected that the reusability will increase among languages

that belong to the same paradigm (e.g., object-oriented).

 141

64.62910Aspect FORTRAN

56.4
1880

3328Aspect Pascal

PercentageShared LOCLOCOVERALL

OVERALL REUSABILITY

40775Aspect FORTRAN

35.5
11310

873Aspect Pascal

Percentage
No. of Shared

Functions

Shared

LOC
Total LOCPARLANSE FUNCTIONS

BACK-END REUSABILITY

81.31585Aspect FORTRAN

68.2
1290

1890Aspect Pascal

PercentageShared LOCATL (LOC)
MODEL

TRANSFORMATION

50.1550Aspect FORTRAN

49.5
280

565Aspect Pascal

PercentageShared LOCKM3+TCS (LOC)METAMODEL

FRONT-END REUSABILITY

64.62910Aspect FORTRAN

56.4
1880

3328Aspect Pascal

PercentageShared LOCLOCOVERALL

OVERALL REUSABILITY

40775Aspect FORTRAN

35.5
11310

873Aspect Pascal

Percentage
No. of Shared

Functions

Shared

LOC
Total LOCPARLANSE FUNCTIONS

BACK-END REUSABILITY

81.31585Aspect FORTRAN

68.2
1290

1890Aspect Pascal

PercentageShared LOCATL (LOC)
MODEL

TRANSFORMATION

50.1550Aspect FORTRAN

49.5
280

565Aspect Pascal

PercentageShared LOCKM3+TCS (LOC)METAMODEL

FRONT-END REUSABILITY

Figure 4-24 – Reusability summary for FORTRAN and Object Pascal weavers

Although more advanced pointcuts like control flow (cflow) and reflection

(thisJoinPoint) were omitted from the current investigation due to limited

static/control flow analysis in DMS for Object Pascal and FORTRAN, future research

aims to introduce them at a later stage. Currently, DMS provides more mature analysis

engines for languages like C++ and Java. As part of possible future extensions, it is

planned to experiment with such advanced pointcut mechanisms (cflow,

reflection, loops) for these two languages.

4.6 Integrating the GenAWeave Framework within Eclipse

The GenAWeave framework is integrated within the Eclipse IDE as shown in

Figure 4-25. The individual aspect weavers could be run using Ant scripts available in the

project website [GenAWeave, 2008]. The scripts take the input source file and the aspect

 142

program as input and through a chain of transformation processes (model transformation

followed by program transformation) produces the transformed target program. Both the

ATL model transformation engine and DMS PTE are invoked within the Eclipse IDE.

Figure 4-25 – GenAWeave framework within Eclipse

Moreover, there is a separate editor available for specifying aspects for source

GPLs. The editor provides an outline view for the individual aspect programs, and any

syntax errors present within the program can be displayed to the user (e.g., in Figure 4-

26, the editor indicates the misspelling of the pointcut name timer_around_loops).

In addition, the aspect code can be presented in different colors and fonts using the

standard syntax highlighting feature present within the editor. Figure 4-26 shows how the

outline view, syntax highlighting and syntax errors are displayed within the editor for a

given aspect program.

 143

Figure 4-26 – Syntax errors displayed within the editor

4.7 Related Work

Section 2.2.2 presented a comparative discussion of language-independent

modernization tools to support AOP. This section provides other related work towards

generic AOP adoption and corresponding tool support. In a recent paper, Heidenreich et

al. showed a generic approach for implementing aspect orientation for arbitrary

languages using invasive software composition [Heidenreich et al., 2007]. However, their

technique is more useful for declarative DSLs than for GPLs .

Morin et al. presented a generic aspect-oriented modeling framework to represent

aspects that can be adapted to any modeling domain [Morin et al., 2007]. Although our

work tends to capture the generality of aspect languages and not individual aspects,

nevertheless, it can gain interesting insights from such an approach.

A recent addition to the class of language extension tools is MetaBorg

[Bravenboer and Visser, 2004], which provides an ability to embed domain-specific

languages into general purpose languages. However, the embedding permitted by

 144

MetaBorg is focused on localized adaptations, and cannot accommodate the global

effects of aspects. MetaBorg also requires specific transformation rules to be written for

each GPL.

An initiative to develop an Abstract Syntax Tree Metamodel (ASTM) for GPLs

has been proposed in OMG‟s Architecture-Driven Modernization program [OMG ADM,

2008]. The work described in this research may be benefited from this initiative although

the primary focus of this dissertation is based on General-Purpose Aspect Languages

(GPALs).

In [Roover et al., 2007], advanced pattern detection techniques are suggested by

applying a logic-based query language that uses concrete source code templates to match

against a combination of structural and behavioral program representations, including

call-graphs, points-to analysis results and abstract syntax trees. This is similar to the rule

specification language available in DMS that is used for pattern matching. RSL also

provides external patterns and conditions that make calls to external functions written in

PARLANSE for more advanced program analysis and transformation.

Ramos et al. proposed a framework for expressing patterns as model-snippets and

showed how pattern matching can be performed with model-snippets for any given

metamodel [Ramos et al., 2007]. In our current framework, all pattern matching and

analysis is done through the back-end where the metamodel is used to express the front-

end aspect language and its generic extensions. Eventually, all of the higher-order aspect

specifications are translated to lower-order back-end program transformation code that

does the actual weaving.

 145

As an alternative approach to model-to-model (M2M) transformation followed by

TCS extraction, an interesting technique that can be used is model-to-text (M2T)

transformation [Eclipse M2T, 2007]. In the M2T approach, models of particular software

solutions are refined and transformed into software source code (e.g. Java, C++). Such

transformations generally make use of “templates.” A template may be generally

described as a text sequence interspersed with commands that extract information from a

model. The Jet or Acceleo template language can be used for such a purpose [Eclipse

M2T, 2007]. We recognize that this is an interesting solution and could serve as an

alternative approach towards constructing the RSL rule generator. However, using M2T,

we may loose a precise concept mapping between the source and the target model, and

rely on mapping concepts to strings. Nevertheless, any alternative approach can still

benefit from the technique described in this dissertation.

The goal of this research has been to reuse most of the software tools and artifacts

(e.g., existing parsers and analysis engines) that are already available for a variety of

legacy and modern programming languages. The science and theory to construct such

tools are already well-established and it would require considerable engineering effort to

build them from scratch without gaining any additional scientific knowledge. On the

other hand, new language-independent techniques like .Net CLI / CodeDOM are not

always feasible to support various legacy languages like FORTRAN, COBOL and Object

Pascal due to their non-conformance to .Net specification. Unless those languages are

forced to comply with a language-independent CLI specification, new experimentation to

impart AOP features to them is virtually impossible.

 146

The research presented in this dissertation provides an initial solution to such

challenges by reusing most of the existing software artifacts (e.g., lexers, parsers,

analyzers, evaluators) that are already available for a variety of GPLs. Thus, it enables

new experimentation with advanced software engineering principles like AOP for

existing legacy languages. The research also addresses new challenges that arise from the

usage of complex PTEs like DMS by providing a suitable front-end that hides most of the

accidental complexities that are generally associated with them.

 147

CHAPTER 5

FUTURE WORK

This chapter outlines research directions that will be investigated as part of future

work. In particular, future research goals are based on three specific directions:

1. Improve the generality of the framework.

2. Apply and evaluate the framework towards construction of other aspect

weavers for legacy and modern programming languages.

3. Investigate other software engineering techniques like generalized refactoring

and generic aspect mining based on the knowledge gained in developing a

generic framework for aspect weaving. Both of these techniques may help to

improve the quality of a software system and can benefit from a model-driven

program transformation based approach presented in this dissertation.

Future enhancements towards improving the generality of the framework are

listed below:

 To improve the reusability of the generic aspect metamodel, research into the

idea of metamodel inheritance will be explored. This will assist tool

developers to group commonalities among various GPLs into individual

metamodels that could be inherited or extended by language-specific

metamodels.

 148

 To improve the reusability of the ATL rule generator, the idea of rule

inheritance will be explored. Using rule inheritance some of the common

features among model transformation rules can be extracted. In addition, a

weaving model using AMW [Jossic et. al., 2007] is proposed to automate the

construction of the ATL rule generator. This could partially remove the

manual construction effort of the ATL rules from one GPL to another.

To evaluate the framework further, the following steps are proposed:

 Constructing aspect weavers for other legacy and modern GPLs.

 Applying the approach to domain-specific aspect languages (DSALs).

 Applying the approach towards high-performance scientific computing

applications, especially towards specialization of scientific libraries.

5.1 Improving Reusability of the Generic Aspect Metamodel

Future research goals aim to improve the reusability of features among aspect

weavers by further enhancement to the existing design of the generic aspect weaving

framework. For example, it is desired to create a generic metamodel for Object-Oriented

constructs, from which the weavers constructed for Object-Oriented languages can

inherit.

The current generic metamodel (i.e., GAspect) generalizes what is common

between APascal and AFortran (i.e., abbreviation of Aspect Pascal and Aspect

FORTRAN, the aspect languages for Object Pascal and FORTRAN, respectively). Figure

5-1a shows this current design. In the future, if the construction of ARuby (i.e., an aspect

language for Ruby) is considered using the GenAWeave framework, this new language

 149

could directly extend from GAspect as shown in Figure 5-1a. However, it is expected that

both ARuby and APascal will have some commonality (e.g., related to the object

paradigm) not shared with AFortran. Figure 5-1b shows the improved metamodel design.

The commonalities between APascal and ARuby are extracted into OO-A (the common

object-oriented constructs of ARuby and APascal), which extends GAspect. In [Steel and

Jézéquel, 2007], a proposal for typing models as a collection of interconnected objects is

discussed. The formalism described there is an extension to object-oriented typing,

however suitable to a model-oriented context. The proposed approach of defining an

abstract metamodel and its conformance with another metamodel via metamodel

extensions is similar to the concept described in [Steel and Jézéquel, 2007]. Similarly, it

is desired to create a generic metamodel for JPMs. All weavers can inherit from the

generic JPM, and (if required) add new join point extensions to their specific JPM.

GAspect

APascal ARuby AFortran

GAspect

APascal ARuby

AFortranOO-A

a – Current metamodel design b – Improved metamodel design

Figure 5-1 – Improving the front-end metamodel design

5.2 Improving Reusability of ATL Rule Generator

The current design of the ATL rule generator uses generic interfaces to enforce a

common structure among ATL rules from one GPL to another. However, using rule

 150

inheritance the design could be further enhanced, as demonstrated in [Mernik et al., 2002;

Jouault and Kurtev, 2005]. An example of rule inheritance is shown in Figure 5-2. In the

example, ATL rule A is defined as abstract while rule B is extended from A.

Similarly, rule C is inherited from rule B. Thus, rule inheritance will allow certain

rules that have similar functionality (e.g., an ATL rule for translating a loop join point for

Object Pascal and FORTRAN) to be defined as generic (i.e., abstract) and concrete rules

belonging to concrete weavers could extend from it. This will improve the reusability of

model transformation rules used in this framework.

1. abstract rule A {
2. from [fromA]
3. using [usingA]
4. to [toA]
5. do [doA]
6. }
7.
8. rule B extends A {
9. from [fromB]
10. using [usingB]

11. to [toB]

12. do [doB]

13. }

14.

15. rule C extends B {

16. from [fromC]

17. using [usingC]

18. to [toC]

19. do [doC]

20. }

Figure 5-2 – An example showing ATL rule inheritance

 In addition to rule inheritance, a proposal to automate the ATL rule construction

effort will also be explored. Currently, although a large percentage of the model

transformation rules conform to a specific structure and can be significantly reusable for

a particular join point, one has to still customize them partly for those parts that depend

 151

on the concrete syntax of the source language. For example, among the ATL rules

presented in Figures 4-11 and 4-12 in Chapter 4, part of the difference is because of the

dissimilarity in certain grammar symbols for Object Pascal and FORTRAN (e.g.,

execution_part_construct_list, statement_list, IDENTIFIER,

NAME). In the future, it is proposed to capture these variable grammar parts in a separate

weaving model that conforms to a weaving metamodel in AMW [Jossic et. al., 2007].

This will remove any manual customization of ATL rules and help to further automate

the rule construction process. It may be noted that AMW is a MDE-based tool for

establishing relationships (i.e., links) between models. Specific examples of use cases

using AMW are available at [AMW Use Case, 2008].

5.3 Constructing Weavers for other GPLs

Another possible extension of our work is to construct aspect weavers for other

GPLs including object-oriented scripting languages like Ruby and Python. In addition,

future directions in this area intend to experiment with adding new types of join points

(e.g., loops) to existing GPLs like Java and C++. Advanced pointcuts like cflow and

certain reflective techniques like thisJoinPoint would also be taken up as part of

future work. This could serve as a future evaluation platform for the framework. Some

steps have already been taken in this direction. Besides Object Pascal and FORTRAN,

aspect-oriented metamodels for Java and C++ have already been constructed and are

available at the GenAWeave project website [GenAWeave, 2008].

 152

5.4 Applying the approach to DSALs

Although the majority of research in the AOSD community focuses on general-

purpose aspect languages (e.g., AspectJ), there have been a number of influential research

efforts on domain-specific aspect languages (DSALs) (e.g., COOL for concurrency

management and RIDL for serialization [Lopes, 1997]). So far we have only considered

the construction of GPALs using our framework, but it would be interesting to investigate

how the framework can also accommodate the development of weavers targeting DSALs.

In particular, future research will apply the GenAWeave framework towards the

construction of an aspect weaver for the ANTLR grammar (ANother Tool for Language

Recognition) [ANTLR, 2008], which is a DSL used for LR based parser generators. The

proposed work would be similar to AspectG [Wu et al., 2005], however the underlying

technique would be different (i.e., the proposed research would use the GenAWeave

framework instead). This would help us to compare the two techniques and their relative

ease of use in constructing aspect weavers.

5.5 Applying the Approach to Scientific Computing Applications

Scientific computing applications like Blitz++ [Veldhuizen, 1998] and HPL [Petitet et

al., 2004] play a critical role in solving several challenging problems within the high-

performance scientific computing domain. The research presented in this dissertation has

demonstrated techniques to improve the modularization of such applications. The

GenAWeave framework could be applied suitably to weave in aspects that are identified

in Blitz++; however, there is an equal need to extend the framework for non-AOP based

transformations. For example, the transformations to specialize HPL are different in

 153

intent than what is generally supported in an aspect-oriented language. Therefore, another

possible extension of the GenAWeave framework will be to support DSLs to capture

language constructs suitable for applying non-AOP based transformation techniques (e.g.,

specialization of HPL described in Chapter 3). However, such techniques are not just

limited to libraries like HPL but can be applied to other scientific computing libraries like

Matrix Template Library (MTL) [Siek and Lumsdaine, 1998] and POOMA [Reynders et

al., 1996]. Nevertheless, the translation scheme from the high-level DSL to low-level

RSL would be very similar to the one used in the current GenAWeave framework.

Another interesting concept that is not explored in the current GenAWeave framework is

multi-language weaving. Some programs, especially in the field of scientific computing,

may have mixed-mode syntax, i.e., one language embed in another (e.g., FORTRAN

calls inside a C program). In such cases, it may be required to weave in the language

specific parts and write aspects having mixed-mode syntax. Future experimentation using

GenAWeave may add such functionality to support mixed-mode weaving.

5.6 Generic Refactoring and Generic Aspect-Mining Engines based on

Model-Driven Program Transformation

Similar to aspect weaving, refactoring [Fowler et al., 1999] can also improve

modularization and readability of legacy software. Although the core idea behind

refactoring (e.g., rename method, extract method, pull up method to a superclass and

push down method to a subclass) is language-independent, current refactoring tools are

generally tied to the source language. Therefore, the time and effort spent in constructing

a refactoring tool for one language is almost wasted when applied to a different language

context. A generalized framework that can capture the semantics of refactoring rules in

 154

an abstract metamodel can improve the reusability and construction effort of refactoring

engines. We believe that the knowledge gained during the current research in developing

a generic framework for aspect weavers can be suitably applied to realize a similar goal

to construct generic refactoring engines. Such an approach could also explore a model-

driven metamodel based front-end with low-level program transformation support at the

back-end. However, such techniques would necessitate more sophisticated control flow

and data flow analysis that can be interchangeably used across GPLs.

The current GenAWeave framework does not support aspect mining, which is a

technique to identify crosscutting concerns in an existing software system [Roy et al.,

2007]. Aspect mining enforces software systems to comply with an aspect-oriented

design. Most of the aspects that were identified in the various case study applications

during the course of this research were done manually. A future extension to

automatically identify aspects in existing legacy applications can act as a complement to

the current aspect weaving framework. Moreover, the analysis techniques (e.g., identifier

analysis, fan-in analysis and dynamic analysis) [Roy et al., 2007] are fairly language-

independent and their intensions may be captured with suitable high-level language

specifications. Therefore, as part of future research directions, both generic refactoring

and generic aspect mining techniques will be investigated, which can serve as valuable

extensions to the existing GenAWeave aspect weaver framework.

 155

CHAPTER 6

CONCLUSION

Given the historical tendency of languages to evolve by adopting new paradigms,

it is reasonable to assume that aspect-oriented concepts will be integrated into many more

programming languages. To expedite this adoption, tools and frameworks that provide

assistance for program restructuring are needed [Griswold and Notkin, 1993]. This will

help early adopters assess the feasibility of AOSD within their own organization.

However, the general focus of AOP has been based on a few popular programming

languages like C++ and Java, neglecting the multiple billion lines of legacy code that

exist in other languages. Given the large number of languages in use, a solution that

mitigates the effort needed to create each new aspect weaver is more desirable than an

approach that manually recreates a weaver from scratch for each legacy language.

However, such a proposition raises several new challenges that represent the key focus of

the research presented in this dissertation. Specifically, the research demonstrates how

modern software engineering techniques like modeling combined with program

transformation can assist in promoting aspect orientation in a generalized way for legacy

languages.

 156

6.1 Challenges addressed by the GenAWeave Framework

The research presented in this dissertation raised several key challenges

(identified in Chapter 1) in designing a generic framework to construct aspect weavers. In

particular, the research demonstrated an approach that combines PTEs with MDE to

construct aspect weavers for modern and legacy programming languages. The unification

of PTEs with MDE offered more possibilities to address the challenges raised in Chapter

1 than each of the two techniques considered separately.

It is our contention that initial efforts to bring aspect orientation to legacy systems

should be robust and mature to the degree that they can be applied readily to large pre-

existing applications. The scalability of such a requirement demands the availability of

parsers that have been proven capable of handling large collections of source code. Toy

parsers will only frustrate users to the point of potential abandonment of adoption. A

mature PTE like DMS offers a repository of complete parsers and a program

transformation language (i.e., RSL) for manipulating syntax trees. These two features

help to reduce significantly the effort required to construct new weavers. Chapters 3 and

4 of the dissertation presented several case studies to demonstrate how RSL

transformation rules could be used to construct aspect weavers for various GPLs (e.g.,

Object Pascal, C++ templates and FORTRAN). Thus, Challenges C1 (parser

construction problem) and C2 (weaver construction problem) were addressed through

adoption of a mature program transformation engine (i.e., DMS) as the back-end of the

framework. However, a PTE-based weaver construction process raises new challenges

and faces inherent accidental complexities; i.e., the transformation rules used to modify

base programs are difficult to compose, which makes it accessible to only language

 157

researchers and is generally hard to comprehend by average software developers. The

research described in this dissertation illustrated how these accidental complexities

(Challenge C3) that are generally associated with a PTE can be eliminated using a model-

driven front-end (Chapter 4).

We believe that the development of each new weaver should minimize the

duplication of effort from an earlier weaver construction. However, the dependence of

weaver transformation rules on the grammar of the base GPL (e.g., Object Pascal) makes

a previously constructed weaver almost impossible to be applied in a different language

context. This concern was raised as Challenge C4 that deals with generality, reusability,

and transfer of knowledge from one weaver to another. In our opinion this is the most

difficult challenge of the four. The research demonstrated that by making the front-end

generic, along with a systematic program transformation rule generator, significant

inroads could be made to address this challenge. To evaluate the usefulness of the generic

framework, two aspect weavers were constructed for Object Pascal, and FORTRAN. The

FORTRAN weaver was built after the successful construction of the Object Pascal

weaver. When constructing the second weaver, it was observed that more than 50% of the

artifacts (generic front-end and rule generator) that were created during the construction

of the first could be reused. All these results and experiments are available in the

GenAWeave project website [GenAWeave, 2008].

The current approach has been evaluated against a simple join point model. More

advanced pointcuts like control flow and reflective techniques like thisJoinPoint

are currently not available in GenAWeave. However, with the availability of a mature

static/control flow analysis engine for Object Pascal and FORTRAN in DMS,

 158

GenAWeave can be extended to support advanced aspect language features. This

limitation will be addressed later as a part of future work. It may be noted that most of the

analysis and pattern matching is realized through the back-end RSL/PARLANSE code

and the front-end only acts as a wrapper to the back-end. If the back-end PTE can support

advanced program analysis, it would not be difficult to wrap those features through the

front-end, avoiding all the accidental complexities (Challenge C3) that are generally

associated with complex PTEs. The complete source code for the GenAWeave

framework, several case study examples and video demonstrations are available at the

project web site [GenAWeave, 2008]. The following section presents a summary of the

important lessons that we learned throughout the course of this research.

6.2 Lessons Learned

In this section, we summarize the seven main lessons that we have learned while

working on the research presented in this dissertation. These lessons are enumerated

below:

 Lesson 1 - Generalizing the weaver front-end: During the course of the research, it

has been realized that parts of the aspect language front-end can be reused by

making it generic. By generalizing the front-end metamodel, several aspect

languages can extend a single core (e.g., GAspect) while the differences can be

captured within their specific part. The solution can be achieved using MDE

techniques like metamodel extension.

 Lesson 2 - Improving the generic metamodel: The current generic metamodel (i.e.,

GAspect) generalizes what is common between APascal and AFortran (i.e., the

 159

aspect languages for Object Pascal, and FORTRAN). However, an extension of

GAspect may categorize commonalities within a paradigm that can be reused (e.g.,

a metamodel named Object-Oriented that extends GAspect with common OO

concepts, which is then extended by concrete OO languages). The idea was

introduced in Chapter 5 (Section 5.1).

 Lesson 3 – Use of generic interfaces in the rule generator: The concept of a

generic interface was introduced in Chapter 4 to generalize the design of the rule

generator. As a result, the rule generator library (i.e., model transformation rules

for translating specific join points like call, loop and execution) can be

reused across languages with minimum customization.

 Lesson 4 - Modeling can be suitably applied to PTEs: From our research, it has

been realized that higher-order model transformation rules could be used to

generate lower-order program transformation rules. Thus, it is possible to model

and automate the creation of low-level program transformation rules using MDE.

The combination of both PTE and MDE (i.e., two distinct technical spaces) offers

more possibilities than each considered separately.

 Lesson 5 - Changing the target PTE: The source aspect metamodel need not be

altered even if one chooses to opt for a different target PTE (e.g., ASF+SDF [van

den Brand et al., 2002]). In such a case, a new PTE metamodel needs to be

developed, as well as a new rule generator for this new target. It is expected that it

may be possible to generalize part of the transformation code by introducing a PTE

pivot metamodel that abstracts common properties of many PTEs. It may be noted

 160

that MDE is about platform independence and the ability to support multiple PTEs

is another benefit of the approach described in this dissertation.

 Lesson 6 - Changing the source language: Conversely, for every new aspect

language, one needs to add the appropriate metamodel extensions to the GAspect

metamodel, but no change to the target metamodel is needed.

 Lesson 7 - Automation of rule generator: During the construction of the ATL rule

generator, it was realized that most of the time and effort on building a new weaver

for a particular GPL was spent on understanding the concrete syntax or grammar of

the base language. We believe that it is possible to extract the join point model

from transformation rules, and model it in terms of the concrete syntax. A future

proposal towards this direction is discussed in Chapter 5 (Section 5.2).

 161

LIST OF REFERENCES

[Aßmann, 2003] Uwe Aßmann, Invasive Software Composition, Springer, 2003.

[Aßmann and Ludwig, 1999] Uwe Aßmann and Andreas Ludwig, “Aspect Weaving as

Graph Rewriting,” Generative Component-based Software Engineering, Springer-Verlag

LNCS 1799, Erfurt, Germany, October 1999, pp. 24-36.

[Adams, 2005] Bram Adams, “Language-Independent Aspect Weaving,” Summer School

on Generative and Transformational Techniques in Software Engineering, Braga,

Portugal, July 2005.

[Agrawal, 2003] Aditya Agrawal, “Metamodel Based Model Transformation Language

to Facilitate Domain Specific Model-Driven Architecture,” Object-Oriented

Programming, Systems, Languages, and Applications Companion, Anaheim, CA,

October 2003, pp. 118-119.

[Alblas, 1991] Henk Alblas, “Attribute Evaluation Methods,” Proceedings on Attribute

Grammars, Applications and Systems, Springer-Verlag LNCS 545, 1991, pp.48-113.

[AMW Use Case, 2008] AMW Use Case - Metamodel Comparison and Model

Migration, 2008, http://www.eclipsecon.com/gmt/amw/usecases/compare/.

[ANTLR, 2008] ANother Tool for Language Recognition, 2008, http://www.antlr.org.

[AOM, 2008] Aspect-Oriented Modeling Workshop, http://www.aspect-modeling.org/.

[Apostle, 2008] Apostle: Aspect Programming in Smalltalk, 2008,

http://www.cs.ubc.ca/labs/spl/projects/apostle/.

[Arranga, 2000] Ed Arranga, “In Cobol’s Defense,” IEEE Software, March/April 2000,

pp. 70-75.

[AspectR, 2008] AspectR - Simple Aspect-Oriented Programming in Ruby, 2008

http://aspectr.sourceforge.net/.

[Barbero et al., 2007] Mikhail Barbero, Frédéric Jouault, Jeff Gray, and Jean Bézivin, “A

Practical Approach to Model Extension,” European Conference on Model Driven

Architecture Foundations and Applications, Haifa, Israel, June 2007, pp. 32-42.

http://www.aspect-modeling.org/

 162

[Batory, 2003] Don Batory, “A Tutorial on Feature Oriented Programming and Product-

lines,” International Conference on Software Engineering, Portland, OR, May 2003, pp.

753-754.

[Batory et al., 1998] Don Batory, Bernie Lofaso, and Yannis Smaragdakis, “JTS: Tools

for Implementing Domain-Specific Languages,” International Conference on Software

Reuse, Victoria, Canada, June 1998, pp. 143-153.

[Baxter, 1992] Ira Baxter, “Design Maintenance Systems,” Communications of the ACM,

vol. 35, no. 4, April 1992, pp. 73-89.

[Baxter et al., 2004] Ira Baxter, Christopher Pidgeon, and Michael Mehlich, “DMS:

Program Transformation for Practical Scalable Software Evolution,” International

Conference on Software Engineering, Edinburgh, Scotland, May 2004, pp. 350-354.

[Bergmans and Aksit, 2001] Lodewijk Bergmans and Mehmet Aksit, “Composing

Crosscutting Concerns using Composition Filters,” Communications of the ACM, vol. 44,

no. 10, October 2001, pp. 51-57.

[Bounif and Pottinger, 2006] Hassina Bounif and Rachel Pottinger, “Schema Repository

for Database Schema Evolution,” International Conference on Database and Expert

Systems Applications, Krakow, Poland, September 2006, pp. 647-651.

[Brichau, 2002] Johan Brichau, “Composable Aspect-Specific Languages,” Generative

Programming and Component Engineering, Young Researchers Workshop, Pittsburgh,

PA, October 2002.

[Bravenboer and Visser, 2004] Martin Bravenboer and Eelco Visser, “Concrete Syntax

for Objects: Domain-specific Language Embedding and Assimilation without

Restrictions,” Object-Oriented Programming, Systems, Languages, and Applications,

Vancouver, Canada, October 2004, pp. 365-383.

[Budinsky et al., 2003] Frank Budinsky, Dave Steinberg, Ed Merks, Ray Ellersick, and

Timothy J. Grose, Eclipse Modeling Framework, Addison-Wesley, 2003.

[Capra et al., 2007] Eugenio Capra, Chiara Francalanci, and Francesco Merlo, “The

Economics of Open Source Software: An Empirical Analysis of Maintenance Costs,”

IEEE International Conference on Software Maintenance, Paris, France, October 2007,

pp. 1-10.

[Cazzola et al., 2005] Walter Cazzola, Sonia Pini, and Massimo Ancona, “AOP for

Software Evolution: A Design Oriented Approach,” ACM Symposium on Applied

Computing, Santa Fe, NM, March 2005, pp. 1346-1350.

[Chalabine and Kessler, 2006] Mikhail Chalabine and Christoph Kessler, “Crosscutting

Concerns in Parallelization by Invasive Software Composition and Aspect Weaving,”

Hawaii International Conference on System Sciences, Kauai, HI, January 2006.

 163

[CHAOS, 2006] Annual CHAOS Report, The Standish Group International, Inc., 2006.

[Chaplin et al., 2001] Ned Chapin, Joanne Hale, Khaled Kham, Juan Ramil, and Wui-

Gee Tan, “Types of Software Evolution and Software Maintenance,” Journal of Software

Maintenance: Research and Practice, vol. 13, no. 1, January 2001, pp. 3-30.

[Clarke and Baniassad, 2005] Siobhàn Clarke and Elisa Baniassad, Aspect-Oriented

Analysis and Design: The Theme Approach, Addison-Wesley, 2005.

[Clarke et al., 1999] Siobhàn Clarke, William Harrison, Harold Ossher, and Peri Tarr,

“Subject-Oriented Design: Towards Improved Alignment of Requirements, Design, and

Code,” Object-Oriented Programming, Systems, Languages, and Applications, Denver,

CO, October 1999, pp. 325-339.

[Coady and Kiczales, 2003] Yvonne Coady and Gregor Kiczales, “Back to the Future: A

Retroactive Study of Aspect Evolution in Operating System Code,” International

Conference on Aspect-Oriented Software Development, Boston, MA, March 2003, pp.

50-59.

[Colyer et al., 2004] Adrian Colyer, Andy Clement, George Harley, and Matthew

Webster, AspectJ: Aspect-Oriented Programming with AspectJ and the Eclipse AspectJ

Development Tools, Addison-Wesley, 2004.

[Constantinides et al., 2002] Constantinos Constantinides, Tzilla Elrad, and Mohamed

Fayad, “Extending the Object Model to Provide Explicit Support for Crosscutting

Concerns,” Software - Practice and Experience, vol. 32, no. 7, June 2002, pp. 703-734.

[Cordy et al., 2002] James Cordy, Thomas Dean, Andrew Malton, and Kevin Schneider,

“Source Transformation in Software Engineering using the TXL Transformation

System,” Journal of Information and Software Technology, vol. 44, no. 13, October

2002, pp. 827-837.

[Cottenier et al., 2007] Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad

“Motorola WEAVR: Aspect and Model-Driven Engineering,” Journal of Object

Technology (Special Issue: Aspect-Oriented Modeling), vol. 6, no. 7, August 2007, pp.

51-88.

[Czarnecki and Eisenecker, 2000] Krzysztof Czarnecki and Ulrich Eisenecker,

Generative Programming: Methods, Tools, and Applications, Addison-Wesley, 2000.

[Czarnecki and Helsen, 2006] Krzysztof Czarnecki and Simon Helsen, “Feature-Based

Survey of Model Transformation Approaches,” IBM Systems Journal, vol. 45, no. 3, July

2006, pp. 621-645.

 164

[Devanbu, 1999] Prem Devanbu, “GENOA—A Customizable, Front-end-retargetable

Source Code Analysis Framework,” ACM Transactions on Software Engineering and

Methodology, vol. 8, no. 2, April 1999, pp. 177-212.

[Dig and Johnson, 2005] Danny Dig and Ralph Johnson, “The Role of Refactorings in

API Evolution,” IEEE International Conference on Software Maintenance, Budapest,

Hungary, September 2005, pp. 389-398.

[Dijkstra, 1982] Edsger Dijkstra, Selected Writings on Computing: A Personal

Perspective, Springer-Verlag, 1982.

[Dongarra, 2002] Jack Dongarra, “Basic Linear Algebra Subprograms Technical Forum

Standard,” International Journal of High Performance Applications and Supercomputing,

vol. 16, no. 1, 2002, pp. 1-111.

[Eaddy et al., 2007] Marc Eaddy, Alfred Aho, and Gail C. Murphy, “Identifying,

Assigning, and Quantifying Crosscutting Concerns,” International Workshop on

Assessment of Contemporary Modularization Techniques, Minneapolis, MN, May 2007,

pp. 2.

[Eclipse M2T, 2007] Eclipse Model to Text (M2T) project,

http://www.eclipse.org/modeling/m2t/.

[Filman et al., 2004] Robert Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Aksit,

Aspect-Oriented Software Development, Addison-Wesley, 2004.

[Fayad and Schmidt, 1997] Mohamed Fayad and Douglas Schmidt, “Object-Oriented

Application Frameworks-Introduction,” Communications of the ACM, vol. 40, no. 10,

October 1997, pp. 32-38.

[Filman and Friedman, 2004] Robert Filman and Daniel Friedman, “Aspect-Oriented

Programming is Quantification and Obliviousness,” in Aspect-Oriented Software

Development, Addison-Wesley, 2004.

[Fowler et al., 1999] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don

Roberts, Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999.

[Fradet and Südholt, 1998] Pascal Fradet and Mario Südholt, “Towards a Generic

Framework for Aspect-Oriented Programming,” Third AOP Workshop, ECOOP ‘98

Workshop Reader, Springer-Verlag LNCS 1543, Brussels, Belgium, July 1998, pp. 394-

397.

[France et al., 2004] Robert France, Indrakshi Ray, Geri Georg, and Sudipto Ghosh,

“Aspect-Oriented Approach to Design Modeling,” IEE Proceedings - Software (Special

Issue on Early Aspects: Aspect-Oriented Requirements Engineering and Architecture

Design), vol. 151, no. 4, August 2004, pp. 173-185.

 165

[Gamma et al., 1994] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,

Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley,

1994.

[GenAWeave, 2008] A Generic Aspect Weaver Framework based on Model-Driven

Program Transformation, 2008, http://www.cis.uab.edu/softcom/GenAWeave/.

[Germon, 2001] Roy Germon, “Using XML as an Intermediate Form for Compiler

Development,” XML Conference and Exposition, Orlando, FL, December 2001.

[Getov et al., 1998] Vladimir Getov, Susan Flynn Hummel, and Sava Mintchev, “High-

performance Parallel Programming in Java: Exploiting Native Libraries,” Concurrency:

Practice and Experience, vol. 10, no. 11-13, September-November 1998, pp. 863-872.

[Giese and Vilbig, 2006] Holger Giese and Alexander Vilbig, “Separation of non-

orthogonal concerns in software architecture and design,” Journal of Software and

Systems Modeling, vol. 5, no. 2, June 2006, pp. 136-169.

[Gray et al., 2001] Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck, “Handling

Crosscutting Constraints in Domain-Specific Modeling,” Communications of the ACM,

vol. 44, no. 10, October 2001, pp. 87-93.

[Gray and Roychoudhury, 2004] Jeff Gray and Suman Roychoudhury, “A Technique for

Constructing Aspect Weavers using a Program Transformation Engine,” International

Conference on Aspect-Oriented Software Development, Lancaster, UK, March 2004, pp.

36-45.

[Gray et al., 2003] Jeff Gray, Yuehua Lin, and Jing Zhang, “Aspect Model Weavers:

Levels of Supported Independence,” Middleware 2003: Workshop on Model-driven

Approaches to Middleware Applications Development, Rio de Janeiro, Brazil, June 2003.

[Gray et al., 2007] Jeff Gray, Juha-Pekka Tolvanen, Steven Kelly, Aniruddha Gokhale,

Sandeep Neema, and Jonathan Sprinkle, “Domain-Specific Modeling,” Handbook of

Dynamic System Modeling, CRC Press, 2007.

[Griswold and Notkin, 1993] William Griswold and David Notkin, “Automated

Assistance for Program Restructuring,” ACM Transactions on Software Engineering and

Methodology, vol. 2, no. 3, July 1993, pp. 228-269.

[Gropp et al., 1996] William Gropp, Ewing Lusk, Nathan Doss and Anthony Skjellum,

“A High-Performance, Portable Implementation of the MPI Message Passing Interface

Standard,” Parallel Computing, vol. 22, no. 6, 1996, pp. 789-828.

[Harbulot and Gurd, 2004] Bruno Harbulot and John Gurd, “Using AspectJ to Separate

Concerns in a Parallel Scientific Java Code,” International Conference on Aspect-

Oriented Software Development, Lancaster, UK, March 2004, pp. 122-131.

 166

[Harbulot and Gurd, 2005] Bruno Harbulot and John Gurd, “A Join Point for Loops in

AspectJ,” Workshop on Foundations of Aspect-Oriented Languages, Chicago, IL, March

2005.

[Hedin and Magnusson, 2003] Görel Hedin and Eva Magnusson, “JastAdd-an Aspect-

Oriented Compiler Construction System,” Science of Computer Programming, vol. 47,

no. 1, April 2003, pp. 37-58.

[Heidenreich et al., 2007] Florian Heidenreich, Jendrik Johannes, and Steffen Zschaler,

“Aspect Orientation for Your Language of Choice,” International Workshop on Aspect-

Oriented Modeling, Nashville, TN, September 2007.

[Ho et al., 2002] Wai-Ming Ho, Jean-Marc Jézéquel, François Pennaneac'h, and Noël

Plouzeau, “A Toolkit for Weaving Aspect-Oriented UML Designs,” International

Conference on Aspect-Oriented Software Development, Enschede, Netherlands, March

2002, pp. 99-105.

[IJSEKE, 2006] International Journal of Software Engineering and Knowledge

Engineering, (Special Issue on Aspect-Oriented Software Design Models), vol. 16, no. 3,

June 2006.

[Irwin et al., 1997] John Irwin, Jean-Marc Loingtier, John Gilbert, Gregor Kiczales, John

Lamping, Anurag Mendhekar, and Tatiana Shpeisman, “Aspect-Oriented Programming

of Sparse Matrix Code,” International Scientific Computing in Object-Oriented Parallel

Environments, Springer-Verlag LNCS 1343, Marina del Ray, CA, December 1997, pp.

249-256.

[JBoss, 2008] JBoss Project, 2008, http://www.jboss.org/.

[Jackson and Clarke, 2004] Andrew Jackson and Siobhán Clarke, “SourceWeave.NET:

Cross-Language Aspect-Oriented Programming,” Generative Programming and

Component Engineering, Springer-Verlag LNCS 3286, Vancouver, Canada, October

2004, pp. 115-135.

[Jacobson and Ng, 2005] Ivar Jacobson and Pan-Wei Ng, Aspect-Oriented Software

Development with Use Cases, Addison-Wesley, 2005.

[Johnson and Gannon, 1997] Elizabeth Johnson and Dennis Gannon, “HPC++:

Experiments with the Parallel Standard Template Library,” International Conference on

Supercomputing, Vienna, Austria, July 1997, pp. 124-131.

[Jossic et al., 2007] Albin Jossic, Marcos Didonet Del Fabro, Jean-Philippe Lerat, Jean

Bézivin, and Frédéric Jouault, “Model Integration with Model Weaving: a Case Study in

System Architecture,” International Conference on Systems Engineering and Modeling,

Haifa, Israel, March 2007, pp. 79-84.

 167

[Josuttis, 1999] Nicolai M. Josuttis, The C++ Standard Library: A Tutorial and

Reference, Addison-Wesley, 1999.

[Jouault et al., 2006] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev, “TCS: a DSL for

the Specification of Textual Concrete Syntaxes in Model Engineering,” Generative

Programming and Component Engineering, Portland, OR, October 2006, pp. 249-254.

[Jouault and Bézivin, 2006] Frédéric Jouault and Jean Bézivin, “KM3: a DSL for

Metamodel Specification,” Formal Methods for Open Object-Based Distributed Systems,

Springer-Verlag LNCS 4037, Bologna, Italy, June 2006, pp. 171-185.

[Jouault and Kurtev, 2005] Frédéric Jouault and Ivan Kurtev, “Transforming Models with

ATL,” Model Transformations in Practice Workshop at MoDELS, Montego Bay,

Jamaica, September 2005.

[Kiczales et al., 1997] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris

Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin, “Aspect-Oriented

Programming,” European Conference on Object-Oriented Programming, Springer-

Verlag LNCS 1241, Jyväskylä, Finland, June 1997, pp. 220-242.

[Kiczales et al., 2001] Gregor Kiczales, Eric Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey

Palm, and William Griswold, “Getting Started with AspectJ,” Communications of the

ACM, vol. 44, no. 10, October 2001, pp. 59-65.

[Klint et al., 2004] Paul Klint, Tijs van der Storm, and Jurgen Vinju, “Term Rewriting

Meets Aspect-Oriented Programming,” REPORT SEN-E0421,

http://www.cwi.nl/ftp/CWIreports/SEN/SEN-E0421.pdf, December 2004.

[Klint et al., 2005] Paul Klint, Ralf Lämmel, and Chris Verhoef, “Toward an Engineering

Discipline for Grammarware,” ACM Transactions on Software Engineering and

Methodology, vol. 14, no. 3, 2005, pp. 331-380.

[Kurtev et al., 2006] Ivan Kurtev, Jean Bézivin, Frédéric Jouault, and P. Valduriez,

“Model-based DSL Frameworks,” Object-Oriented Programming, Systems, Languages

and Applications Companion, Portland, OR, October 2006, pp. 602-616.

[Laddad, 2003] Ramnivas Laddad, AspectJ in Action: Practical Aspect-Oriented

Programming, Manning, 2003.

[Lafferty and Cahill, 2003] Donal Lafferty and Vinny Cahill, “Language-Independent

Aspect-Oriented Programming,” Object-Oriented Programming, Systems, Languages,

and Applications, Anaheim, CA, October 2003, pp. 1-12.

 168

[Lahire et al., 2007] Philippe Lahire, Brice Morin, Gilles Vanwormhoudt, Alban

Gaignard, Olivier Barais, and Jean-Marc Jézéquel, “Introducing Variability into Aspect-

Oriented Modeling Approaches,” Model Driven Engineering Languages and Systems,

Nashville, TN, October 2007, pp. 498-513.

[Lämmel, 1999] Ralf Lämmel, “Declarative Aspect-Oriented Programming,” ACM

SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation,

San Antonio, TX, January 1999, pp. 131-146.

[Lämmel and Verhoef, 2001] Ralf Lämmel and Chris Verhoef, “Cracking the 500

Language Problem,” IEEE Software, vol. 18, no. 6, November/December 2001, pp. 78-

88.

[Lämmel and Schutter, 2005] Ralf Lämmel and Kris De Schutter, “What Does Aspect-

Oriented Programming Mean to Cobol?” International Conference on Aspect-Oriented

Software Development, Chicago, IL, March 2005, pp. 99-110.

[Lämmel et al., 2003] Ralf Lämmel, Eelco Visser, and Joost Visser, “Strategic

Programming Meets Adaptive Programming,” International Conference on Aspect-

Oriented Software Development, Boston, MA, March 2003, pp. 168-177.

[Lédeczi et al., 2001] Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Peter Volgyesi, Greg

Nordstrom, Jonathan Sprinkle, and Gábor Karsai, “Composing Domain-Specific Design

Environments,” IEEE Computer, vol. 34 no. 11, November 2001, pp. 44-51.

[Lehman et al., 1997] Meir Lehman, Juan Ramil, Paul Wernick, Dewayne Perry, and

Wladyslaw Turski, “Metrics and Laws of Software Evolution - The Nineties View,”

International Software Metrics Symposium, Albuquerque, NM, November 1997, pp. 20-

33.

[Lieberherr et al., 2001] Karl Lieberherr, Doug Orleans, and Johan Ovlinger, “Aspect-

Oriented Programming with Adaptive Methods,” Communications of the ACM, vol. 44,

no. 10, October 2001, pp. 39-41.

[Lippert and Lopes, 2000] Martin Lippert and Cristina Lopes, “A Study on Exception

Detection and Handling Using Aspect-Oriented Programming,” International Conference

of Software Engineering, Limmerick, Ireland, June 2000, pp. 418-427.

[Lohmann et al., 2004] Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk, “Generic

Advice: On the Combination of AOP with Generative Programming in AspectC++,”

Generative Programming and Component Engineering, Springer-Verlag LNCS 3286,

Vancouver, BC, October 2004, pp. 55-74.

[Lopes, 1997] Cristina Lopes, “D: A Language Framework for Distributed

Programming,” Ph.D. Dissertation, College of Computer Science, Northeastern

University, December 1997 (1998).

 169

[López, 1992] Jesús López, “Generalized LR parsing,” Journal of Machine Translation,

vol. 7, no.3, September 1992, pp. 214-217.

[Masuhara and Kiczales, 2003] Hidehiko Masuhara and Gregor Kiczales, “Modeling

Crosscutting in Aspect-Oriented Mechanisms,” European Conference on Object-

Oriented Programming, Springer-Verlag LNCS 2743, Darmstadt, Germany, July 2003,

pp. 2-28.

[McKinsey, 2004] How IT spending is changing, McKinsey Quarterly, 2004.

[Mens and Tourwe, 2003] Tom Mens and Tom Tourwe, “A Survey of Software

Refactoring,” vol. 30, no. 2, IEEE Transactions on Software Engineering, February

2003, pp. 126-139.

[Mernik et al., 2002] Marjan Mernik, Mitja Lenič, Enis Avdičaušević, and Viljem Žumer,

“LISA: An Interactive Environment for Programming Language Development,”

International Conference on Compiler Construction, Grenoble, France, April 2002, pp.

1-4.

[Mernik et al., 2005] Marjan Mernik, Jan Heering, and Anthony Sloane, “When and How

to Develop Domain Specific Languages,” ACM Computing Surveys, vol. 37, no. 4, 2005,

pp. 316-344.

[MoDisco, 2008] Model Discovery, http://www.eclipse.org/gmt/modisco/.

[Morin et al., 2007] Brice Morin, Olivier Barais, Jean-Marc Jézéquel, and Rodrigo

Ramos, “Towards a Generic Aspect-Oriented Modeling Framework,” Workshop on

Models and Aspects, Berlin, Germany, July 2007.

[Models and Aspects, 2008] Workshop on Models and Aspects - Handling Crosscutting

Concerns in MDSD, http://www.kircher-schwanninger.de/workshops/MDD&AOSD/.

[Neema et al., 2002] Sandeep Neema, Ted Bapty, Jeff Gray, Aniruddha S. Gokhale,

“Generators for Synthesis of QoS Adaptation in Distributed Real-Time Embedded

Systems,” Generative Programming and Component Engineering, Springer-Verlag

LNCS 2487, Pittsburgh, PA, September 2002, pp. 236-251.

[Object Technology, 2007] Journal of Object Technology (Special Issue on Aspect

Modeling), vol. 6, no. 7, August 2007.

[OMG ADM, 2008] OMG: Architecture-Driven Modernization, 2008,

http://adm.omg.org/.

[OMG MOF, 2003] OMG: Meta Object Facility (MOF) 2.0 Core Specification, OMG

Document ptc/03-10-04, http://www.omg.org/docs/ptc/03-10-04.pdf, 2003.

 170

[OMG OCL, 2001] OMG: Object Constraint Language Specification, version 2.0,

formal/2006-05-01, http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf, 2001.

[OMG QVT, 2001] OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation

Specification, OMG Document http://www.omg.org/docs/ptc/05-11-01.pdf, 2001.

[Opdyke, 1992] William Opdyke, Refactoring Object-Oriented Frameworks, Ph.D.

Dissertation, 1992.

[Ossher et al., 1994] Harold Ossher, William Harrison, Frank Budinsky, and Ian

Simmonds, “Subject-oriented programming: Supporting decentralized development of

objects,” IBM Conference on Object-Oriented Technology, Santa Clara, CA, July 1994.

[Paakki, 1995] Jukka Paakki, “Attribute Grammar Paradigms - A High-Level

Methodology in Language Implementation,” ACM Computing Surveys, vol. 27, no. 4,

1995, pp. 196-255.

[Parnas, 1972] David Parnas, “On the Criteria To Be Used in Decomposing Systems into

Modules,” Communications of the ACM, vol. 15, no. 12, December 1972, pp. 1053-1058.

[Petitet et al., 2004] Antoine Petitet, Clinton Whaley, Jack Dongarra, and Andrew Cleary,

“HPL - A Portable Implementation of the High-Performance Linpack Benchmark for

Distributed-Memory Computers,” Version 1.0a, http://www.netlib.org/benchmark/hpl,

2004.

[PostSharp, 2008] PostSharp for Microsoft .NET, 2008, http://www.postsharp.org/.

[Quinlan et al., 2004] Daniel Quinlan, Markus Schordan, Brian Miller, and Markus

Kowarschik, “Parallel Object-Oriented Framework Optimization,” Concurrency:

Practice and Experience, vol. 16, no. 2-3, February-March 2004, pp. 293-302.

[Ramos et al., 2007] Rodrigo Ramos, Olivier Barais, and Jean-Marc Jezequel, “Matching

Model-Snippets,” International Conference on Model Driven Engineering Languages

and Systems, Nashville, TN, September 2007, pp. 121-135.

[Reddy et al., 2006] Raghu Reddy, Sudipto Ghosh, Robert France, Greg Straw, James

Bieman, Nathan McEachen, Eunjee Song, and Geri Georg, “Directives for Composing

Aspect-Oriented Design Class Models,” Transactions on Aspect-Oriented Software

Development, Springer-Verlag LNCS 3880, 2006, pp. 75-105.

[Reynders et al., 1996] John Reynders, Paul Hinker, Julian Cummings, Susan Atlas,

Subhankar Banerjee, William Humphrey, Steve Karmesin, Katarzyna Keahey, Marikani

Srikant, and Mary Dell Tholburn, “POOMA: A Framework for Scientific Simulations of

Paralllel Architectures,” Parallel Programming Using C++, MIT Press, 1996.

 171

[Roover et al., 2007] Coen De Roover, Theo D'Hondt, Johan Brichau, Carlos Noguera,

and Laurence Duchien, “Behavioral Similarity Matching Using Concrete Source Code

Templates in Logic Queries,” ACM Sigplan Workshop on Partial Evaluation and

Program Manipulation, Nice, France, January 2007, pp. 92-101.

[Roy et al., 2007] Chanchal Kumar Roy, Mohammad Gias Uddin, Banani Roy, and

Thomas Dean, “Evaluating Aspect Mining Techniques: A Case Study,” IEEE

International Conference on Program Comprehension, Alberta, Canada, June 2007, pp.

167-176.

[Roychoudhury, 2004] Suman Roychoudhury, “A Language-Independent Approach to

Software Maintenance using Grammar Adapters,” Object-Oriented Programming

Systems, Languages, and Applications Companion, Vancouver, BC, October 2004, pp.

52-53.

[Roychoudhury et al., 2007] Suman Roychoudhury, Frédéric Jouault and Jeff Gray,

“Model-Based Aspect Weaver Construction,” International Workshop on Language

Engineering, Nashville, TN, October 2007, pp. 117-126.

[Roychoudhury et al., 2008] Suman Roychoudhury, Jeff Gray, Jing Zhang, Purushotham

Bangalore, and Anthony Skjellum, “Modularizing Scientific Libraries with Aspect-

oriented and Generative Programming Techniques,” Acta Electrotechnica et Informatica,

2008.

[Schach, 1996] Stephen Schach, “The Cohesion and Coupling of Objects,” Journal of

Object-Oriented Programming, vol. 8, no. 8, January 1996, pp. 48-50.

[Schach and Tomer, 2000] Stephen Schach and Amir Tomer, “A Maintenance-Oriented

Approach to Software Construction,” Journal of Software Maintenance-Research and

Experience, vol. 12, no. 1, February 2000, pp. 25-45.

[Schmidt, 2006] Douglas Schmidt, “Guest Editor’s Introduction: Model-Driven

Engineering,” IEEE Computer, vol. 39, no. 2, February 2006, pp. 25-31.

[Schordan and Quinlan, 2003] Markus Schordan and Daniel Quinlan, “A Source-To-

Source Architecture for User-Defined Optimizations,” Joint Modular Languages

Conference, Springer-Verlag LNCS 2789, Klagenfurt, Austria, August 2003, pp. 214-

223.

[Schutter and Adams, 2007] Kris De Schutter and Bram Adams, “Aspect-orientation for

Revitalising Legacy Business Software,” vol. 166, Electronic Notes in Theoretical

Computer Science, January 2007, pp. 63-80.

[Sharp, 2000] David Sharp, “Component-Based Product Line Development of Avionics

Software,” First Software Product Lines Conference, Denver, CO, August 2000, pp. 353-

369.

 172

[Shonle et al., 2003] Macneil Shonle, Karl Lieberherr, and Ankit Shah, “XAspects: An

Extensible System for Domain Specific Aspect Languages,” Object-Oriented

Programming, Systems, Languages, and Applications Companion, Anaheim, CA,

October 2003, pp. 28-37.

[Siek and Lumsdaine, 1998] Jeremy Siek and Andrew Lumsdaine, “The Matrix Template

Library: A Generic Programming Approach to High Performance Numerical Linear

Algebra,” International Scientific Computing in Object-Oriented Parallel Environments,

Springer-Verlag LNCS 1505, Santa Fe, NM, December 1998, pp. 59-70.

[Skjellum et al., 2004] Anthony Skjellum, Purushotham Bangalore, Jeff Gray, and Barrett

Bryant, “Reinventing Explicit Parallel Programming for Improved Engineering of High

Performance Computing Software,” ICSE 2004 Workshop: International Workshop on

Software Engineering for High Performance Computing System Applications, Edinburgh,

Scotland, May 2004.

[Spinczyk et al., 2002] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-Preikschat,

“AspectC++: An Aspect-Oriented Extension to C++,” International Conference on

Technology of Object-Oriented Languages and Systems, Sydney, Australia, February

2002, pp. 53-60.

[Steel and Jézéquel, 2007] Jim Steel and Jean-Marc Jézéquel, “On Model Typing,”

Journal of Software and Systems Modeling, vol. 6, no. 4, December 2007, pp. 452-468.

[Stein et al., 2002] Dominik Stein, Stefan Hanenberg, and Rainer Unland “A UML-based

Aspect-Oriented Design Notation for AspectJ,” International Conference on Aspect-

Oriented Software Development, Enschede, Netherlands, March 2002, pp. 106-112.

[Sullivan et al., 2005] Kevin Sullivan, William Griswold, Yuanyuan Song, Yuanfang

Cai, Macneil Shonle, Nishit Tewari, and Hridesh Rajan, “Information Hiding Interfaces

for Aspect-Oriented Design,” European Software Engineering Conference and ACM

SIGSOFT Symposium on the Foundations of Software Engineering, Lisbon, Portugal,

September 2005, pp.166-175.

[Tarr et al., 1999] Peri Tarr, Harold Ossher, William Harrison, and Stanley Sutton, “N

Degrees of Separation: Multi-Dimensional Separation of Concerns,” International

Conference on Software Engineering, Los Angeles, CA, May 1999, pp. 107-119.

[Thai and Lam, 2003] Thuan Thai and Hoang Lam, .NET Framework Essentials,

O'Reilly & Associates, 2003.

[Ubayashi et al., 2006] Naoyasu Ubayashi, Tetsuo Tamai, Shinji Sano, Yusaku Maeno,

and Satoshi Murakami, “Metamodel Access Protocols for Extensible Aspect-Oriented

Modeling,” International Transactions on Systems Science and Applications, vol. 1, no.1,

2006, pp. 93-10.

 173

[Ulrich, 2002] William Ulrich, Legacy Systems: Transformation Strategies, Prentice-

Hall, 2002.

[van den Brand et al., 2002] Mark van den Brand, Jan Heering, Paul Klint, and Pieter

Olivier, “Compiling Rewrite Systems: The ASF+SDF Compiler,” ACM Transactions on

Programming Languages and Systems, vol. 24, no. 4, July 2002, pp. 334-368.

[Veldhuizen, 1998] Todd Veldhuizen, “Arrays in Blitz++,” International Scientific

Computing in Object-Oriented Parallel Environments, Springer-Verlag LNCS 1505,

Santa Fe, NM, December 1998, pp. 223-230.

[Veldhuizen and Gannon, 1998] Todd Veldhuizen and Dennis Gannon, “Active

Libraries: Rethinking the Roles of Compilers and Libraries,” SIAM Workshop on Object

Oriented Methods for Inter-operable Scientific and Engineering Computing, Yorktown

Heights, NY, October 1998.

[Visser, 2001] Eelco Visser, “Stratego: A Language for Program Transformation Based

on Rewriting Strategies. System Description of Stratego 0.5,” International Conference

on Rewriting Techniques and Applications, Springer-Verlag LNCS 2051, Utrecht,

Netherlands, May 2001, pp. 357-361.

[Wu et al., 2005] Hui Wu, Jeff Gray, Suman Roychoudhury, and Marjan Mernik,

“Weaving a Debugging Aspect into Domain-Specific Language Grammars,” ACM

Symposium on Applied Computing, Santa Fe, NM, March 2005, pp. 1370-1374.

 174

APPENDIX A

ASPECT PASCAL METAMODEL SPECIFICATIONS

 175

The individual specifications within this Appendix show the KM3 and TCS

specifications for the Aspect Pascal weaver that is extended from the Generic Aspect

(GAspect) metamodel.

A.1. Generic Aspect Metamodel KM3 Specification

 The following represents the complete KM3 specification for the GAspect

metamodel. Note the GAspect metamodel is common to both Aspect Pascal and Aspect

FORTRAN weaver specifications.

package GAspect {

 abstract class LocatedElement {

 attribute location[0-1] : String;

 attribute commentsBefore[*] ordered : String;

 attribute commentsAfter[*] ordered : String;

 }

 class GAspect extends LocatedElement {

 attribute name : String;

 reference domain container : Domain;

 reference pointcut[*] container : Pointcut oppositeOf aspect;

 reference advice[*] container : Advice oppositeOf aspect;

 }

 class Domain extends LocatedElement {

 attribute name : String;

 }

 abstract class Element extends LocatedElement {

 attribute name : String;

 }

 class Parameter extends LocatedElement {

 attribute name : String;

 }

 abstract class ParameterDef extends LocatedElement {

 attribute name : String;

 attribute type : String;

 }

 176

 class Pointcut extends Element {

 reference aspect : GAspect oppositeOf pointcut;

 reference paramdefs[*] container : ParameterDef;

 reference pctexpr[*] container : Expression oppositeOf

 pointcut;

 }

 abstract class Advice extends LocatedElement {

 reference aspect : GAspect oppositeOf advice;

 reference pctname : Element;

 reference paramdefs[*] container : ParameterDef;

 reference advStmt[*] container : Statement;

 }

 class BeforeAdvice extends Advice { }

 class AfterAdvice extends Advice { }

 class AroundAdvice extends Advice { }

 abstract class Expression extends LocatedElement {

 reference pointcut : Pointcut oppositeOf pctexpr;

 }

 class ArgsExpr extends Expression {

 attribute name : String;

 }

 abstract class Statement extends LocatedElement { }

 class ProccedStatement extends Statement { }

 abstract class LoopStatement extends Statement {

 reference loopInitCondition container : LoopInitCondition;

 reference loopExitCondition container : LoopExitCondition;

 reference loopStrideCondition container : LoopStrideCondition;

 }

 abstract class LoopInitCondition extends LocatedElement { }

 abstract class LoopExitCondition extends LocatedElement { }

 abstract class LoopStrideCondition extends LocatedElement { }

 class IntegerLoopInitCondition extends LoopInitCondition {

 attribute condition : Integer;

 }

 class IntegerLoopExitCondition extends LoopExitCondition {

 attribute condition : Integer;

 }

 class IntegerLoopStrideCondition extends LoopStrideCondition {

 attribute condition : Integer;

 }

 class StringLoopInitCondition extends LoopInitCondition {

 attribute condition : String;

 177

 }

 class StringLoopExitCondition extends LoopExitCondition {

 attribute condition :String;

 }

 class StringLoopStrideCondition extends LoopStrideCondition {

 attribute condition :String;

 }

 class OpaqueStatement extends Statement {

 attribute stmt : String;

 }

 class TryCatchFinallyStatement extends Statement {

 reference stmts[1-*] ordered container : Statement;

 reference finallyStmts[*] ordered container : Statement;

 reference catchStmts[*] ordered container : CatchStatement;

 }

 class CatchStatement extends LocatedElement {

 reference stmts[*] container : Statement;

 reference exceptions[*] container : ParameterDef;

 }

 class LoopExpr extends Expression {

 reference loopStmt container : LoopStatement;

 }

}

package PrimitiveTypes {

 datatype Boolean;

 datatype Integer;

 datatype String;

}

A.2. Aspect Pascal KM3 Specification

 The following represents the complete KM3 specification for the Aspect Pascal

metamodel, which is extended from the GAspect metamodel.

package APascal {

 class APascal extends GAspect { }

 abstract class FuncOrProcDefExpr extends Expression {

 reference funcOrProcSig container : FunctionOrProcSignature;

 }

 178

 class ExecExpr extends FuncOrProcDefExpr { }

 class WithinCodeExpr extends FuncOrProcDefExpr { }

 abstract class FunctionOrProcSignature extends LocatedElement {

 attribute name : String;

 }

 abstract class FunctionOrProcDef extends FunctionOrProcSignature {

 attribute classifier[0-1] : String;

 reference paramdefs[*] container : OPParamDef;

 }

 class FunctionDef extends FunctionOrProcDef { }

 class ProcedureDef extends FunctionOrProcDef { }

 class RoutineDef extends FunctionOrProcDef {

 attribute wildcard[0-1] : String;

 }

 class OPParamDef extends ParameterDef { }

 class CallExpr extends Expression {

 reference funcOrProcSig container : FunctionOrProcSignature;

 }

 class FunctionOrProcCallExpr extends FunctionOrProcSignature {

 reference params[*] container : Parameter;

 }

 class WithExpr extends Expression {

 attribute parent : String;

 attribute child : String;

 }

 class ForLoop extends LoopStatement { }

 class WhileLoop extends LoopStatement { }

}

A.3. Aspect Pascal TCS Specification

The following shows the TCS specification for the Aspect Pascal metamodel. The

lexical part is not included here but available at [GenAWeave, 2008].

syntax APascal {

 primitiveTemplate identifier for String default using NAME:

 value = "%token%";

 179

 primitiveTemplate stringSymbol for String using STRING:

 value = "%token%",

 serializer="'\'' + %value%.toCString() + '\''";

 primitiveTemplate integerSymbol for Integer default using INT:

 value = "Integer.valueOf(%token%)";

 primitiveTemplate floatSymbol for Double default using FLOAT:

 value = "Double.valueOf(%token%)";

 template Expression abstract;

 template ParameterDef abstract;

 template Element abstract;

 template Advice abstract;

 template Statement abstract;

 template Domain

 : "domain" name ";"

 ;

 template Pointcut context addToContext

 : "pointcut" name "(" paramdefs{separator = ","} ")"

 ":" pctexpr{separator = "&&"} ";"

 ;

 template BeforeAdvice

 : "before" "(" paramdefs{separator = ","} ")" ":"

 pctname{refersTo = name}

 "(" paramdefs{separator = ","} ")"

 "{"

 advStmt

 "}"

 ;

 template AfterAdvice

 : "after" "(" paramdefs{separator = ","} ")" ":"

 pctname{refersTo = name}

 "(" paramdefs{separator = ","} ")"

 "{"

 advStmt

 "}"

 ;

 template AroundAdvice

 : "around" "(" paramdefs{separator = ","} ")" ":"

 pctname{refersTo = name}

 "(" paramdefs{separator = ","} ")"

 "{"

 advStmt

 "}"

 ;

 180

 template OpaqueStatement

 : stmt {as = stringSymbol} ";"

 ;

 template ProccedStatement

 : "proceed" "(" ")" ";"

 ;

template LoopStatement abstract;

 template LoopExpr

 : "execution" "(" loopStmt ")"

 ;

 template LoopInitCondition abstract;

 template LoopExitCondition abstract;

 template LoopStrideCondition abstract;

 template IntegerLoopInitCondition

 : "init" ":" condition

 ;

 template IntegerLoopExitCondition

 : "exitcond" ":" condition

 ;

 template IntegerLoopStrideCondition

 : "stride" ":" condition

 ;

 template StringLoopInitCondition

 : "init" ":" condition

 ;

template StringLoopExitCondition

 : "exitcond" ":" condition

 ;

 template StringLoopStrideCondition

 : "stride" ":" condition

 ;

 template TryCatchFinallyStatement

 : "try" "{"

 stmts

 "}" catchStmts

 (isDefined(finallyStmts) ?

 "finally" "{"

 finallyStmts

 "}"

)

 ;

 181

 template Parameter

 : name

 ;

 template CatchStatement

 : "catch" "(" exceptions ")" "{" stmts "}"

 ;

 template ArgsExpr

 : "args" "(" name ")"

 ;

 template APascal main

 : domain "aspect" name "{" pointcut advice "}"

 ;

 template WithExpr

 : "with" "(" parent "." child ")"

 ;

 template ExecExpr

 : "execution" "(" funcOrProcSig ")"

 ;

template WithinCodeExpr

 : "withincode" "(" funcOrProcSig ")"

 ;

 template CallExpr

 : "call" "(" funcOrProcSig ")"

 ;

 template FunctionOrProcSignature abstract;

 template FunctionOrProcCallExpr

 : name "(" params{separator = ","} ")"

 ;

 template FuncOrProcDefExpr abstract;

 template FunctionOrProcDef abstract;

 template FunctionDef

 : "function"

 (isDefined(classifier) ? classifier ".")

 name "(" paramdefs{separator = ";"} ")"

 ;

 template ProcedureDef

 : "procedure"

 (isDefined(classifier) ? classifier ".")

 name "(" paramdefs{separator = ";"} ")"

 ;

 182

template RoutineDef

 : wildcard

 (isDefined(classifier) ? classifier ".")

 name "(" paramdefs{separator = ";"} ")"

 ;

 template OPParamDef

 : name ":" type

 ;

 template ForLoop

 : "for" "(" loopInitCondition "," loopExitCondition ")"

 ;

 template WhileLoop

 : "while" "(" loopExitCondition ")"

 ;

--- For Lexical Specification, refer to [GenAWeave, 2008] ----

}

 183

APPENDIX B

ASPECT FORTRAN METAMODEL SPECIFICATIONS

 184

The individual specifications within this Appendix show the KM3 and TCS

specifications for the Aspect FORTRAN weaver that is extended from the Generic

Aspect metamodel (GAspect).

B.1. Aspect FORTRAN KM3 Specification

 The following represents the complete KM3 specification for the Aspect

FORTRAN metamodel, which is extended from the GAspect metamodel. The GAspect

metamodel was earlier presented in Appendix A.1. and is not shown here.

package AFortran {

 class AFortran extends GAspect { }

 abstract class FuncOrSubDefExpr extends Expression {

 reference func_sub_Sig container : FuncOrSubSignature;

 }

 class ExecExpr extends FuncOrSubDefExpr { }

 class WithinCodeExpr extends FuncOrSubDefExpr { }

 class NotWithinCodeExpr extends FuncOrSubDefExpr { }

 abstract class FuncOrSubSignature extends LocatedElement {

 attribute name : String;

 }

 abstract class FuncOrSubDef extends FuncOrSubSignature {

 reference paramdefs[*] container : FortranParamDef;

 }

 class FuncDef extends FuncOrSubDef { }

 class SubDef extends FuncOrSubDef { }

 class FortranParamDef extends ParameterDef { }

 class CallExpr extends Expression {

 reference func_sub_Sig container : FuncOrSubSignature;

 }

 185

 class FuncOrSubCallExpr extends FuncOrSubSignature {

 reference params[*] container : Parameter;

 }

 class DoLoop extends LoopStatement { }

}

B.2. Aspect FORTRAN TCS Specification

The following shows the TCS specification for the Aspect FORTRAN

metamodel. The lexical part is not included here but available at [GenAWeave, 2008].

syntax AFortran {

 primitiveTemplate identifier for String default using NAME:

 value = "%token%";

 primitiveTemplate stringSymbol for String using STRING:

 value = "%token%",

 serializer="'\'' + %value%.toCString() + '\''";

 primitiveTemplate integerSymbol for Integer default using INT:

 value = "Integer.valueOf(%token%)";

 primitiveTemplate floatSymbol for Double default using FLOAT:

 value = "Double.valueOf(%token%)";

 template Expression abstract;

 template ParameterDef abstract;

 template Element abstract;

 template Advice abstract;

 template Statement abstract;

 template Domain

 : "domain" name ";"

 ;

 template Pointcut context addToContext

 : "pointcut" name "(" paramdefs{separator = ","} ")"

 ":" pctexpr{separator = "&&"} ";"

 ;

 186

 template BeforeAdvice

 : "before" "(" paramdefs{separator = ","} ")" ":"

 pctname{refersTo = name}

 "(" paramdefs{separator = ","} ")"

 "{"

 advStmt

 "}"

 ;

 template AfterAdvice

 : "after" "(" paramdefs{separator = ","} ")" ":"

 pctname{refersTo = name}

 "(" paramdefs{separator = ","} ")"

 "{"

 advStmt

 "}"

 ;

 template AroundAdvice

 : "around" "(" paramdefs{separator = ","} ")" ":"

 pctname{refersTo = name}

 "(" paramdefs{separator = ","} ")"

 "{"

 advStmt

 "}"

 ;

 template Parameter

 : name

 ;

 template OpaqueStatement

 : stmt {as = stringSymbol} ";"

 ;

 template ProccedStatement

 : "proceed" "(" ")" ";"

 ;

 template LoopStatement abstract;

 template LoopExpr

 : "execution" "(" loopStmt ")"

 ;

template LoopInitCondition abstract;

 template LoopExitCondition abstract;

 template LoopStrideCondition abstract;

 template IntegerLoopInitCondition

 : "init" ":" condition

 ;

 187

 template IntegerLoopExitCondition

 : "exitcond" ":" condition

 ;

 template IntegerLoopStrideCondition

 : "stride" ":" condition

 ;

template StringLoopInitCondition

 : "init" ":" condition

 ;

template StringLoopExitCondition

 : "exitcond" ":" condition

 ;

 template StringLoopStrideCondition

 : "stride" ":" condition

 ;

 template ArgsExpr

 : "args" "(" name ")"

 ;

template AFortran main

 : domain "aspect" name "{" pointcut advice "}"

 ;

template FuncOrSubSignature abstract;

 template ExecExpr

 : "execution" "(" func_sub_Sig ")"

 ;

template WithinCodeExpr

 : "withincode" "(" func_sub_Sig ")"

 ;

 template NotWithinCodeExpr

 : "!" "withincode" "(" func_sub_Sig ")"

 ;

 template CallExpr

 : "call" "(" func_sub_Sig ")"

 ;

 template FuncOrSubCallExpr

 : "CALL" name "(" params{separator = ","} ")"

 ;

 template FuncOrSubDefExpr abstract;

 template FuncOrSubDef abstract;

 188

 template FuncDef

 : "FUNCTION" name "(" paramdefs{separator = ","} ")"

 ;

 template SubDef

 : "SUBROUTINE" name "(" paramdefs{separator = ","} ")"

 ;

 template FortranParamDef

 : type name

 ;

 template DoLoop

: "do" "(" loopInitCondition "," loopExitCondition ","

 loopStrideCondition")"

 ;

--- For Lexical Specification, refer to [GenAWeave, 2008] ----

}

 189

APPENDIX C

RSL METAMODEL SPECIFICATION FOR BACK-END PTE

 190

The individual specifications within this Appendix show the KM3 and TCS

specifications for the target RSL used by the back-end PTE.

C.1. KM3 Specification for RSL

 The following represents the complete KM3 specification for RSL.

package RSL {

 abstract class LocatedElement {

 attribute location : String;

 attribute commentsBefore[*] ordered : String;

 attribute commentsAfter[*] ordered : String;

 }

 abstract class RSLelements extends LocatedElement {

 reference rsl : RSL oppositeOf rslelems;

 }

 class RSL extends LocatedElement {

 reference domain container : Domain;

 reference rslelems[*] container : RSLelements oppositeOf

 rsl;

 reference ruleset container : RuleSet;

 }

 class Domain extends LocatedElement {

 attribute dname : String;

 }

 class Pattern extends RSLelements {

 reference phead container : PatternHead;

 attribute ptoken : String;

 reference ptext container : PatternText;

 }

 abstract class PatternText extends LocatedElement {

 attribute ptext : String;

}

 class SimplePatternText extends PatternText { }

 class ConditionalPatternText extends PatternText {

 reference pref container : PatternRef;

 }

 191

class ExternalPattern extends Pattern {

 attribute dname : String;

 attribute eptext : String;

 }

 class PatternHead extends LocatedElement {

 attribute name: String;

 reference params[*] container : PatternParameter;

 }

 class PatternParameter extends LocatedElement {

 attribute name : String;

 attribute referTo : String;

 }

 class Condition extends RSLelements {

 reference chead container : ConditionHead;

 attribute ctext : String;

 }

 class ConditionHead extends LocatedElement {

 attribute name: String;

 reference params[*] container : ConditionParameter;

 }

 class ConditionParameter extends LocatedElement {

 attribute name : String;

 attribute referTo : String;

 }

 class Rule extends RSLelements {

 attribute rname : String;

 reference params[*] container : RuleParameter;

 attribute type : String;

 reference r_lhs_pattern container : RuleLHS;

 reference r_rhs_pattern container : RuleRHS;

 }

 class RuleParameter extends LocatedElement {

 attribute name : String;

 attribute referTo : String;

 }

 class RuleLHS extends LocatedElement {

 reference ruletext container : RuleText;

 }

 class RuleRHS extends LocatedElement {

 reference ruletext container : RuleText;

 reference condition[*] container: RuleCondition;

 }

 abstract class RuleText extends LocatedElement {

 attribute text : String;

 }

 192

 class SimpleRuleText extends RuleText { }

 class IDRuleText extends RuleText { }

 class ComplexRuleText extends RuleText {

 reference pref container : PatternRef;

 }

 abstract class RuleCondition extends LocatedElement {

 attribute lhs:String;

 reference pref container : PatternRef;

 }

class RuleEqCondition extends RuleCondition { }

 class RuleNotEqCondition extends RuleCondition { }

 abstract class Parameter extends LocatedElement {

 attribute name : String;

 }

 class PatternRef extends Parameter {

 reference params[*] container : Parameter;

 }

 class RealParameter extends Parameter { }

 class RuleSet extends LocatedElement {

 attribute rsname : String;

 attribute rname[*] : String;

 }

}

package PrimitiveTypes {

 datatype Boolean;

 datatype Integer;

 datatype String;

}

C.2. TCS Specification for RSL

 The following shows the TCS specification for RSL. Note that the source

metamodels (concrete syntax) for Aspect Pascal and Aspect FORTRAN do not require

the capture of any pretty printing information. However, the target RSL metamodel

requires the capture of formatting information (e.g., indentIncr = 1) to decorate the

generated output (RSL code).

 193

syntax RSL {

 primitiveTemplate identifier for String default using NAME:

 value = "%token%";

 primitiveTemplate stringSymbol for String using STRING:

 value = "%token%",

 serializer="'\'' + %value%.toCString() + '\''";

primitiveTemplate treeFragmentSymbol for String using

 TREEFRAGMENT:

 value = "%token%";

 primitiveTemplate integerSymbol for Integer default using INT:

 value = "Integer.valueOf(%token%)";

 primitiveTemplate floatSymbol for Double default using FLOAT:

 value = "Double.valueOf(%token%)";

 template RSL main

 : [domain rslelems] {nbNL = 2,indentIncr = 0,

 startNL = false}

 [ruleset]{nbNL = 1,indentIncr = 0}

 ;

 template RSLelements abstract;

 template Domain

 : "default" "base" "domain" dname "."

 ;

 template ExternalPattern

 : "external" "pattern" phead ":"

 ptoken ["="] {nbNL = 1,indentIncr = 1} eptext {as =

 stringSymbol} "in" "domain" dname "."

 ;

 template Pattern abstract

 : "pattern" phead ":"

 ptoken ["=" ptext "."]

 ;

 template PatternText abstract;

 template SimplePatternText

 : ptext{as = treeFragmentSymbol}

 ;

 template ConditionalPatternText

 : ptext "if" pref

 ;

 template PatternHead

 : name "(" params{separator = ","} ")"

 ;

 194

 template PatternParameter

 : name ":" referTo

 ;

 template Condition

 : "external" "condition" chead

 "=" ctext {as = stringSymbol} "."

 ;

 template ConditionHead

 : name "(" [params{separator = ","} ")"] {indentIncr = 1}

 ;

 template ConditionParameter

 : name ":" referTo

 ;

 template Rule

 : "rule" rname "("

 [params{separator = ","} ")"]{indentIncr = 1} ":"

 [type "->" type] "="

 [r_lhs_pattern] "->"

 [r_rhs_pattern "."]

 ;

 template RuleParameter

 : name ":" referTo

 ;

 template RuleLHS

 : ruletext

 ;

 template RuleRHS

 : ruletext [condition] {indentIncr = 0}

 ;

 template RuleText abstract;

 template SimpleRuleText

 : text{as = treeFragmentSymbol}

 ;

 template IDRuleText

 : text

 ;

 template ComplexRuleText

 : pref

 ;

 template RuleCondition abstract;

 template RuleEqCondition

 : "if" lhs "==" pref

 ;

 195

 template RuleNotEqCondition

 : "if" lhs "~=" pref

 ;

 template Parameter abstract;

 template PatternRef

 : name "(" params{separator = ","} ")"

 ;

 template RealParameter

 : name

 ;

 template RuleSet

 : "public" "ruleset" rsname "=" "{" rname

 {separator = ","} "}" "."

 ;

--- For Lexical Specification, refer to [GenAWeave, 2008] ----

}

 196

APPENDIX D

MODEL TRANSFORMATION RULES FOR ASPECT PASCAL

AND ASPECT FORTRAN WEAVER

 197

The individual specifications within this Appendix show the model

transformation rules for the Aspect Pascal and Aspect FORTRAN weavers. The visual

comparisons between the model transformation rules for the two weavers are available at

the GenAWeave project website [GenAWeave, 2008].

D.1. ATL Rule for Translating Call Expression Join Point in Aspect Pascal

 The following ATL rule shows the complete specification for translating a

primitive call expression join point in Aspect Pascal to low-level RSL code.

module APascal2RSL;

create OUT : RSL from IN : APascal;

helper context String

 def: startsWith(s : String) : Boolean =

 s.size() <= self.size() and self.substring(1, s.size()) = s;

helper context String

 def: endsWith(s : String) : Boolean =

 let start : Integer = self.size() - s.size() + 1 in

 start > 0 and self.substring(start, self.size()) = s;

rule ApDomain2RSLDomain {

 from

 s : APascal!Domain

 to

 t : RSL!Domain (

 dname <- s.name

)

}

rule APascal2RSL {

 from

 s: APascal!APascal

 to

 t: RSL!RSL (

 domain <- s.domain,

 rslelems <- Sequence {

 s.advice,

 thisModule.PointCutExprToMethodName(

 s.pointcut->first().pctexpr->first()),

 thisModule.PointCutExprToWithinCode(

 s.pointcut->first().pctexpr->last()),

 198

 s.pointcut->collect(e |

 thisModule.PointCutToExternalPattern(e)),

 s.pointcut->collect(e |

 thisModule.PointCutToRule(e))

 },

 ruleset <- rs

),

 rs : RSL!RuleSet (

 rsname <- s.name,

 rname <- s.pointcut->collect(e|e.name)

)

}

rule BeforeAdvice2Pattern {

 from

 s : APascal!BeforeAdvice

 to

 t : RSL!Pattern (

 phead <- ph,

 ptoken <- 'statement_list',

 ptext <- spt

),

 ph : RSL!PatternHead (

 name <- 'before_advice_stmt'

),

 spt : RSL!SimplePatternText (

 ptext <- s.advStmt->iterate(

e; acc : String = '' | acc + if acc = ''

 then '' else '\r\n\t' endif + e.stmt

)

)

}

rule GenerateAfterAdviceDummy extends BeforeAdvice2Pattern {

 from

 s : APascal!BeforeAdvice (

not s.aspect.advice->exists(e |

 e.oclIsKindOf(APascal!AfterAdvice))

)

 to

 t : RSL!Pattern,

 at : RSL!Pattern (

 rsl <- s.aspect,

 phead <- aph,

 ptoken <- 'statement_list',

 ptext <- aspt

),

 aph : RSL!PatternHead (

 name <- 'after_advice_stmt'

),

 aspt : RSL!SimplePatternText (

 ptext <- ''

)

}

 199

rule AfterAdvice2Pattern {

 from

 s : APascal!AfterAdvice

 to

 t : RSL!Pattern (

 phead <- ph,

 ptoken <- 'statement_list',

 ptext <- spt

),

 ph : RSL!PatternHead (

 name <- 'after_advice_stmt'

),

 spt : RSL!SimplePatternText (

 ptext <- s.advStmt->iterate(

 e; acc : String = '' | acc + if acc

 = '' then '' else '\r\n\t' endif + e.stmt

)

)

}

rule GenerateBeforeAdviceDummy extends AfterAdvice2Pattern{

 from

 s : APascal!AfterAdvice (

 not s.aspect.advice->exists(e |

 e.oclIsKindOf(APascal!BeforeAdvice))

)

 to

 t : RSL!Pattern,

 bt: RSL!Pattern (

 rsl <- s.aspect,

 phead <- bph,

 ptoken <- 'statement_list',

 ptext <- bspt

),

 bph : RSL!PatternHead (

 name <- 'before_advice_stmt'

),

 bspt : RSL!SimplePatternText (

 ptext <- ''

)

}

lazy rule PointCutToExternalPattern {

 from

 s : APascal!Pointcut

 to

 t : RSL!ExternalPattern (

 dname <- 'ObjectPascal',

 eptext <- 'around_advice_call',

 ptoken <- 'ObjectPascal',

 phead <- ph

),

 ph : RSL!PatternHead (

 name <- 'around_advice_call',

 params <- Sequence {pp1,pp2,pp3,pp4,pp5,pp6}

),

 pp1 : RSL!PatternParameter (

 200

 name <- 'program',

 referTo <- 'ObjectPascal'

),

 pp2 : RSL!PatternParameter (

 name <- 'method_name',

 referTo <- 'IDENTIFIER'

),

 pp3 : RSL!PatternParameter (

 name <- 'proceed_call',

 referTo <- 'IDENTIFIER'

),

 pp4 : RSL!PatternParameter (

 name <- 'proceed_bef',

 referTo <- 'statement_list'

),

 pp5 : RSL!PatternParameter (

 name <- 'proceed_aft',

 referTo <- 'statement_list'

),

 pp6 : RSL!PatternParameter (

 name <- 'withincode',

 referTo <- 'IDENTIFIER'

)

}

lazy rule PointCutExprToWithinCode {

 from

 s : APascal!Expression

 to

 t : RSL!Pattern (

 ptext <- spt ,

 ptoken <- 'IDENTIFIER',

 phead <- ph

),

 ph : RSL!PatternHead (

 name <- 'within_code'

),

 spt : RSL!SimplePatternText (

 ptext <- if s.pointcut.pctexpr.size() > 1 then

 ' '+ s.funcOrProcSig.name

 else ' ' + 'mc_' endif

)

}

lazy rule PointCutExprToMethodName {

 from

 s : APascal!Expression

 to

 t : RSL!Pattern (

 ptext <- spt,

 ptoken <- 'IDENTIFIER',

 phead <- ph

),

 ph : RSL!PatternHead (

 name <- 'method_name'

 201

),

 spt : RSL!SimplePatternText (

 ptext <- ' '+ s.funcOrProcSig.name

)

}

lazy rule PointCutToRule {

 from

 s : APascal!Pointcut

 to

 t : RSL!Rule (

 rname <- s.name,

 type <- 'ObjectPascal',

 params <- Sequence {rp1},

 r_lhs_pattern <- rlhsp,

 r_rhs_pattern <- rrhsp

),

 rp1: RSL!RuleParameter (

 name <- 'program',

 referTo <- 'ObjectPascal'

),

 rlhsp : RSL!RuleLHS (

 ruletext <- irt -- IDRuleText

),

 irt : RSL!IDRuleText (

 text <- 'program'

),

 rrhsp : RSL!RuleRHS (

 ruletext <- crt, -- ComplexRuleText

 condition <- Sequence {rcon}

),

 crt : RSL!ComplexRuleText (

 pref <- rule_rhs_pattern

),

 rule_rhs_pattern : RSL!PatternRef (

 name <- 'around_advice_call',

 params <- Sequence {

 param1,

 param2,

 param3,

 param4,

 param5,

 param6

 }

),

 param1 : RSL!RealParameter (

 name <- 'program'

),

 param2 : RSL!PatternRef (

 name <- 'method_name'

),

 param3 : RSL!PatternRef (

 name <- 'method_name'

),

 param4 : RSL!PatternRef (

 202

 name <- 'before_advice_stmt'

),

 param5 : RSL!PatternRef (

 name <- 'after_advice_stmt'

),

 param6 : RSL!PatternRef (

 name <- 'within_code'

),

 rcon : RSL!RuleNotEqCondition (

 lhs <- ' program',

 pref <- rule_rhs_cond

),

 rule_rhs_cond : RSL!PatternRef (

 name <- around_advice_call',

 params <- Sequence {p1,p2,p3,p4,p5,p6}

),

 p1 : RSL!RealParameter (

 name <- 'program'

),

 p2 : RSL!PatternRef (

 name <- 'method_name'

),

 p3 : RSL!PatternRef (

 name <- 'method_name'

),

 p4 : RSL!PatternRef (

 name <- 'before_advice_stmt'

),

 p5 : RSL!PatternRef (

 name <- 'after_advice_stmt'

),

 p6 : RSL!PatternRef (

 name <- 'within_code'

)

}

D.2. ATL Rule for Translating Loop Expression Join Point in Aspect Pascal

 The following ATL rule shows the complete specification for translating a loop

expression join point in Aspect Pascal to low-level RSL code.

module APascal2RSL;

create OUT : RSL from IN : APascal;

helper context String

 def: startsWith(s : String) : Boolean =

 s.size() <= self.size() and self.substring(1, s.size()) = s;

 203

helper context String

 def: endsWith(s : String) : Boolean =

 let start : Integer = self.size() - s.size() + 1 in

 start > 0 and self.substring(start, self.size()) = s;

rule APascal2RSL {

 from

 s: APascal!APascal

 to

 t: RSL!RSL (

 domain <- s.domain,

 rslelems <- Sequence {

 s.advice,

 thisModule.PointCutExprToInitExpr(

 s.pointcut->first().pctexpr->first()),

 thisModule.PointCutExprToExitExpr(

 s.pointcut->first().pctexpr->first()),

 thisModule.PointCutExprToWithinCode(

 s.pointcut->first().pctexpr->last()),

 s.pointcut->collect(e |

 thisModule.PointCutToExternalPattern(e)),

 s.pointcut->collect(e |

 thisModule.PointCutToRule(e))

 },

 ruleset <- rs

),

 rs : RSL!RuleSet (

 rsname <- s.name,

 rname <- s.pointcut->collect(e|e.name)

)

}

rule ApDomain2RSLDomain {

 from

 s : APascal!Domain

 to

 t : RSL!Domain (

 dname <- s.name

)

}

rule BeforeAdvice2Pattern {

 from

 s : APascal!BeforeAdvice

 to

 t : RSL!Pattern (

 phead <- ph,

 ptoken <- 'statement_list',

 ptext <- spt

),

 ph : RSL!PatternHead (

 name <- 'before_advice_stmt'

),

 spt : RSL!SimplePatternText (

 204

ptext <- s.advStmt->iterate(e; acc : String = '' |

 acc + if acc = '' then '' else

 '\r\n\t' endif + e.stmt)

)

}

rule GenerateAfterAdviceDummy extends BeforeAdvice2Pattern {

 from

 s : APascal!BeforeAdvice (

 not s.aspect.advice->exists(e |

 e.oclIsKindOf(APascal!AfterAdvice))

)

 to

 t : RSL!Pattern,

 at : RSL!Pattern (

 rsl <- s.aspect,

 phead <- aph,

 ptoken <- 'statement_list',

 ptext <- aspt

),

 aph : RSL!PatternHead (

 name <- 'after_advice_stmt'

),

 aspt : RSL!SimplePatternText (

 ptext <- ''

)

}

rule AfterAdvice2Pattern {

 from

 s : APascal!AfterAdvice

 to

 t : RSL!Pattern (

 phead <- ph,

 ptoken <- 'statement_list',

 ptext <- spt

),

 ph : RSL!PatternHead (

 name <- 'after_advice_stmt'

),

 spt : RSL!SimplePatternText (

 ptext <- s.advStmt->iterate(e; acc : String = '' |

 acc + if acc = '' then '' else

 '\r\n\t' endif + e.stmt)

)

}

rule GenerateBeforeAdviceDummy extends AfterAdvice2Pattern{

 from

 s : APascal!AfterAdvice (

 not s.aspect.advice->exists(e |

 e.oclIsKindOf(APascal!BeforeAdvice))

)

 to

 t : RSL!Pattern,

 bt: RSL!Pattern (

 rsl <- s.aspect,

 205

 phead <- bph,

 ptoken <- 'statement_list',

 ptext <- bspt

),

 bph : RSL!PatternHead (

 name <- 'before_advice_stmt'

),

 bspt : RSL!SimplePatternText (

 ptext <- ''

)

}

lazy rule PointCutExprToInitExpr {

 from

 s : APascal!Expression

 to

 t : RSL!Pattern (

 ptext <- spt,

 ptoken <- 'NATURAL_NUMBER',

 phead <- ph

),

 ph : RSL!PatternHead (

 name <- 'init'

),

 spt : RSL!SimplePatternText (

 ptext <- if

 s.loopStmt.loopInitCondition.condition.

 toString() = '*' then

 '123456789'

 else

 s.loopStmt.loopInitCondition.condition.

 toString()

 endif

)

}

lazy rule PointCutExprToWithinCode {

 from

 s : APascal!Expression

 to

 t : RSL!Pattern (

 ptext <- spt ,

 ptoken <- 'IDENTIFIER',

 phead <- ph

),

 ph : RSL!PatternHead (

 name <- 'within_code'

),

 spt : RSL!SimplePatternText (

 ptext <- if s.pointcut.pctexpr.size() > 1 then

 ' '+ s.funcOrProcSig.name

 else ' ' + 'wc_' endif

)

}

 206

lazy rule PointCutExprToExitExpr {

 from

 s : APascal!Expression

 to

 t : RSL!Pattern (

 ptext <- spt,

 ptoken <- 'NATURAL_NUMBER',

 phead <- ph

),

 ph : RSL!PatternHead (

 name <- 'exit'

),

 spt : RSL!SimplePatternText (

 ptext <- if

 s.loopStmt.loopInitCondition.condition.

 toString() = '*' then

 '123456789'

 else

 s.loopStmt.loopInitCondition.condition.

 toString()

 endif

)

}

lazy rule PointCutToExternalPattern {

 from

 s : APascal!Pointcut

 to

 t : RSL!ExternalPattern (

 dname <- 'ObjectPascal',

 eptext <- 'around_advice_for',

 ptoken <- 'ObjectPascal',

 phead <- ph

),

 ph : RSL!PatternHead (

 name <- 'around_advice_for',

 params <- Sequence {pp1,pp2,pp3,pp4,pp5,pp6}

),

 pp1 : RSL!PatternParameter (

 name <- 'program',

 referTo <- 'ObjectPascal'

),

 pp2 : RSL!PatternParameter (

 name <- 'proceed_bef',

 referTo <- 'statement_list'

),

 pp3 : RSL!PatternParameter (

 name <- 'proceed_after',

 referTo <- 'statement_list'

),

 pp4 : RSL!PatternParameter (

 name <- 'withincode',

 referTo <- 'IDENTIFIER'

),

 pp5 : RSL!PatternParameter (

 name <- 'init',

 referTo <- 'NATURAL_NUMBER'

 207

),

 pp6 : RSL!PatternParameter (

 name <- 'exit',

 referTo <- 'NATURAL_NUMBER'

)

}

lazy rule PointCutToRule {

 from

 s : APascal!Pointcut

 to

 t : RSL!Rule (

 rname <- s.name,

 type <- 'ObjectPascal',

 params <- Sequence {rp1},

 r_lhs_pattern <- rlhsp,

 r_rhs_pattern <- rrhsp

),

 rp1: RSL!RuleParameter (

 name <- 'program',

 referTo <- 'ObjectPascal'

),

 rlhsp : RSL!RuleLHS (

 ruletext <- irt

),

 irt : RSL!IDRuleText (

 text <- 'program'

),

 rrhsp : RSL!RuleRHS (

 ruletext <- crt,

 condition <- Sequence {rcon}

),

 crt : RSL!ComplexRuleText (

 pref <- rule_rhs_pattern

),

 rule_rhs_pattern : RSL!PatternRef (

 name <- 'around_advice_for',

 params <- Sequence {

 param1,

 param2,

 param3,

 param4,

 param5,

 param6

 }

),

 param1 : RSL!RealParameter (

 name <- 'program'

),

 param2 : RSL!PatternRef (

 name <- 'before_advice_stmt'

),

 param3 : RSL!PatternRef (

 name <- 'after_advice_stmt'

),

 208

 param4 : RSL!PatternRef (

 name <- 'within_code'

),

 param5 : RSL!PatternRef (

 name <- 'init'

),

 param6 : RSL!PatternRef (

 name <- 'exit'

),

 rcon : RSL!RuleNotEqCondition (

 lhs <- 'program',

 pref <- rule_rhs_cond

),

 rule_rhs_cond : RSL!PatternRef (

 name <- 'around_advice_for',

 params <- Sequence {p1,p2,p3,p4,p5,p6}

),

 p1 : RSL!RealParameter (

 name <- 'program'

),

 p2 : RSL!PatternRef (

 name <- 'before_advice_stmt'

),

 p3 : RSL!PatternRef (

 name <- 'after_advice_stmt'

),

 p4 : RSL!PatternRef (

 name <- 'within_code'

),

 p5 : RSL!PatternRef (

 name <- 'init'

),

 p6 : RSL!PatternRef (

 name <- 'exit'

)

}

D.3. ATL Rule for Translating Loop Expression Join Point in Aspect FORTRAN

 The following ATL rule shows the complete specification for translating a loop

expression join point in Aspect FORTRAN to RSL code.

module AFortran2RSL;

create OUT : RSL from IN : AFortran;

helper context String

 def: startsWith(s : String) : Boolean =

 s.size() <= self.size() and self.substring(1, s.size()) = s;

 209

helper context String

 def: endsWith(s : String) : Boolean =

 let start : Integer = self.size() - s.size() + 1 in

 start > 0 and self.substring(start, self.size()) = s;

rule AFortran2RSL {

 from

 s: AFortran!AFortran

 to

 t: RSL!RSL (

 domain <- s.domain,

 rslelems <- Sequence {

 s.advice,

 thisModule.PointCutExprToInitExpr(

 s.pointcut->first().pctexpr->first()),

 thisModule.PointCutExprToExitExpr(

 s.pointcut->first().pctexpr->first()),

 thisModule.PointCutExprToWithinCode(

 s.pointcut->first().pctexpr->last()),

 s.pointcut->collect(e |

 thisModule.PointCutToExternalPattern(e)),

 s.pointcut->collect(e |

 thisModule.PointCutToRule(e))

 },

 ruleset <- rs

),

 rs : RSL!RuleSet (

 rsname <- s.name,

 rname <- s.pointcut->collect(e|e.name)

)

}

rule AFDomain2RSLDomain {

 from

 s : AFortran!Domain

 to

 t : RSL!Domain (

 dname <- s.name

)

}

rule BeforeAdvice2Pattern {

 from

 s : AFortran!BeforeAdvice

 to

 t : RSL!Pattern (

 phead <- ph,

 ptoken <- 'execution_part_construct_list',

 ptext <- spt

),

 ph : RSL!PatternHead (

 name <- 'before_advice_stmt'

),

 spt : RSL!SimplePatternText (

 ptext <- s.advStmt->iterate(

 e; acc : String = '' | acc + if acc

 210

 = '' then '' else '\r\n\t' endif

 + e.stmt

)

)

}

rule GenerateAfterAdviceDummy extends BeforeAdvice2Pattern {

 from

 s : AFortran!BeforeAdvice (

 not s.aspect.advice->exists(e |

 e.oclIsKindOf(AFortran!AfterAdvice))

)

 to

 t : RSL!Pattern,

 at : RSL!Pattern (

 rsl <- s.aspect,

 phead <- aph,

 ptoken <- 'execution_part_construct_list',

 ptext <- aspt

),

 aph : RSL!PatternHead (

 name <- 'after_advice_stmt'

),

 aspt : RSL!SimplePatternText (

 ptext <- ''

)

}

rule AfterAdvice2Pattern {

 from

 s : AFortran!AfterAdvice

 to

 t : RSL!Pattern (

 phead <- ph,

 ptoken <- 'execution_part_construct_list',

 ptext <- spt

),

 ph : RSL!PatternHead (

 name <- 'after_advice_stmt'

),

 spt : RSL!SimplePatternText (

 ptext <- s.advStmt->iterate(

 e; acc : String = '' | acc + if acc

 = '' then '' else '\r\n\t' endif

 + e.stmt

)

)

}

rule GenerateBeforeAdviceDummy extends AfterAdvice2Pattern{

 from

 s : AFortran!AfterAdvice (

 not s.aspect.advice->exists(e |

 e.oclIsKindOf(AFortran!BeforeAdvice))

)

 to

 t : RSL!Pattern,

 211

 bt: RSL!Pattern (

 rsl <- s.aspect,

 phead <- bph,

 ptoken <- 'execution_part_construct_list',

 ptext <- bspt

),

 bph : RSL!PatternHead (

 name <- 'before_advice_stmt'

),

 bspt : RSL!SimplePatternText (

 ptext <- ''

)

}

lazy rule PointCutExprToInitExpr {

 from

 s : AFortran!Expression

 to

 t : RSL!Pattern (

 ptext <- spt,

 ptoken <- 'LABEL',

 phead <- ph

),

 ph : RSL!PatternHead (

 name <- 'init'

),

 spt : RSL!SimplePatternText (

 ptext <- if

 s.loopStmt.loopInitCondition.condition.

 toString() = '*' then

 '12345'

 else

 s.loopStmt.loopInitCondition.condition.

 toString()

 endif

)

}

lazy rule PointCutExprToExitExpr {

 from

 s : AFortran!Expression

 to

 t : RSL!Pattern (

 ptext <- spt,

 ptoken <- 'LABEL',

 phead <- ph

),

 ph : RSL!PatternHead (

 name <- 'exit'

),

 spt : RSL!SimplePatternText (

 ptext <- if

 s.loopStmt.loopInitCondition.condition.

 toString() = '*' then

 '12345'

 else

 212

 s.loopStmt.loopInitCondition.condition.

 toString()

 endif

)

}

lazy rule PointCutExprToWithinCode {

 from

 s : AFortran!Expression

 to

 t : RSL!Pattern (

 ptext <- spt ,

 ptoken <- 'NAME',

 phead <- ph

),

 ph : RSL!PatternHead (

 name <- 'within_code'

),

 spt : RSL!SimplePatternText (

 ptext <- if s.pointcut.pctexpr.size() > 1 then

 ' '+ s.func_sub_Sig.name

 else ' ' + 'wc_' endif

)

}

lazy rule PointCutToExternalPattern {

 from

 s : AFortran!Pointcut

 to

 t : RSL!ExternalPattern (

 dname <- 'FORTRAN',

 eptext <- 'around_advice_do',

 ptoken <- 'Fortran90_program',

 phead <- ph

),

 ph : RSL!PatternHead (

 name <- 'around_advice_do',

 params <- Sequence {pp1,pp2,pp3,pp4,pp5,pp6}

),

 pp1 : RSL!PatternParameter (

 name <- 'program',

 referTo <- 'Fortran90_program'

),

 pp2 : RSL!PatternParameter (

 name <- 'proceed_bef',

 referTo <- 'execution_part_construct_list'

),

 pp3 : RSL!PatternParameter (

 name <- 'proceed_after',

 referTo <- 'execution_part_construct_list'

),

 pp4 : RSL!PatternParameter (

 name <- 'withincode',

 referTo <- 'NAME'

),

 213

 pp5 : RSL!PatternParameter (

 name <- 'init',

 referTo <- 'LABEL'

),

 pp6 : RSL!PatternParameter (

 name <- 'exit',

 referTo <- 'LABEL'

)

}

lazy rule PointCutToRule {

 from

 s : AFortran!Pointcut

 to

 t : RSL!Rule (

 rname <- s.name,

 type <- 'Fortran90_program',

 params <- Sequence {rp1},

 r_lhs_pattern <- rlhsp,

 r_rhs_pattern <- rrhsp

),

 rp1: RSL!RuleParameter (

 name <- 'program',

 referTo <- 'Fortran90_program'

),

 rlhsp : RSL!RuleLHS (

 ruletext <- irt -- IDRuleText

),

 irt : RSL!IDRuleText (

 text <- 'program'

),

 rrhsp : RSL!RuleRHS (

 ruletext <- crt, -- ComplexRuleText

 condition <- Sequence {rcon}

),

 crt : RSL!ComplexRuleText (

 pref <- rule_rhs_pattern

),

 rule_rhs_pattern : RSL!PatternRef (

 name <- 'around_advice_do',

 params <- Sequence {

 param1,

 param2,

 param3,

 param4,

 param5,

 param6

 }

),

 param1 : RSL!RealParameter (

 name <- 'program'

),

 param2 : RSL!PatternRef (

 name <- 'before_advice_stmt'

),

 214

 param3 : RSL!PatternRef (

 name <- 'after_advice_stmt'

),

 param4 : RSL!PatternRef (

 name <- 'within_code'

),

 param5 : RSL!PatternRef (

 name <- 'init'

),

 param6 : RSL!PatternRef (

 name <- 'exit'

),

 rcon : RSL!RuleNotEqCondition (

 lhs <- 'program',

 pref <- rule_rhs_cond

),

 rule_rhs_cond : RSL!PatternRef (

 name <- 'around_advice_do,

 params <- Sequence {p1,p2,p3,p4,p5,p6}

),

 p1 : RSL!RealParameter (

 name <- 'program'

),

 p2 : RSL!PatternRef (

 name <- 'before_advice_stmt'

),

 p3 : RSL!PatternRef (

 name <- 'after_advice_stmt'

),

 p4 : RSL!PatternRef (

 name <- 'within_code'

),

 p5 : RSL!PatternRef (

 name <- 'init'

),

 p6 : RSL!PatternRef (

 name <- 'exit'

)

}

 215

APPENDIX E

BACK-END WEAVER TRANSFORMATION FUNCTIONS

 216

The PARLANSE external functions that are reusable or shared among multiple

weavers are shown in Appendix E.1.

E.1. PARLANSE Reusable External Functions

 The following PARLANSE external functions are useful for traversing the AST

and match conditions specified by the RSL. The function name_begins_with is

useful for matching names (e.g., function name, identifiers), which begin with the given

input. This is equivalent to a wildcard search name* in an aspect program.

(define name_begins_with

 (lambda Registry:MatchingCondition

 (let (;; (= [search_string (reference string)]

 (Graph:HGHandling:GetString arguments:1))

 [start_index natural]

);;

 (value

 (;;

 (= start_index

 (Strings:Find

 (AST:GetString arguments:1)

 (AST:GetString arguments:2)))

 (ifthen(== 1 start_index)

 (return ~t)

)ifthen

);;

 ~f

)value

)let

)lambda

)define

The function name_contains is useful for matching names (e.g., method

name, identifiers), which include the given input. This is equivalent to a wildcard search

name in an aspect program.

 217

(define name_contains

 (lambda Registry:MatchingCondition

 (let (;;

 (= [search_string (reference string)]

 (Graph:HGHandling:GetString arguments:1))

 [start_index natural]

);;

 (value

 (;;

 (= start_index

 (Strings:Find

 (AST:GetString arguments:1)

 (AST:GetString arguments:2)))

 (ifthen(> start_index 0)

 (return ~t)

)ifthen

);;

 ~f

)value

)let

)lambda

)define

The following external function GetChildFromParent is a helper routine

useful for finding a child node with a given property from the parent node.

(define GetChildFromParent

 (lambda (function AST:Node

 (structure

 [parent_tree AST:Node]

 [node_type natural]

)structure

 critical

)function

 (let [child_node AST:Node]

 (value

 (;;

 (= child_node (AST:FindChildWithProperty

 parent_tree

 (lambda (function boolean AST:Node

)function

 (value (local (;;);;

 (;;

 (ifthen

 (== (AST:GetNodeType ?) node_type)

 (return ~t)

)ifthen

 (return ~f)

);;

 218

)local

 ~f

)value

)lambda

)

)

);;

 child_node

)value

)let

)lambda

)define

The external function GetParentFromChild is a helper routine useful for

finding a parent node with a given property from the child node.

(define GetParentFromChild

 (lambda (function AST:Node

 (structure

 [child_tree AST:Node]

 [node_type natural]

)structure

 critical

)function

 (let [parent_node AST:Node]

 (value

 (;;

 (= parent_node

 (AST:FindParentWithProperty child_tree

 (lambda (function boolean AST:Node

)function

 (value (local (;;);;

 (;;

 (ifthen

 (== (AST:GetNodeType ?) node_type)

 (return ~t)

)ifthen

 (return ~f)

);;

)local

 ~f

)value

)lambda

)

)

);;

 parent_node

)value

)let

)lambda

)define

 219

The PARLANSE external functions that are algorithm-specific or grammar-

dependent are shown in Appendix E.2. Reuse among these functions is more at the

conceptual level.

E.2. PARLANSE External Function for Loop Execution Join Point

 The two external functions presented in Appendix E.2 show the internal details

for implementing a loop execution join point for Object Pascal (for_loop)

and FORTRAN (do_loop), respectively. Both these functions follow similar search

algorithms. Thus, in order to implement a loop execution join point for a new

language L, the external function for L should also follow the same conceptual algorithm

and abstract program structure as used by the previous weavers. A careful observation

reveals the dependency on the underlying grammar symbols (e.g.,

GrammarConstants:NodeTypes:_for_statement_1,

GrammarConstants:NodeTypes:_block_do_construct_2) for the two

external functions. However, the algorithm remains conceptually the same.

(define around_advice_for

 (lambda Registry:CreatingPattern

 (value (local (;;

 (= [proc_def_node AST:Node] AST:VoidNode)

 (= [func_def_node AST:Node] AST:VoidNode)

 (= [for_stmt_node AST:Node] AST:VoidNode)

 (= [init_node AST:Node] AST:VoidNode)

 (= [exit_node AST:Node] AST:VoidNode)

 (= [slist_node AST:Node] AST:VoidNode)

 [parent AST:Node]

 [representation_instance AST:RepresentationInstance]

 [new_node AST:Node]

 [new_node_1 AST:Node]

 [empty_node AST:Node]

 [semicolon AST:Node]

 (= [ctr natural] 0)

 (= [withincode_node AST:Node] AST:VoidNode)

);;

 220

 (;;

 (= representation_instance

 (AST:GetForestRepresentationInstance

 (AST:GetForest arguments:1)

 (AST:GetRepresentation arguments:1)))

 (= empty_node (AST:CreateNode representation_instance

 GrammarConstants:NodeTypes:_empty_statement_1))

 (= semicolon (AST:CreateNode representation_instance 453))

 (AST:ScanTreeNodes arguments:1

 (lambda (function boolean AST:Node

)function

 (value (local (;;);;

 (;;

 (ifthen (== (AST:GetNodeType ?)

 GrammarConstants:NodeTypes:_IDENTIFIER)

 (ifthen (== (@(AST:GetString ?))

 (@(AST:GetString arguments:4)))

 (;;

 (= proc_def_node

 (GetParentFromChild

 ? GrammarConstants:NodeTypes:

 _implementation_declaration_6))

 (= func_def_node

 (GetParentFromChild

 ? GrammarConstants:NodeTypes:

 _implementation_declaration_7))

);;

)ifthen

)ifthen

 (return ~t)

);;

)local

 ~t

)value

)lambda

)

(ifthenelse(~= proc_def_node AST:VoidNode)

 (= withincode_node proc_def_node)

 (ifthen(~= func_def_node AST:VoidNode)

 (= withincode_node func_def_node)

)ifthen

)ifthenelse

(ifthen (== withincode_node AST:VoidNode)

 (= withincode_node arguments:1)

)ifthen

 (AST:ScanTreeNodes withincode_node

 (lambda (function boolean AST:Node

)function

 (value (local (;;);;

 (;;

 (ifthen (== (AST:GetNodeType ?)

 GrammarConstants:NodeTypes:_for_statement_1)

 (;;

 221

 (= init_node

 (GetChildFromParent

 (AST:GetNthChild ? 4)

 GrammarConstants:NodeTypes:_NATURAL_NUMBER))

 (= exit_node

 (GetChildFromParent

 (AST:GetNthChild ? 6)

 GrammarConstants:NodeTypes:_NATURAL_NUMBER))

 (ifthen (!!

 (!! (&&

 (== (AST:GetNatural init_node)

 (AST:GetNatural arguments:5))

 (== (AST:GetNatural exit_node)

 (AST:GetNatural arguments:6))

)&&

 (&& (== 123456789

 (AST:GetNatural arguments:5))

 (== (AST:GetNatural exit_node)

 (AST:GetNatural arguments:6))

)&&

)!!

 (&& (== (AST:GetNatural init_node)

 (AST:GetNatural arguments:5))

 (== 123456789

 (AST:GetNatural arguments:6))

)&&

)!!

 (;;

 (= ctr (+ ctr 1))

 (= for_stmt_node AST:VoidNode)

 (= for_stmt_node (GetParentFromChild

 init_node GrammarConstants:

 NodeTypes:_for_statement_1))

 (= slist_node (GetParentFromChild ?

 GrammarConstants:NodeTypes:_statement_list_2))

 (ifthen (~= for_stmt_node AST:VoidNode)

 (;;

 (= new_node

 (AST:CreateNode representation_instance

 GrammarConstants:NodeTypes:_statement_list_2))

 (= new_node_1

 (AST:CreateNode representation_instance

 GrammarConstants:NodeTypes:_statement_list_2))

 (= parent (AST:GetParent for_stmt_node))

 (AST:ConnectNthChild new_node 1 arguments:2)

 (AST:ConnectNthChild new_node 2 empty_node)

 (AST:ConnectNthChild new_node 3 new_node_1)

 (AST:ConnectNthChild new_node_1 1 for_stmt_node)

 (AST:ConnectNthChild new_node_1 2 semicolon)

 (AST:ConnectNthChild new_node_1 3 arguments:3)

 (AST:ReplaceNthChild parent 1 new_node)

 (AST:ReplaceNthChild slist_node 2 empty_node)

);;

)

);;

 222

)ifthen

);;

)ifthen

 (return ~t)

);;

)local

 ~t

)value

)lambda

)

 (return arguments:1)

);;

)local

 (void AST:Node)

)value

)lambda

)define

The following external function is used to implement a do loop execution join

point in FORTRAN. It is similar to the previous function, but instead of for loop (as

in case of Object Pascal), it searches for do loop in FORTRAN programs.

(define around_advice_do

 (lambda Registry:CreatingPattern

 (value (local (;;

 (= [sub_def_node AST:Node] AST:VoidNode)

 (= [func_def_node AST:Node] AST:VoidNode)

 (= [do_stmt_node AST:Node] AST:VoidNode)

 (= [init_node AST:Node] AST:VoidNode)

 (= [exit_node AST:Node] AST:VoidNode)

 (= [withincode_node AST:Node] AST:VoidNode)

 [parent AST:Node]

 [representation_instance AST:RepresentationInstance]

 [new_node_1 AST:Node]

 [new_node_2 AST:Node]

);;

 (;;

 (= representation_instance

 (AST:GetForestRepresentationInstance

 (AST:GetForest arguments:1)

 (AST:GetRepresentation arguments:1)))

 (AST:ScanTreeNodes arguments:1

 (lambda (function boolean AST:Node

)function

 223

 (value (local (;;);;

 (;;

 (ifthen (==

 (AST:GetNodeType ?)

 GrammarConstants:NodeTypes:_NAME)

 (ifthen (==

 (@(AST:GetString ?))

 (@(AST:GetString arguments:4)))

 (;;

 (= sub_def_node

 (GetParentFromChild ?

 GrammarConstants:NodeTypes:

 _subroutine_subprogram_1))

 (= func_def_node

 (GetParentFromChild ?

 GrammarConstants:NodeTypes:

 _function_subprogram_1))

);;

)ifthen

)ifthen

 (return ~t)

);;

 local

 ~t

)value

)lambda

(ifthenelse(~= sub_def_node AST:VoidNode)

 (= withincode_node sub_def_node)

 (ifthen(~= func_def_node AST:VoidNode)

 (= withincode_node func_def_node)

)ifthen

)ifthenelse

 (ifthen (== withincode_node AST:VoidNode)

 (= withincode_node arguments:1)

)ifthen

 (AST:ScanTreeNodes withincode_node

 (lambda (function boolean AST:Node

)function

 (value (local (;;);;

 (;;

 (ifthen (== (AST:GetNodeType ?)

 GrammarConstants:NodeTypes:_loop_control_1)

 (;;

 (= init_node (GetChildFromParent

 (AST:GetNthChild ? 4)

 GrammarConstants:NodeTypes:_LABEL))

 (= exit_node (GetChildFromParent

 (AST:GetNthChild ? 6)

 GrammarConstants:NodeTypes:_LABEL))

 (ifthen

 (!!

 (!!

 (&& (== (AST:GetNatural init_node)

 (AST:GetNatural arguments:5))

 (== (AST:GetNatural exit_node)

 224

 (AST:GetNatural arguments:6))

)&&

 (&& (== 12345 (AST:GetNatural arguments:5))

 (== (AST:GetNatural exit_node)

 (AST:GetNatural arguments:6))

)&&

)!!

 (&& (== (AST:GetNatural init_node)

 (AST:GetNatural arguments:5))

 (== 12345 (AST:GetNatural arguments:6))

)&&

)!!

 (;;

 (ifthen (~= init_node AST:VoidNode)

 (= do_stmt_node (GetParentFromChild

 init_node GrammarConstants:NodeTypes:

 _block_do_construct_2))

)ifthen

 (ifthen (~= do_stmt_node AST:VoidNode)

 (;;

 (= new_node_1 (AST:CreateNode

 representation_instance

 GrammarConstants:NodeTypes:

 _execution_part_construct_list_2))

 (= new_node_2 (AST:CreateNode

 representation_instance

 GrammarConstants:NodeTypes:

 _execution_part_construct_list_2))

 (= parent (AST:GetParent do_stmt_node))

 (AST:ConnectNthChild new_node_1 1 arguments:2)

 (AST:ConnectNthChild new_node_1 2 new_node_2)

 (AST:ConnectNthChild new_node_2 1 do_stmt_node)

 (AST:ConnectNthChild new_node_2 2 arguments:3)

 (AST:ReplaceNthChild parent 1 new_node_1)

);;

)

);;

)ifthen

);;

)ifthen

 (return ~t)

);;

)local

 ~t

)value

)lambda

)

 (return arguments:1)

);;

)local

 (void AST:Node)

)value

)lambda

)define

 225

APPENDIX F

DMS PARLANSE FUNCTIONS TO SPECIALIZE HPL

 226

The DMS PARLANSE functions required to specialize HPL are shown in this

Appendix.

F.1. PARLANSE External Function to Remove Macro Definitions from HPL

 The following PARLANSE external function is used to remove macro definitions

from HPL. Note that the function is actually called from the RSL shown in Figure 3-32.

(define remove_macro

 (lambda Registry:CreatingPattern

 (value (local (;;

 [empty_node AST:Node]

 [representation_instance AST:RepresentationInstance]

 [search_string (reference string)]

 [comment_string string]

 [out_file_name string]

 [dir_name string]

 [if_dir_node AST:Node]

 [scanner StringScan:Scan]

 [last_index natural]

 [first_index natural]

 [search_node AST:Node]

 [comments CommentHashTree:SequenceOfComments]

 [check_string string]

 [rem_comments string]

 [flag boolean]

 (= [output_stream OutputStream:OutputStream]

 OutputStream:VoidOutputStream)

);;

 (;;

 (= out_file_name (@ (AST:GetAbstractFileName arguments:1)))

 (= first_index (Strings:LastIndex (. out_file_name) "\"))

 (= dir_name (Strings:Segment (. out_file_name) 1 first_index))

 (= dir_name (concatenate dir_name (@

 (AST:GetString arguments:2))))

 (= last_index (Strings:Find (. out_file_name) (.`.c')))

 (= out_file_name (Strings:Segment

 (. out_file_name) first_index last_index))

 (= out_file_name (concatenate out_file_name

 (@ (AST:GetString arguments:2))))

 (= out_file_name (concatenate dir_name out_file_name))

 (= output_stream (OutputStream:OpenFile (. out_file_name)))

 227

 (AST:ScanTreeNodes arguments:1

 (lambda (function boolean AST:Node

)function

 (value (local (;;);;

 (;;

 (= flag ~f)

 (= rem_comments `')

 (= comment_string `')

 (= representation_instance

 (AST:GetForestRepresentationInstance

 (AST:GetForest arguments:1)

 (AST:GetRepresentation arguments:1)))

 (= empty_node (AST:CreateNode representation_instance

 GrammarConstants:NodeTypes:_identifier))

 (ifthen(== ~t (AST:ContainsString ?))

 (;;

 (= search_string (AST:GetString ?))

 (ifthen (== (@ search_string) (@

 (AST:GetString arguments:2)))

 (;;

 (= search_node (AST:GetParent (AST:GetParent ?)))

 (= if_dir_node (AST:GetFirstChild

 (AST:GetFirstChild search_node)))

 (ifthen(== ~t (AST:HasPreComments if_dir_node))

 (;;

 (= flag ~t)

 (= comments (AST:GetPreComments if_dir_node))

 (do [c natural] 1 (coerce natural

 (upperbound (@ comments) 1)) 1

 (;;

 (= rem_comments (concatenate rem_comments

 comments:c:CommentString))

(= rem_comments (append rem_comments "~l"))

(= check_string (Strings:Segment

 (. comments:c:CommentString) 1 12))

 (ifthen(== check_string `//>>>>>>HPL_')

 (;;

 (= rem_comments

 (append rem_comments "~s"))

 (= rem_comments (append rem_comments "~s"))

 (= rem_comments (append rem_comments "~s"))

 (= rem_comments (append rem_comments "~s"))

 (= rem_comments (append rem_comments "~s"))

 (= rem_comments (append rem_comments "~s"))

);;

)ifthen':

);;

)do

);;

)ifthen

 (= comment_string (concatenate `//>>>>>>'

 (@ search_string)))

 228

 (= comment_string

 (concatenate comment_string

 `<<<<<<<<<MARKER>>>>>>>>'))

 (ifthen(== ~t flag)

 (;;

 (= comment_string (concatenate rem_comments

 comment_string))

 (AST:SetUnitPreComment if_dir_node (. `'))

);;

)ifthen

 (AST:SetString empty_node (. comment_string))

 (Registry:Print

 (. `Cpp~~ISO14882c1998')

 Registry:DefaultSyntaxTreeDomainRepresentation

 search_node

 output_stream)

 (OutputStream:Put output_stream (.`$******$'))

 (OutputStream:PutNewline output_stream)

 (AST:ReplaceTree search_node empty_node)

 (return ~t)

);;

)ifthen

);;

)ifthen

);;

)local

 ~t

)value

)lambda

)define

F.2. PARLANSE External Function to Specialize HPL

 The following PARLANSE external function is used to specialize or add specific

macros to the core HPL library based on the requirement (e.g., CBLAS, FBLAS or

VSIPL).

(define add_macro

 (lambda Registry:CreatingPattern

 (value (local (;;

 [empty_node AST:Node]

 [representation_instance AST:RepresentationInstance]

 [search_comments CommentHashTree:SequenceOfComments]

 [comment_string string]

 [input_file_name string]

 [dir_name string]

 [last_index natural]

 [first_index natural]

 229

 [Line string]

 [temp_line string]

 [comments CommentHashTree:SequenceOfComments]

 [input_stream InputStream:InputStream]

 [scanner StringScan:Scan]

 [string_len natural]

 [rem_comments string]

 [flag boolean]

);;

 (;;

 (= Line `')

 (= flag ~f)

 (= comment_string (concatenate `//>>>>>>'

 (@ (AST:GetString arguments:2))))

 (= comment_string (concatenate comment_string

 `<<<<<<<<<MARKER>>>>>>>>'))

 (= input_file_name (@ (AST:GetAbstractFileName arguments:1)))

 (= first_index (Strings:LastIndex (. input_file_name) "\"))

 (= dir_name (Strings:Segment (. input_file_name) 1 first_index))

 (= dir_name (concatenate dir_name (@

 (AST:GetString arguments:2))))

 (= last_index (Strings:Find (. input_file_name) (.`.c')))

 (= input_file_name (Strings:Segment

 (. input_file_name) first_index last_index))

 (= input_file_name (concatenate input_file_name

 (@ (AST:GetString arguments:2))))

 (= input_file_name (concatenate dir_name input_file_name))

 (= input_stream (InputStream:OpenFileUsingDefaultEncoding

 (. input_file_name)))

 (try (loop (;;

 (= Line (InputStream:GetLine input_stream))

 (= temp_line (concatenate temp_line Line))

 (= temp_line (append temp_line "~l"))

);;

)loop

 (ifthenelse (== (exception) InputStream:EndOfInputStream)

 (acknowledge

 (;;

 (= temp_line (concatenate temp_line `'))

 ; make a dummy line to indicate EOF seen

);;

) ; no more input

 (propagate)

)ifthenelse

)try

 (AST:ScanTreeNodes arguments:1

 (lambda (function boolean AST:Node

)function

 (value (local (;;);;

 (;;

 (= Line `')

 230

 (= flag ~f)

 (ifthen(== ~t (AST:HasPreComments ?))

 (;;

 (= comments (AST:GetPreComments ?))

 (= rem_comments `')

 (do [c natural] 1 (coerce natural

 (upperbound (@ comments) 1)) 1

 (;;

 (ifthenelse (== comments:c:CommentString

 comment_string)

 (;;

 (= flag ~t)

 (= last_index (Strings:Find

 (. temp_line) (.`$******$')))

 (= Line (Strings:Segment (. temp_line) 1

 (-- last_index)))

 (= Line (concatenate rem_comments Line))

 (= rem_comments `')

 (= scanner (StringScan:MakeScan (.

 temp_line)))

 (= string_len 0)

 (while (== (StringScan:End? (. scanner)) ~f)

 (;;

 (= string_len (++ string_len))

 (StringScan:Advance (. scanner))

);;

)while

 (= temp_line (Strings:Segment (. temp_line)

 (+ last_index 8) string_len))

);;

 (;;

 (= rem_comments (concatenate rem_comments

 comments:c:CommentString))

 (= rem_comments (append rem_comments "~l"))

);;

)ifthenelse

);;

)do

);;

)ifthen

 (ifthen(== ~t flag)

 (;;

 (= Line (concatenate Line rem_comments))

 (AST:SetUnitPreComment ? (. Line))

);;

)ifthen

);;

)local

 ~t

)value

)lambda

)define

	Title_final_print.pdf
	Abstract_final_print.pdf
	DEDICATION_final.pdf
	ACKNOWLEDGEMENT_final_print.pdf
	TABLE OF CONTENTS_final_print.pdf
	LIST OF ABBREVIATIONS_final_print.pdf
	Chapter1_final_print.pdf
	Chapter2_final_print.pdf
	Chapter3_final_print.pdf
	Chapter4_final_print.pdf
	Chapter5_final_print.pdf
	Chapter6_final_print.pdf
	References-final_print.pdf
	AppendixA_final_print.pdf
	AppendixB_final_print.pdf
	AppendixC_final_print.pdf
	AppendixD_final_print.pdf
	AppendixE_final_print.pdf
	AppendixF_final_print.pdf

