
Program Transformation Techniques Applied to Languages
Used in High Performance Computing

Songqing Yue (syue@cs.ua.edu)
Advisor: Dr. Jeff Gray

 Case Study

 Future Work

Our Approach Background

Problems

Parallel Programming Models

MPI OpenMP OpenCL CUDA

Cluster
SMP

Multi-Core
CPUs

GPGPU Heterogeneous
Platforms

Targeted Hardware Architectures

Using parallel programming models to convert serial
programs into parallel programs presents several new
challenges:
 It is a tedious and error-prone process to

manually parallelize sequential code. The
programmers are typically responsible for
identifying parallelism.

 Various tools, such as parallelizing compilers or
pre-processors are available to assist with the
process of parallelization. However, most of these
tools are either concentrated on a particular
device or language, or limited to a subset of code
(mostly loops). Furthermore, most of the
available solutions are invasive and require
source code changes.

 These models necessitate invasive reengineering
of existing programs for inserting parallel code,
typically with compiler directives and API
invocations. The process can be intrusive and
thus makes software maintenance extremely
challenging.

• collect and analyze performance information
• help developers obtain an overview of system performance
• Provide run-time feedback to help with parameters of parallelization

Profiling

• add fault tolerance into computing systems
• stores a snapshot of the current application state, and later on, use it

for restarting the execution in case of failure

Checkpointing

• determine the degree to which the source code of a program has been
tested

Code Coverage Tool

SPOT: A Domain-Specific Language

Design Goal: To provide language constructs that
allow developers to perform direct manipulation
on programs and hide the accidental complexities

Original
Sequential

Code

Application with
Parallel Code

Parallelization
Transformations

Specified in
SPOT

 Meta-level
Transformation

Code

Antlr3 +
StringTemplate

Rose

Code
Generator

OpenFortran
or

OpenC

Design Decisions:
 High-level programming concepts, e.g.,

functions, variables, statements and classes as
the building constructs of SPOT

 Rule-based patterns allow systematic
transformations, such as add, delete, and
modify a programming concept

 AspectJ-style to express locations and scope of
transformation

 Extend and implement new constructs
for SPOT in an incremental manner to
support more parallel programming
models

PROGRAM TEST
…
DO I=1,1000
A(I) = A(I) + B
ENDDO
END

PROGRAM TEST
…
!$OMP PARALLEL DO
DO I=1,1000
A(I) = A(I) + B
ENDDO
!$OMP END PARALLEL DO
END Parallelize

Fortran Code
with OpenMP

 Implement a generalized framework
named OpenFoo, suitable for extending
an arbitrary programming language by
creating a MOP for the language

 Empirical Evaluation
 Productivity
 Accuracy
 Adaptability

 Possible Application Areas

Program
Transformation

Techniques

OpenFortran: A
Meta-Object
Protocol for

Fortran

Domain- Specific
Language (DSL)

SPOT: Specifying
PrOgram

Transformations

Raise the Level of
Abstraction for

Parallel Programming

Transformer paraDoExe
{
 Program pgm = FindProgram(fileName.TEST)
 LoopStatement firstLoop = FindLoop(pgm, lname)
 Around(LoopStatement firstLoop)
 {
 AddCommentBefore($OMP PARALLEL DO)
 AddCommentAfter($OMP END PARALLEL DO)
 }
}

Traditionally, software
has been written for
serial computation…

…the simultaneous use
of multiple compute
resources to solve a
computational problem

Sequential
Computing

Parallel

Computing

Research Goal

A powerful tool to provide
computational reflection
• It can be used to

programmatically affect
basic language mechanisms

• It offers control over
compilation to avoid
performance downgrade

Present learning and usage
challenges to user
• There is a steep learning

curve
• It is difficult for average

programmers to understand
the complex details of meta-
programming and program
transformation

OpenFortran

Meta-Level
Program

Variable Method Base-Level
Program

MetaClass

Class

Causally
linked

 Contributions

Meta-Object Protocol

(MOP)

 Our approach allows expression of program
transformations in terms of design intent rather
than the underlying implementation

 The transformation process is at compile-time,
so there is reduced run-time penalty

 Higher-level abstraction enables generating to
different languages of implementation from the
transformation library written in SPOT

 Our approach is non-invasive by generating a
new copy of code for transformation and
keeping the original code intact

Overview of the parallelization process

Base-level
Fortran

Code

Extended
Fortran Code

Meta-level
Transformation

Code

Rose

Open-
Fortran

Common
Fortran
Parser

Transformation Process with OpenFortran

	Slide Number 1

