

EVOLVING LEGACY SOFTWARE WITH A GENERIC

PROGRAM TRANSFORMATION FRAMEWORK

USING META-PROGRAMMING AND

DOMAIN-SPECIFIC LANGUAGES

by

SONGQING YUE

JEFF GRAY, COMMITTEE CHAIR

JEFFREY CARVER
XIAOYAN HONG

PETER PIRKELBAUER
SUSAN VRBSKY

A DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the Graduate School of
The University of Alabama

TUSCALOOSA, ALABAMA

2015

Copyright Songqing Yue 2015
ALL RIGHTS RESERVED

ii

ABSTRACT

Advances in the software industry over the past half-century have resulted in a large

amount of legacy code implemented across hundreds of different programming languages and

paradigms running throughout various application areas. Legacy software requires continuous

and rigorous adaptation or modernization in order to avoid progressive decay in quality over

time. Modern approaches addressing the needs of modularity and reusability in software

engineering have been investigated as effective techniques to assist in software development and

maintenance by automating the process of code evolution. The research in this dissertation is

focused on applying techniques in software engineering and programming language design to

address challenges in software maintenance and evolution. A specific focus area of application is

software in the area of High Performance Computing (HPC) with Fortran and C.

The research makes a contribution by bringing the power of meta-programming, through

Meta-Object Protocols (MOPs), to languages that are widely utilized for solving various

problems in HPC. With MOP facilities provided by OpenFortran and OpenC (the two MOPs we

built for Fortran and C), developers can build tools to perform arbitrary source-to-source

program transformations for legacy software. To simplify the use of MOPs and to reduce the

accidental complexities typically associated with the intensive meta-programming paradigm, a

textual Domain-Specific Language (DSL) is introduced in our approach, which provides a

higher-level abstraction for specifying program transformations, and thus enables direct

expression of manipulating program entities.

iii

There is a general lack of infrastructure support for language extension in terms of

building a MOP for an arbitrary language. In order for our approach to accommodate additional

programming languages, an extensible framework has been developed in this dissertation work.

The framework is composed of a language-independent MOP prototype, called OpenFoo, and a

generic front-end DSL (i.e., SPOT). With the assistance of a set of models that describe the

aspects and concerns associated with MOP implementation and code modification, the MOP

prototype can be extended to create a MOP instance for a specific general-purpose programming

language (GPL); and, similarly, the DSL can be extended to accommodate a newly created

backend MOP.

iv

DEDICATION

This work is dedicated to Jesus Christ for your grace and unconditional love, to my father

and my mother for your support and blessings, to my younger brother for your company in the

last two years at UA, and to all my brothers and sisters in Jesus Christ and my dear friends for

standing by me throughout the time taken to complete this dissertation.

v

LIST OF ABBREVIATIONS AND SYMBOLS

ANTLR Another tool for Language Recognition

AOP Aspect-Oriented Programming

API Application Programming Interface

AST Abstract Syntax Tree

CASE Computer-Aided Software Engineering

CG Conjugate Gradient

CLOS Common Lisp Object System

CUDA Compute Unified Device Architecture

DSL Domain-Specific Languages

DMS Design Maintenance System

EBNF Extended Backus-Naur Form

EDG Edison Design Group

EP Embarrassingly Parallel

FFT Fast Fourier Transform

GPL General-purpose Programming Language

HPC High Performance Computing

HPF High-Performance Fortran

IDE Integrated Development Environment

IR Intermediate Representation

LOC Lines of Code

vi

MDE Model-Driven Engineering

MOP Meta-Object Protocol

MPI Message Passing Interface

NAS NASA Advanced Supercomputing

NPB NAS Parallel Benchmark

OFP Open Fortran Parser

OOP Object-Oriented Programming

OpenMP Open Multiprocessing

PTE Program Transformation Engine

RSL Rule Specification Language

SMP Symmetric Multiprocessing System

SPOT Specifying Programming Transformation

TXL Turing eXtender Language

UML Unified Modeling Language

XML Extensible Markup Language

vii

ACKNOWLEDGMENTS

I am pleased to have this opportunity to thank the many colleagues, friends, and faculty

members who have helped me during the whole period of my graduate study. First and foremost,

I would like to show my gratitude and appreciation to my advisor, Dr. Jeff Gray, for providing

me the opportunity to complete my Ph.D. study at the University of Alabama. Without Dr.

Gray’s continuous support and encouragement, this work is impossible. When I went through a

difficult time in 2010, it was Dr. Gray who lent his helping hand by agreeing to work with me. In

the past five years, Dr. Gray has offered me great help and advice toward my research directions,

revising the publications, and refining the quality of my research results. I have learned a lot

from his outstanding example on how to become a responsible professor and a professional

computer researcher.

I would also like to extend my gratitude to the other members of my committee. To Dr.

Jeffrey Carver, Dr. Xiaoyan Hong, Dr. Peter Pirkelbauer, and Dr. Susan Vrbsky, I feel grateful

for your efforts to help me develop the necessary knowledge and skills throughout the stages of

my graduate study. I really appreciate your precious time and effort in serving on my committee.

To my fellow coworkers at UA, Ke Meng, Bo Fu, Xiannuan Liang, Jing Liu, Jingcheng

Gao, Miao Peng, Yan Liang, Yanping Zhang, Zhifeng Xiao, Yu Sun, Hyun Cho, Lei Zeng,

Amber Wagner, Ferosh, Jacob, Jonathan Corley, and Songhui Yue, I really appreciate your

friendship and all the wonderful and fun times we shared.

To all my colleagues in the graduate school at UA, Ashirul Mubin, Dr. John Schmitt, Eric

Harris, John Chambers, Kathleen Nodine, Debbie Eads, Sheryl Tubbs, Rebekah Hughes-Brown,

viii

Mary Williams, and Beth Yarbrough, I really enjoyed working with you as a team to provide

professional service to graduate students. I will always be grateful to the financial support from

the graduate school.

This dissertation would not have been possible without the support of my friends and my

family who never stopped encouraging me to persist. Finally, I thank all who have ever helped

me on my road towards the completion of my Ph.D. study.

ix

CONTENTS

ABSTRACT .. ii

DEDICATION ... iv

LIST OF ABBREVIATIONS AND SYMBOLS ..v

ACKNOWLEDGMENTS .. vii

LIST OF TABLES ... xiii

LIST OF FIGURES ... xiv

1. INTRODUCTION ...1

1.1 Software Maintenance Challenges
in High Performance Computing ...2

1.2 Program Transformation Techniques ..5

1.2.1 Meta-Programming and Meta-Object Protocol7

1.3 Domain-Specific Languages ..9

1.4 Research Objectives and Contributions10

1.4.1 Research Questions ...11

1.5 Dissertation Overview ...17

2. BACKGROUND ...19

2.1 High Performance Computing ...19

2.2 Meta-Programming ..22

2.2.1 Open Implementation ..23

2.2.2 Computational Reflection ...24

x

2.2.3 Meta-Object Protocol ..29

2.3 Program Transformation Approaches31

2.4 Related Work ...35

2.4.1 Existing MOPs ..35

2.4.2 Aspect-Oriented Programming45

2.4.3 Domain-Specific Languages47

3. EXTENDING PROGRAMS WITH META-PROGRAMMING49

3.1 OpenFortran: A MOP for Extending Fortran Programs50

3.1.1 OpenFortran Design Architecture51

3.1.2 OpenFortran Implementation Details54

3.2 OpenC: A MOP for Extending C Programs59

3.2.1 Benefits of OpenC MOP ...60

3.2.2 OpenC Design and Implementation62

3.2.3 Implementing a Library in OpenC64

3.3 Case Study: Timer Implementation in NAS68

3.4 Summary ..71

3.4.1 Lessons Learned ..72

4. SPOT: A DSL FOR SPECIFYING PROGRAM
TRANSFORMATIONS ..75

4.1 SPOT Design and Implementation ..76

4.1.1 SPOT Syntax and Semantics76

4.1.2 SPOT Design Architecture80

4.1.3 SPOT for OpenC ...84

4.1.4 Relationship between SPOT and MOP91

xi

4.2 Supporting Aspect-Oriented Programming92

4.2.1 Aspect-Oriented Programming92

4.2.2 Building a Profiling Library93

4.2.3 SPOT: Beyond AOP ...97

4.3 Separating Sequential and Parallel Concerns98

4.3.1 Building an OpenMP Library100

4.4 Supporting Extension for New Application Domains104

4.4.1 Introduction to Checkpointing105

4.4.2 Building a Checkpointing Library106

4.5 Summary ..110

5. OPENFOO: A GENERIC FRAMEWORK FOR EXTENDING
ARBITRARY PROGRAMMING LANGUAGES WITH
META-PROGRAMMING ..113

5.1 An Extensible MOP Construction Approach113

5.1.1 OpenFoo Design Architecture115

5.1.2 Instantiating OpenFoo with Fortran 90
Extension ..120

5.1.3 Instantiating OpenFoo with C++ Extension123

5.1.4 Lessons Learned ..125

5.2 Generalizing SPOT to Support New MOPs127

5.2.1 SPOT Abstract Syntax ..128

5.2.2 SPOT Concrete Syntax ...131

5.2.3 SPOT Generalization ..132

5.2.4 Summary ...137

5.3 Case Study: Code Coverage in Testing139

xii

5.3.1 Code Coverage Analysis ...140

5.3.2 Implementing a Code Coverage Tool for C++/C ...141

5.3.3 Implementing a Code Coverage Tool for Fortran ...144

6. FUTURE WORK ...147

6.1 Improvements to Current Approach 147

6.1.1 A GUI-Based Wizard for
Program Transformation ..147

6.1.2 Use MDE Techniques to Improve the
Framework ...152

6.2 Support More Application Domains155

6.2.1 Fault Tolerance in HPC ..155

6.3 Empirical Evaluation ...157

7. CONCLUSION ..159

7.1 OpenFortran ...160

7.2 SPOT ..161

7.3 OpenFoo ...162

LIST OF REFERENCES ...165

APPENDIX ..173

A. SPOT Code Generator Implementation ..174

A.1 ANTLR Grammars ...174

A.2 StringTemplate Store ...193

xiii

LIST OF TABLES

2.1 Comparison of reflective systems surveyed ..45

3.1 The extended keywords of OpenFortran in Fortran grammar57

3.2 The keywords used as annotations in OpenC64

3.3 Timers in some NAS parallel benchmarks ..69

4.1 Overview of SPOT syntax and semantics ..77

4.2 Overview of SPOT syntax and semantics for OpenC88

4.3 SPOT functions for using OpenMP directives and APIs99

4.4 Supplementary constructs for SPOT ..109

5.1 The constants used in ROSE for identifying IR nodes126

xiv

LIST OF FIGURES

1.1 Different categories of program transformation5

2.1 The dual-interface of an open implementation25

2.2 The structure of a reflective system ...26

2.3 An example of rules defined with Stratego/XT32

2.4 An example of an RSL rule defined with DMS33

2.5 The workflow of OpenC++ ...38

2.6 The OpenC++ implementation of TraceClass39

2.7 A user program using OpenJava ..41

2.8 The definition of meta-class VerboseClass ..42

2.9 Use Javassist to apply transformations ..42

3.1 Overview of the OpenFortran transformation process52

3.2 ROSE infrastructure ...53

3.3 Example source code to be transformed ..60

3.4 Example source code after transformation ..61

3.5 Overview of the OpenC MOP transformation process62

3.6 User-defined meta-class inherited from MetaGlobal66

3.7 Example source code to be transformed ..67

3.8 Timer implementation in NAS EP with OpenFortran70

3.9 Transformed EP source code with timer implementation71

4.1 An example of a simple SPOT program ..79

xv

4.2 Overview of the transformation process with SPOT80

4.3 The implementation structure of the Code Generator81

4.4 SPOT grammar in EBNF ...82

4.5 (a) A rule in the tree grammar ...84

4.5 (b) A template for generating OpenFortran code84

4.6 An example program coded in SPOT ..85

4.7 Overview of the transformation process with SPOT and OpenC90

4.8 The implementation structure of the Code Generator91

4.9 The translated example code with the profiling library94

4.10 The meta-class implemented for the profiling library96

4.11 The profiling library specified in SPOT ..97

4.12 Examples of calling OpenMP functions of SPOT100

4.13 The core code snippet of Dijkstra’s algorithm101

4.14 The snippet of parallelized Dijkstra’s algorithm102

4.15 The SPOT program for parallelizing the algorithm103

4.16 The Fortran program for calculating the value of Pi107

4.17 The checkpointing specifications expressed in SPOT108

4.18 The generated Fortran program with checkpointing code110

5.1 Overview of the transformation process with Fortran extension115

5.2 OpenFoo overall structure represented as a class diagram116

5.3 OpenFoo variable structure as a class diagram117

5.4 OpenFoo statement structure represented as a class diagram118

5.5 Class diagram snippet of OpenFoo with Fortran extension121

xvi

5.6 Class diagram snippet of OpenFoo with C++ extension124

5.7 Subset of SPOT abstract syntax in UML class diagram128

5.8 The concrete syntax of SPOT in EBNF grammar130

5.9 Extend SPOT to support MOPs constructed with OpenFoo132

5.10 The extension to core SPOT abstract syntax for Fortran 90134

5.11 The extension to core SPOT abstract syntax for C++135

5.12 (a) The subset of extended concrete syntax for Fortan 90136

5.12 (b) The subset of extended concrete syntax for C++136

5.13 How different users are supposed to use our framework138

5.14 Instrumented code calculating FFT for statement coverage141

5.15 Transformer code implementing statement coverage142

5.16 Transformer code implementing branch coverage143

5.17 Instrumented source code calculating FFT for branch coverage144

5.18 SPOT code implementing statement coverage for Fortran145

5.19 SPOT code implementing branch coverage for Fortran146

6.1 Proposed user interface for editing scopes ...150

6.2 Proposed user interface for editing transformations151

6.3 Models used for assisting extension in current framework153

6.4 Model transformation scenario in future framework154

1

CHAPTER 1

INTRODUCTION

Advances in the software industry over the past half-century have resulted in billions of

lines of legacy code in hundreds of different programming languages and paradigms running

throughout various application areas [Lammel and Verhoef, 2001]. According to Lehman’s laws

of software evolution [Lehman et al., 1997], legacy software will experience continuous and

rigorous adaption or modernization [Force, 2006] in order to avoid progressive decay in quality

over time, which will most likely lead to growth in the size and complexity of the software.

It is often very expensive to make changes to code on a large scale [Bennett and Rajlich,

2000]. In a typical software development life cycle, software enters the phase of maintenance

and evolution after deployment. In this phase, a programmer’s main responsibilities involve

editing existing code to fix bugs, to add new features, as well as to adapt to external changes in

APIs. Software maintenance and evolution constitutes a considerable part of the total expense of

the software life cycle and many software companies or institutions devote over 75% of their

budget to post-delivery maintenance [Hatton, 1998]. The problem becomes worse when

maintaining software written in legacy programming languages, such as Fortran and COBOL,

which are estimated to account for a significant percentage of existing production software

[Ulrich, 2002]. There is a great demand for tools and techniques that advance the software

development and evolution process with respect to reducing time and expense, saving labor

resources, and increasing software quality [De Schutter and Adams, 2007].

2

Making changes to source code is a constant task in a software engineer’s daily work,

which can be driven by a variety of development or maintenance requests, such as changing

requirements, refined design, or bug correction. Manually modifying source code is usually an

error-prone and tedious task. Even a conceptually slight change may involve numerous similar,

but not identical, modifications to the entire code base. Unsurprisingly, there is considerable

research interest in automating the process of code modification with little or, ideally, no user

intervention. Many software evolution problems can be addressed through program

transformation techniques that can increase productivity through automating transformation

tasks.

The research described in this dissertation is focused on the intersection of approaches

and techniques in software engineering and programming language design, such as program

transformation and Domain-Specific Languages (DSLs), in order to assist in the process of

software development and maintenance. A specific focus area of application is software in the

area of High Performance Computing (HPC).

1.1 Software Maintenance Challenges in High Performance Computing

HPC provides solutions to problems that demand significant computational power, or

problems that require fast access and processing of a large amount of data. HPC programs are

usually run on systems such as supercomputers, computer clusters or grids, which can offer

excellent computational power by decomposing a large problem into pieces, where ideally all of

these pieces can be processed concurrently.

In the past decades, the hardware architectures used in HPC have evolved significantly

from supercomputers to clusters and grids, while the progress in software development has not

progressed at the same rate [Dongarra, 2006]. In fact, HPC was once the primary domain of

3

scientific computing, but the recent advances in multi-core processors as a commodity in most

new personal computers is forcing traditional software developers to also develop skills in

parallel programming in order to harness the newfound power. The recent advances in hardware

capabilities impose higher demands on the software in HPC. In our research, we have

investigated a number of challenges in developing and maintaining HPC software, some of

which might be improved with approaches and practices that have long existed in the area of

software engineering, but not yet fully explored in HPC [Yue, 2013].

The initial motivation for the work described in this dissertation comes from the

observation that utility functions, such as logging, profiling, and check pointing, are often

intertwined with and spread among both sequential code and parallel code [Jacob et al., 2012].

This results in poor cohesion where multiple concerns are tangled together, and at the same time,

poor coupling where individual concerns are scattered across different methods within multiple

modules of a program. In addition, these utility functions are often wrapped within conditional

statements so that they can be toggled on or off on demand. Such condition logic can exacerbate

maintenance problems with code evolution. As shown in [Jacob et al., 2012], the utility functions

can represent up to 20% of the total lines of code in real-world HPC applications. Therefore, one

major challenge addressed in this dissertation involves implementing utility functions in a

modularized way without impairing the overall performance.

To facilitate parallelization, several parallel computing models have been invented to

accommodate different types of hardware and memory architecture, e.g., the Message Passing

Interface (MPI) [Gropp et al., 1999] for distributed memory systems and OpenMP [OpenMP

Review Board, 2000] for shared memory systems. These models allow programmers to insert

compiler directives or API calls in existing sequential applications at the points where

4

parallelism is desired. This method of explicit parallelization has been widely employed in the

area of HPC due to its flexibility and the performance it can provide; however, it puts the burden

on the developers to identify and then express parallelism in their original sequential code.

The parallelization process introduces its own set of maintenance issues because of its

characteristic of invasive reengineering of existing programs [Arora et al., 2012]. The process of

developing a parallel application with existing parallel models usually begins with a working

sequential application and often involves a number of iterations of code changes in order to reach

maximum performance. It is very challenging to evolve a parallel application where the core

logic code is often tangled with the code to accomplish parallelization. This situation often

occurs when the computation code must evolve to adapt to new requirements or when the

parallelization code needs to be changed according to the advancement in the parallel model

being used, or needs to be totally rewritten using a different model.

It could be very beneficial with regard to improving maintainability and reducing

complexity if we can provide an approach where the sequential and parallel components are

maintained in different files and can evolve separately, and the parallelized application can be

generated on demand with the latest sequential and parallel code. In addition, the idea of

separating management of the sequential and parallel code can help to facilitate simultaneous

programming of parallel applications where the domain experts can focus on the core logic of the

application while the parallel programmers concentrate on the realization of parallelism [Arora et

al., 2012]. The preceding discussion has led us to the question that motivates one of the primary

areas of focus in this dissertation: Is there an approach to parallelize a program without having to

directly modify the original source code?

5

1.2 Program Transformation Techniques

Program transformation, precisely source-to-source program transformation, refers to a

particular computation domain where source code is manipulated as data. A system capable of

transforming programs usually works by taking a program in a source language as input,

performing desired operations, and generating another program in a target language. Research on

program transformation can be divided into different branches based on various criteria, e.g.,

application, implementation, and improvement [Visser, 2005]. According to the connection

between the source and target language, program transformation can be classified into two broad

types: translation if the source and target language are different, and rephrasing if they are the

same [Feather, 1987; Visser, 2005]. These main categories can then be further refined into

several sub-categories according to a program’s abstraction level and to the degree to which its

semantics are affected [Visser et al., 2004].

Program translation implies transforming a program written in one language into a

different language, which may involve transformation between different levels of abstraction.

Translation techniques have been applied to a large number of applications ranging from

extraction of desirable information from source code, such as program analysis and reverse

Figure 1.1 Different categories of program transformation

6

engineering, to the development of new programs including program synthesis and program

migration [Visser et al., 2004]. As shown in Figure 1.1, program analysis is the process of

analyzing the source code of a program in order to gain an understanding of certain aspects, such

as control-flow or data-flow described in an aspect language or a sub-language. Reverse

engineering refers to the applications of transformation where some aspects or specifications of a

high-level program can be extracted from a low-level program [Feather, 1987], e.g., de-

compilation where a high-level program can be derived from an executable program and

software visualization where some aspects of a program are represented in an abstract manner.

Program synthesis works in the opposite direction to reverse engineering by translating

programs from a high-level language into a low-level language. Compilation is a typical example

of program synthesis where a high-level program is first compiled into some intermediate

representation and then into machine code. Program migration refers to the type of

transformations where a program is translated to another language at the same level of

abstraction, which is usually used to perform translation between different dialects of a language,

e.g., Fortran 90 to Fortran 08.

Program rephrasing is the other primary area of program transformation, referring to the

automated manipulation of a program in order to improve it with respect to modularity,

understandability, performance, maintainability, and satisfaction of requirements [Visser, 2005].

Rephrasing is discernible through the fact that a program is transformed in the same language.

Based on the extent to which the semantics of a program are affected, rephrasing can be

classified into the following categories: refactoring [Fowler, 1999] where source code is

restructured so as to become easier to read, maintain and extend while its semantics are

preserved; program renovation where source code is modified to fix an error or to meet changed

7

requirements, program reflection that implies an extension to the semantics of a program to

enable it to compute some aspects of itself, program normalization referring to the type of

transformations to reduce a program that has multiple possible representations to a standard or

normal form, and program optimization where source code is transformed so that time or space

performance can be improved.

This dissertation involves both broad types of program transformation in that our solution

provides a framework that can be used to extend a programming language for facilitating

program rephrasing (i.e., to perform source-to-source program transformation in the same

language) by applying techniques of meta-programming and program translation (i.e.,

transforming a program written in a domain-specific language at a higher-level of abstraction to

a corresponding implementation at a lower-level of abstraction). For ease of expression,

throughout this dissertation, we will use program transformation, program translation, and

program rephrasing interchangeably, to particularly denote source-to-source program

transformation.

1.2.1 Meta-Programming and Meta-Object Protocol

Meta-programming is a paradigm for building software that is able to automate program

transformations through code generation or manipulation [Spinellis, 2008]. The software that

generates or manipulates other programs is referred to as a meta-program and the program that is

manipulated is the object program or base program. Meta-programming has shown much

promise for improving the quality of software by offering programming language techniques to

address issues of modularity, reusability, maintainability, and extensibility [Spinellis, 2008].

Meta-programming can usually be accomplished through one of the following three

approaches. First, meta-programming facilities are created particularly for a programming

8

language to offer developers access to its internal implementation. This type of meta-

programming is usually implemented to extend a general-purpose programing language (GPL)

with features catering to particular application domains instead of reimplementation of the

language. Secondly, a language itself owns the ability to generate, compile and dynamically

invoke new code. For example, standard Java is able to generate code at run-time, then compile

and load a binary into the same virtual machine dynamically. The generated code can be invoked

in the same way as ordinary compiled Java code [Java Link]. Finally, program transformation

engines (PTEs), such as the Design Maintenance System (DMS) [Baxter et al., 2004] and Turing

eXtender Language (TXL) [Cordy, 2006], are used to apply user-specified transformations to

programs.

A MOP is one type of meta-programming technique that provides meta-programming

capabilities to a programming language by enabling extension or redefinition of the language’s

semantics [Kiczales et al., 1991]. MOPs can be implemented with object-oriented and reflective

techniques by organizing a meta-level architecture. MOPs add the ability of meta-programming

to programming languages by providing users with standard interfaces to modify the internal

implementation of programs. Through those interfaces, programmers can incrementally change

the implementation and the behavior of a program to better suit their own needs. Furthermore, a

MOP meta-program can capture the essence of a commonly needed feature and be applied to

several different base programs. MOPs have been extensively employed in various applications

in software engineering, e.g., reengineering, constructing Integrated Development Environments

(IDEs), and almost all CASE tools [Omg, 2008; The Origin of Refine, 2014].

9

1.3 Domain-Specific Languages

“An important step in solving a problem is to choose the notation. It should be

done carefully. The time we spend now on choosing the notation may be well repaid by

the time we save later avoiding hesitation and confusion. Moreover, choosing the

notation carefully, we have to think sharply of the elements of the problem which must be

denoted. Thus, choosing a suitable notation may contribute essentially to understanding

the problem.” George Polya [George, 1957].

A Domain-Specific Language (DSL) refers to a “programming language or executable

specification language that offers, through appropriate notations and abstractions, expressive

power focused on, and usually restricted to, a particular problem domain” [Deursen et al., 2000].

DSLs trade generality, a feature supported by GPLs, for expressiveness in a particular problem

domain via tailoring the notations and abstractions towards the domain. A DSL can assist in

more concise description of domain problems than a corresponding program in a GPL [Gray and

Karsai, 2003]. There are several benefits available when using a DSL:

• By raising the abstraction level, DSLs are able to offer substantial gains in

productivity [Gray and Karsai, 2003]. With the aid of generative programming, a

few lines of code in a DSL might be transformed to an executable solution

including several hundred lines of code in a GPL [Herndon et al., 1988].

• The common declarative characteristic of a DSL offers significant benefits to

individuals who have expertise about a particular domain, but lack necessary

programming skills to implement a computational solution with a GPL. A DSL

often can be declarative because the domain semantics are clearly defined, so that

the declarations have a precise interpretation [Gray and Karsai, 2003].

10

A well-defined DSL provides constructs to capture both the variability and invariability

of a particular domain so that DSL programmers are able to describe their problems in terms of

these constructs. DSLs have several benefits to allow programmers to use constructs that are

close to the notations and abstractions in the problem domain [Mernik et al., 2005]:

• Programs in a DSL are typically clearly expressed and more easily understood

because the intention of the program is closer to the domain, thus increasing code

readability and also improving communication with domain experts.

• DSL programmers can be free from the tedious coding tasks by automating the

translation from a DSL to a GPL.

• Solutions can be built quickly because programmers can focus more on the main

abstractions. The underlying details of solutions implemented in a GPL are hidden

from DSL programmers.

• The repetitive and tedious code generated is less error-prone and thus decreases

the maintenance cost.

1.4 Research Objectives and Contributions

The challenges in software maintenance and evolution, especially those in the area of

HPC discussed previously, have motivated the primary research objective of this dissertation,

i.e., to facilitate the process of software development and maintenance by applying techniques of

meta-programming and Domain-Specific Languages.

Thus far, the power of meta-programming has not been explored deeply in the area of

High Performance Computing (HPC). The main reason is the performance cost that meta-

programming techniques often incur (primarily when applied dynamically at run-time). In order

to facilitate software maintenance and evolution in HPC systems, we propose to bring the power

11

of meta-programming, through MOPs, to languages that are widely utilized to solve various

problems in HPC software [Yue, 2013]. With MOP facilities, developers can build tools to

perform arbitrary source-to-source program transformations for legacy software to address HPC

needs.

MOPs have been implemented for a few mainstream languages such as C++ [Chiba,

1995], Java [Tatsubori et al., 1999] and Python [Python, 2008]. However, most research is

focused on a particular programming language and mainly on object-oriented languages. A

generalized approach is still missing which brings MOPs to arbitrary GPLs, especially to those

legacy languages that do not assume an object-oriented paradigm, such as Fortran and COBOL.

There is a lack of infrastructure support for language extension by means of implementing a

MOP. A naïve solution might be to create a MOP for each legacy language. However,

considering the large number of languages being used, a solution that reduces the effort required

to implement a MOP for a new language is more attractive than one that manually constructs a

MOP from scratch for every legacy language.

1.4.1 Research Questions

There are several key challenges towards constructing a MOP for an arbitrary language.

Accordingly, we identified the following five research questions that must be addressed stepwise

in order to provide a generalized framework to extend a language with a MOP and to make meta-

programming more accessible to average developers.

• Question Q1: How to construct a parser for the target language? To

implement a MOP for a language, the first and foremost step is to build a parser

for recognizing and then representing a program in certain formats, such as an

abstract syntax tree (AST) or XML [Collard et al., 2002], which allow for further

12

complex manipulation. It is not challenging to build a parser for a small language

or a subset of an existing language; however, to create a parser that is able to

handle a large-scale code base is not a trivial task. According to the observation in

[Lammel and Verhoef, 2001], one of the key factors that affect building a

renovation tool is parser construction.

• Question Q2: How to design an appropriate meta-level representation for the

target language? MOPs are usually implemented with object-oriented and

reflective techniques by organizing a meta-level architecture [Kiczales et al.,

1993]. A causal connection has to be maintained between the meta-programs and

the base programs to be transformed, so that whenever a modification is made to a

meta-object, corresponding changes can be seen in the language construct

represented by the meta-object. To allow transformation from a meta-level, there

must be a clear representation of the base program’s internal structure and entities

(e.g., the classes and methods defined within an object-oriented program), in

addition to well-defined interfaces through which these entities and their relations

can be manipulated [Maes, 1987]. The first contribution of the research involves

two MOPs, OpenFortran and OpenC, implemented respectively for Fortran and C,

which can be used to construct program transformation libraries.

• Question Q3: How to perform the underlying complex transformations? The

underlying transformation is performed through manipulating the data structures

that represent the base programs. To accomplish this, strategies for pattern

matching and term writing have to be provided. In addition, the capabilities of

synthesis, validation and regeneration of source code from internal data structures

13

are also needed. Actually, the effort required to create a sound and scalable

infrastructure for program transformation is significant [Baxter et al., 2004;

Cordy, 2006; Quinlan, 2012].

• Question Q4: How to reduce the accidental complexities incurred by directly

using a MOP? The major accidental complexity comes from the gap between the

classic programming style and the intensive meta-programming techniques

involved in building generative libraries with MOPs. For average programmers, it

is not easy attempting to understand the idea of meta-programming and let alone

to use the environment and APIs provided by MOPs to manipulate source code. It

is highly desirable to reduce the accidental complexities through freeing average

developers from the burden of programming with an unfamiliar paradigm.

Another major contribution of this research is a DSL that uses a higher-order

model to capture the essence of commonly shared features in making changes to

source code written in different programming languages, thus, allowing

developers to specify transformation tasks in an intuitive manner.

• Question Q5: How to generalize the framework to make it language-

independent? MOP construction is closely associated with the syntax of a

programming language and the syntax varies greatly from language to language.

Therefore, the effort spent on implementing a MOP for a given language cannot

be simply reused for another language. A major contribution of this research is a

generic framework that can be used to construct a MOP for an arbitrary GPL. The

approach utilizes higher-order models to direct the implementation of a MOP that

14

is specific to a particular language and the design focus is to increase reusability

of a core set of artifacts during the process of MOP construction.

Q1 and Q3 have to be addressed not merely for constructing MOPs, but for most types of

language engineering tools. In our initial work [Yue and Gray, 2013], we demonstrated possible

solutions by implementing a MOP for Fortran, named OpenFortran. Instead of creating a

framework from the ground up with a parser and the ability to manipulate data structures

representing source code, we simply addressed Q1 and Q3 by leveraging existing program

transformation engines (PTEs). Most PTEs support formally specified source-to-source program

transformations at compile time with full-fledged parsers integrated to accommodate different

GPLs and adequate support for complex and systematic term rewriting (or graph rewriting) at

different abstraction levels [Baxter et al., 2004; Cordy, 2006; Quinlan, 2012; Deursen et al.,

2000; Visser, 2004]. However, not all existing PTEs are ideal for implementing MOPs. We made

careful evaluation towards several popular PTEs against different criteria in order to find the

most fitting transformation engine. A primary standard requirement is that a PTE should provide

sufficient interfaces at an appropriate abstraction level, which allows us to build a meta-level

layer on top of the engine. We chose ROSE [Quinlan, 2012] as the underlying transformation

engine that integrates mature parsers as the front-end to support a dozen different programming

languages.

Despite the fact that ROSE is effective in supporting program transformations, like most

of the existing PTEs, it is quite challenging for average developers to learn and use.

Manipulation of an AST is quite different than most developers’ natural understanding of

program transformation. On the contrary, the MOP mechanism of program transformation allows

direct control over language constructs (e.g., variables, functions, and classes) in the base-

15

program through the interfaces provided. With a MOP, some language constructs that are not a

first-class citizen can be promoted to first-class to allow for construction, modification and

deletion [Kiczales et al., 1991].

Q2 concerns the design decisions that have to be made particularly for MOP construction.

To address this concern, we designed OpenFortran [Yue and Gray, 2013] (discussed in-depth in

Chapter 3) in such a way that for a target top-level entity (e.g., a function and a module

definition) in the base-level program, an object, referred to as a meta-object, is created in the

meta-level program to represent the entity. A meta-object contains sufficient information

representing the structure and behavior of an entity in the base-level code and interfaces carefully

designed to alter them. For instance, for a function definition in a Fortran application, a

corresponding meta-object is created in the meta-program. The meta-object holds adequate

structural and behavioral information to describe the function (e.g. function name, parameter list,

return type, local variables defined within the function, and all statements in the function). The

meta-object also provides interfaces for developers to modify its attributes and the corresponding

changes will be reflected in the function in the base program.

For Q4, we have investigated the techniques of DSL and model-driven engineering

(MDE) (specifically, model-driven language engineering) [Kurtev et al., 2006; Mellor et al.,

2003]. We recognized that higher-level programming support is needed along with a

corresponding code generator to bring meta-programming closer to the skillsets of most software

developers. The proper design of higher-level expressions and a code generator can hide the

accidental complexity associated with using MOPs.

To achieve this, we created a DSL, named SPOT [Yue and Gray, 2014] (explained in

detail in Chapter 4), which provides language constructs to fully support the definition of general

16

transformations at a higher level of abstraction and a code generator that is responsible for

translating a SPOT program to the corresponding meta-level specification coded in a MOP. The

underlying transformations are actually carried out through the MOP and the underlying PTE.

Developers only need to specify desired transformations with SPOT while being oblivious to the

minute details about how the transformations are performed. In addition, coding with SPOT

allows a developer to refer to the entities of source code in a direct manner, which more aligns

with their understanding towards program transformation than coding with other facilities such

as existing meta-programming tools or platforms.

We developed an extensible framework, named OpenFoo (elaborated in Chapter 5), to

resolve Q5. In particular, we use models to describe the aspects and concerns associated with

MOP implementation. A library implementing those models in C++ code is developed for

extension. For a specific programming language, OpenFoo can be instantiated with the assistance

of these models from an abstraction layer that can be mapped down to an actual MOP

implementation. The dependence on the underlying details of the MOP implementation and on

the particular transformation engine can be reduced by extending existing built-in artifacts. The

framework can still leverage the power of PTEs to perform the underlying complex

transformations.

The last contribution of the research involves a set of case studies to demonstrate how our

approach can be used to address the challenges Q1-Q5. We built a profiling library, a

checkpointing library and a code coverage tool to show how the approach can modularize

crosscutting concerns by supporting Aspect-Oriented Programming (AOP) in Fortran and C. We

also designed a parallelization library to demonstrate how a parallel model (i.e., OpenMP

[OpenMP Review Board, 2000]) can be utilized without directly modifying the original

17

sequential code through parallelizing Dijkstra’s minimum graph distance algorithm

[dijkstra_openmp, 2010]. We also used the checkpointing library to demonstrate how SPOT

could be extended to derive a new DSL in order to accommodate a new domain. To illustrate the

capability of the generic framework, we implemented MOPs for Fortran 90 and C++ from the

OpenFoo prototype. We demonstrated both the frontend SPOT and the backend OpenFoo can be

extended in order to accommodate a new GPL. In addition, we developed a code coverage tool to

illustrate that with the generic framework a SPOT program can be reused to perform

transformations towards applications written in a different programming language with slight

modification.

1.5 Dissertation Overview

This section outlines how the chapters are organized in this dissertation. In this

introductory chapter, we described the context for the rest of the dissertation by introducing the

challenges faced by the HPC community in software maintenance and evolution. We also

summarized the techniques we investigated, the primary research questions that have been

addressed in order to provide solutions to those challenges, as well as the contributions of our

research.

Chapter 2 presents the necessary background information supporting the research and a

survey of various existing solutions for automating program transformations. This chapter will

provide the reader with a better understanding of the concepts mentioned in the rest of the

dissertation.

Chapter 3 summarizes the preliminary results of our work in developing a MOP for both

C and Fortran, including the design decisions and implementation details. This chapter also

18

introduces some of the application areas of MOPs toward maintenance and evolution tasks

within HPC.

Chapter 4 outlines the development of the DSL to assist in specifying transformations,

including the design architecture and the implementation details of SPOT and the code generator.

A discussion of the sample application tools developed for HPC software is also described.

Chapter 5 is mainly focused on the language-independent framework for creating a MOP

for an arbitrary GPL. The chapter describes in detail how to generalize the MOP prototype in

order to accommodate new GPLs and how to extend the front-end DSL with the assistance of

MDE techniques to support newly created MOPs.

Chapter 6 acknowledges some of the limitations of the approach and provides a roadmap

for future extension and possible application areas. The dissertation concludes with summary

remarks in Chapter 7.

Appendix provides the grammars in ANTLR [Parr, 2007] and the templates in

StringTemplate [Parr, 2007] used in implementing the code generator.

19

CHAPTER 2

BACKGROUND

The contribution of this dissertation describes research that combines the techniques of

program transformation [Visser et al., 2004; Quinlan, 2012] and Domain-Specific Languages

[Deursen et al., 2000] to facilitate software maintenance and evolution in HPC software. In this

chapter, Section 2.1 introduces new requirements in HPC software imposed by the evolution in

hardware and by the ever-increasing user demands for performance. Section 2.2 provides a

background discussion of software engineering technologies used in this research, including the

basis of meta-programming and the underlying design mechanism of a MOP. Section 2.3

presents a comparison of several existing program transformation approaches. Section 2.4

provides a literature review on research related to our approach.

2.1 High Performance Computing

HPC provides solutions to problems that require massive computational power. Rapid

advances in techniques for HPC have been witnessed in the past decades [Bell and Gray, 2002].

In this section, we identify the new requirements on software in HPC imposed by the evolution

in hardware and by ever-increasing user demands. The major goal is to find the potential

opportunities for applying reflection and meta-programming to problems in HPC.

The hardware architectures supporting HPC can be categorized into two classes: shared

memory systems and distributed memory systems. Symmetric multiprocessing systems (SMP)

are examples of shared memory systems (shared memory may be distributed physically, but

follow the uniform addressing for all processors). SMP usually refers to a hardware architecture

20

in which multiple identical processors are linked to a single shared memory and are controlled by

a single operating system. The SMP architecture is adopted by most multiprocessor systems

(e.g., processors from Intel, ARM and AMD). Having a single shared memory makes it easier to

program for the SMP architecture; however, scalability is a major problem because all

processors, memory and I/O devices are connected with a single bus.

One typical example of distributed memory systems is clustered systems. In a clustered

system, many computers are linked together to build a parallel processing computer that is able

to deal with very complex problems. Each node in a clustered system has its own memory and

cannot directly access the memory of other nodes. The elements of a cluster are usually linked

with each other via fast local area networks. The essential design goal of clusters is cost-efficient

and the components used are often available commercially off the shelf.

The complex hardware architectures exploited in HPC imply higher requirements on the

software. The development of HPC software is often not as mature as the hardware. The biggest

challenge facing software designers and developers is how to take full advantage of available

computational power. In order to address this challenge, attention has been focused on many

issues in HPC software such as efficiency, scalability, adaptation, partitioning and load

balancing, communication, and synchronization [Trefethen et al., 2009].

In the area of parallel computing, many tools have been developed particularly for the

mainstream parallel programming languages and systems with different power and complexity.

Among those tools, the Message Passing Interface (MPI) [Gropp et al., 1999] is a standard for

developing portable programs for distributed memory systems where the programmers have to

explicitly specify message passing for processors to share data. MPI is a language-independent

interface containing the specifications on how its features should act in an implementation (e.g.,

21

message buffering rules [Gropp et al., 1996]). MPI is designed to provide important functionality

of communication, virtual topology, and synchronization with features of language bindings.

MPI supports both point-to-point and collective communication between processes (or

processors) by passing messages, and it also provides interfaces for complementary services such

as inquiring about environment information, basic timing data for measuring application

performance, and profiling information for external performance monitoring [Gropp et al.,

1996].

Programming in shared memory systems is often easier compared to programming

distributed systems. OpenMP [OpenMP Review Board, 2000] is an API for developing

multithreaded programs in a shared memory setting. It provides a mechanism to construct

programs with multithreads in languages like C, C++ and Fortran via a set of compiler directives

and library routines. In OpenMP, a master thread forks a number of threads and a task is divided

among them. The run-time environment is responsible for allocating threads to different

processors on which they run concurrently.

In HPC, there is often a demand for software tools with the following features [Bell and

Gray, 2002]:

1) Adaptive – being automatically adapted to problem characteristics or

environmental restriction;

2) Ease of use – being able to provide efficient and portable libraries;

3) Secure and accountable.

The issue of security and accountability is critical to maintaining the correctness and to

enhance fault tolerance and robustness of HPC systems. This is particularly true for systems on

22

clusters or grids where computational nodes are distributed physically and connected through

high-speed links.

Many strategies have been proposed to deal with different problems. However, many

issues are raised when attempting to integrate those strategies into practical applications. One of

the major problems involves flexibility, such as transparency of strategies, ease of use and

reusability of existing strategies to derive new ones.

Computational reflection and meta-programming have shown initial promise in many

contexts, such as in the design of development environments, language extension, and the

dynamic, unanticipated adaptation of running systems [Stroud, 1993]. They also have been

shown to be effective in separation of concerns. Many of the HPC issues just mentioned fall into

the category of mechanisms that are independent of applications. Therefore, we advocate

addressing these issues with the help of computational reflection and meta-programming.

2.2 Meta-Programming

A system supporting meta-programming is able to generate or manipulate other programs

to extend their behavior. Unlike common programs that operate on data elements, meta-programs

take more complex components (code or specification) as input, and transform or generate new

pieces of code according to input specifications.

By automatically generating code, meta-programming can bring many benefits to

increase the productivity of software development. For instance, with automatic code generation

programmers can be relieved from tedious and repetitive coding tasks, so that they can

concentrate their efforts on crucial and new problems. Automatic code generation can reduce the

possibility of inserting errors into code and increase the reusability of a general software design

by customization [Spinellis, 2008].

23

2.2.1 Open Implementation

The design principle underlying meta-programming is in conflict with the well-known

concept of black-box abstraction, because it provides facilities for developers to gain access to

the underlying implementation of a programming language. However, it follows another model

of abstraction: Open Implementation.

Black-box abstraction has become a basic principle in software design, such that a

software module should be carefully designed to hide its implementation and to expose its

functionality only [Parnas, 1972; Kiczales, 1996]. Black-box implementation can introduce

many benefits, such as localizing changes and amortizing development costs, to controlling the

complexity of software [Lee and Zachary, 1995] and facilitating the development process. It has

become a conceptual foundation of many other issues, such as software portability and reuse.

Although black-box abstraction has many advantages, it has been observed that providing

only the interfaces while encapsulating implementation details may sometimes cause great

difficulties for client programmers. With a closed implementation, it is usually the case that the

developers of a module design the interfaces based on the assumptions about the manner in

which the clients use the module [Lee and Zachary, 1995]. The design decisions made by the

module developers are called mapping decisions by Kiczales, which refer to those decisions

made in the presence of incomplete information [Kiczales, 1996]. Conflicts of usage are likely to

occur when the functionality of a module exposed in the interface cannot satisfy the needs of

client users. Under this circumstance, client programmers tend to code around the conflict by

either giving up on using a module and implementing a new module that meets their specific

needs, or by still using the module, but in an ad hoc manner [Kiczales, 1991]. Either way might

incur an increase in both the software size and complexity.

24

To cope with this problem, researchers have proposed a new type of modularity called

open implementation [Kiczales, 1996; Chiba, 2000]. Unlike black-box modules that hide all

implementation details, open implementations function by providing client users access to the

implementing strategies, while still encapsulating most details of implementation [Kiczales,

1996]. To achieve this, software modules can be designed to have dual-interfaces, as shown in

Figure 2.1, describing a base-level interface and a meta-level interface. The base-level interface

has no difference than the one designed by the black-box principle that exposes only the

functionality and hides the internal details. The client users can simply use the functionality

without having to be aware of their implementation details. However, in those cases when the

functionality provided by the module cannot meet the users’ specific requirement, client

programmers can take advantage of the meta-level interface to customize the module to better

suit their needs.

In summary, open implementation was proposed to solve problems in situations where

client programmers need to see into the black-box modules and control internal implementation

strategies to meet their needs [Chiba, 2000]. This is exactly the rationale behind applying meta-

programming techniques, so that developers are allowed to affect the implementation of a

programming language, which is otherwise fixed and sealed.

2.2.2 Computational Reflection

Computational reflection is a powerful method to achieve meta-programming. In a meta-

programming system, if the object program is itself a meta-program, the program is considered

to be reflective [Spinellis, 2008]. Reflection has a deep history in areas such as logic and

philosophy [Feferman, 1962]. Brian Smith introduced the concept of computational reflection

within the context of computer science as a way to extend the semantics of programming

25

languages. According to Smith, a reflective system is able to reason about and manipulate itself

based on an explicit and principled means of representing its implementation [Smith, 1982]. To

achieve this, the representation of the internal structure should be at an appropriate level of

abstraction to allow for manipulation using concepts that are appropriate for specific

programming contexts.

 Maes presented a formal definition of computational reflection as, “a computational

system which is about itself in a causally connected way” [Maes, 1987]. To further elaborate on

this concept, Maes discussed several relevant concepts regarding computational reflection:

• A computational system refers to a system running on a computer to solve

problems in a specific domain. In order to achieve this, a system must have

internal structures used to describe its domain (e.g., using data to represent

entities and their relations and algorithms to operate on those data). Given this

definition, every executing program can be considered a computational system

since it manipulates abstractions for a specific problem domain.

Figure 2.1 The dual-interface of an open implementation

26

• Causally connected implies that the computational system and its domain are

linked in such a way that if one changes, a corresponding change can be seen in

the other.

• A reflective system is depicted as a computational system whose domain is itself

(i.e., a reflective system has internal structures to describe itself). Its internal

structures and its external behaviors are causally connected so that it is possible to

change its behavior through manipulating its internal structures.

A reflective system usually includes a base-level part and a meta-level part, as shown in

Figure 2.2. The base-level part is responsible for dealing with problems and returning

computational results of its domain (this is a typical program written by programmers), and the

meta-level part addresses problems and returns information about the base level [Maes, 1987].

Concerning the manipulation power of a reflective system, reflection can be categorized

as introspection and intercession [Bobrow et al., 1993]. Introspection is the ability of a system to

inspect and answer questions about the structure and state of its own execution, while

intercession also allows the internal structure of its execution to be altered. To achieve this, both

the static structure and the running state of a reflective system must be represented as data. The

process of such representation is called reification.

Figure 2.2 The structure of a reflective system

27

Reflection can also be distinguished as structural reflection and behavioral reflection

based on the dimension that the objects of the meta-level program operate [Denker, 2008].

Structural reflection is about the manipulation of the static structure of a program. With

structural reflection, the definition of data structures, such as classes and methods can be

retrieved and even modified (e.g., getting a list of all public methods available for a class, or

adding a new method). Behavioral reflection focuses on the semantics of an executing system

and provides a complete reification of both the semantics of the language and the execution

states [Demers and Malenfant, 1995]. Behavioral reflection makes it possible to intercept and

alter operations during run-time (e.g., field access, and method invocation). Behavioral reflection

only allows for modifying the behavior of an operation, and structural reflection provides an

ability to inspect and modify static data structures of the program. However, it is much easier to

implement structural reflection and many languages have already integrated this feature, e.g.,

Java and Python. On the contrary, it is more challenging to realize complete behavioral reflection

because it is especially difficult to incorporate behavioral properties without adversely affecting

performance.

Reflection has been supported in different language paradigms, such as the procedure-

based, logic-based, rule-based and object-oriented paradigms [Maes, 1987]. In the 1980s, Smith

initiated the core concepts of computational reflection by giving 3-Lisp the ability to reason

about its own execution [Smith, 1984]. Because of its quote mechanism, Lisp was well-known

for its capacity to manipulate expressions, which made reflection known in the functional

community. In the 1990s, researchers in the object-oriented (OO) community undertook the

responsibility of inventing structuring mechanisms for the implementation of reflection in OO

languages. Because of its inherent property that data and methods in an object are separated, the

28

OO paradigm is a context where reflection can be implemented straightforwardly [Demers,

1995]. The Common Lisp Object System (CLOS) [DeMichiel and Gabriel, 1987] and Smalltalk

[Goldberg and Robson, 1983] are two outstanding examples that began to integrate concepts of a

Meta-Object Protocol (MOP) [Kiczales et al., 1991], which provides a set of interfaces for

supporting reflection.

The computation done at the meta-level is not intended to make a direct contribution to

solving problems in the external domain. Rather, the intent of reflection is mainly focused on the

internal organization and interfaces to external programs, thus facilitating the object-level

adaptation of a computation.

2.2.2.1 Meta-Circular Interpreters

Smith first identified the concept of reflection for building procedurally reflective

languages [Smith, 1982]. He proposed the paradigm of meta-circular interpreters, in which the

base user program at level 0 is interpreted by the interpreter at level 1, which is in turn

interpreted by the interpreter at level 2. This goes on to form an endless tower of interpreters.

The implementation of reflection is based on the idea of level-shifting where a program may ask

code to be interpreted by the interpreter at one level above and therefore shifting to a higher

meta-level [Smith, 1982].

A more feasible solution to level shifting was proposed by Friedman and Wand

[Friedman and Wand, 1984]. The two-step process, reification and reflection, is independent of

the model of the interpreter tower. According to their model of reflection, reification means to

transform an interpreter component into something the program can manipulate [Friedman and

Wand, 1984]. On the contrary, reflection implies the process of sending the results of the meta-

computation back to the interpreter. In subsequent literature, reification is used more widely to

29

indicate the process of making explicit and concrete an object that is otherwise implicit or

inaccessible (e.g., making some internal representation of a program concrete as a data structure

that can be manipulated).

It is straightforward to achieve the causal connection requirement using a meta-circular

interpreter because the “self-representation that is given to a system is exactly the meta-circular

interpretation process that is running the system” [Maes, 1987]. At some eventual level, the

meta-description is rich enough to describe itself, which can stop the tower. This is the

traditional manner in model-driven engineering, where a meta-meta-model is able to represent

itself such that the tower of modeling interpreters can stop at the meta-meta level [Kurtev et al.,

2006].

2.2.3 Meta-Object Protocol

Computational reflection, in the realm of programming languages, refers to the paradigm

that provides programming languages with the power to extend the semantics by representing

and modifying a program in the same way that a program represents and modifies the data that it

processes [Smith, 1982]. A MOP has been proven to be a powerful tool to provide the ability of

computational reflection to a program by making use of object-oriented and reflective techniques

to organize a meta-level architecture [Kiczales et al., 1993].

A MOP can be considered an interpreter which enables extending or redefining the

semantics of a program to make it open and extensible, by providing a set of interfaces to access

the program’s underlying implementation [Kiczales et al., 1991]. To allow transformation from a

meta-level, a MOP provides a clear representation for the base program’s internal structure and

entities (e.g., the classes and methods defined within an object-oriented program) and well-

designed interfaces through which these entities and their relations can be modified [Maes,

30

1987]. Through the interfaces, client programmers can incrementally change the implementation

and the behavior of the program to better suit their needs.

A MOP can be used to perform adaptation of the base program at either run-time or

compile-time. Run-time MOPs function while a program is executing and can be used to perform

real-time adaptation, for example the Common Lisp Object System (CLOS) [DeMichiel and

Gabriel, 1987] that allows the mechanisms of inheritance, method dispatching, class instantiation

and other language details to be modified during program execution. In contrast, meta-objects in

compile-time MOPs only exist during compilation and may be used to manipulate the

compilation process. Two examples of compile-time MOPs are OpenC++ [Chiba, 1995] and

OpenJava [Tatsubori et al., 1999]. Though not as powerful as run-time MOPs, compile-time

MOPs are easier to implement and offer an advantage in reducing run-time overhead.

In a MOP, the meta-object in the meta-level program represents each entity in the base

program. The class from which the meta-object is instantiated is called the meta-class. For

instance, for a class defined in C++, a corresponding meta-object will be constructed in the meta-

level program. The meta-object for the class holds adequate information to describe the structure

and behavior of the class and interfaces carefully designed to alter them. Through the MOP, an

entity can become a first-class citizen that can be constructed at run-time, passed as a parameter

to a function and returned or assigned to a variable [Chiba, 1995]. The interfaces may manifest

as a set of classes or methods so that users can create variants of the default language

implementation incrementally by sub-classing, specialization, or method combination

[DeMichiel and Gabriel, 1987]. For example, with OpenC++, end-users are allowed to define

meta-classes specializing a transformation by sub-classing standard built-in meta-classes. In a

31

class-based OO language with a MOP, the interfaces include at least the basic functionality of

instantiating a class, accessing attributes and invoking methods.

2.3 Program Transformation Approaches

Even though program transformation can be accomplished manually, it is more practical

to leverage a program transformation system. Many available program transformation engines

support formally specified source-to-source program transformations at compile time [Quinlan,

2012; Baxter et al., 2004; Cordy, 2006; Visser, 2004; van den Brand et al., 2001]. In our

approach, we utilize a program transformation system (i.e., ROSE [Quinlan, 2012]) as the

underlying engine to build an extensible and scalable meta-programming framework.

Some systems support complex code modifications through direct manipulation of

specialized data structures, such as ASTs, representing the source code. For instance, ROSE

[Quinlan, 2012] allows developers to address translation tasks in C++ by directly traversing and

modifying ASTs, which is described in the next section. DMS [Baxter et al., 2004] also allows

developers to manipulate ASTs through procedural methods written in a parallel transformation

language called PARLANSE [Baxter et al., 2004].

Some PTEs support transformations with more abstract representations in order to hide

low-level complexities, among which term rewriting is most widely used for modeling

modification of terms through a set of rewrite rules that define a matching pattern and the desired

transformations [Visser, 2004]. A rewrite rule specifies a one-step transformation for a fragment

of the target program by mapping the left-hand side (“matching this”) to the right-hand side

(“replaced by that”), and the mapping is usually denoted with “-‐>”. Representative examples

include Stratego/XT [Visser, 2004] and ASF+SDF [van den Brand et al., 2001] where complex

translation is performed through a set of rewrite rules that are formulated and arranged

32

strategically to achieve desired effects. Figure 2.3 demonstrates two rewrite rules written in

Stratego/XT, the first one translating a for statement to a while statement and the second

translating an if-then statement to an if-else statement.

Some transformation systems provide an extended syntax or incorporate a DSL to specify

rewriting rules for the target programming language, which results in better maintainability and

readability of transformation libraries, e.g., DMS [Baxter et al., 2004], TXL [Cordy, 2006] and

REFINE [Burson et al. 1990]. DMS allows developers to build transformation rules in the Rule

Specification Language (RSL), which provides primitives for declaring patterns, rules and

conditions [Baxter et al., 2004]. Transformations are expressed with the extended syntax (i.e., the

primitives) together with the concrete syntax of the target programming language. The matching

pattern on the left-hand side and the desired transformations specified on the right-hand side are

both expressed in the surface syntax of the target language. Figure 2.4 shows an RSL rule for

desugaring the conditional operator to a traditional condition statement in C, where the C syntax

is contained inside double quotes to distinguish it from that of the RSL primitives indicated in

bold. The backslash is used before a variable to indicate that the variable can match any language

module exampleStrategoXT
rules
 For2While :
 For(a, exp1, exp2, stmt*) ->
 Block([
 DeclarationTyped(b, TypeName("int")),
 Assign(a, exp1),
 Assign(b, exp2),
 While(Leq(Var(a), Var(b)),
 <conc>(stmt*, [Assign(a, Add(Var(a), Int("1")))])
)
])
 where new => b

 IfThen2IfElse :
 IfThen(exp, stmt) -> IfElse(exp, stmt, [])

Figure 2.3 An example of rules defined with Stratego/XT

33

constructs whose type is specified in the rule signature, e.g., exp1, exp2 and exp3 can match any

expressions in C. The conditional clause at the end of the rule enforces a limitation to the

application of this rule, i.e., lv, the left-hand side of an assignment statement should not cause

any conflicts in the target language, determined by the analyser no_side_effect.

TXL supports structural program transformations through functional programming at a

higher abstraction level and pattern-based rewriting at the lower level [Cordy, 2006]. It provides

functional constructs to specify rewriting patterns, which helps to conceal the low-level term

structures from developers. A typical TXL program is composed of a grammar in Extended

Backus-Naur Form (EBNF) describing the input and a set of rewriting rules specified in the

pattern of “replace A by B” combined with auxiliary functional constructs. TXL allows the

expression of desired changes using the syntax of the source and target languages. Unlike DMS

and ROSE, TXL provides no facilities for developers to directly manipulate ASTs, but only

language constructs to specify rewrite rules at a higher level.

Instead of providing a full-fledged PTE, another area of research has been focused on

integrating the functionality of automatic refactoring with interactive development environments

(IDEs). Refactoring tools often provide translation primitives of high-level abstraction without

exposing any low-level data structures and thus most of them are lightweight and easy to use

[Fuhrer et al., 2007]. An example is Photran [Overbey et al., 2005], which is a refactoring tool

for Fortran based on Eclipse. Photran provides transformations like renaming and function

rule desugar_conditional_assignment_stmt(lv:left_hand_side,
exp1:expression, exp2:expression, exp3:expression):
statement -> statement
= “\lv=\exp1?\exp2:\exp3;” ->
 “if(\exp1) \lv=exp2; else \lv=exp3;
if no_side_effects(lv);

Figure 2.4 An example of an RSL rule defined with DMS

34

extraction in an interactive manner. However, refactoring tools are limited to translation types in

which the semantics of the code should be preserved. In addition, developers do not have the

freedom to create their own refactoring rules.

Though some PTEs may be powerful and flexible in performing certain types of source

transformation, there is a steep learning curve for average developers to master the skills needed

to use them. In contrast, in our solution translation specifications can be expressed in a way that

more resembles a developer’s mental model of program transformation than coding with meta-

programming capabilities or directly manipulating an AST as required by many PTEs.

Another weakness of transformation tools is the frequent dependence on pattern matching

and term rewriting in a context-free style. Usually a rewrite rule only has knowledge of the

matched construct, which makes those systems powerless to address context-sensitive translation

problems, such as function inlining and bound variable renaming [Visser, 2005]. On the

contrary, our approach incorporates a scheme of multiple scopes, which allows developers to

express transformations either at a specific point or at multiple points matched with a wildcard.

Developers are allowed to express higher-level scopes with “Within (Entity name)” and

to identify precise locations with control-flow clauses (IF-ELSE and FORALL) and location

keywords (Before and After). In addition, users can define handlers to represent particular

language entities, for which translation can be specified by directly invoking built-in operations

(e.g., addEntity, replaceEntity and deleteEntity where Entity may refer to any

program entities of a programming language). Moreover, the structural information of higher-

level scopes that encompass a translation point is accessible, which makes our approach a

candidate solution for solving context-sensitive problems.

35

All of the transformation systems mentioned in this section are in the category of source-

to-source transformation. Another primary type of transformation involves manipulation of

binary code where a binary object program is modified or augmented in order to observe or alter

program behaviors. Among many systems that use the technique of binary transformation,

Hijacker [Pellegrini, 2013] is a tool that can be utilized to alter the execution flow of an

application based on a set of rules. With built-in tags, users can specify in an XML file rules of

inserting or modifying assembly instructions and the XML file then instructs Hijacker to perform

the intended transformations towards the binary code. Compared with source transformation,

binary transformation is advantageous when the source code is not accessible and is

disadvantageous because it is more challenging to manipulate machine code at a low abstraction

level.

2.4 Related Work

In our research, we mainly used the following techniques: meta-object protocols, aspect-

oriented programming, and domain-specific languages. This subsection provides a literature

review on related works.

2.4.1 Existing MOPs

In the remainder of this section, we review several example MOPs, one for CLOS and

others for some mainstream languages, such as C++ and Java. For each MOP, we present the

design ideas that have inspired our own research and discuss their advantages and disadvantages.

2.4.1.1 MOP for CLOS

Much of the development of the concepts of MOPs occurred in the context of CLOS

[DeMichiel and Gabriel, 1987]. The initial design objective of the MOP for CLOS was to allow

object-oriented Lisp to be able to meet new user demands for extension. As a result, the MOP

36

concept itself became a powerful tool that can also be used to solve many different problems

emerging in other high-level languages.

CLOS was designed with the principle of open implementation and its MOP can be

viewed as the CLOS meta-interface [DeMichiel and Gabriel, 1987]. Reflective techniques were

exploited to provide users with standard interfaces to help modify the semantics of CLOS. There

are five essential elements in CLOS that can be used by client programmers: class, slots,

methods, method combination, and generic functions [DeMichiel and Gabriel, 1987]. In a CLOS

program, each element is depicted by an object (i.e., the meta-object). The class from which the

meta-object is instantiated is called the meta-class. For instance, for each class defined in CLOS,

a corresponding meta-object for the class will be constructed in the meta-level program. The

meta-object for the class includes the information carefully designed to allow altering the

structure and behavior of the class. The meta-classes act in a similar way with common classes in

CLOS. Therefore, the semantics of a meta-object can be modified through altering its meta-class.

One difference is that the modification made to a meta-class can only be made incrementally

through inheritance, specialization, and method combination. Those facets of CLOS that can be

modified through a MOP constitute the meta-level part of the CLOS definition [DeMichiel and

Gabriel, 1987].

In CLOS, the main parts of the object system in the form of meta-objects exist at both the

compilation and run-time. Even though the MOP for CLOS is a pioneering effort, one drawback

worth mentioning is that the meta-computations are preformed via invoking methods of the

meta-objects at run-time [Lee and Zachary, 1995]. Performance measurements carried out in

[Lee and Zachary, 1995] showed that with metaprogramming, object creation was 16 times

slower and took 24 times more space, read access was around 270 times slower, and write access

37

was 2,000 times slower. Therefore, expertise is required in order to maintain acceptable

performance at run-time if metaprogramming is adopted [Lee and Zachary, 1995].

2.4.1.2 OpenC++

OpenC++ was proposed by Chiba to bring the power of meta-programming to C++

[Chiba, 1995]. The design goal of OpenC++ was to enable client users to develop customized

language extensions or compiler optimizations through simple annotations [Chiba, 1995].

Chiba’s work borrowed the fundamental structure from the MOP of CLOS and was also inspired

by the idea of the MOP in Anibus (a MOP-based parallelizing Scheme compiler) and Intrigue.

OpenC++ makes a clear separation between the compilation and run-time environment. Meta-

level adaptation is performed only during compile-time, which is a great benefit to avoid time

and space overhead at run-time [Chiba, 1995].

Similar to the CLOS MOP, the C++ classes and functions are represented by meta-

objects that can be altered to control the behavior of the program by client programmers [Chiba,

1995]. The working mechanism of OpenC++ can be described as source-to-source translation

performed in the following steps, as shown in Figure 2.5 [Chiba, 1995]:

a. The OpenC++ source code is parsed and the top-level definitions for classes and

member functions are identified

b. For each definition of class and member function, a meta-object is constructed

c. The parse tree is traversed and the member function of each meta-object (called

CompileSelf) is called to apply translation from OpenC++ to ordinary C++ in

the form of an abstract syntax tree (AST)

d. The parse trees created by each meta-object are synthesized and transformed to

C++ code, which is then processed by the C++ compiler.

38

In OpenC++, there are two types of meta-objects: function meta-objects and class meta-

objects [Chiba, 1995]. Because function meta-objects delegate the extension duty to class meta-

objects, it is through class meta-objects that the compilation of a program is performed [Chiba,

1995]. The member functions of a class meta-object includes:

1. CompileSelf()

2. ComputeMetaclassName()

3. CompileMemberFunctionCall()

4. CompileReadDataMember()

5. CompileWriteDataMember()

6. CompileVarDeclare()

7. CompileNew()

One advantage of the OpenC++ MOP is that users can extend the program in a

straightforward and transparent way. Application programmers only need to add a simple

annotation to the classes that need to be manipulated and they do not need to know how the

extension is performed. For example, if a user wants to trace method calls of a user-defined class

in his/her application, all that is needed is to declare the meta-class as TraceClass using the

keyword meta-class. TraceClass is a meta-class that may be implemented by other library

developers, as shown in Figure 2.4.1.2 (taken from the tutorial of the OpenC++ installation).

Figure 2.5 The workflow of OpenC++ (adapted from [Chiba, 1995])

39

For the library developers, they must develop new meta-classes to encapsulate the

implementation of various code extensions. The TraceClass, for example, can be

implemented as indicated in Figure 2.6. All meta-classes share the same root class Class. The

member function CompileMemberCall is overridden to perform the extension: adding a

“puts()” statement before each member function call in the user class.

From a conceptual viewpoint, the OpenC++ MOP is also meta-circular. However, the

infinity of the meta-circular tower is avoided by the following steps: 1) before compiling a class,

its meta-class should be compiled first, 2) make the class Class the root of all meta-classes and

the meta-class of itself, and 3) the class Class is compiled directly by a C++ compiler [Chiba,

1995].

2.4.1.3 OpenJava++

OpenJava was designed as a MOP for Java by Tatsubori and Chiba [Tatsubori et al.,

1999]. It is a reflective system that is able to provide both structural and behavioral reflection.

OpenJava performs reflective computation at compile-time to avoid run-time penalties.

However, unlike OpenC++ and many other macro systems in which the abstract syntax tree

(AST) is used as the main data structure to perform translation, OpenJava exploits a macro

#include "mop.h"
class TraceClass : public Class
{
 public:
 Ptree* CompileMemberCall(Environment*, Ptree*, Ptree*, Ptree*, Ptree*);
};

Ptree* TraceClass ::CompileMemberCall(Environment* env, Ptree* object,
 Ptree* op, Ptree* member, Ptree* arglist)
{
 return Ptree::Make("(puts(\"%p()\"), %p)", member,

 Class::CompileMemberCall(env, object, op, member, arglist));
}

Figure 2.6 The OpenC++ implementation of TraceClass (taken from [Chiba, 1995])

40

system that is able to hold the logical and contextual data. The major shortcomings of using an

AST stem from the fact that the AST cannot provide enough logical and contextual information

to enable more complicated code extensions [Tatsubori et al., 1999]. For example, some design

patterns applied to the manipulation of a large AST is not an easy task to perform.

A Java application that includes OpenJava code can be viewed as two parts: 1) a base-

level part that does not use Class objects and executes at run-time, and 2) a meta-level part that

uses OJClass objects (OJClass is the root of all meta-classes and only exists at compile-

time). The OpenJava compiler serves as a Java-to-Java translator and works in the following

steps [Tatsubori et al., 1999], similar to OpenC++:

1) Source code is analyzed and a class meta-object is created for each class;

2) Macro expansions are performed by invoking member methods of the class meta-

object;

3) The ordinary Java source code is generated in which the modification made by the

meta-object can be seen;

4) The generated Java code can then be compiled by the standard javac compiler.

OpenJava utilizes meta-objects to represent the entities composing a Java program. In

Java, the essential entities, classes, methods, fields and constructors can be represented with the

instances of respective metaclasses, OJClass, OJMethod, OJField, and

OJConstructor. Library developers can alter the internal structure and behavior of the

program by modifying those meta-objects.

To use OpenJava, a new keyword instantiates is created, as in Figure 2.3.1.3, to

indicate that the meta-object for the class Hello is an instance of meta-class VerboseClass.

In the definition of class Hello, two statements in bold were not originally there and are

41

translated by the OpenJava compiler after being handled by the meta-class VerboseClass

(taken from the example tutorial of the OpenJava installation).

OJClass provides the full ability to change class definitions. To build a library with

OpenJava, the meta-class should be implemented to inherit from OJClass. As shown in Figure

2.8, the meta-object for VerboseClass is the instance of Metaclass and VerboseClass

inherits from OJClass. The method translateDefinition() declared in OJClass

should be overridden by all subclasses to perform adaptation for class definition (callee-side

expansion). For instance, in Figure 2.8, the method getDeclaredMethods() returns all the

method meta-objects corresponding to all member methods defined in the user-defined classes.

In the loop, a new println statement is added at the beginning of each method body, which is

exactly what we expect as indicated in bold in Figure 2.7. OpenJava offers many methods to

allow for full ability to modify class definitions. Besides callee-side expansion, OpenJava

supplies the ability to perform translation at the caller-side; for example, to create an instance

and to invoke a member method outside the class definition [Tatsubori et al., 1999].

public class Hello instantiates VerboseClass {
 public static void main(String[] args) { hello(); }
 static void hello() {
 System.out.println("Hello, world.");

}
}

public class Hello {
 public static void main(String[] args) {
 System.out.println("main is called.");
 hello();
 }
 static void hello() {
 System.out.println("hello is called.");
 System.out.println("Hello, world.");
 }
}

Figure 2.7 A user program using OpenJava (adapted from [Tatsubori et al., 1999])

42

2.4.1.4 Javassist

The standard Java reflection API can only support introspective reflection. To make up

for the limitations, Chiba designed a tool called Javassist to allow structural reflection in Java by

performing bytecode transformation before a class is loaded into the run-time system (JVM)

[Chiba, 1998]. Unlike OpenJava, which executes structural reflection through source code

transformation, Javassist exploits Java bytecode as the medium to perform transformation.

However, the client programmers do not need to have a deep knowledge of bytecode, because

abstraction at the source level is supplied to enable safe transformation of bytecode [Chiba,

1998].

Javassist can be viewed as a tool that reads bytecode from a class file, makes

modifications, and then loads the modified class into the JVM, or writes the modified class to a

import openjava.mop.*;
import openjava.ptree.*;

public class VerboseClass instantiates Metaclass extends OJClass {
 public void translateDefinition() throws MOPException {
 OJMethod[] methods = getDeclaredMethods();
 for (int i = 0; i < methods.length; ++i) {
 Statement printer = makeStatement("System.out.println(\"" +

methods[i] + " is called.\");");
 methods[i].getBody().insertElementAt(printer, 0);
 }
 }
}

Figure 2.8 The definition of meta-class VerboseClass (adapted from [Tatsubori et al., 1999])

1. ClassPool pool = ClassPool.getDefault();
2. CtClass cc = pool.get(“test.Student”);
3. cc.setSuperClass(pool.get(“test.Person”));
4. CtMethod m = CtNewMethod.make(“public int getAge() {return nAge;}”, cc);
5. cc.addMethod(m);
6. cc.writeFile();

Figure 2.9 Use Javassist to apply transformations (adapted from [Chiba, 1998])

43

local file [Chiba, 1998]. Javassist offers structural reflection in Java without having to make any

modification to the JVM or Java compiler.

Figure 2.9 illustrates how to use Javassist to perform adaptation. A ClassPool instance

is constructed, which represents a hash table of compiled class files in bytecode. CtClass denotes

the compile-time class and the CtClass object cc is created from the ClassPool by

specifying the class name. The CtClass includes sufficient symbolic information to represent

the structure of a class for altering its definitions. Instead of receiving a compile-time class from

the class pool, a compile-time class can also be created directly by invoking the constructors of

CtClass. The statements 3, 4, and 5 make modification to the definition of class Student by

changing its superclass to Person in 3, creating and then adding a new method to the class in 4

and 5. Finally, the modified class Student is written back to a file as bytecode.

Though Javassist is designed to provide structural reflection for Java at load-time, it can

also realize restricted behavioral reflection. The primary strategy, which has been utilized by

other architectures providing limited behavioral reflection such as Reflective Java [Wu, 1998]

and Kava [Welch and Stroud, 1999], is to attach hooks to the program, for example at the

beginning of a method m, at compile-time (Reflective Java) or at run-time (Kava at load-time).

The hooks can be replaced with user-defined expressions to perform modification to the function

call to m [Chiba and Nishizawa, 2003]. This is usually realized by creating meta-objects that

exist at run-time. When operations are intercepted via the hooks, the associated meta-objects will

be notified to perform the transformation by invoking corresponding member methods [Chiba

and Nishizawa, 2003]. Even though it is possible to use Javassist to implement behavioral

modification, the usage is also limited to certain operations like method invocation and field

access, which is determined by its meta-object model [Kniesel et al., 2001].

44

Another advantage of Javassist bytecode transformation, compared with OpenC++ and

OpenJava, is that no source code is required. This allows Javassist to be utilized more widely,

especially for third-party libraries whose source code is usually not available.

2.4.1.5 Summary of Reflective Systems

In this sub-section, we present a brief review of reflective systems surveyed, most of

which exploit MOP as an implementation strategy. Comparison is made based on the following

criteria: 1) reflection types, 2) when the meta-level computation is performed, 3) where the

translation is applied, 4) the data structure used to perform adaption, and 5) whether or not the

source code is needed for transformation. The results are shown in Table 2.3.1.5.

There exist two types of Java meta-programs: compile-time and load-time. A compile-

time meta-program provides meta-object APIs, which allow programmers to handle source code

as language constructs. OpenJava [Tatsubori et al., 1999] can be used to write a compile-time

meta-program. A load-time meta-program manipulates Java bytecode to reflect a system’s

behavior during run-time. Javassist [Chiba, 1998] and JMangler [Kniesel et al., 2001] are

examples of load-time meta-programming that provide libraries to manipulate Java bytecode

without knowledge of its structure. Compile-time meta-programs offer an advantage in reducing

run-time overhead. Evaluation has shown that Javassist has better performance than OpenJava

and OpenC++ when performing structural reflection [Chiba, 2000]. However, it is easier to

realize behavioral reflection for load-time meta-programs.

As pointed out in [Malenfant et al., 1996], the ability to handle reflective information at

compile-time leads to more efficient and usable reflective programs. Nevertheless, the capability

of accessing meta-information at run-time is essential for supporting dynamic binding. Many

schemes are proposed to provide behavioral reflection for Java. Due to the concern of

45

performance, most of those schemes only provide restricted behavioral reflection. This means

only limited kinds of operations can be intercepted, such as method invocation and instance

creation, with most of them implemented by attaching hooks to Java code to intercept certain

operations and then the corresponding meta-objects are notified to perform user-specified

transformation [Chiba, 2000].

Table 2.1 Comparison of reflective systems surveyed

Reflective	
systems

Reflection	
Type

Time	 of	 Meta-‐
level	

computation

Translation	
point

Data	
Structure	
used	 for	

translation

Need	
source	
code

Java	
Reflective	

APIs

Introspect	
only,	 limited	
ability	 to	
intercept

Introspective	
run-‐time callee	 side Source	

code Yes

Open	 C++ Restricted	
Behavioral

At	 compile-‐
time Caller	 side Abstract	

Syntax	 Tree Yes

OpenJava
Structural	 and	
restricted	
Behavioral

At	 compile-‐
time

Both	 caller	
side	 and	
callee	 side

Source	
code Yes

Javassist
Structural	 and	
indirectly	
Behavioral

At	 load-‐time
Both	 caller	
side	 and	
callee	 side

Bytecode No

2.4.2 Aspect-Oriented Programming

Aspect-Oriented programming (AOP) [Kiczales, 1997; Harbulot and Gurd, 2004] is a

programming paradigm closely linked with MOP. AOP is designed specifically to deal with

crosscutting concerns (i.e., concerns that are not isolated to one module, such as logging and

profiling), by providing new language constructs to separate those concerns. AspectJ [Harbulot

and Gurd, 2004], one of the most popular languages supporting AOP, encapsulates a crosscutting

concern in a special modularity construct called an aspect. For instance, an aspect is able to

identify a group of execution points in source code (e.g., method invocation and field access) via

46

the means of predicate expressions and at those matched points perform concern-specific

behavior.

Scientific computing is one of the earliest application areas of AOP [Irwin et al., 1997].

Existing works are mainly applications of aspect languages for programming languages widely

used in HPC, such as C [22] and Fortran [Roychoudhury et al., 2011]. In [Roychoudhury et al.,

2011], the authors present the implementation of an aspect weaver for supporting AOP in Fortran

using DMS [Baxter et al., 2004]. In the initial phase of our research [Jacob et al., 2012], we also

investigated the technique of AOP to solve the problems of crosscutting concerns. Our approach,

named Modulo-F, can be used to modularize crosscutting concerns in Fortran programs by

providing constructs to isolate these concerns in a modular unit that can be woven into an

application when needed.

AOP is powerful in modularizing utility functions by separating crosscutting concerns;

however, the inherent limitations of AOP make it challenging to address problems like

separating the sequential and parallel concern in parallel applications. For example, AOP

supports software extension around join points (e.g., function calls and data access) referring to

matched locations in an application where crosscutting concerns appear. Nevertheless, the

process of parallelization often involves performing desired parallel tasks for for-loops and it is

very difficult to express for-loops as join points in any existing AOP languages [Harbulot and

Gurd, 2004].

Moreover, AOP allows programmers to specify the same actions (advice) to be

performed at each associated join point, but in very rare cases, parallel code added to parallelize

sequential code is exactly the same. Therefore, AOP may not be the best fit for addressing

problems of separating sequential and parallel concerns. Compared with AOP, MOP is a better

47

solution that can be used to express more fine-grained transformations around the points of not

only certain types of join points, but at arbitrary places.

2.4.3 Domain-Specific Languages

In the context of automating source-to-source code translation to solve problems in HPC,

DSLs have already been used in many approaches, where the research goal with regard to raising

the level of abstraction of parallelization is the same. Hi-PaL [Arora et al., 2012] is a DSL that

can be used to automate the process of parallelization with MPI. The developer can use Hi-Pal to

specify parallelization tasks without having to know anything about the underlying parallelizing

APIs of MPI. Liszt [DeVito et al., 2011] is a DSL that is designed particularly to address the

problem of mesh-based partial differential equations on heterogeneous architectures. Spiral

[Puschel et al., 2005] provides high-level specifications in order to automate the implementation

and optimization libraries for parallelizing HPC code. It can be used to support multiple

platforms and utilizes a feedback mechanism to achieve an optimal solution for a particular

platform.

Another similar work is POET [Yi, 2012], a scripting language, originally developed to

perform compiler optimizations for performance tuning. As an extension to the ROSE compiler

optimizer [Quinlan, 2012], POET can be used to parameterize program transformations so that

system performance can be empirically tuned. The features of POET were then enriched to

support ad-hoc program translation and code generation of DSLs. However, available

transformation libraries (built-in xform routines) are mainly predefined for the purpose of

performance tuning towards particular code constructs such as loops and matrix manipulation.

POET includes a combination of both imperative and declarative constructs and developers have

to know them well in order to define their own scripts to perform code translation. Compared

48

with POET’s parameterization scheme, our approach raises the abstraction for program

transformation and thus more aligns with developers’ understanding of program transformations

by allowing direct manipulation of language constructs.

Our approach can be used to add parallelism to serial applications with different parallel

programming models. Unlike most existing DSL solutions, the core portion of SPOT is

application-domain neutral and can serve as the base for building many other DSLs concerning

code changes in different domains.

49

CHAPTER 3

EXTENDING PROGRAMS WITH META-PROGRAMMING

Meta-programming has demonstrated much promise for improving the quality of

software by providing techniques to address problems of modularity, reusability, maintainability,

and extensibility [Spinellis, 2008]. So far, the power of meta-programming has not been applied

deeply in the area of HPC. In order to promote software maintenance and evolution in HPC

systems, we introduce the power of meta-programming to languages that are widely utilized to

solve various problems in HPC software using a MOP [Yue, 2013]. With MOP facilities,

developers are able to build tools to perform arbitrary source-to-source program transformations

for legacy software.

MOPs have been implemented for a few mainstream languages, such as C++ and Java

[Chiba, 1995; Tatsubori et al., 1999; Python, 2008]. Nevertheless, most of the existing MOPs are

mainly for object-oriented languages. Although the MOP mechanism relies greatly on the object-

oriented paradigm to maintain the meta-level, the base-level language does not have to be object-

oriented [Kiczales et al., 1993].

There are no MOPs available for Fortran or C. In the HPC community, there is a

substantial base of scientific code written in Fortran or C [Loh, 2010]. As commonly agreed, it is

usually very costly to evolve legacy software on a large scale [Bennett and Rajlich, 2000]. The

procedural paradigm and lower-level programming constructs make applications coded in these

two languages even more challenging to maintain and evolve [Loh, 2010].

50

Inspired by the ideas of existing MOPs, we have implemented two compile-time MOPs:

OpenFortran for Fortran and OpenC for C, in order to support program adaptation for HPC

needs. Our design objective is to enable program transformation for programs in Fortran and C in

a straightforward and transparent way. With facilities provided by OpenFortran and OpenC,

developers are able to implement libraries that represent different types of concerns (e.g.,

crosscutting concerns and parallelizing concerns) in HPC software. We have used these MOPs to

build exemplary libraries as case studies to demonstrate their capabilities. In this chapter, we

describe the mechanism of extending a procedural programming language via a MOP, as well as

the implementation details of OpenFortran and OpenC.

3.1 OpenFortran: A MOP for Extending Fortran Programs

Fortran is one of the first high-level languages that have been widely utilized in the

scientific computing community [Loh, 2010]. For about every ten years, Fortran has evolved by

the inspiration of new ideas and concepts that have appeared in the field of computer science,

especially software engineering [Decyk et al., 1997]. For instance, from the emergence in the

1950s to the first standard in 1966 (Fortran 66), Fortran dominated programming in the academic

and scientific areas due to the advantages of subroutines, independent compilation and often

efficient implementations. Fortran 77 was another widely used version whose standard was

established in the face of the pressure from other high-level languages, such as C and Ada. A

significant improvement could be seen in the Fortran 90 standard. It incorporated the object-

oriented paradigm, user defined data types, array syntax, and dynamic patching [Decyk et al.,

1997]. With Fortran 90, programmers may express the idea of encapsulation and inheritance, the

two most foundational features of object orientation. Fortran 2003 was another major revision

that included a number of new characteristics, such as enhancements for object-oriented

51

programming, derived data types and input/output [Adams et al., 2008]. The most recent version

of the Fortran standard is Fortran 2008 which was established in September 2010 as a minor

upgrade to Fortran 2003 [Reid, 2008].

3.1.1 OpenFortran Design Architecture

OpenFortran can be used to facilitate software maintenance and evolution in systems

coded in Fortran of various versions. The primary motivation for OpenFortran is to solve

software evolution needs in HPC while avoiding performance degradation. Similar to OpenC++

[Chiba, 1995] and OpenJava [Tatsubori et al., 1999], OpenFotran is mainly a mechanism for

library developers who are responsible for developing transformation libraries with the facilities

provided by OpenFortran. The libraries work at the meta-level providing the capability of

structural reflection to inspect and modify static internal data structures. OpenFortran also

supports partial behavioral reflection, which assists in intercepting function calls and variable

accesses to add new behavior to base-level programs written in Fortran. The benefit to

application programmers is that they can use the libraries to translate existing legacy application

code in a transparent and repeated way.

By their nature, most systems in HPC are computationally intensive and thus applying

transformations should not impair the overall performance. Therefore, we pursued an

implementation of OpenFortran that offers control over compilation rather than over the run-time

execution in order to avoid run-time penalties.

In the infrastructure shown in Figure 3.1, the base-level program is Fortran source code.

The meta-level program refers to the libraries written in C++ to perform transformations on the

base-level code. OpenFortran takes the meta-level transformation libraries and base-level Fortran

code as input and generates the extended Fortran code. The extended Fortran code is composed

52

of both the original and newly generated Fortran code that can be compiled by a traditional

Fortran compiler like gfortran [GFortran].

Recall that the research questions Q1 (i.e., how to build a parser for recognizing

programs coded in a target language, Fortran in this case?) and Q3 (i.e., how to perform the

underlying complex transformations?) can be answered by using existing programming

transformation systems. There are several mature PTEs available for us to choose from. When

doing so, we mainly evaluated each system from the following criteria: 1) whether it supports an

object-oriented programming (OOP) language to specify code transformations (A MOP by

nature is more natural to be implemented in an object-oriented context), 2) whether it can accept

language specifications for real languages, 3) whether it supports source-to-source translation, 4)

whether it can be applied reliably, 5) whether it supports Fortran, and 6) whether it has been used

to address industrial strength problems and has been applied to a large-scale code base. Out of

several potential PTEs, we chose ROSE [Quinlan, 2012], because it meets all the six criteria and

it integrates the Open Fortran Parser (OFP) [OFP link] (similar name, but a different project from

our OpenFortran) as a front-end to support Fortran 77/95/2003. ROSE is an open source

compiler infrastructure for building source-to-source transformation tools that are able to read

Figure 3.1 Overview of the OpenFortran transformation process

53

and translate programs in large-scale systems [Quinlan, 2012], whose infrastructure is shown in

Figure 3.2. It is powerful and flexible in supporting program translation by providing a rich set of

interfaces for constructing an AST from the input source code, traversing and manipulating and

regenerating source code from the AST.

Though powerful in supporting specified program transformations, it is quite a challenge

for average developers to learn and use ROSE. Manipulation of an AST is quite different than

most programmers’ intuitive understanding of program transformation. In contrast, the MOP

mechanism of program transformation allows direct manipulation of language constructs (e.g.,

variables, functions, and classes) in the base-program via the interfaces provided. Through a

MOP, some language constructs, such as the definition of a function or a module, that are not a

first-class citizen can be promoted to first-class to allow for construction, modification and

deletion [Kiczales et al., 1991].

The interfaces a MOP can provide may manifest as a set of classes or methods so that

Figure 3.2 ROSE infrastructure (taken from [Quinlan, 2012])

54

users can create variants of the default language implementation incrementally by sub-classing,

specialization, or method combination [13]. In a MOP implemented in a class-based object-

oriented language, the interfaces typically include at least the basic functionality of instantiating

a class, accessing attributes and invoking methods. For instance, in OpenC++ [12], developers

are allowed to define meta-classes specializing in certain types of transformation by sub-classing

standard built-in meta-classes.

The working mechanism of OpenFortran can be described as source-to-source translation

performed in the following steps:

• An AST is built after parsing the base-level Fortran source code and the top-level

definitions are identified.

• The AST is traversed. For all targeted top-level definitions, a corresponding meta-

object is constructed.

• The member function in a meta-object, OFExtendDefinition, is called to

modify the sub-tree to perform transformations.

• The sub-trees modified or created by all meta-objects are synthesized and

regenerated back to Fortran code, which is then passed on to a traditional Fortran

compiler.

3.1.2 OpenFortran Implementation Details

The provide solution to Q2, we designed OpenFortran in such a way that the meta-level

program contains multiple scopes and meta-objects of different types corresponding to different

high-level entities in Fortran. One design goal is to make it applicable to Fortran code written in

different versions. For example, the concept of a module as a data structure was introduced in

Fortran 90 and the class type declaration statement supporting object-oriented programming

55

appeared in Fortran 2003. Therefore, for code in versions before Fortran 90, only procedure-wide

and project-wide translations are needed to create a translator.

3.1.2.1 Built-in Meta-classes

OpenFortran provides support to develop translation tools that are able to transform

Fortran code in multiple scopes, e.g., manipulating a procedure, a module, or even a whole

project including multiple files. As an example, in the case when a programmer would like to

create a new subroutine in a module, the translation tools need to be designed to focus the

transformation at the module level. If a user would like to create a procedure and call it from the

main program, the translation scope becomes the whole project. It is worth noting that project-

wide translations are realized through procedure-wide, module-wide and class-wide translations.

Usually, a typical transformation tool involves translations in multiple scopes.

According to this design goal and based on the backward compatible syntax of

Fortran2008, we have designed four types of meta-objects: global meta-objects (objects of class

MetaGlobal), module meta-objects (objects of class MetaModule), class meta-objects

(objects of class MetaClass) and procedure meta-objects (objects of class

MetaProcedure). MetaGlobal, MetaModule, MetaClass and MetaProcedure are

subclasses of class MetaObject and need to be inherited by user-defined meta-classes to apply

transformations by calling methods deliberately defined within them for specific constructs (e.g.,

a procedure, a module or a class), or for a whole project.

To allow application programmers to use libraries developed with OpenFortran by simply

adding annotations, we invented a set of keywords for the Fortran grammar to identify the

annotations associated with OpenFortran. Table 3.1 summarizes the features of these keywords,

including the type of meta-object a keyword corresponds to, the place(s) in the application code

56

where a keyword is added, and the translation scopes. For instance, META_MODULE is a new

keyword designed to designate a meta-module, which is defined in the library code, to a module

definition in application code and the translation scope is module-wide. The keywords will be

illustrated in detail in the next section concerning how to use META_MODULE to add an

annotation.

The member function OFExtendDefinition() declared in MetaObject should be

overridden by all subclasses to perform callee-side adaptions for the definition of a module, a

class and a procedure (e.g., changing the name of a class, adding a new subroutine in a module,

and inserting some statements in a procedure). OpenFortran also supports caller-side translations

via overriding the following member functions of MetaObject:

• OFExtendFunctionCall(string funName): to manipulate a function

invocation where it is called

• OFExtendVariableRead(string varName): to intercept and translate

the behavior of a variable read

• OFExtendVariableWrite(string varName): to intercept and translate

the behavior of a variable write

Translating the definition of a function is the basic level that OpenFortran supports. The

manipulation of a module definition, a file or even the whole project is ultimately delegated to

that of function definition. Therefore, in the implementation of OpenFortran, MetaGlobal is

composed of a set of MetaProcedures, MetaModules and MetaClasses;

MetaModules and MetaClasses consist of several MetaProcedures; and most of the

facilitating member functions are defined in the class of MetaProcedures.

57

Usually, different types of meta-objects can be used collaboratively in a transformation

tool. If multiple-level translations are involved, the correct order of invoking meta-objects has to

be arranged carefully to avoid conflicts. Developers of transformations are advised to perform

translations first on a low-level then a higher level; for example, translating a member procedure

contained by a module before performing the module-wide translations.

3.1.2.2 Code Normalization

Code normalization refers to a type of transformation that reduces a program that has

multiple possible representations to a standard or normal form in order to decrease its syntactic

complexity. OpenFortran is able to normalize code written in different styles of syntax. For a

GPL like Fortran, programmers have multiple choices in coding with different syntax to realize

the same semantics, as long as their code conforms to a Fortran grammar. However, the variety

in syntax leads to complexity when performing transformations. For example, sup-pose we

would like to intercept all function calls in a program. For a statement like “Y=sin(X) + cos(Z)”

the translation should not simply find the statement and insert helper functions before and after

Keywords Type of meta-
object

Source Location for
Annotations

Translation
Scope

META_
PROCEDURE

MetaProcedure
program, function,

subroutine, subprograms
definition

procedure

META_CLASS MetaClass Derived type defintion class

META_MODULE MetaModule Module definition module

META_GLOBAL MetaGlobal Program defintion whole project

Table 3.1 The extended keywords of OpenFortran in Fortran grammar

58

it. If so, miscalculation may be incurred because the statement contains two function calls. A

transformation framework’s ability to normalize source code greatly affects the precision of the

final transformation.

Two types of normalization are supported in OpenFortran: function normalization and

data normalization. The purpose of function normalization is to make sure that no statement

contains more than one function call. This is realized by adding new temporary variables and by

inserting the appropriate types of statements to replace each function call while preserving the

semantics of the code. The normalization process iterates over all statements in order to identify

function calls, especially those statements whose component parts may contain direct function

calls (e.g., the condition or increment part in a loop statement), because condition or increment

are in the form of expressions instead of standalone statements.

The purpose of data normalization is to rewrite original code to guarantee that for a

particular variable the read and write actions should not appear within one statement. The

normalization process loops over source code to search for potential points for normalization,

particularly in assignment statements and expressions. For example, in a statement “a=b+a,”

both a and b are of integer type and the normalized code would look like:

 integer temp
 temp = a
 a = b + temp

Code normalization plays an important role in the process of code transformation, but the

overhead is quite large and also the normalized code may look slightly different from the original

code. However, developers typically do not access the generated copy of the transformed code;

its purpose is to serve as an intermediate step before compilation by the native Fortran compiler.

Therefore, we only choose to perform function or data normalization whenever a user-defined

meta-class overrides OFExtendFunctionCall, OFExtendVariableRead, or

59

OFExtendVariableWrite to perform caller-side translations and whenever it is necessary

when OFExtendDefinition is being overridden.

3.1.2.3 Lazy Evaluation

It can be very expensive, with regard to time and space, to build and maintain a complete

meta-level for all of the source code within a program. To reduce overhead, instead of creating a

meta-object for each high-level definition beforehand, our approach only constructs meta-objects

for those of interest at the last moment. Suppose we would like to rename a function definition,

the transformation library is supposed to locate the place where the method is defined and all

other points in the code where the method is invoked, and replace its name with the new one. In

this case, it suffices to construct meta-objects only for this function definition and all other

function definitions within which this method is called. Lazy evaluation is made possible by the

underlying transformation engine ROSE that maintains a whole AST for the source code. ROSE

also provides an interface to traverse the AST to find the nodes that meet certain requirements.

3.2 OpenC: A MOP for Extending C Programs

Similar to OpenFortran, in order to automate program translations for large-scale legacy

C programs, we have implemented a MOP for C that allows programmers to specify source-to-

source program transformation for applications written in C. Due to much similarity with

OpenFortran, we present OpenC in a different way by focusing on the illustration of how to use

MOP APIs to build a library to fulfill transformation purposes, in addition to some features

peculiar to OpenC, such as the keywords created and the way to apply a transformation library.

60

3.2.1 Benefits of OpenC

The design focus of OpenC MOP is to provide automated program transformations in a

manner that is transparent to the developer (i.e., the developer does not need to understand the

complexities of using a program transformation engine), such that a developer only needs to add

simple annotations to use the libraries. For instance, we would like to know the time spent on

executing each function call in the source code, as shown in Figure 3.2.

Profiling is a useful technique to help developers obtain an overview of system

performance. A general way to implement this is to create a helper function, say

profiling(char* pidentifier), that calculates the execution duration by comparing

the system time just before and after a function call. The only parameter is the identifier uniquely

indicating a function call by splicing the caller’s function name and the callee’s function name.

For our purpose, we cannot simply insert profiling before and after every statement

containing function calls in the main function because function calls to getArea and

getCircumference are embedded in a condition statement as indicated by line 4 in Figure

3.3. Instead, we need first to rewrite the original code to normalize the function calls by adding

temporary variables to have each function call appear in a standalone assignment statement, and

then insert profiling before and after each standalone assignment statement, as shown in

Figure 3.4.

1. int main(){
2. int radius;
3. scanf(“%d”, &radius);
4. if(getArea(radius)>10 && getCircumference(radius)<100)
5. return 1;
6. else
7. return 0;
8. }

Figure 3.3 Example source code to be transformed

61

In this example, with only three function calls (getArea, getCircumference and

scanf) in the main function, it may not seem like a challenge to code manually for the purpose

of implementing the profiling functionality. However, the situation becomes labor-intensive and

error-prone when many more functions or more scenarios where function calls are embedded in

statements are involved, which is always the case in larger applications. More importantly, after

adding the profiling functionality, the original code gets polluted and modifying code back and

forth to enable and disable this functionality is extremely tedious.

With OpenC, the process of normalizing function calls and invoking profiling around

them in a large-scale system can be automated via code generation techniques. OpenC provides

the ability to build a profiling library that automatically generates and integrates a new copy of

the original application code and profiling code by manipulating the abstract syntax tree (AST).

The original code is kept intact. To apply the profiling library, only a simple annotation is

required to add to the main function, which will be elaborated in Section 3.2.4.

1 int main(){
2 int radius;

3 profiling(“main:scanf”);
4 scanf(“%d”, &radius);
5 profiling(“main:scanf”);

6 profiling(“main: getArea”);
7 float tempVar1 = getArea(radius);
8 profiling(“main: getArea”);

9 profiling(“main: getCircumference”);
10 float tempVar2 = getCircumference(radius);
11 profiling(“main: getCircumference”);

12 if(tempVar1 >10 && tempVar2 <100)
13 return 1;
14 else
15 return 0;
16 }

Figure 3.4 Example source code after transformation

62

3.2.2 OpenC Design and Implementation

To implement OpenC, the base-level program is written in C and the meta-level program

can be written in C++. As with OpenFortran, OpenC uses the ROSE transformation engine,

which integrates Edison Design Group (EDG) [EDG Link] as the frontend for C programs

[Quinlan, 2012]. The libraries developed with OpenC work at the meta-level providing the

capability of structural reflection to inspect and modify internal static data structures. The MOP

also supports partial behavioral reflection, which assists in intercepting function calls and

variable accesses to add new behavior to base-level programs.

Figure 3.5 shows the high-level infrastructure where OpenC is used to perform source-to-

source program transformations. The base-level application is C source code and the meta-level

library is developed with facilities provided by the MOP to perform transformations on the base-

level code. The MOP takes the meta-level transformation library and base-level C code as input

and generates the transformed C code to address the features expressed in the meta-program. The

generated C code, which can be compiled by a traditional C compiler, is composed of both the

original and newly translated C code that is placed in specific places in the program.

Figure 3.5 Overview of the OpenC MOP transformation process

63

OpenC provides facilities to develop translation libraries that are able to transform C

code in multiple scopes (e.g., manipulating a function, a struct, a file or even a whole project

including multiple files). As an example, assume a user would like to create a new function A

and call it from another function B. The translation scope can be the file (if function A and B are

in the same file) or the whole project space (if A is generated in a different file than B).

Four types of meta-objects, as indicated in Table 2, are designed to support

transformations of multiple scopes. They are types of MetaFunction, MetaStruct, or

MetaGlobal. The three built-in meta-classes are all subclasses of the class named

MetaObject. Library developers need to define their own meta-class by sub-classing one of

the three meta-classes and thus be able to access attributes and invoke methods carefully

designed within them. The member function translateDefinition() declared in

MetaObject should be overridden by all subclasses to perform adaptions for the definition of a

function or a struct (e.g., adding a new variable in a struct, or inserting statements in a function).

The MOP also supports caller-side translations by overriding the following member functions

defined in MetaObject:

• translateFunctionCall(string funName) --- intercept function invocation

and translate how it is invoked

• translateVariableRead(string varName) --- intercept and translate the

behavior of a variable reading

• translateVariableWrite(string varName) --- intercept and translate the

behavior of a variable writing

Translating the definition of a function is the finest level of granularity OpenC supports.

Since a C program is composed of definitions of functions (we ignore union and enum in our

64

discussion here on purpose due to simplicity), the manipulation of a file is ultimately delegated

to that of function definition. Therefore, in our implementation for OpenC, a MetaGlobal is

composed of a group of MetaFunctions and MetaStructs, and most of the facilitating

member functions are defined in the class of MetaFunctions.

Key Words Meta-Objects Location Scope

META_FUNCTION MetaFunction Function definition The
function

META_STRUCT MetaStruct Struct definition The struct

META_GLOBAL MetaGlobal Main function The whole
project

3.2.3 Implementing a Library in OpenC

In this subsection, we illustrate how to use the MOP facilities to implement the profiling

library we mentioned previously and how the library can then be used to add the profiling

capability to the example main function in a transparent way. For this case, we can choose to

implement a meta-class inherited from MetaFunction to transform method invocations within

a function. Or, we can also choose to subclass from MetaGlobal to perform file-wide (i.e., any

functions within current file containing method invocations will be affected) or even project-

wide transformations that translate all the files in a system by merging individual ASTs for each

file into a single large AST. Here in the example, we choose MetaGlobal as the superclass.

To build the library, we override translateDefinition() to specify the

translations. Figure 3.6 shows the code snippet implementing the overridden

Table 3.2 The keywords used as annotations in OpenC

65

translateDefinition(). The functionList in line 7 is a member variable defined in

MetaGlobal as a container holding the MetaFunction objects representing all function

definitions in the file. The for-loop iterates through these objects to perform translation. Line 8

and line 19 work in pairs to operate on a global scope stack, pushing current scope (a function

body in this case) onto the stack, which implies that all the following operations are done within

current scope and popping current scope when translation is finished. Line 9 calls a member

function functionNormalization() defined in MetaFunction to normalize function

calls in the current function. Line 11 collects all function-call expressions and line 12 loops

through them to identify the statements in which a function-call expression is embedded. For

each statement containing a function call, two additional function-call statements are generated

respectively by calling buildFunctionCallStmt() with the first parameter indicating the

function name (profiling), and the second parameter as the parameter list. The parameter list here

contains only the identifier of the function call, composed by combining the caller’s function

name (main) and the callee’s function name (scanf, getArea and getCircumference). The

generated two function-call statements then are inserted before and after the statement, shown in

line 16 and line 17. The resulting translation is indicated in Figure 3.4.

To allow a software developer to use libraries developed with OpenC, the developer

simply adds annotations to their base-level programs. ROSE is able to preserve all comments

that appear in the source code, which are saved with the AST and can be obtained later by

traversal. We have taken advantage of this feature by allowing a developer to add annotations to

source code as comments. The annotation is used to specify a meta-object using keywords and

special tokens, e.g., “//@OC::META_FUNCTION metaFunName.”

66

Our framework provides a set of keywords to identify the annotations. Table 3.2

summarizes the features of these keywords, including the type of the meta-object corresponding

to each keyword, the place in the application code where a keyword is added, and the translation

scope. For instance, META_FUNCTION is a new keyword designed to designate a meta-function

(i.e., the translation scope is function-wide), which is defined in the library code, to a function

definition in the base code.

As denoted by the user comment in the first line in Figure 3.7, it is possible to use the

profiling library by simply annotating the source code with a user comment starting with

“@OC:: .” In the annotation, the keyword META_GLOBAL is used to associate a MetaGlobal

object with the main function to perform file-wide or project-wide translation. With the purpose

1. class ProfilingMetaClass: public MetaGlobal{
2. public:
3. ProfilingMetaClass(string name);
4. virtual bool translateDefinition();
5. };

6. bool ProfilingMetaClass::translateDefinition(){
7. for(int i=0; i<functionList.size(); i++){
8. pushScopeStack(functionList[i]->getFunctionBodyScope());
9. functionList[i]->functionNormalization();
10. vector<SgFunctionCallExp*> funCallList = functionList[i]\

 ->getFunctionCallList();
11. for(int j=0; j<funCallList.size(); j++){
12. string callerName = functionList[i]->getName();
13. string calleeName = get_name(funCallList[j]);
14. SgStatement* targetStmt = functionList[i]\
 ->getStmtsContainFunctionCall(funCallList[j]);
15. string identifier = callerName + ":" + calleeName;
16. insertStatementBefore(targetStmt,\
 buildFunctionCallStmt("profiling", \
 buildParaList(identifier)));
17. insertStatementAfter(targetStmt,\
 buildFunctionCallStmt("profiling",\
 buildParaList(identifier)));
18. }
19. popScopeStack();
20. }
21.}

Figure 3.6 User-defined meta-class inherited from MetaGlobal

67

of getting the distribution of execution time among all function calls in an application, the meta-

file object is instantiated from the meta-class ProfilingMetaClass, which can be replaced

by any other meta-class as required to perform desired transformation.

Profiling is a typical example of a crosscutting concern that cannot be modularized in a

single place with traditional programming paradigms such as OOP and may be spread across

multiple modularity boundaries. As demonstrated by the sample profiling library, OpenC can be

used to support AOP in C by separating the implementation of the utility function of profiling

with the core application. However, a MOP is more than AOP in that in addition to supporting

code transformation around join points, a MOP can also be used to express more fine-grained

program transformations at arbitrary places. The MOP-based approach is superior over the AOP-

based approach in some cases because MOPs provide a richer interface that can be used to deal

with a wider range of transformation challenges in more diverse scenarios that are not limited to

crosscutting concerns.

 //@OC::META_GLOBAL profilingMetaClass
1. int main(){
2. int radius;
3. scanf(“%d”, &radius);
4. if(getArea(radius)>10 && getCircumference(radius)<100)
5. return 1;
6. else
7. return 0;
8. }

Figure 3.7 Example source code to be transformed

68

3.3 Case Study: Timer Implementation in NAS

This section introduces a case study to illustrate how OpenFortran can be utilized to

improve the modularity of timer implementation in NAS (NASA Advanced Supercomputing)

[NAS Link] projects, which demonstrates more than just crosscutting concerns.

A timer can be added to a program to measure the execution time between any two points

in the program, which is an often-applied method to achieve profiling. A program can have many

timers, each corresponding to a possible location in the program that may need to be modified.

The timers help to understand the distribution of execution time within the program. The timer

information is a crosscutting concern that is spread across several locations within a program.

Manually including the timer information in every program can affect the productivity of the

programmer during development and be a detriment to program comprehension during code

maintenance. This case study illustrates how timers are implemented with OpenFortran and how

our approach can offer improvement.

We used the NAS parallel benchmarks (NPB-3.2) for our analysis. The timer is

implemented in a benchmark as four function calls: 1) timer_clear, 2) timer_start, 3)

timer_end, and timer_read. The first two functions are executed before the point of

interest to reset and start a timer and the last two functions are executed after the point of interest

to end a timer and to read the time elapsed. Every function call requires a unique id to identify

the timer. In some benchmarks such as EP (Embarrassingly Parallel), a Logical type variable

timers_enable is used to globally enable or disable the timer functionality. In some other

benchmarks, every timer function call is made after checking the variable istimeron. This

variable is read from a file so that execution can include or exclude the timer automatically and

programmers do not have to modify the source code. The lines of code for the timer

69

implementation in five NAS benchmark programs are shown in Table 3.2. As shown in the table,

the lines of code (LOC) in the timer implementation vary from less than 1% to 22% of the total

source code.

Benchmark Name Total LOC Timer LOC Number of Timers

EP 148 33 (22%) 3

CG 479 50 (10%) 3

MG 828 63 (8%) 8

LU 2577 71 (3%) 11

UA 4763 7 (<1%) 1

With OpenFortran, the timer implementation can be separated completely. The base

program remains untouched, with modifications described in the library developed with

OpenFortran APIs. The library that implements a timer for EP is shown in Figure 3.8 and part of

the code generated is shown in Figure 3.9. Because the base program has no code regarding the

timer implementation (i.e., it is only included when a programmer asks for the feature), there is

no need to toggle on/off timers.

The meta-class TimerEPMetaClass inherits MetaGlobal to perform project-wide

transformations, i.e., all Fortran files in EP fall into the scope of transformation specified in the

meta-class. As shown in Figure 3.8, lines 12 to 19 describe how to modularize the

implementation of timers with different Ids for all function invocations to the random number

generator vranlc. All calls to this function are affected and the OpenFortran approach

Table 3.3 Timers in some NAS parallel benchmarks

70

demonstrates the support for AOP in Fortran, which is similar to the profiling example described

in Section 3.2. Lines 5, 7, and 8 in Figure 3.9 reflect the code modifications in the original source

program.

1. class TimerEPMetaClass: public MetaGlobal{
2. public:
3. TimerEPMetaClass (string name);
4. virtual bool OFExtendDefinition();
5. };

6. bool TimerEPMetaClass:: OFExtendDefinition(){
7. int timerN=3, timer1=1,;
8. for(int i=0; i<functionList.size(); i++){
9. pushScopeStack(functionList[i]->getFunctionBodyScope());
10. functionList[i]->functionNormalization();
11. vector<SgFunctionCallExp*> funCallList = functionList[i]\

 ->getFunctionCallList();

12. for(int j=0; j<funCallList.size(); j++,timerN++){
13. if(funCallList[j]->getName()== “vranlc”){
14. SgStatement* targetStmt = functionList[i]\
 ->getStmtsContainFunctionCall(“vranlc”);
15. insertStatementBefore(targetStmt,\
 buildFunctionCallStmt("timer_start", \
 buildParaList(to_string(timerN))));
16. SgStatement* targetStmtStop = insertStatementAfter(targetStmt,\
 buildFunctionCallStmt("timer_stop",\
 buildParaList(to_string(timerN))));
17. insertStatementAfter(targetStmtStop, buildFunctionCallStmt("print", \
 buildParaList(“*”, “‘Random numbers: ’”,\
 buildFunctionCallStmt(“timer_read”,\
 buildParaList(to_string(timerN)))))));
18. }
19. }
20. if(functionList[i]->getName()!= “EMBAR”){
21. popScopeStack();
22. continue;
23. }
24. SgStatement* targetStmt1 = getFunctionCallStmt(“mpi_barrier”);
25. SgStatement* targetStmt2 = insertStatementAfter(targetStmt1,\
 buildFunctionCallStmt("timer_clear",\
 buildParaList(to_string((timer1))));
26. insertStatementAfter(targetStmt2,buildFunctionCallStmt("timer_start"\
 buildParaList(to_string((timer1))));

27. SgStatement* targetStmt3 = getContinueStmt(“160”);
28. SgStatement* targetStmt4 = insertStatementAfter(targetStmt3,\
 buildFunctionCallStmt("timer_stop",\
 buildParaList(to_string((timer1))));
29. popScopeStack();
30. }
31.}

Figure 3.8 Timer implementation in NAS EP with OpenFortran

71

However, there is a particular timer as shown in Figure 3.9, whose Id equals 1. This timer

is started after the function call to mpi_barrier and stopped after a continue statement with

the label (i.e., the executable statement number) being 160. To carry out this type of code

transformation requires more elastic methods for expressing the points of interest and more rich

types of actions desired. The MOP approach is able to fulfill this goal attributing to the clear

representation, at the meta-level, of language entities and their relations in the base-level

programs. Lines 24 to 28 in Figure 3.8 show a more fine-grained type of translation to implement

this timer. Lines 24 and 27 respectively locate the target statement and add a function call to

invoke the timer function.

3.4 Summary

Crosscutting concerns usually affect multiple places in a code base, so supporting AOP in

the target programming language (C and Fortran) has the potential to increase modularity.

However, AOP approaches are limited to crosscutting concerns, which cannot satisfy the

demands for the support of more diversified and flexible transformations. With a MOP, this goal

can be achieved, which completely separates the implementation of utility functions and the core

1. program EMBAR META_GLOBAL TimerEPMetaClass
 ……
2. call mpi_barrier(MPI_COMM_WORLD, ierr)
3. call timer_clear(1)
4. call timer_start(1)
 ……
5. call timer_start(3)
6. call vranlc(2 * nk, t1, a, x)
7. call timer_stop(3)
8. call print *, ‘Random Numbers: ’, timer_read(3)

 ……
9. 160 continue
10. call timer_stop(1)

Figure 3.9 Transformed EP source code with timer implementation

72

application, because code modifications are accomplished in a generated copy of the original

code and the application code is kept intact.

A closely related work is High-Performance Fortran (HPF), which extends Fortran 90 to

provide support for efficient parallel computing [Loveman, 1993]. Programmers are able to assist

the compiler and the runtime system in choosing strategies for distributing arrays across multiple

processors. In HPF, a set of directives are available that enable developers to assist the compiler

and the run-time execution to decide the best way to distribute arrays across multiple processes

[Loveman, 1993]. The separation between the base-level and meta-level interface is realized by

inserting the primitives into what would originally be comments in Fortran. Similar to MPI

[Gropp et al., 1999], HPF targets data parallel applications for distributed memory systems,

which is different from OpenMP [OpenMP Review Board, 2000], which targets shared memory

systems with multiprocessors. HPF was designed solely for the purpose of data parallelization

with compiler directives and new keywords, but OpenFortran can be used to perform arbitrary

code changes. OpenFortran is not limited to any type of parallel models. As shown in Section

4.3, our approach can be used to automate the insertion of OpenMP directives into Fortran

applications and has the potential to support more parallel models, such as MPI, CUDA

[Nickolls et al., 2008], and even HPF.

3.4.1 Lessons Learned

It is worth noting that we handle the annotation location differently in OpenC compared

to OpenFortran. In OpenFortran, developers can apply transformation libraries by associating a

user-defined meta-class name with a keyword (as listed in Table 3.1) right after the definition of

a procedure or a module and the parser can recognize the new keywords specifically defined for

73

OpenFortran. However, in OpenC, we allow developers to do so in the format of a comment

directive.

The difference came from our experience in manipulating the ROSE project. As shown in

Figure 3.2, ROSE uses the Open Fortran Parser [OFP Link] for parsing Fortran source code and

the EDG front-end [EDG Link] for C and C++ [Quinlan, 2012]. Because ROSE and Open

Fortran Parser are both open source, we spent considerable effort in extending ROSE in order to

support OpenFortran. For example, we extended the Open Fortran Parser so that it can correctly

parse the OpenFortran keywords; we also needed to make changes to ROSE source files that are

responsible for building an AST after parsing source code with OpenFortran annotations.

We decided not to follow the same strategy as OpenFortran, for annotation attachment

when constructing OpenC because of 1) the complexity involved in ROSE extension, and 2) the

inaccessibility of EDG front-end source code (i.e., EDG is not open-source). We then took

advantage of ROSE’s support for preserving all comments that are obtainable through traversal,

so that developers can add annotations to target source code as comments. In this case, no

extension to ROSE or the front-end parser is needed, which greatly reduced the time of

implementation.

In traditional approaches, library users are often forced to learn the specifications on how

to use a library’s interfaces. However, to use libraries developed with OpenFortran or OpenC,

the only requirement is to attach the correct annotation to the source code in the correct place,

whereby the underlying transformations are completely transparent to the users. It is also

convenient to unplug the libraries by simply removing the annotation. The application code is

kept intact because translations are performed on a generated copy of the original code. For

systems in HPC where runtime efficiency is a prime concern, the libraries built with

74

OpenFortran or OpenC perform source-to-source transformations at pre-compile-time, which

avoids runtime penalties.

MOP facilities offered by OpenFortran or OpenC are more straightforward with respect

to expressing the design intent of program transformation, compared to the APIs provided by the

underlying ROSE transformation engine, which involves much manipulation of ASTs. However,

it is still very challenging for developers attempting to understand the idea of meta-programming

and to use the APIs provided by MOPs. In addition, it is usually the case that MOP programs are

created to serve as a library for the purpose of enabling certain types of code transformation.

Conflicts very likely occur when the functionality provided by a library can no longer satisfy the

needs of application programmers. It will be beneficial for programmers if there is a simpler way

to tailor existing libraries to meet their new needs or ideally even build a new library, without

having to learn how to use OpenFortran or OpenC. This is particularly beneficial for Fortran

developers, because to build a library with MOPs, they have to learn a totally different language

(C++) with a different paradigm (object-oriented). We present our solution to this challenge in

the next chapter.

75

CHAPTER 4

SPOT: A DSL FOR SPECIFYING PROGRAM TRANSFORMATIONS

Our experience has shown that the MOP mechanism, as a form of program extension, can

be used to address a wide range of problems by facilitating the implementation of source-to-

source program translators, especially suitable for, but not limited to those dealing with

crosscutting issues. However, meta-programming is still a considerable challenge for traditional

developers to learn and use, because it operates on source code and a transformation

specification, which is quite distinct from the classic programming style familiar to most

developers. The gap between the traditional programming paradigm and the intensive meta-

programming techniques may breed accidental complexities involved in building transformation

libraries with MOP facilities. Therefore, it is desirable to reduce the accidental complexities

through freeing average developers from the burden of programming with an unfamiliar

paradigm.

In retrospect, we have noticed that several coding patterns appear repeatedly when using

OpenFortran; for instance, iterating over an array of meta-objects to identify an interesting point

of transformation, or adding, removing or altering an entity. In order to make the idea of MOPs

more accessible to traditional developers, we investigated techniques of code generation and

DSLs. To free developers from the burden of programming with the APIs of OpenFortran, we

have created a DSL, called SPOT (Specifying PrOgram Transformation), to provide a higher

level of abstraction for expressing program transformations. The design goal is to provide

76

language constructs that allow developers to perform direct manipulation on program entities and

hide the accidental complexities of using OpenFortran and ROSE.

4.1 SPOT Design and Implementation

To raise the level of abstraction of program transformation, high-level programming

concepts (e.g., modules, functions, variables, and statements) are used in SPOT as language

constructs. Built-in functions are provided to perform systematic actions on programming

concepts, such as add, delete, and update. Recent research shows that the majority of changes

made to existing code are systematic, developers adding, deleting and updating code in a similar

but not identical manner [Kim et al., 2005; Nguyen et al., 2010]. The core syntax and semantics

of SPOT are listed in Table 4.1.

For developers, coding with SPOT means to manipulate the entities of Fortran code in a

direct manner, which may more resemble their thoughts on program transformation than coding

with other facilities such as existing meta-programming tools or platforms. In addition,

developers can focus their attention more on specifying desired code modification using the

functional SPOT constructs while not needing to care about the underlying transformations.

Therefore, to use SPOT, developers do not need deep knowledge about program transformation.

4.1.1 SPOT Syntax and Semantics

Figure 4.1 demonstrates an example of SPOT code with the basic structure and language

constructs. The purpose of this SPOT program is to perform a source-to-source transformation

for a function named fun, so that whenever the variable vName is assigned with a value, both its

name and the value are saved to a file. As indicated by the code snippet, a typical SPOT program

starts with a keyword “Transformer,” followed by a user-defined name, “printResult2File” in

this case, which is used as the file name of the generated meta-program (described in the next

77

section). A transformer is usually composed of one or more scope blocks where action

statements, nested scope blocks or condition blocks are included.

Language Constructs 	

Scope Constructs

Project	 Project-wide transformation
File	 File-wide transformation
Module	 Indicate module definition
Class	 Indicate class definition
Function	 Indicate function definition

User Defined Type
Integer	 Define an integer variable
String	 Define a string variable

Basic Constructs

FunctionCall	 Indicate expression of function call 	
VariableRead	 Indicate expression of variable read
VariableWrite	 Indicate expression of variable write
VariableDecl	 Indicate expression of variable

declaration
Statement	 Indicate statement of any type
StatementType*	 Indicate statement of a particular

type
Keywords for Scope Block	

Within(construct <name>)
Get the scope of transformation. Supported scopes include a
project, a file, a module, a function, and statements implying a
scope (e.g., condition or loop statement)

Before(<para>*)/Before Perform transformation before an entity
After(<para>)/After Perform transformation after an entity
Keywords for Control Flow	

IF(<expr>*) ELSE
Proceed based on the value of expr

FORALL(construct
<name>/<Pattern>)

List all constructs specified with name

Primary Actions	

Function	 RenameFunction(<oldName>, <newName>)
FindFunctionCall(<funName>)

Variable	

AddVariable(<type>, <name>, <intialValue>)
AddVariables(<type>, <name1>, <name2>,……) //with the
same type
DeleteVariable(<name>)
RenameVariable(<oldName>, <newName>)
FindVariableRead/Write (<name>)

Table 4.1 Overview of SPOT syntax and semantics

78

Statement	

AddStatement(<“stmt*”>) or
AddStatement(<loc>, <targetStmt>, <“stmt”>)
AddCallStatement(<loc>, <targetStmt>, <funName>,
<parameterList>)
DeleteStatement(<“stmt”>) or
DeleteStatement(<loc>, <targetStmt>,<“stmt”>)
ReplaceStatement(<“oldStmt”>, <“newStmt”>)

Auxiliary Functionality	

Retrieve Functions

Function <fun> = GetFunction(<name>)
Module <md> = getModule(<name>)
StatementType %<stList> = getStatement()
Statement %<stList> =
getStatementAll(<“stmt”>/<pattern>)
Statement <st> = GetStatement(lineNumber)
Statement <st> = GetStatement(<“stmt”>/<pattern>) 	
Statement <st> =
GetStatementIndex*(<“stmt”>/<pattern>)
VariableWrite %<vw>=GetVariableWrite(<varName>)
VariableRead %<vr>=GetVariableRead(<varName>)
VariableDecl <vd> = GetVariableDecl(<name>)

Include Block
IncludeCode {source code in Fortran}
IncludeCode {source code in Fortran} into <filename>

Notes:
1. Fortran syntax needs to be included within double quotes “”
2. para can be a construct variable, an expression (expr) or statement (stmt); stmt
indicates a Fortran statement (within double quotes) or a pattern described with %var
substituting for real expressions within a statement; expr indicates an actual Fortran
expression or a pattern described with %var
3. %var is a user-defined variable representing a collection of entities, using $var to
access an element in the collection
4. statementType indicates statement of a particular type (e.g., StatementFOR and
StatementIF)
5. statementIndex indicates the index-th statement with the same stmt or pattern.

The code defines a scope block from line 2 to line 5. “Within (Function fun)” indicates

that the following translation is performed for the function “fun.” Line 3 calls

“GetStatementAssignment” to search out all assignment statements where the variable varName

is at the left-hand side. Line 4 inserts a function-call statement “call SAVE(“varName”,

varName)” after each assignment statement. The operators “%” and “$” are used in pairs with

Table 4.1 Overview of SPOT syntax and semantics (cont.)

79

“%s” indicating the list of all assignment statements matched and “$s” representing any

statement in the list (referring to Table 4.1). The including block (lines 7 to 11) is optional and is

designed for providing additional code needed by the transformer. The functions or variables

defined within an Include block will be directly inserted into the beginning of the file being

translated, unless otherwise specified. The developers are expected to use this section to

implement helper code used by transformers.

A feature of our approach lies in supporting string-based translation. Developers are

allowed to embed Fortran code in a SPOT program. For example in Figure 4.1, line 4 can be

replaced with “AddStatement(After, $s.statement, “call save(“varName”, varName)”)” to

achieve the same effect of adding a function call statement after the statement indicated by

$s.statement, where the last parameter “call save(“varName”, vName)” is actually a Fortran

statement. In addition, a real Fortran statement can also be used as the parameter in

“GetStatement(“stmt”)” to obtain its handler. For instance, as in “Statement

%st=GetStatement(“result=a+b”),” all statements containing “result=a+b” within current

scope are matched and their handlers are put into the list represented by “st.” All embedded

Fortran code should be contained within double quotes for the purpose of differentiation.

1. Transformer printResult2File{
2. Within(Function fun){
3. StatementAssignment %s=GetStatementAssignment(varName);
4 AddCallStatement(After, $s.statement, SAVE, “varName”, varName);
5. }
6. }
7. IncludeCode{
8. subroutine SAVE(varName, value)
9. !code in the subroutine
10. end
11.}

Figure 4.1 An example of a simple SPOT program

80

One side effect of using Fortran statements to match possible translation points is that if

the source code to be transformed has been modified, (e.g., a has been renamed to d as in

“result=d+b”) the transformer will skip this translation point. This is called the lexical pointcut

problem in AOP [Hanenberg et al., 2003]. Another scenario is that instead of matching an exact

Fortran statement, the transformer would like to match a pattern, for instance, matching all

assignment statements with the right-hand side being a plus expression. In order to avoid the

drawback and to support the desired feature, we allow developers to define a pattern with special

literals (e.g., %var1, %var2, %var3…) that can be used to substitute for real expressions in a

Fortran statement. The pattern that matches all assignment statements with their right-hand side

as a plus expression can be depicted as “%var1=%var2+%var3.”

4.1.2 SPOT Design Architecture

Figure 4.2 shows the transformation process after integrating SPOT with OpenFortran. A

SPOT program represents desired translation tasks specified directly with SPOT constructs for

Figure 4.2 Overview of the transformation process with SPOT

81

the source code in Fortran. A code generator is used to automate the translation from the SPOT

program to C++ meta-level transformation code. OpenFortran is responsible for carrying out the

specified transformations on the Fortran base-program with the assistance of the low-level

transformation engine ROSE. As shown in Figure 4.3, the code generator consists of a parser that

is able to recognize the syntax of both SPOT and Fortran and then builds an AST for the

recognized program. A template engine is used to generate C++ code while traversing the AST.

The parser is generated with ANTLR [Parr, 2007] from the grammars of both SPOT and

Fortran expressed in EBNF. We chose ANTLR because it is a powerful generator that cannot

only be used to generate a recognizer for the language, but can also be used to build an AST for

the recognized program, which can then be traversed and manipulated. In Figure 4.4, we list the

core EBNF grammar of SPOT. To implement the generator, we have specified the essential

portion of the Fortran 90 grammar and combined it with SPOT’s grammar. Besides generating a

recognizer for SPOT and Fortran statements, ANTLR creates an AST for an input program.

Figure 4.3 The implementation structure of the Code Generator

82

programFile
 :'Transformer' ID '{' transformBody (';' transformBody)* '}'
 -> ^(TRANSFORMER_ND ID transformBody+);
transformBody
 :transformScope '{' transformStatement+ '}'
 -> ^(TFBODY_ND transformScope transformStatement+)
 |'IncludeCode' '{' statement+ '}' ('into' fileName)
 -> ^(SOURCE_CODE statement+);
transformScope
 : 'Within' '(' scopeIndicator ID ')'
 -> ^('Within' scopeIndicator ID);
scopeIndicator
 :'Function'
 |'Module'
 |'Project'
 |'Statement';
pointIndicator
 :'FunctionCall'
 |'VariableRead'
 |'VariableWrite'
 | statementTypeName //collect all statements of a type
 | '"' statement '"';//collect all statements with original source code, e.g. "a=b+c"
transformStatement
 : operation
 | subTransform
 | spotCondition;
spotCondition
 :'IF''(' condition ')''{' transformStatement '}'

-> ^('IF' condition transformStatement+)
|'ELSE IF' '(' condition ')''{' transformStatement+ '}'
-> 'ELSE IF' condition transformStatement+
|'ELSE' '{' transformStatement+ '}'
-> 'ELSE' transformStatement+;

operation
 :actionVariable ';'
 -> ^(ACTION_ND actionVariable)
 |actionStatement ';'
 -> ^(ACTION_ND actionStatement)
 |actionFunction ';'
 -> ^(ACTION_ND actionFunction)
 |scopeIndicator '%'? ID '=' actionRetrieve ';'
 -> ^(RETRIEVE_ND scopeIndicator '%'? ID '=' actionRetrieve);
subTransform
 :transformLocation '{' operation+ '}'
 -> ^(SUB_TRANSFORMER transformLocation operation+);
transformLocation
 : locationKeyword '(' pointIndicator (ID|'*'|'%' ID)?')'
 -> ^(TRANS_LOCATION locationKeyword pointIndicator (ID|'*'|'%'^ ID))
 | 'ForAll' '(' 'Procedure' ('*'|'%' ID)')' // ForAll (Procedure %procs)
 -> ^(ForAll_ND 'Procedure' ('*'|'%'^ ID))
 | 'ForAll' '(' 'Module' ('*'|'%' ID)')'
 -> ^(ForAll_ND 'Module' ('*'|'%'^ ID))
 | 'ForAll' '(' pointIndicator ID? ('*'|'%' ID)')'
 -> ^(ForAll_ND pointIndicator ID? ('*'|'%'^ ID));
actionVariable
 :'AddVariable' '(' typeName ',' ID (',' initializedVal)? ')'
 -> ^('AddVariable' typeName ID initializedVal?)
 |'DeleteVariable' '(' ID ')'
 -> ^('DeleteVariable' ID)
 |'RenameVariable' '(' oldName=ID ',' newName=ID ')'
 -> ^('RenameVariable' $oldName $newName);
actionStatement
 :'AddCallStatement' '('locationKeyword ',' spotCurrentStatement ',' ID (','callArgumentList)?')'
 -> ^('AddCallStatement' locationKeyword spotCurrentStatement ID callArgumentList?)
 |'AddDirectiveStatement''(' directive ')'
 -> ^('AddDirectiveStatement' directive)
 |'AddIncludeStatement' '(' ID ')'
 -> ^('AddIncludeStatement' ID)
 |'ReplaceStatement' '(' oldStmt=statementType ',' newStmt=statementType ')'
 -> ^('ReplaceStatement' $oldStmt $newStmt)
 |'DeleteStatement' '(' statementType ')'
 -> ^('DeleteStatement' statementType);

Figure 4.4 SPOT grammar in EBNF

83

As shown in Figure 4.4, below each generation rule in the grammar there is an annotation

in the form of “->(root, child1, child1…).” The annotation specifies how a sub-tree is shaped

related to which node is the root and which are the children [Parr, 2007]. We also have

implemented a tree grammar that matches desired sub-trees and maps them to the output models.

A sample rule of the tree grammar is listed in Figure 4.5a. The output models are built with

StringTemplate [Parr, 2007], a template engine for generating formatted text output. The basic

idea behind building the output models with StringTemplate is that we create a group of

templates representing the output and inject them with attributes while traversing the ASTs. The

generation rule in Figure 4.5a matches a sub-tree built for a SPOT statement like “Within(Project

programName),” and passes “transformerName” and “programName” to the template in Figure

4.5b. The actual parameter “transformerName” is a global variable that is populated with the

user-defined name of the transformer and “programName” holds the name of the Fortran

PROGRAM. The template is actually a class definition in OpenFortran with several holes that

are populated with values passed in during tree traversal. In this case, the definition of a meta-

class is generated that inherits the built-in meta-class MetaGlobal.

Using ANTLR and StringTemplate [Parr, 2007], all the logic is kept in the tree grammar

and all the output text in the templates, which strictly enforces model-view separation. One

benefit is that from the same copy of a SPOT program (in the form of a single tree grammar),

different implementations can be generated with different templates. In addition to generating a

meta-program in OpenFortran, a SPOT program may also be translated into an implementation

in other program transformation engines (PTEs) or transformation tools (e.g., DMS [Baxter et

al., 2004] or Xtext [Eysholdt and Behrens, 2010]). Another advantage of model-view separation

is that the same group of templates may be reused with different tree grammars.

84

4.1.3 SPOT for OpenC

SPOT was originally designed to simplify the usage of OpenFortran by raising the

abstraction level of program transformation. Then, we extended SPOT to make it applicable to

specifying program transformations for C. SPOT is designed to model the process of code

modification by providing notations and built-in functions for systematic change of a language

entity (e.g., adding, updating, or deleting a statement), which makes it readily extensible by

adding new language elements to support a new general-purpose programming language (GPL).

The method and the mechanism of extending SPOT are elaborated in Chapter 5. In this section,

we only illustrate the extension constructs in SPOT in order to accommodate OpenC.

 4.1.3.1 An Example SPOT Program

Figure 4.6 demonstrates an example of SPOT code with the basic structure and language

constructs to automate code changes in C programs. The code adds a function call to printInt

after every assignment statement whose left-hand side is the variable with the name varName. As

indicated by the code snippet, a typical SPOT program starts with a keyword “Transformer,”

followed by a user-defined name, “PrintResult” in this case, which will be used as the file name

transformScope
 : ^('Within' 'Project' programName=ID)
 -> createMetaGlobal(transformer={$transformerName}, progName={$programName.text});

Figure 4.5 (a) A rule in the tree grammar; (b) A template for generating OpenFortran code

createMetaGlobal(transformer, progName, funName, varName) ::=<<
class MetaClass_<transformer>_<progName>: public MetaGlobal
{
 public:
 MetaClass_<transformer>_<progName> (string name);
 virtual bool ofExtendDefinition();
 <if(funName)>virtual bool ofExtendFunctionCall(string functionName)<endif>;
 <if(VarName)>virtual bool ofExtendVariableRead(string variableName)<endif>;
 <if(VarName)>virtual bool ofExtendVariableRead(string variableName)<endif>;
};
>>

(b)

(a)

85

of the generated .cpp file. A transformer is usually composed of one or more scope blocks where

action statements, nested scope blocks or condition blocks are included. As shown in Figure 4.6,

we define a scope block from line 2 to line 7. The wildcard feature is also supported to translate

source code in multiple locations with similar scenarios. For instance “Within(Function *)”

indicates that the following translation would be performed for all function definitions in current

code where “*” acts as a wildcard. Line 3 defines a variable named “stmt” with a percent sign

that serves as the handler for a set of assignment statements. Lines 4 to 6 define a condition

block with the keyword “IF.” If the left-hand side in an assignment statement is the variable

varName, line 5 adds a line of code that calls “printInt(…)” after the assignment statement. The

“$” sign is used together with a user-defined variable to reference any element in the list. For

example “$stmt” in this example iterates all elements held by the handler “%stmt.” As indicated

by line 2 in the example, location and scope information is expressed in AspectJ style [Kiczales

et al., 2001].

The including block in lines 9 to 14 is optional and is designed for providing additional

code needed by the transformer. The functions or variables defined within an Include block will

1. Transformer PrintResult{
2. Within(Function *){
3. StatementAssignment %stmt=getStatementAssignment();
4. IF($stmt.varName==varName){
5. AddCallStatement(After, $stmt.statement, printInt, varName,
 $stmt.assignValue);
6. }
7. }
8. }
9. IncludeCode{
10. void printInt(char* varName, int val)
11. {
12. printf(“%s=%d\n”, varName, val);
13. }
14.}

Figure 4.6 An example program coded in SPOT

86

be directly inserted into the beginning of the current file and before the first function definition,

unless otherwise specified. The developers are expected to use this section to implement helper

code used by transformers in the same code file. In Figure 4.6, all keywords are highlighted in

bold in the example code.

4.1.3.2 The Design of SPOT for OpenC

To raise the level of abstraction for simplifying the usage of a MOP like OpenC, high-

level programming entities (e.g., files, functions, structs, variables and statements) are used in

the DSL as language constructs. Built-in functions are provided to allow systematic actions for

programming entities, such as add, delete and update. The excerpt of built-in constructs and APIs

is listed in Table 4.2.

An outstanding feature in SPOT lies in that it supports string-based translation.

Developers are allowed to embed C code in a SPOT program. For example in Figure 4.6 line 6

can be replaced with “AddStatement(After, $stmt.statement, “printInt(“varName”, varName)”)”

to achieve the same effect of adding a function-call statement after the statement indicated by

$stmt.statement, where the last parameter “printInt(“varName”, varName)” is actually a C

statement. In addition, a real C statement can also be used as the parameter in

“GetStatement(“stmt”)” to obtain its handler. For instance, as in “Statement

%st=GetStatement(“result=a+b”),” all statements containing “result=a+b” within current

scope are matched and their handlers are put into the list represented by “st.” One thing needs to

be noted is that all embedded C code should be contained within double quotes.

One side effect of using C statements to match possible translation points lies in that if

the source code to be transformed has been modified, (e.g., a has been renamed to d as in

“result=d+b”) the transformer will skip this translation point. Another scenario is that instead of

87

matching an exact C statement, the transformer would like to match a pattern, for instance,

matching all assignment statements with the right-hand side being a plus expression. In order to

avoid the drawback and to support the desiring feature, we allow developers to define a pattern

with special literals $var1, $var2, $var3… that can be used to substitute for real expression in a

C statement. The pattern that matches all assignment statements with their right-hand side being

a plus expression can be depicted as “$var1=$var2+$var3.”

88

Language Constructs

Virtual Constructs
Project project-wide transformation

File file-wide transformation

User Defined Type
Struct Indicate struct definition

Union Indicate union definition

Basic Constructs

Function Indicate function definition

FunctionCall Indicate function call
expression

VariableRead Indicate reading a variable

VariableWrite Indicate writing a variable

VariableDecl Indicate declaring a variable

Statement* Indicate different types of
statements

Keywords for Scope Block

Within(para*)

Get the scope of transformation. Supported scopes
include a project, a file, a function, a struct, a union,
and statements implying a scope, e.g. if-else statement,
for-loop statement

Before(para)/Before Perform transformation before an entity

After(para)/After Perform transformation after an entity

Keywords for Control Flow

IF(expr) ELSE Proceed based on the value of expr

FORALL(Construct name) List all constructs specified with name

Primary Actions

Function RenameFunction(oldName, newName)

Variable

AddVariable(type, name, intialValue)

DeleteVariable(name)

RenameVariable(oldName, newName)

Table 4.2 Overview of SPOT syntax and semantics for OpenC

89

Statement

AddStatement(“stmt”)/ AddStatement(loc,
targetStmt , “stmt”)

AddCallStatement(loc, targetStmt, funName,
parameterList)

DeleteStatement(“stmt”)/ DeleteStatement(loc,
targetStmt “stmt”)

Auxiliary Functionality

Retrieve Functions

Variable v = GetVariableDecl(name)

Function f = GetFunction(name)

Struct s = GetStruct(name)

StatementType %st = GetStatementType()

Statement %st = GetStatement(“stmt”)
Statement st = GetStatement(lineNumber) //used in
a file
Statement %st = GetStatement(pattern)

VariableWrite %vw=GetVariableWrite(varName)

VariableRead %vr=GetVariableRead(varName)

Include Block
IncludeCode { source code in c}

IncludeCode { source code in c} into fileName

4.1.3.3 The Implementation of SPOT for OpenC

Figure 4.7 shows the transformation process after integrating SPOT with OpenC. A

SPOT program represents desired translation tasks specified directly with built-in constructs by

developers for source code written in C. A code generator is used to automate the translation

from the SPOT program to C++ meta-level transformation code. The MOP is responsible for

carrying out the specified transformations on source code in C with the assistance of the low-

level transformation engine ROSE.

Table 4.2 Overview of SPOT syntax and semantics for OpenC (cont.)

90

The main purpose of the code generator is to translate a SPOT program to the

corresponding C++ meta-level code through code generation. As shown in Figure 4.8, the code

generator consists of a parser that is able to recognize the syntax of both the SPOT and C and to

build an AST for the recognized program, and a template engine that is used to generate C++

code from traversing the AST.

The parser is generated with ANTLR [Parr, 2007] from the grammar of the SPOT and C

expressed in Extended Backus-Naur Form (EBNF). We have chosen ANTLR because the code

generator needs the grammar of C for recognizing C source code. A free C grammar for ANTLR

is available for use with a little adaptation. To implement the generator, we combined the SPOT

grammar with the C grammar. For each rule in the grammar we use annotations to direct

ANTLR to build ASTs. The annotations indicate which tokens are to be treated as the root of a

sub-tree and which are leaves. We have also implemented a tree grammar, the rules of which

match desired sub-trees and map them to the output models. The output models used in our code

generator are built with StringTemplate [Parr, 2007], a template engine for generating formatted

Figure 4.7 Overview of the transformation process with SPOT and OpenC

91

text output. To support string-based transformation, for the same rule in the tree grammar which

matches a statement or a construct, two different types of output models (i.e., two different

implementations in the meta-level code) are provided to either locate a place for code translation

or to add new language constructs in the base-level code.

4.1.4 Relationship between SPOT and MOP

When programming with SPOT, developers can be more focused on their design

intention of transformations with constructs and actions provided. The underlying generation and

translation are performed in a transparent way. Moreover, SPOT provides a mechanism for

developers to specify the translation scope and to pick up a specific point of translation using an

exact construct name or a wildcard to match multiple points. Therefore, no annotation to the

source code is necessary to use libraries developed in the DSL, which makes the solution non-

intrusive because translations are performed on a generated copy of the original code and the

original code is kept intact.

Figure 4.8 The implementation structure of the Code Generator

92

On the other hand, the MOP coincides with SPOT in regard to resembling developers’

comprehension of program transformation by allowing direct manipulation of language

constructs. This makes it more practical to realize the translation via code generation from SPOT

programs to the implementation in the MOP. The benefits of SPOT are partially achieved

through the richness the MOP is able to provide. In addition, SPOT can also evolve to address

new needs that are discovered from any capability that cannot be captured by a user need. The

case studies in the next section served to evolve SPOT to its current state and additional case

studies may further identify ways in which SPOT can be improved.

In the following sections, we describe several case studies that show how our approach

(SPOT and MOP) can be used to address the challenges mentioned at the beginning of this

dissertation: utility functions and separation of the sequential and parallel concern of an HPC

program, and how to extend SPOT with new notations and functions to support new applications

domains.

4.2 Supporting Aspect-Oriented Programming

4.2.1 Aspect-Oriented Programming

AOP provides new language constructs to separate crosscutting concerns. It allows

programmers to specify the effect of a concern at a single place that would otherwise be scattered

in multiple modules [Kiczales, 1997]. Several typical constructs provided in AOP, influenced by

the AspectJ-style constructs, include:

1) Join point: particular execution point in source code, for example method invocation and

field access.

2) Pointcut: method of identifying a group of join points by the means of a predicate

expression.

93

3) Advice: concern-specific behavior to be performed at those join points identified by a

particular pointcut.

4) Aspect: a modularization of a crosscutting concern, represented by pointcuts and advice.

An aspect weaver is a translator that merges separated concerns with the base code. The

authors of [Harbulot and Gurd, 2004] introduced Aspect-Oriented Programming (AOP) to the

domain of HPC by applying AspectJ (an aspect weaver for Java) [Kiczales et al., 2001] to an

implementation of JavaMPI. Roychoudhury et al. [Roychoudhury et al., 2010] proposed to

modularize crosscutting concerns in scientific computing libraries by taking advantage of aspect-

oriented programming in the context of generative programming. In their work, a well-known

C++ library (Blitz++) is transformed with AOP ideas [Roychoudhury et al., 2010]. AOP has

been shown to be effective in representing a special type of concern that crosscuts the module

boundaries and which is quite difficult to describe using traditional object-oriented programming

constructs. Typical examples of crosscutting concerns include logging, security checks, and

transaction management.

4.2.2 Building a Profiling Library

To support AOP, the solution has to be capable of encapsulating a crosscutting concern in

one place. A SPOT transformer is able to modify the structure and behaviour of the source code

by applying actions (or advice as in AspectJ [Kiczales et al., 2001]) at various interesting points

(or join points) with commonality specified with a qualification (or pointcut). Developers are

allowed to choose a particular point of translation or to specify multiple points using a wildcard.

In this section, we first outline the implementation of a profiling meta-program (first in

OpenFortran and then with SPOT) to illustrate how to use our approach to modularize this

typical crosscutting concern.

94

A primary issue the developers of HPC software need to consider is how to make full use

of available resources. Therefore, it is crucial for developers to understand the performance

characteristics of the computational solution being implemented. Performance information is

usually collected by tools in the form of traces or profiles [Furlinger et al., 2005]. Via tracing,

detailed temporal characteristics of the run-time execution are recorded to allow thorough

analysis. Nevertheless, tracing is often intrusive and involves analyzing large amounts of data,

which can be very time-consuming. On the contrary, profiling is less intrusive and can provide a

general view on source locations where time is consumed [Furlinger et al., 2005]. Profiling is

known as a useful technique in the area of HPC to help developers obtain an overview of system

performance [Furlinger et al., 2005]. Via a profiling tool, detailed temporal characteristics of the

run-time execution are collected to allow thorough analysis that provides a general view on

source locations where time is consumed.

To implement a profiling library with OpenFortran, we first need to figure out what the

application code looks like before and after applying the library, and then choose the appropriate

interfaces to implement it. Figure 4.9 shows the example program after being translated (the

original code is without the statements in bold). The statements in bold are generated and added

1.PROGRAM exampleProg
2. USE profiling_mod
3. IMPLICIT NONE
4. REAL a, b, c, result
5. REAL calculation
7. CALL profiling(“exampleProg:Input”)
8. CALL Input(a, b, c)
9. CALL profiling(“exampleProg:Input”)
10. CALL profiling(“exampleProg:Calc”)
11. result = Calc (a, b, c)
12. CALL profiling(“exampleProg:Calc”)
13.END

Figure 4.9 The translated example code with the profiling library

95

to the source code by OpenFortran. A helper module named profiling_mod is designed to

provide the facilities for calculating time. The subprogram profiling in the module is called

before and after a function is invoked to get the elapsed execution time. To achieve this, the

internal subroutine SYSTEM_CLOCK is utilized. For each statement containing a function call in

the source code (e.g., “input (a,b,c)” and “result = Calc (a, b, c)”), the profiling meta-program

should be able to locate the statement and insert profiling before and after it.

In this example, the program only has two function calls. It may not seem like a challenge

to code manually for the purpose of implementing the profiling functionality. However, the

situation becomes labour-intensive and error-prone when many more function calls are involved.

It is always costly to change code back and forth in a manual fashion [Bennett and Rajlich,

2000], which is what this meta-program automates. OpenFortran provides the ability to build a

profiling library that automatically generates and integrates a new copy of the original

application code and profiling code on a meta-level. To manually implement the profiling library

within the scope of a file, we need to create a new meta-class inherited from class MetaGlobal,

as shown in Figure 4.10.

The member function OFExtendDefinition() needs to be overridden in

MetaClass_Profiling_exampleProg to build the library, as shown in Figure 4.10. The member

variable functionList in line 7 is defined in MetaGlobal, which holds all the MetaFunction

objects representing the main program, subroutines, functions, subprograms in modules and

type-bound procedures. Line 7 iterates through all the functions to perform translations. Line 12

iterates through all statements in the target procedure that contain a function-call. Two additional

call-subroutine statements are generated and inserted before and after the located function-call

statement, as indicated from line 14 to line 18. We call buildFunctionCallStmt(…) to build a

96

function-call statement where the first parameter indicates the function name (profiling), the

second parameter represents the return type (void) and the third parameter corresponds to the

argument list. The argument list contains only the identifier of the function call, composed by

combining the caller’s function name (exampleProg) and the callee’s function name (Input or

Calc). The resulting translation is shown in Figure 4.9.

Figure 4.11 demonstrates how to specify the same translation challenge with constructs

provided by SPOT. The Code Generator is responsible for generating the meta-level

implementation in OpenFortran (shown in Figure 4.10). The generated code will be saved in

Profiling.cpp, whose name is from the Transformer’s name specified in line 1. Line 2 uses a

wildcard to make the transformation applicable to all source files. Line 3 loops over all function

definitions within a current file by calling FORALL(…). Line 4 inserts a use-module statement at

Figure 4.10 The meta-class implemented for the profiling library

1. class MetaClass_Profiling_exampleProg: public MetaGlobal{
2. public:
3. MetaClass_Profiling_exampleProg(string name);
4. virtual bool OFExtendDefinition();
5. };

6. bool MetaClass_Profiling_exampleProg::OFExtendDefinition(){
7. for(int i=0; i<functionList.size(); i++){
8. pushScopeStack(functionList[i]->getFunctionBodyScope());
9. functionList[i]->addUsingModuleStatement(“profiling_mod”);
10. functionList[i]->functionNormalization();
11. vector<SgFunctionCallExp*> funCallList=functionList[i]\
 ->getFunctionCallList();
12. for(int j=0; j<funCallList.size(); j++){
13. string callerName = functionList[i]->getName();
14. string calleeName = get_name(funCallList[j]);
15. SgStatement* targetStmt = functionList[i]\
 ->getStmtsContainFunctionCall(funCallList[j]);
16. string identifier = callerName + ":" + calleeName;
17. insertStatementBefore(targetStmt, buildFunctionCallStmt(\
 "profiling", buildParaList(identifier)));
18. insertStatementAfter(targetStmt, buildFunctionCallStmt(\
 "profiling", buildParaList(identifier)));
19. }
20. popScopeStack();
21. }
22.}

97

the beginning of the current function. From line 5 to line 8 the code matches all statements

containing a function call and then adds two new function calls before and after the statement by

invoking AddCallStatement(…) where the first argument indicates the relative location (Before

or After), the second corresponds to the handler of the statement matched, and the third refers to

the function name to be added. All of the remaining parameters are interpreted as the parameters

passed to the added function call. In the code, all built-in constructs are highlighted in bold.

4.2.3 SPOT: Beyond AOP

SPOT is able to intercept not only function calls and variable access (featured by most

AOP implementations such as AspectJ [Kiczales et al., 2001] and Aspect-oriented C [Gong et

al., 2007]), but also a broader range of join points. For example, wildcards can be utilized in

“FORALL (%var1 = %var2+%var3)” to match all assignment statements whose right-hand side

is a plus expression. Actually, with the support from the underlying MOP, the DSL can treat any

arbitrary line of code as a join point, thus being able to enable more complex and flexible

translations.

In most AOP implementations, the abstraction of concepts in the target source code is

often at a lower level, which decreases the ability to maintain the relations between higher-level

1. Transformer Profiling{
2. Within(File *){
3. FORALL(Function %fun){
4. AddUseModuleStatement(profiling_mod);
5. FORALL(FunctionCall %funCall){
6. AddCallStatement(Before, $funCall.statement, profiling,
 $fun.funName+”:”+$funCall.funName);
7. AddCallStatement(After, $funCall.statement, profiling,
 $fun.funName+”:”+$funCall.funName);
8. }
9. }
10. }
11.}

Figure 4.11 The profiling library specified in SPOT

98

programming entities. This can reduce the context awareness around a join point. For example,

both AspectJ and Aspect-oriented C only support limited context exposure (e.g., using args() and

result() to get the arguments and the result of a method invocation). However, in a MOP the

structural information of different entities in the base-level code and the relations between them

are clearly described and accessible by a hierarchy of meta-objects. SPOT provides a mechanism

for developers to access this context. For instance, in Figure 4.11 we can also access the

attributes of a function call statement via $funCall.funName. To prevent an enclosing entity from

being affected adversely by a transformer, all enclosing contexts exposed within the transformer

are read-only. SPOT is able to support AOP in Fortran by providing mechanisms to represent

crosscutting concerns, thus being able to solve the problem of utility functions; however, it is

more than an AOP extension to Fortran. With the underlying assistance of a MOP, SPOT can be

used to perform more fine-grained transformations at more rich types of locations.

4.3 Separating Sequential and Parallel Concerns

In this section, we use a case study to illustrate that with our approach a parallel model

can be utilized without directly modifying the original sequential Fortran code. This case study

mainly demonstrates the process of using an extended version of SPOT to specify the task of

parallelizing Dijkstra’s minimum graph distance algorithm [dijkstra_openmp, 2010]

(implemented in Fortran 90) with OpenMP.

OpenMP [OpenMP Review Board, 2000] is a parallel model for developing

multithreaded programs in a shared memory setting. It provides a flexible mechanism to

construct programs with multithreads in languages like C, C++ and Fortran via a set of compiler

directives (in the form of comments for Fortran) and run-time library routines. In OpenMP, a

master thread forks a number of threads and tasks are divided among them. The run-time

99

environment is responsible for allocating threads to different processors on which they run

concurrently. OpenMP performs parallelization transparently to programmers.

SPOT Constructs OpenMP Directives Type

OmpUsePair(<directive>, <startStmt>,
<endStmt>, <clauses>)

OmpUsePair((<directive>, <targetStmt>,
<clauses>)

PARALLEL, PARALLEL DO,
DO, ORDERED, SECTIONS,
WORKSHARE, SINGLE,
TASK, MASTER, CRITICAL

Pair
Directives

OmpUseSingleBefore(<directive>,
<targetStmt>, <clauses>)
OmpUseSingleAfter(<directive>,
<targetStmt>, <clauses>)

ATOMIC, BARRIER,
SCHEDULE, TASKWAIT,
FLUSH, THREADPRIVATE

Single
Directives

OmpGetEnVariable(<name>, <var>)
OmpSetEnVariable(<name>, <var>)
OmpUnsetEnVariable(<name>, <var>)
OmpDestroyEnVariable((<name>, <var>)
OmpTestEnVariable((<name>, <var>)
OmpInitEnVariable((<name>, <var>)
OmpInFinal(<var>)

OMP_SET_NUM_THREADS
OMP_GET_NUM_THREADS
OMP_GET_THREAD_NUM
OMP_SET_DYNAMIC
OMP_GET_DYNAMIC

……

Run-time
Library
Calls

Table 4.3 SPOT functions for using OpenMP directives and APIs

100

4.3.1 Building an OpenMP Library

SPOT is designed to model the process of code modification by providing notations and

built-in functions for systematic change of an entity (e.g., adding, updating, or deleting a

statement), which makes it extensible by adding new language elements to capture a particular

domain involving code evolution. For this case study, we have extended SPOT by developing a

set of new constructs and actions particularly for instrumenting serial code with the parallel

capabilities of OpenMP. The design goal is to separate the management of the sequential and

parallel code by automating their integration. That is, the serial code and the parallelizing

operations expressed in extended SPOT are maintained separately and the parallelized

application can be generated on demand in a new copy, while keeping the original serial code

intact.

 We are not trying to create a new language to replace OpenMP, because OpenMP itself is

well-designed and flexible to use. Instead, we have added new functions in SPOT (listed in the

first column of Table 4.3) to express the behaviour of utilizing OpenMP directives and APIs to

improve the flexibility of usage by facilitating the separation of management for the sequential

Type Example Transformation Effect

Pair Directives

OmpUsePair(PARALLEL,
startStmt, endStmt,
Private(var1, var2),
Shared(var3)….)

!$OMP PARALLEL
PRIVATE(var1, var2)
SHARED(var3)
 startStatement
 other sequential code
 endStatement
!$OMP END PARALLEL

Single Directives
OmpUseSingleBefore(BARRIER,
targetStmt)

!$OMP BARRIER
 targetStatement
 other equential code

Run-time Library Calls
OmpGetEnVariable(NUM_THREADS,
var)

var =
omp_get_num_threads()

Figure 4.12 Examples of calling OpenMP functions of SPOT

101

and parallel code. Two types of directives were added to SPOT: pair directives that are inserted

by wrapping a sequence of statements (i.e., using startStmt and endStmt to identify the points of

insertion, and targetStmt if only one statement is wrapped) and single directives that are inserted

before or after a target statement (i.e., using targetStmt). All clauses, if any, can be directly added

in these functions as arguments. Figure 4.12 illustrates the final transformation effects of calling

different types of OpenMP functions of SPOT. The rest of this section illustrates how to create a

parallel program in SPOT that captures the operations to add parallelism of OpenMP into

Dijkstra’s minimum graph distance algorithm.

Dijkstra’s minimum graph distance algorithm is known as a graph search algorithm for

determining all shortest paths from a single node in a graph to all other nodes. The algorithm

works by maintaining the set, denoted as T, of vertices for which shortest paths need to be found,

and as Di the shortest distance from the source node as Vs to vertex Vi. Initially, a large number

is assigned to all Di. At each step of the algorithm, remove the vertex Vn in T with the smallest

distance value from T and examine each neighbor of Vn in T to determine whether a path through

Vn would be shorter than the current best-known path. The core code snippet of the sequential

version of Dijkstra’s algorithm is shown in Figure 4.13.

1. subroutine dijkstra_distance (nv,ohd,mind)
2. !some other code
3. connected(1) = .true.
4. connected(2:nv) = .false.
5. mind(1:nv) = ohd(1,1:nv)
6. do step = 2, nv
7. call find_nearest (nv,mind,connected,md mv)
8. if(mv/=-1) then
9. connected(mv) = .true.
10. end if
11. if(mv/=-1) then
12. call update_mind (nv,connected,ohd,mv,mind)
13. end if
14. end do
15. end

Figure 4.13 The core code snippet of Dijkstra’s algorithm

102

To parallelize the algorithm with OpenMP, we need to manually divide the nodes of the

graph among multiple threads such that each thread is responsible for computing the assigned

group of nodes. Figure 4.14 indicates the resulting parallel program in which a parallel region

(around the do statement) is identified and expressed with “$omp parallel private (…)” and

“$omp end parallel.” Several other advanced OpenMP directives are used to make sure the

algorithm works correctly, such as “$omp critical,” “$omp single,” and “$omp barrier.”

Figure 4.15 shows the final parallelization code in SPOT using the extended set of

functions that add the OpenMP directives and APIs. We defined a transformer with the name of

“paraDijkstra.” All translations are performed within a function named dijkstra_distance as

1. subroutine dijkstra_distance (nv, ohd, mind)
2. use omp_lib
3. !some other code including variable declarations
4. !$omp parallel private(my_first, my_id, my_last, my_md, my_mv, my_step)
5. !$omp shared (connected, md, mind, mv, nth, ohd)
6. my_id = omp_get_thread_num ()
7. nth = omp_get_num_threads ()
8. my_first = (my_id * nv) / nth + 1
9. my_last = ((my_id + 1) * nv) / nth

10. do step = 2, nv
11. call find_nearest(my_first, my_last, nv, mind, connected, my_md, my_mv)
12.!$omp critical
13. if (my_md < md) then
14. md = my_md
15. mv = my_mv
16. end if
17.!$omp end critical
18.!$omp barrier

19.!$omp single
20. if(mv/=-1) then
21. connected(mv) = .true.
22. end if
23.!$omp end single

24.!$omp barrier
25. if(mv/=-1) then
26. call update_mind(my_first, my_last, nv, connected, ohd, mv, mind)
27. end if
28.!$omp barrier
29. end do
30.!$omp end parallel
31.end

Figure 4.14 The snippet of parallelized Dijkstra’s algorithm

103

indicated in line 2. Most of the SPOT code is self-explanatory with the names suggesting their

meaning. In line 7, we use the function “OmpGetLoopIndexes4Thread(firstIndex, lastIndex)” to

model the task that is often manually performed to divide loop iterations among available

threads. The resulting generated code corresponds to lines 6 to 9 in Figure 4.14, where the first

and last indices for each thread are held respectively by firstIndex and lastIndex.

One challenging issue facing most program transformation systems is how to allow users

to precisely express the location for translation. As shown in Figure 4.13, there are two if-

statements with the same condition (line 8 and line 11). In order to distinguish them, we call

“GetStatement(“if(mv/=-1)”, 1)” to get the first matched if-statement in line 15 in Figure 4.15

and “GetStatement(“if(mv/=-1)”, 2)” to obtain the handler of the second if-statement, where the

number 2 can be replaced by any arbitrary number n to represent the nth statement within the

current scope showing the same pattern. In addition, “GetStatement” can be used to return a list

of all statements matched.

1. Transformer paraDijkstra{
2. Within(Function dijkstra_distance){
3. AddUseModuleStatement(omp_lib);
4. AddVariablesSameType(Integer, my_id, my_first, my_last, my_md, my_mv, nth);
5. Statement doStmt = GetStatement("do step = 2, nv");
6. Before(doStmt){
7. OmpGetLoopIndexes4Thread(my_first, my_last);
8. }
9. OmpUsePair(PARALLEL, doStmt, private(my_first,my_id,my_last,my_md,my_mv,step),
 shared(connected, md, mind, mv, nth, ohd));
10. StatementFunctionCall callfind=GetStatement(“call find_nearest()”);
11. SetParameter(callfind, my_first, my_last, nv, mind, connected, my_md, my_mv);
12. Statement ifST = AddStatement(After, callfind.statement,
 “if(my_md<md) then md=my_md mv=my_mv end if”);
13. OmpUsePair(CRITICAL, ifST);
14. OmpUseSingleAfter(BARRIER, ifST);
15. Statement ifST2 = GetStatement(“if(mv/=-1)”, 1);
16. OmpUsePair(SINGLE, ifST2);
17. Statement ifST3 = GetStatement(“if(mv/=-1)”, 2);
18. OmpUseSingleBefore(BARRIER, ifST3);
19. OmpUseSingleAfter(BARRIER, ifST3);
20. }
21. }

Figure 4.15 The SPOT program for parallelizing the algorithm

104

The parallelization specification in SPOT as indicated in Figure 4.15 will be translated

into a meta-program in OpenFortran. The meta-program will automate on-demand the insertion

of OpenMP directives or API calls to the sequential version of Dijkstra’s program in a generated

copy of code, as in Figure 4.14, while the original source code, as in Figure 4.13, is kept intact.

Compared with the resulting parallelized program, the original algorithm is more readable

without any pollution from the parallel facilities. In a similar way, for the same Dijkstra’s

algorithm, our approach can be used to implement some other parallelization libraries with

different parallel programming models, e.g., MPI [Gropp et al., 1999], CUDA [Nickolls et al.,

2008] and OpenAcc [Wienke et al., 2012]. In this case, the core logic of the application and the

parallel code can be developed and evolved separately. One problem that needs to be solved in

our future work is how to facilitate simultaneous programming between domain experts and

parallel programmers by decreasing the dependency of a specific parallelization library on code

changes in the source code.

This case study mainly illustrates that our framework can be used to deal with the

parallelization concerns. It also provides evidence to show that SPOT is extensible to support

application domains that involve source code modification. In this case study new functions were

designed to capture the operations for adding parallelism into the sequential code, including

rewriting some portion of the original code and inserting OpenMP directives or APIs.

4.4 Supporting Extension for New Application Domains

In this subsection, we use another case study to demonstrate how to extend SPOT by

designing new language constructs to capture an application domain need that entails modifying

source code. The specific focus of this case study is to enable some primitive form of fault-

tolerance for a system by adding checkpointing facilities into source code. The design focus is to

105

enhance SPOT with new constructs capturing the essence of checkpointing in a way that can be

applied to other contexts and different programs.

4.4.1 Introduction to Checkpointing

Clusters of computers are in common used to implement cost-effective systems in the

HPC area. It is usually true that the number of computing components is proportional to the

computational power a cluster can provide; however, one fact that needs to be noticed is that the

more computing components available, the higher the chances some of them may fail. Therefore,

fault-tolerance is indispensible in HPC systems.

Checkpointing is a technique that makes a system fault-tolerant by saving a snapshot of

critical data periodically to stable storage that can be used to restart the execution in case of

failure [Koo and Toueg, 1987]. A system with the capability of checkpointing can tolerate most

kinds of software and hardware failures as long as the previous states are saved in a correct and

consistent manner. In case of failures, instead of starting all over, the execution can be restarted

from the latest checkpoint read from the stable storage. Checkpointing is especially beneficial for

HPC applications, which usually run for a considerable amount of time and on distributed

platforms, to prevent losing the effect of previous computation.

There are traditionally three common levels to implement checkpointing [Walters and

Chaudhary, 2009]:

1) Application-level checkpointing where user applications are inserted with checkpointing

primitives to add source code performing checkpointing. In [Bronevetsky et al., 2003],

the authors proposed an automated application-level checkpointing mechanism for MPI

programs. A pre-compiler is used to perform source code translation to add code that

106

performs state saving. The client users only need to make a function call to

PotentialCheckpoint at points in their code where they think checkpointing is needed.

2) User-level checkpointing where checkpointing is performed by separate libraries. It is

comparatively portable, but has limited access to kernel-specific data (e.g., process IDs).

3) Kernel-level checkpointing where checkpointing is performed by a module in a kernel.

The implementation is highly associated with the operating system, which makes it less

portable.

In systems with distributed shared memory, checkpointing is commonly implemented by

two approaches:

1) Coordinated checkpointing in which all processes work cooperatively to maintain

coherent checkpoints: a checkpoint is taken only after all processes agree on the need and

all processes are rolled back to the same most recent consistent state point.

2) Communication induced independent checkpointing in which messages passed between

processes are responsible for keeping the independently recorded points consistent and

up-to-date. One obvious drawback of this mechanism involves the overhead incurred

from the message handling.

4.4.2 Building a Checkpointing Library

This subsection presents a checkpointing library for Fortran programs, implemented with

our approach by supplementing SPOT with new constructs. The first step is to obtain an

understanding of the terminology and concepts related to checkpointing. This can be achieved by

surveying existing work and implementations [Arora et al., 2011; Bronevetsky et al., 2003;

Czarnul and Frączak, 2005; Kalaiselvi and Rajaraman, 2000] and by observing the process in

which checkpointing is performed on legacy software. To perform application-level

107

checkpointing, users should be allowed to: 1) select variables and data structures that need to be

saved for any future restarting needs, 2) specify the point in the source code where checkpointing

information is captured and the point to restart, 3) determine the frequency of checkpointing

(e.g., if the check point is within a loop, how often should checkpointing take place), and 4)

choose the type of the system to be checkpointed, such as sequential or parallel. As shown in

Table 4.4, we have designed new constructs that capture the core features involved in

implementing checkpointing, where the variant features should be specified by users while the

unchanging features can be fulfilled through automatic generation.

As shown in Table 4.4, developers can use StartCheckpointing and StartInitializing in

pairs to specify the place where to insert checkpointing code and where to restart the program

after a failure. Here, <location> can be assigned with After or Before, and <statement> can be

any Fortran statement wrapped within double quotes or a handler of a statement obtained by

calling retrieve functions (as listed in Table 4.1). Users can specify the variables that need to be

saved at a checkpoint by calling CKPSaveType, where Type can be replaced by other data types

such as Integer, Real, Logical or Character. Accordingly, CKPSaveType can be called to specify

the variables that should be obtained from the storage when restarting. Developers are allowed to

1. program CalculatePI
2. integer n, i
3. real*8 t, x, pi, f, a
4. f(a) = 4.d0 /(1.d0 + a*a)
5. pi = 0.0d0
6. n = 100000
7. t = 1.0d0/n
8. do i = 1, n
9. x = t * (i - 0.5d0)
10. pi = pi + f(x)
11. end do
12. print *, "The value of pi is ", pi
13.end

Figure 4.16 The Fortran program for calculating the value of Pi

108

specify the frequency of checkpointing by calling CKPFrequencey if a checkpoint is in a loop

and to choose the type of the target application (sequential or parallel) using CKPType. In some

special occasions, CKPSaveAll can be invoked to signal the underlying translation framework to

perform checkpointing for every variable within a scope at every location where the variable is

updated. In this case, calling CKPReadAll is optional, because even if CKPReadAll is not used

explicitly, our framework still needs to generate code to read the values of all variables from

storage before the variable values are accessed.

 Figure 4.16 shows a simple program for calculating the value of π in Fortran and Figure

4.17 demonstrates the SPOT code specifying the translation involved in generation and insertion

of checkpointing and restarting code. We first define a transformer and name it

CheckpointingCalculatePI and call Within to locate the program CalculatePI, as indicated by

line 1 and line 2. For the program in Figure 4.16, suppose we would like to save the value of pi

per 5 iterations of the loop after the statement where pi is updated. We first obtain the handler of

the statement “pi=pi+f(x)” and call StartCheckpointing to start the process of checkpointing as

shown in line 4. Line 5 calls CKPSaveReal to specify that the variable pi needs to be

checkpointed; Line 6 and line 7 specify the frequency and the type of the application.

1. Transformer CheckpointingCalculatePI {
2. Within(Function CalculatePI){
3. Statement stmt = GetStatement(“pi = pi + f(x)”);
4. StartCheckpointing(After, stmt){
5. CKPSaveReal(pi);
6. CKPFrequencey(5);
7. CKPType(Sequential);
8. }
9. StartInitializating(Before, “do i=1, n”){
10. CKPReadReal(pi);
11. }
12. }
13. }

Figure 4.17 The checkpointing specifications expressed in SPOT

109

StartInitializing is invoked in line 9 to specify the restarting point to occur before the do

statement, and CKPReadReal is used to specify that variable pi needs to be restored with the

value read from the storage.

New Constructs for the Domain of Checkpointing

 StartCheckpointing(<location>, <statement>){<actions> or <parameters>}
StartInitializing (<location>, <statement>){<actions> or <parameters>}

Actions:
CKPSaveInteger(<variable name>)
CKPSaveIntegerArray1D(<variable name>, <index>)
CKPSaveIntegerArray2D(<variable name>, <row number>, <column number>)
CKPSaveAll()
CKPReadInteger(<variable name >)
CKPReadIntegerArray1D(<variable name>, <index>)
CKPReadIntegerArray2D(<variable name>, <row number>, <column number>)
CKPReadAll()

Parameters:
 CKPFrequencey(<number>)
 CKPType(<Checkpointing Type>)

Figure 4.18 illustrates the program for calculating the value of π after adding

checkpointing and restarting code. As indicated by line 10 and line 16, the loop variable i is

checkpointed even though it has not been mentioned in the SPOT specification. These two lines

of code are created whenever the underlying framework detects that the point of checkpointing is

within a loop and the point of restarting is before the same loop. All the highlighted statements

are automatically generated and inserted and the whole process is transparent to a developer. The

responsibility of a developer is to create a specification in SPOT indicating which data should be

saved and where, as well as the frequency of checkpointing. Instead of directly reengineering the

original source code, the code with checkpointing facilities is generated in a different copy. Our

Table 4.4 Supplementary constructs for SPOT

110

approach is effective in realizing checkpointing as a pluggable feature by separating the

specification in SPOT from the target applications.

4.5 Summary

Currently, we have implemented a version of SPOT that supports several types of HPC

application needs. Our implementations are far from complete and are only used for the purpose

of demonstrating the capability of our approach. For example only a few types of statements in

the base language can be directly matched and transformed. More language constructs will be

added in our future work to address these limitations

Together with the underlying MOP (OpenFortran or OpenC), we have laid a solid

foundation for SPOT to be extended through the creation of new language constructs. We will

continue to enrich SPOT with more constructs in order to support additional types of translation

in different application domains.

The work described in this chapter is mainly focused on SPOT and its potential as a DSL

1. program CalculatePI
2. integer n, i
3. integer start_i;
4. real*8 t, x, pi, f, a
5. f(a) = 4.d0 /(1.d0 + a*a)
6. pi = 0.0d0
7. n = 100000
8. t = 1.0d0/n
9. retrieveVariableReal(“pi”, pi);
10. retrieveVariableInteger(“i”, start_i);
11. do i = start_i , n
12. x = t * (i - 0.5d0)
13. pi = pi + f(x)
14. if(MOD(i,5) == 0){
15. saveVariableReal(“pi”, pi);
16. saveVariableInteger(“i”, i);
17. }
18. end do
19. print *, "The value of pi is ", pi
20. end

Figure 4.18 The generated Fortran program with checkpointing code

111

to provide a higher level of abstraction for expressing program transformations. SPOT allows

direct manipulation of program entities based on the underlying capabilities available in the

OpenFortran MOP, which brings the power of meta-programming to Fortran. With our approach,

source-to-source program translation libraries can be built and then applied in a manner that is

transparent to developers.

Although it is conceptually more straightforward to use a MOP to implement

transformation libraries than directly calling APIs of ROSE to manipulate ASTs, we believe that

there is a learning curve for most developers to become familiar with the concepts of using a

MOP. Therefore, we have created a DSL that can be used on top of the MOP (on a meta-meta-

level) to improve the ability to specify program transformations. Developers can use carefully

designed language constructs to express transformation tasks in a transparent manner, whereby

they do not need to know the details on how the transformations are performed underneath. Not

only can SPOT be used to support AOP in Fortran and C, it can also be used to specify more

fine-grained transformations at more diverse source locations. SPOT also supports string-based

transformations, which allows a developer to embed real Fortran code when developing a

transformer. SPOT can be considered as an extension to Fortran or C in order to enable source-

to-source transformations. By raising the abstraction level, SPOT has the potential to offer gains

in productivity due to its generative capabilities. With the aid of generative programming, a few

lines of SPOT code may be translated to an executable solution in a MOP composed of a

hundred lines of code in C++.

Our experience has shown that our approach (i.e., a DSL plus a MOP), as a form of

program extension, can be used to address a wide range of problems in HPC (but not limited to

112

HPC) by facilitating the implementation of program translators, especially suitable for those

involving crosscutting and separation of parallelization concerns.

113

CHAPTER 5

OPENFOO: A GENERIC FRAMEWORK FOR EXTENDING ARBITRARY
PROGRAMMING LANGUAGE WITH META-PROGRAMMING

MOP extension has been shown to be an effective way to bring the power of meta-

programming to an existing programming language through exposing interfaces for developers

to access the internal implementation of the language [Kiczales et al., 1993]. Most related

research has focused on constructing a MOP for a particular language and primarily for object-

oriented languages [Chiba, 1995; Tatsubori et al., 1999; Python, 2008; Bobrow et al., 1993].

There is a general lack of infrastructure support for language extension in terms of building a

MOP for an arbitrary language, especially for legacy programming languages. Therefore, another

contribution of this dissertation is to investigate and implement a generalized framework suitable

for extending an arbitrary programming language through a MOP.

In this chapter, we mainly present our solution to the research question Q5 introduced in

the first chapter (i.e., how to generalize the framework to make it language-independent?). In

addition, we also describe our work in generalizing the front-end DSL (SPOT) originally created

for simplifying the usage of the Fortran MOP, to make it applicable to newly created MOPs.

5.1 An Extensible MOP Construction Approach

In this section, we demonstrate an extensible and scalable framework, called OpenFoo,

which can be used to implement a MOP, not from scratch, but with existing artifacts (i.e., models

in UML and source code), for modern languages such as Java and C++, as well as legacy

114

languages such as Fortran, C and Pascal. We present the primary components of this approach in

detail, including their benefit and working mechanisms.

During our previous efforts in the implementation of a MOP for Fortran and then for C,

we observed that a substantial proportion of work is duplicated. Thus, it may be beneficial to

investigate an approach that is independent of a particular language and can be used to instantiate

a MOP for a target language. Instead of building a MOP from the beginning, as we did in [Yue

and Gray, 2013] for Fortran, we raised the level of abstraction for MOP construction by

extracting language-independent components and their associated relationships, and

implemented them in a readily extensible library, called OpenFoo. As its name suggests, Foo

might be replaced by the name of any GPL. We have also designed OpenFoo conforming to a set

of graphic models in UML, which can help to make the idea of MOPs more understandable for

developers. A model refers to an abstract representation of a problem domain, which can be

realized by corresponding source code.

Our approach is extensible because the core portion of source code in OpenFoo captures

the general concepts involved in MOP construction and the relationships between them and can

be extended to accommodate particular features for a new GPL. The scalability of the framework

is achieved through ROSE as the underlying transformation engine. ROSE can be used to

perform source-to-source code transformation for a dozen of mainstream GPLs with the support

from many available languages tools, such as lexers, parsers and analyzers. In addition, ROSE

has been used to address industrial strength problems and applied to large-scale code bases

[Quinlan, 2012]. We chose ROSE from a group of available candidates because it provides

sufficient interfaces that allow users to specify code transformation through coding in an object-

oriented programming (OOP) language (i.e., C++). A MOP by nature is more natural when

115

developed in an object-oriented context. The abstraction level supported by ROSE is appropriate

for the purpose of MOP construction. ROSE also plays an important role in enhancing the

extensibility of our approach because it utilizes a consistent intermediate representation (IR) after

parsing source code written in different programming languages it supports. Most of the APIs for

manipulating ASTs are shared among various languages. This makes it possible for our approach

to be experimented with different GPLs and also increases the possibility to reuse code artifacts

in OpenFoo.

5.1.1 OpenFoo Design Architecture

Figure 5.1 shows the overview of our approach to implement a MOP extension for

Fortran that can then be used to transform source Fortran code. The Fortran MOP is constructed

on the basis of the OpenFoo prototype by adding new components pertaining to the syntax and

semantics of Fortran. The Fortran MOP takes as input the meta-level transformation libraries and

base-level Fortran code and generates the transformed Fortran code to address the concerns

expressed in meta-programs. The transformed Fortran code consists of both the original and

newly generated Fortran code, which can be compiled by a traditional Fortran compiler like

gfortran.

Figure 5.1 Overview of the transformation process with Fortran extension

116

In order to automate code changes through a MOP, a meta-program, composed of a set of

meta-objects symbolizing the entities of a source program to be transformed, needs to be built

and maintained. Through meta-objects, corresponding program entities are promoted to first-

class to allow for manipulation. The procedure for fulfilling this can be described as follows.

Firstly, an AST is constructed with a built-in parser integrated by ROSE (Open Fortran Parser

[OFP Link] is used for Fortran). For any associated top-level entities in the source program (e.g.,

functions or variables), a corresponding meta-object is formed while traversing the AST. A

meta-object exposes some interfaces (e.g., public member functions) for accessing and

modifying its attributes that represent the structural information of the entity in base-level source

Figure 5.2 OpenFoo overall structure represented as a class diagram

117

code. At last, all affected meta-objects are synthesized and the transformed Fortran code is

regenerated from the restructured AST.

Figures 5.2, 5.3, and 5.4 demonstrate an excerpt of the specification models of OpenFoo

represented as a collection of class diagrams in UML, including meta-classes (i.e., the class from

which a meta-object is instantiated), their attributes, and mainly the structural relationships

among meta-objects. It should be noted that the basic structure of OpenFoo is designed based on

some generic features shared by the family of languages with block-structured syntax. As evident

in Figure 5.2, for a typical language construct such as a function, a variable, and a statement,

there is a corresponding meta-class to describe it in OpenFoo (e.g., MetaFunction,

MetaVariable, and MetaStatement). The meta-class MetaUserDefinedType is used

support a user’s declaration, such as a derived data type and a module in Fortran 90, a struct in C

and a class in C++, with different semantics. In addition, MetaExpression is used to depict

some combination of sub-expressions, variables or constants, connected by operators (e.g., “+”,

“<”, and “+=”). MetaGlobal is a special meta-class that does not correspond to any actual

language entity, but is very useful for grouping a set

Figure 5.3 OpenFoo variable structure as a class diagram

118

of meta-objects in order to perform project-wide transformation. All built-in meta-classes are

subclasses of the meta-class named MetaObject.

MetaGlobal, MetaFunction, and MetaUserDefinedType are three built-in

scope meta-classes representing a possible scope within which the target source code is to be

transformed (e.g., manipulating a function, a user defined module, or even a whole project

including multiple files). As shown in Figure 5.2, MetaGlobal can contain multiple

MetaFunctions, MetaUserDefinedTypes, and MetaVariables;

MetaUserDefinedTypes may have a list of MetaFunctions and MetaVariables;

MetaFunction might include multiple MetaVariables and MetaStatements. Figure

5.3 indicates that MetaVariable depends on MetaVariableType, which can be further

categorized as a variable with a single data item and an array variable holding a collection of

data items. MetaVariableType is an interface the meta-class MetaUserDefinedType

Figure 5.4 OpenFoo statement structure represented as a class diagram

119

has to implement and it may also refer to a list of possible built-in variable types. As depicted in

Figure 5.4, there are two types of statements: single statements (e.g., function call statements,

variable declaration statements, and assignment statements) and scope statements (e.g., condition

statements and loop statements), which serve as a container holding a set of other statements.

StatementType is an enumeration of possible statement types. All meta-classes and

enumerations appearing in these three figures together constitute the fundamental components

for constructing a MOP.

Meta-classes expose a set of member functions in order to allow users to modify the

attributes of their meta-objects. Manipulation of a function definition is the basic level that any

instance of OpenFoo supports. Usually, transforming the definition of a user defined type or the

whole project is ultimately delegated to that of the function definition. Therefore, most of the

facilitating member functions are defined in the meta-class MetaFunction. We have created a

list of member functions that might be used when instantiating OpenFoo for a particular

language. The goal is to maximize the reusability of source code and thus to reduce the effort for

constructing a new MOP. For a detailed list of member functions, please refer to [OpenFoo

Implementation, 2015].

The interfaces a MOP can provide may manifest as a set of classes or methods so that

users can create variants of the default language implementation incrementally by sub-classing,

specialization, or method combination. In a MOP implemented in a class-based object-oriented

language, the interfaces typically include at least the basic functionality of instantiating a class,

accessing attributes and invoking methods. With any instance of OpenFoo, developers are

allowed to define meta-classes specializing certain types of transformation by sub-classing

standard built-in meta-classes. Library developers need to define their customized meta-class by

120

sub-classing built-in scope meta-classes and thus be able to access attributes and invoke methods

carefully designed within them.

The member function OpenFooExtendDefinition declared in MetaObject should be

overridden by all subclasses to perform callee-side adaptions for the definition of a module or a

function (e.g., adding a new subroutine in a module, or inserting some statements in a

procedure). An OpenFoo instance also supports caller-side translations via overriding the

following member functions of MetaObject:

• OpenFooExtendFunctionCall(string funName): to manipulate a function invocation where

it is called

• OpenFooExtendVariableRead(string varName): to intercept and translate the behavior of

a variable read

• OpenFooExtendVariableWrite(string varName): to intercept and translate the behavior of

a variable write

It is nontrivial to instantiate OpenFoo for a broad range of programming languages due to

their differences in syntax and semantics. However, languages assuming the same programming

paradigm may share some concepts at an abstract level so that some portion of our approach can

be reused. The next two subsections illustrate how OpenFoo can be used as a prototype to

implement a MOP for Fortran 90, a structured legacy language, and C++, an object-oriented

mainstream language. The examples show how languages across different paradigms can share

model concepts and code artifacts through extension.

5.1.2 Instantiating OpenFoo with Fortran 90 Extension

Figure 5.5 shows the class diagram snippet representing the design structure of the

instance of OpenFoo for Fortran 90 by extending its core models. For conciseness, we have

121

integrated the three pieces shown in Figures 5.2, 5.3 and 5.4 into one class diagram model

(within the OpenFoo Class Diagram area) and omitted purposely in the details of meta-classes.

The OpenFoo model captures all of the essential concepts that are intrinsic to MOP

implementation and independent of any particular programming language. Therefore, the main

task involved in creating an OpenFoo instance for a particular GPL is to extend every language-

specific entity from an appropriate definition. One thing worth noting is that the scope

Figure 5.5 Class diagram snippet of OpenFoo with Fortran extension

122

information, an essential but complicated issue in program transformation, has already been

considered internally in our prototype.

Naturally, language developers have to first gain a deep understanding towards the syntax

and semantics of the target programming language, as well as the mechanism of a MOP before

being able to identify the appropriate super-class for a language entity from which to inherit. For

example, Fortran 90 introduced two important improvements to earlier Fortran versions: one is a

user-defined data type that allows programmers to define their own composite data types, and

the other is a module that groups a collection of data, type definitions and procedure definitions.

As demonstrated in Figure 5.5, two meta-classes are designed respectively for them

(MetaModuleFortran and MetaDerivedDataTypeFortran) and are derived from

MetaUserDefinedType. These two Fortran-specific meta-classes can be further customized

according to their features, which can be achieved through toggling on/off flags defined within

MetaUserDefinedType. For example, according to Fortran 90 syntax,

MetaDerivedDataTypeFortran only allows variables to be included within a user-

defined data type, but no procedures. In contrast, a module is a program unit that can be stored in

a separate file and compiled separately. A module can hold variables, procedures and user-

defined types, but a module in Fortran cannot be used to declare instances as a derived type like

a class in C++.

There are three types of procedures in Fortran: program, function, and subroutine.

Accordingly, three sub-classes inheriting from MetaFunction are implemented as seen in

Figure 5.5: MetaProgramFortran, MetaFunctionFortran, and

MetaSubroutineFortran. The main differences among them are that a program serves as

the entry of code with no input parameters or return data, a function can have multiple input

123

arguments, only one return value and can be used directly in an expression, and a subroutine may

have multiple input and output arguments, but cannot be placed in an expression. Different built-

in variable types that the target language supports need to be listed, such as INTEGER, REAL,

and LOGICAL in Fortran 90.

Another important step involves creating meta-classes for different language-specific

statements, which is the task requiring the most adaptation, and thus the most effort, when

adapting OpenFoo. To facilitate this task, we created a set of meta-classes in OpenFoo for

several generic statements that are shared the most among multiple GPLs, such as variable

declaration, assignment, function call, condition, and loop statements. Variations need to be

made through sub-classing and based on the uniqueness of the target language. For example, two

sub-classes derived from FunctionCallStatement are added to model the difference

between invoking functions and subroutines: FunctionCallStatementFortran and

SubroutineCallStatementFortran. For those statements that are unique to Fortran 90

(e.g., use module, implicit, and common statements), corresponding meta-classes need to be

created separately. Depending on the power and completeness anticipated for a new MOP,

language developers are free to add desired member functions for manipulating these statements.

Our experience suggests that for most of the statements, it usually suffices to allow only a few

typical operations. With the assistance of models in the form of class diagrams, we belive that

the effort spent in creating an instance of OpenFoo can be reduced.

5.1.3 Instantiating OpenFoo with C++ Extension

Figure 5.6 shows the corresponding class diagram for constructing a MOP for C++ by

extending the generic core models of OpenFoo. Similar to the Fortran 90 MOP described in the

last section, for every language-specific entity in C++, a meta-class is defined from an

124

appropriate class definition in the core model. As show in Figure 5.6, classes in purple depict the

points of variability existing in C++ syntax.

Classes are the essential feature of C++ that add the concept of object orientation to the C

programming language and are often called user-defined types. Structs are very similar to classes

in C++. Therefore, two meta-classes MetaClassCpp and MetaStructCpp that inherit from

MetaUserDefinedType are created to represent classes and structs, respectively. Unlike

Figure 5.6 Class diagram snippet of OpenFoo with C++ extension

125

modules in Fortran, developers can define objects by instantiating classes or structs, which needs

to be specified during inheritance. In addition, the concrete function definitions in C++ and in

Fortran are quite different due to the dissimilarity in their underlying grammar, so we defined a

particular meta-class for C++ as MetaFunctionCpp. In C++, iteration can be realized with

three different formats using keywords such as while, do-while, and for. Accordingly, we created

three meta-classes inherited from the built-in meta-class LoopStatement that is defined as a

generic meta-class for an iteration statement, as follows: WhileStatementCpp,

DoWhileStatementCpp, and ForStatementCpp. A MetaExpression attribute

defined in LoopStatement represents the boolean condition dictating whether to continue

with the next iteration, which can be accessed in all three subclasses. For ForStatementCpp,

member functions for manipulating the start, the end, and the incremental values are provided.

5.1.4 Lessons Learned

The construction of a generic MOP model helps to generalize the commonalities among

distinct GPLs. Each common concept may be refined using language-specific model extensions.

Moreover, an extension of the OpenFoo model may categorize commonalities within a paradigm

that can be further reused. For example, the C++ model extends the OpenFoo model with

common object-oriented concepts, which can then be reused by other OO languages, and the

Fortran 90 model can serve as the foundation for other structured languages.

ROSE uses consistent IR nodes in ASTs to represent language entities in different

programming languages it supports, so that the same set of APIs can be used to manipulate

entities commonly shared by different languages. For some language-specific entities, a constant

is used to differentiate them. Table 5.1 lists the frequently used constants that need to be

specified when sub-classing generic meta-classes defined in OpenFoo to uniquely identify a

126

language entity. Most of the constants are shared between multiple languages and a few are used

only for a particular language.

The underlying transformation engine ROSE plays an important role in increasing the

reusability of code artifacts in OpenFoo. However, the dependency on ROSE has also resulted in

a limitation of OpenFoo: it can only be used to construct a MOP for a programming language

that ROSE supports. In addition, our implementations are far from complete and are only used

for the purpose of demonstrating the capability of our approach. More APIs will be added in our

future work to address these limitations.

Programming Languages Language Entity Constant

C/C++

Function

V_SgFunctionDeclaration
V_SgFunctionDefinition

Class V_SgClassDeclaration
V_SgClassDefinition

Statement
V_SgSwitchStatement
V_SgCatchOptionStmt
V_SgForStatement
……

Shared by Multiple GPLs

Virtual Entity
V_SgFile
V_SgScopeStatement
V_SgGlobal
V_SgBasicBlock

Variable
V_SgVariableDeclaration
V_SgVariableDefinition
V_SgType

Statement

V_SgIfStmt
V_SgWhileStmt
V_SgContinueStmt
V_SgReturnStmt
……

Fortran

Program V_SgProgramHeaderStatement

Subroutine or function V_SgProcedureHeaderStatement

Module V_SgModuleStatement
V_SgUseStatement

Statement

V_SgFortranDo
V_SgPrintStatement
V_SgFormatStatement
V_SgLabelStatement
……

Table 5.1 The constants used in ROSE for identifying IR nodes

127

5.2 Generalizing SPOT to Support New MOPs

As introduced in Chapter 4, SPOT is a front-end DSL we created in order to reduce the

accidental complexities caused by the direct adoption of a back-end MOP to perform code

modifications [Yue and Gray, 2014]. SPOT was originally devised to offer a more intuitive

description of program transformations in Fortran with the help of its declarative feature.

However, SPOT is not limited to only transforming Fortran code and it can also be extended to

support other languages because it offers a higher abstraction of code modification. As illustrated

in Chapter 4, we have already adapted SPOT to support program transformations in a different

GPL (i.e., C programming language). Compared with a MOP (implemented in C++), SPOT is

more expressive in specifying transformation tasks through tailoring the notations and

abstractions towards the domain of program transformation.

Model-Driven Engineering (MDE) has experienced an increase in interest over the past

decade, primary in association with Domain-Specific Languages (DSLs), meta-programming and

language workbenches [Voelter, 2009]. MDE and DSL engineering both focus on raising the

level of abstraction in software development and the past decade has witnessed a convergence

between these areas [Gray and Karsai, 2003]. A model can be used to represent a target domain

at a higher abstraction level and it can be expressed with a textual DSL. MDE emphasizes the

description of software applications through models and DSL concentrates on creating languages

to express the models. With the help of MDE, the scope of the DSLs can be defined in a more

precise way. MDE and DSLs are complementary and both necessary for a model-driven

approach [den Haan, 2008].

In Chapter 4, we already demonstrated SPOT’s capability of liberating common

developers from the burden of programming with APIs provided by a MOP. In this section, we

128

mainly focus on generalizing the design of SPOT with the assistance of a set of MDE models. To

achieve this, we redesigned SPOT to make it first independent of Fortran or C via describing its

abstract syntax with higher-order models that capture the essence of commonly shared features

in program transformation for different programming languages. Our primary goal is to show

how MDE models can be used to facilitate the expression and extension of the front-end DSL so

that it can be applicable to a newly constructed MOP at the back-end.

5.2.1 SPOT Abstract Syntax

Figure 5.7 shows the core subset of the abstract syntax of SPOT in the form of a model

represented as a class diagram in UML. This model depicting the specification of code

transformations is independent of any particular programming language. As indicated in Figure

Figure 5.7 Subset of SPOT abstract syntax in UML class diagram

129

5.7, a Transformer consists of multiple Transformation components. Each

Transformation component specifies some Operations to access or manipulate some

LanguageEntities that can be pinpointed through specifying the Location. They are the

basic elements for composing a language-independent DSL for source code transformation.

An Operation, represented as an abstract class in the class diagram, can be further

categorized into different types of actions, such as Add, Delete, Update, and Retrieve,

which are systematic actions that can be performed towards language entities. It has been

observed in recent research that most source code modifications are systematic and developers

usually add, delete or update code in a similar, but not identical manner [Kim et al., 2005;

Nguyen et al., 2010]. Retrieve means to obtain the handler of a target LanguageEntity

given a name, which can then be used to access its structural information or to modify its internal

attributes.

One crucial problem that challenges most program transformation systems is how to

provide a scheme for developers to precisely specify the location for translation. SPOT provides

different methods in the form of a set of built-in functions to achieve accurate positioning.

Location and LanguageEntity together constitute the key for pattern matching in the

underlying MOP implementation. For example, developers can invoke Within (Entity

name) to indicate that the subsequent translation be performed for the entity identified with a

given name. Before and After can be used to pinpoint the locations between lines. In

addition, a wildcard can also be utilized to match multiple locations with similar scenarios. As

seen in Figure 5.7, both ScopeEntity and BasicEnity are derived from

LanguageEntity. ScopeEntity denotes language constructs such as function definitions,

class definitions, or statements that also contain a scope (e.g., a if-else statement or a for

130

statement). BasicEnity represents points of interest in source code that are frequently visited

in program transformation, such as function calls, variable reads and writes, and statements

without scope information.

In this model, Operation and Location are completely language-independent while

LanguageEntity is closely related with the target programming language. However, in order

to increase the extensibility of SPOT, we only abstract the generic features depicted by

transformer
 :'Transformer' ID '{' transformation (';' transformation)* '}'
 -> ^(TRANSFORMER_ND ID transformation+)
 ;
transformation
 :location '{' subTransform+ '}'
 -> ^(TFBODY_ND location subTransform+)
 ;
location
 : scopeKeyword '(' languageEntity (ID|'*'|'%' ID) ')'
 -> ^(TRANS_LOCATION scopeKeyword languageEntity (ID|'*'|'%'^ ID))
 ;
languageEntity
 : scopeEntity
 | basicEntiy
 ;
scopeKeyword

: 'Within'
;

locationKeyword
 :'After'
 |'Before'
 ;
scopeEntity
 :'Function'
 |'Project'
 |'Statement'
 ;
basicEntiy
 :'FunctionCall'
 |'VariableRead'
 |'VariableWrite'
 | statementTypeName //collect all statements of a type
 | '"' statement '"'//collect all statements with original source code, e.g. "a=b+c"

;
subTransform
 :location '{' operation+ '}'
 -> ^(SUB_TRANSFORMER location operation+)
 | operation
 ;
operation
 :actionVariable ';'
 -> ^(ACTION_ND actionVariable)
 |actionStatement ';'
 -> ^(ACTION_ND actionStatement)
 |actionFunction ';'
 -> ^(ACTION_ND actionFunction)
 //retrieve statements only allow read, no modification or transformation
 |scopeEntity '%'? ID '=' actionRetrieve ';'
 -> ^(RETRIEVE_ND scopeEntity '%'? ID '=' actionRetrieve)
 ;

Figure 5.8 The concrete syntax of SPOT in EBNF grammar

131

LanguageEntity and its subclasses. Those features are shared among a family of languages

with block-structured syntax, but not language-specific. Abstract language entities are actually

the places where extensions are allowed in order for SPOT to support a particular programming

language, which is explained in detail in subsection 5.2.3.

5.2.2 SPOT Concrete Syntax

The concrete syntax of SPOT is expressed as a grammar in Extended Backus-Naur Form

(EBNF). As shown in Figure 5.8, different elements in the abstract syntax are expressed with

generation rules that include keywords reserved by SPOT and some other terminal tokens such

as separators, semicolons, and parentheses. Please refer to Figure 4.3 for the design structure of

the code generator we implemented to translate SPOT code to the underlying OpenFortran

implementation in C++. For the code generator, ANTLR [Parr, 2007] and StringTemplate [Parr,

2007] are used in our approach. ANTLR is a parser generator that takes as input the grammar of

a language expressed in EBNF and generates a recognizer for it. ANTLR can build an AST for

the program after parsing. As seen in Figure 5.8, the annotations in the form of “->(root, child1,

child1…)” are used to direct the generation of a sub-tree in a desired shape. For example, for the

following rule:

ANTLR creates a sub-tree with the root named TFBODY_ND and the first child as the root of

sub-tree generated for the rule location, and all the other children as a list of sub-trees for

subTransform. A well-organized AST can be of great assistance in matching desired sub-trees

and in mapping to an output model.

transformation
 :location '{' subTransform+ '}'
 -> ^(TFBODY_ND location subTransform+)
 ;

132

StringTemplate is a template engine used in ANTLR for generating formatted text output,

C++ source code in our case. It works in a way that a group of templates (strings with holes)

representing the output model are injected with values that are extracted while traversing the

ASTs. Please refer to Figure 4.5 for an example illustrating the working mechanism of

StringTemplate.

5.2.3 SPOT Generalization

We have already implemented the generic core of SPOT through raising the abstraction

level of program transformation and abstracting the structural information of source code. Both

the abstract syntax and the concrete syntax explained in last two subsections are language-

independent and represent the essence of commonly shared features in program transformation

for different programming languages. In the following two subsections, we first summarize the

construction of extensions to SPOT for Fortran 90 and C++ so that the extended SPOT can be

used jointly with the MOPs we constructed by extending OpenFoo. As demonstrated in Figure

5.9, a translator is used to link the front-end DSL with the back-end MOP together. Our main

purpose is to outline the procedure involved in extending SPOT, which can be instructive

towards supporting a newly created MOP at the back-end of our framework.

Figure 5.9 Extend SPOT to support MOPs constructed with OpenFoo

133

Reconsider the abstract syntax of SPOT in Figure 5.7. Transformation,

Operation, and Location are all generic elements. For Location, SPOT provides

constructs and keywords (i.e., Before, After, Within) in the concrete syntax to allow developers to

specify the locations for transformations. For Operation, a list of frequently applied actions

are created in the form of built-in functions that can be invoked in a declarative manner to

perform desired translation towards a target language entity, for example,

RenameFunction(<oldName>, <newName>), AddVariable(<type>, <name>, <intialValue>),

AddStatement(<loc>, <targetStmt>, <“newStmt”>), ReplaceStatement(<“oldStmt”>,

<“newStmt”>); please refer to Table 4.1 for more built-in actions. The actions themselves are

language-independent, but the parameters passed to them are closely associated with an

individual programming language.

SPOT is able to support string-based pattern matching and code translation. Developers

are allowed to embed within a SPOT program the source code of a target language. To fulfill

this, the grammar of the target language (in EBNF) needs to be integrated with the SPOT

grammar so that the parser generated from ANTLR can recognize the code of the target

language. Therefore, the ANTLR grammar of a language has to be provided first in order to

extend the generic SPOT core. Fortunately, the ANTLR grammars of many GPLs are available

at the ANTLR website, which can be adapted with a few adjustments.

In the abstract syntax of the core SPOT, LanguageEntity and its subclasses (e.g.,

Statement, UserDefinedType, and Function) are actually the points where extensions

can be made for a specific programming language. Due to differences in the concrete syntax

among different languages, there may be differences in the concrete elements, e.g., concrete

SingleStatement and ScopeStatement may vary from one language to another. Under

134

the circumstances, the discrepancies can be captured in individual model extensions and

commonality can be shared in the core model. As shown in Figure 5.10, the class diagram

represents the extended SPOT model that incorporates the particular language features of Fortran

90. The model of the SPOT core captures all of the essential concepts intrinsic to expressing

program transformations. The extension at the bottom defines concrete elements in Fortran by

sub-classing abstract elements in the core model. For example, DerivedDataType and

Module are two special user defined types, so UserDefinedType should be the super-class

to inherit from. There are three concrete types of Function in Fortran 90: Program,

Subroutine, and Function. Statements that are specific in Fortran should be identified and

subclassed from ScopeStatement or SingleStatement.

Figure 5.11 shows the corresponding extension for C++ to the abstract syntax of the

Figure 5.10 The extension to core SPOT abstract syntax for Fortran 90

135

SPOT core. The concrete elements at the bottom of the model, display the points of variability

existing in the concerte syntax of C++. In the case of the C++ extension, Class and Struct

are the two concrete subclasses of UserDefinedType. The remaining elements represent the

concrete statements that are specific to C++. Comparing the extension for C++ with that for

Fortran 90, not much difference can be seen due to the design of the SPOT core. The abstract

syntax of the front-end DSL only serves as the design blueprint and most of the work required

from language developers concentrates on the extension to the concrete syntax and the templates

used for generating the corresponding back-end MOP implementation.

Figure 5.11 The extension to core SPOT abstract syntax for C++

136

Figure 5.12 shows the comparison between two representative generation rules in the

extended concrete syntax of SPOT for Fortan 90 as in (a) and for C++ as in (b).

actionStatement
 : 'AddStatement' '(' locationKeyWord, target=statement, new=statement ')'
 -> ^('AddCallStatement' locationKeyWord target new)
 |'ReplaceStatement' '(' oldStmt= statement',' newStmt= statement')'
 -> ^('ReplaceStatement' $oldStmt $newStmt)
 |'DeleteStatement' '(' statement ')'
 -> ^('DeleteStatement' statement)
 |'AddCallStatement' '(' locationKeyword ',' oldStatement ',' ID (',' callArgumentList)? ')'
 -> ^('AddCallStatement' locationKeyword oldStatement ID callArgumentList?)
 |'AddCommentStatement''(' commentStatement ')'
 -> ^('AddCommentStatement' commentStatement)
 |'AddUseStatement' '(' ID ')'
 -> ^('AddUseStatement' ID)
 ;
statement
 : assignmentStatement
 -> ^(ASSIGN_STATEMENT assignmentStatement)
 | callStatement
 -> ^(CALL_STATEMENT callStatement)
 | declareStatement
 -> ^(DEC_STATEMENT declareStatement)
 | ifStatementWhole
 -> ^(COND_STATEMENT ifStatementWhole)
 | doStatement
 -> ^(DO_STATEMENT doStatement)
 | commentStatment
 -> ^(WHILE_STATEMENT commentStatment)
 | formatStatement
 -> ^(FOR_STATEMENT formatStatement)
 | implicitStatement
 -> ^(IMPLICIT_STATEMENT implicitStatement)
 | parameterStatement
 -> ^(DEC_STATEMENT parameterStatement)
 ;

actionStatement
 : 'AddStatement' '(' locationKeyWord, target=statement, new=statement ')'
 -> ^('AddCallStatement' locationKeyWord $target $new)
 |'ReplaceStatement' '(' oldStmt= statement',' newStmt= statement')'
 -> ^('ReplaceStatement' $oldStmt $newStmt)
 |'DeleteStatement' '(' statement ')'
 -> ^('DeleteStatement' statement)
 |'AddIncludeStatement' '(' ID ‘.h’ ')'
 -> ^('AddIncludeStatement' ID)
 |'%' ID '=' 'AddCallStatement' '(' ID ',' (',' callArgumentList)? ')'
 -> ^('=' ('%'^ ID) 'AddCallStatement' ID callArgumentList?)
 ;
statement
 : assignmentStatement
 -> ^(ASSIGN_STATEMENT assignmentStatement)
 | callStatement
 -> ^(CALL_STATEMENT callStatement)
 | declareStatement
 -> ^(DEC_STATEMENT declareStatement)
 | ifStatementWhole
 -> ^(COND_STATEMENT ifStatementWhole)
 | doStatement
 -> ^(DO_STATEMENT doStatement)
 | whileStatement
 -> ^(WHILE_STATEMENT whileStatement)
 | forStatement
 -> ^(FOR_STATEMENT forStatement)
 | switchStatement
 -> ^(SWITCH_STATEMENT switchStatement)
 ;

(a) Extended concrete syntax for Fortran 90

(b) Extended concrete syntax for C++

Figure 5.12 The subset of extended concrete syntax of SPOT

137

ActionStatement refers to the rule that defines the syntax of a possible set of built-in

actions that are intended for transforming statements in a target language. As evident in Figure

5.12, the differences between the two target languages are highlighted in bold. For instance,

AddCommentStatement and AddUseStatement are added for modifying Fortran

programs, while AddIncludeStatement is particularly added for changing C++ code. To

support embedding statements coded in a target language within a SPOT program, the

statement rule is actually the point where the grammar of the language is integrated with that

of the SPOT core. After exteding the concrete syntax, the last step is to create new templates and

add them into the template store. The templates are going to be used as the output model by

StringTemplate to generate the underlying MOP implementation from SPOT code. The

templates used in our approach to generate C++ code are listed in Apprendix B.4 and the user

manual of StringTemplate can be found in [Parr, 2007].

5.2.4 Summary

The research question Q5 (i.e., how to generalize the framework to make it language-

independent) is answered with our extensible framework that consists of two primary parts: the

MOP prototype (OpenFoo) at the back-end and the DSL (SPOT) at the front-end. OpenFoo is an

extensible library that is composed of language-independent components associated with the

MOP construction. A MOP for a particular GPL can be implemented by building language-

specific components via extending from predefined language-independent components.

Similarly, SPOT has been generalized from its initial version mainly used for specifying code

transformations for Fortran. The generic DSL can be extended so as to accommodate a newly

created back-end MOP. We use a set of models to facilitate the generalization for both the two

parts by raising the abstraction level of MOP construction and specification of program

138

transformation. The idea of a MOP becomes more straightforward by representing its design

structure with class diagrams, and the abstract syntax of the SPOT core is represented in a model

that is helpful to guide the extension to its concrete syntax.

Figure 5.13 illustrates how different groups of users can use our framework. Because of

the declarative characteristics of SPOT, a common programmer can learn and use it to perform

desired transformations towards their applications without having to be aware of how the

transformations are actually carried out. Meta-programmers can benefit from our approach in the

way that they can make extensions to our framework in support of a new GPL. To achieve this,

meta-programmers need to first construct a MOP for the target language from the OpenFoo

prototype. They can create language-specific meta-classes inheriting from the appropriate

predesigned meta-classes in OpenFoo by referencing the model describing the design structure of

OpenFoo. Meta-classes describing the statements specific to the language may require much

effort. If necessary, new public member functions representing possible manipulation of a

language entity can be added to meet specific needs, e.g., addFunctionModifier(string

Figure 5.13 How different users are supposed to use our framework

139

modifer) might be added to the metaFunctionCpp in the C++ MOP to add new modifier

for a function definition.

To extend the front-end DSL with the assistance from the models representing its abstract

syntax, meta-programmers can define new concrete elements according to the concrete syntax of

a target language and make these concrete elements inherit from the appropriate abstract

elements. The primary work lies in the creation of the DSL’s concrete syntax: a grammar in

EBNF describing the target language has to be provided and combined with that of the SPOT

core. Possible built-in actions and constructs used in the DSL should be created as generation

rules in the combined grammar. At last, appropriate templates need to be composed which serve

as the output model for the code generator to translate a SPOT program into the corresponding

C++ implementation in the MOP.

5.3 A Case Study: Code Coverage in Testing

In order to experiment with the approach introduced in the previous sections, we

extended our framework to support Fortran 90 and C++. The challenges presented in Chapter 4

can also be solved with the extended approach, i.e., supporting AOP in a target programming

language or separating sequential and parallel concerns. To avoid redundancy, in this section, we

present a tool implemented with our approach to solve a problem frequently encountered in

software testing, i.e., a tool for code coverage analysis. The objective is to illustrate that with our

extensible framework, the same SPOT program can be employed to specify translation tasks for

programs coded in different GPLs with a little adjustment via working together with different

MOPs at the back-end.

140

5.3.1 Code Coverage Analysis

Code coverage analysis is a means for determining the quantitative measure of the extent

to which the source code of a program is covered by running a test suite [Cornett, 2002].

Implementing a code coverage tool is another typical problem encountered in software testing,

which demonstrates the characteristic of crosscutting concerns. There are a variety of criteria

used to measure coverage levels, among which the following ones are commonly used:

• Statement Coverage indicates whether each executable statement has run at least once.

• Decision Coverage or Branch Coverage indicates whether each control structure (e.g., if-

statement or while-statement) has been evaluated to both true and false at least once.

• Condition Coverage indicates whether every logical expression in a control structure has

been evaluated to both true and false at least once. Condition/decision Coverage is a

combination of both techniques.

• Path Coverage indicates whether each possible path in every function has been taken at

least one. A path refers to a unique sequence of logical conditions from the entry to the

exit.

Although path coverage is considered to be the most comprehensive, it is impractical to

achieve due to the number of test cases growing exponentially to the number of branches [Myers

et al., 2011]. Almost all existing coverage tools support statement coverage, some support the

analysis of decision coverage, but only a few are able to offer more than decision coverage

analysis [Myers et al., 2011].

A code coverage tool is usually implemented by first instrumenting the source code or

intermediate binaries with instructions that are used to navigate the generation of coverage data

during program execution, and then by analysing the collected coverage information to output a

141

coverage report [Myers et al., 2011]. To manipulate source code is more straightforward

conceptually than the intermediate object code. For example, in order to achieve statement

coverage, first identify each statement in a program and then in a copy of source code add a line

of code after a statement acting as a self-identifying probe for the statement.

5.3.2 Implementing a Code Coverage Tool for C++/C

In this case study, we mainly illustrate how to use SPOT to implement a coverage tool

that supports both statement coverage and branch coverage for C++/C programs, and then to

slightly adapt the SPOT code to make it work for Fortran programs. It is not trivial to implement

a code coverage tool because it requires that the target program is parsed and analysed

semantically for locating target statements and the source code is then instrumented to insert

probe code. This usually involves manipulation of complicated data structures such as an AST.

1. void cfft2 (int n, double x[], double y[], double w[], double sgn){

 Visited(2, “fft_serial.c”);
2. tgle = 1;
 Visited(3, “fft_serial.c”);
3. step (n, mj, &x[0*2+0], &x[(n/2)*2+0], &y[0*2+0], &y[mj*2+0], w, sgn);
 Visited(4, “fft_serial.c”);
4. if (n == 2){
 Visited(5, “fft_serial.c”);
5. return;
6. }
 Visited(7, “fft_serial.c”);
7. for (j = 0; j < m - 2; j++){
 Visited(8, “fft_serial.c”);
8. mj = mj * 2;
 Visited(9, “fft_serial.c”);
9. if (tgle){
 Visited(10, “fft_serial.c”);
10. step (n, mj, &y[0*2+0], &y[(n/2)*2+0], &x[0*2+0], &x[mj*2+0], w, sgn);
 Visited(11, “fft_serial.c”);
11. tgle = 0;
12. }
13. else{
 Visited(14, “fft_serial.c”);
14. step (n, mj, &x[0*2+0], &x[(n/2)*2+0], &y[0*2+0], &y[mj*2+0], w, sgn);
 Visited(15, “fft_serial.c”);
15. tgle = 1;
16. }
17. }

}

Figure 5.14 Instrumented source code calculating FFT for statement coverage

142

However, by raising the abstraction of program transformation, our approach can be used to deal

with such a complicated task through only a few lines of code written in SPOT.

We have tested the coverage library on several applications, one of which is the

algorithm of Fast Fourier Transform (FFT) [FFT Website]. The FFT algorithm can be used to

rapidly compute the Fourier analysis that converts time or space to frequency and vice versa

[Van Loan, 1992]. It has been widely used for many applications in mathematics and

engineering. Figure 5.14 shows a code snippet from the algorithm, which has been instrumented

with probe code to realize statement coverage.

Before each executable statement, a function call to an auxiliary function Visited

(int lineNumber, string fileName) is added. Within function Visited, a unique

identifying number is generated and associated with each line number within each source file

involved, which is necessary for testing an entire software system comprised of multiple source

files. ROSE is a transformation engine with industrial strength and it is able to read thousands of

files in a single session, perform transformations, and then produce the complete set of modified

files. Supporting code is responsible for resetting all the visited flags, setting them after running

the program with test cases, while other code accumulates the results of the visited array across

1. Transformer statementCoverage {
2. Within(File %file){
3. AddIncludeStatement(CodeCoverage.h);
4. FORALL(Function *){
5. FORALL(Statement %stmt){
6. AddCallStatement(Before, $stmt.statement, Visited,
 $stmt.lineNum, $file.fileName);
7. }
8. }
9. }
10.}

Figure 5.15 Transformer code implementing statement coverage

143

multiple tests. Figure 5.15 demonstrates the transformer that enables code translation indicated

by Figure 5.14.

To implement branch coverage (or decision coverage) is more complicated than

statement coverage, but the transformer can still be implemented with a few lines of code in

SPOT. Instead of inserting a probe for each executable statement, we only need to focus on

statements that contain control structures in C/C++; for example, condition statements (if-else

and switch) and loop statements (for and while). A control statement is usually a scope statement

(i.e., a block that may include a set of statements). In the transformer that implements branch

coverage as indicated in Figure 5.16, we are only interested in those statements whose type is

StatementIF, StatementELSEIF, StatementELSE, StatementFOR,

StatementWHILE, StatementSWITCHCASE, or StatementSWITCHDefault. As in

lines 7 and 8, we locate such a statement and insert a line of code calling Visited before the

first statement that is included in its following block. In addition, we also add the same function

call at the very beginning of each function definition as in line 5. The instrumented example code

is shown in Figure 5.17.

The coverage report includes information about the frequency with which each part of the

1. Transformer branchCoverage {
2. Within(File %file){
3. AddIncludeStatement(CodeCoverage.h);
4. FORALL(Function %fun){
5. AddCallStatement(Before, $fun.firstStatement, Visited,
 $fun.lineNum, $file.fileName);
6. FORALL(Statement %stmt){
7. IF($stmt.type==StatementIF OR $stmt.type==StatementELSEIF
 OR $stmt.type==StatementELSE
 OR $stmt.type==StatementFOR OR $stmt.type==StatementWHILE
 OR $stmt.type==StatementSWITCHCASE OR $stmt.type==StatementSWITCHDefault){
8. AddCallStatement(Before, $stmt.firstStatement, Visited,
 $stmt.lineNum, $file.fileName);
9. }
10. }
11. }
12. }
13. }

Figure 5.16 Transformer code implementing branch coverage

144

source code has been executed, which is very useful information for determining the hot spots of

the code segments that have been visited frequently, as well as the cold spots that have not been

executed. In addition, the report also contains the percentage representing the coverage level

with a specific coverage metric, which provides a general view of how a set of test cases satisfy

the coverage metric. A low percentage usually means that the test cases need to be improved in

order to increase the possibility of detecting more bugs in the code.

5.3.3 Implementing a Code Coverage Tool for Fortran

To implement a similar tool that supports both statement coverage and branch coverage

for applications written in Fortran, we can reuse most of the SPOT programs introduced in the

previous subsection.

The front-end DSL used to implement the tool for C++ programs is actually a superset of

the SPOT core that has been enhanced with constructs and built-in actions specific to

1. void cfft2 (int n, double x[], double y[], double w[], double sgn){
 Visited(1, “fft_serial.c”);

2. tgle = 1;
3. step (n, mj, &x[0*2+0], &x[(n/2)*2+0], &y[0*2+0], &y[mj*2+0], w, sgn);
4. if (n == 2){
 Visited(4, “fft_serial.c”);
5. return;
6. }
7. for (j = 0; j < m - 2; j++){
 Visited(7, “fft_serial.c”);
8. mj = mj * 2;
9. if (tgle){
 Visited(9, “fft_serial.c”);
10. step (n, mj, &y[0*2+0], &y[(n/2)*2+0], &x[0*2+0], &x[mj*2+0],
 w, sgn);
11. tgle = 0;
12. }
13. else{
 Visited(13, “fft_serial.c”);
14. step (n, mj, &x[0*2+0], &x[(n/2)*2+0], &y[0*2+0], &y[mj*2+0],
 w, sgn);
15. tgle = 1;
16. }
17. }

}

Figure 5.17 Instrumented source code calculating FFT for branch coverage

145

recognizing or manipulating C/C++ statements, e.g., StatementFOR,

StatementSWITCHCASE, and AddIncludeStatement. In SPOT, a transformer is

ultimately translated into the corresponding C++ implementation using the APIs provided by the

MOP that was constructed from extending the OpenFoo prototype.

To reuse a SPOT program for supporting Fortran applications, we have to make sure that

the constructs and actions particularly designed in the extension for C++ are replaced with those

designed in the extension for Fortran. One special case is that if a library is coded solely with

constructs and actions defined within the SPOT core, the library can be used for different GPLs

without discrimination as long as there exists a MOP (an instance of OpenFoo) for that language

at the back-end.

In our case, the two SPOT programs introduced in previous subsections have to be

modified in order to be applicable to Fortran. For the SPOT code in Figure 5.15 which achieves

statement coverage, AddIncludeStatement is specific to C++ and needs to be replaced by

AddUseStatement(ModuleName) that is used for giving a Fortran program unit

accessibility to public entities in a module specified with ModuleName, where all auxiliary

Fortran code resides. Also the use statement should be inserted at the beginning of each

procedure (program, function, or subroutine). The rest of the SPOT code remains the same and

1. Transformer statementCoverage {
2. Within(File %file){
3. FORALL(Function *){
4. AddUseStatement(CodeCoverage);
5. FORALL(Statement %stmt){
6. AddCallStatement(Before, $stmt.statement, Visited,
 $stmt.lineNum, $file.fileName);
7. }
8. }
9. }
10.}

Figure 5.18 SPOT code implementing statement coverage for Fortran

146

the resulting SPOT code is shown in Figure 5.18. Figure 5.19 shows the adjusted SPOT code for

Fortran from that in Figure 5.16 which implements branch coverage. Besides replacing

AddIncludeStatement with AddUseStatement, we also removed C++ statement types

and added corresponding Fortran statement types as shown in line 7 of Figure 5.19.

Our solution to research question Q5 is an extensible framework that brings the power of

meta-programming to a GPL. Our design goal is to facilitate the reuse of existing code artifacts.

Within our framework, both the front-end SPOT and the back-end OpenFoo can be extended in

order to accommodate a new GPL. In addition, the libraries developed in SPOT can also be

reused to perform transformations towards applications written in a different programming

language with slight modification.

1. Transformer branchCoverage {
2. Within(File %file){
3. FORALL(Function %fun){
4. AddUseStatement(CodeCoverage);
5. AddCallStatement(Before, $fun.firstStatement, Visited,
 $fun.lineNum, $file.fileName);
6. FORALL(Statement %stmt){
7. IF($stmt.type==StatementIF OR $stmt.type==StatementTHEN OR
 $stmt.type==StatementELSE OR $stmt.type==StatementWHILE){
8. AddCallStatement(Before, $stmt.firstStatement, Visited,
 $stmt.lineNum, $file.fileName);
9. }
10. }
11. }
12. }
13. }

Figure 5.19 SPOT code implementing branch coverage for Fortran

147

CHAPTER 6

FUTURE WORK

This chapter outlines potential research directions as future work. Three broad directions

for future research are presented. Section 6.1 is mainly focused on possible enhancements

towards our current approach. For example, a visual DSL with both textual and graphical syntax

may be more productive in expressing code modification than SPOT, which is purely textual.

The techniques of model transformation may be applied to further increase the reusability of our

extensible framework. Section 6.2 lists the potential application domains where problems may be

solved through automating program transformations with our approach. Section 6.3 outlines a

plan for future empirical evaluation to help us in understanding the potential influence of our

approach toward supporting software evolution.

6.1 Improvements to Current Approach

We plan to enhance our approach from the following two aspects: 1) to increase the

expressiveness and the ease of use of SPOT by creating an editor and then adding graphic

features to its current pure textual syntax, and 2) to increase the reusability of our extensible

framework by leveraging model transformation techniques.

6.1.1 A GUI-Based Wizard for Program Transformation

Many program transformation engines (PTEs) support formally specified program

transformations [Quinlan, 2012; Baxter et al., 2004; Cordy, 2006; Visser, 2004; van den Brand et

al., 2001]. Some of them are powerful and flexible in performing certain types of source

transformation; however, it is often a challenge for developers to acquire the skills necessary to

148

use them because it usually involves manipulation of complex data representations, such as

ASTs. In addition, applying PTEs is quite different from the developers’ intuitive comprehension

towards code modification, which makes PTEs even more formidable to use [Détienne, 2002,

Boshernitsan et al., 2007]. Another research direction that provides the capability of program

transformation lies in integrating the functionality of automatic refactoring with existing IDEs, or

creating an IDE with a set of refactoring tools such as Photran [Overbey et al., 2005] and IntelliJ

[IntelliJ, 2011]. Compared with PTEs, refactoring tools are often considered more user-friendly

because they can be used in a visual and interactive manner. However, refactoring tools are

limited to translation types where the semantics of the code should not be affected. In addition,

with most refactoring tools, developers are not allowed to create customized refactoring

functionality. A more detailed survey of various existing solutions for automating program

transformations is provided in Section 2.3.

In Chapter 4, we presented our solution to automate code modification by creating a DSL

(SPOT) that provides a high-level abstraction for expressing program transformations. With

SPOT, translation specifications can be expressed in a way that more resembles a developer’s

mental model of program transformation than coding with meta-programming capabilities or

directly manipulating an AST, as required by many PTEs. In addition, the functional feature of

SPOT can help reduce the accidental complexity brought by the great difference between classic

programming and intensive meta-programming style.

6.1.1.1 An Editor for SPOT

To make SPOT more accessible and easier to use, we will develop an Eclipse-based

editor for SPOT. Currently, a developer needs to learn the syntax and vocabulary of SPOT and

create a transformer with plain text editors that do not provide help with syntax highlighting and

149

validation. It may be beneficial to SPOT users if they had an editor with different types of

assistance such as syntax highlighting, validation, auto completion of relevant symbols, and etc.

Xtext is an open source framework for developing programming languages and textual

DSLs [Eysholdt and Behrens, 2010]. Xtext not only supports generating a parser, but it can

provide a customizable Eclipse-based IDE. By hooking in a code generator developed with

Xtend [Bettini, 2013], a DSL can be translated into any language. We plan to create an editor for

SPOT with Xtext by taking advantage of a set of DSLs and APIs provided to describe different

aspects of a language. The code generator will be created with Xtend to translate SPOT code into

a C++ implementation of actual transformation code in OpenFoo.

6.1.1.2 A Graphical Version of SPOT

To further reduce the accidental complexity caused by using SPOT itself, we propose to

extend the editor to make it an Eclipse plugin that enables developers to make complex code

translation in a visual version of SPOT. We will use both textual and graphical elements to

model the process of code modification. The tool allows interactively constructed visual program

transformation and thus aligns well with developer’s mental models of program transformations

[Boshernitsan et al., 2007].

Two primary challenges facing most program transformation systems are how to

precisely express the location(s) for translation (usually referred to as pattern matching) and how

to specify desired actions (term rewriting). SPOT pursues a strategy of multiple scopes that

allows expressing transformations either at a specific location or at multiple locations identified

with a wildcard. Language constructs, such as control-flow clauses (IF-ELSE and FORALL)

and location keywords (Within, Before, and After), are provided to express higher-level

scopes and to identify precise locations. In addition, developers can get the handler to represent

150

particular language entities, for which built-in actions can be applied to perform transformations.

The GUI-based wizard is designed based on the syntax and semantics of SPOT and allows

developers to create SPOT code in a visual and interactive way.

Figures 6.1 and 6.2 show the proposed layout and design for the user interface in the

wizard. At the left-hand side is the editor with basic editing support, in which developers can

specify transformation tasks with SPOT code. At the right-hand side is a Transformer Assistant

that works like a wizard by helping developers to create a Transformer with SPOT step by step.

The corresponding SPOT code is automatically generated from a developer’s interaction with the

Transformer Assistant. For example, in Figure 6.1, developers can choose higher-level scopes for

transformation from a drop-down list in Transformer Assistant. For example, the drop-down list

after “Choose File” is populated with all file names from which developers can choose the file(s)

to modify. Wildcard * and % can be used to represent multiple scopes and with %, a handler (a

Figure 6.1 Proposed user interface for editing scopes

151

temporary variable name) can be specified which might be accessed in subsequent

Transformations.

As shown in Figure 6.1, developers are allowed to add multiple Transformations. A

Transformation is an integral part of a Transformer for performing code modification, which

usually consists of the precise location(s) and desired action(s) to be performed. As evident in

Figure 6.2, the code snippet highlighted in red in the editor is a Transformation generated from a

developer’s selection and input in Transformer Assistant at the right-hand side. Within the same

higher-level scope, there may be multiple Transformations in order to perform complex code

modification.

The Transformation shown in Figure 6.2 expresses the intention of invoking the function

named profiling before each function-call statement. To specify the parameters, developers

are allowed to select from a list of accessible handlers to retrieve their structural information. For

instance, in the example Transformer, both the handler of all functions (fun) and that of all

Figure 6.2 Proposed user interface for editing transformations

152

function-call statements (funCall) are available and their attributes can be obtained (i.e.,

fun.funName and funCall.statement). With the instructional guidance, arbitrary

reference to the attributes of higher-level entities can be avoided, so that context-sensitive

information can be accessed in an easier and safer manner without being affected adversely by

the transformation.

In addition to allowing developers to create a Transformer in an interactive way, we also

plan to allow developers to define target locations by simply selecting multiple statements

(similar to placing a breakpoint) and to only edit the actions to be performed. The remaining part

of Transformer is transparent to developers.

We plan to first integrate the GUI-based wizard with Photran [Overbey et al., 2005] to

facilitate program transformation for Fortran code. Currently, Photran only supports a number of

refactoring functions and does not allow users to create customized transformation functionality.

Next, we will use it together with other popular plugins, e.g., Eclipse CDT [Eclipse CDT, 2007],

to support program transformation in C and C++.

6.1.2 Use MDE Techniques to Improve the Framework

In Chapter 5, we introduced into our framework a set of UML models that are of great

help to convey abstract concepts in both the front-end DSL and the back-end MOP. For the same

design goal as in our current framework (i.e., to generalize the framework to make it language-

independent and to reduce the accidental complexities incurred by directly using a MOP), we

plan to provide a solution that leverages the techniques of model transformation.

Figure 6.3 describes how UML models are currently used in our framework, which is

explained in the setting of the three modeling levels, as indicated by M1, M2, and M3. A set of

class diagrams in UML are used to facilitate the generalization in our framework by raising the

153

abstraction level of MOP construction and specification of program transformation. At the front-

end, the abstract syntax of SPOT is depicted in UML models that capture the essence of

commonly shared features in program transformation for different programming languages. The

models are helpful to guide the extension to SPOT’s concrete syntax. At the back-end, the design

structure of OpenFoo is also represented in the form of a group of class diagrams composed of

language-independent components associated with the MOP construction. With the assistance of

models, it becomes more straightforward to understand the idea of using a MOP to extend

OpenFoo. In our current solution, the models used are only for the purpose of reference and the

core techniques at the heart of MDE (i.e., model transformation) haven not been utilized.

Figure 6.4 explains how the design goal can be fulfilled with model transformations. The

complete scenario is also described in the setting of the three modeling levels in the

grammarware [Klint et al., 2005] and MDE technical spaces (TS), but in a different horizontal

order as in Figure 6.3. The scenario works in the following way: 1) the program coded in the

Figure 6.3 Models used for assisting extension in current framework

154

front-end DSL is first injected into a SPOT model, 2) the SPOT model is then transformed into a

target OpenFoo model using techniques of model transformation, and 3) the C++ implementation

is finally generated by extracting from the OpenFoo model.

With the new solution, UML models will be the primary artifacts that can be extended to

accommodate a new GPL and the meta-programmer does not have to be directly working on the

OpenFoo prototype implemented in C++. In our current framework, SPOT and OpenFoo

actually share a considerable portion of class diagrams and the redundancy will be reduced with

the proposed solution.

This proposal explains how MDE techniques might be used to improve the construction

of a transformation framework for GPLs through reusable models and transformations.

Currently, our solution emphasizes using DSL while the new approach strives to solve the

problem using model transformation. We will investigate different MDE technologies to find the

most appropriate system in order to achieve the transformation between UML models and

program languages (i.e., SPOT and C++).

Figure 6.4 Model transformation scenario in future framework

155

6.2 Support More Application Domains

The second broad direction of future research involves potential application domains, in

which our approach may be a candidate for solving domain problems. Currently, we have

implemented a version of SPOT that supports several types of HPC application needs. Together

with the underlying MOP, we have laid a solid foundation for SPOT to be extended through the

creation of new language constructs. We will continue to enrich SPOT with more constructs in

order to support additional types of translation in different application domains.

Among several programming models, transactional memory (TM) has become a

promising approach to parallelization by simplifying synchronization to shared data by allowing

a set of read and write instructions to be executed in an atomic manner [Dice and Shavit, 2007].

The implementation of a TM system relies heavily on checkpointing and conflict detection,

which can be achieved by instrumenting binary code; e.g., JudoSTM [Olszewski et al., 2007]

supports TM in C and C++ through binary modification. We are planning to implement TM for

Fortran, C and C++ through source transformation instead of binary transformation.

6.2.1 Fault Tolerance in HPC

Fault tolerance has been studied comprehensively in the area of distributed systems.

However, less effort has been invested in this problem in HPC because hardware failures in high

performance systems do not occur frequently enough to cause deep concerns [Bronevetsky et al.,

2003]. Moreover, a majority of HPC systems were deployed on more reliable hardware

platforms, such as monolithic vector or parallel computers, and the execution time of most

systems are much less than the mean-time-between-failure (MTBF) of the hardware

[Bronevetsky et al., 2003].

156

However, recent trends in the HPC community have made fault tolerance an important

issue worthy of more attention. First of all, many computational programs today are designed to

run for days or even months and the execution durations are much longer than the MTBF, for

example simulation for predicting protein structure [Das et al., 1997] and climate modeling

[Chen et al., 2007]. Secondly, computational tasks have continued to grow in the scale of

complexity and drive the demand for larger computing power.

Ever increasing new requirements have fostered significant development in today’s HPC

hardware infrastructure. One outstanding change is that the physical size of HPC systems has

increased rapidly. Parallel computation is shifting from a single giant hardware platform to

computer clusters and grids. A computer cluster works by harnessing computing power from a

large number of computers physically close to each other, which is suitable for building cost-

effective systems; while in a grid, heterogeneous computing resources located in diverse

domains are managed in a distributed way and used opportunistically according to the

availability of a resource [Foster, 2002]. The overall computing performance is increased

proportionally with the number of processors working in parallel; however, the probability of

hardware failures is also increasing because the more computing components involved, the

higher the chances some of them may fail. For example, the Jaguar system with 45,208 cores

was reported to witness about 2.2 failures per day [Gomez et al., 2010]. Thus, challenges loom

large in dealing with reliability of large-scale HPC systems.

The issue of security and accountability is critical to maintaining the correctness and to

enhance fault tolerance and robustness of HPC systems [Xiao et al., 2011]. This is particularly

true for systems on clusters or grids where computational nodes are distributed physically and

connected through high-speed links. Different strategies have been proposed to deal with

157

different problems. However, many issues are raised when attempting to integrate those

strategies into practical applications. One of the major problems involves flexibility, such as

transparency of strategies, ease of use and reusability of existing strategies to derive new ones.

Our approach has shown initial promise in dealing with fault tolerance issues in HPC by

implementing an application-level check-pointing library. In our future work, we will explore

more opportunities in applying our approach to solve problems concerning fault tolerance.

6.3 Empirical Evaluation

We have already performed a series of case studies to demonstrate how our approach can

be used to address the challenges we identified in software maintenance and evolution in HPC.

However, one limitation in this dissertation is the lack of human-based empirical evaluation to

help us understand how to improve our impact to the HPC community.

Therefore, as one direction of our future work, we plan to assess the potential influence

of our research through performing a series of evaluations using various experimental techniques

and measurements. Firstly, we will investigate the impact of our approach on more case studies

by applying transformation libraries developed with our framework to a few known benchmark

applications in HPC. The quality of our solutions will be evaluated with respect to productivity,

accuracy, and adaptability toward maintenance and evolution tasks. Productivity is one of the

most important reasons to use program transformations to automate evolution tasks. Analysis

will be focused on how fast a transformation library can be built with our solution to evolve

applications on a large scale. In addition, accuracy is another essential feature that needs to be

evaluated. Analysis will be performed to determine whether the generated underlying

implementation that actually performs the required transformation is correct and placed in the

right place(s). Whether a transformation library built with our approach can be applied to

158

different applications with no change or with a little change is another important factor to

evaluate. We will compare the adaptability with other transformation engines available by

analyzing experimental data obtained from the case studies.

We will also conduct human-based experiments where four groups of programmers with

similar programming experience and skills will be assigned with the same task to evolve a legacy

software system, with each group using a different technique. Before the experiment,

corresponding training sessions will be provided to participants to learn the technique used to

perform the required transformations. In the experiment, group one will be asked to change the

source code manually; group two will perform the same task by directly using a program

transformation engine (PTE), such as ROSE; group three will use a MOP, and group four will

use SPOT. Comparisons will be made to understand the differences in time spent by each group

to finish the required transformations. We will also measure the accuracy of each evolution effort

among the four techniques. All participants will be given qualitative questions afterwards to

collect their ideas toward the technique they use in the experiment, from which we can have a

better understanding about whether our approach is easier to use compared with other methods.

159

CHAPTER 7

CONCLUSION

The research in this dissertation is mainly focused on assisting in the process of software

evolution in the area of HPC using techniques in software engineering and programming

language design, such as meta-object protocol (MOP) and Domain-Specific Language (DSL).

Many problems in software development and maintenance can be solved through program

transformation, the objective of which is to automate tasks associated with software

maintenance.

Meta-programming has shown much promise for building software in order to automate

program transformations through code generation or manipulation [Spinellis, 2008]. In our

research, we created MOPs that bring the power of meta-programming to program languages

widely used in HPC, with which source-to-source program translation libraries can be built and

then applied in a manner that is transparent to application developers. To reduce the accidental

complexity, we created a textual DSL that provides a higher-level abstraction for specifying

program transformations, and thus enables more intuitive expression of manipulating program

entities with support from the underlying capabilities available in the MOP. In order for our

approach to accommodate additional general-purpose programming languages (GPLs), we

strived to generalize it through pursuing an extensible framework. The framework is composed

of a language-independent MOP prototype that can be used to create a MOP instance for a

specific GPL and a generic front-end DSL that can be extended to work jointly with the newly

created MOP at the backend.

160

In this research, we identified several key challenges towards constructing a MOP for an

arbitrary language. Research question Q1 (i.e., How to construct a parser for the target

language?) and Q3 (i.e., How to perform the underlying complex transformations?) can be

addressed by leveraging existing program transformation engines (PTEs) and are not part of the

primary contribution of this research, although were discussed in context throughout the

dissertation. They are not specific to constructing MOPs, but also applicable to other types of

language engineering tools. We addressed these two questions by using ROSE, which supports

formally specified source-to-source program transformations at compile time with mature parsers

accommodating several GPLs and adequate support for complex and systematic transformation.

In addition, ROSE provides interfaces that allow users to specify code transformation through

coding in an object-oriented programming language (i.e., C++).

This dissertation is intended to provide solutions to the following three research questions

(with original numbering from Chapter 1):

• Question Q2: How to design an appropriate meta-level representation for the target

language?

• Question Q4: How to reduce the accidental complexities incurred by directly using a

MOP?

• Question Q5: How to generalize the approach to make it language-independent?

7.1 OpenFortran

We built a MOP for Fortran (OpenFortran) on top of ROSE, which addressed Q2.

OpenFortran is able to provide meta-programming capabilities to Fortran by enabling extension

to its semantics through organizing a meta-level architecture. The meta-program takes an object-

oriented representation of the base-program’s language constructs and provides carefully

161

designed interfaces for developers to manipulate them. A meta-program can capture the essence

of a commonly needed feature and transform several different base programs. With OpenFortran,

transformations are performed during compilation rather than at run-time in order to avoid run-

time penalties.

Application programmers can apply a library developed in OpenFortran to translate

existing legacy application code in a transparent way, such that they only need to add simple

annotations to their source code while not needing to understand the complexities of using a

program transformation engine. We demonstrated the capability of OpenFortran by

implementing a profiling tool that helps to obtain an overview of system performance. We also

developed a case study to illustrate how OpenFortran can be utilized to improve the modularity

of a timer implementation in NASA Advanced Supercomputing (NAS). Our experience has

shown that the MOP mechanism can be used to address a wide range of problems by facilitating

the implementation of source-to-source program translators, especially suitable for, but not

limited to those dealing with crosscutting issues.

7.2 SPOT

We believe that there is a learning curve for most developers to become familiar with the

concepts of a MOP, even though it seems conceptually more straightforward to use OpenFortran

than directly calling the APIs of ROSE to manipulate ASTs.

To address research question Q4 (i.e., to reduce the accidental complexities caused by the

gap between the traditional programming paradigm and the intensive meta-programming

techniques), we created a DSL (SPOT) that can be used on top of OpenFortran to raise the

abstraction level to specify program transformations. By raising the level of abstraction for

program transformation, high-level programming concepts (e.g., modules, functions, and

162

statements) are used in SPOT as building constructs. Built-in functions are provided to perform

systematic actions on programming concepts, such as add, delete, and update. A code generator

is used to automate the translation from a SPOT program to the underlying implementation in a

MOP. By raising the abstraction level of program transformation specification, we believe that

SPOT has the potential to offer advantages to programmers who may not have deep skills in

using a traditional transformation system.

We have performed a series of case studies to showcase the capability of SPOT, such as

building a profiling library, an OpenMP library, and a checkpointing library. Our study shows

that SPOT is able to support AOP in the target base language by providing mechanisms to

represent crosscutting concerns. SPOT can also be used to specify more fine-grained

transformations at more diverse source locations. With SPOT, developers can use language

constructs and built-in functions to express transformation tasks in a direct manner, which more

resembles their thoughts of program transformation, and in a transparent manner, whereby they

do not need to know the details on how the transformations are performed underneath.

7.3 OpenFoo

We observed that there is a general lack of infrastructure support for language extension

in terms of building a MOP for an arbitrary language, especially for legacy programming

languages. Therefore, we offered our solution to question Q5 through building a generalized

framework suitable for extending an arbitrary programming language through a MOP.

The extensible framework includes two primary parts: a MOP prototype (OpenFoo) at the

backend and a DSL (SPOT) at the frontend. OpenFoo is an extensible library that is composed of

language-independent components associated with MOP construction. A MOP for a particular

GPL can be instantiated by building language-specific components via extension from OpenFoo.

163

Similarly, SPOT has been generalized from its initial version mainly used for specifying code

transformations for Fortran. The generic DSL can be extended to accommodate a newly created

backend MOP.

We use a set of graphic models to facilitate the generalization for both of the two parts by

raising the abstraction level of MOP construction and specification of program transformation.

The idea of a MOP may be more comprehensible by representing its design structure with class

diagrams, and the abstract syntax of the SPOT core is represented in a model that is helpful to

guide the extension to its concrete syntax.

To experiment with our solution, we extended our framework to support Fortran 90 and

C++. We also presented a tool implemented with our approach to solve a problem frequently

encountered in software testing, i.e., a tool for code coverage analysis. The case study illustrates

that with our extensible framework the same SPOT program can be adopted to specify

translation tasks for programs coded in different GPLs.

A survey of various existing solutions for automating program transformations is another

contribution of this dissertation. The survey is presented in Chapter 2 as background and related

work and includes comparisons between solutions of different methodologies and a rationale of

how our approach is different. Two primary features that make our approach different from other

solutions are: 1) our work allows users to express their intent of code modification in an intuitive

manner that is more tied to the programming model they use in their core development process,

and 2) the strategy of multiple scopes empowers our approach to be able to address context-

sensitive transformation problems.

Our experience has shown that our approach (i.e., a DSL plus a MOP), as a form of

program extension, can be used to address a wide range of problems in HPC (but not limited to

164

HPC) by facilitating the implementation of program translators, especially suitable for those

involving crosscutting and separation of parallelization concerns. By raising the abstraction level

for code modification and through the technique of code generation, our approach has the

potential to improve code modularity, maintainability, productivity, and reusability.

165

LIST OF REFERENCES

Adams, J. C., Brainerd, W. S., Hendrickson, R. A., Maine, R. E., Martin, J. T., & Smith, B. T.
(2008). The Fortran 2003 handbook: the complete syntax, features and procedures. Springer
Science & Business Media

Arora, R., Bangalore, P., & Mernik, M. (2011). A technique for non-invasive application-level
checkpointing. In The Journal of Supercomputing, 57(3), 227-255.

Arora, R., Bangalore, P., & Mernik, M. (2012). Tools and techniques for non-invasive explicit
parallelization. In The Journal of Supercomputing, 62(3), 1583-1608.

Backus, J. (1978). The history of Fortran I, II, and III. In History of programming languages
I (pp. 25-74).

Baxter, I. D., Pidgeon, C., & Mehlich, M. (2004). DMS®: Program transformations for practical
scalable software evolution. In Proceedings of the 26th International Conference on Software
Engineering (pp. 625-634).

Bell, G., & Gray, J. (2002). What's next in high-performance computing? Communications of the
ACM, 45(2), 91-95.

Bennett, K. H., & Rajlich, V. T. (2000). Software maintenance and evolution: a roadmap. In
Proceedings of the Conference on the Future of Software Engineering (pp. 73-87).

Bettini, L. (2013). Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing Ltd.

Bobrow, D., Gabriel, R., & White, J. (1993). CLOS in Context —The Shape of the Design
Space, In A. Paepcke, editor, Object-Oriented Programming-The CLOS Perspective, chapter 2.
MIT Press.

Bronevetsky, G., Marques, D., Pingali, K., & Stodghill, P. (2003). Automated application-level
checkpointing of MPI programs. ACM Sigplan Notices, 38(10), 84-94.

Boshernitsan, M., Graham, S. L., & Hearst, M. A. (2007). Aligning development tools with the
way programmers think about code changes. In Proceedings of the SIGCHI conference on
Human factors in computing systems (pp. 567-576).

Burson, S., Kotik, G. B., & Markosian, L. Z. (1990). A program transformation approach to
automating software re-engineering. In Computer Software and Applications Conference.
COMPSAC 90 (pp. 314-322).

166

Chen, Q. S., Laminie, J., Rousseau, A., Temam, R., & Tribbia, J. (2007). A 2.5 D model for the
equations of the ocean and the atmosphere. Analysis and Applications, 5(03), 199-229.

Chiba, S. (1995). A Metaobject Protocol for C++. In Conference on Object-Oriented
Programming Systems, Languages, and Applications (pp. 285-299).

Chiba, S. (1998). Javassist—a reflection-based programming wizard for Java. In Proceedings of
OOPSLA’98 Workshop on Reflective Programming in C++ and Java (p. 174).

Chiba, S. (2000). Load-time structural reflection in Java. In ECOOP 2000 European Conference
on Object-Oriented Programming (pp. 313-336).

Chiba, S., & Nishizawa, M. (2003). An easy-to-use toolkit for efficient Java bytecode translators.
In Generative Programming and Component Engineering (pp. 364-376).

Collard, M. L., Maletic, J. I., & Marcus, A. (2002). Supporting document and data views of
source code. In Proceedings of the 2002 ACM symposium on Document engineering (pp. 34-
41).

Cordy, J. R. (2006). The TXL source transformation language. Science of Computer
Programming, 61(3), 190-210.

Cornett, S. (2002). Code coverage analysis. Bullseye Testing Technology.

Czarnul, P., & Frączak, M. (2005). New user-guided and ckpt-based checkpointing libraries for
parallel MPI applications. In Recent Advances in Parallel Virtual Machine and Message Passing
Interface (pp. 351-358).

Das, R., Qian, B., Raman, S., Vernon, R., Thompson, J., Bradley, P., & Baker, D. (2007).
Structure prediction for CASP7 targets using extensive all atom refinement with Rosetta@
home. Proteins: Structure, Function, and Bioinformatics, 69(S8), 118-128.

Decyk, V. K., Norton, C. D., & Szymanski, B. K. (1997). Expressing object-oriented concepts in
Fortran 90. In ACM SIGPLAN Fortran Forum (Vol. 16, No. 1, pp. 13-18).

Demers, F. N., & Malenfant, J. (1995). Reflection in logic, functional and object-oriented
programming: a short comparative study. In Proceedings of the IJCAI (Vol. 95, pp. 29-38).

DeMichiel, L. G., & Gabriel, R. P. (1987). The common lisp object system: An overview. In
ECOOP’87 European Conference on Object-Oriented Programming (pp. 151-170).

Denker, M. (2008). Sub-method Structural and Behavioral Reflection (Doctoral dissertation,
Universität Bern). http://scg.unibe.ch/archive/phd/denker-phd.pdf

Détienne, F. (2002). Software Design–Cognitive Aspect. Springer Science & Business Media.

Deursen, A., Klint, P., & Visser, J. (2000). Domain-Specific Languages: In An Annotated
Bibliography, ACM SIGPLAN Notices, pp. 26-36.

167

DeVito, Z., Joubert, N., Palacios, F., Oakley, S., Medina, M., Barrientos, M., & Hanrahan, P.
(2011). Liszt: a domain specific language for building portable mesh-based PDE solvers.
In Proceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis (p. 9).

Dice, D., & Shavit, N. (2007). Understanding tradeoffs in software transactional memory. In
International Symposium on Code Generation and Optimization, CGO'07. (pp. 21-33).

dijkstra_openmp, (2010)
http://people.sc.fsu.edu/~jburkardt/c_src/dijkstra_openmp/dijkstra_openmp.html

De Schutter, K., & Adams, B. (2007). Aspect-orientation for revitalising legacy business
software. Electronic Notes in Theoretical Computer Science, 166, 63-80.

Dongarra, J. (2006). Trends in high performance computing: a historical overview and
examination of future developments. In Circuits and Devices Magazine, 22(1), 22-27.

Eclipse C/C++ Development Tooling-CDT.

Edison Design Group: http://www.edg.com/index.php?location=c_frontend

Eysholdt, M., & Behrens, H. (2010). Xtext: implement your language faster than the quick and
dirty way. In Proceedings of the ACM international conference companion on Object oriented
programming systems languages and applications companion (pp. 307-309).

Feather, M. S. (1987). A survey and classification of some program transformation approaches
and techniques. In The IFIP TC2/WG 2.1 Working Conference on Program specification and
transformation (pp. 165-195).

Feferman, S. (1962). Transfinite Recursive Progressions of Axiomatic Theories, Journal of
Symbolic Logic, 27:259–316.

Fast Fourier Transform example source code
http://people.sc.fsu.edu/~jburkardt/c_src/fft_serial/fft_serial.c

Fowler, M. (1999). Refactoring: Improving the Design of Existing Programs. Addison-Wesley.

Force, A. T. (2006). Architecture-driven modernization scenarios. OMG, USA.

Foster, I. (2002). What Is The GRID? A Three Point Checklist. GRID Today. Vol. 1 No. 6.

Friedman, D. P., & Wand, M. (1984). Reification: Reflection without metaphysics. In
Proceedings of the 1984 ACM Symposium on LISP and functional programming (pp. 348-355).

Fuhrer, R. M., Kiezun, A., & Keller, M. (2007). Refactoring in the Eclipse JDT: Past, present,
and future. In First Workshop on Refactoring Tools.

Furlinger, K., Gerndt, M., & Munchen, T. U. (2005). ompP: A profiling tool for OpenMP. In
Proceedings of the International Workshop on OpenMP (IWOMP’05).

168

George P. (1957). How to Solve It, Princeton University Press.

GFortran, Gnu compiler collection (gcc)

Goldberg, A., & Robson, D. (1983). Smalltalk-80: the language and its implementation.
Addison-Wesley Longman Publishing Co., Inc..

Gomez, L. B., Nukada, A., Maruyama, N., Cappello, F., & Matsuoka, S. (2010). Transparent
low-overhead checkpoint for GPU-accelerated clusters.

Gong, M., Zhang, Z., & Jacobsen, H. A. (2007). Aspect-oriented C for Systems Programming
with C. In AOSD 2007 Software Demonstration

Gropp, W., Lusk, E., Doss, N., & Skjellum, A. (1996). A high-performance, portable
implementation of the MPI message passing interface standard. Parallel computing, 22(6), 789-
828.

Gropp, W, Lusk, E, & Skjellum, A. (1999). Using MPI: portable parallel programming with the
message passing interface. In MIT Press, Cambridge, pp 1–371

Gray, J., & Karsai, G. (2003). An examination of DSLs for concisely representing model
traversals and transformations. In System Sciences, 2003. Proceedings of the 36th Annual
Hawaii International Conference on (pp. 10-19).

Harbulot B, & Gurd J. (2004). Using AspectJ to separate concerns in a parallel scientific Java
code. In International conference on aspect-oriented software development (pp. 122–131).

Herndon Jr, R. M., & Berzins, V. A. (1988). The realizable benefits of a language prototyping
language. IEEE Transactions on Software Engineering, 14(6), 803-809.

Irwin, J., Loingtier, J. M., Gilbert, J. R., Kiczales, G., Lamping, J., Mendhekar, A., &
Shpeisman, T. (1997). Aspect-oriented programming of sparse matrix code. In Scientific
Computing in Object-Oriented Parallel Environments (pp. 249-256).

IntelliJ, I. D. E. A. (2011). The Most Intelligent Java IDE. https://www.jetbrains.com/idea/

Dynamic Code Generation, http://java.sys-con.com/node/36843

Jacob, F., Yue, S., Gray, J., & Kraft, N. (2012). Modulo-F: A Modularization Language for
FORTRAN Programs. In Journal of Convergence Information Technology, vol. 7, no. 12 (pp.
256-263).

Kalaiselvi, S., & Rajaraman, V. (2000). A survey of checkpointing algorithms for parallel and
distributed computers. In Sadhana (Academy Proceedings in Engineering Sciences) (Vol. 25,
No. 5, pp. 489-510).

169

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., & Griswold, W. (2001). Getting
started with AspectJ. Communications of the ACM, 44(10), 59-65.

Kiczales, G., Rivieres, J., & Bobrow, D. (1991). The Art of the Metaobject Protocol. In The MIT
Press.

Kiczales, G. (1991). Towards a new model of abstraction in software engineering. In Object
Orientation in Operating Systems (pp. 127-128).

Kiczales, G., Ashley, J., Rodriguez, L., Vahdat, A., & Bobrow, D. (1993). Metaobject protocols:
Why we want them and what else they can do? In Object-oriented programming: The CLOS
perspective, MIT Press.

Kiczales, G. (1996). Beyond the black box: Open implementation. IEEE Software, 13(1), 8-10.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J. M., & Irwin, J.
(1997). Aspect-oriented programming (pp. 220-242).

Kim, M., Sazawal, V., Notkin, D., & Murphy, G. (2005). An empirical study of code clone
genealogies. In ACM SIGSOFT Software Engineering Notes (Vol. 30, No. 5, pp. 187-196).

Klint, P., Lämmel, R., & Verhoef, C. (2005). Toward an engineering discipline for
Grammarware. ACM Transactions on Software Engineering and Methodology (TOSEM), 14(3),
331-380.

Kniesel, G., Costanza, P., & Austermann, M. (2001). JMangler-a framework for load-time
transformation of java class files. In Source Code Analysis and Manipulation (pp. 98-108).

Koo, R., & Toueg, S. (1987). Checkpointing and rollback-recovery for distributed systems. IEEE
Transactions on Software Engineering, (1), 23-31.

Kurtev, I., Bézivin, J., Jouault, F., & Valduriez, P. (2006). Model-based DSL frameworks. In
Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications (pp. 602-616).

Hanenberg, S., Oberschulte, C., & Unland, R. (2003). Refactoring of aspect-oriented software. In
4th Annual International Conference on Object-Oriented and Internet-based Technologies,
Concepts, and Applications for a Networked World (Net. ObjectDays) (pp. 19-35).

Hatton, L. (1998). Does OO sync with how we think? IEEE Software, 15(3), 46-54.

Lammel, R., & Verhoef, C. (2001). Cracking the 500-language problem. IEEE Software, 18(6),
78-88.

Lee, A. H., & Zachary, J. L. (1995). Reflections on metaprogramming. IEEE Transactions on
Software Engineering, 21(11), 883-893.

170

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., & Turski, W. M. (1997). Metrics and
laws of software evolution-the nineties view. In Software Metrics Symposium (pp. 20-32).

Loh, E. (2010). The Ideal HPC Programming Language. Communincation. ACM, 53(7), 42-47.

Loveman, D. B. (1993). High performance Fortran. Parallel & Distributed Technology: Systems
& Applications, 1(1), 25-42.

Maes, P. (1987). Concepts and experiments in computational reflection. In Conference on
Object-Oriented Programming Systems, Languages, and Applications (pp. 147-155).

Malenfant, J., Jacques, M., & Demers, F. N. (1996). A tutorial on behavioral reflection and its
implementation. In Proceedings of the Reflection (Vol. 96, pp. 1-20).

Mellor, S. J., Clark, T., & Futagami, T. (2003). Model-driven development: guest editors'
introduction. IEEE Software, 20(5), 14-18.

Mernik, M., Heering, J., & Sloane, A. M. (2005). When and how to develop domain-specific
languages. ACM computing surveys (CSUR), 37(4), 316-344.

Myers, G. J., Sandler, C., & Badgett, T. (2011). The art of software testing. John Wiley & Sons.

NAS. http://www.nas.nasa.gov/publications/npb.html

Nguyen, T. T., Nguyen, H. A., Pham, N. H., Al-Kofahi, J., & Nguyen, T. N. (2010). Recurring
bug fixes in object-oriented programs. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1 (pp. 315-324).

Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008). In Scalable parallel programming with
CUDA. Queue, 6(2), 40-53.

Olszewski, M., Cutler, J., & Steffan, J. G. (2007). JudoSTM: A dynamic binary-rewriting
approach to software transactional memory. In Proceedings of the 16th International Conference
on Parallel Architecture and Compilation Techniques (pp. 365-375).

Omg, Q. (2008). Meta object facility (MOF) 2.0 query/view/transformation specification. Final
Adopted Specification.

Open Fortran Parser, http://fortran-parser.sourceforge.net/

OpenMP Architecture Review Board. OpenMP Fortran Application Program Interface Version
2.0, November 2000. http://www.openmp.org.

OpenFoo source code and code generator implementation.
https://gist.github.com/mountop/6875d1da35adf6cea516

Overbey, J., Xanthos, S., Johnson, R., & Foote, B. (2005). Refactorings for Fortran and high-
performance computing. In Proceedings of the second international workshop on Software
engineering for high performance computing system applications, pp. 37-39.

171

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12), 1053-1058.

Parr, T. (2007). The definitive ANTLR reference: building domain-specific languages.

Pellegrini, A. (2013). Hijacker: Efficient static software instrumentation with applications in high
performance computing: Poster paper. In International Conference on High Performance
Computing and Simulation (HPCS) (pp. 650-655).

Puschel, M., Moura, J. M., Johnson, J. R., Padua, D., Veloso, M. M., Singer, B. W., & Rizzolo,
N. (2005). SPIRAL: Code generation for DSP transforms. In Proceedings of the IEEE, 93(2),
232-275.

Python, 2008 http://python-3-patterns-idioms-
test.readthedocs.org/en/latest/Metaprogramming.html

Quinlan, D. J. (2012). ROSE compiler project.

Reid, J. (2008). The new features of Fortran 2008. In ACM SIGPLAN Fortran Forum (Vol. 27,
No. 2, pp. 8-21).

Roychoudhury, S., Gray, & J., Jouault, F. (2011). A Model-Driven Framework for Aspect
Weaver Construction. In Transactions on Aspect-Oriented Software Development (pp. 1-45).

Roychoudhury, S., Gray, J., Zhang, J., Bangalore, P., & Skjellum, A. (2010). A Program
Transformation Technique to Support AOP within C++ Templates. Journal of Object
Technology, 9(1), 143-160.

Spinellis, D. (2008). Rational metaprogramming, IEEE Software, Volume: 25 Issue: 1.

Smith, B. C. (1982). Reflection and Semantics in a Procedural language, Tech. Report 272, MIT.

Smith, B. C. (1984). Reflection and semantics in Lisp. In Proceedings of the 11th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages (pp. 23-35).

Stroud, R. (1993). Transparency and reflection in distributed systems. ACM SIGOPS Operating
Systems Review, 27(2), 99-103.

Tatsubori, M., Chiba, S., Killijian, M., & Itano, K. (1999). OpenJava: A Class-Based Macro
System for Java. In Reflection and Software Engineering (pp. 117-133).

"The Origin of Refine". (2014). www.metaware.fr. Metaware White Paper.

Trefethen, A., Higham, N., Duff, I., & Coveney, P. (2009). Developing a high-performance
computing/numerical analysis roadmap. International Journal of High Performance Computing
Applications, 23(4), 423-426.

Ulrich, W. M. (2002). Legacy systems: transformation strategies (p. 448). Englewood Cliffs:
Prentice Hall.

172

van den Brand, M. G., van Deursen, A., Heering, J., De Jong, H. A., de Jonge, M., Kuipers, T.,
& Visser, J. (2001). The ASF+ SDF meta-environment: A component-based language
development environment. In Compiler Construction (pp. 365-370).

Van Loan, C. (1992). Computational frameworks for the fast Fourier transform (Vol. 10).

Visser, E., Mens. T., & Wallace, M. http://www.program-
transformation.org/Transform/ProgramTransformation.

Visser, E. (2004). Program transformation with Stratego/XT. In Domain-Specific Program
Generation (pp. 216-238).

Visser, E. (2005). A survey of strategies in rule-based program transformation systems. Journal
of Symbolic Computation, 40(1), 831-873.

Voelter, M. (2009). Best practices for DSLs and model-driven development. Journal of Object
Technology, 8(6), 79-102.

Walters, J. P., & Chaudhary, V. (2009). A fault-tolerant strategy for virtualized HPC
clusters. The Journal of Supercomputing, 50(3), 209-239.

Welch, I., & Stroud, R. (1999). From dalang to kava-the evolution of a reflective java extension.
In Meta-Level Architectures and Reflection (pp. 2-21).

Wienke, S., Springer, P., Terboven, C., & Mey, D. (2012). OpenACC—first experiences with
real-world applications. In Euro-Par 2012 Parallel Processing (pp. 859-870).

Wu, Z. (1998). Reflective java and a reflective-component-based transaction architecture.
In Proc. of OOPSLA’98 Workshop on Reflective Programming in C++ and Java.

Yi, Q. (2012). POET: a scripting language for applying parameterized source-to-source program
transformations. In Software: Practice and Experience, 42(6), 675-706.

Xiao, Y., Yue, S., Fu, B., & Ozdemir, S. (2011). GlobalView: Building global view with log files
in a distributed/networked system for accountability. Security and Communication Networks.

Yue, S. (2013). Program transformation techniques applied to languages used in high
performance computing. In Proceedings of the 2013 companion publication for conference on
Systems, programming, & applications: software for humanity (pp. 49-52).

Yue, S., & Gray, J. (2013). OpenFortran: Extending Fortran with Meta-programming. In the
companion publication for The International Conference for High Performance Computing,
Networking, Storage, and Analysis, SC2013.

Yue, S., & Gray, J. (2014). SPOT: A DSL for Extending FORTRAN Programs With Meta-
Programming. Advances in Software Engineering, Volume 2014, pp. 1-23

173

Appendix

174

Appendix A

SPOT Code Generator Implementation

In this Appendix, the core portion of SPOT code generator implementation in ANTLR

and StringTemplate is shown, including the parser grammars, tree grammars, the stringtemplate

store, and the auxiliary files.

A. 1 ANTLR Grammars

A.1.1 SPOT Parser Grammar

1. grammar	 spot;	 	 	
2. 	 	 	
3. options	 {	 	 	
4. 	 	 	 	 output	 =	 AST;	 	 	
5. 	 	 	 	 backtrack=true;	 	 	
6. 	 	 	 	 memoize=true;	 	 	
7. }	 	 	
8. 	 	 	
9. 	 	 	 	 	 	 	
10. //	 Imaginary	 tokens	 that	 serve	 as	 parent,	 or	 grouping	 nodes	 in	 the	 AST.	 	 	
11. tokens	 {	 	 	
12. 	 	 	 	 TRANSFORMER_ND;	 	 	
13. 	 	 	 	 ACTION_ND;	 	 	
14. 	 	 	 	 RETRIEVE_ND;	 	 	
15. 	 	 	 	 FORALL_ND;	 	 	
16. 	 	 	 	 SPOTCODE_ND;	 	 	
17. 	 	 	 	 TFBODY_ND;	 	 	
18. 	 	 	 	 LOCATION_ND;	 	 	
19. 	 	 	 	 CONSTRUCT_ND;	 	 	
20. 	 	 	 	 ACTION_ND;	 	 	
21. 	 	 	 	 SCOPE_ENTITY_ND;	 	 	
22. 	 	 	 	 BASIC_ENTITY_ND;	 	 	
23. 	 	 	 	 FUCTION_CALL_ND;	 	 	
24. 	 	 	 	 CALL_ARGUMENT_LIST_ND;	 	 	
25. 	 	 	 	 VARIABLE_DECLARE_ND;	 	 	
26. 	 	 	 	 STATEMENT_ND;	 	 	
27. 	 	 	 	 DEFINITION_ND;	 	 	
28. 	 	 	 	 SUBSCOPE_ND;	 	 	
29. 	 	 	 	 VARIABLEREF_ND;	 	 	
30. 	 	 	 	 USETRANSFORMER_ND;	 	 	
31. 	 	 	 	 GETCURRENTSTATEMENT_ND;	 	 	
32. 	 	 	 	 CONDITION_ND;	 	 	
33. 	 	 	 	 SOURCESTATEMENTTYPE_ND;	 	 	
34. 	 	 	 	 SOURCESTATEMENT_ND;	 	 	
35. 	 	 	 	 ATTRIBUTERETRIEVE_ND;	 	 	
36. 	 	 	 	 SUBSUBTRANSFORMER_ND;	 	 	
37. 	 	 	 	 STATEMENT_ENTITY_ND;	 	 	
38. 	 	 	 	 OPERATION_ND;	 	 	
39. 	 	 	 	 CONDITION_BLOCK_ND;	 	 	
40. 	 	 	 	 SCOPESTATEMENT_ND;	 	 	
41. 	 	 	 	 EXPRESSION_ND;	 	 	
42. 	 	 	 	 WILDCARD_ND;	 	 	
43. 	 	 	 	 IDENTITY_ND;	 	 	
44. 	 	 	 	 WILDCARD_VARIABLE_ND;	 	 	
45. 	 	 	 	 METHODDEF_ND;	 	 	

175

46. 	 	 	 	 ENTITYNAME_ND;	 	 	
47. 	 	 	 	 METHODDEFUN_ND;	 	 	
48. 	 	 	 	 METHODDEFILE_ND;	 	 	
49. 	 	 	 	 FORALL_FILE_ND;	 	 	
50. 	 	 	 	 METAFUNCTION_ND;	 	 	
51. 	 	 	 	 METAFILE_ND;	 	 	
52. 	 	 	 	 	 	 	
53. 	 	 	 	 GENERAL_STATEMENT;	 	 	
54. 	 	 	 	 SINGLE_STATEMENT;	 	 	
55. 	 	 	 	 SCOPE_STATEMENT;	 	 	
56. 	 	 	 	 CALL_STATEMENT;	 	 	
57. 	 	 	 	 ASSIGN_STATEMENT;	 	 	
58. 	 	 	 	 ASSIGN_STATEMENT_MATCH;	 	 	
59. 	 	 	 	 COND_STATEMENT;	 	 	
60. 	 	 	 	 LOOP_STATEMENT;	 	 	
61. 	 	 	 	 IF_STATEMENT;	 	 	
62. 	 	 	 	 ELSE_STATEMENT;	 	 	
63. 	 	 	 	 DO_STATEMENT;	 	 	
64. 	 	 	 	 WHILE_STATEMENT;	 	 	
65. 	 	 	 	 FOR_STATEMENT;	 	 	
66. 	 	 	 	 DEC_STATEMENT;	 	 	
67. 	 	 	 	 TRANS_SCOPE;	 	 	
68. 	 	 	 	 TRANS_LOCATION;	 	 	
69. 	 	 	 	 SOURCE_CODE;	 	 	
70. 	 	 	 	 COMMENT_STATEMENT;	 	 	
71. 	 	 	 	 CALL_ARGUMENT_LIST;	 	 	
72. 	 	 	 	 CALL_ARGUMENT_LIST_HOST;	 	 	
73. 	 	 	 	 VARIABLE_DECL;	 	 	
74. 	 	 	 	 STATEMENT_LIST;	 	 	
75. 	 	 	 	 ASSIGN_NEW_STATEMENT;	 	 	
76. 	 	 	 	 ASSIGN_EXPRESSION;	 	 	
77. 	 	 	 	 ADD_NEW_STATEMENT;	 	 	
78. }	 	 	
79. 	 	 	
80. @header	 {package	 edu.ua.spot;}//Parser	 header	 	 	
81. @lexer::header	 {package	 edu.ua.spot;}//Lexer	 header	 	 	
82. 	 	 	
83. 	 	 	
84. @members	 {	 	 	
85. 	 	 	 	 String	 metaObjectType	 =	 null;	 	 	
86. 	 	 	 	 Boolean	 isMatchStatement	 =	 false;	 	 	
87. }	 	 	
88. 	 	 	
89. spotCode	 	 	
90. 	 	 	 	 :transformer	 (includeBlock)?	 	 	
91. 	 	 	 	 -‐>	 ^(SPOTCODE_ND	 transformer	 includeBlock?)	 	 	
92. 	 	 	 	 ;	 	 	
93. 	 	 	
94. transformer	 	 	
95. 	 	 	 	 :	 TRANSFORMER	 ID	 LBRACE	 transformation	 (SEMICOLON	 transformation)*	 RBRACE	 	 	
96. 	 	 	 	 -‐>	 ^(TRANSFORMER_ND	 ID	 	 transformation+)	 	 	
97. 	 	 	 	 ;	 	 	
98. 	 	 	
99. transformation	 	 	
100. 	 	 	 	 :	 scopeMetaObject	 LBRACE	 virtualMethodDefinition	 RBRACE	 	 	
101. 	 	 	 	 -‐>	 ^(TFBODY_ND	 scopeMetaObject	 virtualMethodDefinition)	 	 	 	
102. 	 	 	 	 ;	 	 	
103. 	 	 	 	 	 	 	
104. 	 	 	
105. scopeMetaObject	 //the	 original	 name	 of	 this	 rule	 is	 "scope",	 ANTRL	 just	 cannot	 recognize	 it	 	 	
106. 	 	 	 	 :	 SCOPEKEYWORD	 LPAREN	 sn=SCOPEENTITY	 ID	 RPAREN	 {metaObjectType	 =	 $sn.text;}	 	 	

176

107. 	 	 	 	 -‐>	 ^(TRANS_SCOPE	 SCOPEENTITY	 ID)	 	 	
108. 	 	 	 	 ;	 	 	
109. 	 	 	
110. virtualMethodDefinition	 	 	
111. 	 	 	 	 :	 {metaObjectType.equals("Function")}?	 	 virtualMethodDefinitionFunction	 	 	 	
112. 	 	 	 	 -‐>	 ^(METAFUNCTION_ND	 virtualMethodDefinitionFunction)	 	 	
113. 	 	 	 	 |	 virtualMethodDefinitionFile	 	 	
114. 	 	 	 	 -‐>	 ^(METAFILE_ND	 virtualMethodDefinitionFile)	 	 	
115. 	 	 	 	 ;	 	 	
116. 	 	 	 	 	 	 	
117. virtualMethodDefinitionFunction	 	 	 	
118. 	 	 	 	 :	 transformStatement	 	 	
119. 	 	 	 	 -‐>	 ^(METHODDEFUN_ND	 transformStatement)	 	 	
120. 	 	 	 	 |	 extendFunctionCall	 transformStatement	 	 	
121. 	 	 	 	 -‐>	 ^(METHODDEFUN_ND	 extendFunctionCall	 transformStatement)	 	 	
122. 	 	 	 	 |	 extendVariableFunction	 transformStatement	 	 	
123. 	 	 	 	 -‐>	 ^(METHODDEFUN_ND	 extendVariableFunction	 transformStatement)	 	 	
124. 	 	 	 	 ;	 	 	 	 	 	
125. 	 	 	
126. virtualMethodDefinitionFile	 	 	
127. 	 	 	 	 :	 transformStatement	 	 	
128. 	 	 	 	 -‐>	 ^(METHODDEFILE_ND	 transformStatement)	 	 	
129. 	 	 	 	 |	 extendFunctionCall	 transformStatement	 	 	
130. 	 	 	 	 -‐>	 ^(METHODDEFILE_ND	 extendFunctionCall	 transformStatement)	 	 	 	 	
131. 	 	 	 	 |	 extendVariableFile	 transformStatement	 	 	
132. 	 	 	 	 -‐>	 ^(METHODDEFILE_ND	 extendVariableFile	 transformStatement)	 	 	
133. 	 	 	 	 ;	 	 	
134. 	 	 	 	 	 	 	
135. 	 	 	 	 	 	 	
136. extendFunctionCall	 	 	
137. 	 	 	 	 :	 FORALL	 LPAREN	 BASICENTITY	 variableSPOT?	 RPAREN	 	 	 	
138. 	 	 	 	 -‐>	 ^(FORALL_ND	 BASICENTITY	 variableSPOT?)	 	 	
139. 	 	 	 	 ;	 	 	 	 	 	
140. 	 	 	
141. extendVariableFunction	 	 	
142. 	 	 	 	 :	 FORALL	 LPAREN	 BASICENTITY	 variableSPOT?	 RPAREN	 	 	 	
143. 	 	 	 	 -‐>	 ^(FORALL_ND	 BASICENTITY	 variableSPOT?)	 	 	
144. 	 	 	 	 ;	 	 	
145. 	 	 	 	 	 	 	
146. extendVariableFile	 	 	
147. 	 	 	 	 :	 FORALL	 LPAREN	 BASICENTITY	 variableSPOT?	 RPAREN	 	 	 	
148. 	 	 	 	 -‐>	 ^(FORALL_FILE_ND	 BASICENTITY	 variableSPOT?)	 	 	
149. 	 	 	 	 ;	 	 	
150. 	 	 	 	 	 	 	
151. transformStatement	 	 	
152. 	 	 	 	 :	 operation	 	 	 	
153. 	 	 	 	 -‐>	 ^(OPERATION_ND	 operation)	 	 	
154. 	 	 	 	 |	 locationStatement	 LBRACE	 operation+	 RBRACE	 	 	
155. 	 	 	 	 -‐>	 ^(SUBSUBTRANSFORMER_ND	 locationStatement	 operation+)	 	 	
156. 	 	 	 	 |	 conditionBlock	 	 	
157. 	 	 	 	 -‐>	 ^(CONDITION_BLOCK_ND	 conditionBlock)	 	 	
158. 	 	 	 	 ;	 	 	 	
159. 	 	 	
160. locationStatement	 	 	
161. @init	 	 	
162. {	 	 	
163. 	 isMatchStatement=true;	 	 	
164. }	 	 	
165. @after	 	 	
166. {	 	 	
167. 	 isMatchStatement=false;	 	 	

177

168. }	 	 	 	
169. 	 	 	 	 :	 SCOPEKEYWORD	 LPAREN	 hostScopeStatement	 variableSPOT?	 RPAREN	 //scope	 statements	 such	 as	 IF,	 W

HILE	 in	 the	 host	 language	 	 	
170. 	 	 	 	 -‐>	 ^(TRANS_SCOPE	 	 SCOPEKEYWORD	 	 hostScopeStatement	 variableSPOT?)	 	 	
171. 	 	 	 	 ;	 	 	
172. 	 	 	 	 	 	 	 	 	 	 	
173. conditionBlock	 	 	
174. 	 	 	 	 :	 IF	 LPAREN	 condition	 RPAREN	 LBRACE	 operation+	 RBRACE	 	 	
175. 	 	 	 	 -‐>	 ^(IF	 condition	 	 operation+)	 	 	
176. 	 	 	 	 |	 ELSE	 LBRACE	 operation+	 RBRACE	 	 	
177. 	 	 	 	 -‐>	 ^(ELSE	 operation+)	 	 	
178. 	 	 	 	 ;	 	 	 	 	 	
179. 	 	 	 	 	 	 	
180. condition	 	 	
181. 	 	 	 	 :	 left=spotExpr	 conditionOperator	 right=spotExpr	 	 	
182. 	 	 	 	 -‐>	 ^(conditionOperator	 	 $left	 	 	 $right)	 	 	
183. 	 	 	 	 ;	 	 	
184. 	 	 	 	 	 	 	
185. spotExpr	 	 	
186. 	 	 	 	 :	 attributeRetrieve	 	 	
187. 	 	 	 	 |	 ID	 	 	
188. 	 	 	 	 |	 NUMBER	 	 	
189. 	 	 	 	 ;	 	 	
190. 	 	 	 	 	 	 	
191. attributeRetrieve	 	 	
192. 	 	 	 	 :	 variableRef	 '.'	 ATTRIBUTENAME	 	 	
193. 	 	 	 	 -‐>	 ^(ATTRIBUTERETRIEVE_ND	 variableRef	 ATTRIBUTENAME)	 	 	
194. 	 	 	 	 ;	 	 	
195. 	 	 	 	 	 	 	
196. conditionOperator	 	 	
197. 	 	 	 	 :EQUAL|NOTEQUAL|LESSTHAN|GREATERTHAN|LESSTHANOREQUALTO|GREATERTHANOREQUALTO	 	 	
198. 	 	 	 	 ;	 	 	
199. 	 	 	 	 	 	 	 	 	 	 	
200. variableSPOT	 	 	 	
201. 	 	 	 	 :	 '*'	 -‐>	 ^(WILDCARD_ND	 '*')	 	 	
202. 	 	 	 	 |	 '%'	 ID	 -‐>	 ^(WILDCARD_VARIABLE_ND	 ID)//this	 ID	 is	 a	 user	 defined	 handler	 	 	 	
203. 	 	 	 	 //ID	 -‐>	 ^(ENTITYNAME_ND	 ID)	 	 	 	
204. 	 	 	 	 ;	 	 	
205. 	 	 	 	 	 	 	 	 	 	 	 	
206. operation	 	 	
207. 	 	 	 	 :	 actionVariable	 SEMICOLON	 	 	
208. 	 	 	 	 -‐>	 ^(ACTION_ND	 actionVariable)	 	 	
209. 	 	 	 	 |	 actionFunction	 SEMICOLON	 	 	
210. 	 	 	 	 -‐>	 ^(ACTION_ND	 actionFunction)	 	 	
211. 	 	 	 	 |	 actionStatement	 SEMICOLON	 	 	
212. 	 	 	 	 -‐>	 ^(ACTION_ND	 actionStatement)	 	 	
213. 	 	 	 	 |	 languageEntity	 '%'?	 ID	 ASSIGN	 actionRetrieve	 SEMICOLON	 	 	 	
214. 	 	 	 	 -‐>	 ^(RETRIEVE_ND	 languageEntity	 '%'?	 ID	 ASSIGN	 actionRetrieve)	 	 	
215. 	 	 	 	 ;	 	 	 	 	 	
216. 	 	 	 	 	 	 	
217. languageEntity	 	 	
218. 	 	 	 	 :	 SCOPEENTITY	 	 	
219. 	 	 	 	 -‐>	 ^(SCOPE_ENTITY_ND	 SCOPEENTITY)	 	 	
220. 	 	 	 	 |	 BASICENTITY	 	 	
221. 	 	 	 	 -‐>	 ^(BASIC_ENTITY_ND	 BASICENTITY)	 	 	
222. 	 	 	 	 |	 hostStatement	 	 	
223. 	 	 	 	 -‐>	 ^(STATEMENT_ENTITY_ND	 hostStatement)	 	 	
224. 	 	 	 	 ;	 	 	
225. 	 	 	
226. actionRetrieve	 	 	
227. @init	 	 	

178

228. {	 	 	
229. 	 isMatchStatement=true;	 	 	
230. }	 	 	
231. @after	 	 	
232. {	 	 	
233. 	 isMatchStatement=false;	 	 	
234. }	 	 	
235. 	 	 	 	 :	 GETFUNCTION	 LPAREN	 funName=ID	 RPAREN//e.g.,	 GetProgram(add);	 	 	
236. 	 	 	 	 -‐>	 ^(GETFUNCTION	 $funName)	 	 	
237. 	 	 	 	 |	 GETFUNCTIONCALL	 LPAREN	 funName=ID	 RPAREN	 	 	
238. 	 	 	 	 -‐>	 ^(GETFUNCTIONCALL	 $funName)	 	 	
239. 	 	 	 	 |	 GETVARIABLEREAD	 LPAREN	 varName=ID	 RPAREN	 	 	
240. 	 	 	 	 -‐>	 ^(GETVARIABLEREAD	 $varName)	 	 	
241. 	 	 	 	 |	 GETVARIABLEWRITE	 LPAREN	 varName=ID	 RPAREN	 	 	
242. 	 	 	 	 -‐>	 ^(GETVARIABLEWRITE	 $varName)	 	 	
243. 	 	 	 	 |	 GETVARIABLEDECL	 LPAREN	 varName=ID	 RPAREN	 	 	
244. 	 	 	 	 -‐>	 ^(GETVARIABLEDECL	 $varName)	 	 	
245. 	 	 	 	 |	 GETSTATEMENTLINE	 LPAREN	 lineNumber	 RPAREN	 	 	
246. 	 	 	 	 -‐>	 ^(GETSTATEMENTLINE	 lineNumber)	 	 	
247. 	 	 	 	 |	 GETSTATEMENT	 LPAREN	 hostStatement	 (COMMA	 statementIndex)?	 RPAREN	 	 	
248. 	 	 	 	 -‐>	 ^(GETSTATEMENT	 hostStatement	 statementIndex?)	 	 	
249. 	 	 	 	 |	 GETSTATEMENTASSIGNMENT	 LPAREN	 varName=ID	 RPAREN	 	 //the	 left-‐hand	 side	 is	 denoted	 by	 ID	 	 	
250. 	 	 	 	 -‐>	 ^(GETSTATEMENTASSIGNMENT	 $varName)	 	 	
251. 	 	 	 	 ;	 	 	 	 	 	
252. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
253. actionVariable	 	 	
254. 	 	 	 	 :	 ADDVARIABLE	 LPAREN	 TYPENAME	 COMMA	 ID	 	 (COMMA	 initializedVal)?	 RPAREN	 	 	
255. 	 	 	 	 -‐>	 ^(ADDVARIABLE	 TYPENAME	 ID	 initializedVal?)	 	 	 	
256. 	 	 	 	 |	 ADDVARIABLESAMETYPE	 LPAREN	 TYPENAME	 COMMA	 ID	 	 (COMMA	 ID)*	 RPAREN	 	 	
257. 	 	 	 	 -‐>	 ^(ADDVARIABLESAMETYPE	 TYPENAME	 ID+)	 	 	
258. 	 	 	 	 |	 DELETEVARIABLE	 LPAREN	 ID	 RPAREN	 	 	
259. 	 	 	 	 -‐>	 ^(DELETEVARIABLE	 ID)	 	 	
260. 	 	 	 	 |	 RENAMEVARIABLE	 LPAREN	 oldName=ID	 COMMA	 newName=ID	 RPAREN	 	 	
261. 	 	 	 	 -‐>	 ^(RENAMEVARIABLE	 $oldName	 	 $newName)	 	 	
262. 	 	 	 	 ;	 	 	 	 	 	 	 	 	 	
263. 	 	 	
264. actionFunction	 	 	
265. 	 	 	 	 :	 RENAMEFUNCTION	 LPAREN	 oldName=ID	 COMMA	 newName=ID	 RPAREN	 	 	
266. 	 	 	 	 -‐>	 ^(RENAMEFUNCTION	 $oldName	 	 $newName)	 	 	
267. 	 	 	 	 ;	 	 	 	 	 	
268. 	 	 	 	 	 	 	
269. actionStatement	 	 	 	
270. 	 	 	 	 :	 addFunctionCall	 	 	
271. 	 	 	 	 -‐>	 ^(ADD_NEW_STATEMENT	 addFunctionCall)	 	 	
272. 	 	 	 	 |'%'	 ID	 ASSIGN	 addFunctionCall	 //	 %newFunCall	 =	 AddCallStatement(newName,	 paraList);	 	 	
273. 	 	 	 	 -‐>	 ^(ASSIGN_NEW_STATEMENT	 '%'	 ID	 addFunctionCall)	 	 	
274. 	 	 	 	 |	 ADDCOMMENTSTATEMENT	 LPAREN	 LOCATION	 COMMA	 currentStatement	 STRINGLITERAL	 RPAREN	 	 	
275. 	 	 	 	 -‐>	 ^(ADDCOMMENTSTATEMENT	 LOCATION	 currentStatement	 STRINGLITERAL)	 	 	
276. 	 	 	 	 |	 ADDUSINGSTATEMENT	 LPAREN	 STRINGLITERAL	 RPAREN	 	 	
277. 	 	 	 	 -‐>	 ^(ADDUSINGSTATEMENT	 STRINGLITERAL)	 	 	
278. 	 	 	 	 |	 DELETESTATEMENT	 	 LPAREN	 hostStatement	 RPAREN	 	 	
279. 	 	 	 	 -‐>	 ^(DELETESTATEMENT	 hostStatement)	 	 	
280. 	 	 	 	 |	 ADDSTATEMENT	 LPAREN	 '"'	 statement	 '"'	 RPAREN	 	 	
281. 	 	 	 	 -‐>	 ^(ADDSTATEMENT	 statement)	 	 	
282. 	 	 	 	 ;	 	 	
283. 	 	 	
284. addFunctionCall	 //	 AddCallStatement(newName,	 'before',	 $assign.statement,	 paraList);	 	 	
285. 	 	 	 	 :	 ADDCALLSTATEMENT	 LPAREN	 LOCATION	 COMMA	 currentStatement	 COMMA	 ID	 (COMMA	 callArgumentList)?	 R

PAREN	 	 	
286. 	 	 	 	 -‐>	 ^(ADDCALLSTATEMENT	 LOCATION	 	 currentStatement	 ID	 callArgumentList?)	 	 	 	 	
287. 	 	 	 	 ;	 	 	

179

288. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
289. initializedVal	 	 	
290. 	 	 	 	 :	 ID	 	 	
291. 	 	 	 	 |	 NUMBER	 	 	
292. 	 	 	 	 ;	 	 	
293. 	 	 	
294. callArgumentList	 	 	
295. 	 	 	 	 :	 callArgument	 (COMMA	 callArgument)*	 	 	
296. 	 	 	 	 -‐>	 ^(CALL_ARGUMENT_LIST	 	 callArgument+)	 	 	
297. 	 	 	 	 ;	 	 	
298. 	 	 	 	 	 	 	
299. lineNumber	 	 	
300. 	 	 	 	 :	 NUMBER	 	 	
301. 	 	 	 	 ;	 	 	
302. 	 	 	
303. statementIndex	 	 	
304. 	 	 	 	 :	 NUMBER	 	 	
305. 	 	 	 	 ;	 	 	
306. 	 	 	 	 	 	 	 	 	 	 	
307. callArgument	 	 	
308. 	 	 	 	 :	 initializedVal	 	 	
309. 	 	 	 	 ;	 	 	 	
310. 	 	 	 	 	 	 	 	 	 	 	
311. currentStatement	 //e.g.,	 $funName.statement	 to	 indicate	 the	 statement	 where	 a	 function	 call	 is	 con

tained	 	 	
312. 	 	 	 	 :	 variableRef	 '.'	 STATEMENT	 	 	
313. 	 	 	 	 -‐>	 ^(GETCURRENTSTATEMENT_ND	 variableRef	 	 STATEMENT)	 	 	
314. 	 	 	 	 ;	 	 	
315. 	 	 	 	 	 	 	
316. variableRef	 	 	
317. 	 	 	 	 :	 '$'	 ID	 	 	
318. 	 	 	 	 -‐>	 ^(VARIABLEREF_ND	 ID)	 	 	
319. 	 	 	 	 ;	 	 	 	 	 	
320. 	 	 	 	 	 	 	
321. //source	 code	 added	 in	 includeBlock	 is	 not	 parsed	 	 	
322. //shoud	 replace	 STRINGLITERAL	 with	 the	 first	 rule	 of	 the	 host	 langauge	 	 	
323. includeBlock	 	 	
324. 	 	 	 	 :	 INCLUDECODE	 LPAREN	 STRINGLITERAL	 RPAREN	 	 	
325. 	 	 	 	 -‐>	 ^(INCLUDECODE	 STRINGLITERAL)	 	 	
326. 	 	 	 	 ;	 	 	
327. ///	 	 	
328. //statements	 in	 host	 language	 	 	
329. hostStatement	 	 	
330. 	 	 	 	 :	 statementType	 	 	 	 	 	 	 //collect	 all	 statements	 of	 a	 type	 	 	
331. 	 	 	 	 -‐>	 ^(SOURCESTATEMENTTYPE_ND	 statementType)	 	 	 	
332. 	 	 	 	 |	 '"'	 statement	 '"'	 	 	 	 //string-‐based	 transformation,	 single	 statement	 	 	
333. 	 	 	 	 -‐>	 ^(SOURCESTATEMENT_ND	 statement)	 	 	 	
334. 	 	 	 	 ;	 	 	
335. 	 	 	 	 	 	 	
336. hostScopeStatement	 	 	
337. 	 	 	 	 :	 SCOPESTATEMENTTYPE	 	 	
338. 	 	 	 	 -‐>	 ^(SCOPE_STATEMENT	 SCOPESTATEMENTTYPE)	 	 	
339. 	 	 	 	 |	 '"'	 scopeStatement	 '"'	 //string-‐based	 match,	 scope	 statement	 e.g.,	 "if(a==b){a++;}"	 	 	 	 	 	
340. 	 	 	 	 -‐>	 ^(SCOPESTATEMENT_ND	 scopeStatement)	 	 	 	
341. 	 	 	 	 ;	 	 	
342. 	 	 	 	 	 	 	 	 	 	 	
343. statementType	 	 	
344. 	 	 	 	 :	 SINGLESTATEMENTTYPE	 	 	
345. 	 	 	 	 -‐>	 ^(SINGLE_STATEMENT	 SINGLESTATEMENTTYPE)	 	 	
346. 	 	 	 	 |	 SCOPESTATEMENTTYPE	 	 	
347. 	 	 	 	 -‐>	 ^(SCOPE_STATEMENT	 SCOPESTATEMENTTYPE)	 	 	

180

348. 	 	 	 	 |	 STATEMENTTYPE	 	 	
349. 	 	 	 	 -‐>	 ^(GENERAL_STATEMENT	 STATEMENTTYPE)	 	 	
350. 	 	 	 	 ;	 	 	
351. 	 	 	 	 	 	 	
352. statementList	 	 	
353. 	 	 	 	 :	 statement	 	 	
354. 	 	 	 	 -‐>	 ^(STATEMENT_ND	 statement)	 	 	
355. 	 	 	 	 |	 LBRACE	 statement+	 RBRACE	 	 	
356. 	 	 	 	 -‐>	 ^(STATEMENT_LIST	 statement+)	 	 	
357. 	 	 	 	 ;	 	 	
358. 	 	 	 	 	 	 	
359. statement	 	 	
360. 	 	 	 	 :	 singleStatement	 	 	
361. 	 	 	 	 |	 scopeStatement	 	 	
362. 	 	 	 	 ;	 	 	
363. 	 	 	 	 	 	 	
364. scopeStatement	 	 	
365. 	 	 	 	 :	 conditionStatement	 	 	
366. 	 	 	 	 -‐>	 ^(COND_STATEMENT	 conditionStatement)	 	 	
367. 	 	 	 	 |	 loopStatement	 	 	
368. 	 	 	 	 -‐>	 ^(LOOP_STATEMENT	 loopStatement)	 	 	
369. 	 	 	 	 ;	 	 	
370. 	 	 	 	 	 	 	
371. singleStatement	 	 	
372. 	 	 	 	 :	 assignmentStatement	 	 	
373. 	 	 	 	 -‐>	 ^(ASSIGN_STATEMENT	 assignmentStatement)	 	 	
374. 	 	 	 	 |	 callStatement	 	 	
375. 	 	 	 	 -‐>	 ^(CALL_STATEMENT	 callStatement)	 	 	
376. 	 	 	 	 |	 declareStatement	 	 	
377. 	 	 	 	 -‐>	 ^(DEC_STATEMENT	 declareStatement)	 	 	
378. 	 	 	 	 ;	 	 	
379. 	 	 	 	 	 	 	 	 	 	 	
380. assignmentStatement	 	 	
381. 	 	 	 	 :{isMatchStatement==true}?	 varRef	 ASSIGN	 expression	 	 	
382. 	 	 	 	 -‐>	 ^(ASSIGN_STATEMENT_MATCH	 varRef	 expression)	 	 	
383. 	 	 	 	 |varRef	 ASSIGN	 expression	 	 	
384. 	 	 	 	 -‐>	 ^(ASSIGN_STATEMENT	 varRef	 expression)	 	 	
385. 	 	 	 	 ;	 	 	 	
386. 	 	 	
387. declareStatement	 	 	
388. 	 	 	 	 :TYPENAME	 varName+=ID	 (COMMA	 varName+=ID)*	 	 	
389. 	 	 	 	 -‐>	 ^(VARIABLE_DECL	 TYPENAME	 $varName+)	 	 	 	
390. 	 	 	 	 ;	 	 	
391. 	 	 	 	 	 	 	 	 	 	 	
392. callStatement	 	 	
393. 	 	 	 	 :callIDRefHost	 LPAREN	 callArgumentListHost?	 RPAREN	 	 	 	
394. 	 	 	 	 -‐>	 ^(CALL_STATEMENT	 callIDRefHost	 	 callArgumentListHost?)	 	 	
395. 	 	 	 	 ;	 	 	
396. 	 	 	
397. callIDRefHost	 	 	
398. 	 	 	 	 :	 ID	 	 	
399. 	 	 	 	 ;	 	 	
400. 	 	 	 	 	 	 	
401. callArgumentListHost	 	 	
402. 	 	 	 	 :	 callArgument	 (COMMA	 callArgumentHost)*	 	 	
403. 	 	 	 	 -‐>	 ^(CALL_ARGUMENT_LIST_HOST	 	 callArgumentHost+)	 	 	
404. 	 	 	 	 ;	 	 	
405. 	 	 	
406. callArgumentHost	 	 	
407. 	 	 	 	 :	 expression	 	 	
408. 	 	 	 	 ;	 	 	

181

409. 	 	 	 	 	 	 	 	 	 	 	
410. conditionStatement	 	 	
411. 	 	 	 	 :ifStatement	 	 	
412. 	 	 	 	 |elseStatement	 	 	
413. 	 	 	 	 ;	 	 	
414. 	 	 	 	 	 	 	
415. loopStatement	 	 	
416. 	 	 	 	 :whileStatement	 	 	
417. 	 	 	 	 |forStatement	 	 	
418. 	 	 	 	 ;	 	 	
419. 	 	 	
420. ifStatement	 	 	
421. 	 	 	 	 :	 IFHOST	 LPAREN	 expression	 RPAREN	 	 statementList	 	 	
422. 	 	 	 	 	 	 elseStatement?	 	 	
423. 	 	 	 	 -‐>	 ^(IF_STATEMENT	 expression	 statementList	 elseStatement?)	 	 	 	
424. 	 	 	 	 ;	 	 	
425. 	 	 	 	 	 	 	
426. elseStatement	 	 	
427. 	 	 	 	 :	 ELSEHOST	 statementList	 	 	
428. 	 	 	 	 -‐>	 ^(ELSE_STATEMENT	 statementList)	 	 	
429. 	 	 	 	 ;	 	 	
430. 	 	 	 	 	 	 	
431. whileStatement	 	 	
432. 	 	 	 	 :	 WHILE	 LPAREN	 expression	 RPAREN	 	 statementList	 	 	
433. 	 	 	 	 -‐>	 ^(WHILE_STATEMENT	 expression	 statementList)	 	 	
434. 	 	 	 	 ;	 	 	
435. 	 	 	 	 	 	 	
436. forStatement	 	 	
437. 	 	 	 	 :FOR	 LPAREN	 	 	
438. 	 	 	 	 (//	 (declareStatement)=>	 declareStatement	 |	 	 	 	 	
439. 	 	 	 	 (assignmentExpression)?	 SEMICOLON	 	 	 	
440.)	 	 	
441. 	 	 	 	 (condition)?	 SEMICOLON	 	 	
442. 	 	 	 	 (expression)?	 	 	
443. 	 	 	 	 RPAREN	 	 	 	
444. 	 	 	 	 statementList	 	 	
445. 	 	 	 	 -‐>	 ^(FOR_STATEMENT	 assignmentExpression?	 condition?	 expression?	 statementList)	 	 	 	 	 	 	
446. 	 	 	 	 ;	 	 	
447. 	 	 	 	 	 	 	
448. assignmentExpression	 	 	
449. 	 	 	 	 :varRef	 ASSIGN	 expression	 	 	
450. 	 	 	 	 -‐>	 ^(ASSIGN_EXPRESSION	 varRef	 expression)	 	 	
451. 	 	 	 	 ;	 	 	 	 	 	
452. 	 	 	 	 	 	 	
453. //variable	 reference	 in	 host	 langauge	 	 	
454. varRef	 	 	
455. 	 	 	 	 :	 ID	 	 	
456. 	 	 	 	 ;	 	 	 	 	 	
457. 	 	 	 	 	 	 	
458. expression	 	 	
459. 	 	 	 	 :	 log+=logical_or_expression	 (COMMA	 log+=logical_or_expression)*	 	 	
460. 	 	 	 	 -‐>	 ^(EXPRESSION_ND	 	 $log)	 	 	
461. 	 	 	 	 ;	 	 	
462. 	 	 	
463. 	 	 	
464. logical_or_expression	 	 	
465. 	 	 	 	 :	 	 	 	 	 	
466. 	 	 	 	 	 	 	 	 logical_and_expression	 (OR^	 logical_and_expression)*	 	 	 	
467. 	 	 	 	 ;	 	 	
468. 	 	 	
469. logical_and_expression	 	 	

182

470. 	 	 	 	 :	 	 	 	 	 	
471. 	 	 	 	 	 	 	 	 equality_expression	 (AND^	 equality_expression)*	 	 	 	
472. 	 	 	 	 ;	 	 	
473. 	 	 	
474. equality_expression	 	 	
475. 	 	 	 	 :	 	 	 	 	 	
476. 	 	 	 	 	 	 	 	 relational_expression	 ((NOTEQUAL^|EQUAL^)	 relational_expression)*	 	 	
477. 	 	 	 	 ;	 	 	
478. 	 	 	
479. 	 	 	
480. relational_expression	 	 	
481. 	 	 	 	 :	 	 	 	 	 	
482. 	 	 	 	 	 	 	 	 additive_expression	 	 	
483. 	 	 	 	 	 	 	 	 (options{backtrack=true;}:	 	 	 	
484. 	 	 	 	 	 	 	 	 	 	 	 	 (
485. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (LESSTHAN^	 	 	
486. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 |	 	 	 GREATERTHAN^	 	 	
487. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 |	 	 	 LESSTHANOREQUALTO^	 	 	
488. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 |	 	 	 GREATERTHANOREQUALTO^	 	 	
489.)	 	 	
490. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
491.)additive_expression	 	 	
492.)?	 	 	
493. 	 	 	 	 ;	 	 	
494. 	 	 	
495. additive_expression	 	 	
496. 	 	 	 	 :	 	 	 	 	 	
497. 	 	 	 	 	 	 	 	 multiplicative_expression	 	 	
498. 	 	 	 	 	 	 	 	 (
499. 	 	 	 	 	 	 	 	 	 	 	 	 (PLUS^	 |	 MINUS^)	 multiplicative_expression	 	 	
500.)*	 	 	
501. 	 	 	 	 ;	 	 	
502. 	 	 	 	 	 	 	
503. 	 	 	 	 	 	 	
504. multiplicative_expression	 	 	
505. 	 	 	 	 :	 	 	 	 	 	
506. 	 	 	 	 	 	 	 	 unary_expression	 	 	
507. 	 	 	 	 	 	 	 	 (
508. 	 	 	 	 	 	 	 	 	 	 	 	 (STAR^|DIVIDE^|MOD^)	 unary_expression	 	 	
509.)*	 	 	
510. 	 	 	 	 ;	 	 	
511. unary_expression	 	 	
512. 	 	 	 	 :	 	 	 	 	 	
513. 	 	 	 	 	 	 	 	 PLUSPLUS^	 primary_expression	 	 	
514. 	 	 	 	 |	 	 	 MINUSMINUS^	 primary_expression	 	 	
515. 	 	 	 	 ;	 	 	
516. 	 	 	 	 	 	 	
517. primary_expression	 	 	
518. 	 	 	 	 :	 NUMBER	 	 	
519. 	 	 	 	 |	 varRef	 	 	
520. 	 	 	 	 |	 LPAREN	 expression	 RPAREN	 	 	
521. 	 	 	 	 ;	 	 	
522. 	 	 	 	 	 	 	
523. 	 	 	 	
524. 	 	 	 	
525. 	
526. 	
527. ///	 	 	
528. ///	 	 	 	 	 	 	 	 	 	
529. //lexer	 Part,	 Keywords	 used	 in	 SPOT	 	 	
530. 	 	 	

183

531. TRANSFORMER	 	 	
532. 	 	 	 	 :	 'Transformer'	 	 	
533. 	 	 	 	 ;	 	 	 	 	 	
534. ATTRIBUTENAME	 	 	
535. 	 	 	 	 :	 'funName'	 	 	
536. 	 	 	 	 |	 'fileName'	 	 	
537. 	 	 	 	 |	 'varName'	 	 	
538. 	 	 	 	 |	 'assignValue'	 	 	
539. 	 	 	 	 |	 'loopStart'	 	 	
540. 	 	 	 	 |	 'loopIncrement'	 	 	
541. 	 	 	 	 |	 'loopEnd'	 	 	
542. 	 	 	 	 ;	 	 	 	 	 	
543. LOCATION	 	 //used	 in	 concrete	 actions.	 	 	
544. 	 	 	 	 :	 'After'	 	 	
545. 	 	 	 	 |	 'Before'	 	 	
546. 	 	 	 	 ;	 	 	 	 	 	
547. SCOPEKEYWORD	 	 	
548. 	 	 	 	 :	 'Within'	 	 	
549. 	 	 	 	 ;	 	 	 	 	 	 	 	 	 	
550. SCOPEENTITY	 	 	
551. 	 	 	 	 :	 'Class'	 	 	
552. 	 	 	 	 |	 'File'	 	 	
553. 	 	 	 	 |	 'Project'	 	 	
554. 	 	 	 	 |	 'Function'	 	 	 	
555. 	 	 	 	 ;	 	 	 	 	 	
556. BASICENTITY	 	 	
557. 	 	 	 	 :	 'FunctionCall'	 	 	
558. 	 	 	 	 |	 'VariableRead'	 	 	
559. 	 	 	 	 |	 'VariableWrite'	 	 	
560. 	 	 	 	 |	 'VariableDecl'	 	 	
561. 	 	 	 	 ;	 	 	 	 	 	 	 	 	 	
562. SINGLESTATEMENTTYPE	 	 	
563. 	 	 	 	 :	 'ConditionStatement'	 	 	
564. 	 	 	 	 |	 'LoopStatement'	 	 	
565. 	 	 	 	 ;	 	 	 	 	 	
566. SCOPESTATEMENTTYPE	 	 	
567. 	 	 	 	 :	 'AssignmentStatement'	 	 	
568. 	 	 	 	 |	 'CallStatement'	 	 	
569. 	 	 	 	 |	 'DeclareStatement'	 	 	
570. 	 	 	 	 |	 'CommentStatement'	 	 	
571. 	 	 	 	 |	 'FunctionCallStatement'	 	 	
572. 	 	 	 	 ;	 	 	
573. TYPENAME	 	 	
574. 	 	 	 	 :	 'integer'	 	 	 	
575. 	 	 	 	 |	 'real'	 	 	
576. 	 	 	 	 |	 'float'	 	 	
577. 	 	 	 	 |	 'int'	 	 	 	
578. 	 	 	 	 ;	 	 	
579. 	 	 	 	 	 	 	
580. IF	 	 :	 'IF';	 	 	
581. ELSE	 :	 'ELSE';	 	 	
582. FORALL	 :	 'FORALL';	 	 	 	 	
583. STATEMENT	 :	 'statement';	 	 	
584. STATEMENTTYPE	 :	 'Statement';	 	 	 	 	 	 	
585. ADDVARIABLE	 :	 'AddVariable';	 	 	
586. ADDVARIABLESAMETYPE	 :	 'AddVariableSameType';	 	 	
587. DELETEVARIABLE	 :	 'DeleteVariable';	 	 	 	 	
588. RENAMEVARIABLE	 :	 'RenameVariable';	 	 	 	 	
589. ADDCOMMENTSTATEMENT	 :	 'AddCommentStatement';	 	 	
590. ADDUSINGSTATEMENT	 :	 'AddUsingStatement';	 	 	 	 	 	 	 	 	 	 	
591. DELETESTATEMENT	 :	 'DeleteStatement';	 	 	

184

592. ADDSTATEMENT	 :	 'AddStatement';	 	 	
593. RENAMEFUNCTION	 :	 'RenameFunction';	 	 	
594. GETFUNCTION	 :	 'GetFunction';	 	 	
595. GETFUNCTIONCALL	 :	 'GetFunctionCall';	 	 	
596. GETVARIABLEREAD	 :	 'GetVariableRead';	 	 	
597. GETVARIABLEWRITE	 :	 'GetVariableWrite';	 	 	
598. GETVARIABLEDECL	 :	 'GetVariableDecl';	 	 	
599. GETSTATEMENT	 :	 'GetStatement';	 	 	
600. GETSTATEMENTLINE	 :	 'GetStatementLineNumber';	 	 	
601. GETSTATEMENTASSIGNMENT	 :	 'GetStatementAssignment';	 	 	
602. ADDCALLSTATEMENT	 :	 'AddCallStatement';	 	 	
603. INCLUDECODE	 :	 'IncludeCode';	 	 	
604. IFHOST	 :	 'if';	 	 	
605. ELSEHOST	 	 :	 'else';	 	 	
606. WHILE	 	 	 :	 'while';	 	 	
607. DO	 	 :	 'do';	 	 	
608. FOR	 :	 'for';	 	 	
609. 	 	 	
610. 	 	 	
611. LPAREN	 	 	 	 	 	 :	 '(';	 	 	
612. RPAREN	 	 	 	 	 	 :	 ')';	 	 	
613. LBRACE	 	 	 	 	 	 :	 '{';	 	 	
614. RBRACE	 	 	 	 	 	 :	 '}';	 	 	
615. COLON	 	 	 	 	 	 	 	 	 	 	 :	 ':'	 ;	 	 	 	
616. SEMICOLON	 	 	 	 	 	 	 :	 ';'	 ;	 	 	
617. COMMA	 	 	 	 	 	 	 :	 ',';	 	 	
618. ASSIGN	 	 	 	 	 	 :	 '=';	 	 	
619. AND	 	 	 	 	 	 	 	 	 	 	 	 	 :	 '&&'	 ;	 	 	
620. NOT	 	 	 	 	 	 	 	 	 	 	 	 	 :	 '!'	 ;	 	 	
621. OR	 	 	 	 	 	 	 	 	 	 	 	 	 	 :	 '||'	 ;	 	 	
622. 	 	 	
623. fragment	 UPPER	 	 :	 'A'..'Z'	 ;	 	 	
624. fragment	 LOWER	 	 :	 'a'..'z'	 ;	 	 	
625. fragment	 LETTER	 :	 UPPER	 |	 LOWER;	 	 	
626. fragment	 DIGIT	 	 :	 ('0'..'9')	 ;	 	 	
627. fragment	 NATURAL	 :	 	 	 (DIGIT)+;	 	 	
628. 	 	 	
629. EQUAL	 	 	 	 	 	 	 	 	 	 	 :	 '=='	 ;	 	 	
630. NOTEQUAL	 	 	 	 	 	 	 	 :	 '!='	 ;	 	 	
631. LESSTHANOREQUALTO	 	 	 	 	 :	 '<='	 ;	 	 	
632. LESSTHAN	 	 	 	 	 	 	 	 	 	 	 	 	 	 :	 '<'	 ;	 	 	
633. GREATERTHANOREQUALTO	 	 :	 '>='	 ;	 	 	
634. GREATERTHAN	 	 	 	 	 	 	 	 	 	 	 :	 '>'	 ;	 	 	
635. 	 	 	
636. DIVIDE	 	 	 	 	 	 	 	 	 	 :	 '/'	 ;	 	 	
637. DIVIDEEQUAL	 	 	 	 	 :	 '/='	 ;	 	 	
638. PLUS	 	 	 	 	 	 	 	 	 	 	 	 :	 '+'	 ;	 	 	
639. PLUSEQUAL	 	 	 	 	 	 	 :	 '+='	 ;	 	 	
640. PLUSPLUS	 	 	 	 	 	 	 	 :	 '++'	 ;	 	 	
641. MINUS	 	 	 	 	 	 	 	 	 	 	 :	 '-‐'	 ;	 	 	
642. MINUSEQUAL	 	 	 	 	 	 :	 '-‐='	 ;	 	 	
643. MINUSMINUS	 	 	 	 	 	 :	 '-‐-‐'	 ;	 	 	
644. STAR	 	 	 	 	 	 	 	 	 	 	 	 :	 '*'	 ;	 	 	
645. TIMESEQUAL	 	 	 	 	 	 :	 '*='	 ;	 	 	
646. MOD	 	 	 	 	 	 	 	 	 	 	 	 	 :	 '%'	 ;	 	 	
647. MODEQUAL	 	 	 	 	 	 	 	 :	 '%='	 ;	 	 	
648. SHIFTRIGHT	 	 	 	 	 	 :	 '>>'	 ;	 	 	
649. SHIFTRIGHTEQUAL	 :	 '>>='	 ;	 	 	
650. SHIFTLEFT	 	 	 	 	 	 	 :	 '<<'	 ;	 	 	
651. SHIFTLEFTEQUAL	 	 :	 '<<='	 ;	 	 	
652. 	 	 	

185

653. STRINGLITERAL	 	 	
654. 	 	 	 	 :	 '"'	 	 	
655. 	 	 	 	 	 	 	 	 (
656. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ~('"'|'\\'|'\n'|'\r')	 	 	
657.)*	 	 	
658. 	 	 	 	 	 	 '"'	 	 	
659. 	 	 	 	 ;	 	 	
660. 	 	 	 	 	 	 	
661. ID	 	 :	 	 	 (LETTER)	 (LETTER|DIGIT)*;	 	 	
662. NUMBER:	 (DIGIT)+;	 	 	 	 	 	
663. 	 	 	
664. 	 	 	
665. WS	 	 :	 	 	 ('	 '	 	 	
666. 	 	 	 	 	 	 	 	 |	 '\t'	 	 	
667. 	 	 	 	 	 	 	 	 |	 '\r'	 	 	
668. 	 	 	 	 	 	 	 	 |	 '\n'	 	 	
669.)+	 {$channel=HIDDEN;	 skip();}	 	 	
670. 	 	 	 	 ;	 	 	

A.1.2 SPOT Tree Grammar

1. tree	 grammar	 SPOTGenPass;	 	 	
2. 	 	 	
3. options	 {	 	 	
4. 	 	 	 	 tokenVocab	 =	 spot;	 	 	
5. 	 	 	 	 ASTLabelType	 =	 CommonTree;	 	 	
6. 	 	 	 	 output	 =	 template;	 	 	
7. }	 	 	
8. 	 	 	
9. scope	 slist{	 	 	
10. 	 	 	 	 List	 metaClassList;	 	 //	 hold	 all	 metaClass	 names	 for	 later	 use	 	 	
11. }	 	 	
12. 	 	 	
13. scope	 symbols	 {	 	 	
14. 	 	 	 	 Set	 userDefinedSymbolList;	 //	 only	 track	 user's	 defined	 names	 to	 avoid	 conflicts	 	 	
15. 	 	 	 	 String	 symbolName	 =	 null;	 	 	 	
16. }	 	 	
17. 	 	 	
18. @header	 {	 	 	 	
19. package	 edu.ua.spot;	 	 	
20. import	 java.io.File;	 	 	
21. import	 java.io.IOException;	 	 	 	
22. import	 java.util.ArrayList;	 	 	
23. import	 java.util.List;	 	 	
24. import	 java.util.Map;	 	 	
25. import	 java.util.HashMap;	 	 	
26. import	 java.util.Set;	 	 	
27. import	 java.util.HashSet;	 	 	
28. }	 	 	
29. 	 	 	 	 	 	 	
30. 	 	 	
31. @members	 {	 	 	
32. 	 	 	 	 void	 print(String	 s)	 {System.out.print(s);}	 	 	
33. 	 	 	 	 	 	 	
34. 	 	 	 	 String	 transformerName	 =	 null;	 	 	
35. 	 	 	 	 	 	 	
36. 	 	 	 	 String	 getTransformerName()	 	 	
37. 	 	 	 	 {	 	 	
38. 	 	 	 	 	 	 	 	 return	 transformerName;	 	 	
39. 	 	 	 	 }	 	 	

186

40. 	 	 	
41. }	 	 	
42. 	 	 	
43. 	 	 	
44. spotCode	 	 	
45. 	 	 	 	 :	 ^(SPOTCODE_ND	 transformer	 includeBlock?)	 	 	
46. 	 	 	 	 -‐>	 file(cppCode={$transformer.st})	 	 	
47. 	 	 	 	 ;	 	 	
48. 	 	 	
49. transformer	 	 	
50. scope	 slist,	 symbols;	 	 	
51. @init	 	 	
52. {	 	 	
53. 	 	 	 	 $slist::metaClassList	 =	 new	 ArrayList();	 	 	
54. 	 	 	 	 $symbols::userDefinedSymbolList	 =	 new	 HashSet();	 	 	
55. }	 	 	
56. 	 	 	 	 :	 ^(TRANSFORMER_ND	 id=ID	 {this.transformerName=	 $id.text;}	 	 tb+=transformation+)	 	 	 	
57. 	 	 	 	 -‐>	 metaLevelProgram(identifierList={$slist::metaClassList[0]},	 transformers	 =	 {$tb})	 	 	
58. 	 	 	 	 ;	 	 	
59. 	 	 	
60. transformation	 	 	
61. 	 	 	 	 :	 ^(TFBODY_ND	 loc=scopeMetaObject	 methods+=virtualMethodDefinition+)	 	 	 	
62. 	 	 	 	 -‐>	 transformer(metaClassDeclaration	 =	 {$loc.st},	 metaClassMethodDef	 =	 {$methods})	 	 	
63. 	 	 	 	 ;	 	 	
64. 	 	 	
65. scopeMetaObject	 	 	
66. 	 	 	 	 :	 ^(TRANS_SCOPE	 sn='Function'	 	 ID)	 {$slist::metaClassList.add(%{transformerName	 +	 "_"	 +	 $ID.te

xt});}	 	 	
67. 	 	 	 	 -‐>	 declareMetaFunctionClass(identifier=	 {$transformerName	 +	 "_"	 +	 $ID.text})	 	 	
68. 	 	 	 	 |	 ^(TRANS_SCOPE	 sn='File'	 	 ID)	 {$slist::metaClassList.add(%{transformerName	 +	 "_"	 +	 $ID.text})

;}	 	 	
69. 	 	 	 	 -‐>	 declareMetaFileClass(identifier=	 {$transformerName	 +	 "_"	 +	 $ID.text})	 	 	
70. 	 	 	 	 |	 ^(TRANS_SCOPE	 sn='Project'	 	 ID)	 {$slist::metaClassList.add(%{transformerName	 +	 "_"	 +	 $ID.tex

t});}	 	 	
71. 	 	 	 	 -‐>	 declareMetaGlobalClass(identifier=	 {$transformerName	 +	 "_"	 +	 $ID.text})	 	 	
72. 	 	 	 	 ;	 	 	
73. 	 	 	 	 	 	 	
74. virtualMethodDefinition	 	 	
75. 	 	 	 	 :	 ^(METAFUNCTION_ND	 vmFun=virtualMethodDefinitionFunction)	 -‐>{$vmFun.st}	 	 	
76. 	 	 	 	 |	 ^(METAFILE_ND	 vmFile=virtualMethodDefinitionFile)	 	 	
77. 	 	 	 	 -‐>	 extendDefinitionFile(identifier={$slist::metaClassList[0]},	 	 statements=	 {$vm.st})	 	 	
78. 	 	 	 	 ;	 	 	
79. 	 	 	 	 	 	 	
80. virtualMethodDefinitionFunction	 	 	
81. 	 	 	 	 :	 ^(METHODDEF_ND	 stmts+=transformStatement+)	 	 	
82. 	 	 	 	 -‐>	 extendDefinition(identifier={$slist::metaClassList[0]},	 	 statements=	 {$stmts})	 	 	
83. 	 	 	 	 |	 ^(METHODDEF_ND	 ef=extendFunctionCall	 stmts+=transformStatement+)	 	 	
84. 	 	 	 	 -‐

>	 extendFunctionCall(identifier={$slist::metaClassList[0]},	 symbolName=	 {$symbols::symbolName},	 st
atements=	 {$stmts})	 	 	

85. 	 	 	 	 |	 ^(METHODDEF_ND	 ev=extendVariableFunction	 stmts+=transformStatement+)	 	 	
86. 	 	 	 	 -‐

>	 extendVariableEntry(methodName={$ev.st},	 symbolName=	 {$symbols::symbolName},	 statements=	 {$stmts
})	 	 	

87. 	 	 	 	 ;	 	 	
88. 	 	 	 	 	 	 	
89. virtualMethodDefinitionFile	 	 	
90. 	 	 	 	 :	 ^(METHODDEFILE_ND	 stmts+=transformStatement+)	 	 	
91. 	 	 	 	 -‐>{$stmts}	 	 	
92. 	 	 	 	 |	 ^(METHODDEFILE_ND	 ef=extendFunctionCall	 stmts+=transformStatement+)	 	 	
93. 	 	 	 	 -‐>	 extendFunctionCallFile(symbolName=	 {$symbols::symbolName},	 statements=	 {$stmts})	 	 	

187

94. 	 	 	 	 |	 ^(METHODDEFILE_ND	 ev=extendVariableFile	 stmts+=transformStatement+)	 	 	
95. 	 	 	 	 -‐>	 extendVariableEntryFile(loop=	 {$ev.st},	 statements=	 {$stmts})	 	 	
96. 	 	 	 	 ;	 	 	
97. 	 	 	 	 	 	 	 	 	 	 	
98. transformStatement	 	 	
99. 	 	 	 	 :	 ^(OPERATION_ND	 operation)	 -‐>	 {$operation.st}	 	 	
100. 	 	 	 	 |	 ^(SUBSUBTRANSFORMER_ND	 locationStatement	 operation+)	 	 	 	
101. 	 	 	 	 |	 ^(CONDITION_BLOCK_ND	 conditionBlock)	 	 	
102. 	 	 	 	 ;	 	 	 	
103. 	 	 	 	 	 	 	
104. extendFunctionCall	 	 	
105. 	 	 	 	 :	 ^(FORALL_ND	 'FunctionCall'	 variableSPOT?)	 	 	
106. 	 	 	 	 -‐>	 {$variableSPOT.st}	 	 	
107. 	 	 	 	 ;	 	 	 	 	 	
108. 	 	 	
109. extendVariableFunction	 	 	 	
110. 	 	 	 	 :	 ^(FORALL_ND	 'VariableRead'	 variableSPOT?)	 	 	
111. 	 	 	 	 -‐

>	 extendVariableRead(identifier={$slist::metaClassList[0]},	 symbolName=	 {$symbols::symbolName})	 	 	
112. 	 	 	 	 |	 ^(FORALL_ND	 'VariableWrite'	 variableSPOT?)	 	 	
113. 	 	 	 	 -‐

>	 extendVariableWrite(identifier={$slist::metaClassList[0]},	 symbolName=	 {$symbols::symbolName})	 	 	
114. 	 	 	 	 |	 ^(FORALL_ND	 'VariableDecl'	 variableSPOT?)	 	 	
115. 	 	 	 	 -‐

>	 extendVariableDecl(identifier={$slist::metaClassList[0]},	 symbolName=	 {$symbols::symbolName})	 	 	
116. 	 	 	 	 ;	 	 	
117. 	 	 	 	 	 	 	
118. extendVariableFile	 	 	 	
119. 	 	 	 	 :	 ^(FORALL_FILE_ND	 'VariableRead'	 variableSPOT?)	 	 	
120. 	 	 	 	 -‐>	 extendVariableReadFile(symbolName=	 {$symbols::symbolName})	 	 	
121. 	 	 	 	 |	 ^(FORALL_FILE_ND	 'VariableWrite'	 variableSPOT?)	 	 	
122. 	 	 	 	 -‐>	 extendVariableWriteFile(symbolName=	 {$symbols::symbolName})	 	 	
123. 	 	 	 	 |	 ^(FORALL_FILE_ND	 'VariableDecl'	 variableSPOT?)	 	 	
124. 	 	 	 	 -‐>	 extendVariableDeclFile(symbolName=	 {$symbols::symbolName})	 	 	
125. 	 	 	 	 ;	 	 	
126. 	 	 	 	 	 	 	
127. conditionBlock	 	 	
128. 	 	 	 	 :	 	 ^(IF	 con=condition	 	 ops+=operation+)	 	 	
129. 	 	 	 	 -‐>	 if(condition={$con.st},	 statements={$ops})	 	 	
130. 	 	 	 	 |	 	 ^(ELSE	 ops+=operation+)	 	 	
131. 	 	 	 	 -‐>	 else(statements={$ops})	 	 	
132. 	 	 	 	 ;	 	 	 	 	 	
133. 	 	 	 	 	 	 	
134. condition	 	 	
135. 	 	 	 	 :	 ^(co=conditionOperator	 leftEx=spotExpr	 	 rightEx=spotExpr)	 	 	
136. 	 	 	 	 -‐>	 operation(op={$co.st},	 left={$leftEx.st},	 right={$rightEx.st})	 	 	
137. 	 	 	 	 ;	 	 	
138. 	 	 	 	 	 	 	
139. attributeRetrieve	 	 	
140. 	 	 	 	 :	 ^(ATTRIBUTERETRIEVE_ND	 vr=variableRef	 atname=ATTRIBUTENAME)	 	 	
141. 	 	 	 	 -‐>	 attributeRef(symbol	 =	 {$vr.st},	 attribute=	 {$atname.text})	 	 	
142. 	 	 	 	 ;	 	 	
143. 	 	 	 	 	 	 	
144. locationStatement	 	 	 	
145. 	 	 	 	 :	 ^(TRANS_SCOPE	 	 SCOPEKEYWORD	 	 hostScopeStatement	 variableSPOT?)	 	 	 	
146. 	 	 	 	 ;	 	 	
147. 	 	 	 	 	 	 	
148. 	 	 	 	 	 	 	
149. variableSPOT	 	 	
150. @init	 	 	
151. {	 	 	

188

152. 	 	 	 	 $symbols::symbolName	 =	 null;	 	 	 	 	 	 	
153. }	 	 	
154. 	 	 	 	 :	 ^(WILDCARD_VARIABLE_ND	 id=ID)	 	 	 	
155. 	 	 	 	 {	 	 	 	 	 	
156. 	 	 	 	 	 	 	 	 $symbols::userDefinedSymbolList.add($id.text);	 	 	
157. 	 	 	 	 	 	 	 	 $symbols::symbolName	 =	 $id.text;	 	 	 	 	 	 	
158. 	 	 	 	 }	 	 	
159. 	 	 	 	 -‐>	 {%{$id.text}}	 	 	
160. 	 	 	 	 |^(WILDCARD_ND	 wildcard='*')-‐>	 {%{$wildcard.text}}	 	 	
161. 	 	 	 	 //|^(ENTITYNAME_ND	 ID)	 -‐>	 {%{$ID.text}}	 	 	 	 	
162. 	 	 	 	 ;	 	 	
163. 	 	 	 	 	 	 	 	 	 	 	
164. operation	 	 	
165. 	 	 	 	 :	 ^(ACTION_ND	 actionVariable)	 -‐>	 {$actionVariable.st}	 	 	
166. 	 	 	 	 |	 ^(ACTION_ND	 actionFunction)	 -‐>	 {$actionFunction.st}	 	 	
167. 	 	 	 	 |	 ^(ACTION_ND	 actionStatement)	 -‐>	 {$actionStatement.st}	 	 	
168. 	 	 	 	 |	 ^(RETRIEVE_ND	 languageEntity	 '%'?	 id=ID	 ASSIGN	 actionRetrieve[$id.text])	 	 	 	
169. 	 	 	 	 {	 $symbols::userDefinedSymbolList.add($id.text);	 }	 	 	
170. 	 	 	 	 -‐>	 {$actionRetrieve.st}	 	 	
171. 	 	 	 	 ;	 	 	 	 	 	
172. 	 	 	 	 	 	 	
173. languageEntity	 	 	
174. 	 	 	 	 :	 ^(SCOPE_ENTITY_ND	 SCOPEENTITY)	 	 	
175. 	 	 	 	 |	 ^(BASIC_ENTITY_ND	 BASICENTITY)	 	 	
176. 	 	 	 	 |	 ^(STATEMENT_ENTITY_ND	 hostStatement)	 	 	
177. 	 	 	 	 ;	 	 	
178. 	 	 	
179. actionRetrieve	 [String	 symbolName]	 	 	
180. @init	 	 	
181. {	 	 	
182. 	 	 	 	 symbolName	 =	 null;	 	 	
183. }	 	 	
184. 	 	 	
185. 	 	 	 	 :	 ^(GETFUNCTION	 ID)	 	 	
186. 	 	 	 	 -‐>	 getFunction(handler={$symbolName},	 funName={$ID.text})	 	 	
187. 	 	 	 	 |	 ^(GETFUNCTIONCALL	 ID)	 	 	
188. 	 	 	 	 -‐>	 getFunctionCall(handler={$symbolName},	 funName={$ID.text})	 	 	
189. 	 	 	 	 |	 ^(GETVARIABLEREAD	 ID)	 	 	
190. 	 	 	 	 -‐>	 getVariableRead(handler={$symbolName},	 funName={$ID.text})	 	 	
191. 	 	 	 	 |	 ^(GETVARIABLEWRITE	 ID)	 	 	
192. 	 	 	 	 -‐>	 getVariableWrite(handler={$symbolName},	 funName={$ID.text})	 	 	
193. 	 	 	 	 |	 ^(GETVARIABLEDECL	 ID)	 	 	
194. 	 	 	 	 -‐>	 getVariableDecl(handler={$symbolName},	 funName={$ID.text})	 	 	
195. 	 	 	 	 |	 ^(GETSTATEMENTLINE	 lineNumber)	 	 	
196. 	 	 	 	 -‐>	 getStatementLineNumber(handler={$symbolName},	 funName={$ID.text})	 	 	
197. 	 	 	 	 |	 ^(GETSTATEMENT	 hs=hostStatement	 si=statementIndex?)	 	 	
198. 	 	 	 	 -‐>	 getStatement(head	 =	 {$hs.st},	 tail={$si.st})	 	 	
199. 	 	 	 	 |	 ^(GETSTATEMENTASSIGNMENT	 ID)	 	 	
200. 	 	 	 	 ;	 	 	 	 	 	
201. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
202. actionVariable	 	 	
203. 	 	 	 	 :	 ^(ADDVARIABLE	 TYPENAME	 ID	 initializedVal?)	 	 	 	
204. 	 	 	 	 -‐>	 addVariable(type={$TYPENAME.text},	 name={$ID.text},	 iniVal={$initializedVal.st})	 	 	
205. 	 	 	 	 |	 ^(ADDVARIABLESAMETYPE	 TYPENAME	 id+=ID+)	 	 	
206. 	 	 	 	 -‐>	 addVariableMultiple(type={$TYPENAME.text},	 name={$id})	 	 	
207. 	 	 	 	 |	 ^(DELETEVARIABLE	 ID)	 	 	
208. 	 	 	 	 -‐>	 deleteVariable(name={$ID.text})	 	 	
209. 	 	 	 	 |	 ^(RENAMEVARIABLE	 old=ID	 new=ID)	 	 	
210. 	 	 	 	 -‐>	 renameVariable(oldName={$old.text},	 newName={$new.text})	 	 	
211. 	 	 	 	 ;	 	 	 	 	 	 	 	 	 	
212. 	 	 	

189

213. actionFunction	 	 	
214. 	 	 	 	 :	 ^(RENAMEFUNCTION	 old=ID	 new=ID)	 	 	
215. 	 	 	 	 -‐>	 renameFunction(oldName={$old.text},	 newName={$new.text})	 	 	
216. 	 	 	 	 ;	 	 	 	 	 	
217. 	 	 	 	 	 	 	
218. actionStatement	 	 	 	
219. 	 	 	 	 :	 ^(ADD_NEW_STATEMENT	 addCall=addFunctionCall)	 -‐>	 {$addCall.st}	 	 	
220. 	 	 	 	 |	 ^(ASSIGN_NEW_STATEMENT	 '%'	 ID	 addCall=addFunctionCall)	 {$symbols::userDefinedSymbolList.add(

$ID.text);}	 	 	
221. 	 	 	 	 -‐>	 assignNewStatement(symbolName=	 {$ID.text},	 function=	 {$addCall.st})	 	 	
222. 	 	 	 	 |	 ^(ADDCOMMENTSTATEMENT	 LOCATION	 currentStatement	 STRINGLITERAL)	 	 	
223. 	 	 	 	 |	 ^(ADDUSINGSTATEMENT	 STRINGLITERAL)	 	 	
224. 	 	 	 	 |	 ^(DELETESTATEMENT	 hostStatement)	 	 	
225. 	 	 	 	 |	 ^(ADDSTATEMENT	 statement)	 	 	
226. 	 	 	 	 ;	 	 	
227. 	 	 	
228. addFunctionCall	 	 	 	
229. 	 	 	 	 :	 ^(ADDCALLSTATEMENT	 key=LOCATION	 	 stmt=currentStatement	 ID	 pList=callArgumentList?)	 	 	
230. 	 	 	 	 -‐

>	 addCallStatement(funName	 ={$ID.text},	 beforeAfter	 =	 {$key.text},	 locations	 =	 {$stmt.st},	 paraLis
t={$pList.st})	 	 	 	 	 	 	

231. 	 	 	 	 ;	 	 	
232. 	 	 	
233. callArgumentList	 	 	
234. 	 	 	 	 :	 ^(CALL_ARGUMENT_LIST	 	 args+=callArgument+)	 	 	
235. 	 	 	 	 -‐>	 listCallArguments(arguments={$args})	 	 	
236. 	 	 	 	 ;	 	 	
237. 	 	 	 	 	 	 	
238. currentStatement	 	 	 	
239. 	 	 	 	 :	 ^(GETCURRENTSTATEMENT_ND	 vr=variableRef	 	 st=STATEMENT)	 	 	
240. 	 	 	 	 -‐>	 attributeRef(symbol={$vr.st},	 attribute={$st.text})	 	 	
241. 	 	 	 	 ;	 	 	
242. 	 	 	 	 	 	 	
243. variableRef	 	 	
244. 	 	 	 	 :	 ^(VARIABLEREF_ND	 ID)	 	 	
245. 	 	 	 	 {	 	 	
246. 	 	 	 	 	 	 	 	 if(!$symbols::userDefinedSymbolList.contains($ID.text)){	 	 	
247. 	 	 	 	 	 	 	 	 	 	 	 	 print("the	 name	 you	 are	 using	 cannot	 be	 resolved.	 Compilation	 terminated!");	 	 	
248. 	 	 	 	 	 	 	 	 	 	 	 	 return;	 	 	
249. 	 	 	 	 	 	 	 	 }	 	 	
250. 	 	 	 	 }	 	 	
251. 	 	 	 	 -‐>	 {%{$ID.text}}	 	 	
252. 	 	 	 	 ;	 	 	 	 	 	
253. 	 	 	 	 	 	 	
254. //source	 code	 added	 in	 includeBlock	 is	 not	 parsed	 	 	
255. //shoud	 replace	 STRINGLITERAL	 with	 the	 first	 rule	 of	 the	 host	 langauge	 	 	
256. includeBlock	 	 	
257. 	 	 	 	 :	 ^(INCLUDECODE	 STRINGLITERAL)	 	 	
258. 	 	 	 	 ;	 	 	
259. 	 	 	 	 	 	 	
260. hostStatement	 	 	
261. 	 	 	 	 :	 ^(SOURCESTATEMENTTYPE_ND	 statementType)	 	 	 	
262. 	 	 	 	 |	 ^(SOURCESTATEMENT_ND	 statement)	 	 	 	
263. 	 	 	 	 ;	 	 	
264. 	 	 	 	 	 	 	
265. hostScopeStatement	 	 	
266. 	 	 	 	 :	 ^(SCOPE_STATEMENT	 SCOPESTATEMENTTYPE)	 	 	
267. 	 	 	 	 |	 ^(SCOPESTATEMENT_ND	 scopeStatement)	 	 	 	
268. 	 	 	 	 ;	 	 	
269. 	 	 	 	 	 	 	 	 	 	 	
270. statementType	 	 	

190

271. 	 	 	 	 :	 ^(SINGLE_STATEMENT	 SINGLESTATEMENTTYPE)	 	 	
272. 	 	 	 	 |	 ^(SCOPE_STATEMENT	 SCOPESTATEMENTTYPE)	 	 	
273. 	 	 	 	 |	 ^(GENERAL_STATEMENT	 STATEMENTTYPE)	 	 	
274. 	 	 	 	 ;	 	 	
275. 	 	 	 	 	 	 	
276. statementList	 	 	
277. 	 	 	 	 :	 ^(STATEMENT_ND	 statement)	 	 	
278. 	 	 	 	 |	 ^(STATEMENT_LIST	 statement+)	 	 	
279. 	 	 	 	 ;	 	 	
280. 	 	 	 	 	 	 	 	 	 	 	
281. scopeStatement	 	 	
282. 	 	 	 	 :	 ^(COND_STATEMENT	 conditionStatement)	 	 	
283. 	 	 	 	 |	 ^(LOOP_STATEMENT	 loopStatement)	 	 	
284. 	 	 	 	 ;	 	 	
285. 	 	 	 	 	 	 	
286. singleStatement	 	 	
287. 	 	 	 	 :	 ^(ASSIGN_STATEMENT	 assignmentStatement)	 	 	
288. 	 	 	 	 |	 ^(CALL_STATEMENT	 callStatement)	 	 	
289. 	 	 	 	 |	 ^(DEC_STATEMENT	 declareStatement)	 	 	
290. 	 	 	 	 ;	 	 	
291. 	 	 	 	 	 	 	 	 	 	 	
292. assignmentStatement	 	 	
293. 	 	 	 	 :	 ^(ASSIGN_STATEMENT_MATCH	 vr=varRef	 ex=expression)	 	 	
294. 	 	 	 	 -‐>	 matchAssignmentStatement(left={$vr.st},	 right={$ex.st})	 	 	
295. 	 	 	 	 |	 ^(ASSIGN_STATEMENT	 ASSIGN	 vr=varRef	 ex=expression)	 	 	
296. 	 	 	 	 -‐>	 buildAssignmentStatement(left={$vr.st},	 right={$ex.st})	 	 	
297. 	 	 	 	 ;	 	 	 	
298. 	 	 	
299. declareStatement	 	 	
300. 	 	 	 	 :	 ^(VARIABLE_DECL	 TYPENAME	 ID+)	 	 	 	
301. 	 	 	 	 ;	 	 	
302. 	 	 	 	 	 	 	 	 	 	 	
303. callStatement	 	 	
304. 	 	 	 	 :	 ^(CALL_STATEMENT	 callIDRefHost	 	 callArgumentListHost?)	 	 	
305. 	 	 	 	 ;	 	 	
306. 	 	 	 	 	 	 	
307. callArgumentListHost	 	 	
308. 	 	 	 	 :	 ^(CALL_ARGUMENT_LIST_HOST	 	 callArgumentHost+)	 	 	
309. 	 	 	 	 ;	 	 	
310. 	 	 	
311. ifStatement	 	 	
312. 	 	 	 	 :	 ^(IF_STATEMENT	 expression	 statementList	 elseStatement?)	 	 	 	
313. 	 	 	 	 ;	 	 	
314. 	 	 	 	 	 	 	
315. elseStatement	 	 	
316. 	 	 	 	 :	 ^(ELSE_STATEMENT	 statementList)	 	 	
317. 	 	 	 	 ;	 	 	
318. 	 	 	 	 	 	 	
319. whileStatement	 	 	
320. 	 	 	 	 :	 ^(WHILE_STATEMENT	 expression	 statementList)	 	 	
321. 	 	 	 	 ;	 	 	
322. 	 	 	
323. forStatement	 	 	
324. 	 	 	 	 :	 ^(FOR_STATEMENT	 assignmentExpression?	 condition?	 expression?	 statementList)	 	 	 	 	 	 	
325. 	 	 	 	 ;	 	 	
326. 	 	 	 	 	 	 	
327. 	
328. assignmentExpression	 	 	
329. 	 	 	 	 :	 ^(ASSIGN_EXPRESSION	 varRef	 expression)	 	 	
330. 	 	 	 	 ;	 	 	 	 	 	
331. 	 	 	 	 	 	 	 	 	 	 	

191

332. expression	 	 	
333. 	 	 	 	 :	 ^(EXPRESSION_ND	 	 logical_or_expression+)	 	 	
334. 	 	 	 	 ;	 	 	
335. 	 	 	
336. logical_or_expression	 	 	
337. 	 	 	 	 :	 	 	 	 logical_and_expression	 (OR^	 logical_and_expression)*	 	 	 	
338. 	 	 	 	 ;	 	 	
339. 	 	 	
340. logical_and_expression	 	 	
341. 	 	 	 	 :	 	 	 equality_expression	 (AND^	 equality_expression)*	 	 	 	
342. 	 	 	 	 ;	 	 	
343. 	 	 	
344. equality_expression	 	 	
345. 	 	 	 	 :	 	 	 relational_expression	 ((NOTEQUAL^|EQUAL^)	 relational_expression)*	 	 	
346. 	 	 	 	 ;	 	 	
347. 	 	 	
348. relational_expression	 	 	
349. 	 	 	 	 :	 	 	 additive_expression	 	 	
350. 	 	 	 	 	 	 	 	 (options{backtrack=true;}:	 	 	 	
351. 	 	 	 	 	 	 	 	 	 	 	 	 (
352. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (LESSTHAN^	 	 	
353. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 |	 	 	 GREATERTHAN^	 	 	
354. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 |	 	 	 LESSTHANOREQUALTO^	 	 	
355. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 |	 	 	 GREATERTHANOREQUALTO^	 	 	
356.)	 	 	
357. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
358.)additive_expression	 	 	
359.)?	 	 	
360. 	 	 	 	 ;	 	 	
361. 	 	 	
362. additive_expression	 	 	
363. 	 	 	 	 :	 	 	 multiplicative_expression	 	 	
364. 	 	 	 	 	 	 	 	 (
365. 	 	 	 	 	 	 	 	 	 	 	 	 (PLUS^	 |	 MINUS^)	 multiplicative_expression	 	 	
366.)*	 	 	
367. 	 	 	 	 ;	 	 	
368. 	 	 	 	 	 	 	
369. multiplicative_expression	 	 	
370. 	 	 	 	 :	 	 	 unary_expression	 	 	
371. 	 	 	 	 	 	 	 	 (
372. 	 	 	 	 	 	 	 	 	 	 	 	 (STAR^|DIVIDE^|MOD^)	 unary_expression	 	 	
373.)*	 	 	
374. 	 	 	 	 ;	 	 	
375. unary_expression	 	 	
376. 	 	 	 	 :	 	 	 PLUSPLUS^	 primary_expression	 	 	
377. 	 	 	 	 |	 	 	 MINUSMINUS^	 primary_expression	 	 	
378. 	 	 	 	 ;	 	 	
379. 	 	 	 	 	 	 	
380. 	 	 	
381. spotExpr	 	 	
382. 	 	 	 	 :	 ar=attributeRetrieve	 -‐>{$ar.st}	 	 	
383. 	 	 	 	 |	 ID	 -‐>	 {%{$ID.text}}	 	 	
384. 	 	 	 	 |	 NUMBER	 -‐>	 {%{$NUMBER.text}}	 	 	
385. 	 	 	 	 ;	 	 	
386. 	 	
387. conditionOperator	 	 	
388. @after	 {$st	 =	 %operator(op={$start.getText()});}	 	 	
389. 	 	 	 	 :EQUAL|NOTEQUAL|LESSTHAN|GREATERTHAN|LESSTHANOREQUALTO|GREATERTHANOREQUALTO	 	 	
390. 	 	 	 	 ;	 	 	
391. 	 	 	 	 	 	 	
392. initializedVal	 	 	

192

393. @after	 {$st	 =	 %{$text};}	 	 	
394. 	 	 	 	 :	 ID	 	 	
395. 	 	 	 	 |	 NUMBER	 	 	
396. 	 	 	 	 ;	 	 	
397. lineNumber	 	 	
398. @after	 {$st	 =	 %{$text};}	 	 	
399. 	 	 	 	 :	 NUMBER	 	 	
400. 	 	 	 	 ;	 	 	
401. 	 	 	
402. statementIndex	 	 	
403. @after	 {$st	 =	 %{$text};}	 	 	
404. 	 	 	 	 :	 NUMBER	 	 	
405. 	 	 	 	 ;	 	 	
406. 	 	 	 	 	 	 	 	 	 	 	
407. callArgument	 	 	
408. 	 	 	 	 :	 initializedVal	 	 	
409. 	 	 	 	 ;	 	 	 	 	 	 	 	 	 	
410. 	 	 	 	 	 	 	 	 	 	 	
411. statement	 	 	
412. 	 	 	 	 :	 singleStatement	 	 	
413. 	 	 	 	 |	 scopeStatement	 	 	
414. 	 	 	 	 ;	 	 	
415. 	 	 	 	 	 	 	
416. callIDRefHost	 	 	
417. 	 	 	 	 :	 ID	 	 	
418. 	 	 	 	 ;	 	 	 	 	 	
419. 	 	 	
420. callArgumentHost	 	 	
421. 	 	 	 	 :	 expression	 	 	
422. 	 	 	 	 ;	 	 	
423. 	 	 	 	 	 	 	 	 	 	 	
424. conditionStatement	 	 	
425. 	 	 	 	 :ifStatement	 	 	
426. 	 	 	 	 |elseStatement	 	 	
427. 	 	 	 	 ;	 	 	
428. 	 	 	 	 	 	 	
429. loopStatement	 	 	
430. 	 	 	 	 :whileStatement	 	 	
431. 	 	 	 	 |forStatement	 	 	
432. 	 	 	 	 ;	 	 	
433. 	 	 	 	 	 	 	 	 	 	 	
434. varRef	 	 	
435. @after	 {$st	 =	 %{$text};}	 	 	
436. 	 	 	 	 :	 ID	 	 	
437. 	 	 	 	 ;	 	 	 	 	 	
438. 	 	 	 	 	 	 	
439. primary_expression	 	 	
440. 	 	 	 	 :	 NUMBER	 	 	
441. 	 	 	 	 |	 varRef	 	 	
442. 	 	 	 	 |	 LPAREN	 expression	 RPAREN	 	 	
443. 	 	 	 	 ;	 	 	
444. 	 	 	 	 	 	 	

193

A.2 StringTemplate Store

1. group	 SPOTST;	 	 	
2. 	 	 	
3. file(cppCode)	 ::=<<	 	 	
4. <cppCode>	 	 	
5. >>	 	 	
6. 	
7. metaLevelProgram(identifier,	 transformers)	 ::=<<	 	 	
8. //	 no	 need	 for	 ...	 "pass	 through"	 parameter	 	 	
9. #include	 "MetaObject.h"	 	 	
10. 	 	 	
11. <transformers()>	 	 	
12. 	 	 	
13. <fileMain()>	 	 	
14. >>	 	 	
15. 	
16. /*Inherit	 	 names,	 transformers	 from	 file	 template	 that	 invokes	 me*/	 	 	
17. fileMain()	 ::=<<	 	 	
18. 	 	 	
19. int	 main(int	 argc,	 char*	 argv[])	 	 	
20. {	 	 	
21. 	 	 	 	 SgProject	 *project	 =	 frontend	 (argc,	 argv);	 	 	
22. 	 	 	 	 	 	 	
23. 	 	 	 	 MetaObjectFactory	 factory;	 	 	
24. //	 	 <identifierList	 :	 {id	 |	 factory.registerMetaObject(new	 MetaClass_<id>());<\n>}>	 	 	
25. 	 	 	 	 factory.registerMetaObject(new	 MetaClass_<identifier>());	 	 	
26. 	 	 	 	 	 	 	
27. 	 	 	 	 CreateMetaObjectTraversal*	 pTreeTraversal	 =	 new	 Fortran_CreateMetaObjectTraversal();	 	 	
28. 	 	 	 	 pTreeTraversal-‐>traverseInputFiles(project,	 preorder);	 	 	
29. 	 	 	 	 	 	 	
30. 	 	 	 	 factory.invokeMetaObjects(pTreeTraversal);	 	 	
31. 	 	 	 	 	 	 	
32. 	 	 	 	 AstTests::runAllTests(project);	 	 	
33. 	 	 	 	 backend	 (project);	 	 	
34. 	 	 	 	 	 	 	
35. 	 	 	 	 if(pTreeTraversal)	 delete	 pTreeTraversal;	 	 	
36. }	 	 	
37. >>	 	 	
38. 	
39. /*Inherit	 	 names,	 transformers	 from	 file	 template	 that	 invokes	 me*/	 	 	
40. transformers()	 ::=<<	 	 	
41. <transformers;	 separator="\n">	 	 	
42. >>	 	 	
43. 	 	 	
44. transformer(metaClassDeclaration,	 metaClassMethodDef)	 ::=<<	 	 	
45. 	 	 	
46. <metaClassDeclaration>;	 	 	
47. 	 	 	
48. <metaClassMethodDef;	 separator="\n">	 	 	 	 	 	 	 	 	 	 	 	 	
49. >>	 	 	
50. 	 	 	
51. declareMetaFunctionClass(identifier)	 ::=<<	 	 	
52. 	 	 	
53. class	 MetaClass_<identifier>:	 public	 MetaFunction	 	 	
54. {	 	 	
55. public:	 	 	
56. 	 	 	 	 MetaClass_<identifier>("<identifier>");	 	 	
57. 	 	 	 	 virtual	 bool	 openFooExtendDefinition();	 	 	
58. 	 	 	 	 virtual	 bool	 openFooExtendFunctionCall(string	 funName);	 	 	

194

59. 	 	 	 	 virtual	 bool	 openFooExtendVariableRead(string	 varName);	 	 	
60. 	 	 	 	 virtual	 bool	 openFooExtendVariableWrite(string	 varName);	 	 	
61. 	 	 	 	 virtual	 bool	 openFooExtendVariableDecl(string	 varName);	 	 	
62. 	 };	 	 	
63. >>	 	 	
64. 	
65. extendDefinition(identifier,	 statements)	 ::=<<	 	 	
66. 	 	 	
67. bool	 MetaClass_<identifier>::openFooExtendDefinition()	 	 	
68. {	 	 	
69. 	 <if(statements)>	 	 	
70. 	 	 	 	 	 <statements;	 separator="\n">	 	 	
71. 	 <else>	 	 	
72. 	 	 	 	 	 return	 true;	 	 	
73. 	 <endif>	 	 	
74. }	 	 	
75. 	
76. extendFunctionCall(identifier,	 symbolName,	 statements)	 ::=<<	 	 	
77. 	 	 	
78. 	 bool	 MetaClass_<identifier>::openFooExtendFunctionCall(string	 funName)	 	 	
79. 	 {	 	 	
80. 	 	 	 	 vector<SgFunctionCallExp*>	 <symbolName>	 =	 getFunctionCallList();	 	 	
81. 	 	 	 	 for(int	 j=0;	 j<	 <symbolName>.size();	 j++){	 	 	
82. 	 	 	 	 	 	 	 	 if((!funName.empty()	 &&	 <symbolName>[i]-‐>getFunName())||(funName.empty()))	 	 	
83. 	 	 	 	 	 	 	 	 {	 	 	 	 	 	
84. 	 	 	 	 	 	 	 	 	 	 	 	 	 <statements;	 separator="\n">	 	 	
85. 	 	 	 	 	 	 	 	 }	 	 	 	 	 	 	 	 	 	
86. 	 	 	 	 }	 	 	
87. 	 }	 	 	
88. >>	 	 	
89. 	
90. extendVariableEntry(methodName,	 statements)	 ::=<<	 	 	
91. 	 	 	 	 <methodName>	 	 	
92. 	 	 	 	 {	 	 	
93. 	 	 	 	 	 	 	 	 <statements;	 separator="\n">	 	 	
94. 	 	 	 	 }	 	 	
95. }	 	 	
96. >>	 	 	
97. 	 	 	
98. extendVariableRead(identifier,	 symbolName)	 ::=<<	 	 	
99. bool	 MetaClass_<identifier>::openFooExtendVariableRead(string	 varName)	 	 	
100. {	 	 	
101. 	 	 	 	 OF_Variable_Container	 <symbolName>	 =	 getReadVariableList();	 	 	
102. 	 	 	 	 for(int	 id=0;	 id<	 <symbolName>.size();	 id++){	 	 	
103. 	 	 	 	 	 	 	 	 if((!varName.empty()	 &&	 <symbolName>[id]-‐>getVariableName())||(varName.empty()))	 	 	
104. >>	 	 	
105. 	 	 	
106. extendVariableWrite(identifier,	 symbolName)	 ::=<<	 	 	
107. bool	 MetaClass_<identifier>::openFooExtendVariableWrite(string	 varName)	 	 	
108. {	 	 	
109. 	 	 	 	 OF_Variable_Container	 <symbolName>	 =	 getWriteVariableList();	 	 	
110. 	 	 	 	 for(int	 id=0;	 id<	 <symbolName>.size();	 id++){	 	 	
111. 	 	 	 	 	 	 	 	 if((!varName.empty()	 &&	 <symbolName>[id]-‐>getVariableName())||(varName.empty()))	 	 	
112. >>	 	 	
113. 	 	 	
114. extendVariableDecl(identifier,	 symbolName)	 ::=<<	 	 	
115. bool	 MetaClass_<identifier>::openFooExtendVariableDecl(string	 varName)	 	 	
116. {	 	 	
117. 	 	 	 	 OF_Variable_Container	 <symbolName>	 =	 getDeclVariableList();	 	 	
118. 	 	 	 	 for(int	 id=0;	 id<	 <symbolName>.size();	 id++){	 	 	
119. 	 	 	 	 	 	 	 	 if((!varName.empty()	 &&	 <symbolName>[id]-‐>getVariableName())||(varName.empty()))	 	 	 	

195

120. >>	 	 	
121. 	
122. extendDefinitionFile(identifier,	 statements)	 ::=<<	 	 	
123. 	 	 	
124. bool	 MetaClass_<identifier>::openFooExtendDefinition()	 	 	
125. {	 	 	
126. 	 <if(statements)>	 	 	
127. 	 	 	 	 	 <statements;	 separator="\n">	 	 	
128. 	 <else>	 	 	
129. 	 	 	 	 	 return	 true;	 	 	
130. 	 <endif>	 	 	
131. }	 	 	
132. 	
133. extendFunctionCallFile(symbolName,	 statements)	 ::=<<	 	 	
134. 	 	 	 	 for(int	 i=0;	 i<functionList.size();	 i++){	 	 	
135. 	 	 	 	 	 	 	 	 pushScopeStack(functionList[i]-‐>getFunctionBodyScope());	 	 	
136. 	 	 	 	 	 	 	 	 string	 callerName	 =	 functionList[i]-‐>getName();	 	 	
137. 	 	 	 	 	 	 	 	 vector<SgFunctionCallExp*>	 <symbolName>	 =	 functionList[i]-‐>getFunctionCallList();	 	 	
138. 	 	 	 	 	 	 	 	 for(int	 id=0;	 id<funCallList.size();	 id++){	 	 	
139. 	 	 	 	 	 	 	 	 	 	 	
140. 	 	 	 	 	 	 	 	 	 	 	 	 	 <statements;	 separator="\n">	 	 	 	
141. 	 	 	 	 	 	 	 	 }	 	 	
142. 	 	 	 	 	 	 	 	 popScopeStack();	 	 	
143. 	 	 	 	 }	 	 	
144. >>	 	
145. 	 	
146. extendVariableEntryFile(loop,	 statements)	 ::=<<	 	 	
147. 	 	 	 	 <loop>	 	 	
148. 	 	 	 	 {	 	 	
149. 	 	 	 	 	 	 	 	 <statements;	 separator="\n">	 	 	
150. 	 	 	 	 }	 	 	 	 	 	
151. }	 	 	
152. >>	 	 	
153. 	 	 	
154. extendVariableReadFile(symbolName)	 ::=<<	 	 	
155. 	 	 	 	 OF_Variable_Container	 <symbolName>	 =	 getReadVariableList();	 	 	
156. 	 	 	 	 for(int	 id=0;	 id<	 <symbolName>.size();	 id++)	 	 	
157. 	 	 	 	 	 	 	 	 	 	 	
158. >>	 	 	
159. 	 	 	
160. extendVariableWriteFile(symbolName)	 ::=<<	 	 	
161. 	 	 	 	 OF_Variable_Container	 <symbolName>	 =	 getWriteVariableList();	 	 	
162. 	 	 	 	 for(int	 id=0;	 id<	 <symbolName>.size();	 id++)	 	 	
163. 	 	 	 	 	 	 	 	 	 	 	
164. >>	 	 	
165. 	 	 	
166. extendVariableDeclFile(symbolName)	 ::=<<	 	 	
167. 	 	 	 	 OF_Variable_Container	 <symbolName>	 =	 getDeclVariableList();	 	 	
168. 	 	 	 	 for(int	 id=0;	 id<	 <symbolName>.size();	 id++)	 	 	
169. 	 	 	 	 	 	 	 	 	 	 	
170. >>	 	 	
171. 	 	 	
172. declareMetaGlobalClass(identifier,	 progName)	 ::=<<	 	 	
173. class	 MetaClass_<identifier>:	 public	 MetaGlobal	 	 	
174. {	 	 	
175. 	 	 public:	 	 	
176. 	 	 	 	 	 MetaClass_<identifier>_<progName>	 (string	 name);	 	 	
177. 	 	 	 	 	 virtual	 bool	 ofExtendDefinition();	 	 	
178. };	 	 	
179. >>	 	 	 	
180. 	 	 	

196

181. createMetaModuleClass(identifier,	 moduleName)	 ::=<<	 	 	
182. 	 	 	
183. class	 MetaClass_<identifier>:	 public	 MetaModule	 	 	
184. {	 	 	
185. 	 	 public:	 	 	
186. 	 	 	 	 	 MetaClass_<identifier>_<moduleName>(string	 name);	 	 	
187. 	 	 	 	 	 virtual	 bool	 ofExtendDefinition();	 	 	
188. };	 	 	
189. >>	 	 	 	 	
190. 	 	 	
191. declareMetaFileClass(identifier,	 className)	 ::=<<	 	 	 	
192. 	 	 	
193. class	 MetaClass_<identifier>:	 public	 MetaFile	 	 	
194. {	 	 	
195. 	 	 public:	 	 	
196. 	 	 	 	 	 MetaClass_<identifier>_<className>(string	 name);	 	 	
197. 	 	 	 	 	 virtual	 bool	 ofExtendDefinition();	 	 	
198. };	 	 	
199. >>	 	 	
200. 	 	 	
201. operation(op,	 left,	 right)	 ::=	 "(<left>	 <op>	 <right>)"	 	 	
202. 	 	 	
203. operator(op)	 ::=	 "<op>"	 	 	
204. 	 	 	
205. attributeRef(symbol,	 attribute)	 ::=	 "<symbol>	 -‐>	 <attribute>"	 	 	
206. 	 	 	
207. localTransformer(subLocation,	 operations)	 ::=<<	 	 	
208. <subLocation>	 	 	
209. <operations	 :	 {op|<op>;<\n>}>	 	 	
210. }	 	 	
211. >>	 	 	
212. 	 	 	
213. getStatement(head,	 tail)	 ::=	 "<head>	 <if(tail)>,	 <tail>)	 <else>)<endif>;"	 	 	
214. 	 	 	
215. forAllProcedure(iteratorName)	 ::=<<	 	 	
216. <if(iteratorName)>	 	 	
217. for(SPOT_MetaFunction_Container::iterator	 <iteratorName>	 =	 getProcedures().begin();	 <iteratorName>

	 !=	 getProcedures().end();	 <iteratorName>++)	 	 	
218. {	 	 	
219. 	 	 	 	 pushScopeStack(<iteratorName>-‐>getCurrentScope());	 	 	
220. <else>	 	 	
221. for(SPOT_MetaFunction_Container::iterator	 iter	 =	 getProcedures().begin();	 iter	 !=	 getProcedures().

end();	 iter++)	 	 	
222. {	 	 	
223. 	 	 	 	 pushScopeStack(iter-‐>getCurrentScope());	 	 	
224. <endif>	 	 	
225. >>	 	 	
226. 	 	 	
227. forAllModule(iteratorName)	 ::=<<	 	 	
228. <if(iteratorName)>	 	 	
229. for(SPOT_MetaFunction_Container::iterator	 <iteratorName>	 =	 getModules().begin();	 <iteratorName>	 !=

	 getModules().end();	 <iteratorName>++)	 	 	
230. {	 	 	
231. 	 	 	 	 pushScopeStack(<iteratorName>-‐>getCurrentScope());	 	 	
232. <else>	 	 	
233. for(SPOT_MetaFunction_Container::iterator	 iter	 =	 getModules().begin();	 iter	 !=	 getModules().end();

	 iter++)	 	 	
234. {	 	 	
235. 	 	 	 	 pushScopeStack(iter-‐>getCurrentScope());	 	 	
236. <endif>	 	 	
237. >>	 	 	

197

238. /*in	 getFunctionCalls(<functionName>),	 <functionName>	 might	 be	 null,	 so	 in	 the	 definition	 of	 MetaF
unction,	 there	 are	 two	 getFunctionCalls*/	 	 	

239. 	 	 	
240. forAllFunctionCall(functionName,	 iteratorName)	 ::=<<	 	 	
241. <if(iteratorName)>	 	 	
242. for(SPOT_MetaFunctionCall_Container::iterator	 <iteratorName>	 =	 getFunctionCalls(<functionName>).be

gin();	 <iteratorName>	 !=	 getFunctionCalls(<functionName>).end();	 <iteratorName>++)	 	 	
243. {	 	 	
244. <else>	 	 	
245. for(SPOT_MetaFunctionCall_Container::iterator	 iter	 =	 getFunctionCalls(<functionName>).begin();	 ite

r	 !=	 getFunctionCalls(<functionName>).end();	 iter++)	 	 	
246. {	 	 	
247. <endif>	 	 	
248. >>	 	 	
249. getEntityAttribute(entityName,	 attributeName)	 ::=	 "<entityName>-‐>get<attributeName>()"	 	 	
250. 	 	 	
251. setEntityAttribute(entityName,	 attributeName,	 valueName)	 ::=	 "<entityName>-‐

>set<attributeName>(<valueName>);"	 	 	
252. 	 	 	
253. getCallStatement(funName)	 ::=	 "getFunctionCallStmt("<funName>");"	 	 	
254. 	 	 	
255. addVariable(type,	 name,	 iniVal)	 ::=	 "addVariable("<name>",	 "<type>"<if(iniVal)>,	 "<iniVal>"<endif>

);"	 	 	
256. 	 	 	
257. deleteVariable(name)	 ::="deleteVariable("<name>");"	 	 	
258. //locations	 is	 a	 vector	 containing	 targeted	 statements	 	 	
259. addCallStatement(funName,	 beforeAfter,	 locations,	 paraList)	 ::=	 "addCallStatement("<funName>",	 "<b

eforeAfter>",	 <locations>,	 <if(paraList)>,	 <paraList><endif>);"	 	 	
260. 	 	 	
261. assignNewStatement(symbolName,	 function)	 ::=	 "MetaStatement	 *<symbolName>	 =	 <function>"	 	 	
262. 	 	 	
263. //separate	 arguments	 with	 comma	 	 	
264. listCallArguments(arguments)	 ::="<arguments;	 separator=",">	 "	 	 	
265. 	 	 	
266. //get	 the	 handler	 of	 a	 construct	 by	 its	 name	 	 	
267. getFunction(handler,	 funName)	 ::=	 "MetaFunction	 *<handler>	 =	 getFunctionbyName("<funName>")"	 	 	
268. 	 	 	
269. getProgram(handler,	 programName)	 ::=	 "MetaFunction	 *<handler>	 =	 getProgrambyName("<programName>")"

	 	 	
270. 	 	 	
271. getProcedure(handler,	 funName)	 ::=	 "MetaFunction	 *<handler>	 =	 getProcedurebyName("<funName>")"	 	 	
272. 	 	 	
273. getFunctionCall(handler,	 funName)	 ::=	 "MetaFunctionCall	 *<handler>	 =	 getFunctionCallbyName("<funNa

me>")"	 	 	
274. 	 	 	
275. getVariableRead(handler,	 varName)	 ::=	 "VariableAccess	 *<handler>	 =	 getVariableReadbyName("<varName

>")"	 	 	
276. 	 	 	
277. getVariableWrite(handler,	 varName)	 ::=	 "VariableAccess	 *<handler>	 =	 getVariableWritebyName("<varNa

me>")"	 	 	
278. 	 	 	
279. getVariableDecl(handler,	 varName)	 ::=	 "VariableAccess	 *<handler>	 =	 getVariableDeclbyName("<varName

>")"	 	 	
280. 	 	 	
281. getStatementLineNumber(handler,	 lineNumber)	 ::=	 "MetaStatement	 *<handler>	 =	 getStatementbyLineNumb

er("<lineNumber>")"	 	 	
282. 	 	 	
283. getModule(handler,	 moduleName)	 ::=	 "MetaModule	 *<handler>	 =	 getModulebyName("<moduleName>")"	 	 	
284. 	 	 	
285. renameFunction(oldName,	 newName)	 ::=	 "renameFunction(<oldName>,	 <newName>)"	 	 	
286. 	 	 	

198

287. renameVariable(oldName,	 newName)	 ::=	 "renameVariable(<oldName>,	 <newName>)	 "	 	 	
288. 	 	 	
289. constructRetrieve(name,	 retrieveStmt)	 ::=	 "<name>	 =	 <retrieveStmt>;"	
290. //retrieveStmt	 refers	 to	 one	 on	 the	 above	 layer.	 	 	
291. 	 	 	
292. sourceCode(statements)	 ::=<<	 	 	
293. 	 <statements;	 separator="\n">	 	 	
294. >>	 	 	
295. 	
296. if(condition,	 statements)	 ::=	 <<	 	 	
297. if	 (<condition>)	 {	 	 	
298. 	 	 	 	 <statements;	 separator="\n">	 	 	
299. }	 	 	
300. >>	 	 	
301. 	
302. if(condition,	 statements)	 ::=	 <<	 	 	
303. else(statements)::=	 <<	 	 	
304. else{	 	 	
305. 	 	 	 	 <statements;	 separator="\n">	 	 	
306. }	 	 	
307. >>	 	 	
308. matchAssignmentStatement(left,	 right)	 ::=	 "matchAssignmentStatement("<left>",	 "<right>")"	 	 	
309. 	 	 	
310. buildAssignmentStatement(left,	 right)	 ::=	 "buildAssignmentStatement("<left>",	 "<right>")"	 	 	

