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ABSTRACT 

Advances in the software industry over the past half-century have resulted in a large 

amount of legacy code implemented across hundreds of different programming languages and 

paradigms running throughout various application areas. Legacy software requires continuous 

and rigorous adaptation or modernization in order to avoid progressive decay in quality over 

time. Modern approaches addressing the needs of modularity and reusability in software 

engineering have been investigated as effective techniques to assist in software development and 

maintenance by automating the process of code evolution. The research in this dissertation is 

focused on applying techniques in software engineering and programming language design to 

address challenges in software maintenance and evolution. A specific focus area of application is 

software in the area of High Performance Computing (HPC) with Fortran and C. 

The research makes a contribution by bringing the power of meta-programming, through 

Meta-Object Protocols (MOPs), to languages that are widely utilized for solving various 

problems in HPC. With MOP facilities provided by OpenFortran and OpenC (the two MOPs we 

built for Fortran and C), developers can build tools to perform arbitrary source-to-source 

program transformations for legacy software. To simplify the use of MOPs and to reduce the 

accidental complexities typically associated with the intensive meta-programming paradigm, a 

textual Domain-Specific Language (DSL) is introduced in our approach, which provides a 

higher-level abstraction for specifying program transformations, and thus enables direct 

expression of manipulating program entities. 
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There is a general lack of infrastructure support for language extension in terms of 

building a MOP for an arbitrary language. In order for our approach to accommodate additional 

programming languages, an extensible framework has been developed in this dissertation work. 

The framework is composed of a language-independent MOP prototype, called OpenFoo, and a 

generic front-end DSL (i.e., SPOT). With the assistance of a set of models that describe the 

aspects and concerns associated with MOP implementation and code modification, the MOP 

prototype can be extended to create a MOP instance for a specific general-purpose programming 

language (GPL); and, similarly, the DSL can be extended to accommodate a newly created 

backend MOP. 
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CHAPTER 1 

INTRODUCTION 

Advances in the software industry over the past half-century have resulted in billions of 

lines of legacy code in hundreds of different programming languages and paradigms running 

throughout various application areas [Lammel and Verhoef, 2001]. According to Lehman’s laws 

of software evolution [Lehman et al., 1997], legacy software will experience continuous and 

rigorous adaption or modernization [Force, 2006] in order to avoid progressive decay in quality 

over time, which will most likely lead to growth in the size and complexity of the software.  

It is often very expensive to make changes to code on a large scale [Bennett and Rajlich, 

2000]. In a typical software development life cycle, software enters the phase of maintenance 

and evolution after deployment. In this phase, a programmer’s main responsibilities involve 

editing existing code to fix bugs, to add new features, as well as to adapt to external changes in 

APIs. Software maintenance and evolution constitutes a considerable part of the total expense of 

the software life cycle and many software companies or institutions devote over 75% of their 

budget to post-delivery maintenance [Hatton, 1998]. The problem becomes worse when 

maintaining software written in legacy programming languages, such as Fortran and COBOL, 

which are estimated to account for a significant percentage of existing production software 

[Ulrich, 2002]. There is a great demand for tools and techniques that advance the software 

development and evolution process with respect to reducing time and expense, saving labor 

resources, and increasing software quality [De Schutter and Adams, 2007].
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Making changes to source code is a constant task in a software engineer’s daily work, 

which can be driven by a variety of development or maintenance requests, such as changing 

requirements, refined design, or bug correction. Manually modifying source code is usually an 

error-prone and tedious task. Even a conceptually slight change may involve numerous similar, 

but not identical, modifications to the entire code base. Unsurprisingly, there is considerable 

research interest in automating the process of code modification with little or, ideally, no user 

intervention. Many software evolution problems can be addressed through program 

transformation techniques that can increase productivity through automating transformation 

tasks.  

The research described in this dissertation is focused on the intersection of approaches 

and techniques in software engineering and programming language design, such as program 

transformation and Domain-Specific Languages (DSLs), in order to assist in the process of 

software development and maintenance. A specific focus area of application is software in the 

area of High Performance Computing (HPC). 

1.1 Software Maintenance Challenges in High Performance Computing 

HPC provides solutions to problems that demand significant computational power, or 

problems that require fast access and processing of a large amount of data. HPC programs are 

usually run on systems such as supercomputers, computer clusters or grids, which can offer 

excellent computational power by decomposing a large problem into pieces, where ideally all of 

these pieces can be processed concurrently.  

In the past decades, the hardware architectures used in HPC have evolved significantly 

from supercomputers to clusters and grids, while the progress in software development has not 

progressed at the same rate [Dongarra, 2006]. In fact, HPC was once the primary domain of 
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scientific computing, but the recent advances in multi-core processors as a commodity in most 

new personal computers is forcing traditional software developers to also develop skills in 

parallel programming in order to harness the newfound power. The recent advances in hardware 

capabilities impose higher demands on the software in HPC. In our research, we have 

investigated a number of challenges in developing and maintaining HPC software, some of 

which might be improved with approaches and practices that have long existed in the area of 

software engineering, but not yet fully explored in HPC [Yue, 2013].  

The initial motivation for the work described in this dissertation comes from the 

observation that utility functions, such as logging, profiling, and check pointing, are often 

intertwined with and spread among both sequential code and parallel code [Jacob et al., 2012]. 

This results in poor cohesion where multiple concerns are tangled together, and at the same time, 

poor coupling where individual concerns are scattered across different methods within multiple 

modules of a program. In addition, these utility functions are often wrapped within conditional 

statements so that they can be toggled on or off on demand. Such condition logic can exacerbate 

maintenance problems with code evolution. As shown in [Jacob et al., 2012], the utility functions 

can represent up to 20% of the total lines of code in real-world HPC applications. Therefore, one 

major challenge addressed in this dissertation involves implementing utility functions in a 

modularized way without impairing the overall performance. 

To facilitate parallelization, several parallel computing models have been invented to 

accommodate different types of hardware and memory architecture, e.g., the Message Passing 

Interface (MPI) [Gropp et al., 1999] for distributed memory systems and OpenMP [OpenMP 

Review Board, 2000] for shared memory systems. These models allow programmers to insert 

compiler directives or API calls in existing sequential applications at the points where 
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parallelism is desired. This method of explicit parallelization has been widely employed in the 

area of HPC due to its flexibility and the performance it can provide; however, it puts the burden 

on the developers to identify and then express parallelism in their original sequential code. 

The parallelization process introduces its own set of maintenance issues because of its 

characteristic of invasive reengineering of existing programs [Arora et al., 2012]. The process of 

developing a parallel application with existing parallel models usually begins with a working 

sequential application and often involves a number of iterations of code changes in order to reach 

maximum performance. It is very challenging to evolve a parallel application where the core 

logic code is often tangled with the code to accomplish parallelization. This situation often 

occurs when the computation code must evolve to adapt to new requirements or when the 

parallelization code needs to be changed according to the advancement in the parallel model 

being used, or needs to be totally rewritten using a different model. 

It could be very beneficial with regard to improving maintainability and reducing 

complexity if we can provide an approach where the sequential and parallel components are 

maintained in different files and can evolve separately, and the parallelized application can be 

generated on demand with the latest sequential and parallel code. In addition, the idea of 

separating management of the sequential and parallel code can help to facilitate simultaneous 

programming of parallel applications where the domain experts can focus on the core logic of the 

application while the parallel programmers concentrate on the realization of parallelism [Arora et 

al., 2012]. The preceding discussion has led us to the question that motivates one of the primary 

areas of focus in this dissertation: Is there an approach to parallelize a program without having to 

directly modify the original source code? 
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1.2 Program Transformation Techniques  

Program transformation, precisely source-to-source program transformation, refers to a 

particular computation domain where source code is manipulated as data. A system capable of 

transforming programs usually works by taking a program in a source language as input, 

performing desired operations, and generating another program in a target language. Research on 

program transformation can be divided into different branches based on various criteria, e.g., 

application, implementation, and improvement [Visser, 2005]. According to the connection 

between the source and target language, program transformation can be classified into two broad 

types: translation if the source and target language are different, and rephrasing if they are the 

same [Feather, 1987; Visser, 2005]. These main categories can then be further refined into 

several sub-categories according to a program’s abstraction level and to the degree to which its 

semantics are affected [Visser et al., 2004]. 

Program translation implies transforming a program written in one language into a 

different language, which may involve transformation between different levels of abstraction. 

Translation techniques have been applied to a large number of applications ranging from 

extraction of desirable information from source code, such as program analysis and reverse 

 

Figure 1.1 Different categories of program transformation  
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engineering, to the development of new programs including program synthesis and program 

migration [Visser et al., 2004]. As shown in Figure 1.1, program analysis is the process of 

analyzing the source code of a program in order to gain an understanding of certain aspects, such 

as control-flow or data-flow described in an aspect language or a sub-language. Reverse 

engineering refers to the applications of transformation where some aspects or specifications of a 

high-level program can be extracted from a low-level program [Feather, 1987], e.g., de-

compilation where a high-level program can be derived from an executable program and 

software visualization where some aspects of a program are represented in an abstract manner. 

Program synthesis works in the opposite direction to reverse engineering by translating 

programs from a high-level language into a low-level language. Compilation is a typical example 

of program synthesis where a high-level program is first compiled into some intermediate 

representation and then into machine code. Program migration refers to the type of 

transformations where a program is translated to another language at the same level of 

abstraction, which is usually used to perform translation between different dialects of a language, 

e.g., Fortran 90 to Fortran 08.  

Program rephrasing is the other primary area of program transformation, referring to the 

automated manipulation of a program in order to improve it with respect to modularity, 

understandability, performance, maintainability, and satisfaction of requirements [Visser, 2005]. 

Rephrasing is discernible through the fact that a program is transformed in the same language. 

Based on the extent to which the semantics of a program are affected, rephrasing can be 

classified into the following categories: refactoring [Fowler, 1999] where source code is 

restructured so as to become easier to read, maintain and extend while its semantics are 

preserved; program renovation where source code is modified to fix an error or to meet changed 
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requirements, program reflection that implies an extension to the semantics of a program to 

enable it to compute some aspects of itself, program normalization referring to the type of 

transformations to reduce a program that has multiple possible representations to a standard or 

normal form, and program optimization where source code is transformed so that time or space 

performance can be improved. 

This dissertation involves both broad types of program transformation in that our solution 

provides a framework that can be used to extend a programming language for facilitating 

program rephrasing (i.e., to perform source-to-source program transformation in the same 

language) by applying techniques of meta-programming and program translation (i.e., 

transforming a program written in a domain-specific language at a higher-level of abstraction to 

a corresponding implementation at a lower-level of abstraction). For ease of expression, 

throughout this dissertation, we will use program transformation, program translation, and 

program rephrasing interchangeably, to particularly denote source-to-source program 

transformation.  

1.2.1 Meta-Programming and Meta-Object Protocol 

Meta-programming is a paradigm for building software that is able to automate program 

transformations through code generation or manipulation [Spinellis, 2008]. The software that 

generates or manipulates other programs is referred to as a meta-program and the program that is 

manipulated is the object program or base program. Meta-programming has shown much 

promise for improving the quality of software by offering programming language techniques to 

address issues of modularity, reusability, maintainability, and extensibility [Spinellis, 2008].  

Meta-programming can usually be accomplished through one of the following three 

approaches. First, meta-programming facilities are created particularly for a programming 
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language to offer developers access to its internal implementation. This type of meta-

programming is usually implemented to extend a general-purpose programing language (GPL) 

with features catering to particular application domains instead of reimplementation of the 

language. Secondly, a language itself owns the ability to generate, compile and dynamically 

invoke new code. For example, standard Java is able to generate code at run-time, then compile 

and load a binary into the same virtual machine dynamically. The generated code can be invoked 

in the same way as ordinary compiled Java code [Java Link]. Finally, program transformation 

engines (PTEs), such as the Design Maintenance System (DMS) [Baxter et al., 2004] and Turing 

eXtender Language (TXL) [Cordy, 2006], are used to apply user-specified transformations to 

programs. 

A MOP is one type of meta-programming technique that provides meta-programming 

capabilities to a programming language by enabling extension or redefinition of the language’s 

semantics [Kiczales et al., 1991]. MOPs can be implemented with object-oriented and reflective 

techniques by organizing a meta-level architecture. MOPs add the ability of meta-programming 

to programming languages by providing users with standard interfaces to modify the internal 

implementation of programs. Through those interfaces, programmers can incrementally change 

the implementation and the behavior of a program to better suit their own needs. Furthermore, a 

MOP meta-program can capture the essence of a commonly needed feature and be applied to 

several different base programs. MOPs have been extensively employed in various applications 

in software engineering, e.g., reengineering, constructing Integrated Development Environments 

(IDEs), and almost all CASE tools [Omg, 2008; The Origin of Refine, 2014]. 
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1.3 Domain-Specific Languages 

“An important step in solving a problem is to choose the notation. It should be 

done carefully. The time we spend now on choosing the notation may be well repaid by 

the time we save later avoiding hesitation and confusion. Moreover, choosing the 

notation carefully, we have to think sharply of the elements of the problem which must be 

denoted. Thus, choosing a suitable notation may contribute essentially to understanding 

the problem.” George Polya [George, 1957].  

A Domain-Specific Language (DSL) refers to a “programming language or executable 

specification language that offers, through appropriate notations and abstractions, expressive 

power focused on, and usually restricted to, a particular problem domain” [Deursen et al., 2000]. 

DSLs trade generality, a feature supported by GPLs, for expressiveness in a particular problem 

domain via tailoring the notations and abstractions towards the domain. A DSL can assist in 

more concise description of domain problems than a corresponding program in a GPL [Gray and 

Karsai, 2003]. There are several benefits available when using a DSL:  

• By raising the abstraction level, DSLs are able to offer substantial gains in 

productivity [Gray and Karsai, 2003]. With the aid of generative programming, a 

few lines of code in a DSL might be transformed to an executable solution 

including several hundred lines of code in a GPL [Herndon et al., 1988]. 

• The common declarative characteristic of a DSL offers significant benefits to 

individuals who have expertise about a particular domain, but lack necessary 

programming skills to implement a computational solution with a GPL. A DSL 

often can be declarative because the domain semantics are clearly defined, so that 

the declarations have a precise interpretation [Gray and Karsai, 2003].  
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A well-defined DSL provides constructs to capture both the variability and invariability 

of a particular domain so that DSL programmers are able to describe their problems in terms of 

these constructs. DSLs have several benefits to allow programmers to use constructs that are 

close to the notations and abstractions in the problem domain [Mernik et al., 2005]:  

• Programs in a DSL are typically clearly expressed and more easily understood 

because the intention of the program is closer to the domain, thus increasing code 

readability and also improving communication with domain experts.  

• DSL programmers can be free from the tedious coding tasks by automating the 

translation from a DSL to a GPL. 

• Solutions can be built quickly because programmers can focus more on the main 

abstractions. The underlying details of solutions implemented in a GPL are hidden 

from DSL programmers.    

• The repetitive and tedious code generated is less error-prone and thus decreases 

the maintenance cost. 

1.4 Research Objectives and Contributions 

The challenges in software maintenance and evolution, especially those in the area of 

HPC discussed previously, have motivated the primary research objective of this dissertation, 

i.e., to facilitate the process of software development and maintenance by applying techniques of 

meta-programming and Domain-Specific Languages.  

Thus far, the power of meta-programming has not been explored deeply in the area of 

High Performance Computing (HPC). The main reason is the performance cost that meta-

programming techniques often incur (primarily when applied dynamically at run-time). In order 

to facilitate software maintenance and evolution in HPC systems, we propose to bring the power 
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of meta-programming, through MOPs, to languages that are widely utilized to solve various 

problems in HPC software [Yue, 2013]. With MOP facilities, developers can build tools to 

perform arbitrary source-to-source program transformations for legacy software to address HPC 

needs.  

MOPs have been implemented for a few mainstream languages such as C++ [Chiba, 

1995], Java [Tatsubori et al., 1999] and Python [Python, 2008]. However, most research is 

focused on a particular programming language and mainly on object-oriented languages. A 

generalized approach is still missing which brings MOPs to arbitrary GPLs, especially to those 

legacy languages that do not assume an object-oriented paradigm, such as Fortran and COBOL. 

There is a lack of infrastructure support for language extension by means of implementing a 

MOP. A naïve solution might be to create a MOP for each legacy language. However, 

considering the large number of languages being used, a solution that reduces the effort required 

to implement a MOP for a new language is more attractive than one that manually constructs a 

MOP from scratch for every legacy language. 

1.4.1 Research Questions 

There are several key challenges towards constructing a MOP for an arbitrary language. 

Accordingly, we identified the following five research questions that must be addressed stepwise 

in order to provide a generalized framework to extend a language with a MOP and to make meta-

programming more accessible to average developers. 

• Question Q1: How to construct a parser for the target language? To 

implement a MOP for a language, the first and foremost step is to build a parser 

for recognizing and then representing a program in certain formats, such as an 

abstract syntax tree (AST) or XML [Collard et al., 2002], which allow for further 
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complex manipulation. It is not challenging to build a parser for a small language 

or a subset of an existing language; however, to create a parser that is able to 

handle a large-scale code base is not a trivial task. According to the observation in 

[Lammel and Verhoef, 2001], one of the key factors that affect building a 

renovation tool is parser construction.  

• Question Q2: How to design an appropriate meta-level representation for the 

target language? MOPs are usually implemented with object-oriented and 

reflective techniques by organizing a meta-level architecture [Kiczales et al., 

1993]. A causal connection has to be maintained between the meta-programs and 

the base programs to be transformed, so that whenever a modification is made to a 

meta-object, corresponding changes can be seen in the language construct 

represented by the meta-object. To allow transformation from a meta-level, there 

must be a clear representation of the base program’s internal structure and entities 

(e.g., the classes and methods defined within an object-oriented program), in 

addition to well-defined interfaces through which these entities and their relations 

can be manipulated [Maes, 1987]. The first contribution of the research involves 

two MOPs, OpenFortran and OpenC, implemented respectively for Fortran and C, 

which can be used to construct program transformation libraries. 

• Question Q3: How to perform the underlying complex transformations? The 

underlying transformation is performed through manipulating the data structures 

that represent the base programs. To accomplish this, strategies for pattern 

matching and term writing have to be provided. In addition, the capabilities of 

synthesis, validation and regeneration of source code from internal data structures 
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are also needed. Actually, the effort required to create a sound and scalable 

infrastructure for program transformation is significant [Baxter et al., 2004; 

Cordy, 2006; Quinlan, 2012]. 

• Question Q4: How to reduce the accidental complexities incurred by directly 

using a MOP? The major accidental complexity comes from the gap between the 

classic programming style and the intensive meta-programming techniques 

involved in building generative libraries with MOPs. For average programmers, it 

is not easy attempting to understand the idea of meta-programming and let alone 

to use the environment and APIs provided by MOPs to manipulate source code. It 

is highly desirable to reduce the accidental complexities through freeing average 

developers from the burden of programming with an unfamiliar paradigm. 

Another major contribution of this research is a DSL that uses a higher-order 

model to capture the essence of commonly shared features in making changes to 

source code written in different programming languages, thus, allowing 

developers to specify transformation tasks in an intuitive manner. 

• Question Q5: How to generalize the framework to make it language-

independent? MOP construction is closely associated with the syntax of a 

programming language and the syntax varies greatly from language to language. 

Therefore, the effort spent on implementing a MOP for a given language cannot 

be simply reused for another language. A major contribution of this research is a 

generic framework that can be used to construct a MOP for an arbitrary GPL. The 

approach utilizes higher-order models to direct the implementation of a MOP that 
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is specific to a particular language and the design focus is to increase reusability 

of a core set of artifacts during the process of MOP construction. 

Q1 and Q3 have to be addressed not merely for constructing MOPs, but for most types of 

language engineering tools. In our initial work [Yue and Gray, 2013], we demonstrated possible 

solutions by implementing a MOP for Fortran, named OpenFortran. Instead of creating a 

framework from the ground up with a parser and the ability to manipulate data structures 

representing source code, we simply addressed Q1 and Q3 by leveraging existing program 

transformation engines (PTEs). Most PTEs support formally specified source-to-source program 

transformations at compile time with full-fledged parsers integrated to accommodate different 

GPLs and adequate support for complex and systematic term rewriting (or graph rewriting) at 

different abstraction levels [Baxter et al., 2004; Cordy, 2006; Quinlan, 2012; Deursen et al., 

2000; Visser, 2004]. However, not all existing PTEs are ideal for implementing MOPs. We made 

careful evaluation towards several popular PTEs against different criteria in order to find the 

most fitting transformation engine. A primary standard requirement is that a PTE should provide 

sufficient interfaces at an appropriate abstraction level, which allows us to build a meta-level 

layer on top of the engine. We chose ROSE [Quinlan, 2012] as the underlying transformation 

engine that integrates mature parsers as the front-end to support a dozen different programming 

languages. 

Despite the fact that ROSE is effective in supporting program transformations, like most 

of the existing PTEs, it is quite challenging for average developers to learn and use. 

Manipulation of an AST is quite different than most developers’ natural understanding of 

program transformation. On the contrary, the MOP mechanism of program transformation allows 

direct control over language constructs (e.g., variables, functions, and classes) in the base-
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program through the interfaces provided. With a MOP, some language constructs that are not a 

first-class citizen can be promoted to first-class to allow for construction, modification and 

deletion [Kiczales et al., 1991].  

Q2 concerns the design decisions that have to be made particularly for MOP construction. 

To address this concern, we designed OpenFortran [Yue and Gray, 2013] (discussed in-depth in 

Chapter 3) in such a way that for a target top-level entity (e.g., a function and a module 

definition) in the base-level program, an object, referred to as a meta-object, is created in the 

meta-level program to represent the entity. A meta-object contains sufficient information 

representing the structure and behavior of an entity in the base-level code and interfaces carefully 

designed to alter them. For instance, for a function definition in a Fortran application, a 

corresponding meta-object is created in the meta-program. The meta-object holds adequate 

structural and behavioral information to describe the function (e.g. function name, parameter list, 

return type, local variables defined within the function, and all statements in the function). The 

meta-object also provides interfaces for developers to modify its attributes and the corresponding 

changes will be reflected in the function in the base program.  

For Q4, we have investigated the techniques of DSL and model-driven engineering 

(MDE) (specifically, model-driven language engineering) [Kurtev et al., 2006; Mellor et al., 

2003]. We recognized that higher-level programming support is needed along with a 

corresponding code generator to bring meta-programming closer to the skillsets of most software 

developers. The proper design of higher-level expressions and a code generator can hide the 

accidental complexity associated with using MOPs.  

To achieve this, we created a DSL, named SPOT [Yue and Gray, 2014] (explained in 

detail in Chapter 4), which provides language constructs to fully support the definition of general 
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transformations at a higher level of abstraction and a code generator that is responsible for 

translating a SPOT program to the corresponding meta-level specification coded in a MOP. The 

underlying transformations are actually carried out through the MOP and the underlying PTE. 

Developers only need to specify desired transformations with SPOT while being oblivious to the 

minute details about how the transformations are performed. In addition, coding with SPOT 

allows a developer to refer to the entities of source code in a direct manner, which more aligns 

with their understanding towards program transformation than coding with other facilities such 

as existing meta-programming tools or platforms.  

We developed an extensible framework, named OpenFoo (elaborated in Chapter 5), to 

resolve Q5. In particular, we use models to describe the aspects and concerns associated with 

MOP implementation. A library implementing those models in C++ code is developed for 

extension. For a specific programming language, OpenFoo can be instantiated with the assistance 

of these models from an abstraction layer that can be mapped down to an actual MOP 

implementation. The dependence on the underlying details of the MOP implementation and on 

the particular transformation engine can be reduced by extending existing built-in artifacts. The 

framework can still leverage the power of PTEs to perform the underlying complex 

transformations. 

The last contribution of the research involves a set of case studies to demonstrate how our 

approach can be used to address the challenges Q1-Q5. We built a profiling library, a 

checkpointing library and a code coverage tool to show how the approach can modularize 

crosscutting concerns by supporting Aspect-Oriented Programming (AOP) in Fortran and C. We 

also designed a parallelization library to demonstrate how a parallel model (i.e., OpenMP 

[OpenMP Review Board, 2000]) can be utilized without directly modifying the original 
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sequential code through parallelizing Dijkstra’s minimum graph distance algorithm 

[dijkstra_openmp, 2010]. We also used the checkpointing library to demonstrate how SPOT 

could be extended to derive a new DSL in order to accommodate a new domain. To illustrate the 

capability of the generic framework, we implemented MOPs for Fortran 90 and C++ from the 

OpenFoo prototype. We demonstrated both the frontend SPOT and the backend OpenFoo can be 

extended in order to accommodate a new GPL. In addition, we developed a code coverage tool to 

illustrate that with the generic framework a SPOT program can be reused to perform 

transformations towards applications written in a different programming language with slight 

modification. 

1.5 Dissertation Overview 

This section outlines how the chapters are organized in this dissertation. In this 

introductory chapter, we described the context for the rest of the dissertation by introducing the 

challenges faced by the HPC community in software maintenance and evolution. We also 

summarized the techniques we investigated, the primary research questions that have been 

addressed in order to provide solutions to those challenges, as well as the contributions of our 

research.  

Chapter 2 presents the necessary background information supporting the research and a 

survey of various existing solutions for automating program transformations. This chapter will 

provide the reader with a better understanding of the concepts mentioned in the rest of the 

dissertation.  

Chapter 3 summarizes the preliminary results of our work in developing a MOP for both 

C and Fortran, including the design decisions and implementation details. This chapter also 
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introduces some of the application areas of MOPs toward maintenance and evolution tasks 

within HPC.  

Chapter 4 outlines the development of the DSL to assist in specifying transformations, 

including the design architecture and the implementation details of SPOT and the code generator. 

A discussion of the sample application tools developed for HPC software is also described. 

Chapter 5 is mainly focused on the language-independent framework for creating a MOP 

for an arbitrary GPL. The chapter describes in detail how to generalize the MOP prototype in 

order to accommodate new GPLs and how to extend the front-end DSL with the assistance of 

MDE techniques to support newly created MOPs. 

Chapter 6 acknowledges some of the limitations of the approach and provides a roadmap 

for future extension and possible application areas. The dissertation concludes with summary 

remarks in Chapter 7.  

Appendix provides the grammars in ANTLR [Parr, 2007] and the templates in 

StringTemplate [Parr, 2007] used in implementing the code generator. 
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CHAPTER 2 

BACKGROUND 

The contribution of this dissertation describes research that combines the techniques of 

program transformation [Visser et al., 2004; Quinlan, 2012] and Domain-Specific Languages 

[Deursen et al., 2000] to facilitate software maintenance and evolution in HPC software. In this 

chapter, Section 2.1 introduces new requirements in HPC software imposed by the evolution in 

hardware and by the ever-increasing user demands for performance. Section 2.2 provides a 

background discussion of software engineering technologies used in this research, including the 

basis of meta-programming and the underlying design mechanism of a MOP. Section 2.3 

presents a comparison of several existing program transformation approaches. Section 2.4 

provides a literature review on research related to our approach.  

2.1 High Performance Computing 

HPC provides solutions to problems that require massive computational power. Rapid 

advances in techniques for HPC have been witnessed in the past decades [Bell and Gray, 2002]. 

In this section, we identify the new requirements on software in HPC imposed by the evolution 

in hardware and by ever-increasing user demands. The major goal is to find the potential 

opportunities for applying reflection and meta-programming to problems in HPC. 

The hardware architectures supporting HPC can be categorized into two classes: shared 

memory systems and distributed memory systems. Symmetric multiprocessing systems (SMP) 

are examples of shared memory systems (shared memory may be distributed physically, but 

follow the uniform addressing for all processors). SMP usually refers to a hardware architecture 
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in which multiple identical processors are linked to a single shared memory and are controlled by 

a single operating system. The SMP architecture is adopted by most multiprocessor systems 

(e.g., processors from Intel, ARM and AMD). Having a single shared memory makes it easier to 

program for the SMP architecture; however, scalability is a major problem because all 

processors, memory and I/O devices are connected with a single bus. 

One typical example of distributed memory systems is clustered systems. In a clustered 

system, many computers are linked together to build a parallel processing computer that is able 

to deal with very complex problems. Each node in a clustered system has its own memory and 

cannot directly access the memory of other nodes. The elements of a cluster are usually linked 

with each other via fast local area networks. The essential design goal of clusters is cost-efficient 

and the components used are often available commercially off the shelf. 

The complex hardware architectures exploited in HPC imply higher requirements on the 

software. The development of HPC software is often not as mature as the hardware. The biggest 

challenge facing software designers and developers is how to take full advantage of available 

computational power. In order to address this challenge, attention has been focused on many 

issues in HPC software such as efficiency, scalability, adaptation, partitioning and load 

balancing, communication, and synchronization [Trefethen et al., 2009].  

In the area of parallel computing, many tools have been developed particularly for the 

mainstream parallel programming languages and systems with different power and complexity. 

Among those tools, the Message Passing Interface (MPI) [Gropp et al., 1999] is a standard for 

developing portable programs for distributed memory systems where the programmers have to 

explicitly specify message passing for processors to share data. MPI is a language-independent 

interface containing the specifications on how its features should act in an implementation (e.g., 
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message buffering rules [Gropp et al., 1996]). MPI is designed to provide important functionality 

of communication, virtual topology, and synchronization with features of language bindings. 

MPI supports both point-to-point and collective communication between processes (or 

processors) by passing messages, and it also provides interfaces for complementary services such 

as inquiring about environment information, basic timing data for measuring application 

performance, and profiling information for external performance monitoring [Gropp et al., 

1996]. 

Programming in shared memory systems is often easier compared to programming 

distributed systems. OpenMP [OpenMP Review Board, 2000] is an API for developing 

multithreaded programs in a shared memory setting. It provides a mechanism to construct 

programs with multithreads in languages like C, C++ and Fortran via a set of compiler directives 

and library routines. In OpenMP, a master thread forks a number of threads and a task is divided 

among them. The run-time environment is responsible for allocating threads to different 

processors on which they run concurrently. 

In HPC, there is often a demand for software tools with the following features [Bell and 

Gray, 2002]: 

1) Adaptive – being automatically adapted to problem characteristics or 

environmental restriction; 

2) Ease of use – being able to provide efficient and portable libraries; 

3) Secure and accountable. 

The issue of security and accountability is critical to maintaining the correctness and to 

enhance fault tolerance and robustness of HPC systems. This is particularly true for systems on 
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clusters or grids where computational nodes are distributed physically and connected through 

high-speed links. 

Many strategies have been proposed to deal with different problems. However, many 

issues are raised when attempting to integrate those strategies into practical applications. One of 

the major problems involves flexibility, such as transparency of strategies, ease of use and 

reusability of existing strategies to derive new ones.  

Computational reflection and meta-programming have shown initial promise in many 

contexts, such as in the design of development environments, language extension, and the 

dynamic, unanticipated adaptation of running systems [Stroud, 1993]. They also have been 

shown to be effective in separation of concerns. Many of the HPC issues just mentioned fall into 

the category of mechanisms that are independent of applications. Therefore, we advocate 

addressing these issues with the help of computational reflection and meta-programming. 

2.2 Meta-Programming 

A system supporting meta-programming is able to generate or manipulate other programs 

to extend their behavior. Unlike common programs that operate on data elements, meta-programs 

take more complex components (code or specification) as input, and transform or generate new 

pieces of code according to input specifications.  

By automatically generating code, meta-programming can bring many benefits to 

increase the productivity of software development. For instance, with automatic code generation 

programmers can be relieved from tedious and repetitive coding tasks, so that they can 

concentrate their efforts on crucial and new problems. Automatic code generation can reduce the 

possibility of inserting errors into code and increase the reusability of a general software design 

by customization [Spinellis, 2008]. 
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2.2.1 Open Implementation 

The design principle underlying meta-programming is in conflict with the well-known 

concept of black-box abstraction, because it provides facilities for developers to gain access to 

the underlying implementation of a programming language. However, it follows another model 

of abstraction: Open Implementation. 

Black-box abstraction has become a basic principle in software design, such that a 

software module should be carefully designed to hide its implementation and to expose its 

functionality only [Parnas, 1972; Kiczales, 1996]. Black-box implementation can introduce 

many benefits, such as localizing changes and amortizing development costs, to controlling the 

complexity of software [Lee and Zachary, 1995] and facilitating the development process. It has 

become a conceptual foundation of many other issues, such as software portability and reuse. 

Although black-box abstraction has many advantages, it has been observed that providing 

only the interfaces while encapsulating implementation details may sometimes cause great 

difficulties for client programmers. With a closed implementation, it is usually the case that the 

developers of a module design the interfaces based on the assumptions about the manner in 

which the clients use the module [Lee and Zachary, 1995]. The design decisions made by the 

module developers are called mapping decisions by Kiczales, which refer to those decisions 

made in the presence of incomplete information [Kiczales, 1996]. Conflicts of usage are likely to 

occur when the functionality of a module exposed in the interface cannot satisfy the needs of 

client users. Under this circumstance, client programmers tend to code around the conflict by 

either giving up on using a module and implementing a new module that meets their specific 

needs, or by still using the module, but in an ad hoc manner [Kiczales, 1991]. Either way might 

incur an increase in both the software size and complexity. 
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To cope with this problem, researchers have proposed a new type of modularity called 

open implementation [Kiczales, 1996; Chiba, 2000]. Unlike black-box modules that hide all 

implementation details, open implementations function by providing client users access to the 

implementing strategies, while still encapsulating most details of implementation [Kiczales, 

1996]. To achieve this, software modules can be designed to have dual-interfaces, as shown in 

Figure 2.1, describing a base-level interface and a meta-level interface. The base-level interface 

has no difference than the one designed by the black-box principle that exposes only the 

functionality and hides the internal details. The client users can simply use the functionality 

without having to be aware of their implementation details. However, in those cases when the 

functionality provided by the module cannot meet the users’ specific requirement, client 

programmers can take advantage of the meta-level interface to customize the module to better 

suit their needs. 

In summary, open implementation was proposed to solve problems in situations where 

client programmers need to see into the black-box modules and control internal implementation 

strategies to meet their needs [Chiba, 2000]. This is exactly the rationale behind applying meta-

programming techniques, so that developers are allowed to affect the implementation of a 

programming language, which is otherwise fixed and sealed. 

2.2.2 Computational Reflection 

Computational reflection is a powerful method to achieve meta-programming. In a meta-

programming system, if the object program is itself a meta-program, the program is considered 

to be reflective [Spinellis, 2008]. Reflection has a deep history in areas such as logic and 

philosophy [Feferman, 1962]. Brian Smith introduced the concept of computational reflection 

within the context of computer science as a way to extend the semantics of programming 
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languages. According to Smith, a reflective system is able to reason about and manipulate itself 

based on an explicit and principled means of representing its implementation [Smith, 1982]. To 

achieve this, the representation of the internal structure should be at an appropriate level of 

abstraction to allow for manipulation using concepts that are appropriate for specific 

programming contexts.  

 Maes presented a formal definition of computational reflection as, “a computational 

system which is about itself in a causally connected way” [Maes, 1987]. To further elaborate on 

this concept, Maes discussed several relevant concepts regarding computational reflection: 

• A computational system refers to a system running on a computer to solve 

problems in a specific domain. In order to achieve this, a system must have 

internal structures used to describe its domain (e.g., using data to represent 

entities and their relations and algorithms to operate on those data). Given this 

definition, every executing program can be considered a computational system 

since it manipulates abstractions for a specific problem domain. 

 

Figure 2.1 The dual-interface of an open implementation 
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• Causally connected implies that the computational system and its domain are 

linked in such a way that if one changes, a corresponding change can be seen in 

the other. 

• A reflective system is depicted as a computational system whose domain is itself 

(i.e., a reflective system has internal structures to describe itself). Its internal 

structures and its external behaviors are causally connected so that it is possible to 

change its behavior through manipulating its internal structures. 

A reflective system usually includes a base-level part and a meta-level part, as shown in 

Figure 2.2. The base-level part is responsible for dealing with problems and returning 

computational results of its domain (this is a typical program written by programmers), and the 

meta-level part addresses problems and returns information about the base level [Maes, 1987].  

Concerning the manipulation power of a reflective system, reflection can be categorized 

as introspection and intercession [Bobrow et al., 1993]. Introspection is the ability of a system to 

inspect and answer questions about the structure and state of its own execution, while 

intercession also allows the internal structure of its execution to be altered. To achieve this, both 

the static structure and the running state of a reflective system must be represented as data. The 

process of such representation is called reification. 

Figure 2.2 The structure of a reflective system 
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Reflection can also be distinguished as structural reflection and behavioral reflection 

based on the dimension that the objects of the meta-level program operate [Denker, 2008]. 

Structural reflection is about the manipulation of the static structure of a program. With 

structural reflection, the definition of data structures, such as classes and methods can be 

retrieved and even modified (e.g., getting a list of all public methods available for a class, or 

adding a new method). Behavioral reflection focuses on the semantics of an executing system 

and provides a complete reification of both the semantics of the language and the execution 

states [Demers and Malenfant, 1995]. Behavioral reflection makes it possible to intercept and 

alter operations during run-time (e.g., field access, and method invocation). Behavioral reflection 

only allows for modifying the behavior of an operation, and structural reflection provides an 

ability to inspect and modify static data structures of the program. However, it is much easier to 

implement structural reflection and many languages have already integrated this feature, e.g., 

Java and Python. On the contrary, it is more challenging to realize complete behavioral reflection 

because it is especially difficult to incorporate behavioral properties without adversely affecting 

performance. 

Reflection has been supported in different language paradigms, such as the procedure-

based, logic-based, rule-based and object-oriented paradigms [Maes, 1987]. In the 1980s, Smith 

initiated the core concepts of computational reflection by giving 3-Lisp the ability to reason 

about its own execution [Smith, 1984]. Because of its quote mechanism, Lisp was well-known 

for its capacity to manipulate expressions, which made reflection known in the functional 

community. In the 1990s, researchers in the object-oriented (OO) community undertook the 

responsibility of inventing structuring mechanisms for the implementation of reflection in OO 

languages. Because of its inherent property that data and methods in an object are separated, the 
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OO paradigm is a context where reflection can be implemented straightforwardly [Demers, 

1995]. The Common Lisp Object System (CLOS) [DeMichiel and Gabriel, 1987] and Smalltalk 

[Goldberg and Robson, 1983] are two outstanding examples that began to integrate concepts of a 

Meta-Object Protocol (MOP) [Kiczales et al., 1991], which provides a set of interfaces for 

supporting reflection. 

The computation done at the meta-level is not intended to make a direct contribution to 

solving problems in the external domain. Rather, the intent of reflection is mainly focused on the 

internal organization and interfaces to external programs, thus facilitating the object-level 

adaptation of a computation. 

2.2.2.1 Meta-Circular Interpreters 

Smith first identified the concept of reflection for building procedurally reflective 

languages [Smith, 1982]. He proposed the paradigm of meta-circular interpreters, in which the 

base user program at level 0 is interpreted by the interpreter at level 1, which is in turn 

interpreted by the interpreter at level 2. This goes on to form an endless tower of interpreters. 

The implementation of reflection is based on the idea of level-shifting where a program may ask 

code to be interpreted by the interpreter at one level above and therefore shifting to a higher 

meta-level [Smith, 1982]. 

A more feasible solution to level shifting was proposed by Friedman and Wand 

[Friedman and Wand, 1984]. The two-step process, reification and reflection, is independent of 

the model of the interpreter tower. According to their model of reflection, reification means to 

transform an interpreter component into something the program can manipulate [Friedman and 

Wand, 1984]. On the contrary, reflection implies the process of sending the results of the meta-

computation back to the interpreter. In subsequent literature, reification is used more widely to 
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indicate the process of making explicit and concrete an object that is otherwise implicit or 

inaccessible (e.g., making some internal representation of a program concrete as a data structure 

that can be manipulated). 

It is straightforward to achieve the causal connection requirement using a meta-circular 

interpreter because the “self-representation that is given to a system is exactly the meta-circular 

interpretation process that is running the system” [Maes, 1987]. At some eventual level, the 

meta-description is rich enough to describe itself, which can stop the tower. This is the 

traditional manner in model-driven engineering, where a meta-meta-model is able to represent 

itself such that the tower of modeling interpreters can stop at the meta-meta level [Kurtev et al., 

2006]. 

2.2.3 Meta-Object Protocol 

Computational reflection, in the realm of programming languages, refers to the paradigm 

that provides programming languages with the power to extend the semantics by representing 

and modifying a program in the same way that a program represents and modifies the data that it 

processes [Smith, 1982]. A MOP has been proven to be a powerful tool to provide the ability of 

computational reflection to a program by making use of object-oriented and reflective techniques 

to organize a meta-level architecture [Kiczales et al., 1993]. 

A MOP can be considered an interpreter which enables extending or redefining the 

semantics of a program to make it open and extensible, by providing a set of interfaces to access 

the program’s underlying implementation [Kiczales et al., 1991]. To allow transformation from a 

meta-level, a MOP provides a clear representation for the base program’s internal structure and 

entities (e.g., the classes and methods defined within an object-oriented program) and well-

designed interfaces through which these entities and their relations can be modified [Maes, 



 

   
 

30 

1987]. Through the interfaces, client programmers can incrementally change the implementation 

and the behavior of the program to better suit their needs. 

A MOP can be used to perform adaptation of the base program at either run-time or 

compile-time. Run-time MOPs function while a program is executing and can be used to perform 

real-time adaptation, for example the Common Lisp Object System (CLOS) [DeMichiel and 

Gabriel, 1987] that allows the mechanisms of inheritance, method dispatching, class instantiation 

and other language details to be modified during program execution. In contrast, meta-objects in 

compile-time MOPs only exist during compilation and may be used to manipulate the 

compilation process. Two examples of compile-time MOPs are OpenC++ [Chiba, 1995] and 

OpenJava [Tatsubori et al., 1999]. Though not as powerful as run-time MOPs, compile-time 

MOPs are easier to implement and offer an advantage in reducing run-time overhead. 

In a MOP, the meta-object in the meta-level program represents each entity in the base 

program. The class from which the meta-object is instantiated is called the meta-class. For 

instance, for a class defined in C++, a corresponding meta-object will be constructed in the meta-

level program. The meta-object for the class holds adequate information to describe the structure 

and behavior of the class and interfaces carefully designed to alter them. Through the MOP, an 

entity can become a first-class citizen that can be constructed at run-time, passed as a parameter 

to a function and returned or assigned to a variable [Chiba, 1995]. The interfaces may manifest 

as a set of classes or methods so that users can create variants of the default language 

implementation incrementally by sub-classing, specialization, or method combination 

[DeMichiel and Gabriel, 1987]. For example, with OpenC++, end-users are allowed to define 

meta-classes specializing a transformation by sub-classing standard built-in meta-classes. In a 
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class-based OO language with a MOP, the interfaces include at least the basic functionality of 

instantiating a class, accessing attributes and invoking methods. 

2.3 Program Transformation Approaches 

Even though program transformation can be accomplished manually, it is more practical 

to leverage a program transformation system. Many available program transformation engines 

support formally specified source-to-source program transformations at compile time [Quinlan, 

2012; Baxter et al., 2004; Cordy, 2006; Visser, 2004; van den Brand et al., 2001]. In our 

approach, we utilize a program transformation system (i.e., ROSE [Quinlan, 2012]) as the 

underlying engine to build an extensible and scalable meta-programming framework. 

Some systems support complex code modifications through direct manipulation of 

specialized data structures, such as ASTs, representing the source code. For instance, ROSE 

[Quinlan, 2012] allows developers to address translation tasks in C++ by directly traversing and 

modifying ASTs, which is described in the next section. DMS [Baxter et al., 2004] also allows 

developers to manipulate ASTs through procedural methods written in a parallel transformation 

language called PARLANSE [Baxter et al., 2004].  

Some PTEs support transformations with more abstract representations in order to hide 

low-level complexities, among which term rewriting is most widely used for modeling 

modification of terms through a set of rewrite rules that define a matching pattern and the desired 

transformations [Visser, 2004]. A rewrite rule specifies a one-step transformation for a fragment 

of the target program by mapping the left-hand side (“matching this”) to the right-hand side 

(“replaced by that”), and the mapping is usually denoted with “-‐>”. Representative examples 

include Stratego/XT [Visser, 2004] and ASF+SDF [van den Brand et al., 2001] where complex 

translation is performed through a set of rewrite rules that are formulated and arranged 
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strategically to achieve desired effects. Figure 2.3 demonstrates two rewrite rules written in 

Stratego/XT, the first one translating a for statement to a while statement and the second 

translating an if-then statement to an if-else statement. 

Some transformation systems provide an extended syntax or incorporate a DSL to specify 

rewriting rules for the target programming language, which results in better maintainability and 

readability of transformation libraries, e.g., DMS [Baxter et al., 2004], TXL [Cordy, 2006] and 

REFINE [Burson et al. 1990]. DMS allows developers to build transformation rules in the Rule 

Specification Language (RSL), which provides primitives for declaring patterns, rules and 

conditions [Baxter et al., 2004]. Transformations are expressed with the extended syntax (i.e., the 

primitives) together with the concrete syntax of the target programming language. The matching 

pattern on the left-hand side and the desired transformations specified on the right-hand side are 

both expressed in the surface syntax of the target language. Figure 2.4 shows an RSL rule for 

desugaring the conditional operator to a traditional condition statement in C, where the C syntax 

is contained inside double quotes to distinguish it from that of the RSL primitives indicated in 

bold. The backslash is used before a variable to indicate that the variable can match any language 

module exampleStrategoXT 
rules 
  For2While : 
    For(a, exp1, exp2, stmt*) -> 
      Block([ 
        DeclarationTyped(b, TypeName("int")),  
        Assign(a, exp1),  
        Assign(b, exp2),  
        While(Leq(Var(a), Var(b)),  
          <conc>(stmt*, [Assign(a, Add(Var(a), Int("1")))]) 
        ) 
      ]) 
    where new => b 
 
  IfThen2IfElse : 
    IfThen(exp, stmt) -> IfElse(exp, stmt, []) 
 

Figure 2.3 An example of rules defined with Stratego/XT 
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constructs whose type is specified in the rule signature, e.g., exp1, exp2 and exp3 can match any 

expressions in C. The conditional clause at the end of the rule enforces a limitation to the 

application of this rule, i.e., lv, the left-hand side of an assignment statement should not cause 

any conflicts in the target language, determined by the analyser no_side_effect. 

TXL supports structural program transformations through functional programming at a 

higher abstraction level and pattern-based rewriting at the lower level [Cordy, 2006]. It provides 

functional constructs to specify rewriting patterns, which helps to conceal the low-level term 

structures from developers. A typical TXL program is composed of a grammar in Extended 

Backus-Naur Form (EBNF) describing the input and a set of rewriting rules specified in the 

pattern of “replace A by B” combined with auxiliary functional constructs. TXL allows the 

expression of desired changes using the syntax of the source and target languages. Unlike DMS 

and ROSE, TXL provides no facilities for developers to directly manipulate ASTs, but only 

language constructs to specify rewrite rules at a higher level. 

Instead of providing a full-fledged PTE, another area of research has been focused on 

integrating the functionality of automatic refactoring with interactive development environments 

(IDEs). Refactoring tools often provide translation primitives of high-level abstraction without 

exposing any low-level data structures and thus most of them are lightweight and easy to use 

[Fuhrer et al., 2007]. An example is Photran [Overbey et al., 2005], which is a refactoring tool 

for Fortran based on Eclipse. Photran provides transformations like renaming and function 

rule desugar_conditional_assignment_stmt(lv:left_hand_side, 
exp1:expression, exp2:expression, exp3:expression):  
statement -> statement 
= “\lv=\exp1?\exp2:\exp3;” -> 
  “if(\exp1) \lv=exp2; else \lv=exp3; 
if no_side_effects(lv); 

 

Figure 2.4 An example of an RSL rule defined with DMS  
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extraction in an interactive manner. However, refactoring tools are limited to translation types in 

which the semantics of the code should be preserved. In addition, developers do not have the 

freedom to create their own refactoring rules.  

Though some PTEs may be powerful and flexible in performing certain types of source 

transformation, there is a steep learning curve for average developers to master the skills needed 

to use them. In contrast, in our solution translation specifications can be expressed in a way that 

more resembles a developer’s mental model of program transformation than coding with meta-

programming capabilities or directly manipulating an AST as required by many PTEs.  

Another weakness of transformation tools is the frequent dependence on pattern matching 

and term rewriting in a context-free style. Usually a rewrite rule only has knowledge of the 

matched construct, which makes those systems powerless to address context-sensitive translation 

problems, such as function inlining and bound variable renaming [Visser, 2005]. On the 

contrary, our approach incorporates a scheme of multiple scopes, which allows developers to 

express transformations either at a specific point or at multiple points matched with a wildcard. 

Developers are allowed to express higher-level scopes with “Within (Entity name)” and 

to identify precise locations with control-flow clauses (IF-ELSE and FORALL) and location 

keywords (Before and After). In addition, users can define handlers to represent particular 

language entities, for which translation can be specified by directly invoking built-in operations 

(e.g., addEntity, replaceEntity and deleteEntity where Entity may refer to any 

program entities of a programming language). Moreover, the structural information of higher-

level scopes that encompass a translation point is accessible, which makes our approach a 

candidate solution for solving context-sensitive problems. 
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All of the transformation systems mentioned in this section are in the category of source-

to-source transformation. Another primary type of transformation involves manipulation of 

binary code where a binary object program is modified or augmented in order to observe or alter 

program behaviors. Among many systems that use the technique of binary transformation, 

Hijacker [Pellegrini, 2013] is a tool that can be utilized to alter the execution flow of an 

application based on a set of rules. With built-in tags, users can specify in an XML file rules of 

inserting or modifying assembly instructions and the XML file then instructs Hijacker to perform 

the intended transformations towards the binary code. Compared with source transformation, 

binary transformation is advantageous when the source code is not accessible and is 

disadvantageous because it is more challenging to manipulate machine code at a low abstraction 

level. 

2.4 Related Work 

In our research, we mainly used the following techniques: meta-object protocols, aspect-

oriented programming, and domain-specific languages. This subsection provides a literature 

review on related works. 

2.4.1 Existing MOPs 

In the remainder of this section, we review several example MOPs, one for CLOS and 

others for some mainstream languages, such as C++ and Java. For each MOP, we present the 

design ideas that have inspired our own research and discuss their advantages and disadvantages. 

2.4.1.1 MOP for CLOS 

Much of the development of the concepts of MOPs occurred in the context of CLOS 

[DeMichiel and Gabriel, 1987]. The initial design objective of the MOP for CLOS was to allow 

object-oriented Lisp to be able to meet new user demands for extension. As a result, the MOP 
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concept itself became a powerful tool that can also be used to solve many different problems 

emerging in other high-level languages. 

CLOS was designed with the principle of open implementation and its MOP can be 

viewed as the CLOS meta-interface [DeMichiel and Gabriel, 1987]. Reflective techniques were 

exploited to provide users with standard interfaces to help modify the semantics of CLOS. There 

are five essential elements in CLOS that can be used by client programmers: class, slots, 

methods, method combination, and generic functions [DeMichiel and Gabriel, 1987]. In a CLOS 

program, each element is depicted by an object (i.e., the meta-object). The class from which the 

meta-object is instantiated is called the meta-class. For instance, for each class defined in CLOS, 

a corresponding meta-object for the class will be constructed in the meta-level program. The 

meta-object for the class includes the information carefully designed to allow altering the 

structure and behavior of the class. The meta-classes act in a similar way with common classes in 

CLOS. Therefore, the semantics of a meta-object can be modified through altering its meta-class. 

One difference is that the modification made to a meta-class can only be made incrementally 

through inheritance, specialization, and method combination. Those facets of CLOS that can be 

modified through a MOP constitute the meta-level part of the CLOS definition [DeMichiel and 

Gabriel, 1987]. 

In CLOS, the main parts of the object system in the form of meta-objects exist at both the 

compilation and run-time. Even though the MOP for CLOS is a pioneering effort, one drawback 

worth mentioning is that the meta-computations are preformed via invoking methods of the 

meta-objects at run-time [Lee and Zachary, 1995]. Performance measurements carried out in 

[Lee and Zachary, 1995] showed that with metaprogramming, object creation was 16 times 

slower and took 24 times more space, read access was around 270 times slower, and write access 
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was 2,000 times slower. Therefore, expertise is required in order to maintain acceptable 

performance at run-time if metaprogramming is adopted [Lee and Zachary, 1995]. 

2.4.1.2 OpenC++ 

OpenC++ was proposed by Chiba to bring the power of meta-programming to C++ 

[Chiba, 1995]. The design goal of OpenC++ was to enable client users to develop customized 

language extensions or compiler optimizations through simple annotations [Chiba, 1995]. 

Chiba’s work borrowed the fundamental structure from the MOP of CLOS and was also inspired 

by the idea of the MOP in Anibus (a MOP-based parallelizing Scheme compiler) and Intrigue. 

OpenC++ makes a clear separation between the compilation and run-time environment. Meta-

level adaptation is performed only during compile-time, which is a great benefit to avoid time 

and space overhead at run-time [Chiba, 1995]. 

Similar to the CLOS MOP, the C++ classes and functions are represented by meta-

objects that can be altered to control the behavior of the program by client programmers [Chiba, 

1995]. The working mechanism of OpenC++ can be described as source-to-source translation 

performed in the following steps, as shown in Figure 2.5 [Chiba, 1995]: 

a. The OpenC++ source code is parsed and the top-level definitions for classes and 

member functions are identified 

b. For each definition of class and member function, a meta-object is constructed 

c. The parse tree is traversed and the member function of each meta-object (called 

CompileSelf) is called to apply translation from OpenC++ to ordinary C++ in 

the form of an abstract syntax tree (AST) 

d. The parse trees created by each meta-object are synthesized and transformed to 

C++ code, which is then processed by the C++ compiler. 
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In OpenC++, there are two types of meta-objects: function meta-objects and class meta-

objects [Chiba, 1995]. Because function meta-objects delegate the extension duty to class meta-

objects, it is through class meta-objects that the compilation of a program is performed [Chiba, 

1995]. The member functions of a class meta-object includes:  

1. CompileSelf() 

2. ComputeMetaclassName() 

3. CompileMemberFunctionCall() 

4. CompileReadDataMember() 

5. CompileWriteDataMember() 

6. CompileVarDeclare() 

7. CompileNew() 

 

One advantage of the OpenC++ MOP is that users can extend the program in a 

straightforward and transparent way. Application programmers only need to add a simple 

annotation to the classes that need to be manipulated and they do not need to know how the 

extension is performed. For example, if a user wants to trace method calls of a user-defined class 

in his/her application, all that is needed is to declare the meta-class as TraceClass using the 

keyword meta-class. TraceClass is a meta-class that may be implemented by other library 

developers, as shown in Figure 2.4.1.2 (taken from the tutorial of the OpenC++ installation).  

 

Figure 2.5 The workflow of OpenC++ (adapted from [Chiba, 1995]) 
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For the library developers, they must develop new meta-classes to encapsulate the 

implementation of various code extensions. The TraceClass, for example, can be 

implemented as indicated in Figure 2.6. All meta-classes share the same root class Class. The 

member function CompileMemberCall is overridden to perform the extension: adding a 

“puts()” statement before each member function call in the user class. 

From a conceptual viewpoint, the OpenC++ MOP is also meta-circular. However, the 

infinity of the meta-circular tower is avoided by the following steps: 1) before compiling a class, 

its meta-class should be compiled first, 2) make the class Class the root of all meta-classes and 

the meta-class of itself, and 3) the class Class is compiled directly by a C++ compiler [Chiba, 

1995]. 

2.4.1.3 OpenJava++ 

OpenJava was designed as a MOP for Java by Tatsubori and Chiba [Tatsubori et al., 

1999]. It is a reflective system that is able to provide both structural and behavioral reflection. 

OpenJava performs reflective computation at compile-time to avoid run-time penalties. 

However, unlike OpenC++ and many other macro systems in which the abstract syntax tree 

(AST) is used as the main data structure to perform translation, OpenJava exploits a macro 

#include "mop.h" 
class TraceClass : public Class  
{ 
    public: 
        Ptree* CompileMemberCall(Environment*, Ptree*, Ptree*, Ptree*, Ptree*); 
}; 
 
Ptree* TraceClass ::CompileMemberCall(Environment* env, Ptree* object,  
                                      Ptree* op, Ptree* member, Ptree* arglist) 
{ 
   return Ptree::Make("(puts(\"%p()\"), %p)", member, 

             Class::CompileMemberCall(env, object, op, member, arglist)); 
} 
 

Figure 2.6 The OpenC++ implementation of TraceClass (taken from [Chiba, 1995]) 
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system that is able to hold the logical and contextual data. The major shortcomings of using an 

AST stem from the fact that the AST cannot provide enough logical and contextual information 

to enable more complicated code extensions [Tatsubori et al., 1999]. For example, some design 

patterns applied to the manipulation of a large AST is not an easy task to perform. 

A Java application that includes OpenJava code can be viewed as two parts: 1) a base-

level part that does not use Class objects and executes at run-time, and 2) a meta-level part that 

uses OJClass objects (OJClass is the root of all meta-classes and only exists at compile-

time). The OpenJava compiler serves as a Java-to-Java translator and works in the following 

steps [Tatsubori et al., 1999], similar to OpenC++: 

1) Source code is analyzed and a class meta-object is created for each class; 

2) Macro expansions are performed by invoking member methods of the class meta-

object; 

3) The ordinary Java source code is generated in which the modification made by the 

meta-object can be seen; 

4) The generated Java code can then be compiled by the standard javac compiler. 

OpenJava utilizes meta-objects to represent the entities composing a Java program. In 

Java, the essential entities, classes, methods, fields and constructors can be represented with the 

instances of respective metaclasses, OJClass, OJMethod, OJField, and 

OJConstructor. Library developers can alter the internal structure and behavior of the 

program by modifying those meta-objects. 

To use OpenJava, a new keyword instantiates is created, as in Figure 2.3.1.3, to 

indicate that the meta-object for the class Hello is an instance of meta-class VerboseClass. 

In the definition of class Hello, two statements in bold were not originally there and are 
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translated by the OpenJava compiler after being handled by the meta-class VerboseClass 

(taken from the example tutorial of the OpenJava installation). 

OJClass provides the full ability to change class definitions. To build a library with 

OpenJava, the meta-class should be implemented to inherit from OJClass. As shown in Figure 

2.8, the meta-object for VerboseClass is the instance of Metaclass and VerboseClass 

inherits from OJClass. The method translateDefinition() declared in OJClass 

should be overridden by all subclasses to perform adaptation for class definition (callee-side 

expansion). For instance, in Figure 2.8, the method getDeclaredMethods() returns all the 

method meta-objects corresponding to all member methods defined in the user-defined classes. 

In the loop, a new println statement is added at the beginning of each method body, which is 

exactly what we expect as indicated in bold in Figure 2.7. OpenJava offers many methods to 

allow for full ability to modify class definitions. Besides callee-side expansion, OpenJava 

supplies the ability to perform translation at the caller-side; for example, to create an instance 

and to invoke a member method outside the class definition [Tatsubori et al., 1999].  

public class Hello instantiates VerboseClass {  
 public static void main( String[] args ) { hello(); }  
 static void hello() {  
  System.out.println( "Hello, world." );  

} 
} 
 
public class Hello { 
 public static void main( String[] args ) { 
  System.out.println( "main is called." );  
  hello();  
 }  
 static void hello() {  
  System.out.println( "hello is called." ); 
  System.out.println( "Hello, world." );  
 }  
}  
 

Figure 2.7 A user program using OpenJava (adapted from [Tatsubori et al., 1999]) 
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2.4.1.4 Javassist 

The standard Java reflection API can only support introspective reflection. To make up 

for the limitations, Chiba designed a tool called Javassist to allow structural reflection in Java by 

performing bytecode transformation before a class is loaded into the run-time system (JVM) 

[Chiba, 1998]. Unlike OpenJava, which executes structural reflection through source code 

transformation, Javassist exploits Java bytecode as the medium to perform transformation. 

However, the client programmers do not need to have a deep knowledge of bytecode, because 

abstraction at the source level is supplied to enable safe transformation of bytecode [Chiba, 

1998]. 

Javassist can be viewed as a tool that reads bytecode from a class file, makes 

modifications, and then loads the modified class into the JVM, or writes the modified class to a 

import openjava.mop.*;  
import openjava.ptree.*;  
 
public class VerboseClass instantiates Metaclass extends OJClass { 
  public void translateDefinition() throws MOPException {  
    OJMethod[] methods = getDeclaredMethods();  
    for (int i = 0; i < methods.length; ++i) { 
      Statement printer = makeStatement( "System.out.println( \"" + 

methods[i] + " is called.\" );" ); 
      methods[i].getBody().insertElementAt( printer, 0 );  
    }  
  }  
}  
 

Figure 2.8 The definition of meta-class VerboseClass (adapted from [Tatsubori et al., 1999]) 

1. ClassPool pool = ClassPool.getDefault(); 
2. CtClass cc = pool.get(“test.Student”); 
3. cc.setSuperClass(pool.get(“test.Person”)); 
4. CtMethod m = CtNewMethod.make(“public int getAge() {return nAge;}”, cc); 
5. cc.addMethod(m); 
6. cc.writeFile(); 
 

Figure 2.9 Use Javassist to apply transformations (adapted from [Chiba, 1998]) 
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local file [Chiba, 1998]. Javassist offers structural reflection in Java without having to make any 

modification to the JVM or Java compiler. 

Figure 2.9 illustrates how to use Javassist to perform adaptation. A ClassPool instance 

is constructed, which represents a hash table of compiled class files in bytecode. CtClass denotes 

the compile-time class and the CtClass object cc is created from the ClassPool by 

specifying the class name. The CtClass includes sufficient symbolic information to represent 

the structure of a class for altering its definitions. Instead of receiving a compile-time class from 

the class pool, a compile-time class can also be created directly by invoking the constructors of 

CtClass. The statements 3, 4, and 5 make modification to the definition of class Student by 

changing its superclass to Person in 3, creating and then adding a new method to the class in 4 

and 5. Finally, the modified class Student is written back to a file as bytecode.  

Though Javassist is designed to provide structural reflection for Java at load-time, it can 

also realize restricted behavioral reflection. The primary strategy, which has been utilized by 

other architectures providing limited behavioral reflection such as Reflective Java [Wu, 1998] 

and Kava [Welch and Stroud, 1999], is to attach hooks to the program, for example at the 

beginning of a method m, at compile-time (Reflective Java) or at run-time (Kava at load-time). 

The hooks can be replaced with user-defined expressions to perform modification to the function 

call to m [Chiba and Nishizawa, 2003]. This is usually realized by creating meta-objects that 

exist at run-time. When operations are intercepted via the hooks, the associated meta-objects will 

be notified to perform the transformation by invoking corresponding member methods [Chiba 

and Nishizawa, 2003]. Even though it is possible to use Javassist to implement behavioral 

modification, the usage is also limited to certain operations like method invocation and field 

access, which is determined by its meta-object model [Kniesel et al., 2001]. 
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Another advantage of Javassist bytecode transformation, compared with OpenC++ and 

OpenJava, is that no source code is required. This allows Javassist to be utilized more widely, 

especially for third-party libraries whose source code is usually not available. 

2.4.1.5 Summary of Reflective Systems 

In this sub-section, we present a brief review of reflective systems surveyed, most of 

which exploit MOP as an implementation strategy. Comparison is made based on the following 

criteria: 1) reflection types, 2) when the meta-level computation is performed, 3) where the 

translation is applied, 4) the data structure used to perform adaption, and 5) whether or not the 

source code is needed for transformation. The results are shown in Table 2.3.1.5. 

There exist two types of Java meta-programs: compile-time and load-time. A compile-

time meta-program provides meta-object APIs, which allow programmers to handle source code 

as language constructs. OpenJava [Tatsubori et al., 1999] can be used to write a compile-time 

meta-program. A load-time meta-program manipulates Java bytecode to reflect a system’s 

behavior during run-time. Javassist [Chiba, 1998] and JMangler [Kniesel et al., 2001] are 

examples of load-time meta-programming that provide libraries to manipulate Java bytecode 

without knowledge of its structure. Compile-time meta-programs offer an advantage in reducing 

run-time overhead. Evaluation has shown that Javassist has better performance than OpenJava 

and OpenC++ when performing structural reflection [Chiba, 2000]. However, it is easier to 

realize behavioral reflection for load-time meta-programs. 

As pointed out in [Malenfant et al., 1996], the ability to handle reflective information at 

compile-time leads to more efficient and usable reflective programs. Nevertheless, the capability 

of accessing meta-information at run-time is essential for supporting dynamic binding. Many 

schemes are proposed to provide behavioral reflection for Java. Due to the concern of 
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performance, most of those schemes only provide restricted behavioral reflection. This means 

only limited kinds of operations can be intercepted, such as method invocation and instance 

creation, with most of them implemented by attaching hooks to Java code to intercept certain 

operations and then the corresponding meta-objects are notified to perform user-specified 

transformation [Chiba, 2000]. 

Table 2.1 Comparison of reflective systems surveyed 

Reflective	  
systems 

Reflection	  
Type 

Time	  of	  Meta-‐
level	  

computation 

Translation	  
point 

Data	  
Structure	  
used	  for	  

translation 

Need	  
source	  
code 

Java	  
Reflective	  

APIs 

Introspect	  
only,	  limited	  
ability	  to	  
intercept 

Introspective	  
run-‐time callee	  side Source	  

code Yes 

Open	  C++ Restricted	  
Behavioral 

At	  compile-‐
time Caller	  side Abstract	  

Syntax	  Tree Yes 

OpenJava 
Structural	  and	  
restricted	  
Behavioral 

At	  compile-‐
time 

Both	  caller	  
side	  and	  
callee	  side 

Source	  
code Yes 

Javassist 
Structural	  and	  
indirectly	  
Behavioral 

At	  load-‐time 
Both	  caller	  
side	  and	  
callee	  side 

Bytecode No 

 
2.4.2 Aspect-Oriented Programming 

Aspect-Oriented programming (AOP) [Kiczales, 1997; Harbulot and Gurd, 2004] is a 

programming paradigm closely linked with MOP. AOP is designed specifically to deal with 

crosscutting concerns (i.e., concerns that are not isolated to one module, such as logging and 

profiling), by providing new language constructs to separate those concerns. AspectJ [Harbulot 

and Gurd, 2004], one of the most popular languages supporting AOP, encapsulates a crosscutting 

concern in a special modularity construct called an aspect. For instance, an aspect is able to 

identify a group of execution points in source code (e.g., method invocation and field access) via 
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the means of predicate expressions and at those matched points perform concern-specific 

behavior.  

Scientific computing is one of the earliest application areas of AOP [Irwin et al., 1997]. 

Existing works are mainly applications of aspect languages for programming languages widely 

used in HPC, such as C [22] and Fortran [Roychoudhury et al., 2011]. In [Roychoudhury et al., 

2011], the authors present the implementation of an aspect weaver for supporting AOP in Fortran 

using DMS [Baxter et al., 2004]. In the initial phase of our research [Jacob et al., 2012], we also 

investigated the technique of AOP to solve the problems of crosscutting concerns. Our approach, 

named Modulo-F, can be used to modularize crosscutting concerns in Fortran programs by 

providing constructs to isolate these concerns in a modular unit that can be woven into an 

application when needed.  

AOP is powerful in modularizing utility functions by separating crosscutting concerns; 

however, the inherent limitations of AOP make it challenging to address problems like 

separating the sequential and parallel concern in parallel applications. For example, AOP 

supports software extension around join points (e.g., function calls and data access) referring to 

matched locations in an application where crosscutting concerns appear. Nevertheless, the 

process of parallelization often involves performing desired parallel tasks for for-loops and it is 

very difficult to express for-loops as join points in any existing AOP languages [Harbulot and 

Gurd, 2004].  

Moreover, AOP allows programmers to specify the same actions (advice) to be 

performed at each associated join point, but in very rare cases, parallel code added to parallelize 

sequential code is exactly the same. Therefore, AOP may not be the best fit for addressing 

problems of separating sequential and parallel concerns. Compared with AOP, MOP is a better 
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solution that can be used to express more fine-grained transformations around the points of not 

only certain types of join points, but at arbitrary places. 

2.4.3 Domain-Specific Languages 

In the context of automating source-to-source code translation to solve problems in HPC, 

DSLs have already been used in many approaches, where the research goal with regard to raising 

the level of abstraction of parallelization is the same. Hi-PaL [Arora et al., 2012] is a DSL that 

can be used to automate the process of parallelization with MPI. The developer can use Hi-Pal to 

specify parallelization tasks without having to know anything about the underlying parallelizing 

APIs of MPI. Liszt [DeVito et al., 2011] is a DSL that is designed particularly to address the 

problem of mesh-based partial differential equations on heterogeneous architectures. Spiral 

[Puschel et al., 2005] provides high-level specifications in order to automate the implementation 

and optimization libraries for parallelizing HPC code. It can be used to support multiple 

platforms and utilizes a feedback mechanism to achieve an optimal solution for a particular 

platform.  

Another similar work is POET [Yi, 2012], a scripting language, originally developed to 

perform compiler optimizations for performance tuning. As an extension to the ROSE compiler 

optimizer [Quinlan, 2012], POET can be used to parameterize program transformations so that 

system performance can be empirically tuned. The features of POET were then enriched to 

support ad-hoc program translation and code generation of DSLs. However, available 

transformation libraries (built-in xform routines) are mainly predefined for the purpose of 

performance tuning towards particular code constructs such as loops and matrix manipulation. 

POET includes a combination of both imperative and declarative constructs and developers have 

to know them well in order to define their own scripts to perform code translation. Compared 
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with POET’s parameterization scheme, our approach raises the abstraction for program 

transformation and thus more aligns with developers’ understanding of program transformations 

by allowing direct manipulation of language constructs. 

Our approach can be used to add parallelism to serial applications with different parallel 

programming models. Unlike most existing DSL solutions, the core portion of SPOT is 

application-domain neutral and can serve as the base for building many other DSLs concerning 

code changes in different domains.  
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CHAPTER 3 

EXTENDING PROGRAMS WITH META-PROGRAMMING 

Meta-programming has demonstrated much promise for improving the quality of 

software by providing techniques to address problems of modularity, reusability, maintainability, 

and extensibility [Spinellis, 2008]. So far, the power of meta-programming has not been applied 

deeply in the area of HPC. In order to promote software maintenance and evolution in HPC 

systems, we introduce the power of meta-programming to languages that are widely utilized to 

solve various problems in HPC software using a MOP [Yue, 2013]. With MOP facilities, 

developers are able to build tools to perform arbitrary source-to-source program transformations 

for legacy software.  

MOPs have been implemented for a few mainstream languages, such as C++ and Java 

[Chiba, 1995; Tatsubori et al., 1999; Python, 2008]. Nevertheless, most of the existing MOPs are 

mainly for object-oriented languages. Although the MOP mechanism relies greatly on the object-

oriented paradigm to maintain the meta-level, the base-level language does not have to be object-

oriented [Kiczales et al., 1993].  

There are no MOPs available for Fortran or C. In the HPC community, there is a 

substantial base of scientific code written in Fortran or C [Loh, 2010]. As commonly agreed, it is 

usually very costly to evolve legacy software on a large scale [Bennett and Rajlich, 2000]. The 

procedural paradigm and lower-level programming constructs make applications coded in these 

two languages even more challenging to maintain and evolve [Loh, 2010].  



 

   
 

50 

Inspired by the ideas of existing MOPs, we have implemented two compile-time MOPs: 

OpenFortran for Fortran and OpenC for C, in order to support program adaptation for HPC 

needs. Our design objective is to enable program transformation for programs in Fortran and C in 

a straightforward and transparent way. With facilities provided by OpenFortran and OpenC, 

developers are able to implement libraries that represent different types of concerns (e.g., 

crosscutting concerns and parallelizing concerns) in HPC software. We have used these MOPs to 

build exemplary libraries as case studies to demonstrate their capabilities. In this chapter, we 

describe the mechanism of extending a procedural programming language via a MOP, as well as 

the implementation details of OpenFortran and OpenC. 

3.1 OpenFortran: A MOP for Extending Fortran Programs 

Fortran is one of the first high-level languages that have been widely utilized in the 

scientific computing community [Loh, 2010]. For about every ten years, Fortran has evolved by 

the inspiration of new ideas and concepts that have appeared in the field of computer science, 

especially software engineering [Decyk et al., 1997]. For instance, from the emergence in the 

1950s to the first standard in 1966 (Fortran 66), Fortran dominated programming in the academic 

and scientific areas due to the advantages of subroutines, independent compilation and often 

efficient implementations. Fortran 77 was another widely used version whose standard was 

established in the face of the pressure from other high-level languages, such as C and Ada. A 

significant improvement could be seen in the Fortran 90 standard. It incorporated the object-

oriented paradigm, user defined data types, array syntax, and dynamic patching [Decyk et al., 

1997]. With Fortran 90, programmers may express the idea of encapsulation and inheritance, the 

two most foundational features of object orientation. Fortran 2003 was another major revision 

that included a number of new characteristics, such as enhancements for object-oriented 
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programming, derived data types and input/output [Adams et al., 2008]. The most recent version 

of the Fortran standard is Fortran 2008 which was established in September 2010 as a minor 

upgrade to Fortran 2003 [Reid, 2008]. 

3.1.1 OpenFortran Design Architecture 

OpenFortran can be used to facilitate software maintenance and evolution in systems 

coded in Fortran of various versions. The primary motivation for OpenFortran is to solve 

software evolution needs in HPC while avoiding performance degradation. Similar to OpenC++ 

[Chiba, 1995] and OpenJava [Tatsubori et al., 1999], OpenFotran is mainly a mechanism for 

library developers who are responsible for developing transformation libraries with the facilities 

provided by OpenFortran. The libraries work at the meta-level providing the capability of 

structural reflection to inspect and modify static internal data structures. OpenFortran also 

supports partial behavioral reflection, which assists in intercepting function calls and variable 

accesses to add new behavior to base-level programs written in Fortran. The benefit to 

application programmers is that they can use the libraries to translate existing legacy application 

code in a transparent and repeated way.  

By their nature, most systems in HPC are computationally intensive and thus applying 

transformations should not impair the overall performance. Therefore, we pursued an 

implementation of OpenFortran that offers control over compilation rather than over the run-time 

execution in order to avoid run-time penalties.  

In the infrastructure shown in Figure 3.1, the base-level program is Fortran source code. 

The meta-level program refers to the libraries written in C++ to perform transformations on the 

base-level code. OpenFortran takes the meta-level transformation libraries and base-level Fortran 

code as input and generates the extended Fortran code. The extended Fortran code is composed 
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of both the original and newly generated Fortran code that can be compiled by a traditional 

Fortran compiler like gfortran [GFortran]. 

Recall that the research questions Q1 (i.e., how to build a parser for recognizing 

programs coded in a target language, Fortran in this case?) and Q3 (i.e., how to perform the 

underlying complex transformations?) can be answered by using existing programming 

transformation systems. There are several mature PTEs available for us to choose from. When 

doing so, we mainly evaluated each system from the following criteria: 1) whether it supports an 

object-oriented programming (OOP) language to specify code transformations (A MOP by 

nature is more natural to be implemented in an object-oriented context), 2) whether it can accept 

language specifications for real languages, 3) whether it supports source-to-source translation, 4) 

whether it can be applied reliably, 5) whether it supports Fortran, and 6) whether it has been used 

to address industrial strength problems and has been applied to a large-scale code base. Out of 

several potential PTEs, we chose ROSE [Quinlan, 2012], because it meets all the six criteria and 

it integrates the Open Fortran Parser (OFP) [OFP link] (similar name, but a different project from 

our OpenFortran) as a front-end to support Fortran 77/95/2003. ROSE is an open source 

compiler infrastructure for building source-to-source transformation tools that are able to read 

 

Figure 3.1 Overview of the OpenFortran transformation process 
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and translate programs in large-scale systems [Quinlan, 2012], whose infrastructure is shown in 

Figure 3.2. It is powerful and flexible in supporting program translation by providing a rich set of 

interfaces for constructing an AST from the input source code, traversing and manipulating and 

regenerating source code from the AST.  

Though powerful in supporting specified program transformations, it is quite a challenge 

for average developers to learn and use ROSE. Manipulation of an AST is quite different than 

most programmers’ intuitive understanding of program transformation. In contrast, the MOP 

mechanism of program transformation allows direct manipulation of language constructs (e.g., 

variables, functions, and classes) in the base-program via the interfaces provided. Through a 

MOP, some language constructs, such as the definition of a function or a module, that are not a 

first-class citizen can be promoted to first-class to allow for construction, modification and 

deletion [Kiczales et al., 1991]. 

The interfaces a MOP can provide may manifest as a set of classes or methods so that 

 

Figure 3.2 ROSE infrastructure (taken from [Quinlan, 2012]) 
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users can create variants of the default language implementation incrementally by sub-classing, 

specialization, or method combination [13]. In a MOP implemented in a class-based object-

oriented language, the interfaces typically include at least the basic functionality of instantiating 

a class, accessing attributes and invoking methods. For instance, in OpenC++ [12], developers 

are allowed to define meta-classes specializing in certain types of transformation by sub-classing 

standard built-in meta-classes. 

The working mechanism of OpenFortran can be described as source-to-source translation 

performed in the following steps: 

• An AST is built after parsing the base-level Fortran source code and the top-level 

definitions are identified.  

• The AST is traversed. For all targeted top-level definitions, a corresponding meta-

object is constructed. 

• The member function in a meta-object, OFExtendDefinition, is called to 

modify the sub-tree to perform transformations. 

• The sub-trees modified or created by all meta-objects are synthesized and 

regenerated back to Fortran code, which is then passed on to a traditional Fortran 

compiler. 

3.1.2 OpenFortran Implementation Details 

The provide solution to Q2, we designed OpenFortran in such a way that the meta-level 

program contains multiple scopes and meta-objects of different types corresponding to different 

high-level entities in Fortran. One design goal is to make it applicable to Fortran code written in 

different versions. For example, the concept of a module as a data structure was introduced in 

Fortran 90 and the class type declaration statement supporting object-oriented programming 
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appeared in Fortran 2003. Therefore, for code in versions before Fortran 90, only procedure-wide 

and project-wide translations are needed to create a translator.  

3.1.2.1 Built-in Meta-classes 

OpenFortran provides support to develop translation tools that are able to transform 

Fortran code in multiple scopes, e.g., manipulating a procedure, a module, or even a whole 

project including multiple files. As an example, in the case when a programmer would like to 

create a new subroutine in a module, the translation tools need to be designed to focus the 

transformation at the module level. If a user would like to create a procedure and call it from the 

main program, the translation scope becomes the whole project. It is worth noting that project-

wide translations are realized through procedure-wide, module-wide and class-wide translations. 

Usually, a typical transformation tool involves translations in multiple scopes. 

According to this design goal and based on the backward compatible syntax of 

Fortran2008, we have designed four types of meta-objects: global meta-objects (objects of class 

MetaGlobal), module meta-objects (objects of class MetaModule), class meta-objects 

(objects of class MetaClass) and procedure meta-objects (objects of class 

MetaProcedure). MetaGlobal, MetaModule, MetaClass and MetaProcedure are 

subclasses of class MetaObject and need to be inherited by user-defined meta-classes to apply 

transformations by calling methods deliberately defined within them for specific constructs (e.g., 

a procedure, a module or a class), or for a whole project. 

To allow application programmers to use libraries developed with OpenFortran by simply 

adding annotations, we invented a set of keywords for the Fortran grammar to identify the 

annotations associated with OpenFortran. Table 3.1 summarizes the features of these keywords, 

including the type of meta-object a keyword corresponds to, the place(s) in the application code 
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where a keyword is added, and the translation scopes. For instance, META_MODULE is a new 

keyword designed to designate a meta-module, which is defined in the library code, to a module 

definition in application code and the translation scope is module-wide. The keywords will be 

illustrated in detail in the next section concerning how to use META_MODULE to add an 

annotation.  

The member function OFExtendDefinition() declared in MetaObject should be 

overridden by all subclasses to perform callee-side adaptions for the definition of a module, a 

class and a procedure (e.g., changing the name of a class, adding a new subroutine in a module, 

and inserting some statements in a procedure). OpenFortran also supports caller-side translations 

via overriding the following member functions of MetaObject: 

• OFExtendFunctionCall(string funName): to manipulate a function 

invocation where it is called   

• OFExtendVariableRead(string varName): to intercept and translate 

the behavior of a variable read 

• OFExtendVariableWrite(string varName):  to intercept and translate 

the behavior of a variable write 

Translating the definition of a function is the basic level that OpenFortran supports. The 

manipulation of a module definition, a file or even the whole project is ultimately delegated to 

that of function definition. Therefore, in the implementation of OpenFortran, MetaGlobal is 

composed of a set of MetaProcedures, MetaModules and MetaClasses; 

MetaModules and MetaClasses consist of several MetaProcedures; and most of the 

facilitating member functions are defined in the class of MetaProcedures. 
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Usually, different types of meta-objects can be used collaboratively in a transformation 

tool. If multiple-level translations are involved, the correct order of invoking meta-objects has to 

be arranged carefully to avoid conflicts. Developers of transformations are advised to perform 

translations first on a low-level then a higher level; for example, translating a member procedure 

contained by a module before performing the module-wide translations. 

3.1.2.2 Code Normalization 

Code normalization refers to a type of transformation that reduces a program that has 

multiple possible representations to a standard or normal form in order to decrease its syntactic 

complexity. OpenFortran is able to normalize code written in different styles of syntax. For a 

GPL like Fortran, programmers have multiple choices in coding with different syntax to realize 

the same semantics, as long as their code conforms to a Fortran grammar. However, the variety 

in syntax leads to complexity when performing transformations. For example, sup-pose we 

would like to intercept all function calls in a program. For a statement like “Y=sin(X) + cos(Z)” 

the translation should not simply find the statement and insert helper functions before and after 

 
 

Keywords Type of meta-
object 

Source Location for 
Annotations 

Translation 
Scope 

META_ 
PROCEDURE 

MetaProcedure 
program, function, 

subroutine, subprograms 
definition  

procedure 

META_CLASS MetaClass Derived type defintion class 

META_MODULE MetaModule Module definition  module 

META_GLOBAL MetaGlobal Program defintion  whole project 

 

Table 3.1 The extended keywords of OpenFortran in Fortran grammar 
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it. If so, miscalculation may be incurred because the statement contains two function calls. A 

transformation framework’s ability to normalize source code greatly affects the precision of the 

final transformation. 

Two types of normalization are supported in OpenFortran: function normalization and 

data normalization. The purpose of function normalization is to make sure that no statement 

contains more than one function call. This is realized by adding new temporary variables and by 

inserting the appropriate types of statements to replace each function call while preserving the 

semantics of the code. The normalization process iterates over all statements in order to identify 

function calls, especially those statements whose component parts may contain direct function 

calls (e.g., the condition or increment part in a loop statement), because condition or increment 

are in the form of expressions instead of standalone statements.  

The purpose of data normalization is to rewrite original code to guarantee that for a 

particular variable the read and write actions should not appear within one statement. The 

normalization process loops over source code to search for potential points for normalization, 

particularly in assignment statements and expressions. For example, in a statement “a=b+a,” 

both a and b are of integer type and the normalized code would look like: 

                    integer temp 
                      temp = a 
                      a = b + temp 

Code normalization plays an important role in the process of code transformation, but the 

overhead is quite large and also the normalized code may look slightly different from the original 

code. However, developers typically do not access the generated copy of the transformed code; 

its purpose is to serve as an intermediate step before compilation by the native Fortran compiler. 

Therefore, we only choose to perform function or data normalization whenever a user-defined 

meta-class overrides OFExtendFunctionCall, OFExtendVariableRead, or 



 

   
 

59 

OFExtendVariableWrite to perform caller-side translations and whenever it is necessary 

when OFExtendDefinition is being overridden. 

3.1.2.3 Lazy Evaluation  

It can be very expensive, with regard to time and space, to build and maintain a complete 

meta-level for all of the source code within a program. To reduce overhead, instead of creating a 

meta-object for each high-level definition beforehand, our approach only constructs meta-objects 

for those of interest at the last moment. Suppose we would like to rename a function definition, 

the transformation library is supposed to locate the place where the method is defined and all 

other points in the code where the method is invoked, and replace its name with the new one. In 

this case, it suffices to construct meta-objects only for this function definition and all other 

function definitions within which this method is called. Lazy evaluation is made possible by the 

underlying transformation engine ROSE that maintains a whole AST for the source code. ROSE 

also provides an interface to traverse the AST to find the nodes that meet certain requirements. 

3.2 OpenC: A MOP for Extending C Programs 

Similar to OpenFortran, in order to automate program translations for large-scale legacy 

C programs, we have implemented a MOP for C that allows programmers to specify source-to-

source program transformation for applications written in C. Due to much similarity with 

OpenFortran, we present OpenC in a different way by focusing on the illustration of how to use 

MOP APIs to build a library to fulfill transformation purposes, in addition to some features 

peculiar to OpenC, such as the keywords created and the way to apply a transformation library. 
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3.2.1 Benefits of OpenC 

The design focus of OpenC MOP is to provide automated program transformations in a 

manner that is transparent to the developer (i.e., the developer does not need to understand the 

complexities of using a program transformation engine), such that a developer only needs to add 

simple annotations to use the libraries. For instance, we would like to know the time spent on 

executing each function call in the source code, as shown in Figure 3.2. 

Profiling is a useful technique to help developers obtain an overview of system 

performance. A general way to implement this is to create a helper function, say 

profiling(char* pidentifier), that calculates the execution duration by comparing 

the system time just before and after a function call. The only parameter is the identifier uniquely 

indicating a function call by splicing the caller’s function name and the callee’s function name. 

For our purpose, we cannot simply insert profiling before and after every statement 

containing function calls in the main function because function calls to getArea and 

getCircumference are embedded in a condition statement as indicated by line 4 in Figure 

3.3. Instead, we need first to rewrite the original code to normalize the function calls by adding 

temporary variables to have each function call appear in a standalone assignment statement, and 

then insert profiling before and after each standalone assignment statement, as shown in 

Figure 3.4. 

1. int main(){ 
2.     int radius; 
3.     scanf(“%d”, &radius); 
4.     if(getArea(radius)>10 && getCircumference(radius)<100) 
5.         return 1; 
6.     else 
7.         return 0; 
8. } 
 

Figure 3.3 Example source code to be transformed  
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In this example, with only three function calls (getArea, getCircumference and 

scanf) in the main function, it may not seem like a challenge to code manually for the purpose 

of implementing the profiling functionality. However, the situation becomes labor-intensive and 

error-prone when many more functions or more scenarios where function calls are embedded in 

statements are involved, which is always the case in larger applications. More importantly, after 

adding the profiling functionality, the original code gets polluted and modifying code back and 

forth to enable and disable this functionality is extremely tedious. 

With OpenC, the process of normalizing function calls and invoking profiling around 

them in a large-scale system can be automated via code generation techniques. OpenC provides 

the ability to build a profiling library that automatically generates and integrates a new copy of 

the original application code and profiling code by manipulating the abstract syntax tree (AST). 

The original code is kept intact. To apply the profiling library, only a simple annotation is 

required to add to the main function, which will be elaborated in Section 3.2.4. 

1  int main(){ 
2     int radius; 
 
3     profiling(“main:scanf”); 
4     scanf(“%d”, &radius); 
5     profiling(“main:scanf”); 
 
6     profiling(“main: getArea”); 
7     float tempVar1 = getArea(radius); 
8     profiling(“main: getArea”); 
 
9     profiling(“main: getCircumference”); 
10    float tempVar2 = getCircumference(radius); 
11    profiling(“main: getCircumference”); 

 
12    if(tempVar1 >10 && tempVar2 <100) 
13        return 1; 
14    else 
15        return 0; 
16 } 

Figure 3.4 Example source code after transformation  
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3.2.2 OpenC Design and Implementation 

To implement OpenC, the base-level program is written in C and the meta-level program 

can be written in C++. As with OpenFortran, OpenC uses the ROSE transformation engine, 

which integrates Edison Design Group (EDG) [EDG Link] as the frontend for C programs 

[Quinlan, 2012]. The libraries developed with OpenC work at the meta-level providing the 

capability of structural reflection to inspect and modify internal static data structures. The MOP 

also supports partial behavioral reflection, which assists in intercepting function calls and 

variable accesses to add new behavior to base-level programs.  

Figure 3.5 shows the high-level infrastructure where OpenC is used to perform source-to-

source program transformations. The base-level application is C source code and the meta-level 

library is developed with facilities provided by the MOP to perform transformations on the base-

level code. The MOP takes the meta-level transformation library and base-level C code as input 

and generates the transformed C code to address the features expressed in the meta-program. The 

generated C code, which can be compiled by a traditional C compiler, is composed of both the 

original and newly translated C code that is placed in specific places in the program.  

 

 

Figure 3.5 Overview of the OpenC MOP transformation process 
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OpenC provides facilities to develop translation libraries that are able to transform C 

code in multiple scopes (e.g., manipulating a function, a struct, a file or even a whole project 

including multiple files). As an example, assume a user would like to create a new function A 

and call it from another function B. The translation scope can be the file (if function A and B are 

in the same file) or the whole project space (if A is generated in a different file than B).  

Four types of meta-objects, as indicated in Table 2, are designed to support 

transformations of multiple scopes. They are types of MetaFunction, MetaStruct, or 

MetaGlobal. The three built-in meta-classes are all subclasses of the class named 

MetaObject. Library developers need to define their own meta-class by sub-classing one of 

the three meta-classes and thus be able to access attributes and invoke methods carefully 

designed within them. The member function translateDefinition() declared in 

MetaObject should be overridden by all subclasses to perform adaptions for the definition of a 

function or a struct (e.g., adding a new variable in a struct, or inserting statements in a function). 

The MOP also supports caller-side translations by overriding the following member functions 

defined in MetaObject:  

• translateFunctionCall(string funName)  --- intercept function invocation 

and translate how it is invoked   

• translateVariableRead(string varName)  --- intercept and translate the 

behavior of a variable reading 

• translateVariableWrite(string varName) --- intercept and translate the 

behavior of a variable writing 

Translating the definition of a function is the finest level of granularity OpenC supports. 

Since a C program is composed of definitions of functions (we ignore union and enum in our 
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discussion here on purpose due to simplicity), the manipulation of a file is ultimately delegated 

to that of function definition. Therefore, in our implementation for OpenC, a MetaGlobal is 

composed of a group of MetaFunctions and MetaStructs, and most of the facilitating 

member functions are defined in the class of MetaFunctions.   

 

Key Words Meta-Objects Location Scope 

META_FUNCTION MetaFunction Function definition The 
function 

META_STRUCT MetaStruct Struct definition The struct 

META_GLOBAL MetaGlobal Main function The whole 
project 

 
 

3.2.3 Implementing a Library in OpenC 

In this subsection, we illustrate how to use the MOP facilities to implement the profiling 

library we mentioned previously and how the library can then be used to add the profiling 

capability to the example main function in a transparent way. For this case, we can choose to 

implement a meta-class inherited from MetaFunction to transform method invocations within 

a function. Or, we can also choose to subclass from MetaGlobal to perform file-wide (i.e., any 

functions within current file containing method invocations will be affected) or even project-

wide transformations that translate all the files in a system by merging individual ASTs for each 

file into a single large AST. Here in the example, we choose MetaGlobal as the superclass.  

To build the library, we override translateDefinition() to specify the 

translations. Figure 3.6 shows the code snippet implementing the overridden 

Table 3.2 The keywords used as annotations in OpenC 
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translateDefinition(). The functionList in line 7 is a member variable defined in 

MetaGlobal as a container holding the MetaFunction objects representing all function 

definitions in the file. The for-loop iterates through these objects to perform translation. Line 8 

and line 19 work in pairs to operate on a global scope stack, pushing current scope (a function 

body in this case) onto the stack, which implies that all the following operations are done within 

current scope and popping current scope when translation is finished. Line 9 calls a member 

function functionNormalization() defined in MetaFunction to normalize function 

calls in the current function. Line 11 collects all function-call expressions and line 12 loops 

through them to identify the statements in which a function-call expression is embedded. For 

each statement containing a function call, two additional function-call statements are generated 

respectively by calling buildFunctionCallStmt() with the first parameter indicating the 

function name (profiling), and the second parameter as the parameter list. The parameter list here 

contains only the identifier of the function call, composed by combining the caller’s function 

name (main) and the callee’s function name (scanf, getArea and getCircumference). The 

generated two function-call statements then are inserted before and after the statement, shown in 

line 16 and line 17. The resulting translation is indicated in Figure 3.4. 

To allow a software developer to use libraries developed with OpenC, the developer 

simply adds annotations to their base-level programs. ROSE is able to preserve all comments 

that appear in the source code, which are saved with the AST and can be obtained later by 

traversal. We have taken advantage of this feature by allowing a developer to add annotations to 

source code as comments. The annotation is used to specify a meta-object using keywords and 

special tokens, e.g., “//@OC::META_FUNCTION metaFunName.”  
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Our framework provides a set of keywords to identify the annotations. Table 3.2 

summarizes the features of these keywords, including the type of the meta-object corresponding 

to each keyword, the place in the application code where a keyword is added, and the translation 

scope. For instance, META_FUNCTION is a new keyword designed to designate a meta-function 

(i.e., the translation scope is function-wide), which is defined in the library code, to a function 

definition in the base code.  

As denoted by the user comment in the first line in Figure 3.7, it is possible to use the 

profiling library by simply annotating the source code with a user comment starting with 

“@OC:: .” In the annotation, the keyword META_GLOBAL is used to associate a MetaGlobal 

object with the main function to perform file-wide or project-wide translation. With the purpose 

1. class ProfilingMetaClass: public MetaGlobal{ 
2.    public: 
3.       ProfilingMetaClass(string name); 
4.       virtual bool translateDefinition(); 
5. }; 

  
6. bool ProfilingMetaClass::translateDefinition(){ 
7.   for(int i=0; i<functionList.size(); i++){ 
8.     pushScopeStack(functionList[i]->getFunctionBodyScope()); 
9.     functionList[i]->functionNormalization(); 
10.    vector<SgFunctionCallExp*> funCallList = functionList[i]\ 

                                          ->getFunctionCallList(); 
11.    for(int j=0; j<funCallList.size(); j++){ 
12.       string callerName = functionList[i]->getName(); 
13.       string calleeName = get_name(funCallList[j]); 
14.       SgStatement* targetStmt = functionList[i]\ 
                             ->getStmtsContainFunctionCall(funCallList[j]); 
15.       string identifier = callerName + ":" + calleeName; 
16.       insertStatementBefore(targetStmt,\ 
                             buildFunctionCallStmt("profiling", \ 
          buildParaList(identifier))); 
17.       insertStatementAfter(targetStmt,\ 
                             buildFunctionCallStmt("profiling",\  
                             buildParaList(identifier))); 
18.    } 
19.    popScopeStack(); 
20.  } 
21.} 

Figure 3.6 User-defined meta-class inherited from MetaGlobal  
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of getting the distribution of execution time among all function calls in an application, the meta-

file object is instantiated from the meta-class ProfilingMetaClass, which can be replaced 

by any other meta-class as required to perform desired transformation.  

Profiling is a typical example of a crosscutting concern that cannot be modularized in a 

single place with traditional programming paradigms such as OOP and may be spread across 

multiple modularity boundaries. As demonstrated by the sample profiling library, OpenC can be 

used to support AOP in C by separating the implementation of the utility function of profiling 

with the core application. However, a MOP is more than AOP in that in addition to supporting 

code transformation around join points, a MOP can also be used to express more fine-grained 

program transformations at arbitrary places. The MOP-based approach is superior over the AOP-

based approach in some cases because MOPs provide a richer interface that can be used to deal 

with a wider range of transformation challenges in more diverse scenarios that are not limited to 

crosscutting concerns.  

 

 

 

 

 

   //@OC::META_GLOBAL profilingMetaClass 
1. int main(){ 
2.     int radius; 
3.     scanf(“%d”, &radius); 
4.     if(getArea(radius)>10 && getCircumference(radius)<100) 
5.         return 1; 
6.     else 
7.         return 0; 
8. } 
 

Figure 3.7 Example source code to be transformed  
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3.3 Case Study: Timer Implementation in NAS 

This section introduces a case study to illustrate how OpenFortran can be utilized to 

improve the modularity of timer implementation in NAS (NASA Advanced Supercomputing) 

[NAS Link] projects, which demonstrates more than just crosscutting concerns.  

A timer can be added to a program to measure the execution time between any two points 

in the program, which is an often-applied method to achieve profiling. A program can have many 

timers, each corresponding to a possible location in the program that may need to be modified. 

The timers help to understand the distribution of execution time within the program. The timer 

information is a crosscutting concern that is spread across several locations within a program. 

Manually including the timer information in every program can affect the productivity of the 

programmer during development and be a detriment to program comprehension during code 

maintenance. This case study illustrates how timers are implemented with OpenFortran and how 

our approach can offer improvement. 

We used the NAS parallel benchmarks (NPB-3.2) for our analysis. The timer is 

implemented in a benchmark as four function calls: 1) timer_clear, 2) timer_start, 3) 

timer_end, and timer_read. The first two functions are executed before the point of 

interest to reset and start a timer and the last two functions are executed after the point of interest 

to end a timer and to read the time elapsed. Every function call requires a unique id to identify 

the timer. In some benchmarks such as EP (Embarrassingly Parallel), a Logical type variable 

timers_enable is used to globally enable or disable the timer functionality. In some other 

benchmarks, every timer function call is made after checking the variable istimeron. This 

variable is read from a file so that execution can include or exclude the timer automatically and 

programmers do not have to modify the source code. The lines of code for the timer 
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implementation in five NAS benchmark programs are shown in Table 3.2. As shown in the table, 

the lines of code (LOC) in the timer implementation vary from less than 1% to 22% of the total 

source code. 

 

 

Benchmark Name Total LOC Timer LOC Number of Timers 

EP 148 33 (22%) 3 

CG 479 50 (10%) 3 

MG 828 63 (8%) 8 

LU 2577 71 (3%) 11 

UA 4763 7 (<1%) 1 

 

With OpenFortran, the timer implementation can be separated completely. The base 

program remains untouched, with modifications described in the library developed with 

OpenFortran APIs. The library that implements a timer for EP is shown in Figure 3.8 and part of 

the code generated is shown in Figure 3.9. Because the base program has no code regarding the 

timer implementation (i.e., it is only included when a programmer asks for the feature), there is 

no need to toggle on/off timers. 

The meta-class TimerEPMetaClass inherits MetaGlobal to perform project-wide 

transformations, i.e., all Fortran files in EP fall into the scope of transformation specified in the 

meta-class. As shown in Figure 3.8, lines 12 to 19 describe how to modularize the 

implementation of timers with different Ids for all function invocations to the random number 

generator vranlc. All calls to this function are affected and the OpenFortran approach 

Table 3.3 Timers in some NAS parallel benchmarks 
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demonstrates the support for AOP in Fortran, which is similar to the profiling example described 

in Section 3.2. Lines 5, 7, and 8 in Figure 3.9 reflect the code modifications in the original source 

program.  

1. class TimerEPMetaClass: public MetaGlobal{ 
2.    public: 
3.       TimerEPMetaClass (string name); 
4.       virtual bool OFExtendDefinition(); 
5. }; 

  
6. bool TimerEPMetaClass:: OFExtendDefinition(){ 
7.   int timerN=3, timer1=1,; 
8.   for(int i=0; i<functionList.size(); i++){ 
9.     pushScopeStack(functionList[i]->getFunctionBodyScope()); 
10.    functionList[i]->functionNormalization(); 
11.    vector<SgFunctionCallExp*> funCallList = functionList[i]\ 

                                         ->getFunctionCallList(); 
 
12.    for(int j=0; j<funCallList.size(); j++,timerN++){ 
13.      if(funCallList[j]->getName()== “vranlc”){ 
14.        SgStatement* targetStmt = functionList[i]\ 
                                     ->getStmtsContainFunctionCall(“vranlc”); 
15.        insertStatementBefore(targetStmt,\ 
                                 buildFunctionCallStmt("timer_start", \ 
                                 buildParaList(to_string(timerN)))); 
16.        SgStatement* targetStmtStop = insertStatementAfter(targetStmt,\ 
                                 buildFunctionCallStmt("timer_stop",\  
                                 buildParaList(to_string(timerN)))); 
17.        insertStatementAfter(targetStmtStop, buildFunctionCallStmt("print", \ 
                                buildParaList(“*”, “‘Random numbers: ’”,\ 
                                              buildFunctionCallStmt(“timer_read”,\  
                                              buildParaList(to_string(timerN))))))); 
18.      } 
19.    } 
20.    if(functionList[i]->getName()!= “EMBAR”){ 
21.       popScopeStack(); 
22.       continue; 
23.    } 
24.    SgStatement* targetStmt1 = getFunctionCallStmt(“mpi_barrier”); 
25.    SgStatement* targetStmt2 = insertStatementAfter(targetStmt1,\ 
                             buildFunctionCallStmt("timer_clear",\  
                             buildParaList(to_string((timer1)))); 
26.    insertStatementAfter(targetStmt2,buildFunctionCallStmt("timer_start"\ 
                             buildParaList(to_string((timer1)))); 
 
27.    SgStatement* targetStmt3 = getContinueStmt(“160”); 
28.    SgStatement* targetStmt4 = insertStatementAfter(targetStmt3,\ 
                             buildFunctionCallStmt("timer_stop",\  
                             buildParaList(to_string((timer1)))); 
29.    popScopeStack(); 
30.  } 
31.} 

Figure 3.8 Timer implementation in NAS EP with OpenFortran  
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However, there is a particular timer as shown in Figure 3.9, whose Id equals 1. This timer 

is started after the function call to mpi_barrier and stopped after a continue statement with 

the label (i.e., the executable statement number) being 160. To carry out this type of code 

transformation requires more elastic methods for expressing the points of interest and more rich 

types of actions desired. The MOP approach is able to fulfill this goal attributing to the clear 

representation, at the meta-level, of language entities and their relations in the base-level 

programs. Lines 24 to 28 in Figure 3.8 show a more fine-grained type of translation to implement 

this timer. Lines 24 and 27 respectively locate the target statement and add a function call to 

invoke the timer function.  

3.4 Summary 

Crosscutting concerns usually affect multiple places in a code base, so supporting AOP in 

the target programming language (C and Fortran) has the potential to increase modularity. 

However, AOP approaches are limited to crosscutting concerns, which cannot satisfy the 

demands for the support of more diversified and flexible transformations. With a MOP, this goal 

can be achieved, which completely separates the implementation of utility functions and the core 

1.    program EMBAR  META_GLOBAL TimerEPMetaClass  
                  ……    
2.       call mpi_barrier(MPI_COMM_WORLD, ierr) 
3.       call timer_clear(1) 
4.       call timer_start(1)  
                  …… 
5.       call timer_start(3) 
6.       call vranlc(2 * nk, t1, a, x) 
7.       call timer_stop(3) 
8.       call print *, ‘Random Numbers: ’, timer_read(3) 

                  …… 
9.       160  continue    
10.    call timer_stop(1) 

Figure 3.9 Transformed EP source code with timer implementation 
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application, because code modifications are accomplished in a generated copy of the original 

code and the application code is kept intact. 

A closely related work is High-Performance Fortran (HPF), which extends Fortran 90 to 

provide support for efficient parallel computing [Loveman, 1993]. Programmers are able to assist 

the compiler and the runtime system in choosing strategies for distributing arrays across multiple 

processors. In HPF, a set of directives are available that enable developers to assist the compiler 

and the run-time execution to decide the best way to distribute arrays across multiple processes 

[Loveman, 1993]. The separation between the base-level and meta-level interface is realized by 

inserting the primitives into what would originally be comments in Fortran. Similar to MPI 

[Gropp et al., 1999], HPF targets data parallel applications for distributed memory systems, 

which is different from OpenMP [OpenMP Review Board, 2000], which targets shared memory 

systems with multiprocessors. HPF was designed solely for the purpose of data parallelization 

with compiler directives and new keywords, but OpenFortran can be used to perform arbitrary 

code changes. OpenFortran is not limited to any type of parallel models. As shown in Section 

4.3, our approach can be used to automate the insertion of OpenMP directives into Fortran 

applications and has the potential to support more parallel models, such as MPI, CUDA 

[Nickolls et al., 2008], and even HPF. 

3.4.1 Lessons Learned 

It is worth noting that we handle the annotation location differently in OpenC compared 

to OpenFortran. In OpenFortran, developers can apply transformation libraries by associating a 

user-defined meta-class name with a keyword (as listed in Table 3.1) right after the definition of 

a procedure or a module and the parser can recognize the new keywords specifically defined for 
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OpenFortran. However, in OpenC, we allow developers to do so in the format of a comment 

directive. 

The difference came from our experience in manipulating the ROSE project. As shown in 

Figure 3.2, ROSE uses the Open Fortran Parser [OFP Link] for parsing Fortran source code and 

the EDG front-end [EDG Link] for C and C++ [Quinlan, 2012]. Because ROSE and Open 

Fortran Parser are both open source, we spent considerable effort in extending ROSE in order to 

support OpenFortran. For example, we extended the Open Fortran Parser so that it can correctly 

parse the OpenFortran keywords; we also needed to make changes to ROSE source files that are 

responsible for building an AST after parsing source code with OpenFortran annotations.  

We decided not to follow the same strategy as OpenFortran, for annotation attachment 

when constructing OpenC because of 1) the complexity involved in ROSE extension, and 2) the 

inaccessibility of EDG front-end source code (i.e., EDG is not open-source). We then took 

advantage of ROSE’s support for preserving all comments that are obtainable through traversal, 

so that developers can add annotations to target source code as comments. In this case, no 

extension to ROSE or the front-end parser is needed, which greatly reduced the time of 

implementation.  

In traditional approaches, library users are often forced to learn the specifications on how 

to use a library’s interfaces. However, to use libraries developed with OpenFortran or OpenC, 

the only requirement is to attach the correct annotation to the source code in the correct place, 

whereby the underlying transformations are completely transparent to the users. It is also 

convenient to unplug the libraries by simply removing the annotation. The application code is 

kept intact because translations are performed on a generated copy of the original code. For 

systems in HPC where runtime efficiency is a prime concern, the libraries built with 
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OpenFortran or OpenC perform source-to-source transformations at pre-compile-time, which 

avoids runtime penalties. 

MOP facilities offered by OpenFortran or OpenC are more straightforward with respect 

to expressing the design intent of program transformation, compared to the APIs provided by the 

underlying ROSE transformation engine, which involves much manipulation of ASTs. However, 

it is still very challenging for developers attempting to understand the idea of meta-programming 

and to use the APIs provided by MOPs. In addition, it is usually the case that MOP programs are 

created to serve as a library for the purpose of enabling certain types of code transformation. 

Conflicts very likely occur when the functionality provided by a library can no longer satisfy the 

needs of application programmers. It will be beneficial for programmers if there is a simpler way 

to tailor existing libraries to meet their new needs or ideally even build a new library, without 

having to learn how to use OpenFortran or OpenC. This is particularly beneficial for Fortran 

developers, because to build a library with MOPs, they have to learn a totally different language 

(C++) with a different paradigm (object-oriented). We present our solution to this challenge in 

the next chapter. 
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CHAPTER 4 

SPOT: A DSL FOR SPECIFYING PROGRAM TRANSFORMATIONS 

Our experience has shown that the MOP mechanism, as a form of program extension, can 

be used to address a wide range of problems by facilitating the implementation of source-to-

source program translators, especially suitable for, but not limited to those dealing with 

crosscutting issues. However, meta-programming is still a considerable challenge for traditional 

developers to learn and use, because it operates on source code and a transformation 

specification, which is quite distinct from the classic programming style familiar to most 

developers. The gap between the traditional programming paradigm and the intensive meta-

programming techniques may breed accidental complexities involved in building transformation 

libraries with MOP facilities. Therefore, it is desirable to reduce the accidental complexities 

through freeing average developers from the burden of programming with an unfamiliar 

paradigm.  

In retrospect, we have noticed that several coding patterns appear repeatedly when using 

OpenFortran; for instance, iterating over an array of meta-objects to identify an interesting point 

of transformation, or adding, removing or altering an entity. In order to make the idea of MOPs 

more accessible to traditional developers, we investigated techniques of code generation and 

DSLs. To free developers from the burden of programming with the APIs of OpenFortran, we 

have created a DSL, called SPOT (Specifying PrOgram Transformation), to provide a higher 

level of abstraction for expressing program transformations. The design goal is to provide 
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language constructs that allow developers to perform direct manipulation on program entities and 

hide the accidental complexities of using OpenFortran and ROSE.  

4.1 SPOT Design and Implementation 

To raise the level of abstraction of program transformation, high-level programming 

concepts (e.g., modules, functions, variables, and statements) are used in SPOT as language 

constructs. Built-in functions are provided to perform systematic actions on programming 

concepts, such as add, delete, and update. Recent research shows that the majority of changes 

made to existing code are systematic, developers adding, deleting and updating code in a similar 

but not identical manner [Kim et al., 2005; Nguyen et al., 2010]. The core syntax and semantics 

of SPOT are listed in Table 4.1. 

For developers, coding with SPOT means to manipulate the entities of Fortran code in a 

direct manner, which may more resemble their thoughts on program transformation than coding 

with other facilities such as existing meta-programming tools or platforms. In addition, 

developers can focus their attention more on specifying desired code modification using the 

functional SPOT constructs while not needing to care about the underlying transformations. 

Therefore, to use SPOT, developers do not need deep knowledge about program transformation.  

4.1.1 SPOT Syntax and Semantics 

Figure 4.1 demonstrates an example of SPOT code with the basic structure and language 

constructs. The purpose of this SPOT program is to perform a source-to-source transformation 

for a function named fun, so that whenever the variable vName is assigned with a value, both its 

name and the value are saved to a file. As indicated by the code snippet, a typical SPOT program 

starts with a keyword “Transformer,” followed by a user-defined name, “printResult2File” in 

this case, which is used as the file name of the generated meta-program (described in the next 
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section). A transformer is usually composed of one or more scope blocks where action 

statements, nested scope blocks or condition blocks are included. 

 

Language Constructs 	  

Scope Constructs 

Project	   Project-wide transformation 
File	   File-wide transformation 
Module	   Indicate module definition 
Class	   Indicate class definition 
Function	   Indicate function definition 

User Defined Type 
Integer	   Define an integer variable 
String	   Define a string variable 

Basic Constructs 

FunctionCall	   Indicate expression of function call 	  
VariableRead	   Indicate expression of variable read  
VariableWrite	   Indicate expression of variable write 
VariableDecl	   Indicate expression of variable 

declaration 
Statement	   Indicate statement of any type 
StatementType*	   Indicate statement of a particular 

type 
Keywords for Scope Block	  

Within(construct <name>) 
Get the scope of transformation. Supported scopes include a 
project, a file, a module, a function, and statements implying a 
scope (e.g., condition or loop statement) 

Before(<para>*)/Before Perform transformation before an entity 
After(<para>)/After Perform transformation after an entity 
Keywords for Control Flow	  

IF(<expr>*)  ELSE 
Proceed based on the value of expr 

FORALL(construct 
<name>/<Pattern>) 

List all constructs specified with name  

Primary Actions	  

Function	   RenameFunction(<oldName>, <newName>) 
FindFunctionCall(<funName>) 

Variable	  

AddVariable(<type>,  <name>,  <intialValue>) 
AddVariables(<type>,  <name1>,  <name2>,……) //with the 
same type 
DeleteVariable(<name>) 
RenameVariable(<oldName>, <newName>) 
FindVariableRead/Write (<name>) 

  

Table 4.1 Overview of SPOT syntax and semantics 
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Statement	  

AddStatement(<“stmt*”>) or 
AddStatement(<loc>, <targetStmt>, <“stmt”>) 
AddCallStatement(<loc>, <targetStmt>, <funName>, 
<parameterList>) 
DeleteStatement(<“stmt”>) or 
DeleteStatement(<loc>, <targetStmt>,<“stmt”>) 
ReplaceStatement(<“oldStmt”>, <“newStmt”>) 

Auxiliary Functionality	  

Retrieve Functions 

Function <fun> = GetFunction(<name>) 
Module <md> = getModule(<name>) 
StatementType %<stList> = getStatement() 
Statement %<stList> = 
getStatementAll(<“stmt”>/<pattern>) 
Statement <st> = GetStatement(lineNumber)  
Statement <st> = GetStatement(<“stmt”>/<pattern>) 	  
Statement <st> = 
GetStatementIndex*(<“stmt”>/<pattern>)  
VariableWrite %<vw>=GetVariableWrite(<varName>) 
VariableRead %<vr>=GetVariableRead(<varName>) 
VariableDecl <vd> = GetVariableDecl(<name>) 

Include Block 
IncludeCode {source code in Fortran} 
IncludeCode {source code in Fortran} into <filename> 

Notes: 
1. Fortran syntax needs to be included within double quotes “” 
2. para can be a construct variable, an expression (expr) or statement (stmt); stmt  
indicates a Fortran statement (within double quotes) or a pattern described with %var 
substituting for real expressions within a statement; expr indicates an actual Fortran 
expression or a pattern described with %var 
3. %var  is a user-defined variable representing a collection of entities, using $var to 
access an element in the collection 
4. statementType indicates statement of a particular type (e.g., StatementFOR and 
StatementIF) 
5. statementIndex indicates the index-th statement with the same stmt or pattern. 

 

The code defines a scope block from line 2 to line 5. “Within (Function fun)” indicates 

that the following translation is performed for the function “fun.” Line 3 calls 

“GetStatementAssignment” to search out all assignment statements where the variable varName 

is at the left-hand side. Line 4 inserts a function-call statement “call SAVE(“varName”, 

varName)” after each assignment statement. The operators “%” and “$” are used in pairs with 

Table 4.1 Overview of SPOT syntax and semantics (cont.) 
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“%s” indicating the list of all assignment statements matched and “$s” representing any 

statement in the list (referring to Table 4.1). The including block (lines 7 to 11) is optional and is 

designed for providing additional code needed by the transformer. The functions or variables 

defined within an Include block will be directly inserted into the beginning of the file being 

translated, unless otherwise specified. The developers are expected to use this section to 

implement helper code used by transformers.  

A feature of our approach lies in supporting string-based translation. Developers are 

allowed to embed Fortran code in a SPOT program. For example in Figure 4.1, line 4 can be 

replaced with “AddStatement(After, $s.statement, “call save(“varName”, varName)”)” to 

achieve the same effect of adding a function call statement after the statement indicated by 

$s.statement, where the last parameter “call save(“varName”, vName)” is actually a Fortran 

statement. In addition, a real Fortran statement can also be used as the parameter in 

“GetStatement(“stmt”)” to obtain its handler. For instance, as in “Statement 

%st=GetStatement(“result=a+b”),” all statements containing “result=a+b” within current 

scope are matched and their handlers are put into the list represented by “st.” All embedded 

Fortran code should be contained within double quotes for the purpose of differentiation. 

 

1. Transformer printResult2File{ 
2.   Within(Function fun){ 
3.    StatementAssignment %s=GetStatementAssignment(varName); 
4     AddCallStatement(After, $s.statement, SAVE, “varName”, varName);    
5.  } 
6. }       
7. IncludeCode{ 
8.  subroutine SAVE(varName, value) 
9.  !code in the subroutine 
10. end 
11.} 

Figure 4.1 An example of a simple SPOT program 
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One side effect of using Fortran statements to match possible translation points is that if 

the source code to be transformed has been modified, (e.g., a has been renamed to d as in 

“result=d+b”) the transformer will skip this translation point. This is called the lexical pointcut 

problem in AOP [Hanenberg et al., 2003]. Another scenario is that instead of matching an exact 

Fortran statement, the transformer would like to match a pattern, for instance, matching all 

assignment statements with the right-hand side being a plus expression. In order to avoid the 

drawback and to support the desired feature, we allow developers to define a pattern with special 

literals (e.g., %var1, %var2, %var3…) that can be used to substitute for real expressions in a 

Fortran statement. The pattern that matches all assignment statements with their right-hand side 

as a plus expression can be depicted as “%var1=%var2+%var3.”  

4.1.2 SPOT Design Architecture 

Figure 4.2 shows the transformation process after integrating SPOT with OpenFortran. A 

SPOT program represents desired translation tasks specified directly with SPOT constructs for 

 

Figure 4.2 Overview of the transformation process with SPOT 
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the source code in Fortran. A code generator is used to automate the translation from the SPOT 

program to C++ meta-level transformation code. OpenFortran is responsible for carrying out the 

specified transformations on the Fortran base-program with the assistance of the low-level 

transformation engine ROSE. As shown in Figure 4.3, the code generator consists of a parser that 

is able to recognize the syntax of both SPOT and Fortran and then builds an AST for the 

recognized program. A template engine is used to generate C++ code while traversing the AST.  

The parser is generated with ANTLR [Parr, 2007] from the grammars of both SPOT and 

Fortran expressed in EBNF. We chose ANTLR because it is a powerful generator that cannot 

only be used to generate a recognizer for the language, but can also be used to build an AST for 

the recognized program, which can then be traversed and manipulated. In Figure 4.4, we list the 

core EBNF grammar of SPOT. To implement the generator, we have specified the essential 

portion of the Fortran 90 grammar and combined it with SPOT’s grammar. Besides generating a 

recognizer for SPOT and Fortran statements, ANTLR creates an AST for an input program.  

 

Figure 4.3 The implementation structure of the Code Generator 
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programFile 
 :'Transformer' ID '{' transformBody (';' transformBody)* '}' 
 -> ^(TRANSFORMER_ND ID  transformBody+); 
transformBody 
 :transformScope '{' transformStatement+ '}' 
 -> ^(TFBODY_ND transformScope transformStatement+) 
 |'IncludeCode' '{' statement+ '}' ('into' fileName) 
 -> ^(SOURCE_CODE statement+); 
transformScope 
 : 'Within' '(' scopeIndicator ID  ')' 
 -> ^('Within' scopeIndicator ID); 
scopeIndicator 
 :'Function' 
 |'Module' 
 |'Project' 
 |'Statement';  
pointIndicator 
 :'FunctionCall' 
 |'VariableRead' 
 |'VariableWrite' 
 | statementTypeName //collect all statements of a type 
 | '"' statement '"';//collect all statements with original source code, e.g. "a=b+c"   
transformStatement 
 : operation 
 | subTransform 
 | spotCondition; 
spotCondition 
 :'IF''(' condition ')''{' transformStatement '}'  

-> ^('IF' condition transformStatement+) 
|'ELSE IF' '(' condition ')''{' transformStatement+ '}' 
-> 'ELSE IF' condition  transformStatement+  
|'ELSE' '{' transformStatement+ '}' 
-> 'ELSE' transformStatement+; 

operation 
 :actionVariable ';' 
 -> ^(ACTION_ND actionVariable) 
 |actionStatement ';' 
 -> ^(ACTION_ND actionStatement) 
 |actionFunction ';' 
 -> ^(ACTION_ND actionFunction) 
 |scopeIndicator '%'? ID '=' actionRetrieve ';'  
 -> ^(RETRIEVE_ND scopeIndicator '%'? ID '=' actionRetrieve);  
subTransform 
 :transformLocation '{' operation+ '}' 
 -> ^(SUB_TRANSFORMER transformLocation operation+);  
transformLocation 
 : locationKeyword '(' pointIndicator (ID|'*'|'%' ID)?')'  
 -> ^(TRANS_LOCATION locationKeyword  pointIndicator (ID|'*'|'%'^ ID)) 
 | 'ForAll' '(' 'Procedure' ('*'|'%' ID)')' // ForAll (Procedure %procs) 
 -> ^(ForAll_ND 'Procedure' ('*'|'%'^ ID)) 
 | 'ForAll' '(' 'Module' ('*'|'%' ID)')' 
 -> ^(ForAll_ND 'Module' ('*'|'%'^ ID)) 
 | 'ForAll' '(' pointIndicator ID? ('*'|'%' ID)')' 
 -> ^(ForAll_ND pointIndicator ID? ('*'|'%'^ ID));  
actionVariable 
 :'AddVariable' '(' typeName ',' ID  (',' initializedVal)? ')' 
 -> ^('AddVariable' typeName ID initializedVal?) 
 |'DeleteVariable' '(' ID ')' 
 -> ^('DeleteVariable' ID) 
 |'RenameVariable' '(' oldName=ID ',' newName=ID ')' 
 -> ^('RenameVariable' $oldName  $newName); 
actionStatement  
 :'AddCallStatement' '('locationKeyword ',' spotCurrentStatement ',' ID (','callArgumentList)?')' 
         -> ^('AddCallStatement' locationKeyword spotCurrentStatement ID callArgumentList? ) 
 |'AddDirectiveStatement''(' directive ')' 
 -> ^('AddDirectiveStatement' directive) 
 |'AddIncludeStatement' '(' ID ')' 
 -> ^('AddIncludeStatement' ID) 
 |'ReplaceStatement' '(' oldStmt=statementType ',' newStmt=statementType ')' 
 -> ^('ReplaceStatement' $oldStmt  $newStmt) 
 |'DeleteStatement' '(' statementType ')' 
 -> ^('DeleteStatement' statementType); 
 

Figure 4.4 SPOT grammar in EBNF   
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As shown in Figure 4.4, below each generation rule in the grammar there is an annotation 

in the form of “->(root, child1, child1…).” The annotation specifies how a sub-tree is shaped 

related to which node is the root and which are the children [Parr, 2007]. We also have 

implemented a tree grammar that matches desired sub-trees and maps them to the output models. 

A sample rule of the tree grammar is listed in Figure 4.5a. The output models are built with 

StringTemplate [Parr, 2007], a template engine for generating formatted text output. The basic 

idea behind building the output models with StringTemplate is that we create a group of 

templates representing the output and inject them with attributes while traversing the ASTs. The 

generation rule in Figure 4.5a matches a sub-tree built for a SPOT statement like “Within(Project 

programName),” and passes “transformerName” and “programName” to the template in Figure 

4.5b. The actual parameter “transformerName” is a global variable that is populated with the 

user-defined name of the transformer and “programName” holds the name of the Fortran 

PROGRAM. The template is actually a class definition in OpenFortran with several holes that 

are populated with values passed in during tree traversal. In this case, the definition of a meta-

class is generated that inherits the built-in meta-class MetaGlobal.  

Using ANTLR and StringTemplate [Parr, 2007], all the logic is kept in the tree grammar 

and all the output text in the templates, which strictly enforces model-view separation. One 

benefit is that from the same copy of a SPOT program (in the form of a single tree grammar), 

different implementations can be generated with different templates. In addition to generating a 

meta-program in OpenFortran, a SPOT program may also be translated into an implementation 

in other program transformation engines (PTEs) or transformation tools (e.g., DMS [Baxter et 

al., 2004] or Xtext [Eysholdt and Behrens, 2010]). Another advantage of model-view separation 

is that the same group of templates may be reused with different tree grammars.  
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4.1.3 SPOT for OpenC 

SPOT was originally designed to simplify the usage of OpenFortran by raising the 

abstraction level of program transformation. Then, we extended SPOT to make it applicable to 

specifying program transformations for C. SPOT is designed to model the process of code 

modification by providing notations and built-in functions for systematic change of a language 

entity (e.g., adding, updating, or deleting a statement), which makes it readily extensible by 

adding new language elements to support a new general-purpose programming language (GPL). 

The method and the mechanism of extending SPOT are elaborated in Chapter 5. In this section, 

we only illustrate the extension constructs in SPOT in order to accommodate OpenC.  

 4.1.3.1 An Example SPOT Program 

Figure 4.6 demonstrates an example of SPOT code with the basic structure and language 

constructs to automate code changes in C programs. The code adds a function call to printInt 

after every assignment statement whose left-hand side is the variable with the name varName. As 

indicated by the code snippet, a typical SPOT program starts with a keyword “Transformer,” 

followed by a user-defined name, “PrintResult” in this case, which will be used as the file name 

transformScope 
 : ^('Within' 'Project' programName=ID) 
 -> createMetaGlobal(transformer={$transformerName}, progName={$programName.text}); 

Figure 4.5 (a) A rule in the tree grammar; (b) A template for generating OpenFortran code  

createMetaGlobal(transformer, progName, funName, varName) ::=<< 
class MetaClass_<transformer>_<progName>: public MetaGlobal 
{ 
  public: 
  MetaClass_<transformer>_<progName> (string name); 
  virtual bool ofExtendDefinition(); 
  <if(funName)>virtual bool ofExtendFunctionCall(string functionName)<endif>; 
  <if(VarName)>virtual bool ofExtendVariableRead(string variableName)<endif>; 
  <if(VarName)>virtual bool ofExtendVariableRead(string variableName)<endif>; 
}; 
>> 

(b) 

(a) 
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of the generated .cpp file. A transformer is usually composed of one or more scope blocks where 

action statements, nested scope blocks or condition blocks are included. As shown in Figure 4.6, 

we define a scope block from line 2 to line 7. The wildcard feature is also supported to translate 

source code in multiple locations with similar scenarios. For instance “Within(Function *)” 

indicates that the following translation would be performed for all function definitions in current 

code where “*” acts as a wildcard. Line 3 defines a variable named “stmt” with a percent sign 

that serves as the handler for a set of assignment statements. Lines 4 to 6 define a condition 

block with the keyword “IF.” If the left-hand side in an assignment statement is the variable 

varName, line 5 adds a line of code that calls “printInt(…)” after the assignment statement. The 

“$” sign is used together with a user-defined variable to reference any element in the list. For 

example “$stmt” in this example iterates all elements held by the handler “%stmt.” As indicated 

by line 2 in the example, location and scope information is expressed in AspectJ style [Kiczales 

et al., 2001].  

The including block in lines 9 to 14 is optional and is designed for providing additional 

code needed by the transformer. The functions or variables defined within an Include block will 

1. Transformer PrintResult{ 
2.   Within(Function *){ 
3.    StatementAssignment %stmt=getStatementAssignment(); 
4.    IF($stmt.varName==varName){  
5.      AddCallStatement(After, $stmt.statement, printInt, varName,   
                         $stmt.assignValue); 
6.    }  
7.   } 
8. }       
9. IncludeCode{ 
10.  void printInt(char* varName, int val) 
11.  {   
12.    printf(“%s=%d\n”, varName, val); 
13.  } 
14.} 

Figure 4.6 An example program coded in SPOT 
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be directly inserted into the beginning of the current file and before the first function definition, 

unless otherwise specified. The developers are expected to use this section to implement helper 

code used by transformers in the same code file. In Figure 4.6, all keywords are highlighted in 

bold in the example code. 

4.1.3.2 The Design of SPOT for OpenC 

To raise the level of abstraction for simplifying the usage of a MOP like OpenC, high-

level programming entities (e.g., files, functions, structs, variables and statements) are used in 

the DSL as language constructs. Built-in functions are provided to allow systematic actions for 

programming entities, such as add, delete and update. The excerpt of built-in constructs and APIs 

is listed in Table 4.2. 

An outstanding feature in SPOT lies in that it supports string-based translation. 

Developers are allowed to embed C code in a SPOT program. For example in Figure 4.6 line 6 

can be replaced with “AddStatement(After, $stmt.statement, “printInt(“varName”, varName)”)” 

to achieve the same effect of adding a function-call statement after the statement indicated by 

$stmt.statement, where the last parameter “printInt(“varName”, varName)” is actually a C 

statement. In addition, a real C statement can also be used as the parameter in 

“GetStatement(“stmt”)” to obtain its handler. For instance, as in “Statement 

%st=GetStatement(“result=a+b”),” all statements containing “result=a+b” within current 

scope are matched and their handlers are put into the list represented by “st.”  One thing needs to 

be noted is that all embedded C code should be contained within double quotes. 

One side effect of using C statements to match possible translation points lies in that if 

the source code to be transformed has been modified, (e.g., a has been renamed to d as in 

“result=d+b”) the transformer will skip this translation point. Another scenario is that instead of 
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matching an exact C statement, the transformer would like to match a pattern, for instance, 

matching all assignment statements with the right-hand side being a plus expression. In order to 

avoid the drawback and to support the desiring feature, we allow developers to define a pattern 

with special literals $var1, $var2, $var3… that can be used to substitute for real expression in a 

C statement. The pattern that matches all assignment statements with their right-hand side being 

a plus expression can be depicted as “$var1=$var2+$var3.” 
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Language Constructs 

Virtual Constructs 
Project project-wide transformation 

File file-wide transformation 

User Defined Type 
Struct Indicate struct definition 

Union Indicate union definition 

Basic Constructs 

Function Indicate function definition 

FunctionCall Indicate function call 
expression  

VariableRead Indicate reading a variable 

VariableWrite Indicate writing a variable 

VariableDecl Indicate declaring a variable 

Statement* Indicate different types of 
statements 

Keywords for Scope Block 

Within(para*) 
 

Get the scope of transformation. Supported scopes 
include a project, a file, a function, a struct, a union, 
and statements implying a scope, e.g. if-else statement, 
for-loop statement 

Before(para)/Before Perform transformation before an entity 

After(para)/After Perform transformation after an entity 

Keywords for Control Flow 

IF(expr)  ELSE Proceed based on the value of expr 

FORALL(Construct name) List all constructs specified with name  

Primary Actions 

Function RenameFunction(oldName, newName) 

Variable 

AddVariable(type,  name, intialValue) 

DeleteVariable(name) 

RenameVariable(oldName, newName) 

  

Table 4.2 Overview of SPOT syntax and semantics for OpenC 
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Statement 

AddStatement(“stmt”)/ AddStatement(loc, 
targetStmt , “stmt”) 

AddCallStatement(loc, targetStmt, funName, 
parameterList) 

DeleteStatement(“stmt”)/ DeleteStatement(loc, 
targetStmt “stmt”) 

Auxiliary Functionality 

Retrieve Functions 

Variable v =  GetVariableDecl(name) 

Function f = GetFunction(name) 

Struct s = GetStruct(name) 

StatementType %st = GetStatementType() 

Statement %st = GetStatement(“stmt”) 
Statement  st = GetStatement(lineNumber) //used in 
a file 
Statement %st = GetStatement(pattern) 

VariableWrite %vw=GetVariableWrite(varName) 

VariableRead %vr=GetVariableRead(varName) 

Include Block 
IncludeCode { source code in c} 

IncludeCode { source code in c} into fileName 

 

4.1.3.3 The Implementation of SPOT for OpenC 

Figure 4.7 shows the transformation process after integrating SPOT with OpenC. A 

SPOT program represents desired translation tasks specified directly with built-in constructs by 

developers for source code written in C. A code generator is used to automate the translation 

from the SPOT program to C++ meta-level transformation code. The MOP is responsible for 

carrying out the specified transformations on source code in C with the assistance of the low-

level transformation engine ROSE.  

Table 4.2 Overview of SPOT syntax and semantics for OpenC (cont.) 
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The main purpose of the code generator is to translate a SPOT program to the 

corresponding C++ meta-level code through code generation. As shown in Figure 4.8, the code 

generator consists of a parser that is able to recognize the syntax of both the SPOT and C and to 

build an AST for the recognized program, and a template engine that is used to generate C++ 

code from traversing the AST. 

The parser is generated with ANTLR [Parr, 2007] from the grammar of the SPOT and C 

expressed in Extended Backus-Naur Form (EBNF). We have chosen ANTLR because the code 

generator needs the grammar of C for recognizing C source code. A free C grammar for ANTLR 

is available for use with a little adaptation. To implement the generator, we combined the SPOT 

grammar with the C grammar. For each rule in the grammar we use annotations to direct 

ANTLR to build ASTs. The annotations indicate which tokens are to be treated as the root of a 

sub-tree and which are leaves. We have also implemented a tree grammar, the rules of which 

match desired sub-trees and map them to the output models. The output models used in our code 

generator are built with StringTemplate [Parr, 2007], a template engine for generating formatted 

 
Figure 4.7 Overview of the transformation process with SPOT and OpenC 
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text output. To support string-based transformation, for the same rule in the tree grammar which 

matches a statement or a construct, two different types of output models (i.e., two different 

implementations in the meta-level code) are provided to either locate a place for code translation 

or to add new language constructs in the base-level code. 

4.1.4 Relationship between SPOT and MOP 

When programming with SPOT, developers can be more focused on their design 

intention of transformations with constructs and actions provided. The underlying generation and 

translation are performed in a transparent way. Moreover, SPOT provides a mechanism for 

developers to specify the translation scope and to pick up a specific point of translation using an 

exact construct name or a wildcard to match multiple points. Therefore, no annotation to the 

source code is necessary to use libraries developed in the DSL, which makes the solution non-

intrusive because translations are performed on a generated copy of the original code and the 

original code is kept intact.  

 

Figure 4.8 The implementation structure of the Code Generator 
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On the other hand, the MOP coincides with SPOT in regard to resembling developers’ 

comprehension of program transformation by allowing direct manipulation of language 

constructs. This makes it more practical to realize the translation via code generation from SPOT 

programs to the implementation in the MOP. The benefits of SPOT are partially achieved 

through the richness the MOP is able to provide. In addition, SPOT can also evolve to address 

new needs that are discovered from any capability that cannot be captured by a user need. The 

case studies in the next section served to evolve SPOT to its current state and additional case 

studies may further identify ways in which SPOT can be improved. 

In the following sections, we describe several case studies that show how our approach 

(SPOT and MOP) can be used to address the challenges mentioned at the beginning of this 

dissertation: utility functions and separation of the sequential and parallel concern of an HPC 

program, and how to extend SPOT with new notations and functions to support new applications 

domains. 

4.2 Supporting Aspect-Oriented Programming 

4.2.1 Aspect-Oriented Programming 

AOP provides new language constructs to separate crosscutting concerns. It allows 

programmers to specify the effect of a concern at a single place that would otherwise be scattered 

in multiple modules [Kiczales, 1997]. Several typical constructs provided in AOP, influenced by 

the AspectJ-style constructs, include: 

1) Join point: particular execution point in source code, for example method invocation and 

field access. 

2) Pointcut: method of identifying a group of join points by the means of a predicate 

expression. 
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3) Advice: concern-specific behavior to be performed at those join points identified by a 

particular pointcut. 

4) Aspect: a modularization of a crosscutting concern, represented by pointcuts and advice. 

An aspect weaver is a translator that merges separated concerns with the base code. The 

authors of [Harbulot and Gurd, 2004] introduced Aspect-Oriented Programming (AOP) to the 

domain of HPC by applying AspectJ (an aspect weaver for Java) [Kiczales et al., 2001] to an 

implementation of JavaMPI. Roychoudhury et al. [Roychoudhury et al., 2010] proposed to 

modularize crosscutting concerns in scientific computing libraries by taking advantage of aspect-

oriented programming in the context of generative programming. In their work, a well-known 

C++ library (Blitz++) is transformed with AOP ideas [Roychoudhury et al., 2010]. AOP has 

been shown to be effective in representing a special type of concern that crosscuts the module 

boundaries and which is quite difficult to describe using traditional object-oriented programming 

constructs. Typical examples of crosscutting concerns include logging, security checks, and 

transaction management. 

4.2.2 Building a Profiling Library  

To support AOP, the solution has to be capable of encapsulating a crosscutting concern in 

one place. A SPOT transformer is able to modify the structure and behaviour of the source code 

by applying actions (or advice as in AspectJ [Kiczales et al., 2001]) at various interesting points 

(or join points) with commonality specified with a qualification (or pointcut). Developers are 

allowed to choose a particular point of translation or to specify multiple points using a wildcard. 

In this section, we first outline the implementation of a profiling meta-program (first in 

OpenFortran and then with SPOT) to illustrate how to use our approach to modularize this 

typical crosscutting concern. 
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A primary issue the developers of HPC software need to consider is how to make full use 

of available resources. Therefore, it is crucial for developers to understand the performance 

characteristics of the computational solution being implemented. Performance information is 

usually collected by tools in the form of traces or profiles [Furlinger et al., 2005]. Via tracing, 

detailed temporal characteristics of the run-time execution are recorded to allow thorough 

analysis. Nevertheless, tracing is often intrusive and involves analyzing large amounts of data, 

which can be very time-consuming. On the contrary, profiling is less intrusive and can provide a 

general view on source locations where time is consumed [Furlinger et al., 2005]. Profiling is 

known as a useful technique in the area of HPC to help developers obtain an overview of system 

performance [Furlinger et al., 2005]. Via a profiling tool, detailed temporal characteristics of the 

run-time execution are collected to allow thorough analysis that provides a general view on 

source locations where time is consumed.  

To implement a profiling library with OpenFortran, we first need to figure out what the 

application code looks like before and after applying the library, and then choose the appropriate 

interfaces to implement it. Figure 4.9 shows the example program after being translated (the 

original code is without the statements in bold). The statements in bold are generated and added 

1.PROGRAM exampleProg  
2.   USE profiling_mod 
3.   IMPLICIT NONE 
4.   REAL a, b, c, result  
5.   REAL calculation 
7.   CALL profiling(“exampleProg:Input”) 
8.   CALL Input(a, b, c) 
9.   CALL profiling(“exampleProg:Input”) 
10.  CALL profiling(“exampleProg:Calc”) 
11.  result = Calc (a, b, c) 
12.  CALL profiling(“exampleProg:Calc”) 
13.END  

Figure 4.9 The translated example code with the profiling library 
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to the source code by OpenFortran. A helper module named profiling_mod is designed to 

provide the facilities for calculating time. The subprogram profiling in the module is called 

before and after a function is invoked to get the elapsed execution time. To achieve this, the 

internal subroutine SYSTEM_CLOCK is utilized. For each statement containing a function call in 

the source code (e.g., “input (a,b,c)” and “result = Calc (a, b, c)”), the profiling meta-program 

should be able to locate the statement and insert profiling before and after it.  

In this example, the program only has two function calls. It may not seem like a challenge 

to code manually for the purpose of implementing the profiling functionality. However, the 

situation becomes labour-intensive and error-prone when many more function calls are involved. 

It is always costly to change code back and forth in a manual fashion [Bennett and Rajlich, 

2000], which is what this meta-program automates. OpenFortran provides the ability to build a 

profiling library that automatically generates and integrates a new copy of the original 

application code and profiling code on a meta-level. To manually implement the profiling library 

within the scope of a file, we need to create a new meta-class inherited from class MetaGlobal, 

as shown in Figure 4.10. 

The member function OFExtendDefinition() needs to be overridden in 

MetaClass_Profiling_exampleProg to build the library, as shown in Figure 4.10. The member 

variable functionList in line 7 is defined in MetaGlobal, which holds all the MetaFunction 

objects representing the main program, subroutines, functions, subprograms in modules and 

type-bound procedures. Line 7 iterates through all the functions to perform translations. Line 12 

iterates through all statements in the target procedure that contain a function-call. Two additional 

call-subroutine statements are generated and inserted before and after the located function-call 

statement, as indicated from line 14 to line 18. We call buildFunctionCallStmt(…) to build a 



 

   
 

96 

function-call statement where the first parameter indicates the function name (profiling), the 

second parameter represents the return type (void) and the third parameter corresponds to the 

argument list. The argument list contains only the identifier of the function call, composed by 

combining the caller’s function name (exampleProg) and the callee’s function name (Input or 

Calc). The resulting translation is shown in Figure 4.9.  

Figure 4.11 demonstrates how to specify the same translation challenge with constructs 

provided by SPOT. The Code Generator is responsible for generating the meta-level 

implementation in OpenFortran (shown in Figure 4.10). The generated code will be saved in 

Profiling.cpp, whose name is from the Transformer’s name specified in line 1. Line 2 uses a 

wildcard to make the transformation applicable to all source files. Line 3 loops over all function 

definitions within a current file by calling FORALL(…). Line 4 inserts a use-module statement at 

Figure 4.10 The meta-class implemented for the profiling library 
 

1. class MetaClass_Profiling_exampleProg: public MetaGlobal{ 
2. public: 
3.     MetaClass_Profiling_exampleProg(string name); 
4.     virtual bool OFExtendDefinition(); 
5. }; 
 
6. bool MetaClass_Profiling_exampleProg::OFExtendDefinition(){ 
7.   for(int i=0; i<functionList.size(); i++){ 
8.     pushScopeStack(functionList[i]->getFunctionBodyScope()); 
9.     functionList[i]->addUsingModuleStatement(“profiling_mod”); 
10.    functionList[i]->functionNormalization(); 
11.    vector<SgFunctionCallExp*> funCallList=functionList[i]\ 
                                              ->getFunctionCallList(); 
12.    for(int j=0; j<funCallList.size(); j++){ 
13.     string callerName = functionList[i]->getName(); 
14.     string calleeName = get_name(funCallList[j]); 
15.     SgStatement* targetStmt = functionList[i]\ 
                                   ->getStmtsContainFunctionCall(funCallList[j]); 
16.     string identifier = callerName + ":" + calleeName;                                                 
17.     insertStatementBefore(targetStmt, buildFunctionCallStmt(\ 
                                "profiling", buildParaList(identifier))); 
18.        insertStatementAfter(targetStmt, buildFunctionCallStmt(\ 
                                "profiling", buildParaList(identifier))); 
19.     } 
20.     popScopeStack(); 
21.  } 
22.} 
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the beginning of the current function. From line 5 to line 8 the code matches all statements 

containing a function call and then adds two new function calls before and after the statement by 

invoking AddCallStatement(…) where the first argument indicates the relative location (Before 

or After), the second corresponds to the handler of the statement matched, and the third refers to 

the function name to be added. All of the remaining parameters are interpreted as the parameters 

passed to the added function call. In the code, all built-in constructs are highlighted in bold.  

4.2.3 SPOT: Beyond AOP 

SPOT is able to intercept not only function calls and variable access (featured by most 

AOP implementations such as AspectJ [Kiczales et al., 2001] and Aspect-oriented C [Gong et 

al., 2007]), but also a broader range of join points. For example, wildcards can be utilized in 

“FORALL (%var1 = %var2+%var3)” to match all assignment statements whose right-hand side 

is a plus expression. Actually, with the support from the underlying MOP, the DSL can treat any 

arbitrary line of code as a join point, thus being able to enable more complex and flexible 

translations. 

In most AOP implementations, the abstraction of concepts in the target source code is 

often at a lower level, which decreases the ability to maintain the relations between higher-level 

1. Transformer Profiling{ 
2.   Within(File *){ 
3.     FORALL(Function %fun){ 
4.      AddUseModuleStatement(profiling_mod); 
5.  FORALL(FunctionCall %funCall){ 
6.        AddCallStatement(Before, $funCall.statement, profiling, 
                           $fun.funName+”:”+$funCall.funName); 
7.        AddCallStatement(After, $funCall.statement, profiling, 
                           $fun.funName+”:”+$funCall.funName); 
8.  } 
9.    } 
10.  } 
11.} 

Figure 4.11 The profiling library specified in SPOT 
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programming entities. This can reduce the context awareness around a join point. For example, 

both AspectJ and Aspect-oriented C only support limited context exposure (e.g., using args() and 

result() to get the arguments and the result of a method invocation). However, in a MOP the 

structural information of different entities in the base-level code and the relations between them 

are clearly described and accessible by a hierarchy of meta-objects. SPOT provides a mechanism 

for developers to access this context. For instance, in Figure 4.11 we can also access the 

attributes of a function call statement via $funCall.funName. To prevent an enclosing entity from 

being affected adversely by a transformer, all enclosing contexts exposed within the transformer 

are read-only. SPOT is able to support AOP in Fortran by providing mechanisms to represent 

crosscutting concerns, thus being able to solve the problem of utility functions; however, it is 

more than an AOP extension to Fortran. With the underlying assistance of a MOP, SPOT can be 

used to perform more fine-grained transformations at more rich types of locations. 

4.3 Separating Sequential and Parallel Concerns 

In this section, we use a case study to illustrate that with our approach a parallel model 

can be utilized without directly modifying the original sequential Fortran code. This case study 

mainly demonstrates the process of using an extended version of SPOT to specify the task of 

parallelizing Dijkstra’s minimum graph distance algorithm [dijkstra_openmp, 2010] 

(implemented in Fortran 90) with OpenMP.  

OpenMP [OpenMP Review Board, 2000] is a parallel model for developing 

multithreaded programs in a shared memory setting. It provides a flexible mechanism to 

construct programs with multithreads in languages like C, C++ and Fortran via a set of compiler 

directives (in the form of comments for Fortran) and run-time library routines. In OpenMP, a 

master thread forks a number of threads and tasks are divided among them. The run-time 
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environment is responsible for allocating threads to different processors on which they run 

concurrently. OpenMP performs parallelization transparently to programmers. 

 

 
 

 

 

  

SPOT Constructs OpenMP Directives Type 

OmpUsePair(<directive>, <startStmt>, 
<endStmt>, <clauses>) 

OmpUsePair((<directive>, <targetStmt>, 
<clauses>) 

PARALLEL, PARALLEL DO, 
DO, ORDERED, SECTIONS, 
WORKSHARE, SINGLE, 
TASK, MASTER, CRITICAL 

Pair 
Directives 

OmpUseSingleBefore(<directive>, 
<targetStmt>, <clauses>) 
OmpUseSingleAfter(<directive>, 
<targetStmt>, <clauses>) 

ATOMIC, BARRIER, 
SCHEDULE, TASKWAIT, 
FLUSH, THREADPRIVATE 

Single 
Directives 

OmpGetEnVariable(<name>, <var>) 
OmpSetEnVariable(<name>, <var>) 
OmpUnsetEnVariable(<name>, <var>) 
OmpDestroyEnVariable((<name>, <var>) 
OmpTestEnVariable((<name>, <var>) 
OmpInitEnVariable((<name>, <var>) 
OmpInFinal(<var>) 

OMP_SET_NUM_THREADS 
OMP_GET_NUM_THREADS 
OMP_GET_THREAD_NUM 
OMP_SET_DYNAMIC 
OMP_GET_DYNAMIC 

…… 

Run-time 
Library 
Calls 

Table 4.3 SPOT functions for using OpenMP directives and APIs 
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4.3.1 Building an OpenMP Library 

SPOT is designed to model the process of code modification by providing notations and 

built-in functions for systematic change of an entity (e.g., adding, updating, or deleting a 

statement), which makes it extensible by adding new language elements to capture a particular 

domain involving code evolution. For this case study, we have extended SPOT by developing a 

set of new constructs and actions particularly for instrumenting serial code with the parallel 

capabilities of OpenMP. The design goal is to separate the management of the sequential and 

parallel code by automating their integration. That is, the serial code and the parallelizing 

operations expressed in extended SPOT are maintained separately and the parallelized 

application can be generated on demand in a new copy, while keeping the original serial code 

intact. 

 We are not trying to create a new language to replace OpenMP, because OpenMP itself is 

well-designed and flexible to use. Instead, we have added new functions in SPOT (listed in the 

first column of Table 4.3) to express the behaviour of utilizing OpenMP directives and APIs to 

improve the flexibility of usage by facilitating the separation of management for the sequential 

 

Type Example Transformation Effect 

Pair Directives 

OmpUsePair(PARALLEL, 
startStmt, endStmt, 
Private(var1, var2), 
Shared(var3)….) 
 

!$OMP PARALLEL 
PRIVATE(var1, var2) 
SHARED(var3) 
  startStatement 
  other sequential code 
  endStatement 
!$OMP END PARALLEL 

Single Directives 
OmpUseSingleBefore(BARRIER, 
targetStmt) 

!$OMP BARRIER 
  targetStatement 
  other equential code 

Run-time Library Calls 
OmpGetEnVariable(NUM_THREADS, 
var) 

 
var = 
omp_get_num_threads( )  
 

 

Figure 4.12 Examples of calling OpenMP functions of SPOT  
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and parallel code. Two types of directives were added to SPOT: pair directives that are inserted 

by wrapping a sequence of statements (i.e., using startStmt and endStmt to identify the points of 

insertion, and targetStmt if only one statement is wrapped) and single directives that are inserted 

before or after a target statement (i.e., using targetStmt). All clauses, if any, can be directly added 

in these functions as arguments. Figure 4.12 illustrates the final transformation effects of calling 

different types of OpenMP functions of SPOT. The rest of this section illustrates how to create a 

parallel program in SPOT that captures the operations to add parallelism of OpenMP into 

Dijkstra’s minimum graph distance algorithm.  

Dijkstra’s minimum graph distance algorithm is known as a graph search algorithm for 

determining all shortest paths from a single node in a graph to all other nodes. The algorithm 

works by maintaining the set, denoted as T, of vertices for which shortest paths need to be found, 

and as Di the shortest distance from the source node as Vs to vertex Vi. Initially, a large number 

is assigned to all Di. At each step of the algorithm, remove the vertex Vn in T with the smallest 

distance value from T and examine each neighbor of Vn in T to determine whether a path through 

Vn would be shorter than the current best-known path. The core code snippet of the sequential 

version of Dijkstra’s algorithm is shown in Figure 4.13.  

1. subroutine dijkstra_distance (nv,ohd,mind) 
2. !some other code 
3.   connected(1) = .true. 
4.   connected(2:nv) = .false. 
5.   mind(1:nv) = ohd(1,1:nv) 
6.   do step = 2, nv 
7.     call find_nearest (nv,mind,connected,md mv) 
8.     if(mv/=-1) then 
9.       connected(mv) = .true. 
10.    end if 
11.    if(mv/=-1) then 
12.      call update_mind (nv,connected,ohd,mv,mind) 
13.    end if 
14.   end do 
15. end   

Figure 4.13 The core code snippet of Dijkstra’s algorithm 
 



 

   
 

102 

To parallelize the algorithm with OpenMP, we need to manually divide the nodes of the 

graph among multiple threads such that each thread is responsible for computing the assigned 

group of nodes. Figure 4.14 indicates the resulting parallel program in which a parallel region 

(around the do statement) is identified and expressed with “$omp parallel private (…)” and 

“$omp end parallel.” Several other advanced OpenMP directives are used to make sure the 

algorithm works correctly, such as “$omp critical,”  “$omp single,” and “$omp barrier.” 

Figure 4.15 shows the final parallelization code in SPOT using the extended set of 

functions that add the OpenMP directives and APIs. We defined a transformer with the name of 

“paraDijkstra.” All translations are performed within a function named dijkstra_distance as 

1. subroutine dijkstra_distance (nv, ohd, mind) 
2.  use omp_lib 
3. !some other code including variable declarations 
4. !$omp parallel private(my_first, my_id, my_last, my_md, my_mv, my_step)  
5. !$omp shared (connected, md, mind, mv, nth, ohd) 
6.  my_id = omp_get_thread_num ( ) 
7.  nth = omp_get_num_threads ( )  
8.  my_first = ( my_id * nv ) / nth + 1 
9.  my_last  = (( my_id + 1) * nv ) / nth 
   
10. do step = 2, nv 
11.    call find_nearest(my_first, my_last, nv, mind, connected, my_md, my_mv) 
12.!$omp critical 
13.    if ( my_md < md ) then 
14.      md = my_md 
15.      mv = my_mv 
16.    end if 
17.!$omp end critical 
18.!$omp barrier 
 
19.!$omp single 
20.    if(mv/=-1) then 
21.      connected(mv) = .true. 
22.    end if 
23.!$omp end single 
 
24.!$omp barrier 
25.    if(mv/=-1) then 
26.      call update_mind(my_first, my_last, nv, connected, ohd, mv, mind) 
27.    end if 
28.!$omp barrier     
29. end do 
30.!$omp end parallel 
31.end 

Figure 4.14 The snippet of parallelized Dijkstra’s algorithm 
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indicated in line 2. Most of the SPOT code is self-explanatory with the names suggesting their 

meaning. In line 7, we use the function “OmpGetLoopIndexes4Thread(firstIndex, lastIndex)” to 

model the task that is often manually performed to divide loop iterations among available 

threads. The resulting generated code corresponds to lines 6 to 9 in Figure 4.14, where the first 

and last indices for each thread are held respectively by firstIndex and lastIndex.  

One challenging issue facing most program transformation systems is how to allow users 

to precisely express the location for translation. As shown in Figure 4.13, there are two if-

statements with the same condition (line 8 and line 11). In order to distinguish them, we call 

“GetStatement(“if(mv/=-1)”, 1)” to get the first matched if-statement in line 15 in Figure 4.15 

and “GetStatement(“if(mv/=-1)”, 2)” to obtain the handler of the second if-statement, where the 

number 2 can be replaced by any arbitrary number n to represent the nth statement within the 

current scope showing the same pattern. In addition, “GetStatement” can be used to return a list 

of all statements matched.  

1. Transformer paraDijkstra{ 
2.   Within(Function dijkstra_distance){  
3.     AddUseModuleStatement(omp_lib); 
4.     AddVariablesSameType(Integer, my_id, my_first, my_last, my_md, my_mv, nth); 
5.     Statement doStmt = GetStatement("do step = 2, nv"); 
6.     Before(doStmt){ 
7.       OmpGetLoopIndexes4Thread(my_first, my_last); 
8.     } 
9.     OmpUsePair(PARALLEL, doStmt, private(my_first,my_id,my_last,my_md,my_mv,step),  
                      shared(connected, md, mind, mv, nth, ohd)); 
10.    StatementFunctionCall callfind=GetStatement(“call find_nearest()”); 
11.    SetParameter(callfind, my_first, my_last, nv, mind, connected, my_md, my_mv); 
12.    Statement ifST = AddStatement(After, callfind.statement,  
                                     “if(my_md<md) then md=my_md mv=my_mv end if”); 
13.    OmpUsePair(CRITICAL, ifST); 
14.    OmpUseSingleAfter(BARRIER, ifST);    
15.    Statement ifST2 = GetStatement(“if(mv/=-1)”, 1); 
16.    OmpUsePair(SINGLE, ifST2); 
17.    Statement ifST3 = GetStatement(“if(mv/=-1)”, 2); 
18.    OmpUseSingleBefore(BARRIER, ifST3);    
19.    OmpUseSingleAfter(BARRIER, ifST3);    
20.   }      
21. } 
  

Figure 4.15 The SPOT program for parallelizing the algorithm 
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The parallelization specification in SPOT as indicated in Figure 4.15 will be translated 

into a meta-program in OpenFortran. The meta-program will automate on-demand the insertion 

of  OpenMP directives or API calls to the sequential version of Dijkstra’s program in a generated 

copy of code, as in Figure 4.14, while the original source code, as in Figure 4.13, is kept intact. 

Compared with the resulting parallelized program, the original algorithm is more readable 

without any pollution from the parallel facilities. In a similar way, for the same Dijkstra’s 

algorithm, our approach can be used to implement some other parallelization libraries with 

different parallel programming models, e.g., MPI [Gropp et al., 1999], CUDA [Nickolls et al., 

2008] and OpenAcc [Wienke et al., 2012]. In this case, the core logic of the application and the 

parallel code can be developed and evolved separately. One problem that needs to be solved in 

our future work is how to facilitate simultaneous programming between domain experts and 

parallel programmers by decreasing the dependency of a specific parallelization library on code 

changes in the source code.  

This case study mainly illustrates that our framework can be used to deal with the 

parallelization concerns. It also provides evidence to show that SPOT is extensible to support 

application domains that involve source code modification. In this case study new functions were 

designed to capture the operations for adding parallelism into the sequential code, including 

rewriting some portion of the original code and inserting OpenMP directives or APIs. 

4.4 Supporting Extension for New Application Domains 

In this subsection, we use another case study to demonstrate how to extend SPOT by 

designing new language constructs to capture an application domain need that entails modifying 

source code. The specific focus of this case study is to enable some primitive form of fault-

tolerance for a system by adding checkpointing facilities into source code. The design focus is to 
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enhance SPOT with new constructs capturing the essence of checkpointing in a way that can be 

applied to other contexts and different programs.  

4.4.1 Introduction to Checkpointing  

Clusters of computers are in common used to implement cost-effective systems in the 

HPC area. It is usually true that the number of computing components is proportional to the 

computational power a cluster can provide; however, one fact that needs to be noticed is that the 

more computing components available, the higher the chances some of them may fail. Therefore, 

fault-tolerance is indispensible in HPC systems.  

Checkpointing is a technique that makes a system fault-tolerant by saving a snapshot of 

critical data periodically to stable storage that can be used to restart the execution in case of 

failure [Koo and Toueg, 1987]. A system with the capability of checkpointing can tolerate most 

kinds of software and hardware failures as long as the previous states are saved in a correct and 

consistent manner. In case of failures, instead of starting all over, the execution can be restarted 

from the latest checkpoint read from the stable storage. Checkpointing is especially beneficial for 

HPC applications, which usually run for a considerable amount of time and on distributed 

platforms, to prevent losing the effect of previous computation.  

There are traditionally three common levels to implement checkpointing [Walters and 

Chaudhary, 2009]: 

1) Application-level checkpointing where user applications are inserted with checkpointing 

primitives to add source code performing checkpointing. In [Bronevetsky et al., 2003], 

the authors proposed an automated application-level checkpointing mechanism for MPI 

programs. A pre-compiler is used to perform source code translation to add code that 
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performs state saving. The client users only need to make a function call to 

PotentialCheckpoint at points in their code where they think checkpointing is needed. 

2) User-level checkpointing where checkpointing is performed by separate libraries. It is 

comparatively portable, but has limited access to kernel-specific data (e.g., process IDs). 

3) Kernel-level checkpointing where checkpointing is performed by a module in a kernel. 

The implementation is highly associated with the operating system, which makes it less 

portable. 

In systems with distributed shared memory, checkpointing is commonly implemented by 

two approaches: 

1) Coordinated checkpointing in which all processes work cooperatively to maintain 

coherent checkpoints: a checkpoint is taken only after all processes agree on the need and 

all processes are rolled back to the same most recent consistent state point. 

2) Communication induced independent checkpointing in which messages passed between 

processes are responsible for keeping the independently recorded points consistent and 

up-to-date. One obvious drawback of this mechanism involves the overhead incurred 

from the message handling. 

4.4.2 Building a Checkpointing Library 

This subsection presents a checkpointing library for Fortran programs, implemented with 

our approach by supplementing SPOT with new constructs. The first step is to obtain an 

understanding of the terminology and concepts related to checkpointing. This can be achieved by 

surveying existing work and implementations [Arora et al., 2011; Bronevetsky et al., 2003; 

Czarnul and Frączak, 2005; Kalaiselvi and Rajaraman, 2000] and by observing the process in 

which checkpointing is performed on legacy software. To perform application-level 
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checkpointing, users should be allowed to: 1) select variables and data structures that need to be 

saved for any future restarting needs, 2) specify the point in the source code where checkpointing 

information is captured and the point to restart, 3) determine the frequency of checkpointing 

(e.g., if the check point is within a loop, how often should checkpointing take place), and 4) 

choose the type of the system to be checkpointed, such as sequential or parallel. As shown in 

Table 4.4, we have designed new constructs that capture the core features involved in 

implementing checkpointing, where the variant features should be specified by users while the 

unchanging features can be fulfilled through automatic generation.  

As shown in Table 4.4, developers can use StartCheckpointing and StartInitializing in 

pairs to specify the place where to insert checkpointing code and where to restart the program 

after a failure. Here, <location> can be assigned with After or Before, and <statement> can be 

any Fortran statement wrapped within double quotes or a handler of a statement obtained by 

calling retrieve functions (as listed in Table 4.1). Users can specify the variables that need to be 

saved at a checkpoint by calling CKPSaveType, where Type can be replaced by other data types 

such as Integer, Real, Logical or Character. Accordingly, CKPSaveType can be called to specify 

the variables that should be obtained from the storage when restarting. Developers are allowed to 

1. program CalculatePI 
2.  integer n, i 
3.  real*8 t, x, pi, f, a 
4.  f(a) = 4.d0 /(1.d0 + a*a)   
5.  pi = 0.0d0 
6.  n = 100000                     
7.  t = 1.0d0/n                   
8.  do i = 1, n 
9.     x = t * (i - 0.5d0) 
10.    pi = pi + f(x) 
11. end do 
12. print *, "The value of pi is ", pi 
13.end 

Figure 4.16 The Fortran program for calculating the value of Pi 
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specify the frequency of checkpointing by calling CKPFrequencey if a checkpoint is in a loop 

and to choose the type of the target application (sequential or parallel) using CKPType. In some 

special occasions, CKPSaveAll can be invoked to signal the underlying translation framework to 

perform checkpointing for every variable within a scope at every location where the variable is 

updated. In this case, calling CKPReadAll is optional, because even if CKPReadAll is not used 

explicitly, our framework still needs to generate code to read the values of all variables from 

storage before the variable values are accessed.  

 Figure 4.16 shows a simple program for calculating the value of π in Fortran and Figure 

4.17 demonstrates the SPOT code specifying the translation involved in generation and insertion 

of checkpointing and restarting code. We first define a transformer and name it 

CheckpointingCalculatePI and call Within to locate the program CalculatePI, as indicated by 

line 1 and line 2. For the program in Figure 4.16, suppose we would like to save the value of pi 

per 5 iterations of the loop after the statement where pi is updated. We first obtain the handler of 

the statement “pi=pi+f(x)” and call StartCheckpointing to start the process of checkpointing as 

shown in line 4. Line 5 calls CKPSaveReal to specify that the variable pi needs to be 

checkpointed; Line 6 and line 7 specify the frequency and the type of the application. 

1. Transformer CheckpointingCalculatePI { 
2.   Within(Function CalculatePI){ 
3.     Statement stmt = GetStatement(“pi = pi + f(x)”); 
4.     StartCheckpointing(After, stmt){ 
5.        CKPSaveReal(pi); 
6.        CKPFrequencey(5); 
7.        CKPType(Sequential); 
8.     } 
9.     StartInitializating(Before, “do i=1, n”){ 
10.       CKPReadReal(pi); 
11.    } 
12.  } 
13. } 

Figure 4.17 The checkpointing specifications expressed in SPOT 
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StartInitializing is invoked in line 9 to specify the restarting point to occur before the do 

statement, and CKPReadReal is used to specify that variable pi needs to be restored with the 

value read from the storage. 

 

New Constructs for the Domain of Checkpointing 

      StartCheckpointing(<location>, <statement>){<actions> or <parameters>} 
StartInitializing (<location>, <statement>){<actions> or <parameters>} 

Actions: 
CKPSaveInteger(<variable name>) 
CKPSaveIntegerArray1D(<variable name>, <index>) 
CKPSaveIntegerArray2D(<variable name>, <row number>, <column number>) 
CKPSaveAll() 
CKPReadInteger(<variable name >) 
CKPReadIntegerArray1D(<variable name>, <index>) 
CKPReadIntegerArray2D(<variable name>, <row number>, <column number>) 
CKPReadAll() 

Parameters: 
 CKPFrequencey(<number>) 
 CKPType(<Checkpointing Type>) 

 

Figure 4.18 illustrates the program for calculating the value of π after adding 

checkpointing and restarting code. As indicated by line 10 and line 16, the loop variable i is 

checkpointed even though it has not been mentioned in the SPOT specification. These two lines 

of code are created whenever the underlying framework detects that the point of checkpointing is 

within a loop and the point of restarting is before the same loop. All the highlighted statements 

are automatically generated and inserted and the whole process is transparent to a developer. The 

responsibility of a developer is to create a specification in SPOT indicating which data should be 

saved and where, as well as the frequency of checkpointing. Instead of directly reengineering the 

original source code, the code with checkpointing facilities is generated in a different copy. Our 

Table 4.4 Supplementary constructs for SPOT 
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approach is effective in realizing checkpointing as a pluggable feature by separating the 

specification in SPOT from the target applications.  

4.5 Summary 

Currently, we have implemented a version of SPOT that supports several types of HPC 

application needs. Our implementations are far from complete and are only used for the purpose 

of demonstrating the capability of our approach. For example only a few types of statements in 

the base language can be directly matched and transformed. More language constructs will be 

added in our future work to address these limitations  

Together with the underlying MOP (OpenFortran or OpenC), we have laid a solid 

foundation for SPOT to be extended through the creation of new language constructs. We will 

continue to enrich SPOT with more constructs in order to support additional types of translation 

in different application domains. 

The work described in this chapter is mainly focused on SPOT and its potential as a DSL  

1.  program CalculatePI 
2.   integer n, i 
3.   integer start_i; 
4.   real*8 t, x, pi, f, a 
5.   f(a) = 4.d0 /(1.d0 + a*a)   
6.   pi = 0.0d0 
7.   n = 100000                     
8.   t = 1.0d0/n 
9.   retrieveVariableReal(“pi”, pi);                
10.  retrieveVariableInteger(“i”, start_i); 
11.  do i = start_i , n 
12.    x = t * (i - 0.5d0) 
13.    pi = pi + f(x) 
14.    if(MOD(i,5) == 0){ 
15.      saveVariableReal(“pi”, pi); 
16.      saveVariableInteger(“i”, i); 
17.   } 
18.   end do 
19.   print *, "The value of pi is ", pi 
20. end 

Figure 4.18 The generated Fortran program with checkpointing code 
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to provide a higher level of abstraction for expressing program transformations. SPOT allows 

direct manipulation of program entities based on the underlying capabilities available in the 

OpenFortran MOP, which brings the power of meta-programming to Fortran. With our approach, 

source-to-source program translation libraries can be built and then applied in a manner that is 

transparent to developers.  

Although it is conceptually more straightforward to use a MOP to implement 

transformation libraries than directly calling APIs of ROSE to manipulate ASTs, we believe that 

there is a learning curve for most developers to become familiar with the concepts of using a 

MOP. Therefore, we have created a DSL that can be used on top of the MOP (on a meta-meta-

level) to improve the ability to specify program transformations. Developers can use carefully 

designed language constructs to express transformation tasks in a transparent manner, whereby 

they do not need to know the details on how the transformations are performed underneath. Not 

only can SPOT be used to support AOP in Fortran and C, it can also be used to specify more 

fine-grained transformations at more diverse source locations. SPOT also supports string-based 

transformations, which allows a developer to embed real Fortran code when developing a 

transformer. SPOT can be considered as an extension to Fortran or C in order to enable source-

to-source transformations. By raising the abstraction level, SPOT has the potential to offer gains 

in productivity due to its generative capabilities. With the aid of generative programming, a few 

lines of SPOT code may be translated to an executable solution in a MOP composed of a 

hundred lines of code in C++. 

Our experience has shown that our approach (i.e., a DSL plus a MOP), as a form of 

program extension, can be used to address a wide range of problems in HPC (but not limited to 
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HPC) by facilitating the implementation of program translators, especially suitable for those 

involving crosscutting and separation of parallelization concerns.  
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CHAPTER 5 

OPENFOO: A GENERIC FRAMEWORK FOR EXTENDING ARBITRARY 
PROGRAMMING LANGUAGE WITH META-PROGRAMMING  

 
MOP extension has been shown to be an effective way to bring the power of meta-

programming to an existing programming language through exposing interfaces for developers 

to access the internal implementation of the language [Kiczales et al., 1993]. Most related 

research has focused on constructing a MOP for a particular language and primarily for object-

oriented languages [Chiba, 1995; Tatsubori et al., 1999; Python, 2008; Bobrow et al., 1993]. 

There is a general lack of infrastructure support for language extension in terms of building a 

MOP for an arbitrary language, especially for legacy programming languages. Therefore, another 

contribution of this dissertation is to investigate and implement a generalized framework suitable 

for extending an arbitrary programming language through a MOP.  

In this chapter, we mainly present our solution to the research question Q5 introduced in 

the first chapter (i.e., how to generalize the framework to make it language-independent?). In 

addition, we also describe our work in generalizing the front-end DSL (SPOT) originally created 

for simplifying the usage of the Fortran MOP, to make it applicable to newly created MOPs. 

5.1 An Extensible MOP Construction Approach 

In this section, we demonstrate an extensible and scalable framework, called OpenFoo, 

which can be used to implement a MOP, not from scratch, but with existing artifacts (i.e., models 

in UML and source code), for modern languages such as Java and C++, as well as legacy 
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languages such as Fortran, C and Pascal. We present the primary components of this approach in 

detail, including their benefit and working mechanisms.  

During our previous efforts in the implementation of a MOP for Fortran and then for C, 

we observed that a substantial proportion of work is duplicated. Thus, it may be beneficial to 

investigate an approach that is independent of a particular language and can be used to instantiate 

a MOP for a target language. Instead of building a MOP from the beginning, as we did in [Yue 

and Gray, 2013] for Fortran, we raised the level of abstraction for MOP construction by 

extracting language-independent components and their associated relationships, and 

implemented them in a readily extensible library, called OpenFoo. As its name suggests, Foo 

might be replaced by the name of any GPL. We have also designed OpenFoo conforming to a set 

of graphic models in UML, which can help to make the idea of MOPs more understandable for 

developers. A model refers to an abstract representation of a problem domain, which can be 

realized by corresponding source code. 

Our approach is extensible because the core portion of source code in OpenFoo captures 

the general concepts involved in MOP construction and the relationships between them and can 

be extended to accommodate particular features for a new GPL. The scalability of the framework 

is achieved through ROSE as the underlying transformation engine. ROSE can be used to 

perform source-to-source code transformation for a dozen of mainstream GPLs with the support 

from many available languages tools, such as lexers, parsers and analyzers. In addition, ROSE 

has been used to address industrial strength problems and applied to large-scale code bases 

[Quinlan, 2012]. We chose ROSE from a group of available candidates because it provides 

sufficient interfaces that allow users to specify code transformation through coding in an object-

oriented programming (OOP) language (i.e., C++). A MOP by nature is more natural when 
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developed in an object-oriented context. The abstraction level supported by ROSE is appropriate 

for the purpose of MOP construction. ROSE also plays an important role in enhancing the 

extensibility of our approach because it utilizes a consistent intermediate representation (IR) after 

parsing source code written in different programming languages it supports. Most of the APIs for 

manipulating ASTs are shared among various languages. This makes it possible for our approach 

to be experimented with different GPLs and also increases the possibility to reuse code artifacts 

in OpenFoo. 

5.1.1 OpenFoo Design Architecture  

Figure 5.1 shows the overview of our approach to implement a MOP extension for 

Fortran that can then be used to transform source Fortran code. The Fortran MOP is constructed 

on the basis of the OpenFoo prototype by adding new components pertaining to the syntax and 

semantics of Fortran. The Fortran MOP takes as input the meta-level transformation libraries and 

base-level Fortran code and generates the transformed Fortran code to address the concerns 

expressed in meta-programs. The transformed Fortran code consists of both the original and 

newly generated Fortran code, which can be compiled by a traditional Fortran compiler like 

gfortran. 

 

Figure 5.1 Overview of the transformation process with Fortran extension 
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In order to automate code changes through a MOP, a meta-program, composed of a set of 

meta-objects symbolizing the entities of a source program to be transformed, needs to be built 

and maintained. Through meta-objects, corresponding program entities are promoted to first-

class to allow for manipulation. The procedure for fulfilling this can be described as follows. 

Firstly, an AST is constructed with a built-in parser integrated by ROSE (Open Fortran Parser 

[OFP Link] is used for Fortran). For any associated top-level entities in the source program (e.g., 

functions or variables), a corresponding meta-object is formed while traversing the AST. A 

meta-object exposes some interfaces (e.g., public member functions) for accessing and 

modifying its attributes that represent the structural information of the entity in base-level source 

 

Figure 5.2 OpenFoo overall structure represented as a class diagram 
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code. At last, all affected meta-objects are synthesized and the transformed Fortran code is 

regenerated from the restructured AST.  

Figures 5.2, 5.3, and 5.4 demonstrate an excerpt of the specification models of OpenFoo 

represented as a collection of class diagrams in UML, including meta-classes (i.e., the class from 

which a meta-object is instantiated), their attributes, and mainly the structural relationships 

among meta-objects. It should be noted that the basic structure of OpenFoo is designed based on 

some generic features shared by the family of languages with block-structured syntax. As evident 

in Figure 5.2, for a typical language construct such as a function, a variable, and a statement, 

there is a corresponding meta-class to describe it in OpenFoo (e.g., MetaFunction, 

MetaVariable, and MetaStatement). The meta-class MetaUserDefinedType is used 

support a user’s declaration, such as a derived data type and a module in Fortran 90, a struct in C 

and a class in C++, with different semantics. In addition, MetaExpression is used to depict 

some combination of sub-expressions, variables or constants, connected by operators (e.g., “+”, 

“<”, and “+=”). MetaGlobal is a special meta-class that does not correspond to any actual 

language entity, but is very useful for grouping a set  

 

Figure 5.3 OpenFoo variable structure as a class diagram 
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of meta-objects in order to perform project-wide transformation. All built-in meta-classes are 

subclasses of the meta-class named MetaObject.  

MetaGlobal, MetaFunction, and MetaUserDefinedType are three built-in 

scope meta-classes representing a possible scope within which the target source code is to be 

transformed (e.g., manipulating a function, a user defined module, or even a whole project 

including multiple files). As shown in Figure 5.2, MetaGlobal can contain multiple 

MetaFunctions, MetaUserDefinedTypes, and MetaVariables; 

MetaUserDefinedTypes may have a list of MetaFunctions and MetaVariables; 

MetaFunction might include multiple MetaVariables and MetaStatements. Figure 

5.3 indicates that MetaVariable depends on MetaVariableType, which can be further 

categorized as a variable with a single data item and an array variable holding a collection of 

data items. MetaVariableType is an interface the meta-class MetaUserDefinedType 

 

Figure 5.4 OpenFoo statement structure represented as a class diagram 
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has to implement and it may also refer to a list of possible built-in variable types. As depicted in 

Figure 5.4, there are two types of statements: single statements (e.g., function call statements, 

variable declaration statements, and assignment statements) and scope statements (e.g., condition 

statements and loop statements), which serve as a container holding a set of other statements. 

StatementType is an enumeration of possible statement types. All meta-classes and 

enumerations appearing in these three figures together constitute the fundamental components 

for constructing a MOP.  

Meta-classes expose a set of member functions in order to allow users to modify the 

attributes of their meta-objects. Manipulation of a function definition is the basic level that any 

instance of OpenFoo supports. Usually, transforming the definition of a user defined type or the 

whole project is ultimately delegated to that of the function definition. Therefore, most of the 

facilitating member functions are defined in the meta-class MetaFunction. We have created a 

list of member functions that might be used when instantiating OpenFoo for a particular 

language. The goal is to maximize the reusability of source code and thus to reduce the effort for 

constructing a new MOP. For a detailed list of member functions, please refer to [OpenFoo 

Implementation, 2015]. 

The interfaces a MOP can provide may manifest as a set of classes or methods so that 

users can create variants of the default language implementation incrementally by sub-classing, 

specialization, or method combination. In a MOP implemented in a class-based object-oriented 

language, the interfaces typically include at least the basic functionality of instantiating a class, 

accessing attributes and invoking methods. With any instance of OpenFoo, developers are 

allowed to define meta-classes specializing certain types of transformation by sub-classing 

standard built-in meta-classes. Library developers need to define their customized meta-class by 
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sub-classing built-in scope meta-classes and thus be able to access attributes and invoke methods 

carefully designed within them.  

The member function OpenFooExtendDefinition declared in MetaObject should be 

overridden by all subclasses to perform callee-side adaptions for the definition of a module or a 

function (e.g., adding a new subroutine in a module, or inserting some statements in a 

procedure). An OpenFoo instance also supports caller-side translations via overriding the 

following member functions of MetaObject: 

• OpenFooExtendFunctionCall(string funName): to manipulate a function invocation where 

it is called   

• OpenFooExtendVariableRead(string varName): to intercept and translate the behavior of 

a variable read 

• OpenFooExtendVariableWrite(string varName):  to intercept and translate the behavior of 

a variable write 

It is nontrivial to instantiate OpenFoo for a broad range of programming languages due to 

their differences in syntax and semantics. However, languages assuming the same programming 

paradigm may share some concepts at an abstract level so that some portion of our approach can 

be reused. The next two subsections illustrate how OpenFoo can be used as a prototype to 

implement a MOP for Fortran 90, a structured legacy language, and C++, an object-oriented 

mainstream language. The examples show how languages across different paradigms can share 

model concepts and code artifacts through extension.  

5.1.2 Instantiating OpenFoo with Fortran 90 Extension 

Figure 5.5 shows the class diagram snippet representing the design structure of the 

instance of OpenFoo for Fortran 90 by extending its core models. For conciseness, we have 
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integrated the three pieces shown in Figures 5.2, 5.3 and 5.4 into one class diagram model 

(within the OpenFoo Class Diagram area) and omitted purposely in the details of meta-classes. 

The OpenFoo model captures all of the essential concepts that are intrinsic to MOP 

implementation and independent of any particular programming language. Therefore, the main 

task involved in creating an OpenFoo instance for a particular GPL is to extend every language-

specific entity from an appropriate definition. One thing worth noting is that the scope 

 

Figure 5.5 Class diagram snippet of OpenFoo with Fortran extension 
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information, an essential but complicated issue in program transformation, has already been 

considered internally in our prototype.  

Naturally, language developers have to first gain a deep understanding towards the syntax 

and semantics of the target programming language, as well as the mechanism of a MOP before 

being able to identify the appropriate super-class for a language entity from which to inherit. For 

example, Fortran 90 introduced two important improvements to earlier Fortran versions: one is a 

user-defined data type that allows programmers to define their own composite data types, and 

the other is a module that groups a collection of data, type definitions and procedure definitions. 

As demonstrated in Figure 5.5, two meta-classes are designed respectively for them 

(MetaModuleFortran and MetaDerivedDataTypeFortran) and are derived from 

MetaUserDefinedType. These two Fortran-specific meta-classes can be further customized 

according to their features, which can be achieved through toggling on/off flags defined within 

MetaUserDefinedType. For example, according to Fortran 90 syntax, 

MetaDerivedDataTypeFortran only allows variables to be included within a user-

defined data type, but no procedures. In contrast, a module is a program unit that can be stored in 

a separate file and compiled separately. A module can hold variables, procedures and user-

defined types, but a module in Fortran cannot be used to declare instances as a derived type like 

a class in C++. 

There are three types of procedures in Fortran: program, function, and subroutine. 

Accordingly, three sub-classes inheriting from MetaFunction are implemented as seen in 

Figure 5.5: MetaProgramFortran, MetaFunctionFortran, and 

MetaSubroutineFortran. The main differences among them are that a program serves as 

the entry of code with no input parameters or return data, a function can have multiple input 



 

   
 

123 

arguments, only one return value and can be used directly in an expression, and a subroutine may 

have multiple input and output arguments, but cannot be placed in an expression. Different built-

in variable types that the target language supports need to be listed, such as INTEGER, REAL, 

and LOGICAL in Fortran 90.  

Another important step involves creating meta-classes for different language-specific 

statements, which is the task requiring the most adaptation, and thus the most effort, when 

adapting OpenFoo. To facilitate this task, we created a set of meta-classes in OpenFoo for 

several generic statements that are shared the most among multiple GPLs, such as variable 

declaration, assignment, function call, condition, and loop statements. Variations need to be 

made through sub-classing and based on the uniqueness of the target language. For example, two 

sub-classes derived from FunctionCallStatement are added to model the difference 

between invoking functions and subroutines: FunctionCallStatementFortran and 

SubroutineCallStatementFortran. For those statements that are unique to Fortran 90 

(e.g., use module, implicit, and common statements), corresponding meta-classes need to be 

created separately. Depending on the power and completeness anticipated for a new MOP, 

language developers are free to add desired member functions for manipulating these statements. 

Our experience suggests that for most of the statements, it usually suffices to allow only a few 

typical operations. With the assistance of models in the form of class diagrams, we belive that 

the effort spent in creating an instance of OpenFoo can be reduced. 

5.1.3 Instantiating OpenFoo with C++ Extension 

Figure 5.6 shows the corresponding class diagram for constructing a MOP for C++ by 

extending the generic core models of OpenFoo. Similar to the Fortran 90 MOP described in the 

last section, for every language-specific entity in C++, a meta-class is defined from an  
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appropriate class definition in the core model. As show in Figure 5.6, classes in purple depict the 

points of variability existing in C++ syntax.  

Classes are the essential feature of C++ that add the concept of object orientation to the C 

programming language and are often called user-defined types. Structs are very similar to classes 

in C++. Therefore, two meta-classes MetaClassCpp and MetaStructCpp that inherit from 

MetaUserDefinedType are created to represent classes and structs, respectively. Unlike 

 

Figure 5.6 Class diagram snippet of OpenFoo with C++ extension 
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modules in Fortran, developers can define objects by instantiating classes or structs, which needs 

to be specified during inheritance. In addition, the concrete function definitions in C++ and in 

Fortran are quite different due to the dissimilarity in their underlying grammar, so we defined a 

particular meta-class for C++ as MetaFunctionCpp. In C++, iteration can be realized with 

three different formats using keywords such as while, do-while, and for. Accordingly, we created 

three meta-classes inherited from the built-in meta-class LoopStatement that is defined as a 

generic meta-class for an iteration statement, as follows: WhileStatementCpp, 

DoWhileStatementCpp, and ForStatementCpp. A MetaExpression attribute 

defined in LoopStatement represents the boolean condition dictating whether to continue 

with the next iteration, which can be accessed in all three subclasses. For ForStatementCpp, 

member functions for manipulating the start, the end, and the incremental values are provided. 

5.1.4 Lessons Learned 

The construction of a generic MOP model helps to generalize the commonalities among 

distinct GPLs. Each common concept may be refined using language-specific model extensions. 

Moreover, an extension of the OpenFoo model may categorize commonalities within a paradigm 

that can be further reused. For example, the C++ model extends the OpenFoo model with 

common object-oriented concepts, which can then be reused by other OO languages, and the 

Fortran 90 model can serve as the foundation for other structured languages. 

ROSE uses consistent IR nodes in ASTs to represent language entities in different 

programming languages it supports, so that the same set of APIs can be used to manipulate 

entities commonly shared by different languages. For some language-specific entities, a constant 

is used to differentiate them. Table 5.1 lists the frequently used constants that need to be 

specified when sub-classing generic meta-classes defined in OpenFoo to uniquely identify a 
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language entity. Most of the constants are shared between multiple languages and a few are used 

only for a particular language. 

The underlying transformation engine ROSE plays an important role in increasing the 

reusability of code artifacts in OpenFoo. However, the dependency on ROSE has also resulted in 

a limitation of OpenFoo: it can only be used to construct a MOP for a programming language 

that ROSE supports. In addition, our implementations are far from complete and are only used 

for the purpose of demonstrating the capability of our approach. More APIs will be added in our 

future work to address these limitations. 

 

Programming Languages Language Entity Constant 

C/C++ 

Function  
 

V_SgFunctionDeclaration 
V_SgFunctionDefinition 

Class V_SgClassDeclaration  
V_SgClassDefinition 

Statement 
V_SgSwitchStatement 
V_SgCatchOptionStmt  
V_SgForStatement 
…… 

Shared by Multiple GPLs 

Virtual Entity 
V_SgFile 
V_SgScopeStatement  
V_SgGlobal 
V_SgBasicBlock 

Variable 
V_SgVariableDeclaration 
V_SgVariableDefinition 
V_SgType 

Statement 

V_SgIfStmt 
V_SgWhileStmt 
V_SgContinueStmt 
V_SgReturnStmt  
…… 

Fortran 

Program  V_SgProgramHeaderStatement 

Subroutine or function V_SgProcedureHeaderStatement 

Module V_SgModuleStatement 
V_SgUseStatement 

Statement 

V_SgFortranDo  
V_SgPrintStatement 
V_SgFormatStatement 
V_SgLabelStatement 
…… 

 

Table 5.1 The constants used in ROSE for identifying IR nodes 
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5.2 Generalizing SPOT to Support New MOPs 

As introduced in Chapter 4, SPOT is a front-end DSL we created in order to reduce the 

accidental complexities caused by the direct adoption of a back-end MOP to perform code 

modifications [Yue and Gray, 2014]. SPOT was originally devised to offer a more intuitive 

description of program transformations in Fortran with the help of its declarative feature. 

However, SPOT is not limited to only transforming Fortran code and it can also be extended to 

support other languages because it offers a higher abstraction of code modification. As illustrated 

in Chapter 4, we have already adapted SPOT to support program transformations in a different 

GPL (i.e., C programming language). Compared with a MOP (implemented in C++), SPOT is 

more expressive in specifying transformation tasks through tailoring the notations and 

abstractions towards the domain of program transformation. 

Model-Driven Engineering (MDE) has experienced an increase in interest over the past 

decade, primary in association with Domain-Specific Languages (DSLs), meta-programming and 

language workbenches [Voelter, 2009]. MDE and DSL engineering both focus on raising the 

level of abstraction in software development and the past decade has witnessed a convergence 

between these areas [Gray and Karsai, 2003]. A model can be used to represent a target domain 

at a higher abstraction level and it can be expressed with a textual DSL. MDE emphasizes the 

description of software applications through models and DSL concentrates on creating languages 

to express the models. With the help of MDE, the scope of the DSLs can be defined in a more 

precise way. MDE and DSLs are complementary and both necessary for a model-driven 

approach [den Haan, 2008]. 

In Chapter 4, we already demonstrated SPOT’s capability of liberating common 

developers from the burden of programming with APIs provided by a MOP. In this section, we  
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mainly focus on generalizing the design of SPOT with the assistance of a set of MDE models. To 

achieve this, we redesigned SPOT to make it first independent of Fortran or C via describing its 

abstract syntax with higher-order models that capture the essence of commonly shared features 

in program transformation for different programming languages. Our primary goal is to show 

how MDE models can be used to facilitate the expression and extension of the front-end DSL so 

that it can be applicable to a newly constructed MOP at the back-end. 

5.2.1 SPOT Abstract Syntax  

Figure 5.7 shows the core subset of the abstract syntax of SPOT in the form of a model 

represented as a class diagram in UML. This model depicting the specification of code 

transformations is independent of any particular programming language. As indicated in Figure 

 

Figure 5.7 Subset of SPOT abstract syntax in UML class diagram 
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5.7, a Transformer consists of multiple Transformation components. Each 

Transformation component specifies some Operations to access or manipulate some 

LanguageEntities that can be pinpointed through specifying the Location. They are the 

basic elements for composing a language-independent DSL for source code transformation. 

An Operation, represented as an abstract class in the class diagram, can be further 

categorized into different types of actions, such as Add, Delete, Update, and Retrieve, 

which are systematic actions that can be performed towards language entities. It has been 

observed in recent research that most source code modifications are systematic and developers 

usually add, delete or update code in a similar, but not identical manner [Kim et al., 2005; 

Nguyen et al., 2010]. Retrieve means to obtain the handler of a target LanguageEntity 

given a name, which can then be used to access its structural information or to modify its internal 

attributes.  

One crucial problem that challenges most program transformation systems is how to 

provide a scheme for developers to precisely specify the location for translation. SPOT provides 

different methods in the form of a set of built-in functions to achieve accurate positioning. 

Location and LanguageEntity together constitute the key for pattern matching in the 

underlying MOP implementation. For example, developers can invoke Within (Entity 

name) to indicate that the subsequent translation be performed for the entity identified with a 

given name. Before and After can be used to pinpoint the locations between lines. In 

addition, a wildcard can also be utilized to match multiple locations with similar scenarios. As 

seen in Figure 5.7, both ScopeEntity and BasicEnity are derived from 

LanguageEntity. ScopeEntity denotes language constructs such as function definitions, 

class definitions, or statements that also contain a scope (e.g., a if-else statement or a for  



 

   
 

130 

 

statement). BasicEnity represents points of interest in source code that are frequently visited 

in program transformation, such as function calls, variable reads and writes, and statements 

without scope information.  

In this model, Operation and Location are completely language-independent while 

LanguageEntity is closely related with the target programming language. However, in order 

to increase the extensibility of SPOT, we only abstract the generic features depicted by 

transformer 
 :'Transformer' ID '{' transformation (';' transformation)* '}' 
 -> ^(TRANSFORMER_ND ID transformation+) 
 ; 
transformation 
 :location '{' subTransform+ '}' 
 -> ^(TFBODY_ND location subTransform+) 
 ; 
location 
 :  scopeKeyword '(' languageEntity (ID|'*'|'%' ID) ')'  
 -> ^(TRANS_LOCATION scopeKeyword languageEntity (ID|'*'|'%'^ ID)) 
 ;  
languageEntity 
 : scopeEntity 
 | basicEntiy 
 ; 
scopeKeyword 

: 'Within' 
; 

locationKeyword 
 :'After' 
 |'Before' 
 ;  
scopeEntity 
 :'Function'  
 |'Project' 
 |'Statement' 
 ;   
basicEntiy 
 :'FunctionCall' 
 |'VariableRead' 
 |'VariableWrite' 
 | statementTypeName //collect all statements of a type 
 | '"' statement '"'//collect all statements with original source code, e.g. "a=b+c"  

; 
subTransform 
 :location '{' operation+ '}' 
 -> ^(SUB_TRANSFORMER location operation+)  
 | operation  
 ; 
operation 
 :actionVariable ';' 
 -> ^(ACTION_ND actionVariable) 
 |actionStatement ';' 
 -> ^(ACTION_ND actionStatement) 
 |actionFunction ';' 
 -> ^(ACTION_ND actionFunction) 
 //retrieve statements only allow read, no modification or transformation 
 |scopeEntity '%'? ID '=' actionRetrieve ';'  
 -> ^(RETRIEVE_ND scopeEntity '%'? ID '=' actionRetrieve) 
 ;   
  

Figure 5.8 The concrete syntax of SPOT in EBNF grammar  



 

   
 

131 

LanguageEntity and its subclasses. Those features are shared among a family of languages 

with block-structured syntax, but not language-specific. Abstract language entities are actually 

the places where extensions are allowed in order for SPOT to support a particular programming 

language, which is explained in detail in subsection 5.2.3. 

5.2.2 SPOT Concrete Syntax 

The concrete syntax of SPOT is expressed as a grammar in Extended Backus-Naur Form 

(EBNF). As shown in Figure 5.8, different elements in the abstract syntax are expressed with 

generation rules that include keywords reserved by SPOT and some other terminal tokens such 

as separators, semicolons, and parentheses. Please refer to Figure 4.3 for the design structure of 

the code generator we implemented to translate SPOT code to the underlying OpenFortran 

implementation in C++. For the code generator, ANTLR [Parr, 2007] and StringTemplate [Parr, 

2007] are used in our approach. ANTLR is a parser generator that takes as input the grammar of 

a language expressed in EBNF and generates a recognizer for it. ANTLR can build an AST for 

the program after parsing. As seen in Figure 5.8, the annotations in the form of “->(root, child1, 

child1…)” are used to direct the generation of a sub-tree in a desired shape. For example, for the 

following rule:  

 

 

 

ANTLR creates a sub-tree with the root named TFBODY_ND and the first child as the root of 

sub-tree generated for the rule location, and all the other children as a list of sub-trees for 

subTransform. A well-organized AST can be of great assistance in matching desired sub-trees 

and in mapping to an output model. 

transformation 
 :location '{' subTransform+ '}' 
 -> ^(TFBODY_ND location subTransform+) 
 ; 
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StringTemplate is a template engine used in ANTLR for generating formatted text output, 

C++ source code in our case. It works in a way that a group of templates (strings with holes) 

representing the output model are injected with values that are extracted while traversing the 

ASTs. Please refer to Figure 4.5 for an example illustrating the working mechanism of 

StringTemplate. 

5.2.3 SPOT Generalization 

We have already implemented the generic core of SPOT through raising the abstraction 

level of program transformation and abstracting the structural information of source code. Both 

the abstract syntax and the concrete syntax explained in last two subsections are language-

independent and represent the essence of commonly shared features in program transformation 

for different programming languages. In the following two subsections, we first summarize the 

construction of extensions to SPOT for Fortran 90 and C++ so that the extended SPOT can be 

used jointly with the MOPs we constructed by extending OpenFoo. As demonstrated in Figure 

5.9, a translator is used to link the front-end DSL with the back-end MOP together. Our main 

purpose is to outline the procedure involved in extending SPOT, which can be instructive 

towards supporting a newly created MOP at the back-end of our framework.  

 

Figure 5.9 Extend SPOT to support MOPs constructed with OpenFoo 
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Reconsider the abstract syntax of SPOT in Figure 5.7. Transformation, 

Operation, and Location are all generic elements. For Location, SPOT provides 

constructs and keywords (i.e., Before, After, Within) in the concrete syntax to allow developers to 

specify the locations for transformations. For Operation, a list of frequently applied actions 

are created in the form of built-in functions that can be invoked in a declarative manner to 

perform desired translation towards a target language entity, for example, 

RenameFunction(<oldName>, <newName>), AddVariable(<type>, <name>, <intialValue>), 

AddStatement(<loc>, <targetStmt>, <“newStmt”>), ReplaceStatement(<“oldStmt”>, 

<“newStmt”>); please refer to Table 4.1 for more built-in actions. The actions themselves are 

language-independent, but the parameters passed to them are closely associated with an 

individual programming language.  

SPOT is able to support string-based pattern matching and code translation. Developers 

are allowed to embed within a SPOT program the source code of a target language. To fulfill 

this, the grammar of the target language (in EBNF) needs to be integrated with the SPOT 

grammar so that the parser generated from ANTLR can recognize the code of the target 

language. Therefore, the ANTLR grammar of a language has to be provided first in order to 

extend the generic SPOT core. Fortunately, the ANTLR grammars of many GPLs are available 

at the ANTLR website, which can be adapted with a few adjustments.  

In the abstract syntax of the core SPOT, LanguageEntity and its subclasses (e.g., 

Statement, UserDefinedType, and Function) are actually the points where extensions 

can be made for a specific programming language. Due to differences in the concrete syntax 

among different languages, there may be differences in the concrete elements, e.g., concrete 

SingleStatement and ScopeStatement may vary from one language to another. Under 
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the circumstances, the discrepancies can be captured in individual model extensions and 

commonality can be shared in the core model. As shown in Figure 5.10, the class diagram 

represents the extended SPOT model that incorporates the particular language features of Fortran 

90. The model of the SPOT core captures all of the essential concepts intrinsic to expressing 

program transformations. The extension at the bottom defines concrete elements in Fortran by 

sub-classing abstract elements in the core model. For example, DerivedDataType and 

Module are two special user defined types, so UserDefinedType should be the super-class 

to inherit from. There are three concrete types of Function in Fortran 90: Program, 

Subroutine, and Function. Statements that are specific in Fortran should be identified and 

subclassed from ScopeStatement or SingleStatement.  

Figure 5.11 shows the corresponding extension for C++ to the abstract syntax of the 

 

Figure 5.10 The extension to core SPOT abstract syntax for Fortran 90 
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SPOT core. The concrete elements at the bottom of the model, display the points of variability 

existing in the concerte syntax of C++. In the case of the C++ extension, Class and Struct 

are the two concrete subclasses of UserDefinedType. The remaining elements represent the 

concrete statements that are specific to C++. Comparing the extension for C++ with that for 

Fortran 90, not much difference can be seen due to the design of the SPOT core. The abstract 

syntax of the front-end DSL only serves as the design blueprint and most of the work required 

from language developers concentrates on the extension to the concrete syntax and the templates 

used for generating the corresponding back-end MOP implementation.  

 

Figure 5.11 The extension to core SPOT abstract syntax for C++ 
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Figure 5.12 shows the comparison between two representative generation rules in the 

extended concrete syntax of SPOT for Fortan 90 as in (a) and for C++ as in (b). 

actionStatement 
    : 'AddStatement' '(' locationKeyWord, target=statement, new=statement ')' 
    -> ^('AddCallStatement' locationKeyWord target new) 
    |'ReplaceStatement' '(' oldStmt= statement',' newStmt= statement')' 
    -> ^('ReplaceStatement' $oldStmt  $newStmt) 
    |'DeleteStatement' '(' statement ')' 
    -> ^('DeleteStatement' statement) 
    |'AddCallStatement' '(' locationKeyword ',' oldStatement ',' ID (',' callArgumentList)? ')' 
    -> ^('AddCallStatement' locationKeyword oldStatement ID callArgumentList?) 
    |'AddCommentStatement''(' commentStatement ')' 
    -> ^('AddCommentStatement' commentStatement) 
    |'AddUseStatement' '(' ID ')' 
    -> ^('AddUseStatement' ID) 
    ; 
statement 
    : assignmentStatement 
    -> ^(ASSIGN_STATEMENT assignmentStatement) 
    | callStatement 
    -> ^(CALL_STATEMENT callStatement) 
    | declareStatement 
    -> ^(DEC_STATEMENT declareStatement) 
    | ifStatementWhole 
    -> ^(COND_STATEMENT ifStatementWhole) 
    | doStatement 
    -> ^(DO_STATEMENT doStatement) 
    | commentStatment 
    -> ^(WHILE_STATEMENT commentStatment) 
    | formatStatement 
    -> ^(FOR_STATEMENT formatStatement) 
    | implicitStatement 
    -> ^(IMPLICIT_STATEMENT implicitStatement) 
    | parameterStatement 
    -> ^(DEC_STATEMENT parameterStatement) 
    ; 

actionStatement  
    : 'AddStatement' '(' locationKeyWord, target=statement, new=statement ')' 
    -> ^('AddCallStatement' locationKeyWord  $target  $new) 
    |'ReplaceStatement' '(' oldStmt= statement',' newStmt= statement')' 
    -> ^('ReplaceStatement' $oldStmt  $newStmt) 
    |'DeleteStatement' '(' statement ')' 
    -> ^('DeleteStatement' statement) 
    |'AddIncludeStatement' '(' ID ‘.h’ ')' 
    -> ^('AddIncludeStatement' ID) 
    |'%' ID '=' 'AddCallStatement' '(' ID ','  (',' callArgumentList)? ')' 
    -> ^('=' ('%'^ ID) 'AddCallStatement' ID callArgumentList? ) 
    ; 
statement 
    : assignmentStatement 
    -> ^(ASSIGN_STATEMENT assignmentStatement) 
    | callStatement 
    -> ^(CALL_STATEMENT callStatement) 
    | declareStatement 
    -> ^(DEC_STATEMENT declareStatement) 
    | ifStatementWhole 
    -> ^(COND_STATEMENT ifStatementWhole) 
    | doStatement 
    -> ^(DO_STATEMENT doStatement) 
    | whileStatement 
    -> ^(WHILE_STATEMENT whileStatement) 
    | forStatement 
    -> ^(FOR_STATEMENT forStatement) 
    | switchStatement 
    -> ^(SWITCH_STATEMENT switchStatement) 
    ; 

(a) Extended concrete syntax for Fortran 90 

(b) Extended concrete syntax for C++  

Figure 5.12 The subset of extended concrete syntax of SPOT  
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ActionStatement refers to the rule that defines the syntax of a possible set of built-in 

actions that are intended for transforming statements in a target language. As evident in Figure 

5.12, the differences between the two target languages are highlighted in bold. For instance, 

AddCommentStatement and AddUseStatement are added for modifying Fortran 

programs, while AddIncludeStatement is particularly added for changing C++ code. To 

support embedding statements coded in a target language within a SPOT program, the 

statement rule is actually the point where the grammar of the language is integrated with that  

of the SPOT core. After exteding the concrete syntax, the last step is to create new templates and 

add them into the template store. The templates are going to be used as the output model by 

StringTemplate to generate the underlying MOP implementation from SPOT code. The 

templates used in our approach to generate C++ code are listed in Apprendix B.4 and the user 

manual of StringTemplate can be found in [Parr, 2007].  

5.2.4 Summary 

The research question Q5 (i.e., how to generalize the framework to make it language-

independent) is answered with our extensible framework that consists of two primary parts: the 

MOP prototype (OpenFoo) at the back-end and the DSL (SPOT) at the front-end. OpenFoo is an 

extensible library that is composed of language-independent components associated with the 

MOP construction. A MOP for a particular GPL can be implemented by building language-

specific components via extending from predefined language-independent components. 

Similarly, SPOT has been generalized from its initial version mainly used for specifying code 

transformations for Fortran. The generic DSL can be extended so as to accommodate a newly 

created back-end MOP. We use a set of models to facilitate the generalization for both the two 

parts by raising the abstraction level of MOP construction and specification of program  
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transformation. The idea of a MOP becomes more straightforward by representing its design 

structure with class diagrams, and the abstract syntax of the SPOT core is represented in a model 

that is helpful to guide the extension to its concrete syntax.  

Figure 5.13 illustrates how different groups of users can use our framework. Because of 

the declarative characteristics of SPOT, a common programmer can learn and use it to perform 

desired transformations towards their applications without having to be aware of how the 

transformations are actually carried out. Meta-programmers can benefit from our approach in the 

way that they can make extensions to our framework in support of a new GPL. To achieve this, 

meta-programmers need to first construct a MOP for the target language from the OpenFoo 

prototype. They can create language-specific meta-classes inheriting from the appropriate 

predesigned meta-classes in OpenFoo by referencing the model describing the design structure of 

OpenFoo. Meta-classes describing the statements specific to the language may require much 

effort. If necessary, new public member functions representing possible manipulation of a 

language entity can be added to meet specific needs, e.g., addFunctionModifier(string 

 

Figure 5.13 How different users are supposed to use our framework 
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modifer) might be added to the metaFunctionCpp in the C++ MOP to add new modifier 

for a function definition. 

To extend the front-end DSL with the assistance from the models representing its abstract 

syntax, meta-programmers can define new concrete elements according to the concrete syntax of 

a target language and make these concrete elements inherit from the appropriate abstract 

elements. The primary work lies in the creation of the DSL’s concrete syntax: a grammar in 

EBNF describing the target language has to be provided and combined with that of the SPOT 

core. Possible built-in actions and constructs used in the DSL should be created as generation 

rules in the combined grammar. At last, appropriate templates need to be composed which serve 

as the output model for the code generator to translate a SPOT program into the corresponding 

C++ implementation in the MOP. 

5.3 A Case Study: Code Coverage in Testing 

In order to experiment with the approach introduced in the previous sections, we 

extended our framework to support Fortran 90 and C++. The challenges presented in Chapter 4 

can also be solved with the extended approach, i.e., supporting AOP in a target programming 

language or separating sequential and parallel concerns. To avoid redundancy, in this section, we 

present a tool implemented with our approach to solve a problem frequently encountered in 

software testing, i.e., a tool for code coverage analysis. The objective is to illustrate that with our 

extensible framework, the same SPOT program can be employed to specify translation tasks for 

programs coded in different GPLs with a little adjustment via working together with different 

MOPs at the back-end.  
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5.3.1 Code Coverage Analysis 

Code coverage analysis is a means for determining the quantitative measure of the extent 

to which the source code of a program is covered by running a test suite [Cornett, 2002]. 

Implementing a code coverage tool is another typical problem encountered in software testing, 

which demonstrates the characteristic of crosscutting concerns. There are a variety of criteria 

used to measure coverage levels, among which the following ones are commonly used: 

• Statement Coverage indicates whether each executable statement has run at least once. 

• Decision Coverage or Branch Coverage indicates whether each control structure (e.g., if-

statement or while-statement) has been evaluated to both true and false at least once. 

• Condition Coverage indicates whether every logical expression in a control structure has 

been evaluated to both true and false at least once. Condition/decision Coverage is a 

combination of both techniques. 

• Path Coverage indicates whether each possible path in every function has been taken at 

least one. A path refers to a unique sequence of logical conditions from the entry to the 

exit.  

Although path coverage is considered to be the most comprehensive, it is impractical to 

achieve due to the number of test cases growing exponentially to the number of branches [Myers 

et al., 2011]. Almost all existing coverage tools support statement coverage, some support the 

analysis of decision coverage, but only a few are able to offer more than decision coverage 

analysis [Myers et al., 2011]. 

A code coverage tool is usually implemented by first instrumenting the source code or 

intermediate binaries with instructions that are used to navigate the generation of coverage data 

during program execution, and then by analysing the collected coverage information to output a  
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coverage report [Myers et al., 2011]. To manipulate source code is more straightforward 

conceptually than the intermediate object code. For example, in order to achieve statement 

coverage, first identify each statement in a program and then in a copy of source code add a line 

of code after a statement acting as a self-identifying probe for the statement. 

5.3.2 Implementing a Code Coverage Tool for C++/C  

In this case study, we mainly illustrate how to use SPOT to implement a coverage tool 

that supports both statement coverage and branch coverage for C++/C programs, and then to 

slightly adapt the SPOT code to make it work for Fortran programs. It is not trivial to implement 

a code coverage tool because it requires that the target program is parsed and analysed 

semantically for locating target statements and the source code is then instrumented to insert 

probe code. This usually involves manipulation of complicated data structures such as an AST.  

1. void cfft2 ( int n, double x[], double y[], double w[], double sgn ){ 
    ...... 
    Visited(2, “fft_serial.c”); 
2.  tgle = 1; 
    Visited(3, “fft_serial.c”); 
3.  step ( n, mj, &x[0*2+0], &x[(n/2)*2+0], &y[0*2+0], &y[mj*2+0], w, sgn ); 
    Visited(4, “fft_serial.c”); 
4.  if ( n == 2 ){ 
      Visited(5, “fft_serial.c”); 
5.    return; 
6.  } 
    Visited(7, “fft_serial.c”); 
7.  for ( j = 0; j < m - 2; j++ ){ 
      Visited(8, “fft_serial.c”); 
8.    mj = mj * 2; 
      Visited(9, “fft_serial.c”); 
9.    if ( tgle ){ 
        Visited(10, “fft_serial.c”); 
10.     step ( n, mj, &y[0*2+0], &y[(n/2)*2+0], &x[0*2+0], &x[mj*2+0], w, sgn ); 
        Visited(11, “fft_serial.c”); 
11.     tgle = 0; 
12.   } 
13.   else{ 
        Visited(14, “fft_serial.c”); 
14.     step ( n, mj, &x[0*2+0], &x[(n/2)*2+0], &y[0*2+0], &y[mj*2+0], w, sgn ); 
        Visited(15, “fft_serial.c”); 
15.     tgle = 1; 
16.   } 
17. } 
  ...... 
} 

Figure 5.14 Instrumented source code calculating FFT for statement coverage 
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However, by raising the abstraction of program transformation, our approach can be used to deal 

with such a complicated task through only a few lines of code written in SPOT.  

We have tested the coverage library on several applications, one of which is the 

algorithm of Fast Fourier Transform (FFT) [FFT Website]. The FFT algorithm can be used to 

rapidly compute the Fourier analysis that converts time or space to frequency and vice versa 

[Van Loan, 1992]. It has been widely used for many applications in mathematics and 

engineering. Figure 5.14 shows a code snippet from the algorithm, which has been instrumented 

with probe code to realize statement coverage.  

Before each executable statement, a function call to an auxiliary function Visited 

(int lineNumber, string fileName) is added. Within function Visited, a unique 

identifying number is generated and associated with each line number within each source file 

involved, which is necessary for testing an entire software system comprised of multiple source 

files. ROSE is a transformation engine with industrial strength and it is able to read thousands of 

files in a single session, perform transformations, and then produce the complete set of modified 

files. Supporting code is responsible for resetting all the visited flags, setting them after running 

the program with test cases, while other code accumulates the results of the visited array across 

1. Transformer statementCoverage { 
2.   Within(File %file){ 
3.     AddIncludeStatement(CodeCoverage.h); 
4.     FORALL(Function *){ 
5.       FORALL(Statement %stmt){ 
6.          AddCallStatement(Before, $stmt.statement, Visited, 
                             $stmt.lineNum, $file.fileName); 
7.       } 
8.    } 
9.  } 
10.} 
 

Figure 5.15 Transformer code implementing statement coverage  



 

   
 

143 

multiple tests. Figure 5.15 demonstrates the transformer that enables code translation indicated 

by Figure 5.14.  

To implement branch coverage (or decision coverage) is more complicated than 

statement coverage, but the transformer can still be implemented with a few lines of code in 

SPOT. Instead of inserting a probe for each executable statement, we only need to focus on 

statements that contain control structures in C/C++; for example, condition statements (if-else 

and switch) and loop statements (for and while). A control statement is usually a scope statement 

(i.e., a block that may include a set of statements). In the transformer that implements branch 

coverage as indicated in Figure 5.16, we are only interested in those statements whose type is 

StatementIF, StatementELSEIF, StatementELSE, StatementFOR, 

StatementWHILE, StatementSWITCHCASE, or StatementSWITCHDefault. As in 

lines 7 and 8, we locate such a statement and insert a line of code calling Visited before the 

first statement that is included in its following block. In addition, we also add the same function 

call at the very beginning of each function definition as in line 5. The instrumented example code 

is shown in Figure 5.17.  

The coverage report includes information about the frequency with which each part of the 

1. Transformer branchCoverage { 
2.   Within(File %file){ 
3.     AddIncludeStatement(CodeCoverage.h); 
4.     FORALL(Function %fun){ 
5.       AddCallStatement(Before, $fun.firstStatement, Visited, 
                          $fun.lineNum, $file.fileName); 
6.       FORALL(Statement %stmt){ 
7.         IF($stmt.type==StatementIF OR $stmt.type==StatementELSEIF  
               OR $stmt.type==StatementELSE  
               OR $stmt.type==StatementFOR OR $stmt.type==StatementWHILE  
               OR $stmt.type==StatementSWITCHCASE OR $stmt.type==StatementSWITCHDefault){ 
8.           AddCallStatement(Before, $stmt.firstStatement, Visited,  
                             $stmt.lineNum, $file.fileName); 
9.          } 
10.       } 
11.     } 
12.   } 
13. } 

Figure 5.16 Transformer code implementing branch coverage  
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source code has been executed, which is very useful information for determining the hot spots of 

the code segments that have been visited frequently, as well as the cold spots that have not been 

executed. In addition, the report also contains the percentage representing the coverage level 

with a specific coverage metric, which provides a general view of how a set of test cases satisfy 

the coverage metric. A low percentage usually means that the test cases need to be improved in 

order to increase the possibility of detecting more bugs in the code. 

5.3.3 Implementing a Code Coverage Tool for Fortran  

To implement a similar tool that supports both statement coverage and branch coverage 

for applications written in Fortran, we can reuse most of the SPOT programs introduced in the 

previous subsection. 

The front-end DSL used to implement the tool for C++ programs is actually a superset of 

the SPOT core that has been enhanced with constructs and built-in actions specific to  

1. void cfft2 ( int n, double x[], double y[], double w[], double sgn ){ 
    Visited(1, “fft_serial.c”);     
    ...... 
2.  tgle = 1; 
3.  step ( n, mj, &x[0*2+0], &x[(n/2)*2+0], &y[0*2+0], &y[mj*2+0], w, sgn ); 
4.  if ( n == 2 ){ 
      Visited(4, “fft_serial.c”); 
5.    return; 
6.  } 
7.  for ( j = 0; j < m - 2; j++ ){ 
      Visited(7, “fft_serial.c”); 
8.    mj = mj * 2; 
9.    if ( tgle ){ 
        Visited(9, “fft_serial.c”); 
10.     step ( n, mj, &y[0*2+0], &y[(n/2)*2+0], &x[0*2+0], &x[mj*2+0],  
              w, sgn ); 
11.     tgle = 0; 
12.   } 
13.   else{ 
        Visited(13, “fft_serial.c”); 
14.     step ( n, mj, &x[0*2+0], &x[(n/2)*2+0], &y[0*2+0], &y[mj*2+0], 
              w, sgn ); 
15.     tgle = 1; 
16.   } 
17. } 
    ...... 
} 
 

Figure 5.17 Instrumented source code calculating FFT for branch coverage 
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recognizing or manipulating C/C++ statements, e.g., StatementFOR, 

StatementSWITCHCASE, and AddIncludeStatement. In SPOT, a transformer is 

ultimately translated into the corresponding C++ implementation using the APIs provided by the 

MOP that was constructed from extending the OpenFoo prototype.  

To reuse a SPOT program for supporting Fortran applications, we have to make sure that 

the constructs and actions particularly designed in the extension for C++ are replaced with those 

designed in the extension for Fortran. One special case is that if a library is coded solely with 

constructs and actions defined within the SPOT core, the library can be used for different GPLs 

without discrimination as long as there exists a MOP (an instance of OpenFoo) for that language 

at the back-end.  

In our case, the two SPOT programs introduced in previous subsections have to be 

modified in order to be applicable to Fortran. For the SPOT code in Figure 5.15 which achieves 

statement coverage, AddIncludeStatement is specific to C++ and needs to be replaced by 

AddUseStatement(ModuleName) that is used for giving a Fortran program unit 

accessibility to public entities in a module specified with ModuleName, where all auxiliary 

Fortran code resides. Also the use statement should be inserted at the beginning of each 

procedure (program, function, or subroutine). The rest of the SPOT code remains the same and  

1. Transformer statementCoverage { 
2.   Within(File %file){ 
3.     FORALL(Function *){ 
4.       AddUseStatement(CodeCoverage); 
5.       FORALL(Statement %stmt){ 
6.          AddCallStatement(Before, $stmt.statement, Visited, 
                             $stmt.lineNum, $file.fileName); 
7.       } 
8.    } 
9.  } 
10.} 
 

Figure 5.18 SPOT code implementing statement coverage for Fortran 
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the resulting SPOT code is shown in Figure 5.18. Figure 5.19 shows the adjusted SPOT code for 

Fortran from that in Figure 5.16 which implements branch coverage. Besides replacing 

AddIncludeStatement with AddUseStatement, we also removed C++ statement types 

and added corresponding Fortran statement types as shown in line 7 of Figure 5.19.  

Our solution to research question Q5 is an extensible framework that brings the power of 

meta-programming to a GPL. Our design goal is to facilitate the reuse of existing code artifacts. 

Within our framework, both the front-end SPOT and the back-end OpenFoo can be extended in 

order to accommodate a new GPL. In addition, the libraries developed in SPOT can also be 

reused to perform transformations towards applications written in a different programming 

language with slight modification. 

 

 

 

1. Transformer branchCoverage { 
2.   Within(File %file){ 
3.     FORALL(Function %fun){ 
4.       AddUseStatement(CodeCoverage); 
5.       AddCallStatement(Before, $fun.firstStatement, Visited, 
                          $fun.lineNum, $file.fileName); 
6.       FORALL(Statement %stmt){ 
7.         IF($stmt.type==StatementIF OR $stmt.type==StatementTHEN OR 
              $stmt.type==StatementELSE OR $stmt.type==StatementWHILE ){ 
8.          AddCallStatement(Before, $stmt.firstStatement, Visited,  
                             $stmt.lineNum, $file.fileName); 
9.          } 
10.       } 
11.     } 
12.   } 
13. } 

Figure 5.19 SPOT code implementing branch coverage for Fortran 
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CHAPTER 6 

FUTURE WORK 

This chapter outlines potential research directions as future work. Three broad directions 

for future research are presented. Section 6.1 is mainly focused on possible enhancements 

towards our current approach. For example, a visual DSL with both textual and graphical syntax 

may be more productive in expressing code modification than SPOT, which is purely textual. 

The techniques of model transformation may be applied to further increase the reusability of our 

extensible framework. Section 6.2 lists the potential application domains where problems may be 

solved through automating program transformations with our approach. Section 6.3 outlines a 

plan for future empirical evaluation to help us in understanding the potential influence of our 

approach toward supporting software evolution.  

6.1 Improvements to Current Approach  

We plan to enhance our approach from the following two aspects: 1) to increase the 

expressiveness and the ease of use of SPOT by creating an editor and then adding graphic 

features to its current pure textual syntax, and 2) to increase the reusability of our extensible 

framework by leveraging model transformation techniques.  

6.1.1 A GUI-Based Wizard for Program Transformation 

Many program transformation engines (PTEs) support formally specified program 

transformations [Quinlan, 2012; Baxter et al., 2004; Cordy, 2006; Visser, 2004; van den Brand et 

al., 2001]. Some of them are powerful and flexible in performing certain types of source 

transformation; however, it is often a challenge for developers to acquire the skills necessary to 
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use them because it usually involves manipulation of complex data representations, such as 

ASTs. In addition, applying PTEs is quite different from the developers’ intuitive comprehension 

towards code modification, which makes PTEs even more formidable to use [Détienne, 2002, 

Boshernitsan et al., 2007]. Another research direction that provides the capability of program 

transformation lies in integrating the functionality of automatic refactoring with existing IDEs, or 

creating an IDE with a set of refactoring tools such as Photran [Overbey et al., 2005] and IntelliJ 

[IntelliJ, 2011]. Compared with PTEs, refactoring tools are often considered more user-friendly 

because they can be used in a visual and interactive manner. However, refactoring tools are 

limited to translation types where the semantics of the code should not be affected. In addition, 

with most refactoring tools, developers are not allowed to create customized refactoring 

functionality. A more detailed survey of various existing solutions for automating program 

transformations is provided in Section 2.3. 

In Chapter 4, we presented our solution to automate code modification by creating a DSL 

(SPOT) that provides a high-level abstraction for expressing program transformations. With 

SPOT, translation specifications can be expressed in a way that more resembles a developer’s 

mental model of program transformation than coding with meta-programming capabilities or 

directly manipulating an AST, as required by many PTEs. In addition, the functional feature of 

SPOT can help reduce the accidental complexity brought by the great difference between classic 

programming and intensive meta-programming style.  

6.1.1.1 An Editor for SPOT 

To make SPOT more accessible and easier to use, we will develop an Eclipse-based 

editor for SPOT. Currently, a developer needs to learn the syntax and vocabulary of SPOT and 

create a transformer with plain text editors that do not provide help with syntax highlighting and 
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validation. It may be beneficial to SPOT users if they had an editor with different types of 

assistance such as syntax highlighting, validation, auto completion of relevant symbols, and etc.  

Xtext is an open source framework for developing programming languages and textual 

DSLs [Eysholdt and Behrens, 2010]. Xtext not only supports generating a parser, but it can 

provide a customizable Eclipse-based IDE. By hooking in a code generator developed with 

Xtend [Bettini, 2013], a DSL can be translated into any language. We plan to create an editor for 

SPOT with Xtext by taking advantage of a set of DSLs and APIs provided to describe different 

aspects of a language. The code generator will be created with Xtend to translate SPOT code into 

a C++ implementation of actual transformation code in OpenFoo. 

6.1.1.2 A Graphical Version of SPOT  

To further reduce the accidental complexity caused by using SPOT itself, we propose to 

extend the editor to make it an Eclipse plugin that enables developers to make complex code 

translation in a visual version of SPOT. We will use both textual and graphical elements to 

model the process of code modification. The tool allows interactively constructed visual program 

transformation and thus aligns well with developer’s mental models of program transformations 

[Boshernitsan et al., 2007].  

Two primary challenges facing most program transformation systems are how to 

precisely express the location(s) for translation (usually referred to as pattern matching) and how 

to specify desired actions (term rewriting). SPOT pursues a strategy of multiple scopes that 

allows expressing transformations either at a specific location or at multiple locations identified 

with a wildcard. Language constructs, such as control-flow clauses (IF-ELSE and FORALL) 

and location keywords (Within, Before, and After), are provided to express higher-level 

scopes and to identify precise locations. In addition, developers can get the handler to represent  
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particular language entities, for which built-in actions can be applied to perform transformations. 

The GUI-based wizard is designed based on the syntax and semantics of SPOT and allows 

developers to create SPOT code in a visual and interactive way.  

Figures 6.1 and 6.2 show the proposed layout and design for the user interface in the 

wizard. At the left-hand side is the editor with basic editing support, in which developers can 

specify transformation tasks with SPOT code. At the right-hand side is a Transformer Assistant 

that works like a wizard by helping developers to create a Transformer with SPOT step by step. 

The corresponding SPOT code is automatically generated from a developer’s interaction with the 

Transformer Assistant. For example, in Figure 6.1, developers can choose higher-level scopes for 

transformation from a drop-down list in Transformer Assistant. For example, the drop-down list 

after “Choose File” is populated with all file names from which developers can choose the file(s) 

to modify. Wildcard * and % can be used to represent multiple scopes and with %, a handler (a  

 

 

Figure 6.1 Proposed user interface for editing scopes 
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temporary variable name) can be specified which might be accessed in subsequent 

Transformations.  

As shown in Figure 6.1, developers are allowed to add multiple Transformations. A 

Transformation is an integral part of a Transformer for performing code modification, which 

usually consists of the precise location(s) and desired action(s) to be performed. As evident in 

Figure 6.2, the code snippet highlighted in red in the editor is a Transformation generated from a 

developer’s selection and input in Transformer Assistant at the right-hand side. Within the same 

higher-level scope, there may be multiple Transformations in order to perform complex code 

modification.  

The Transformation shown in Figure 6.2 expresses the intention of invoking the function 

named profiling before each function-call statement. To specify the parameters, developers 

are allowed to select from a list of accessible handlers to retrieve their structural information. For 

instance, in the example Transformer, both the handler of all functions (fun) and that of all 

 

Figure 6.2 Proposed user interface for editing transformations 
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function-call statements (funCall) are available and their attributes can be obtained (i.e., 

fun.funName and funCall.statement). With the instructional guidance, arbitrary 

reference to the attributes of higher-level entities can be avoided, so that context-sensitive 

information can be accessed in an easier and safer manner without being affected adversely by 

the transformation.  

In addition to allowing developers to create a Transformer in an interactive way, we also 

plan to allow developers to define target locations by simply selecting multiple statements 

(similar to placing a breakpoint) and to only edit the actions to be performed. The remaining part 

of Transformer is transparent to developers.  

We plan to first integrate the GUI-based wizard with Photran [Overbey et al., 2005] to 

facilitate program transformation for Fortran code. Currently, Photran only supports a number of 

refactoring functions and does not allow users to create customized transformation functionality. 

Next, we will use it together with other popular plugins, e.g., Eclipse CDT [Eclipse CDT, 2007], 

to support program transformation in C and C++. 

6.1.2 Use MDE Techniques to Improve the Framework 

In Chapter 5, we introduced into our framework a set of UML models that are of great 

help to convey abstract concepts in both the front-end DSL and the back-end MOP. For the same 

design goal as in our current framework (i.e., to generalize the framework to make it language-

independent and to reduce the accidental complexities incurred by directly using a MOP), we 

plan to provide a solution that leverages the techniques of model transformation.  

Figure 6.3 describes how UML models are currently used in our framework, which is 

explained in the setting of the three modeling levels, as indicated by M1, M2, and M3. A set of 

class diagrams in UML are used to facilitate the generalization in our framework by raising the 
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abstraction level of MOP construction and specification of program transformation. At the front-

end, the abstract syntax of SPOT is depicted in UML models that capture the essence of 

commonly shared features in program transformation for different programming languages. The 

models are helpful to guide the extension to SPOT’s concrete syntax. At the back-end, the design 

structure of OpenFoo is also represented in the form of a group of class diagrams composed of 

language-independent components associated with the MOP construction. With the assistance of 

models, it becomes more straightforward to understand the idea of using a MOP to extend 

OpenFoo. In our current solution, the models used are only for the purpose of reference and the 

core techniques at the heart of MDE (i.e., model transformation) haven not been utilized.  

Figure 6.4 explains how the design goal can be fulfilled with model transformations. The 

complete scenario is also described in the setting of the three modeling levels in the 

grammarware [Klint et al., 2005] and MDE technical spaces (TS), but in a different horizontal 

order as in Figure 6.3. The scenario works in the following way: 1) the program coded in the 

 

Figure 6.3 Models used for assisting extension in current framework  
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front-end DSL is first injected into a SPOT model, 2) the SPOT model is then transformed into a 

target OpenFoo model using techniques of model transformation, and 3) the C++ implementation 

is finally generated by extracting from the OpenFoo model.  

With the new solution, UML models will be the primary artifacts that can be extended to 

accommodate a new GPL and the meta-programmer does not have to be directly working on the 

OpenFoo prototype implemented in C++. In our current framework, SPOT and OpenFoo 

actually share a considerable portion of class diagrams and the redundancy will be reduced with 

the proposed solution.  

This proposal explains how MDE techniques might be used to improve the construction 

of a transformation framework for GPLs through reusable models and transformations. 

Currently, our solution emphasizes using DSL while the new approach strives to solve the 

problem using model transformation. We will investigate different MDE technologies to find the 

most appropriate system in order to achieve the transformation between UML models and 

program languages (i.e., SPOT and C++).  

 

Figure 6.4 Model transformation scenario in future framework  
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6.2 Support More Application Domains 

The second broad direction of future research involves potential application domains, in 

which our approach may be a candidate for solving domain problems. Currently, we have 

implemented a version of SPOT that supports several types of HPC application needs. Together 

with the underlying MOP, we have laid a solid foundation for SPOT to be extended through the 

creation of new language constructs. We will continue to enrich SPOT with more constructs in 

order to support additional types of translation in different application domains. 

Among several programming models, transactional memory (TM) has become a 

promising approach to parallelization by simplifying synchronization to shared data by allowing 

a set of read and write instructions to be executed in an atomic manner [Dice and Shavit, 2007]. 

The implementation of a TM system relies heavily on checkpointing and conflict detection, 

which can be achieved by instrumenting binary code; e.g., JudoSTM [Olszewski et al., 2007] 

supports TM in C and C++ through binary modification. We are planning to implement TM for 

Fortran, C and C++ through source transformation instead of binary transformation. 

6.2.1 Fault Tolerance in HPC 

Fault tolerance has been studied comprehensively in the area of distributed systems. 

However, less effort has been invested in this problem in HPC because hardware failures in high 

performance systems do not occur frequently enough to cause deep concerns [Bronevetsky et al., 

2003]. Moreover, a majority of HPC systems were deployed on more reliable hardware 

platforms, such as monolithic vector or parallel computers, and the execution time of most 

systems are much less than the mean-time-between-failure (MTBF) of the hardware 

[Bronevetsky et al., 2003]. 
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However, recent trends in the HPC community have made fault tolerance an important 

issue worthy of more attention. First of all, many computational programs today are designed to 

run for days or even months and the execution durations are much longer than the MTBF, for 

example simulation for predicting protein structure [Das et al., 1997] and climate modeling 

[Chen et al., 2007]. Secondly, computational tasks have continued to grow in the scale of 

complexity and drive the demand for larger computing power.  

Ever increasing new requirements have fostered significant development in today’s HPC 

hardware infrastructure. One outstanding change is that the physical size of HPC systems has 

increased rapidly. Parallel computation is shifting from a single giant hardware platform to 

computer clusters and grids. A computer cluster works by harnessing computing power from a 

large number of computers physically close to each other, which is suitable for building cost-

effective systems; while in a grid, heterogeneous computing resources located in diverse 

domains are managed in a distributed way and used opportunistically according to the 

availability of a resource [Foster, 2002]. The overall computing performance is increased 

proportionally with the number of processors working in parallel; however, the probability of 

hardware failures is also increasing because the more computing components involved, the 

higher the chances some of them may fail. For example, the Jaguar system with 45,208 cores 

was reported to witness about 2.2 failures per day [Gomez et al., 2010]. Thus, challenges loom 

large in dealing with reliability of large-scale HPC systems. 

The issue of security and accountability is critical to maintaining the correctness and to 

enhance fault tolerance and robustness of HPC systems [Xiao et al., 2011]. This is particularly 

true for systems on clusters or grids where computational nodes are distributed physically and 

connected through high-speed links. Different strategies have been proposed to deal with 
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different problems. However, many issues are raised when attempting to integrate those 

strategies into practical applications. One of the major problems involves flexibility, such as 

transparency of strategies, ease of use and reusability of existing strategies to derive new ones. 

Our approach has shown initial promise in dealing with fault tolerance issues in HPC by 

implementing an application-level check-pointing library. In our future work, we will explore 

more opportunities in applying our approach to solve problems concerning fault tolerance. 

6.3 Empirical Evaluation 

We have already performed a series of case studies to demonstrate how our approach can 

be used to address the challenges we identified in software maintenance and evolution in HPC. 

However, one limitation in this dissertation is the lack of human-based empirical evaluation to 

help us understand how to improve our impact to the HPC community. 

Therefore, as one direction of our future work, we plan to assess the potential influence 

of our research through performing a series of evaluations using various experimental techniques 

and measurements. Firstly, we will investigate the impact of our approach on more case studies 

by applying transformation libraries developed with our framework to a few known benchmark 

applications in HPC. The quality of our solutions will be evaluated with respect to productivity, 

accuracy, and adaptability toward maintenance and evolution tasks. Productivity is one of the 

most important reasons to use program transformations to automate evolution tasks. Analysis 

will be focused on how fast a transformation library can be built with our solution to evolve 

applications on a large scale. In addition, accuracy is another essential feature that needs to be 

evaluated. Analysis will be performed to determine whether the generated underlying 

implementation that actually performs the required transformation is correct and placed in the 

right place(s). Whether a transformation library built with our approach can be applied to 
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different applications with no change or with a little change is another important factor to 

evaluate. We will compare the adaptability with other transformation engines available by 

analyzing experimental data obtained from the case studies.  

We will also conduct human-based experiments where four groups of programmers with 

similar programming experience and skills will be assigned with the same task to evolve a legacy 

software system, with each group using a different technique. Before the experiment, 

corresponding training sessions will be provided to participants to learn the technique used to 

perform the required transformations. In the experiment, group one will be asked to change the 

source code manually; group two will perform the same task by directly using a program 

transformation engine (PTE), such as ROSE; group three will use a MOP, and group four will 

use SPOT. Comparisons will be made to understand the differences in time spent by each group 

to finish the required transformations. We will also measure the accuracy of each evolution effort 

among the four techniques. All participants will be given qualitative questions afterwards to 

collect their ideas toward the technique they use in the experiment, from which we can have a 

better understanding about whether our approach is easier to use compared with other methods. 
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CHAPTER 7 

CONCLUSION 

The research in this dissertation is mainly focused on assisting in the process of software 

evolution in the area of HPC using techniques in software engineering and programming 

language design, such as meta-object protocol (MOP) and Domain-Specific Language (DSL). 

Many problems in software development and maintenance can be solved through program 

transformation, the objective of which is to automate tasks associated with software 

maintenance. 

Meta-programming has shown much promise for building software in order to automate 

program transformations through code generation or manipulation [Spinellis, 2008]. In our 

research, we created MOPs that bring the power of meta-programming to program languages 

widely used in HPC, with which source-to-source program translation libraries can be built and 

then applied in a manner that is transparent to application developers. To reduce the accidental 

complexity, we created a textual DSL that provides a higher-level abstraction for specifying 

program transformations, and thus enables more intuitive expression of manipulating program 

entities with support from the underlying capabilities available in the MOP. In order for our 

approach to accommodate additional general-purpose programming languages (GPLs), we 

strived to generalize it through pursuing an extensible framework. The framework is composed 

of a language-independent MOP prototype that can be used to create a MOP instance for a 

specific GPL and a generic front-end DSL that can be extended to work jointly with the newly 

created MOP at the backend.  
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In this research, we identified several key challenges towards constructing a MOP for an 

arbitrary language. Research question Q1 (i.e., How to construct a parser for the target 

language?) and Q3 (i.e., How to perform the underlying complex transformations?) can be 

addressed by leveraging existing program transformation engines (PTEs) and are not part of the 

primary contribution of this research, although were discussed in context throughout the 

dissertation. They are not specific to constructing MOPs, but also applicable to other types of 

language engineering tools. We addressed these two questions by using ROSE, which supports 

formally specified source-to-source program transformations at compile time with mature parsers 

accommodating several GPLs and adequate support for complex and systematic transformation. 

In addition, ROSE provides interfaces that allow users to specify code transformation through 

coding in an object-oriented programming language (i.e., C++). 

This dissertation is intended to provide solutions to the following three research questions 

(with original numbering from Chapter 1): 

• Question Q2: How to design an appropriate meta-level representation for the target 

language? 

• Question Q4: How to reduce the accidental complexities incurred by directly using a 

MOP? 

• Question Q5: How to generalize the approach to make it language-independent? 

7.1 OpenFortran 

We built a MOP for Fortran (OpenFortran) on top of ROSE, which addressed Q2. 

OpenFortran is able to provide meta-programming capabilities to Fortran by enabling extension 

to its semantics through organizing a meta-level architecture. The meta-program takes an object-

oriented representation of the base-program’s language constructs and provides carefully 
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designed interfaces for developers to manipulate them. A meta-program can capture the essence 

of a commonly needed feature and transform several different base programs. With OpenFortran, 

transformations are performed during compilation rather than at run-time in order to avoid run-

time penalties.  

Application programmers can apply a library developed in OpenFortran to translate 

existing legacy application code in a transparent way, such that they only need to add simple 

annotations to their source code while not needing to understand the complexities of using a 

program transformation engine. We demonstrated the capability of OpenFortran by 

implementing a profiling tool that helps to obtain an overview of system performance. We also 

developed a case study to illustrate how OpenFortran can be utilized to improve the modularity 

of a timer implementation in NASA Advanced Supercomputing (NAS). Our experience has 

shown that the MOP mechanism can be used to address a wide range of problems by facilitating 

the implementation of source-to-source program translators, especially suitable for, but not 

limited to those dealing with crosscutting issues. 

7.2 SPOT 

We believe that there is a learning curve for most developers to become familiar with the 

concepts of a MOP, even though it seems conceptually more straightforward to use OpenFortran 

than directly calling the APIs of ROSE to manipulate ASTs.  

To address research question Q4 (i.e., to reduce the accidental complexities caused by the 

gap between the traditional programming paradigm and the intensive meta-programming 

techniques), we created a DSL (SPOT) that can be used on top of OpenFortran to raise the 

abstraction level to specify program transformations. By raising the level of abstraction for 

program transformation, high-level programming concepts (e.g., modules, functions, and 
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statements) are used in SPOT as building constructs. Built-in functions are provided to perform 

systematic actions on programming concepts, such as add, delete, and update. A code generator 

is used to automate the translation from a SPOT program to the underlying implementation in a 

MOP. By raising the abstraction level of program transformation specification, we believe that 

SPOT has the potential to offer advantages to programmers who may not have deep skills in 

using a traditional transformation system. 

We have performed a series of case studies to showcase the capability of SPOT, such as 

building a profiling library, an OpenMP library, and a checkpointing library. Our study shows 

that SPOT is able to support AOP in the target base language by providing mechanisms to 

represent crosscutting concerns. SPOT can also be used to specify more fine-grained 

transformations at more diverse source locations. With SPOT, developers can use language 

constructs and built-in functions to express transformation tasks in a direct manner, which more 

resembles their thoughts of program transformation, and in a transparent manner, whereby they 

do not need to know the details on how the transformations are performed underneath. 

7.3 OpenFoo 

We observed that there is a general lack of infrastructure support for language extension 

in terms of building a MOP for an arbitrary language, especially for legacy programming 

languages. Therefore, we offered our solution to question Q5 through building a generalized 

framework suitable for extending an arbitrary programming language through a MOP. 

The extensible framework includes two primary parts: a MOP prototype (OpenFoo) at the 

backend and a DSL (SPOT) at the frontend. OpenFoo is an extensible library that is composed of 

language-independent components associated with MOP construction. A MOP for a particular 

GPL can be instantiated by building language-specific components via extension from OpenFoo. 
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Similarly, SPOT has been generalized from its initial version mainly used for specifying code 

transformations for Fortran. The generic DSL can be extended to accommodate a newly created 

backend MOP.  

We use a set of graphic models to facilitate the generalization for both of the two parts by 

raising the abstraction level of MOP construction and specification of program transformation. 

The idea of a MOP may be more comprehensible by representing its design structure with class 

diagrams, and the abstract syntax of the SPOT core is represented in a model that is helpful to 

guide the extension to its concrete syntax.  

To experiment with our solution, we extended our framework to support Fortran 90 and 

C++. We also presented a tool implemented with our approach to solve a problem frequently 

encountered in software testing, i.e., a tool for code coverage analysis. The case study illustrates 

that with our extensible framework the same SPOT program can be adopted to specify 

translation tasks for programs coded in different GPLs. 

A survey of various existing solutions for automating program transformations is another 

contribution of this dissertation. The survey is presented in Chapter 2 as background and related 

work and includes comparisons between solutions of different methodologies and a rationale of 

how our approach is different. Two primary features that make our approach different from other 

solutions are: 1) our work allows users to express their intent of code modification in an intuitive 

manner that is more tied to the programming model they use in their core development process, 

and 2) the strategy of multiple scopes empowers our approach to be able to address context-

sensitive transformation problems.  

Our experience has shown that our approach (i.e., a DSL plus a MOP), as a form of 

program extension, can be used to address a wide range of problems in HPC (but not limited to 
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HPC) by facilitating the implementation of program translators, especially suitable for those 

involving crosscutting and separation of parallelization concerns. By raising the abstraction level 

for code modification and through the technique of code generation, our approach has the 

potential to improve code modularity, maintainability, productivity, and reusability. 
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Appendix A  

SPOT Code Generator Implementation 
 
In this Appendix, the core portion of SPOT code generator implementation in ANTLR 

and StringTemplate is shown, including the parser grammars, tree grammars, the stringtemplate 

store, and the auxiliary files.  

A. 1 ANTLR Grammars 

A.1.1 SPOT Parser Grammar 

1. grammar	  spot;	  	  	  
2. 	  	  	  
3. options	  {	  	  	  
4. 	  	  	  	  output	  =	  AST;	  	  	  
5. 	  	  	  	  backtrack=true;	  	  	  
6. 	  	  	  	  memoize=true;	  	  	  
7. }	  	  	  
8. 	  	  	  
9. 	  	  	  	  	  	  	  
10. //	  Imaginary	  tokens	  that	  serve	  as	  parent,	  or	  grouping	  nodes	  in	  the	  AST.	  	  	  
11. tokens	  {	  	  	  
12. 	  	  	  	  TRANSFORMER_ND;	  	  	  
13. 	  	  	  	  ACTION_ND;	  	  	  
14. 	  	  	  	  RETRIEVE_ND;	  	  	  
15. 	  	  	  	  FORALL_ND;	  	  	  
16. 	  	  	  	  SPOTCODE_ND;	  	  	  
17. 	  	  	  	  TFBODY_ND;	  	  	  
18. 	  	  	  	  LOCATION_ND;	  	  	  
19. 	  	  	  	  CONSTRUCT_ND;	  	  	  
20. 	  	  	  	  ACTION_ND;	  	  	  
21. 	  	  	  	  SCOPE_ENTITY_ND;	  	  	  
22. 	  	  	  	  BASIC_ENTITY_ND;	  	  	  
23. 	  	  	  	  FUCTION_CALL_ND;	  	  	  
24. 	  	  	  	  CALL_ARGUMENT_LIST_ND;	  	  	  
25. 	  	  	  	  VARIABLE_DECLARE_ND;	  	  	  
26. 	  	  	  	  STATEMENT_ND;	  	  	  
27. 	  	  	  	  DEFINITION_ND;	  	  	  
28. 	  	  	  	  SUBSCOPE_ND;	  	  	  
29. 	  	  	  	  VARIABLEREF_ND;	  	  	  
30. 	  	  	  	  USETRANSFORMER_ND;	  	  	  
31. 	  	  	  	  GETCURRENTSTATEMENT_ND;	  	  	  
32. 	  	  	  	  CONDITION_ND;	  	  	  
33. 	  	  	  	  SOURCESTATEMENTTYPE_ND;	  	  	  
34. 	  	  	  	  SOURCESTATEMENT_ND;	  	  	  
35. 	  	  	  	  ATTRIBUTERETRIEVE_ND;	  	  	  
36. 	  	  	  	  SUBSUBTRANSFORMER_ND;	  	  	  
37. 	  	  	  	  STATEMENT_ENTITY_ND;	  	  	  
38. 	  	  	  	  OPERATION_ND;	  	  	  
39. 	  	  	  	  CONDITION_BLOCK_ND;	  	  	  
40. 	  	  	  	  SCOPESTATEMENT_ND;	  	  	  
41. 	  	  	  	  EXPRESSION_ND;	  	  	  
42. 	  	  	  	  WILDCARD_ND;	  	  	  
43. 	  	  	  	  IDENTITY_ND;	  	  	  
44. 	  	  	  	  WILDCARD_VARIABLE_ND;	  	  	  
45. 	  	  	  	  METHODDEF_ND;	  	  	  
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46. 	  	  	  	  ENTITYNAME_ND;	  	  	  
47. 	  	  	  	  METHODDEFUN_ND;	  	  	  
48. 	  	  	  	  METHODDEFILE_ND;	  	  	  
49. 	  	  	  	  FORALL_FILE_ND;	  	  	  
50. 	  	  	  	  METAFUNCTION_ND;	  	  	  
51. 	  	  	  	  METAFILE_ND;	  	  	  
52. 	  	  	  	  	  	  	  
53. 	  	  	  	  GENERAL_STATEMENT;	  	  	  
54. 	  	  	  	  SINGLE_STATEMENT;	  	  	  
55. 	  	  	  	  SCOPE_STATEMENT;	  	  	  
56. 	  	  	  	  CALL_STATEMENT;	  	  	  
57. 	  	  	  	  ASSIGN_STATEMENT;	  	  	  
58. 	  	  	  	  ASSIGN_STATEMENT_MATCH;	  	  	  
59. 	  	  	  	  COND_STATEMENT;	  	  	  
60. 	  	  	  	  LOOP_STATEMENT;	  	  	  
61. 	  	  	  	  IF_STATEMENT;	  	  	  
62. 	  	  	  	  ELSE_STATEMENT;	  	  	  
63. 	  	  	  	  DO_STATEMENT;	  	  	  
64. 	  	  	  	  WHILE_STATEMENT;	  	  	  
65. 	  	  	  	  FOR_STATEMENT;	  	  	  
66. 	  	  	  	  DEC_STATEMENT;	  	  	  
67. 	  	  	  	  TRANS_SCOPE;	  	  	  
68. 	  	  	  	  TRANS_LOCATION;	  	  	  
69. 	  	  	  	  SOURCE_CODE;	  	  	  
70. 	  	  	  	  COMMENT_STATEMENT;	  	  	  
71. 	  	  	  	  CALL_ARGUMENT_LIST;	  	  	  
72. 	  	  	  	  CALL_ARGUMENT_LIST_HOST;	  	  	  
73. 	  	  	  	  VARIABLE_DECL;	  	  	  
74. 	  	  	  	  STATEMENT_LIST;	  	  	  
75. 	  	  	  	  ASSIGN_NEW_STATEMENT;	  	  	  
76. 	  	  	  	  ASSIGN_EXPRESSION;	  	  	  
77. 	  	  	  	  ADD_NEW_STATEMENT;	  	  	  
78. }	  	  	  
79. 	  	  	  
80. @header	  {package	  edu.ua.spot;}//Parser	  header	  	  	  
81. @lexer::header	  {package	  edu.ua.spot;}//Lexer	  header	  	  	  
82. 	  	  	  
83. 	  	  	  
84. @members	  {	  	  	  
85. 	  	  	  	  String	  metaObjectType	  =	  null;	  	  	  
86. 	  	  	  	  Boolean	  isMatchStatement	  =	  false;	  	  	  
87. }	  	  	  
88. 	  	  	  
89. spotCode	  	  	  
90. 	  	  	  	  :transformer	  (includeBlock)?	  	  	  
91. 	  	  	  	  -‐>	  ^(SPOTCODE_ND	  transformer	  includeBlock?)	  	  	  
92. 	  	  	  	  ;	  	  	  
93. 	  	  	  
94. transformer	  	  	  
95. 	  	  	  	  :	  TRANSFORMER	  ID	  LBRACE	  transformation	  (SEMICOLON	  transformation)*	  RBRACE	  	  	  
96. 	  	  	  	  -‐>	  ^(TRANSFORMER_ND	  ID	  	  transformation+)	  	  	  
97. 	  	  	  	  ;	  	  	  
98. 	  	  	  
99. transformation	  	  	  
100. 	  	  	  	  :	  scopeMetaObject	  LBRACE	  virtualMethodDefinition	  RBRACE	  	  	  
101. 	  	  	  	  -‐>	  ^(TFBODY_ND	  scopeMetaObject	  virtualMethodDefinition)	  	  	  	  
102. 	  	  	  	  ;	  	  	  
103. 	  	  	  	  	  	  	  
104. 	  	  	  
105. scopeMetaObject	  //the	  original	  name	  of	  this	  rule	  is	  "scope",	  ANTRL	  just	  cannot	  recognize	  it	  	  	  
106. 	  	  	  	  :	  SCOPEKEYWORD	  LPAREN	  sn=SCOPEENTITY	  ID	  RPAREN	  {metaObjectType	  =	  $sn.text;}	  	  	  
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107. 	  	  	  	  -‐>	  ^(TRANS_SCOPE	  SCOPEENTITY	  ID)	  	  	  
108. 	  	  	  	  ;	  	  	  
109. 	  	  	  
110. virtualMethodDefinition	  	  	  
111. 	  	  	  	  :	  {metaObjectType.equals("Function")}?	  	  virtualMethodDefinitionFunction	  	  	  	  
112. 	  	  	  	  -‐>	  ^(METAFUNCTION_ND	  virtualMethodDefinitionFunction)	  	  	  
113. 	  	  	  	  |	  virtualMethodDefinitionFile	  	  	  
114. 	  	  	  	  -‐>	  ^(METAFILE_ND	  virtualMethodDefinitionFile)	  	  	  
115. 	  	  	  	  ;	  	  	  
116. 	  	  	  	  	  	  	  
117. virtualMethodDefinitionFunction	  	  	  	  
118. 	  	  	  	  :	  transformStatement	  	  	  
119. 	  	  	  	  -‐>	  ^(METHODDEFUN_ND	  transformStatement)	  	  	  
120. 	  	  	  	  |	  extendFunctionCall	  transformStatement	  	  	  
121. 	  	  	  	  -‐>	  ^(METHODDEFUN_ND	  extendFunctionCall	  transformStatement)	  	  	  
122. 	  	  	  	  |	  extendVariableFunction	  transformStatement	  	  	  
123. 	  	  	  	  -‐>	  ^(METHODDEFUN_ND	  extendVariableFunction	  transformStatement)	  	  	  
124. 	  	  	  	  ;	  	  	  	  	  	  
125. 	  	  	  
126. virtualMethodDefinitionFile	  	  	  
127. 	  	  	  	  :	  transformStatement	  	  	  
128. 	  	  	  	  -‐>	  ^(METHODDEFILE_ND	  transformStatement)	  	  	  
129. 	  	  	  	  |	  extendFunctionCall	  transformStatement	  	  	  
130. 	  	  	  	  -‐>	  ^(METHODDEFILE_ND	  extendFunctionCall	  transformStatement)	  	  	  	  	  
131. 	  	  	  	  |	  extendVariableFile	  transformStatement	  	  	  
132. 	  	  	  	  -‐>	  ^(METHODDEFILE_ND	  extendVariableFile	  transformStatement)	  	  	  
133. 	  	  	  	  ;	  	  	  
134. 	  	  	  	  	  	  	  
135. 	  	  	  	  	  	  	  
136. extendFunctionCall	  	  	  
137. 	  	  	  	  :	  FORALL	  LPAREN	  BASICENTITY	  variableSPOT?	  RPAREN	  	  	  	  
138. 	  	  	  	  -‐>	  ^(FORALL_ND	  BASICENTITY	  variableSPOT?)	  	  	  
139. 	  	  	  	  ;	  	  	  	  	  	  
140. 	  	  	  
141. extendVariableFunction	  	  	  
142. 	  	  	  	  :	  FORALL	  LPAREN	  BASICENTITY	  variableSPOT?	  RPAREN	  	  	  	  
143. 	  	  	  	  -‐>	  ^(FORALL_ND	  BASICENTITY	  variableSPOT?)	  	  	  
144. 	  	  	  	  ;	  	  	  
145. 	  	  	  	  	  	  	  
146. extendVariableFile	  	  	  
147. 	  	  	  	  :	  FORALL	  LPAREN	  BASICENTITY	  variableSPOT?	  RPAREN	  	  	  	  
148. 	  	  	  	  -‐>	  ^(FORALL_FILE_ND	  BASICENTITY	  variableSPOT?)	  	  	  
149. 	  	  	  	  ;	  	  	  
150. 	  	  	  	  	  	  	  
151. transformStatement	  	  	  
152. 	  	  	  	  :	  operation	  	  	  	  
153. 	  	  	  	  -‐>	  ^(OPERATION_ND	  operation)	  	  	  
154. 	  	  	  	  |	  locationStatement	  LBRACE	  operation+	  RBRACE	  	  	  
155. 	  	  	  	  -‐>	  ^(SUBSUBTRANSFORMER_ND	  locationStatement	  operation+)	  	  	  
156. 	  	  	  	  |	  conditionBlock	  	  	  
157. 	  	  	  	  -‐>	  ^(CONDITION_BLOCK_ND	  conditionBlock)	  	  	  
158. 	  	  	  	  ;	  	  	  	  
159. 	  	  	  
160. locationStatement	  	  	  
161. @init	  	  	  
162. {	  	  	  
163. 	  isMatchStatement=true;	  	  	  
164. }	  	  	  
165. @after	  	  	  
166. {	  	  	  
167. 	  isMatchStatement=false;	  	  	  
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168. }	  	  	  	  
169. 	  	  	  	  :	  SCOPEKEYWORD	  LPAREN	  hostScopeStatement	  variableSPOT?	  RPAREN	  //scope	  statements	  such	  as	  IF,	  W

HILE	  in	  the	  host	  language	  	  	  
170. 	  	  	  	  -‐>	  ^(TRANS_SCOPE	  	  SCOPEKEYWORD	  	  hostScopeStatement	  variableSPOT?)	  	  	  
171. 	  	  	  	  ;	  	  	  
172. 	  	  	  	  	  	  	  	  	  	  	  
173. conditionBlock	  	  	  
174. 	  	  	  	  :	  IF	  LPAREN	  condition	  RPAREN	  LBRACE	  operation+	  RBRACE	  	  	  
175. 	  	  	  	  -‐>	  ^(IF	  condition	  	  operation+	  )	  	  	  
176. 	  	  	  	  |	  ELSE	  LBRACE	  operation+	  RBRACE	  	  	  
177. 	  	  	  	  -‐>	  ^(ELSE	  operation+	  )	  	  	  
178. 	  	  	  	  ;	  	  	  	  	  	  
179. 	  	  	  	  	  	  	  
180. condition	  	  	  
181. 	  	  	  	  :	  left=spotExpr	  conditionOperator	  right=spotExpr	  	  	  
182. 	  	  	  	  -‐>	  ^(conditionOperator	  	  $left	  	  	  $right	  )	  	  	  
183. 	  	  	  	  ;	  	  	  
184. 	  	  	  	  	  	  	  
185. spotExpr	  	  	  
186. 	  	  	  	  :	  attributeRetrieve	  	  	  
187. 	  	  	  	  |	  ID	  	  	  
188. 	  	  	  	  |	  NUMBER	  	  	  
189. 	  	  	  	  ;	  	  	  
190. 	  	  	  	  	  	  	  
191. attributeRetrieve	  	  	  
192. 	  	  	  	  :	  variableRef	  '.'	  ATTRIBUTENAME	  	  	  
193. 	  	  	  	  -‐>	  ^(ATTRIBUTERETRIEVE_ND	  variableRef	  ATTRIBUTENAME)	  	  	  
194. 	  	  	  	  ;	  	  	  
195. 	  	  	  	  	  	  	  
196. conditionOperator	  	  	  
197. 	  	  	  	  :EQUAL|NOTEQUAL|LESSTHAN|GREATERTHAN|LESSTHANOREQUALTO|GREATERTHANOREQUALTO	  	  	  
198. 	  	  	  	  ;	  	  	  
199. 	  	  	  	  	  	  	  	  	  	  	  
200. variableSPOT	  	  	  	  
201. 	  	  	  	  :	  '*'	  -‐>	  ^(WILDCARD_ND	  '*')	  	  	  
202. 	  	  	  	  |	  '%'	  ID	  -‐>	  ^(WILDCARD_VARIABLE_ND	  ID)//this	  ID	  is	  a	  user	  defined	  handler	  	  	  	  
203. 	  	  	  	  //ID	  -‐>	  ^(ENTITYNAME_ND	  ID)	  	  	  	  
204. 	  	  	  	  ;	  	  	  
205. 	  	  	  	  	  	  	  	  	  	  	  	  
206. operation	  	  	  
207. 	  	  	  	  :	  actionVariable	  SEMICOLON	  	  	  
208. 	  	  	  	  -‐>	  ^(ACTION_ND	  actionVariable)	  	  	  
209. 	  	  	  	  |	  actionFunction	  SEMICOLON	  	  	  
210. 	  	  	  	  -‐>	  ^(ACTION_ND	  actionFunction)	  	  	  
211. 	  	  	  	  |	  actionStatement	  SEMICOLON	  	  	  
212. 	  	  	  	  -‐>	  ^(ACTION_ND	  actionStatement)	  	  	  
213. 	  	  	  	  |	  languageEntity	  '%'?	  ID	  ASSIGN	  actionRetrieve	  SEMICOLON	  	  	  	  
214. 	  	  	  	  -‐>	  ^(RETRIEVE_ND	  languageEntity	  '%'?	  ID	  ASSIGN	  actionRetrieve)	  	  	  
215. 	  	  	  	  ;	  	  	  	  	  	  
216. 	  	  	  	  	  	  	  
217. languageEntity	  	  	  
218. 	  	  	  	  :	  SCOPEENTITY	  	  	  
219. 	  	  	  	  -‐>	  ^(SCOPE_ENTITY_ND	  SCOPEENTITY)	  	  	  
220. 	  	  	  	  |	  BASICENTITY	  	  	  
221. 	  	  	  	  -‐>	  ^(BASIC_ENTITY_ND	  BASICENTITY)	  	  	  
222. 	  	  	  	  |	  hostStatement	  	  	  
223. 	  	  	  	  -‐>	  ^(STATEMENT_ENTITY_ND	  hostStatement)	  	  	  
224. 	  	  	  	  ;	  	  	  
225. 	  	  	  
226. actionRetrieve	  	  	  
227. @init	  	  	  
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228. {	  	  	  
229. 	  isMatchStatement=true;	  	  	  
230. }	  	  	  
231. @after	  	  	  
232. {	  	  	  
233. 	  isMatchStatement=false;	  	  	  
234. }	  	  	  
235. 	  	  	  	  :	  GETFUNCTION	  LPAREN	  funName=ID	  RPAREN//e.g.,	  GetProgram(add);	  	  	  
236. 	  	  	  	  -‐>	  ^(GETFUNCTION	  $funName)	  	  	  
237. 	  	  	  	  |	  GETFUNCTIONCALL	  LPAREN	  funName=ID	  RPAREN	  	  	  
238. 	  	  	  	  -‐>	  ^(GETFUNCTIONCALL	  $funName)	  	  	  
239. 	  	  	  	  |	  GETVARIABLEREAD	  LPAREN	  varName=ID	  RPAREN	  	  	  
240. 	  	  	  	  -‐>	  ^(GETVARIABLEREAD	  $varName)	  	  	  
241. 	  	  	  	  |	  GETVARIABLEWRITE	  LPAREN	  varName=ID	  RPAREN	  	  	  
242. 	  	  	  	  -‐>	  ^(GETVARIABLEWRITE	  $varName)	  	  	  
243. 	  	  	  	  |	  GETVARIABLEDECL	  LPAREN	  varName=ID	  RPAREN	  	  	  
244. 	  	  	  	  -‐>	  ^(GETVARIABLEDECL	  $varName)	  	  	  
245. 	  	  	  	  |	  GETSTATEMENTLINE	  LPAREN	  lineNumber	  RPAREN	  	  	  
246. 	  	  	  	  -‐>	  ^(GETSTATEMENTLINE	  lineNumber)	  	  	  
247. 	  	  	  	  |	  GETSTATEMENT	  LPAREN	  hostStatement	  (COMMA	  statementIndex)?	  RPAREN	  	  	  
248. 	  	  	  	  -‐>	  ^(GETSTATEMENT	  hostStatement	  statementIndex?)	  	  	  
249. 	  	  	  	  |	  GETSTATEMENTASSIGNMENT	  LPAREN	  varName=ID	  RPAREN	  	  //the	  left-‐hand	  side	  is	  denoted	  by	  ID	  	  	  
250. 	  	  	  	  -‐>	  ^(GETSTATEMENTASSIGNMENT	  $varName)	  	  	  
251. 	  	  	  	  ;	  	  	  	  	  	  
252. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
253. actionVariable	  	  	  
254. 	  	  	  	  :	  ADDVARIABLE	  LPAREN	  TYPENAME	  COMMA	  ID	  	  (COMMA	  initializedVal)?	  RPAREN	  	  	  
255. 	  	  	  	  -‐>	  ^(ADDVARIABLE	  TYPENAME	  ID	  initializedVal?)	  	  	  	  
256. 	  	  	  	  |	  ADDVARIABLESAMETYPE	  LPAREN	  TYPENAME	  COMMA	  ID	  	  (COMMA	  ID)*	  RPAREN	  	  	  
257. 	  	  	  	  -‐>	  ^(ADDVARIABLESAMETYPE	  TYPENAME	  ID+)	  	  	  
258. 	  	  	  	  |	  DELETEVARIABLE	  LPAREN	  ID	  RPAREN	  	  	  
259. 	  	  	  	  -‐>	  ^(DELETEVARIABLE	  ID)	  	  	  
260. 	  	  	  	  |	  RENAMEVARIABLE	  LPAREN	  oldName=ID	  COMMA	  newName=ID	  RPAREN	  	  	  
261. 	  	  	  	  -‐>	  ^(RENAMEVARIABLE	  $oldName	  	  $newName)	  	  	  
262. 	  	  	  	  ;	  	  	  	  	  	  	  	  	  	  
263. 	  	  	  
264. actionFunction	  	  	  
265. 	  	  	  	  :	  RENAMEFUNCTION	  LPAREN	  oldName=ID	  COMMA	  newName=ID	  RPAREN	  	  	  
266. 	  	  	  	  -‐>	  ^(RENAMEFUNCTION	  $oldName	  	  $newName)	  	  	  
267. 	  	  	  	  ;	  	  	  	  	  	  
268. 	  	  	  	  	  	  	  
269. actionStatement	  	  	  	  
270. 	  	  	  	  :	  addFunctionCall	  	  	  
271. 	  	  	  	  -‐>	  ^(ADD_NEW_STATEMENT	  addFunctionCall)	  	  	  
272. 	  	  	  	  |'%'	  ID	  ASSIGN	  addFunctionCall	  //	  %newFunCall	  =	  AddCallStatement(newName,	  paraList);	  	  	  
273. 	  	  	  	  -‐>	  ^(ASSIGN_NEW_STATEMENT	  '%'	  ID	  addFunctionCall)	  	  	  
274. 	  	  	  	  |	  ADDCOMMENTSTATEMENT	  LPAREN	  LOCATION	  COMMA	  currentStatement	  STRINGLITERAL	  RPAREN	  	  	  
275. 	  	  	  	  -‐>	  ^(ADDCOMMENTSTATEMENT	  LOCATION	  currentStatement	  STRINGLITERAL)	  	  	  
276. 	  	  	  	  |	  ADDUSINGSTATEMENT	  LPAREN	  STRINGLITERAL	  RPAREN	  	  	  
277. 	  	  	  	  -‐>	  ^(ADDUSINGSTATEMENT	  STRINGLITERAL)	  	  	  
278. 	  	  	  	  |	  DELETESTATEMENT	  	  LPAREN	  hostStatement	  RPAREN	  	  	  
279. 	  	  	  	  -‐>	  ^(DELETESTATEMENT	  hostStatement)	  	  	  
280. 	  	  	  	  |	  ADDSTATEMENT	  LPAREN	  '"'	  statement	  '"'	  RPAREN	  	  	  
281. 	  	  	  	  -‐>	  ^(ADDSTATEMENT	  statement)	  	  	  
282. 	  	  	  	  ;	  	  	  
283. 	  	  	  
284. addFunctionCall	  //	  AddCallStatement(newName,	  'before',	  $assign.statement,	  paraList);	  	  	  
285. 	  	  	  	  :	  ADDCALLSTATEMENT	  LPAREN	  LOCATION	  COMMA	  currentStatement	  COMMA	  ID	  (COMMA	  callArgumentList)?	  R

PAREN	  	  	  
286. 	  	  	  	  -‐>	  ^(ADDCALLSTATEMENT	  LOCATION	  	  currentStatement	  ID	  callArgumentList?	  )	  	  	  	  	  
287. 	  	  	  	  ;	  	  	  
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288. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
289. initializedVal	  	  	  
290. 	  	  	  	  :	  ID	  	  	  
291. 	  	  	  	  |	  NUMBER	  	  	  
292. 	  	  	  	  ;	  	  	  
293. 	  	  	  
294. callArgumentList	  	  	  
295. 	  	  	  	  :	  callArgument	  (COMMA	  callArgument)*	  	  	  
296. 	  	  	  	  -‐>	  ^(CALL_ARGUMENT_LIST	  	  callArgument+)	  	  	  
297. 	  	  	  	  ;	  	  	  
298. 	  	  	  	  	  	  	  
299. lineNumber	  	  	  
300. 	  	  	  	  :	  NUMBER	  	  	  
301. 	  	  	  	  ;	  	  	  
302. 	  	  	  
303. statementIndex	  	  	  
304. 	  	  	  	  :	  NUMBER	  	  	  
305. 	  	  	  	  ;	  	  	  
306. 	  	  	  	  	  	  	  	  	  	  	  
307. callArgument	  	  	  
308. 	  	  	  	  :	  initializedVal	  	  	  
309. 	  	  	  	  ;	  	  	  	  
310. 	  	  	  	  	  	  	  	  	  	  	  
311. currentStatement	  //e.g.,	  $funName.statement	  to	  indicate	  the	  statement	  where	  a	  function	  call	  is	  con

tained	  	  	  
312. 	  	  	  	  :	  variableRef	  '.'	  STATEMENT	  	  	  
313. 	  	  	  	  -‐>	  ^(GETCURRENTSTATEMENT_ND	  variableRef	  	  STATEMENT)	  	  	  
314. 	  	  	  	  ;	  	  	  
315. 	  	  	  	  	  	  	  
316. variableRef	  	  	  
317. 	  	  	  	  :	  '$'	  ID	  	  	  
318. 	  	  	  	  -‐>	  ^(VARIABLEREF_ND	  ID)	  	  	  
319. 	  	  	  	  ;	  	  	  	  	  	  
320. 	  	  	  	  	  	  	  
321. //source	  code	  added	  in	  includeBlock	  is	  not	  parsed	  	  	  
322. //shoud	  replace	  STRINGLITERAL	  with	  the	  first	  rule	  of	  the	  host	  langauge	  	  	  
323. includeBlock	  	  	  
324. 	  	  	  	  :	  INCLUDECODE	  LPAREN	  STRINGLITERAL	  RPAREN	  	  	  
325. 	  	  	  	  -‐>	  ^(INCLUDECODE	  STRINGLITERAL	  )	  	  	  
326. 	  	  	  	  ;	  	  	  
327. /////////////////////////////////////////////////////////////////////////////////////////	  	  	  
328. //statements	  in	  host	  language	  	  	  
329. hostStatement	  	  	  
330. 	  	  	  	  :	  statementType	  	  	  	  	  	  	  //collect	  all	  statements	  of	  a	  type	  	  	  
331. 	  	  	  	  -‐>	  ^(SOURCESTATEMENTTYPE_ND	  statementType)	  	  	  	  
332. 	  	  	  	  |	  '"'	  statement	  '"'	  	  	  	  //string-‐based	  transformation,	  single	  statement	  	  	  
333. 	  	  	  	  -‐>	  ^(SOURCESTATEMENT_ND	  statement)	  	  	  	  
334. 	  	  	  	  ;	  	  	  
335. 	  	  	  	  	  	  	  
336. hostScopeStatement	  	  	  
337. 	  	  	  	  :	  SCOPESTATEMENTTYPE	  	  	  
338. 	  	  	  	  -‐>	  ^(SCOPE_STATEMENT	  SCOPESTATEMENTTYPE)	  	  	  
339. 	  	  	  	  |	  '"'	  scopeStatement	  '"'	  //string-‐based	  match,	  scope	  statement	  e.g.,	  "if(a==b){a++;}"	  	  	  	  	  	  
340. 	  	  	  	  -‐>	  ^(SCOPESTATEMENT_ND	  scopeStatement)	  	  	  	  
341. 	  	  	  	  ;	  	  	  
342. 	  	  	  	  	  	  	  	  	  	  	  
343. statementType	  	  	  
344. 	  	  	  	  :	  SINGLESTATEMENTTYPE	  	  	  
345. 	  	  	  	  -‐>	  ^(SINGLE_STATEMENT	  SINGLESTATEMENTTYPE)	  	  	  
346. 	  	  	  	  |	  SCOPESTATEMENTTYPE	  	  	  
347. 	  	  	  	  -‐>	  ^(SCOPE_STATEMENT	  SCOPESTATEMENTTYPE)	  	  	  
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348. 	  	  	  	  |	  STATEMENTTYPE	  	  	  
349. 	  	  	  	  -‐>	  ^(GENERAL_STATEMENT	  STATEMENTTYPE)	  	  	  
350. 	  	  	  	  ;	  	  	  
351. 	  	  	  	  	  	  	  
352. statementList	  	  	  
353. 	  	  	  	  :	  statement	  	  	  
354. 	  	  	  	  -‐>	  ^(STATEMENT_ND	  statement)	  	  	  
355. 	  	  	  	  |	  LBRACE	  statement+	  RBRACE	  	  	  
356. 	  	  	  	  -‐>	  ^(STATEMENT_LIST	  statement+)	  	  	  
357. 	  	  	  	  ;	  	  	  
358. 	  	  	  	  	  	  	  
359. statement	  	  	  
360. 	  	  	  	  :	  singleStatement	  	  	  
361. 	  	  	  	  |	  scopeStatement	  	  	  
362. 	  	  	  	  ;	  	  	  
363. 	  	  	  	  	  	  	  
364. scopeStatement	  	  	  
365. 	  	  	  	  :	  conditionStatement	  	  	  
366. 	  	  	  	  -‐>	  ^(COND_STATEMENT	  conditionStatement)	  	  	  
367. 	  	  	  	  |	  loopStatement	  	  	  
368. 	  	  	  	  -‐>	  ^(LOOP_STATEMENT	  loopStatement)	  	  	  
369. 	  	  	  	  ;	  	  	  
370. 	  	  	  	  	  	  	  
371. singleStatement	  	  	  
372. 	  	  	  	  :	  assignmentStatement	  	  	  
373. 	  	  	  	  -‐>	  ^(ASSIGN_STATEMENT	  assignmentStatement)	  	  	  
374. 	  	  	  	  |	  callStatement	  	  	  
375. 	  	  	  	  -‐>	  ^(CALL_STATEMENT	  callStatement)	  	  	  
376. 	  	  	  	  |	  declareStatement	  	  	  
377. 	  	  	  	  -‐>	  ^(DEC_STATEMENT	  declareStatement)	  	  	  
378. 	  	  	  	  ;	  	  	  
379. 	  	  	  	  	  	  	  	  	  	  	  
380. assignmentStatement	  	  	  
381. 	  	  	  	  :{isMatchStatement==true}?	  varRef	  ASSIGN	  expression	  	  	  
382. 	  	  	  	  -‐>	  ^(ASSIGN_STATEMENT_MATCH	  varRef	  expression)	  	  	  
383. 	  	  	  	  |varRef	  ASSIGN	  expression	  	  	  
384. 	  	  	  	  -‐>	  ^(ASSIGN_STATEMENT	  varRef	  expression)	  	  	  
385. 	  	  	  	  ;	  	  	  	  
386. 	  	  	  
387. declareStatement	  	  	  
388. 	  	  	  	  :TYPENAME	  varName+=ID	  (COMMA	  varName+=ID)*	  	  	  
389. 	  	  	  	  -‐>	  ^(VARIABLE_DECL	  TYPENAME	  $varName+)	  	  	  	  
390. 	  	  	  	  ;	  	  	  
391. 	  	  	  	  	  	  	  	  	  	  	  
392. callStatement	  	  	  
393. 	  	  	  	  :callIDRefHost	  LPAREN	  callArgumentListHost?	  RPAREN	  	  	  	  
394. 	  	  	  	  -‐>	  ^(CALL_STATEMENT	  callIDRefHost	  	  callArgumentListHost?)	  	  	  
395. 	  	  	  	  ;	  	  	  
396. 	  	  	  
397. callIDRefHost	  	  	  
398. 	  	  	  	  :	  ID	  	  	  
399. 	  	  	  	  ;	  	  	  
400. 	  	  	  	  	  	  	  
401. callArgumentListHost	  	  	  
402. 	  	  	  	  :	  callArgument	  (COMMA	  callArgumentHost)*	  	  	  
403. 	  	  	  	  -‐>	  ^(CALL_ARGUMENT_LIST_HOST	  	  callArgumentHost+)	  	  	  
404. 	  	  	  	  ;	  	  	  
405. 	  	  	  
406. callArgumentHost	  	  	  
407. 	  	  	  	  :	  expression	  	  	  
408. 	  	  	  	  ;	  	  	  
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409. 	  	  	  	  	  	  	  	  	  	  	  
410. conditionStatement	  	  	  
411. 	  	  	  	  :ifStatement	  	  	  
412. 	  	  	  	  |elseStatement	  	  	  
413. 	  	  	  	  ;	  	  	  
414. 	  	  	  	  	  	  	  
415. loopStatement	  	  	  
416. 	  	  	  	  :whileStatement	  	  	  
417. 	  	  	  	  |forStatement	  	  	  
418. 	  	  	  	  ;	  	  	  
419. 	  	  	  
420. ifStatement	  	  	  
421. 	  	  	  	  :	  IFHOST	  LPAREN	  expression	  RPAREN	  	  statementList	  	  	  
422. 	  	  	  	  	  	  elseStatement?	  	  	  
423. 	  	  	  	  -‐>	  ^(IF_STATEMENT	  expression	  statementList	  elseStatement?)	  	  	  	  
424. 	  	  	  	  ;	  	  	  
425. 	  	  	  	  	  	  	  
426. elseStatement	  	  	  
427. 	  	  	  	  :	  ELSEHOST	  statementList	  	  	  
428. 	  	  	  	  -‐>	  ^(	  ELSE_STATEMENT	  statementList)	  	  	  
429. 	  	  	  	  ;	  	  	  
430. 	  	  	  	  	  	  	  
431. whileStatement	  	  	  
432. 	  	  	  	  :	  WHILE	  LPAREN	  expression	  RPAREN	  	  statementList	  	  	  
433. 	  	  	  	  -‐>	  ^(WHILE_STATEMENT	  expression	  statementList)	  	  	  
434. 	  	  	  	  ;	  	  	  
435. 	  	  	  	  	  	  	  
436. forStatement	  	  	  
437. 	  	  	  	  :FOR	  LPAREN	  	  	  
438. 	  	  	  	  (//	  (declareStatement)=>	  declareStatement	  |	  	  	  	  	  
439. 	  	  	  	  (assignmentExpression)?	  SEMICOLON	  	  	  	  
440. 	  	  	  	  )	  	  	  
441. 	  	  	  	  (condition)?	  SEMICOLON	  	  	  
442. 	  	  	  	  (expression)?	  	  	  
443. 	  	  	  	  RPAREN	  	  	  	  
444. 	  	  	  	  statementList	  	  	  
445. 	  	  	  	  -‐>	  ^(FOR_STATEMENT	  assignmentExpression?	  condition?	  expression?	  statementList)	  	  	  	  	  	  	  
446. 	  	  	  	  ;	  	  	  
447. 	  	  	  	  	  	  	  
448. assignmentExpression	  	  	  
449. 	  	  	  	  :varRef	  ASSIGN	  expression	  	  	  
450. 	  	  	  	  -‐>	  ^(ASSIGN_EXPRESSION	  varRef	  expression)	  	  	  
451. 	  	  	  	  ;	  	  	  	  	  	  
452. 	  	  	  	  	  	  	  
453. //variable	  reference	  in	  host	  langauge	  	  	  
454. varRef	  	  	  
455. 	  	  	  	  :	  ID	  	  	  
456. 	  	  	  	  ;	  	  	  	  	  	  
457. 	  	  	  	  	  	  	  
458. expression	  	  	  
459. 	  	  	  	  :	  log+=logical_or_expression	  (COMMA	  log+=logical_or_expression)*	  	  	  
460. 	  	  	  	  -‐>	  ^(EXPRESSION_ND	  	  $log)	  	  	  
461. 	  	  	  	  ;	  	  	  
462. 	  	  	  
463. 	  	  	  
464. logical_or_expression	  	  	  
465. 	  	  	  	  :	  	  	  	  	  	  
466. 	  	  	  	  	  	  	  	  logical_and_expression	  (OR^	  logical_and_expression)*	  	  	  	  
467. 	  	  	  	  ;	  	  	  
468. 	  	  	  
469. logical_and_expression	  	  	  
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470. 	  	  	  	  :	  	  	  	  	  	  
471. 	  	  	  	  	  	  	  	  equality_expression	  (AND^	  equality_expression)*	  	  	  	  
472. 	  	  	  	  ;	  	  	  
473. 	  	  	  
474. equality_expression	  	  	  
475. 	  	  	  	  :	  	  	  	  	  	  
476. 	  	  	  	  	  	  	  	  relational_expression	  (	  (NOTEQUAL^|EQUAL^)	  relational_expression)*	  	  	  
477. 	  	  	  	  ;	  	  	  
478. 	  	  	  
479. 	  	  	  
480. relational_expression	  	  	  
481. 	  	  	  	  :	  	  	  	  	  	  
482. 	  	  	  	  	  	  	  	  additive_expression	  	  	  
483. 	  	  	  	  	  	  	  	  (options{backtrack=true;}:	  	  	  	  
484. 	  	  	  	  	  	  	  	  	  	  	  	  (	  	  	  
485. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (	  	  	  LESSTHAN^	  	  	  
486. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  |	  	  	  GREATERTHAN^	  	  	  
487. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  |	  	  	  LESSTHANOREQUALTO^	  	  	  
488. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  |	  	  	  GREATERTHANOREQUALTO^	  	  	  
489. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  	  	  
490. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
491. 	  	  	  	  	  	  	  	  	  	  	  	  )additive_expression	  	  	  
492. 	  	  	  	  	  	  	  	  )?	  	  	  
493. 	  	  	  	  ;	  	  	  
494. 	  	  	  
495. additive_expression	  	  	  
496. 	  	  	  	  :	  	  	  	  	  	  
497. 	  	  	  	  	  	  	  	  multiplicative_expression	  	  	  
498. 	  	  	  	  	  	  	  	  (	  	  	  
499. 	  	  	  	  	  	  	  	  	  	  	  	  (PLUS^	  |	  MINUS^)	  multiplicative_expression	  	  	  
500. 	  	  	  	  	  	  	  	  )*	  	  	  
501. 	  	  	  	  ;	  	  	  
502. 	  	  	  	  	  	  	  
503. 	  	  	  	  	  	  	  
504. multiplicative_expression	  	  	  
505. 	  	  	  	  :	  	  	  	  	  	  
506. 	  	  	  	  	  	  	  	  unary_expression	  	  	  
507. 	  	  	  	  	  	  	  	  (	  	  	  
508. 	  	  	  	  	  	  	  	  	  	  	  	  (STAR^|DIVIDE^|MOD^)	  unary_expression	  	  	  
509. 	  	  	  	  	  	  	  	  )*	  	  	  
510. 	  	  	  	  ;	  	  	  
511. unary_expression	  	  	  
512. 	  	  	  	  :	  	  	  	  	  	  
513. 	  	  	  	  	  	  	  	  PLUSPLUS^	  primary_expression	  	  	  
514. 	  	  	  	  |	  	  	  MINUSMINUS^	  primary_expression	  	  	  
515. 	  	  	  	  ;	  	  	  
516. 	  	  	  	  	  	  	  
517. primary_expression	  	  	  
518. 	  	  	  	  :	  NUMBER	  	  	  
519. 	  	  	  	  |	  varRef	  	  	  
520. 	  	  	  	  |	  LPAREN	  expression	  RPAREN	  	  	  
521. 	  	  	  	  ;	  	  	  
522. 	  	  	  	  	  	  	  
523. 	  	  	  	  
524. 	  	  	  	  
525. 	  
526. 	  
527. /////////////////////////////////////////////////////////////////////////////////////////	  	  	  
528. /////////////////////////////////////////////////////////////////////////////////////////	  	  	  	  	  	  	  	  	  	  
529. //lexer	  Part,	  Keywords	  used	  in	  SPOT	  	  	  
530. 	  	  	  
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531. TRANSFORMER	  	  	  
532. 	  	  	  	  :	  'Transformer'	  	  	  
533. 	  	  	  	  ;	  	  	  	  	  	  
534. ATTRIBUTENAME	  	  	  
535. 	  	  	  	  :	  'funName'	  	  	  
536. 	  	  	  	  |	  'fileName'	  	  	  
537. 	  	  	  	  |	  'varName'	  	  	  
538. 	  	  	  	  |	  'assignValue'	  	  	  
539. 	  	  	  	  |	  'loopStart'	  	  	  
540. 	  	  	  	  |	  'loopIncrement'	  	  	  
541. 	  	  	  	  |	  'loopEnd'	  	  	  
542. 	  	  	  	  ;	  	  	  	  	  	  
543. LOCATION	  	  //used	  in	  concrete	  actions.	  	  	  
544. 	  	  	  	  :	  'After'	  	  	  
545. 	  	  	  	  |	  'Before'	  	  	  
546. 	  	  	  	  ;	  	  	  	  	  	  
547. SCOPEKEYWORD	  	  	  
548. 	  	  	  	  :	  'Within'	  	  	  
549. 	  	  	  	  ;	  	  	  	  	  	  	  	  	  	  
550. SCOPEENTITY	  	  	  
551. 	  	  	  	  :	  'Class'	  	  	  
552. 	  	  	  	  |	  'File'	  	  	  
553. 	  	  	  	  |	  'Project'	  	  	  
554. 	  	  	  	  |	  'Function'	  	  	  	  
555. 	  	  	  	  ;	  	  	  	  	  	  
556. BASICENTITY	  	  	  
557. 	  	  	  	  :	  'FunctionCall'	  	  	  
558. 	  	  	  	  |	  'VariableRead'	  	  	  
559. 	  	  	  	  |	  'VariableWrite'	  	  	  
560. 	  	  	  	  |	  'VariableDecl'	  	  	  
561. 	  	  	  	  ;	  	  	  	  	  	  	  	  	  	  
562. SINGLESTATEMENTTYPE	  	  	  
563. 	  	  	  	  :	  'ConditionStatement'	  	  	  
564. 	  	  	  	  |	  'LoopStatement'	  	  	  
565. 	  	  	  	  ;	  	  	  	  	  	  
566. SCOPESTATEMENTTYPE	  	  	  
567. 	  	  	  	  :	  'AssignmentStatement'	  	  	  
568. 	  	  	  	  |	  'CallStatement'	  	  	  
569. 	  	  	  	  |	  'DeclareStatement'	  	  	  
570. 	  	  	  	  |	  'CommentStatement'	  	  	  
571. 	  	  	  	  |	  'FunctionCallStatement'	  	  	  
572. 	  	  	  	  ;	  	  	  
573. TYPENAME	  	  	  
574. 	  	  	  	  :	  'integer'	  	  	  	  
575. 	  	  	  	  |	  'real'	  	  	  
576. 	  	  	  	  |	  'float'	  	  	  
577. 	  	  	  	  |	  'int'	  	  	  	  
578. 	  	  	  	  ;	  	  	  
579. 	  	  	  	  	  	  	  
580. IF	  	  :	  'IF';	  	  	  
581. ELSE	  :	  'ELSE';	  	  	  
582. FORALL	  :	  'FORALL';	  	  	  	  	  
583. STATEMENT	  :	  'statement';	  	  	  
584. STATEMENTTYPE	  :	  'Statement';	  	  	  	  	  	  	  
585. ADDVARIABLE	  :	  'AddVariable';	  	  	  
586. ADDVARIABLESAMETYPE	  :	  'AddVariableSameType';	  	  	  
587. DELETEVARIABLE	  :	  'DeleteVariable';	  	  	  	  	  
588. RENAMEVARIABLE	  :	  'RenameVariable';	  	  	  	  	  
589. ADDCOMMENTSTATEMENT	  :	  'AddCommentStatement';	  	  	  
590. ADDUSINGSTATEMENT	  :	  'AddUsingStatement';	  	  	  	  	  	  	  	  	  	  	  
591. DELETESTATEMENT	  :	  'DeleteStatement';	  	  	  
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592. ADDSTATEMENT	  :	  'AddStatement';	  	  	  
593. RENAMEFUNCTION	  :	  'RenameFunction';	  	  	  
594. GETFUNCTION	  :	  'GetFunction';	  	  	  
595. GETFUNCTIONCALL	  :	  'GetFunctionCall';	  	  	  
596. GETVARIABLEREAD	  :	  'GetVariableRead';	  	  	  
597. GETVARIABLEWRITE	  :	  'GetVariableWrite';	  	  	  
598. GETVARIABLEDECL	  :	  'GetVariableDecl';	  	  	  
599. GETSTATEMENT	  :	  'GetStatement';	  	  	  
600. GETSTATEMENTLINE	  :	  'GetStatementLineNumber';	  	  	  
601. GETSTATEMENTASSIGNMENT	  :	  'GetStatementAssignment';	  	  	  
602. ADDCALLSTATEMENT	  :	  'AddCallStatement';	  	  	  
603. INCLUDECODE	  :	  'IncludeCode';	  	  	  
604. IFHOST	  :	  'if';	  	  	  
605. ELSEHOST	  	  :	  'else';	  	  	  
606. WHILE	  	  	  :	  'while';	  	  	  
607. DO	  	  :	  'do';	  	  	  
608. FOR	  :	  'for';	  	  	  
609. 	  	  	  
610. 	  	  	  
611. LPAREN	  	  	  	  	  	  :	  '(';	  	  	  
612. RPAREN	  	  	  	  	  	  :	  ')';	  	  	  
613. LBRACE	  	  	  	  	  	  :	  '{';	  	  	  
614. RBRACE	  	  	  	  	  	  :	  '}';	  	  	  
615. COLON	  	  	  	  	  	  	  	  	  	  	  :	  ':'	  ;	  	  	  	  
616. SEMICOLON	  	  	  	  	  	  	  :	  ';'	  ;	  	  	  
617. COMMA	  	  	  	  	  	  	  :	  ',';	  	  	  
618. ASSIGN	  	  	  	  	  	  :	  '=';	  	  	  
619. AND	  	  	  	  	  	  	  	  	  	  	  	  	  :	  '&&'	  ;	  	  	  
620. NOT	  	  	  	  	  	  	  	  	  	  	  	  	  :	  '!'	  ;	  	  	  
621. OR	  	  	  	  	  	  	  	  	  	  	  	  	  	  :	  '||'	  ;	  	  	  
622. 	  	  	  
623. fragment	  UPPER	  	  :	  'A'..'Z'	  ;	  	  	  
624. fragment	  LOWER	  	  :	  'a'..'z'	  ;	  	  	  
625. fragment	  LETTER	  :	  UPPER	  |	  LOWER;	  	  	  
626. fragment	  DIGIT	  	  :	  ('0'..'9')	  ;	  	  	  
627. fragment	  NATURAL	  :	  	  	  (DIGIT)+;	  	  	  
628. 	  	  	  
629. EQUAL	  	  	  	  	  	  	  	  	  	  	  :	  '=='	  ;	  	  	  
630. NOTEQUAL	  	  	  	  	  	  	  	  :	  '!='	  ;	  	  	  
631. LESSTHANOREQUALTO	  	  	  	  	  :	  '<='	  ;	  	  	  
632. LESSTHAN	  	  	  	  	  	  	  	  	  	  	  	  	  	  :	  '<'	  ;	  	  	  
633. GREATERTHANOREQUALTO	  	  :	  '>='	  ;	  	  	  
634. GREATERTHAN	  	  	  	  	  	  	  	  	  	  	  :	  '>'	  ;	  	  	  
635. 	  	  	  
636. DIVIDE	  	  	  	  	  	  	  	  	  	  :	  '/'	  ;	  	  	  
637. DIVIDEEQUAL	  	  	  	  	  :	  '/='	  ;	  	  	  
638. PLUS	  	  	  	  	  	  	  	  	  	  	  	  :	  '+'	  ;	  	  	  
639. PLUSEQUAL	  	  	  	  	  	  	  :	  '+='	  ;	  	  	  
640. PLUSPLUS	  	  	  	  	  	  	  	  :	  '++'	  ;	  	  	  
641. MINUS	  	  	  	  	  	  	  	  	  	  	  :	  '-‐'	  ;	  	  	  
642. MINUSEQUAL	  	  	  	  	  	  :	  '-‐='	  ;	  	  	  
643. MINUSMINUS	  	  	  	  	  	  :	  '-‐-‐'	  ;	  	  	  
644. STAR	  	  	  	  	  	  	  	  	  	  	  	  :	  '*'	  ;	  	  	  
645. TIMESEQUAL	  	  	  	  	  	  :	  '*='	  ;	  	  	  
646. MOD	  	  	  	  	  	  	  	  	  	  	  	  	  :	  '%'	  ;	  	  	  
647. MODEQUAL	  	  	  	  	  	  	  	  :	  '%='	  ;	  	  	  
648. SHIFTRIGHT	  	  	  	  	  	  :	  '>>'	  ;	  	  	  
649. SHIFTRIGHTEQUAL	  :	  '>>='	  ;	  	  	  
650. SHIFTLEFT	  	  	  	  	  	  	  :	  '<<'	  ;	  	  	  
651. SHIFTLEFTEQUAL	  	  :	  '<<='	  ;	  	  	  
652. 	  	  	  
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653. STRINGLITERAL	  	  	  
654. 	  	  	  	  :	  '"'	  	  	  
655. 	  	  	  	  	  	  	  	  (	  	  	  
656. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ~('"'|'\\'|'\n'|'\r')	  	  	  
657. 	  	  	  	  	  	  	  	  )*	  	  	  
658. 	  	  	  	  	  	  '"'	  	  	  
659. 	  	  	  	  ;	  	  	  
660. 	  	  	  	  	  	  	  
661. ID	  	  :	  	  	  (LETTER)	  (LETTER|DIGIT)*;	  	  	  
662. NUMBER:	  (DIGIT)+;	  	  	  	  	  	  
663. 	  	  	  
664. 	  	  	  
665. WS	  	  :	  	  	  (	  '	  '	  	  	  
666. 	  	  	  	  	  	  	  	  |	  '\t'	  	  	  
667. 	  	  	  	  	  	  	  	  |	  '\r'	  	  	  
668. 	  	  	  	  	  	  	  	  |	  '\n'	  	  	  
669. 	  	  	  	  	  	  	  	  )+	  {$channel=HIDDEN;	  skip();}	  	  	  
670. 	  	  	  	  ;	  	  	  

A.1.2 SPOT Tree Grammar 

1. tree	  grammar	  SPOTGenPass;	  	  	  
2. 	  	  	  
3. options	  {	  	  	  
4. 	  	  	  	  tokenVocab	  =	  spot;	  	  	  
5. 	  	  	  	  ASTLabelType	  =	  CommonTree;	  	  	  
6. 	  	  	  	  output	  =	  template;	  	  	  
7. }	  	  	  
8. 	  	  	  
9. scope	  slist{	  	  	  
10. 	  	  	  	  List	  metaClassList;	  	  //	  hold	  all	  metaClass	  names	  for	  later	  use	  	  	  
11. }	  	  	  
12. 	  	  	  
13. scope	  symbols	  {	  	  	  
14. 	  	  	  	  Set	  userDefinedSymbolList;	  //	  only	  track	  user's	  defined	  names	  to	  avoid	  conflicts	  	  	  
15. 	  	  	  	  String	  symbolName	  =	  null;	  	  	  	  
16. }	  	  	  
17. 	  	  	  
18. @header	  {	  	  	  	  
19. package	  edu.ua.spot;	  	  	  
20. import	  java.io.File;	  	  	  
21. import	  java.io.IOException;	  	  	  	  
22. import	  java.util.ArrayList;	  	  	  
23. import	  java.util.List;	  	  	  
24. import	  java.util.Map;	  	  	  
25. import	  java.util.HashMap;	  	  	  
26. import	  java.util.Set;	  	  	  
27. import	  java.util.HashSet;	  	  	  
28. }	  	  	  
29. 	  	  	  	  	  	  	  
30. 	  	  	  
31. @members	  {	  	  	  
32. 	  	  	  	  void	  print(String	  s)	  {System.out.print(s);}	  	  	  
33. 	  	  	  	  	  	  	  
34. 	  	  	  	  String	  transformerName	  =	  null;	  	  	  
35. 	  	  	  	  	  	  	  
36. 	  	  	  	  String	  getTransformerName()	  	  	  
37. 	  	  	  	  {	  	  	  
38. 	  	  	  	  	  	  	  	  return	  transformerName;	  	  	  
39. 	  	  	  	  }	  	  	  
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40. 	  	  	  
41. }	  	  	  
42. 	  	  	  
43. 	  	  	  
44. spotCode	  	  	  
45. 	  	  	  	  :	  ^(SPOTCODE_ND	  transformer	  includeBlock?)	  	  	  
46. 	  	  	  	  -‐>	  file(cppCode={$transformer.st})	  	  	  
47. 	  	  	  	  ;	  	  	  
48. 	  	  	  
49. transformer	  	  	  
50. scope	  slist,	  symbols;	  	  	  
51. @init	  	  	  
52. {	  	  	  
53. 	  	  	  	  $slist::metaClassList	  =	  new	  ArrayList();	  	  	  
54. 	  	  	  	  $symbols::userDefinedSymbolList	  =	  new	  HashSet();	  	  	  
55. }	  	  	  
56. 	  	  	  	  :	  ^(TRANSFORMER_ND	  id=ID	  {this.transformerName=	  $id.text;}	  	  tb+=transformation+)	  	  	  	  
57. 	  	  	  	  -‐>	  metaLevelProgram(identifierList={$slist::metaClassList[0]},	  transformers	  =	  {$tb})	  	  	  
58. 	  	  	  	  ;	  	  	  
59. 	  	  	  
60. transformation	  	  	  
61. 	  	  	  	  :	  ^(TFBODY_ND	  loc=scopeMetaObject	  methods+=virtualMethodDefinition+)	  	  	  	  
62. 	  	  	  	  -‐>	  transformer(metaClassDeclaration	  =	  {$loc.st},	  metaClassMethodDef	  =	  {$methods})	  	  	  
63. 	  	  	  	  ;	  	  	  
64. 	  	  	  
65. scopeMetaObject	  	  	  
66. 	  	  	  	  :	  ^(TRANS_SCOPE	  sn='Function'	  	  ID)	  {$slist::metaClassList.add(%{transformerName	  +	  "_"	  +	  $ID.te

xt});}	  	  	  
67. 	  	  	  	  -‐>	  declareMetaFunctionClass(identifier=	  {$transformerName	  +	  "_"	  +	  $ID.text})	  	  	  
68. 	  	  	  	  |	  ^(TRANS_SCOPE	  sn='File'	  	  ID)	  {$slist::metaClassList.add(%{transformerName	  +	  "_"	  +	  $ID.text})

;}	  	  	  
69. 	  	  	  	  -‐>	  declareMetaFileClass(identifier=	  {$transformerName	  +	  "_"	  +	  $ID.text})	  	  	  
70. 	  	  	  	  |	  ^(TRANS_SCOPE	  sn='Project'	  	  ID)	  {$slist::metaClassList.add(%{transformerName	  +	  "_"	  +	  $ID.tex

t});}	  	  	  
71. 	  	  	  	  -‐>	  declareMetaGlobalClass(identifier=	  {$transformerName	  +	  "_"	  +	  $ID.text})	  	  	  
72. 	  	  	  	  ;	  	  	  
73. 	  	  	  	  	  	  	  
74. virtualMethodDefinition	  	  	  
75. 	  	  	  	  :	  ^(METAFUNCTION_ND	  vmFun=virtualMethodDefinitionFunction)	  -‐>{$vmFun.st}	  	  	  
76. 	  	  	  	  |	  ^(METAFILE_ND	  vmFile=virtualMethodDefinitionFile)	  	  	  
77. 	  	  	  	  -‐>	  extendDefinitionFile(identifier={$slist::metaClassList[0]},	  	  statements=	  {$vm.st})	  	  	  
78. 	  	  	  	  ;	  	  	  
79. 	  	  	  	  	  	  	  
80. virtualMethodDefinitionFunction	  	  	  
81. 	  	  	  	  :	  ^(METHODDEF_ND	  stmts+=transformStatement+)	  	  	  
82. 	  	  	  	  -‐>	  extendDefinition(identifier={$slist::metaClassList[0]},	  	  statements=	  {$stmts})	  	  	  
83. 	  	  	  	  |	  ^(METHODDEF_ND	  ef=extendFunctionCall	  stmts+=transformStatement+)	  	  	  
84. 	  	  	  	  -‐

>	  extendFunctionCall(identifier={$slist::metaClassList[0]},	  symbolName=	  {$symbols::symbolName},	  st
atements=	  {$stmts})	  	  	  

85. 	  	  	  	  |	  ^(METHODDEF_ND	  ev=extendVariableFunction	  stmts+=transformStatement+)	  	  	  
86. 	  	  	  	  -‐

>	  extendVariableEntry(methodName={$ev.st},	  symbolName=	  {$symbols::symbolName},	  statements=	  {$stmts
})	  	  	  

87. 	  	  	  	  ;	  	  	  
88. 	  	  	  	  	  	  	  
89. virtualMethodDefinitionFile	  	  	  
90. 	  	  	  	  :	  ^(METHODDEFILE_ND	  stmts+=transformStatement+)	  	  	  
91. 	  	  	  	  -‐>{$stmts}	  	  	  
92. 	  	  	  	  |	  ^(METHODDEFILE_ND	  ef=extendFunctionCall	  stmts+=transformStatement+)	  	  	  
93. 	  	  	  	  -‐>	  extendFunctionCallFile(symbolName=	  {$symbols::symbolName},	  statements=	  {$stmts})	  	  	  
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94. 	  	  	  	  |	  ^(METHODDEFILE_ND	  ev=extendVariableFile	  stmts+=transformStatement+)	  	  	  
95. 	  	  	  	  -‐>	  extendVariableEntryFile(loop=	  {$ev.st},	  statements=	  {$stmts})	  	  	  
96. 	  	  	  	  ;	  	  	  
97. 	  	  	  	  	  	  	  	  	  	  	  
98. transformStatement	  	  	  
99. 	  	  	  	  :	  ^(OPERATION_ND	  operation)	  -‐>	  {$operation.st}	  	  	  
100. 	  	  	  	  |	  ^(SUBSUBTRANSFORMER_ND	  locationStatement	  operation+)	  	  	  	  
101. 	  	  	  	  |	  ^(CONDITION_BLOCK_ND	  conditionBlock)	  	  	  
102. 	  	  	  	  ;	  	  	  	  
103. 	  	  	  	  	  	  	  
104. extendFunctionCall	  	  	  
105. 	  	  	  	  :	  ^(FORALL_ND	  'FunctionCall'	  variableSPOT?)	  	  	  
106. 	  	  	  	  -‐>	  {$variableSPOT.st}	  	  	  
107. 	  	  	  	  ;	  	  	  	  	  	  
108. 	  	  	  
109. extendVariableFunction	  	  	  	  
110. 	  	  	  	  :	  ^(FORALL_ND	  'VariableRead'	  variableSPOT?)	  	  	  
111. 	  	  	  	  -‐

>	  extendVariableRead(identifier={$slist::metaClassList[0]},	  symbolName=	  {$symbols::symbolName})	  	  	  
112. 	  	  	  	  |	  ^(FORALL_ND	  'VariableWrite'	  variableSPOT?)	  	  	  
113. 	  	  	  	  -‐

>	  extendVariableWrite(identifier={$slist::metaClassList[0]},	  symbolName=	  {$symbols::symbolName})	  	  	  
114. 	  	  	  	  |	  ^(FORALL_ND	  'VariableDecl'	  variableSPOT?)	  	  	  
115. 	  	  	  	  -‐

>	  extendVariableDecl(identifier={$slist::metaClassList[0]},	  symbolName=	  {$symbols::symbolName})	  	  	  
116. 	  	  	  	  ;	  	  	  
117. 	  	  	  	  	  	  	  
118. extendVariableFile	  	  	  	  
119. 	  	  	  	  :	  ^(FORALL_FILE_ND	  'VariableRead'	  variableSPOT?)	  	  	  
120. 	  	  	  	  -‐>	  extendVariableReadFile(symbolName=	  {$symbols::symbolName})	  	  	  
121. 	  	  	  	  |	  ^(FORALL_FILE_ND	  'VariableWrite'	  variableSPOT?)	  	  	  
122. 	  	  	  	  -‐>	  extendVariableWriteFile(symbolName=	  {$symbols::symbolName})	  	  	  
123. 	  	  	  	  |	  ^(FORALL_FILE_ND	  'VariableDecl'	  variableSPOT?)	  	  	  
124. 	  	  	  	  -‐>	  extendVariableDeclFile(symbolName=	  {$symbols::symbolName})	  	  	  
125. 	  	  	  	  ;	  	  	  
126. 	  	  	  	  	  	  	  
127. conditionBlock	  	  	  
128. 	  	  	  	  :	  	  ^(IF	  con=condition	  	  ops+=operation+	  )	  	  	  
129. 	  	  	  	  -‐>	  if(condition={$con.st},	  statements={$ops})	  	  	  
130. 	  	  	  	  |	  	  ^(ELSE	  ops+=operation+	  )	  	  	  
131. 	  	  	  	  -‐>	  else(statements={$ops})	  	  	  
132. 	  	  	  	  ;	  	  	  	  	  	  
133. 	  	  	  	  	  	  	  
134. condition	  	  	  
135. 	  	  	  	  :	  ^(co=conditionOperator	  leftEx=spotExpr	  	  rightEx=spotExpr)	  	  	  
136. 	  	  	  	  -‐>	  operation(op={$co.st},	  left={$leftEx.st},	  right={$rightEx.st})	  	  	  
137. 	  	  	  	  ;	  	  	  
138. 	  	  	  	  	  	  	  
139. attributeRetrieve	  	  	  
140. 	  	  	  	  :	  ^(ATTRIBUTERETRIEVE_ND	  vr=variableRef	  atname=ATTRIBUTENAME)	  	  	  
141. 	  	  	  	  -‐>	  attributeRef(symbol	  =	  {$vr.st},	  attribute=	  {$atname.text})	  	  	  
142. 	  	  	  	  ;	  	  	  
143. 	  	  	  	  	  	  	  
144. locationStatement	  	  	  	  
145. 	  	  	  	  :	  ^(TRANS_SCOPE	  	  SCOPEKEYWORD	  	  hostScopeStatement	  variableSPOT?)	  	  	  	  
146. 	  	  	  	  ;	  	  	  
147. 	  	  	  	  	  	  	  
148. 	  	  	  	  	  	  	  
149. variableSPOT	  	  	  
150. @init	  	  	  
151. {	  	  	  
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152. 	  	  	  	  $symbols::symbolName	  =	  null;	  	  	  	  	  	  	  
153. }	  	  	  
154. 	  	  	  	  :	  ^(WILDCARD_VARIABLE_ND	  id=ID)	  	  	  	  
155. 	  	  	  	  {	  	  	  	  	  	  
156. 	  	  	  	  	  	  	  	  $symbols::userDefinedSymbolList.add($id.text);	  	  	  
157. 	  	  	  	  	  	  	  	  $symbols::symbolName	  =	  $id.text;	  	  	  	  	  	  	  
158. 	  	  	  	  }	  	  	  
159. 	  	  	  	  -‐>	  {%{$id.text}}	  	  	  
160. 	  	  	  	  |^(WILDCARD_ND	  wildcard='*')-‐>	  {%{$wildcard.text}}	  	  	  
161. 	  	  	  	  //|^(ENTITYNAME_ND	  ID)	  -‐>	  {%{$ID.text}}	  	  	  	  	  
162. 	  	  	  	  ;	  	  	  
163. 	  	  	  	  	  	  	  	  	  	  	  
164. operation	  	  	  
165. 	  	  	  	  :	  ^(ACTION_ND	  actionVariable)	  -‐>	  {$actionVariable.st}	  	  	  
166. 	  	  	  	  |	  ^(ACTION_ND	  actionFunction)	  -‐>	  {$actionFunction.st}	  	  	  
167. 	  	  	  	  |	  ^(ACTION_ND	  actionStatement)	  -‐>	  {$actionStatement.st}	  	  	  
168. 	  	  	  	  |	  ^(RETRIEVE_ND	  languageEntity	  '%'?	  id=ID	  ASSIGN	  actionRetrieve[$id.text])	  	  	  	  
169. 	  	  	  	  {	  $symbols::userDefinedSymbolList.add($id.text);	  }	  	  	  
170. 	  	  	  	  -‐>	  {$actionRetrieve.st}	  	  	  
171. 	  	  	  	  ;	  	  	  	  	  	  
172. 	  	  	  	  	  	  	  
173. languageEntity	  	  	  
174. 	  	  	  	  :	  ^(SCOPE_ENTITY_ND	  SCOPEENTITY)	  	  	  
175. 	  	  	  	  |	  ^(BASIC_ENTITY_ND	  BASICENTITY)	  	  	  
176. 	  	  	  	  |	  ^(STATEMENT_ENTITY_ND	  hostStatement)	  	  	  
177. 	  	  	  	  ;	  	  	  
178. 	  	  	  
179. actionRetrieve	  [String	  symbolName]	  	  	  
180. @init	  	  	  
181. {	  	  	  
182. 	  	  	  	  symbolName	  =	  null;	  	  	  
183. }	  	  	  
184. 	  	  	  
185. 	  	  	  	  :	  ^(GETFUNCTION	  ID)	  	  	  
186. 	  	  	  	  -‐>	  getFunction(handler={$symbolName},	  funName={$ID.text})	  	  	  
187. 	  	  	  	  |	  ^(GETFUNCTIONCALL	  ID)	  	  	  
188. 	  	  	  	  -‐>	  getFunctionCall(handler={$symbolName},	  funName={$ID.text})	  	  	  
189. 	  	  	  	  |	  ^(GETVARIABLEREAD	  ID)	  	  	  
190. 	  	  	  	  -‐>	  getVariableRead(handler={$symbolName},	  funName={$ID.text})	  	  	  
191. 	  	  	  	  |	  ^(GETVARIABLEWRITE	  ID)	  	  	  
192. 	  	  	  	  -‐>	  getVariableWrite(handler={$symbolName},	  funName={$ID.text})	  	  	  
193. 	  	  	  	  |	  ^(GETVARIABLEDECL	  ID)	  	  	  
194. 	  	  	  	  -‐>	  getVariableDecl(handler={$symbolName},	  funName={$ID.text})	  	  	  
195. 	  	  	  	  |	  ^(GETSTATEMENTLINE	  lineNumber)	  	  	  
196. 	  	  	  	  -‐>	  getStatementLineNumber(handler={$symbolName},	  funName={$ID.text})	  	  	  
197. 	  	  	  	  |	  ^(GETSTATEMENT	  hs=hostStatement	  si=statementIndex?)	  	  	  
198. 	  	  	  	  -‐>	  getStatement(head	  =	  {$hs.st},	  tail={$si.st})	  	  	  
199. 	  	  	  	  |	  ^(GETSTATEMENTASSIGNMENT	  ID)	  	  	  
200. 	  	  	  	  ;	  	  	  	  	  	  
201. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
202. actionVariable	  	  	  
203. 	  	  	  	  :	  ^(ADDVARIABLE	  TYPENAME	  ID	  initializedVal?)	  	  	  	  
204. 	  	  	  	  -‐>	  addVariable(type={$TYPENAME.text},	  name={$ID.text},	  iniVal={$initializedVal.st})	  	  	  
205. 	  	  	  	  |	  ^(ADDVARIABLESAMETYPE	  TYPENAME	  id+=ID+)	  	  	  
206. 	  	  	  	  -‐>	  addVariableMultiple(type={$TYPENAME.text},	  name={$id})	  	  	  
207. 	  	  	  	  |	  ^(DELETEVARIABLE	  ID)	  	  	  
208. 	  	  	  	  -‐>	  deleteVariable(name={$ID.text})	  	  	  
209. 	  	  	  	  |	  ^(RENAMEVARIABLE	  old=ID	  new=ID)	  	  	  
210. 	  	  	  	  -‐>	  renameVariable(oldName={$old.text},	  newName={$new.text})	  	  	  
211. 	  	  	  	  ;	  	  	  	  	  	  	  	  	  	  
212. 	  	  	  
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213. actionFunction	  	  	  
214. 	  	  	  	  :	  ^(RENAMEFUNCTION	  old=ID	  new=ID)	  	  	  
215. 	  	  	  	  -‐>	  renameFunction(oldName={$old.text},	  newName={$new.text})	  	  	  
216. 	  	  	  	  ;	  	  	  	  	  	  
217. 	  	  	  	  	  	  	  
218. actionStatement	  	  	  	  
219. 	  	  	  	  :	  ^(ADD_NEW_STATEMENT	  addCall=addFunctionCall)	  -‐>	  {$addCall.st}	  	  	  
220. 	  	  	  	  |	  ^(ASSIGN_NEW_STATEMENT	  '%'	  ID	  addCall=addFunctionCall)	  {$symbols::userDefinedSymbolList.add(

$ID.text);}	  	  	  
221. 	  	  	  	  -‐>	  assignNewStatement(symbolName=	  {$ID.text},	  function=	  {$addCall.st})	  	  	  
222. 	  	  	  	  |	  ^(ADDCOMMENTSTATEMENT	  LOCATION	  currentStatement	  STRINGLITERAL)	  	  	  
223. 	  	  	  	  |	  ^(ADDUSINGSTATEMENT	  STRINGLITERAL)	  	  	  
224. 	  	  	  	  |	  ^(DELETESTATEMENT	  hostStatement)	  	  	  
225. 	  	  	  	  |	  ^(ADDSTATEMENT	  statement)	  	  	  
226. 	  	  	  	  ;	  	  	  
227. 	  	  	  
228. addFunctionCall	  	  	  	  
229. 	  	  	  	  :	  ^(ADDCALLSTATEMENT	  key=LOCATION	  	  stmt=currentStatement	  ID	  pList=callArgumentList?)	  	  	  
230. 	  	  	  	  -‐

>	  addCallStatement(funName	  ={$ID.text},	  beforeAfter	  =	  {$key.text},	  locations	  =	  {$stmt.st},	  paraLis
t={$pList.st})	  	  	  	  	  	  	  

231. 	  	  	  	  ;	  	  	  
232. 	  	  	  
233. callArgumentList	  	  	  
234. 	  	  	  	  :	  ^(CALL_ARGUMENT_LIST	  	  args+=callArgument+)	  	  	  
235. 	  	  	  	  -‐>	  listCallArguments(arguments={$args})	  	  	  
236. 	  	  	  	  ;	  	  	  
237. 	  	  	  	  	  	  	  
238. currentStatement	  	  	  	  
239. 	  	  	  	  :	  ^(GETCURRENTSTATEMENT_ND	  vr=variableRef	  	  st=STATEMENT)	  	  	  
240. 	  	  	  	  -‐>	  attributeRef(symbol={$vr.st},	  attribute={$st.text})	  	  	  
241. 	  	  	  	  ;	  	  	  
242. 	  	  	  	  	  	  	  
243. variableRef	  	  	  
244. 	  	  	  	  :	  ^(VARIABLEREF_ND	  ID)	  	  	  
245. 	  	  	  	  {	  	  	  
246. 	  	  	  	  	  	  	  	  if(!$symbols::userDefinedSymbolList.contains($ID.text)){	  	  	  
247. 	  	  	  	  	  	  	  	  	  	  	  	  print("the	  name	  you	  are	  using	  cannot	  be	  resolved.	  Compilation	  terminated!");	  	  	  
248. 	  	  	  	  	  	  	  	  	  	  	  	  return;	  	  	  
249. 	  	  	  	  	  	  	  	  }	  	  	  
250. 	  	  	  	  }	  	  	  
251. 	  	  	  	  -‐>	  {%{$ID.text}}	  	  	  
252. 	  	  	  	  ;	  	  	  	  	  	  
253. 	  	  	  	  	  	  	  
254. //source	  code	  added	  in	  includeBlock	  is	  not	  parsed	  	  	  
255. //shoud	  replace	  STRINGLITERAL	  with	  the	  first	  rule	  of	  the	  host	  langauge	  	  	  
256. includeBlock	  	  	  
257. 	  	  	  	  :	  ^(INCLUDECODE	  STRINGLITERAL	  )	  	  	  
258. 	  	  	  	  ;	  	  	  
259. 	  	  	  	  	  	  	  
260. hostStatement	  	  	  
261. 	  	  	  	  :	  ^(SOURCESTATEMENTTYPE_ND	  statementType)	  	  	  	  
262. 	  	  	  	  |	  ^(SOURCESTATEMENT_ND	  statement)	  	  	  	  
263. 	  	  	  	  ;	  	  	  
264. 	  	  	  	  	  	  	  
265. hostScopeStatement	  	  	  
266. 	  	  	  	  :	  ^(SCOPE_STATEMENT	  SCOPESTATEMENTTYPE)	  	  	  
267. 	  	  	  	  |	  ^(SCOPESTATEMENT_ND	  scopeStatement)	  	  	  	  
268. 	  	  	  	  ;	  	  	  
269. 	  	  	  	  	  	  	  	  	  	  	  
270. statementType	  	  	  
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271. 	  	  	  	  :	  ^(SINGLE_STATEMENT	  SINGLESTATEMENTTYPE)	  	  	  
272. 	  	  	  	  |	  ^(SCOPE_STATEMENT	  SCOPESTATEMENTTYPE)	  	  	  
273. 	  	  	  	  |	  ^(GENERAL_STATEMENT	  STATEMENTTYPE)	  	  	  
274. 	  	  	  	  ;	  	  	  
275. 	  	  	  	  	  	  	  
276. statementList	  	  	  
277. 	  	  	  	  :	  ^(STATEMENT_ND	  statement)	  	  	  
278. 	  	  	  	  |	  ^(STATEMENT_LIST	  statement+)	  	  	  
279. 	  	  	  	  ;	  	  	  
280. 	  	  	  	  	  	  	  	  	  	  	  
281. scopeStatement	  	  	  
282. 	  	  	  	  :	  ^(COND_STATEMENT	  conditionStatement)	  	  	  
283. 	  	  	  	  |	  ^(LOOP_STATEMENT	  loopStatement)	  	  	  
284. 	  	  	  	  ;	  	  	  
285. 	  	  	  	  	  	  	  
286. singleStatement	  	  	  
287. 	  	  	  	  :	  ^(ASSIGN_STATEMENT	  assignmentStatement)	  	  	  
288. 	  	  	  	  |	  ^(CALL_STATEMENT	  callStatement)	  	  	  
289. 	  	  	  	  |	  ^(DEC_STATEMENT	  declareStatement)	  	  	  
290. 	  	  	  	  ;	  	  	  
291. 	  	  	  	  	  	  	  	  	  	  	  
292. assignmentStatement	  	  	  
293. 	  	  	  	  :	  ^(ASSIGN_STATEMENT_MATCH	  vr=varRef	  ex=expression)	  	  	  
294. 	  	  	  	  -‐>	  matchAssignmentStatement(left={$vr.st},	  right={$ex.st})	  	  	  
295. 	  	  	  	  |	  ^(ASSIGN_STATEMENT	  ASSIGN	  vr=varRef	  ex=expression)	  	  	  
296. 	  	  	  	  -‐>	  buildAssignmentStatement(left={$vr.st},	  right={$ex.st})	  	  	  
297. 	  	  	  	  ;	  	  	  	  
298. 	  	  	  
299. declareStatement	  	  	  
300. 	  	  	  	  :	  ^(VARIABLE_DECL	  TYPENAME	  ID+)	  	  	  	  
301. 	  	  	  	  ;	  	  	  
302. 	  	  	  	  	  	  	  	  	  	  	  
303. callStatement	  	  	  
304. 	  	  	  	  :	  ^(CALL_STATEMENT	  callIDRefHost	  	  callArgumentListHost?)	  	  	  
305. 	  	  	  	  ;	  	  	  
306. 	  	  	  	  	  	  	  
307. callArgumentListHost	  	  	  
308. 	  	  	  	  :	  ^(CALL_ARGUMENT_LIST_HOST	  	  callArgumentHost+)	  	  	  
309. 	  	  	  	  ;	  	  	  
310. 	  	  	  
311. ifStatement	  	  	  
312. 	  	  	  	  :	  ^(IF_STATEMENT	  expression	  statementList	  elseStatement?)	  	  	  	  
313. 	  	  	  	  ;	  	  	  
314. 	  	  	  	  	  	  	  
315. elseStatement	  	  	  
316. 	  	  	  	  :	  ^(ELSE_STATEMENT	  statementList)	  	  	  
317. 	  	  	  	  ;	  	  	  
318. 	  	  	  	  	  	  	  
319. whileStatement	  	  	  
320. 	  	  	  	  :	  ^(WHILE_STATEMENT	  expression	  statementList)	  	  	  
321. 	  	  	  	  ;	  	  	  
322. 	  	  	  
323. forStatement	  	  	  
324. 	  	  	  	  :	  ^(FOR_STATEMENT	  assignmentExpression?	  condition?	  expression?	  statementList)	  	  	  	  	  	  	  
325. 	  	  	  	  ;	  	  	  
326. 	  	  	  	  	  	  	  
327. 	  
328. assignmentExpression	  	  	  
329. 	  	  	  	  :	  ^(ASSIGN_EXPRESSION	  varRef	  expression)	  	  	  
330. 	  	  	  	  ;	  	  	  	  	  	  
331. 	  	  	  	  	  	  	  	  	  	  	  



 

   
 

191 

332. expression	  	  	  
333. 	  	  	  	  :	  ^(EXPRESSION_ND	  	  logical_or_expression+)	  	  	  
334. 	  	  	  	  ;	  	  	  
335. 	  	  	  
336. logical_or_expression	  	  	  
337. 	  	  	  	  :	  	  	  	  logical_and_expression	  (OR^	  logical_and_expression)*	  	  	  	  
338. 	  	  	  	  ;	  	  	  
339. 	  	  	  
340. logical_and_expression	  	  	  
341. 	  	  	  	  :	  	  	  equality_expression	  (AND^	  equality_expression)*	  	  	  	  
342. 	  	  	  	  ;	  	  	  
343. 	  	  	  
344. equality_expression	  	  	  
345. 	  	  	  	  :	  	  	  relational_expression	  (	  (NOTEQUAL^|EQUAL^)	  relational_expression)*	  	  	  
346. 	  	  	  	  ;	  	  	  
347. 	  	  	  
348. relational_expression	  	  	  
349. 	  	  	  	  :	  	  	  additive_expression	  	  	  
350. 	  	  	  	  	  	  	  	  (options{backtrack=true;}:	  	  	  	  
351. 	  	  	  	  	  	  	  	  	  	  	  	  (	  	  	  
352. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (	  	  	  LESSTHAN^	  	  	  
353. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  |	  	  	  GREATERTHAN^	  	  	  
354. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  |	  	  	  LESSTHANOREQUALTO^	  	  	  
355. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  |	  	  	  GREATERTHANOREQUALTO^	  	  	  
356. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  	  	  
357. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
358. 	  	  	  	  	  	  	  	  	  	  	  	  )additive_expression	  	  	  
359. 	  	  	  	  	  	  	  	  )?	  	  	  
360. 	  	  	  	  ;	  	  	  
361. 	  	  	  
362. additive_expression	  	  	  
363. 	  	  	  	  :	  	  	  multiplicative_expression	  	  	  
364. 	  	  	  	  	  	  	  	  (	  	  	  
365. 	  	  	  	  	  	  	  	  	  	  	  	  (PLUS^	  |	  MINUS^)	  multiplicative_expression	  	  	  
366. 	  	  	  	  	  	  	  	  )*	  	  	  
367. 	  	  	  	  ;	  	  	  
368. 	  	  	  	  	  	  	  
369. multiplicative_expression	  	  	  
370. 	  	  	  	  :	  	  	  unary_expression	  	  	  
371. 	  	  	  	  	  	  	  	  (	  	  	  
372. 	  	  	  	  	  	  	  	  	  	  	  	  (STAR^|DIVIDE^|MOD^)	  unary_expression	  	  	  
373. 	  	  	  	  	  	  	  	  )*	  	  	  
374. 	  	  	  	  ;	  	  	  
375. unary_expression	  	  	  
376. 	  	  	  	  :	  	  	  PLUSPLUS^	  primary_expression	  	  	  
377. 	  	  	  	  |	  	  	  MINUSMINUS^	  primary_expression	  	  	  
378. 	  	  	  	  ;	  	  	  
379. 	  	  	  	  	  	  	  
380. 	  	  	  
381. spotExpr	  	  	  
382. 	  	  	  	  :	  ar=attributeRetrieve	  -‐>{$ar.st}	  	  	  
383. 	  	  	  	  |	  ID	  -‐>	  {%{$ID.text}}	  	  	  
384. 	  	  	  	  |	  NUMBER	  -‐>	  {%{$NUMBER.text}}	  	  	  
385. 	  	  	  	  ;	  	  	  
386. 	  	  
387. conditionOperator	  	  	  
388. @after	  {$st	  =	  %operator(op={$start.getText()});}	  	  	  
389. 	  	  	  	  :EQUAL|NOTEQUAL|LESSTHAN|GREATERTHAN|LESSTHANOREQUALTO|GREATERTHANOREQUALTO	  	  	  
390. 	  	  	  	  ;	  	  	  
391. 	  	  	  	  	  	  	  
392. initializedVal	  	  	  
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393. @after	  {$st	  =	  %{$text};}	  	  	  
394. 	  	  	  	  :	  ID	  	  	  
395. 	  	  	  	  |	  NUMBER	  	  	  
396. 	  	  	  	  ;	  	  	  
397. lineNumber	  	  	  
398. @after	  {$st	  =	  %{$text};}	  	  	  
399. 	  	  	  	  :	  NUMBER	  	  	  
400. 	  	  	  	  ;	  	  	  
401. 	  	  	  
402. statementIndex	  	  	  
403. @after	  {$st	  =	  %{$text};}	  	  	  
404. 	  	  	  	  :	  NUMBER	  	  	  
405. 	  	  	  	  ;	  	  	  
406. 	  	  	  	  	  	  	  	  	  	  	  
407. callArgument	  	  	  
408. 	  	  	  	  :	  initializedVal	  	  	  
409. 	  	  	  	  ;	  	  	  	  	  	  	  	  	  	  
410. 	  	  	  	  	  	  	  	  	  	  	  
411. statement	  	  	  
412. 	  	  	  	  :	  singleStatement	  	  	  
413. 	  	  	  	  |	  scopeStatement	  	  	  
414. 	  	  	  	  ;	  	  	  
415. 	  	  	  	  	  	  	  
416. callIDRefHost	  	  	  
417. 	  	  	  	  :	  ID	  	  	  
418. 	  	  	  	  ;	  	  	  	  	  	  
419. 	  	  	  
420. callArgumentHost	  	  	  
421. 	  	  	  	  :	  expression	  	  	  
422. 	  	  	  	  ;	  	  	  
423. 	  	  	  	  	  	  	  	  	  	  	  
424. conditionStatement	  	  	  
425. 	  	  	  	  :ifStatement	  	  	  
426. 	  	  	  	  |elseStatement	  	  	  
427. 	  	  	  	  ;	  	  	  
428. 	  	  	  	  	  	  	  
429. loopStatement	  	  	  
430. 	  	  	  	  :whileStatement	  	  	  
431. 	  	  	  	  |forStatement	  	  	  
432. 	  	  	  	  ;	  	  	  
433. 	  	  	  	  	  	  	  	  	  	  	  
434. varRef	  	  	  
435. @after	  {$st	  =	  %{$text};}	  	  	  
436. 	  	  	  	  :	  ID	  	  	  
437. 	  	  	  	  ;	  	  	  	  	  	  
438. 	  	  	  	  	  	  	  
439. primary_expression	  	  	  
440. 	  	  	  	  :	  NUMBER	  	  	  
441. 	  	  	  	  |	  varRef	  	  	  
442. 	  	  	  	  |	  LPAREN	  expression	  RPAREN	  	  	  
443. 	  	  	  	  ;	  	  	  
444. 	  	  	  	  	  	  	  
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A.2 StringTemplate Store 

1. group	  SPOTST;	  	  	  
2. 	  	  	  
3. file(cppCode)	  ::=<<	  	  	  
4. <cppCode>	  	  	  
5. >>	  	  	  
6. 	  
7. metaLevelProgram(identifier,	  transformers)	  ::=<<	  	  	  
8. //	  no	  need	  for	  ...	  "pass	  through"	  parameter	  	  	  
9. #include	  "MetaObject.h"	  	  	  
10. 	  	  	  
11. <transformers()>	  	  	  
12. 	  	  	  
13. <fileMain()>	  	  	  
14. >>	  	  	  
15. 	  
16. /*Inherit	  	  names,	  transformers	  from	  file	  template	  that	  invokes	  me*/	  	  	  
17. fileMain()	  ::=<<	  	  	  
18. 	  	  	  
19. int	  main(int	  argc,	  char*	  argv[])	  	  	  
20. {	  	  	  
21. 	  	  	  	  SgProject	  *project	  =	  frontend	  (argc,	  argv);	  	  	  
22. 	  	  	  	  	  	  	  
23. 	  	  	  	  MetaObjectFactory	  factory;	  	  	  
24. //	  	  <identifierList	  :	  {id	  |	  factory.registerMetaObject(new	  MetaClass_<id>());<\n>}>	  	  	  
25. 	  	  	  	  factory.registerMetaObject(new	  MetaClass_<identifier>());	  	  	  
26. 	  	  	  	  	  	  	  
27. 	  	  	  	  CreateMetaObjectTraversal*	  pTreeTraversal	  =	  new	  Fortran_CreateMetaObjectTraversal();	  	  	  
28. 	  	  	  	  pTreeTraversal-‐>traverseInputFiles(project,	  preorder);	  	  	  
29. 	  	  	  	  	  	  	  
30. 	  	  	  	  factory.invokeMetaObjects(pTreeTraversal);	  	  	  
31. 	  	  	  	  	  	  	  
32. 	  	  	  	  AstTests::runAllTests(project);	  	  	  
33. 	  	  	  	  backend	  (project);	  	  	  
34. 	  	  	  	  	  	  	  
35. 	  	  	  	  if(pTreeTraversal)	  delete	  pTreeTraversal;	  	  	  
36. }	  	  	  
37. >>	  	  	  
38. 	  
39. /*Inherit	  	  names,	  transformers	  from	  file	  template	  that	  invokes	  me*/	  	  	  
40. transformers()	  ::=<<	  	  	  
41. <transformers;	  separator="\n">	  	  	  
42. >>	  	  	  
43. 	  	  	  
44. transformer(metaClassDeclaration,	  metaClassMethodDef)	  ::=<<	  	  	  
45. 	  	  	  
46. <metaClassDeclaration>;	  	  	  
47. 	  	  	  
48. <metaClassMethodDef;	  separator="\n">	  	  	  	  	  	  	  	  	  	  	  	  	  
49. >>	  	  	  
50. 	  	  	  
51. declareMetaFunctionClass(identifier)	  ::=<<	  	  	  
52. 	  	  	  
53. class	  MetaClass_<identifier>:	  public	  MetaFunction	  	  	  
54. {	  	  	  
55. public:	  	  	  
56. 	  	  	  	  MetaClass_<identifier>("<identifier>");	  	  	  
57. 	  	  	  	  virtual	  bool	  openFooExtendDefinition();	  	  	  
58. 	  	  	  	  virtual	  bool	  openFooExtendFunctionCall(string	  funName);	  	  	  
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59. 	  	  	  	  virtual	  bool	  openFooExtendVariableRead(string	  varName);	  	  	  
60. 	  	  	  	  virtual	  bool	  openFooExtendVariableWrite(string	  varName);	  	  	  
61. 	  	  	  	  virtual	  bool	  openFooExtendVariableDecl(string	  varName);	  	  	  
62. 	  };	  	  	  
63. >>	  	  	  
64. 	  
65. extendDefinition(identifier,	  statements)	  ::=<<	  	  	  
66. 	  	  	  
67. bool	  MetaClass_<identifier>::openFooExtendDefinition()	  	  	  
68. {	  	  	  
69. 	  <if(statements)>	  	  	  
70. 	  	  	  	  	  <statements;	  separator="\n">	  	  	  
71. 	  <else>	  	  	  
72. 	  	  	  	  	  return	  true;	  	  	  
73. 	  <endif>	  	  	  
74. }	  	  	  
75. 	  
76. extendFunctionCall(identifier,	  symbolName,	  statements)	  ::=<<	  	  	  
77. 	  	  	  
78. 	  bool	  MetaClass_<identifier>::openFooExtendFunctionCall(string	  funName)	  	  	  
79. 	  {	  	  	  
80. 	  	  	  	  vector<SgFunctionCallExp*>	  <symbolName>	  =	  getFunctionCallList();	  	  	  
81. 	  	  	  	  for(int	  j=0;	  j<	  <symbolName>.size();	  j++){	  	  	  
82. 	  	  	  	  	  	  	  	  if((!funName.empty()	  &&	  <symbolName>[i]-‐>getFunName())||(funName.empty()))	  	  	  
83. 	  	  	  	  	  	  	  	  {	  	  	  	  	  	  
84. 	  	  	  	  	  	  	  	  	  	  	  	  	  <statements;	  separator="\n">	  	  	  
85. 	  	  	  	  	  	  	  	  }	  	  	  	  	  	  	  	  	  	  
86. 	  	  	  	  }	  	  	  
87. 	  }	  	  	  
88. >>	  	  	  
89. 	  
90. extendVariableEntry(methodName,	  statements)	  ::=<<	  	  	  
91. 	  	  	  	  <methodName>	  	  	  
92. 	  	  	  	  {	  	  	  
93. 	  	  	  	  	  	  	  	  <statements;	  separator="\n">	  	  	  
94. 	  	  	  	  }	  	  	  
95. }	  	  	  
96. >>	  	  	  
97. 	  	  	  
98. extendVariableRead(identifier,	  symbolName)	  ::=<<	  	  	  
99. bool	  MetaClass_<identifier>::openFooExtendVariableRead(string	  varName)	  	  	  
100. {	  	  	  
101. 	  	  	  	  OF_Variable_Container	  <symbolName>	  =	  getReadVariableList();	  	  	  
102. 	  	  	  	  for(int	  id=0;	  id<	  <symbolName>.size();	  id++){	  	  	  
103. 	  	  	  	  	  	  	  	  if((!varName.empty()	  &&	  <symbolName>[id]-‐>getVariableName())||(varName.empty()))	  	  	  
104. >>	  	  	  
105. 	  	  	  
106. extendVariableWrite(identifier,	  symbolName)	  ::=<<	  	  	  
107. bool	  MetaClass_<identifier>::openFooExtendVariableWrite(string	  varName)	  	  	  
108. {	  	  	  
109. 	  	  	  	  OF_Variable_Container	  <symbolName>	  =	  getWriteVariableList();	  	  	  
110. 	  	  	  	  for(int	  id=0;	  id<	  <symbolName>.size();	  id++){	  	  	  
111. 	  	  	  	  	  	  	  	  if((!varName.empty()	  &&	  <symbolName>[id]-‐>getVariableName())||(varName.empty()))	  	  	  
112. >>	  	  	  
113. 	  	  	  
114. extendVariableDecl(identifier,	  symbolName)	  ::=<<	  	  	  
115. bool	  MetaClass_<identifier>::openFooExtendVariableDecl(string	  varName)	  	  	  
116. {	  	  	  
117. 	  	  	  	  OF_Variable_Container	  <symbolName>	  =	  getDeclVariableList();	  	  	  
118. 	  	  	  	  for(int	  id=0;	  id<	  <symbolName>.size();	  id++){	  	  	  
119. 	  	  	  	  	  	  	  	  if((!varName.empty()	  &&	  <symbolName>[id]-‐>getVariableName())||(varName.empty()))	  	  	  	  
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120. >>	  	  	  
121. 	  
122. extendDefinitionFile(identifier,	  statements)	  ::=<<	  	  	  
123. 	  	  	  
124. bool	  MetaClass_<identifier>::openFooExtendDefinition()	  	  	  
125. {	  	  	  
126. 	  <if(statements)>	  	  	  
127. 	  	  	  	  	  <statements;	  separator="\n">	  	  	  
128. 	  <else>	  	  	  
129. 	  	  	  	  	  return	  true;	  	  	  
130. 	  <endif>	  	  	  
131. }	  	  	  
132. 	  
133. extendFunctionCallFile(symbolName,	  statements)	  ::=<<	  	  	  
134. 	  	  	  	  for(int	  i=0;	  i<functionList.size();	  i++){	  	  	  
135. 	  	  	  	  	  	  	  	  pushScopeStack(functionList[i]-‐>getFunctionBodyScope());	  	  	  
136. 	  	  	  	  	  	  	  	  string	  callerName	  =	  functionList[i]-‐>getName();	  	  	  
137. 	  	  	  	  	  	  	  	  vector<SgFunctionCallExp*>	  <symbolName>	  =	  functionList[i]-‐>getFunctionCallList();	  	  	  
138. 	  	  	  	  	  	  	  	  for(int	  id=0;	  id<funCallList.size();	  id++){	  	  	  
139. 	  	  	  	  	  	  	  	  	  	  	  
140. 	  	  	  	  	  	  	  	  	  	  	  	  	  <statements;	  separator="\n">	  	  	  	  
141. 	  	  	  	  	  	  	  	  }	  	  	  
142. 	  	  	  	  	  	  	  	  popScopeStack();	  	  	  
143. 	  	  	  	  }	  	  	  
144. >>	  	  
145. 	  	  
146. extendVariableEntryFile(loop,	  statements)	  ::=<<	  	  	  
147. 	  	  	  	  <loop>	  	  	  
148. 	  	  	  	  {	  	  	  
149. 	  	  	  	  	  	  	  	  <statements;	  separator="\n">	  	  	  
150. 	  	  	  	  }	  	  	  	  	  	  
151. }	  	  	  
152. >>	  	  	  
153. 	  	  	  
154. extendVariableReadFile(symbolName)	  ::=<<	  	  	  
155. 	  	  	  	  OF_Variable_Container	  <symbolName>	  =	  getReadVariableList();	  	  	  
156. 	  	  	  	  for(int	  id=0;	  id<	  <symbolName>.size();	  id++)	  	  	  
157. 	  	  	  	  	  	  	  	  	  	  	  
158. >>	  	  	  
159. 	  	  	  
160. extendVariableWriteFile(symbolName)	  ::=<<	  	  	  
161. 	  	  	  	  OF_Variable_Container	  <symbolName>	  =	  getWriteVariableList();	  	  	  
162. 	  	  	  	  for(int	  id=0;	  id<	  <symbolName>.size();	  id++)	  	  	  
163. 	  	  	  	  	  	  	  	  	  	  	  
164. >>	  	  	  
165. 	  	  	  
166. extendVariableDeclFile(symbolName)	  ::=<<	  	  	  
167. 	  	  	  	  OF_Variable_Container	  <symbolName>	  =	  getDeclVariableList();	  	  	  
168. 	  	  	  	  for(int	  id=0;	  id<	  <symbolName>.size();	  id++)	  	  	  
169. 	  	  	  	  	  	  	  	  	  	  	  
170. >>	  	  	  
171. 	  	  	  
172. declareMetaGlobalClass(identifier,	  progName)	  ::=<<	  	  	  
173. class	  MetaClass_<identifier>:	  public	  MetaGlobal	  	  	  
174. {	  	  	  
175. 	  	  public:	  	  	  
176. 	  	  	  	  	  MetaClass_<identifier>_<progName>	  (string	  name);	  	  	  
177. 	  	  	  	  	  virtual	  bool	  ofExtendDefinition();	  	  	  
178. };	  	  	  
179. >>	  	  	  	  
180. 	  	  	  
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181. createMetaModuleClass(identifier,	  moduleName)	  ::=<<	  	  	  
182. 	  	  	  
183. class	  MetaClass_<identifier>:	  public	  MetaModule	  	  	  
184. {	  	  	  
185. 	  	  public:	  	  	  
186. 	  	  	  	  	  MetaClass_<identifier>_<moduleName>(string	  name);	  	  	  
187. 	  	  	  	  	  virtual	  bool	  ofExtendDefinition();	  	  	  
188. };	  	  	  
189. >>	  	  	  	  	  
190. 	  	  	  
191. declareMetaFileClass(identifier,	  className)	  ::=<<	  	  	  	  
192. 	  	  	  
193. class	  MetaClass_<identifier>:	  public	  MetaFile	  	  	  
194. {	  	  	  
195. 	  	  public:	  	  	  
196. 	  	  	  	  	  MetaClass_<identifier>_<className>(string	  name);	  	  	  
197. 	  	  	  	  	  virtual	  bool	  ofExtendDefinition();	  	  	  
198. };	  	  	  
199. >>	  	  	  
200. 	  	  	  
201. operation(op,	  left,	  right)	  ::=	  "(<left>	  <op>	  <right>)"	  	  	  
202. 	  	  	  
203. operator(op)	  ::=	  "<op>"	  	  	  
204. 	  	  	  
205. attributeRef(symbol,	  attribute)	  ::=	  "<symbol>	  -‐>	  <attribute>"	  	  	  
206. 	  	  	  
207. localTransformer(subLocation,	  operations)	  ::=<<	  	  	  
208. <subLocation>	  	  	  
209. <operations	  :	  {op|<op>;<\n>}>	  	  	  
210. }	  	  	  
211. >>	  	  	  
212. 	  	  	  
213. getStatement(head,	  tail)	  ::=	  "<head>	  <if(tail)>,	  <tail>)	  <else>)<endif>;"	  	  	  
214. 	  	  	  
215. forAllProcedure(iteratorName)	  ::=<<	  	  	  
216. <if(iteratorName)>	  	  	  
217. for(SPOT_MetaFunction_Container::iterator	  <iteratorName>	  =	  getProcedures().begin();	  <iteratorName>

	  !=	  getProcedures().end();	  <iteratorName>++)	  	  	  
218. {	  	  	  
219. 	  	  	  	  pushScopeStack(<iteratorName>-‐>getCurrentScope());	  	  	  
220. <else>	  	  	  
221. for(SPOT_MetaFunction_Container::iterator	  iter	  =	  getProcedures().begin();	  iter	  !=	  getProcedures().

end();	  iter++)	  	  	  
222. {	  	  	  
223. 	  	  	  	  pushScopeStack(iter-‐>getCurrentScope());	  	  	  
224. <endif>	  	  	  
225. >>	  	  	  
226. 	  	  	  
227. forAllModule(iteratorName)	  ::=<<	  	  	  
228. <if(iteratorName)>	  	  	  
229. for(SPOT_MetaFunction_Container::iterator	  <iteratorName>	  =	  getModules().begin();	  <iteratorName>	  !=

	  getModules().end();	  <iteratorName>++)	  	  	  
230. {	  	  	  
231. 	  	  	  	  pushScopeStack(<iteratorName>-‐>getCurrentScope());	  	  	  
232. <else>	  	  	  
233. for(SPOT_MetaFunction_Container::iterator	  iter	  =	  getModules().begin();	  iter	  !=	  getModules().end();

	  iter++)	  	  	  
234. {	  	  	  
235. 	  	  	  	  pushScopeStack(iter-‐>getCurrentScope());	  	  	  
236. <endif>	  	  	  
237. >>	  	  	  



 

   
 

197 

238. /*in	  getFunctionCalls(<functionName>),	  <functionName>	  might	  be	  null,	  so	  in	  the	  definition	  of	  MetaF
unction,	  there	  are	  two	  getFunctionCalls*/	  	  	  

239. 	  	  	  
240. forAllFunctionCall(functionName,	  iteratorName)	  ::=<<	  	  	  
241. <if(iteratorName)>	  	  	  
242. for(SPOT_MetaFunctionCall_Container::iterator	  <iteratorName>	  =	  getFunctionCalls(<functionName>).be

gin();	  <iteratorName>	  !=	  getFunctionCalls(<functionName>).end();	  <iteratorName>++)	  	  	  
243. {	  	  	  
244. <else>	  	  	  
245. for(SPOT_MetaFunctionCall_Container::iterator	  iter	  =	  getFunctionCalls(<functionName>).begin();	  ite

r	  !=	  getFunctionCalls(<functionName>).end();	  iter++)	  	  	  
246. {	  	  	  
247. <endif>	  	  	  
248. >>	  	  	  
249. getEntityAttribute(entityName,	  attributeName)	  ::=	  "<entityName>-‐>get<attributeName>()"	  	  	  
250. 	  	  	  
251. setEntityAttribute(entityName,	  attributeName,	  valueName)	  ::=	  "<entityName>-‐

>set<attributeName>(<valueName>);"	  	  	  
252. 	  	  	  
253. getCallStatement(funName)	  ::=	  "getFunctionCallStmt("<funName>");"	  	  	  
254. 	  	  	  
255. addVariable(type,	  name,	  iniVal)	  ::=	  "addVariable("<name>",	  "<type>"<if(iniVal)>,	  "<iniVal>"<endif>

);"	  	  	  
256. 	  	  	  
257. deleteVariable(name)	  ::="deleteVariable("<name>");"	  	  	  
258. //locations	  is	  a	  vector	  containing	  targeted	  statements	  	  	  
259. addCallStatement(funName,	  beforeAfter,	  locations,	  paraList)	  ::=	  "addCallStatement("<funName>",	  "<b

eforeAfter>",	  <locations>,	  <if(paraList)>,	  <paraList><endif>);"	  	  	  
260. 	  	  	  
261. assignNewStatement(symbolName,	  function)	  ::=	  "MetaStatement	  *<symbolName>	  =	  <function>"	  	  	  
262. 	  	  	  
263. //separate	  arguments	  with	  comma	  	  	  
264. listCallArguments(arguments)	  ::="<arguments;	  separator=",">	  "	  	  	  
265. 	  	  	  
266. //get	  the	  handler	  of	  a	  construct	  by	  its	  name	  	  	  
267. getFunction(handler,	  funName)	  ::=	  "MetaFunction	  *<handler>	  =	  getFunctionbyName("<funName>")"	  	  	  
268. 	  	  	  
269. getProgram(handler,	  programName)	  ::=	  "MetaFunction	  *<handler>	  =	  getProgrambyName("<programName>")"

	  	  	  
270. 	  	  	  
271. getProcedure(handler,	  funName)	  ::=	  "MetaFunction	  *<handler>	  =	  getProcedurebyName("<funName>")"	  	  	  
272. 	  	  	  
273. getFunctionCall(handler,	  funName)	  ::=	  "MetaFunctionCall	  *<handler>	  =	  getFunctionCallbyName("<funNa

me>")"	  	  	  
274. 	  	  	  
275. getVariableRead(handler,	  varName)	  ::=	  "VariableAccess	  *<handler>	  =	  getVariableReadbyName("<varName

>")"	  	  	  
276. 	  	  	  
277. getVariableWrite(handler,	  varName)	  ::=	  "VariableAccess	  *<handler>	  =	  getVariableWritebyName("<varNa

me>")"	  	  	  
278. 	  	  	  
279. getVariableDecl(handler,	  varName)	  ::=	  "VariableAccess	  *<handler>	  =	  getVariableDeclbyName("<varName

>")"	  	  	  
280. 	  	  	  
281. getStatementLineNumber(handler,	  lineNumber)	  ::=	  "MetaStatement	  *<handler>	  =	  getStatementbyLineNumb

er("<lineNumber>")"	  	  	  
282. 	  	  	  
283. getModule(handler,	  moduleName)	  ::=	  "MetaModule	  *<handler>	  =	  getModulebyName("<moduleName>")"	  	  	  
284. 	  	  	  
285. renameFunction(oldName,	  newName)	  ::=	  "renameFunction(<oldName>,	  <newName>)"	  	  	  
286. 	  	  	  
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287. renameVariable(oldName,	  newName)	  ::=	  "renameVariable(<oldName>,	  <newName>)	  "	  	  	  
288. 	  	  	  
289. constructRetrieve(name,	  retrieveStmt)	  ::=	  "<name>	  =	  <retrieveStmt>;"	  
290. //retrieveStmt	  refers	  to	  one	  on	  the	  above	  layer.	  	  	  
291. 	  	  	  
292. sourceCode(statements)	  ::=<<	  	  	  
293. 	  <statements;	  separator="\n">	  	  	  
294. >>	  	  	  
295. 	  
296. if(condition,	  statements)	  ::=	  <<	  	  	  
297. if	  (	  <condition>	  )	  {	  	  	  
298. 	  	  	  	  <statements;	  separator="\n">	  	  	  
299. }	  	  	  
300. >>	  	  	  
301. 	  
302. if(condition,	  statements)	  ::=	  <<	  	  	  
303. else(statements)::=	  <<	  	  	  
304. else{	  	  	  
305. 	  	  	  	  <statements;	  separator="\n">	  	  	  
306. }	  	  	  
307. >>	  	  	  
308. matchAssignmentStatement(left,	  right)	  ::=	  "matchAssignmentStatement("<left>",	  "<right>")"	  	  	  
309. 	  	  	  
310. buildAssignmentStatement(left,	  right)	  ::=	  "buildAssignmentStatement("<left>",	  "<right>")"	  	  	  

 

 

 
 
 

 

 

 

 

 


