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Cloning in Software

 Code Clones:
 A section of code that is duplicated in multiple locations in

a program

 Different granularity levels:
 Statements, Block, Method,

Class, Program

 Clone Group:
 Clones of the same duplication
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Maintaining Clones
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After a period of time A new programmer



Removing Clones through Refactoring

 Modularizing the code represented by clones through
appropriate abstractions may improve code quality
 Less duplicated code to maintain
 Ease of future maintenance efforts

 Refactoring is one means of improving the quality of code
 The goal of refactoring is to preserve the external behavior

of code while improving its internal structure
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Refactoring Clones
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public class A {

public void method() {

{cloned statements}
{cloned statements}
{cloned statements}
...

{cloned statements}
{cloned statements}
{cloned statements}

}

}

public class A {

public void method() {

newMethod();

...

newMethod();

}

public void newMethod() {

{cloned statements}
{cloned statements}
{cloned statements}

}

}

Extract-Method
Refactoring



Clone Refactoring Process
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Manually
Detect Clones

Determine Clones
For Refactoring

Refactoring
Clones

 Changes between two versions
 First version contains original code
 Second version contains refactored code



Clone Refactoring Process
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Automated Clone
Detection Tool

 What are the refactoring characteristics of clones
detected by a clone detection tool, if such a tool was
used in the clone maintenance process?

Manually
Detect Clones

Determine Clones
For Refactoring

Refactoring
Clones



Approach: Observing Refactorings

 Observing actual clone-related refactorings in multiple
release versions of JBoss (v2.2.0–4.2.3)
 Used Simian clone detection tool
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Source Code
(Version 1)

Clone
Detection
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Compare

@@ -2471,13 +2469,7 @@
scan_position.current_slot = Page.INVALID_SLOT_NUMBER;

// release the scan lock now that we have saved away the row.
-
- if (scan_position.current_scan_pageno != 0)
- {
- this.getLockingPolicy().unlockScan(
- scan_position.current_scan_pageno);
- scan_position.current_scan_pageno = 0;
- }
+           unlockCurrentScan(scan_position);

}
}

}

C lo n e  c

C lo n e  c

d iff reg ion

C lo n e  c C lo n e  c

d iff reg ion

C lo n e  c

V ers ion  1 V ers ion  1 V ers ion  1V ers ion  2 V ers ion  2 V ers ion  2



Refactoring of Simian Clones

 Observations
 21 Extract Method-type Refactorings
 Range of refactored code not equal to the range reported

as a clone
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Type Total

Extract Method 14

Extract Method with Pull-up Method 1

Extract Method to utility class 6

Total 21



Observing with Other Tools

 Consider clones reported by other tools
 CCFinder, CloneDR, Deckard, and SimScan

 Run these tools on source files associated with the 21
Extract Method-type refactorings from Simian clones
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Evaluation: Tool Coverage
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 Coverage of 21 Extract Method-type refactorings in JBoss
 Initially detected by using Simian clones

 Reported clones that exactly covered the refactored
code were less than half for all the tools

Tool Exact 
Coverage

Larger 
Coverage

1. CCFinder 4 (19%) 8 (38%)

2. CloneDR 6 (28%) 9  (42%)

3. Deckard 8 (38%) 3 (14%)

4. Simian 2 (9%) 0 (0%)

5. Simscan 6 (28%) 12 (57%)



Refactoring in Clone Ranges
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1 2   4 5   protected String getValue(String name, String value) {

1 2   4 5     if (value.startsWith("${") && value.endsWith("}")) {

1 2 3 4 5 - try {

1 2 3 4 5 - String propertyName = value.substring(2, value.length()-1);

1 2 3 4 5 - ObjectName propertyServiceON = new ObjectName(“...");

1 2 3 4 5 - KernelAbstraction kernelAbstraction = KernelAbstractionFactory.getInstance();

1 2 3 4 5 - String propertyValue = (String)kernelAbstraction.invoke(...);

1 2 3   5 - log.debug("Replaced ejb-jar.xml element " + name + " with value " + propertyValue);

1 2 3   5 - return propertyValue;

1 2 3   5 - } catch (Exception e) {

1 2 3   5 - log.warn("Unable to look up property service for ejb-jar.xml element " + ...);

1 2 3   5 - }

+     String replacement = StringPropertyReplacer.replaceProperties(value);

+     if (replacement != null)

+       value = replacement;

1 2     5     }

1 2     5     return value;

1 2     5   }

if (edge instanceof MTransition) {

MTransition tr = (MTransition) edge;

- FigTrans trFig = new FigTrans(tr);

- // set source and dest

- // set any arrowheads, labels, or colors

- MStateVertex sourceSV = tr.getSource();

- MStateVertex destSV = tr.getTarget();

- FigNode sourceFN = (FigNode) lay...

- FigNode destFN = (FigNode) lay...

- trFig.setSourcePortFig(sourceFN);

- trFig.setSourceFigNode(sourceFN);

- trFig.setDestPortFig(destFN);

- trFig.setDestFigNode(destFN);

+   FigTrans trFig = new FigTrans(tr, lay);

return trFig;

}

 Refactoring performed on
only part of the reported
clone range
 Sub-clone refactoring



Evaluation: Focus on Deckard
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 Deckard selected due to tree-based tool performance
 JBoss re-evaluated
 Additional artifacts: ArgoUML (v0.10.1–0.26) and Apache

Derby (v10.1.1.0–10.5.3.0)

Property JBoss ArgoUML Derby

Refactoring 
Coverage

Exact coverage 19 17 12

Sub-clone coverage 14 9 15

Coverage 
Levels

Same level 4 4 6

1 level above 9 2 8

> 1 level above 1 3 1

Clone 
Differences

Refactorable 7 4 8

Not Refactorable 7 5 7



Evaluation: Focus on Deckard
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 Reported clone range mainly the same level or one
syntactic level above the actual refactored code
 Possibly to keep some logic in the original location

 Programmers only refactored a sub-clone even when the
entire clone was refactorable

Property JBoss ArgoUML Derby

Refactoring 
Coverage

Exact coverage 19 17 12

Sub-clone coverage 14 9 15

Coverage 
Levels

Same level 4 4 6

1 level above 9 2 8

> 1 level above 1 3 1

Clone 
Differences

Refactorable 7 4 8

Not Refactorable 7 5 7



Conclusion
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 We observed the actual refactoring of clones by
evaluating source code changes between multiple
versions
 In various instances only part of the reported clone (i.e.,

sub-clone) was refactored

 We conclude that sub-clone refactoring should be
included in the clone maintenance process

 Future Work
 Individual evaluation of other clone detection tools
 Provide support for sub-clone refactoring in an IDE



CeDAR plug-in
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Sub-clones in CeDAR
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Thank you

 Personal:
 http://www.cis.uab.edu/tairasr

 Code Clones Literature:
 http://www.cis.uab.edu/tairasr/clones/literature

 SoftCom Laboratory:
 http://www.cis.uab.edu/softcom
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