
Sub-clones: Considering the
Part Rather than the Whole
Robert Tairas
Department of Computer and Information Sciences
University of Alabama at Birmingham

Jeff Gray
Department of Computer Science
University of Alabama

This research is supported by
NSF grant CPA-0702764

Software Composition and Modeling LabUniversity of Alabama at Birmingham University of Alabama

Cloning in Software

 Code Clones:
 A section of code that is duplicated in multiple locations in

a program

 Different granularity levels:
 Statements, Block, Method,

Class, Program

 Clone Group:
 Clones of the same duplication

2

Source Code

Cloned Code

Maintaining Clones
3

After a period of time A new programmer

Removing Clones through Refactoring

 Modularizing the code represented by clones through
appropriate abstractions may improve code quality
 Less duplicated code to maintain
 Ease of future maintenance efforts

 Refactoring is one means of improving the quality of code
 The goal of refactoring is to preserve the external behavior

of code while improving its internal structure

4

Modularized Clone

Clone 1 Clone 2

Refactoring Clones
5

public class A {

public void method() {

{cloned statements}
{cloned statements}
{cloned statements}
...

{cloned statements}
{cloned statements}
{cloned statements}

}

}

public class A {

public void method() {

newMethod();

...

newMethod();

}

public void newMethod() {

{cloned statements}
{cloned statements}
{cloned statements}

}

}

Extract-Method
Refactoring

Clone Refactoring Process
6

Manually
Detect Clones

Determine Clones
For Refactoring

Refactoring
Clones

 Changes between two versions
 First version contains original code
 Second version contains refactored code

Clone Refactoring Process
7

Automated Clone
Detection Tool

 What are the refactoring characteristics of clones
detected by a clone detection tool, if such a tool was
used in the clone maintenance process?

Manually
Detect Clones

Determine Clones
For Refactoring

Refactoring
Clones

Approach: Observing Refactorings

 Observing actual clone-related refactorings in multiple
release versions of JBoss (v2.2.0–4.2.3)
 Used Simian clone detection tool

8

Source Code
(Version 1)

Clone
Detection

Code Clones Source Code
(Version 2)

Compare

@@ -2471,13 +2469,7 @@
scan_position.current_slot = Page.INVALID_SLOT_NUMBER;

// release the scan lock now that we have saved away the row.
-
- if (scan_position.current_scan_pageno != 0)
- {
- this.getLockingPolicy().unlockScan(
- scan_position.current_scan_pageno);
- scan_position.current_scan_pageno = 0;
- }
+ unlockCurrentScan(scan_position);

}
}

}

C lo n e c

C lo n e c

d iff reg ion

C lo n e c C lo n e c

d iff reg ion

C lo n e c

V ers ion 1 V ers ion 1 V ers ion 1V ers ion 2 V ers ion 2 V ers ion 2

Refactoring of Simian Clones

 Observations
 21 Extract Method-type Refactorings
 Range of refactored code not equal to the range reported

as a clone

9

Type Total

Extract Method 14

Extract Method with Pull-up Method 1

Extract Method to utility class 6

Total 21

Observing with Other Tools

 Consider clones reported by other tools
 CCFinder, CloneDR, Deckard, and SimScan

 Run these tools on source files associated with the 21
Extract Method-type refactorings from Simian clones

10

Source Code
(Version 1) Simian

Code Clones

Source Files

CCFinder

CloneDR

Deckard

SimScan

Code Clones

Code Clones

Code Clones

Code Clones

Source Code
(Version 2)

Compare

Source Code
(Version 2)

Source Code
(Version 2)

Source Code
(Version 2)

Compare

Compare

Compare

Evaluation: Tool Coverage
11

 Coverage of 21 Extract Method-type refactorings in JBoss
 Initially detected by using Simian clones

 Reported clones that exactly covered the refactored
code were less than half for all the tools

Tool Exact
Coverage

Larger
Coverage

1. CCFinder 4 (19%) 8 (38%)

2. CloneDR 6 (28%) 9 (42%)

3. Deckard 8 (38%) 3 (14%)

4. Simian 2 (9%) 0 (0%)

5. Simscan 6 (28%) 12 (57%)

Refactoring in Clone Ranges
12

1 2 4 5 protected String getValue(String name, String value) {

1 2 4 5 if (value.startsWith("${") && value.endsWith("}")) {

1 2 3 4 5 - try {

1 2 3 4 5 - String propertyName = value.substring(2, value.length()-1);

1 2 3 4 5 - ObjectName propertyServiceON = new ObjectName(“...");

1 2 3 4 5 - KernelAbstraction kernelAbstraction = KernelAbstractionFactory.getInstance();

1 2 3 4 5 - String propertyValue = (String)kernelAbstraction.invoke(...);

1 2 3 5 - log.debug("Replaced ejb-jar.xml element " + name + " with value " + propertyValue);

1 2 3 5 - return propertyValue;

1 2 3 5 - } catch (Exception e) {

1 2 3 5 - log.warn("Unable to look up property service for ejb-jar.xml element " + ...);

1 2 3 5 - }

+ String replacement = StringPropertyReplacer.replaceProperties(value);

+ if (replacement != null)

+ value = replacement;

1 2 5 }

1 2 5 return value;

1 2 5 }

if (edge instanceof MTransition) {

MTransition tr = (MTransition) edge;

- FigTrans trFig = new FigTrans(tr);

- // set source and dest

- // set any arrowheads, labels, or colors

- MStateVertex sourceSV = tr.getSource();

- MStateVertex destSV = tr.getTarget();

- FigNode sourceFN = (FigNode) lay...

- FigNode destFN = (FigNode) lay...

- trFig.setSourcePortFig(sourceFN);

- trFig.setSourceFigNode(sourceFN);

- trFig.setDestPortFig(destFN);

- trFig.setDestFigNode(destFN);

+ FigTrans trFig = new FigTrans(tr, lay);

return trFig;

}

 Refactoring performed on
only part of the reported
clone range
 Sub-clone refactoring

Evaluation: Focus on Deckard
13

 Deckard selected due to tree-based tool performance
 JBoss re-evaluated
 Additional artifacts: ArgoUML (v0.10.1–0.26) and Apache

Derby (v10.1.1.0–10.5.3.0)

Property JBoss ArgoUML Derby

Refactoring
Coverage

Exact coverage 19 17 12

Sub-clone coverage 14 9 15

Coverage
Levels

Same level 4 4 6

1 level above 9 2 8

> 1 level above 1 3 1

Clone
Differences

Refactorable 7 4 8

Not Refactorable 7 5 7

Evaluation: Focus on Deckard
14

 Reported clone range mainly the same level or one
syntactic level above the actual refactored code
 Possibly to keep some logic in the original location

 Programmers only refactored a sub-clone even when the
entire clone was refactorable

Property JBoss ArgoUML Derby

Refactoring
Coverage

Exact coverage 19 17 12

Sub-clone coverage 14 9 15

Coverage
Levels

Same level 4 4 6

1 level above 9 2 8

> 1 level above 1 3 1

Clone
Differences

Refactorable 7 4 8

Not Refactorable 7 5 7

Conclusion
15

 We observed the actual refactoring of clones by
evaluating source code changes between multiple
versions
 In various instances only part of the reported clone (i.e.,

sub-clone) was refactored

 We conclude that sub-clone refactoring should be
included in the clone maintenance process

 Future Work
 Individual evaluation of other clone detection tools
 Provide support for sub-clone refactoring in an IDE

CeDAR plug-in
16

Sub-clones in CeDAR
17

Thank you

 Personal:
 http://www.cis.uab.edu/tairasr

 Code Clones Literature:
 http://www.cis.uab.edu/tairasr/clones/literature

 SoftCom Laboratory:
 http://www.cis.uab.edu/softcom

18

	Sub-clones: Considering the Part Rather than the Whole
	Cloning in Software
	Maintaining Clones
	Removing Clones through Refactoring
	Refactoring Clones
	Clone Refactoring Process
	Clone Refactoring Process
	Approach: Observing Refactorings
	Refactoring of Simian Clones
	Observing with Other Tools
	Evaluation: Tool Coverage
	Refactoring in Clone Ranges
	Evaluation: Focus on Deckard
	Evaluation: Focus on Deckard
	Conclusion
	CeDAR plug-in
	Sub-clones in CeDAR
	Thank you

