
Automating the Management of the Traceability Relation
Hyun Cho

University of Alabama at Birmingham
123D Campbell Hall

1300 University Boulevard
Birmingham, AL, 35294-1170

robusta@uab.edu

ABSTRACT
Software changes are inevitable in the software development
lifecycle. The scope and cost of such changes can be estimated
through impact analysis. However, impact analysis is often
performed only when it is absolutely necessary and the accuracy
of impact analysis is not generally satisfactory. This is due to the
labor intensive and error prone nature of maintaining traceability
relations. This poster introduces an automated approach to
traceability management that informs development activities and
assists in tool integration.

1. Motivations
Traceability relations assist a developer in following the lifecycle
of a requirement in a forward and backward direction [2]. Being
able to trace the causal relationships between requirements and
other software artifacts offers several benefits, such as: 1)
analyzing the scope of the impacted artifacts from the changes, 2)
identifying reusable components, and 3) helping to understand the
system comprehensively. However, maintaining traceability
relations is often a tedious and error prone task that requires
intensive labor. Many researchers have proposed several methods
[1][5][6] and tools [3][4] that can address this issue, but they are
not able to completely automate the process of traceability
relation management (TRM). The goal of the research described
in this poster is to automate TRM across the entire development
phases. This will make traceability relations readily available for
impact analysis and reduce the burden of TRM.

2. Activity-Driven TRM
Software development begins by analyzing requirements or
reviewing change requests. After new requirements or change
requests are analyzed, a chain of development activities are
defined for system design, implementation, testing, and release.
Thus, activities govern the evolution of the related software
artifacts and each activity can be considered a unit of change. As
the number of activities is large even in a small project, project
management tools or change management (CM) tools are often
used to manage the development process. These tools help
engineers to manage and control the entire progress of the project.
In addition, the activities can be exported from one tool to another
tool to manage different aspects of the activities. For instance,
activities in MS Project [7], which is widely used to manage
projects, are defined to manage the project schedule, cost and
resource management. MS Project allows exporting its activities
to several tools, including CM tools such as IBM Rational
ClearQuest [10] and Change [9]. If the activities are exported to
change management, each activity governs the change process
through a pre-defined workflow. In addition, activity-driven

development offers benefits when change and configuration
management processes are integrated and governed by the activity.
For example, IBM Rational ClearCase [8], one of the market
leading software configuration management (SCM) toolsuites,
provides integration with IBM Rational ClearQuest. By
integrating the tools, each activity is mapped with a set of
configuration items to resolve an issue described in the activity.
As a result, all software artifacts that are maintained under SCM
tools can be linked to each other through these activities.

In this poster, we present how to automate the generation and
management of traceability relations through tool integration.
Specifically, the poster describes how TRM activities can govern
the evolution of artifacts and can be used to manage the relations.
Figure 1 shows the approach for automating the TRM activity.

Requirements with
activity annotation

Activities under
Change Management

Activities under
Project Management

Govern configuration
items’ version

Export annotated
activity

Governs project
schedule by activities

Governs configuration
items by activities

Traceability
Relation

Management

Traceability
Relations Requirement

Management

Project
Management

Change &
Configuration
Management

Traceability
Relation

Management

Maintain
Traceability
Relations

Extract the
governing
data

Extract diff
information

Export
activity

Figure 1. Framework for Automating TRM

When requirements analysis is performed, each requirement is
annotated with activities. Figure 2 shows the examples of
annotated activities. Identifier @Act is used to distinguish the
annotated activities from the requirements. The annotation
follows the following syntax:

@Act.<development_pahse>(Activity_Name)

Figure 2. Requirements with Annotated Activity

The annotated activities are exported to either project
management tools or CM tools. If activities are exported to
project management tools, then the activities can be further
refined to handle other constraints such as resources, budgets, and
schedule. Then, the refined activities are exported to CM tools.
After activities are created in a CM tool, activities are maintained
by pre-defined workflow and associated with corresponding
artifacts in SCM (provided that the CM tools and SCM tools are
integrated properly). Figure 3 shows activities that are associated
with corresponding artifacts using Trac [12] and SVN[13]. Trac
and SVN are open source tools to manage activity and software
configuration, respectively.

Figure 3. Example of CM/SCM Integration

After the needed information is created, the TRM tool retrieves
the information to create and manage the relations. For instance,
the HSql.java file in Figure 3 will be linked with requirements 2
and 3 in Figure 2. The following are key to this approach:

 Controlling the Granularity of a Traceability Relation:
Defining the proper granularity of a traceability relation is
still a challenge because each software artifact is produced
with different methodologies and represented in different
forms. To address this issue, we can consider two
techniques: 1) control the granularity of an activity, and 2)
employ diff information. If an activity is defined in a fine-
grained manner, it may need to change a whole file in the
extreme case. Otherwise, more artifacts can be associated
with the activities. However, this technique has some
problems such as it requires much effort to define and
manage activities and a file is still an atomic unit of the
change. To handle this issue, we extract diff information
between two different versions and associate the information
with the traceability relation as a supplement. Figure 4
shows the result of Model Difference in IBM Rational TAU
[11] as an example. The orange and pink parts are the
differences between version 1 and 2.

Figure 4. The Result of Model Diff in IBM Rational TAU

 Manage the Traceability Relation Evolution: Changes in
software artifacts may invalidate the existing traceability
relations or require the creation of new relations. As
CM/SCM integration assists with the evolution of the
artifacts by activities, a traceability relation can represent
the evolution by retrieving CM/SCM integration information.

3. Summary and Future Works
To automate TRM, requirements are annotated with development
activities and then these activities are exported to CM or SCM
tools. The exported activities function as a unit of software
artifact change and are associated with the changed artifacts.
Therefore, the traceability relation can be created and updated by
retrieving the activities in each management tool and their related
artifacts. The proposed approach herein offers several benefits,
such as: 1) it can be easily applied to existing development
processes with a small amount of investment for developing the
TRM tool, 2) it can automate the management of traceability
relations and maintain the relation, 3) it can create traceability
relations incrementally as the project progresses. However, we
need to further study 1) how the automation affects the accuracy
of impact analysis and project estimation, 2) what is the best
granularity for defining activities and managing the traceability
relation, 3) how to measure the improvement of the process and
accuracy of estimation from the automation.

ACKNOWLEDGEMENT
This work was supported in part by an NSF CAREER award
(0643725).

REFERENCES
[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E.

Merlo, Recovering traceability links between code and
documentation. IEEE Transactions on Software Engineering,
28(10):970–983, 2002.

[2] O. Gotel and C. Finkelstein, An analysis of the requirements
traceability problem. International Conference on
Requirements Engineering, pp. 94-101, April 1994, Colorado
Springs, CO.

[3] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, Advancing
candidate link generation for requirements tracing: The study
of methods. IEEE Transactions on Software Engineering,
32(1):4–19, 2006.

[4] A.D. Lucia, F. Fasano, R. Oliveto, and G. Tortora,
Recovering traceability links in software artifact
management systems using information retrieval methods.
ACM Transactions on Software Engineering and
Methodology, 16, 4 (Sep. 2007), 13.

[5] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. IEEE
Transactions on Software Engineering, 31(6):429–445,
2005.

[6] A. Zisman, G. Spanoudakis, E. Perez-Mi˜nana, and P. Kraus.
Tracing software requirements artifacts. International
Conference on Software Engineering Research and Practice,
pp. 448–455June 23 - 26, 2003, Las Vegas, NV.

[7] http://office.microsoft.com/en-us/project/default.aspx
[8] http://www-01.ibm.com/software/awdtools/clearcase/
[9] http://www-01.ibm.com/software/awdtools/change/
[10] http://www-01.ibm.com/software/awdtools/clearquest/
[11] http://www-01.ibm.com/software/awdtools/tau/
[12] http://trac.edgewall.org/
[13] http://subversion.tigris.org/

