
QoSPL: A QoS-Driven Software
Product Line Engineering Framework
for Distributed Real-time and
Embedded Systems

Shih-Hsi “Alex” Liu1, Barrett R. Bryant1, Jeff Gray1,
Rajeev Raje2, Mihran Tuceryan2, Andrew Olson2,
and Mikhail Auguston3

1. University of Alabama at Birmingham
2. Indiana University-Purdue University Indianapolis
3. Naval Postgraduate School

Outline
Problem Statements
Background: UniFrame
QoSPL: a QoS-driven Product Line
framework

A Case Study: a battlefield training system
Domain Engineering (a TLG++ approach)
Application Engineering (a Petri Net appoach)

Related Work
Conclusion

Functional req.

QoS req.

Requirements Tangling:
Func. and nonfunc. req.

require evaluation
interchangeably

Problem Statements

DRE COTS
Composition

Abundant Alternatives:
Numerous design

alternatives generated

QoS Sensitive:
QoS Satisfaction affects

the correctness and
performance of systems

Number of
requirements

Problem Statements

Standards

Component
Deployment

Domain Experts
(Start)

UniFrame Knowledgebase

Component
Developer

System Deployment
(End)

Quality Validation

System Integration

Component
Quality Measures

Distributed Resource
Discovery

Design Space
Exploration

1.1
1.2

2.1
2.2

3

4
Component

Search

5

Query

6

7

8

Modified
Query

Assembled
System

9

Yes

No

Selected
Components

Feasible
Designs

Select DRE
components
by their spec.

Analyze the
commonality,
variability, and
satisfaction of
QoS paths by

the TLG++
approach

Construct a
set of software
products that

share common
features by

QoS-
UniFrame

Domain
Engineering

Component
Selection

A Rule Engine
and Knowledge

Base

Including facts, queries
and rules for inferring

component composition

Stores the
functional and

nonfunctional spec.
of existing

components,
component

dependencies, and
composition rules

Application
Engineering

Overview of the QoSPL

Mobile Augmented Reality Systems
A DRE system concentrating on enriching the user
environment by merging real and virtual objects

Six subsystems:
Computation: performs specific functionalities for the
application
Presentation: computes virtual multimedia objects
Tracking and registration: tracks user’s position and
orientation and registers virtual objects
Environmental model: store the geometrical and detailed
hierarchical 3D information
Interaction: coordinates virtual multimedia objects
Wireless communication: provides mobile
communications

A Case Study: A battlefield training system

A soldier is to rescue a virtual hostage in a
battlefield. The position and orientation sensors on
his body send back the 6 Degrees Of Freedom
(6DOF) data to the tracking subsystem every half
second via wireless communication. As the soldier is
standing on specific positions with specific
orientations in some buildings derived from a
predefined tactical scenario stored in the
computation subsystem, his HMD displays the
enemies registered by the tracking system, rendered
by the presentation subsystem and coordinated by
the interaction subsystem. The soldier
communicates with the command center via his
headphone. The information of the soldier's current
position is displayed on the HMD by text.

Domain Engineering: The Two-Level
Grammar++ approach

Goals:
Analyze common and variable requirements
Design a prescribed reference architecture for its
product line
Implement a set of reusable core assets
Verify and validate the core assets

Domain Engineering: The Two-Level
Grammar++ approach
Original TLG++

Two Context Free Grammars (CFGs):
The 1st CFG: Define a set of Parameters
The 2nd CFG: Define a set of Function Definitions

A Grammatical Concept:
Define Syntax and Semantics of Programming
Languages

The 1st CFG: Define the Syntax by Production
Rules
The 2nd CFG: Define the Semantics of the
Production Rules

Domain Engineering: The Two-Level
Grammar++ approach
QoS-driven TLG++

QoS-driven TLG++ specifies and analyzes QoS paths at
the service level

The first CFG utilizes Extended Backus-Naur Form
(EBNF) to define the components and direction of a QoS
systemic path

EBNF represents mandatory, alternative, optional,
and OR features

TLG++ – The 1st CFG

1 class TextDeadlineFromClient.
2 Syntax :: Sensor WC TkP.
3 Sensor :: OS PS ; PS ; OS.
4 PS :: ps1 ; ps2 ; ps3.
5 OS :: os1 ; os2 ; os3 ; os4.
6 WC :: wc1 ; wc2.
7 TkP :: trackProcessing.
8 Sum :: Double.
9 semantics of sendPositionFromClient :

//coming up……..
10 end class.

WC: Wireless communication. TkP: Track and registration process. OS:
Orientation sensor. PS: Position sensor.

Domain Engineering

TLG++: The 2nd CFG

The second CFG defines component dependencies,
composition rules, and QoS satisfaction formula

Component dependencies: the relationships between
components in terms of function-determined and
application-specific tasks
Composition rules: verify interface consistency between
components and pre- and post-conditions of composition
by inferences
QoS satisfaction formula: quantitatively estimate the
satisfaction of the QoS property of a QoS systemic path

TLG++ – The 2nd CFG (cont.)
1 class TextDeadlineFromClient.
2 Syntax :: Sensor WC TkP.
3 ….
10 semantics of sendPositionFromClient :
11 PreCondition := semantics of queryComponent with OS PS WC and TkP,
12 if PreCondition then

Sum := semantics of sumOfMTAT with OS PS WC and TkP,
13 else ErrorMessage, end if,
14 PostCondition := semantics of queryPattern with Sum.
15 Double semantics of sumOfMTAT with OS PS WC and TkP :
16 return OS semantics of getMTAT + …….//[SEKE’05]
17 end class.

Pre-Condition and Post-Condition can be used for validating QoS analysis
and eliminating infeasible ones

[SEKE’05] S.-H. Liu, et al. Quality of Service-driven requirements analyses for
Component Composition: A Two-Level Grammar++ Approach

TLG++: The 1st CFG
Symbol tables are utilized for
analyzing the rate of
commonality and reusability
of QoS systemic path families
Intuition: More satisfactory
QoS paths have higher
probabilities to be selected
[ps2, wc2, tkp]
[os1, ps2, wc2, tkp] or
[os4, ps2, wc2, tkp]

0.90.40.50.20.15MTAT
(ms)

TkpWCWCPSPSType

tkpwc2wc1ps3ps2ID

0.250.20.450.30.2MTAT
(ms)

PSOSOSOSOSType

ps1os4os3os2os1ID

Overview of the QoSPL

D
om

ai
n

E
ng

.
A

pp
l.

E
ng

.

Application Engineering: The Timed
Colored Petri Nets Approach

Goals:
Reuse core assets in each workflow in the domain
engineering process
Exploit variable features of each workflow on
individual appliations
In our approach: assemble all common QoS paths
and specific variable paths for different product
line members

Timed Colored Petri Nets
Original Timed Colored Petri Nets (TCPNs)

Places: states
Transitions: actions or events
Arcs: directions (P->T or T->P)
Tokens: notations specifying configurations of places
Weights: notations specifying configurations of transitions
Colors: identities of places
Time: timer
Markings: configurations comprising tokens

QoS-driven Timed Colored Petri Nets
Places: components or sub-components
Transitions: design decisions (when, what, how) or method calls
Arcs: directions (P->T or T->P)
Tokens: QoS parameters or events
Weights, Colors, Time, Markings: same as above

Application Engineering2

3

2

Application Engineering
The reachability tree analysis

Dynamic analysis: evaluate every intermediate
node of the tree.
Discard the entire branch if an intermediate
node is not satisfied

Marking (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
M0 (3,3,3,1,0,0,0,0,0,0,0,0,0,0,0)
M1 (1,1,3,0,2,0,0,1,0,0,0,0,0,0,0)
M2 (0,0,3,0,3,0,0,0,0,0,0,0,0,0,0)
M3 (0,0,3,0,0,0,0,0,0,0,3,0,0,0,0)
M4 (0,0,0,0,0,1,1,0,1,0,2,0,0,0,0)
M5 (0,0,0,0,0,0,0,0,0,0,2,1,1,1,0)
M6 (0,0,0,0,1,0,0,0,0,0,0,0,0,0,2)
M7 (0,0,0,0,3,0,0,0,0,0,0,0,0,0,0)
M8 (0,0,0,1,0,0,0,0,0,2,0,0,0,0,0)

Overview of the QoSPL

D
om

ai
n

E
ng

.
A

pp
l.

E
ng

.

Related Work
FORM: extension of FODA

KobrA: MDA+ CBSE + SPLE

QADA: scenario based quality analysis

Mini-Middleware: customized middleware
based on QoS demands

Conclusion
A separation of concerns approach to focus on QoS
properties during the construction of DRE systems
A DRE product line is assembled by combining different
QoS paths
Solve the three challenges inherent in DRE system
construction using traditional CBSE and SPLE

QoS sensitive, Requirements tangling, Abundant alternatives
Two formalisms to facilitate high confidence system
construction
TODO:

commonality and variability management utilized by the symbol
table
Finer-grained QoS analysis
Implementation and testing workflows + ADL

Questions

More information
UniFrame: www.cs.iupui.edu/uniFrame
QoSPL: www.cis.uab.edu/liush/QoSPL.htm

