
A Java-based Approach for Teaching Principles of
Adaptive and Evolvable Software

Jeff Gray

University of Alabama at Birmingham, Department of Computer and Information Sciences

1300 University Blvd., Birmingham, Alabama USA 35294

__

Abstract

The ability to adapt a software artifact is essential toward handling evolving

stakeholder requirements. Adaptation is also vital in many areas where software is
required to adjust to changing environment conditions (e.g., the growing presence of
embedded systems). Current techniques for supporting adaptability and evolvability can
be categorized as static (happening at compile-time or design-time), or dynamic
(adaptation during the actual execution of the system). This paper describes a special-
topics software engineering course that uses Java as a foundation for teaching concepts of
static and dynamic adaptation. The course surveys Java-related research in the areas of
meta-programming and reflection, aspect-oriented software development, model-driven
computing, and adaptive middleware.

Key words: Java education, evolvable software, aspect-oriented software development,
model-integrated computing, adaptive middleware
__

1. Introduction

... program structure should be such as to anticipate its adaptations and modifications.
Our program should not only reflect (by structure) our understanding of it, but it should
also be clear from its structure what sort of adaptations can be catered for smoothly.[12]

A long-standing goal of software engineering is to construct software that is easily modified and

extended [2]. The desired result is to achieve modularization such that a change in a design decision is
isolated to one location of a program [42]. The proliferation of software in everyday life (e.g., embedded
systems in automobiles, mobile phones, and television sets) has increased the conformity and invisibility of
software [51]. As demands for such software increase, future requirements will necessitate new strategies
for improved modularization in order to support the requisite adaptations. Additionally, investigation into
pedagogical techniques for introducing these concepts into existing curricula is needed.

The ability to adapt software is typically partitioned among two stages: modifiability during
development, and adaptation during execution. The first type of evolution is concerned with design-time, or
compile-time, techniques that permit the modification of the structure and function of a software
representation in order to address changing stakeholder requirements. To support such evolution,
techniques such as aspect-oriented programming [26], and model-driven architecture [5], are but a few of
the ideas that have shown promise in assisting a developer in isolating points of variation and
configurability within software. The second type of adaptation occurs at run-time during the execution of a
system. This type of adaptation refers to a system’s ability to modify itself and to respond to changing
conditions in its external environment. To accommodate such changes, research in meta-programming and
reflection [38] has offered some recourse, especially in the application area of adaptive middleware [55].

E-mail address: gray -at- cis.uab.edu
URL: http://www.gray-area.org

This paper provides an overview of a special-topics software engineering course that adopts a Java-
based approach for teaching concepts of software adaptation. The course examines the principles of “meta”
and reflection as they support the concept of adaptation from several contexts. The general goals of the
course are:

• Provide an introduction to the history and literature of reflection and meta-programming. This

includes the introspective Java Reflection API, as well as research extensions to Java that support
more powerful intercessional forms of reflection.

• Motivate the area of Aspect-Oriented Software Development (AOSD) as a direct result of past
research into reflection. The majority of the semester is spent in this section of the course where
students gain experience in applying AOSD ideas using enhanced Java translators, such as
AspectJ [27].

• Introduce the issues surrounding meta-modeling and domain modeling within Model-Integrated
Computing (MIC) [49]. The Generic Modeling Environment (GME) [32] is used as a platform for
exploring model-based synthesis of Java applications.

• Expose students to applications of the above techniques for supporting adaptation of distributed
object computing [54]. In particular, various research efforts in the area of reflective middleware
are presented [55], in addition to modeling tools for generating middleware configurations [16].

The remaining sections of the paper provide a survey of the four focus areas of the course. The sections
follow the chronological sequence of topics introduced in the course. The final section of the paper offers
several concluding observations. Specific details of the course (e.g., course schedule and additional
references) can be found at http://www.cis.uab.edu/courses/cs622.

2. Meta-programming and Reflection from a Java Perspective

Reflection and meta-programming are powerful techniques that provide support for adaptive systems.
The general principles of reflective architectures form the underpinnings of most of the concepts introduced
in the course. From this foundational perspective, the seminal papers on reflection are introduced early in
the course in order to provide students with the proper vocabulary, as well as insight for understanding
subsequent topics. The “Smithsonian” notion of reflection initiates students to the concept of having an
internal representation of a program and the importance of causal connection between this representation
and the external behavior of the program [48]. The important work by Maes is then introduced to students
as an extension to the principles of reflection for object-oriented languages [38]. As additional background
literature, students are exposed to Kiczales’ work on meta-objects and CLOS [24]. A proper understanding
of these early influential papers equips students with the knowledge necessary for further study of Java-
based approaches supporting reflective adaptation.

2.1 The Java Reflection API

Reflection permits a program to inquire about its own state at run-time (called introspection), and, in
some cases, permits the modification of the semantics of the run-time system itself (called intercession). In
a Java-based course on software adaptation, it is essential to discuss the introspective nature of the standard
java.lang.reflect package. As the various features of the classes contained in this package are
introduced to students, it has been found helpful to provide short exercises during the lecture to assist
students in comprehending the capabilities provided. For example, the students may be asked to, “Create a
public static method named NumOfMethods that takes a single parameter of type Object. This method
should return an integer value that represents the number of methods available in the Object parameter.”
Listing 2.1 shows that this exercise has a simple solution, but the implementation highlights the fact that an
object’s meta-class provides access into many of the other introspective capabilities. From initial exercises
like this, students can be asked to implement increasingly difficult problems during the lecture period. The
goal of these exercises is not to force memorization of the reflection classes and methods, but rather to offer
opportunities that motivate the practice and use of standard Java reflection. This knowledge can be
reinforced through additional questions on quizzes and homework assignments.

 public static int NumOfMethods(Object s)
 {
 Class c = s.getClass();
 Method[] m = c.getMethods();
 return m.length;
 }

Listing 2.1: Implementation of a Simple Reflective In-Class Exercise

Initially, students may have difficulty grasping reflection’s raison d’etre. Thus, it is essential to form
these exercises around topics to which they can relate. As an example, the two previous offerings of this
special topics course have featured guest lectures from developers in the local community who present their
own real-world industrial examples that highlight the power of reflection as an aid toward improved
implementation and adaptation. As the Java reflection packages are explored during the lecture, the
students are instructed on why the core Java reflection capabilities offer only a weak form of introspective
reflection. This understanding will motivate the need for later discussions pertaining to compile-time meta-
object protocols (MOPs) in Java (see Section 2.4).

2.2 Dynamic Class Loading and Run-time Generation of Bytecode

The topic of Java class loading presents several opportunities to discuss the benefits of adaptation at
run-time. Liang and Bracha provide an excellent description of the capabilities of customized class loaders
by introducing topics such as dynamic server evolution and run-time manipulation of bytecode [34]. They
also mention the problems with type safety in earlier versions of the JDK and motivate the reason that a
type in the JVM is a combination of the class name and the associated loader. These key concepts help
students to understand the underpinnings of Java class loaders.

After the students are exposed to the idea of class loaders, a homework assignment can be given that
combines the concepts of Java reflection with class loaders in a generative programming style [10]. An
outline of a previous assignment is shown in Listing 2.2 (much has been removed to conserve space). The
generateCode method is not shown here, but the implementation generates a Java source file at run
time by printing code to a FileWriter object. After the source file is dynamically generated, it can be
compiled at run-time, loaded into memory, and then invoked via reflective calls. In addition, the students
can be asked to write an object browser that exposes the contents of an object in a tree-control using
reflection. A student solution to the object browser problem can be found at the course web site
(http://www.cis.uab.edu/courses/cs622/sample).

public static void main(String args [])
{
 Method fooMain;
 Class fooClass;
 Object newFooInst;

 // generate a .java file at run-time by writing to a FileWriter object
 generateCode("Foo.java");

 // compile the generated code
 Runtime.getRuntime().exec("javac Foo.java");

 // create and start a Foo instance
 fooClass = Class.forName("Foo");
 fooMain = fooClass.getMethod("main", null);
 newFooInst = fooClass.newInstance();
 fooMain.invoke(newFooInst, null);

 // add the Foo object to the object browser
 ObjBrowser.add(fooMain);
}

Listing 2.2: Dynamic Code Generation and Reflective Object Invocation

2.3 Load-Time Manipulation Tools

Although the dynamic creation and compilation of Java source code is an interesting idea, it is not
always practical to use such techniques, especially when performance penalties are considered. Invasive
software composition is a growing research area and is typified by instrumentation of software artifacts at
various binding times [1]. As examples of invasive composition techniques, several implementations of
bytecode instrumentation tools exist. Specifically, the course introduces the students to the JMangler [29]
and JavaAssist [7] class loader manipulation tools. Each of these tools support class file interception and
load-time adaptation. During the lectures in this part of the course, a JMangler implementation of a test
coverage solution (taken from [30]) is dissected in class. As a homework assignment, students are asked to
use JMangler to add basic hooks that capture information fed into a simple performance profiler.

2.4 A Compile-time MOP for Java

The need for open implementations and open languages [25], in conjunction with the weak form of
introspection offered by standard Java, has prompted researches to investigate extensions to Java in order to
support structural reflection and behavioral intercession. Such capabilities allow the addition of new
methods and fields to a class structure, as well as a facility for trapping method calls to provide adaptation
to behavior not defined in a “plain old Java object” (POJO). A representative example of this kind of Java
extension is OpenJava, which is a compile-time MOP [53]. Although JMangler and JavaAssist operate on
Java class files, OpenJava is purely a source to source translator.

OpenJava parses a Java source file and provides meta-objects for classes, methods, and fields. By
overriding the default behavior of the associated meta-object, structural and behavioral adaptations can be
made to the parsed code. After parsing and attaching meta-objects, OpenJava then invokes the translation
methods on each meta-object. The process of meta-object translation generates modified source that can
then be compiled by the traditional Java compiler to produce bytecode. By introducing OpenJava into the
course, students are exposed to a more powerful form of reflection in Java that also has the capability of
introducing language extensions.

As a homework exercise, students can be asked to add adaptations that write tracing information to the
screen upon each entry and exit of a method. An outline of the solution to this problem is shown in Listing
2.3, where an AddEntryExit meta-class is defined that inserts println statements at the beginning
and end of a method. For each class to which the AddEntryExit meta-class is attached, the
translateDefinition method will be called by OpenJava during meta-object transformation. After
OpenJava has performed its translation, all classes that instantiate AddEntryExit will have the tracing
behavior added to each method body.

public class AddEntryExit instantiates MetaClass extends OJClass {

 public void translateDefinition() throws MOPException {

 OJMethod[] methods = getDeclaredMethods();
 String methodSig;
 String printString = "java.lang.System.out.println(”;

 for (int i = 0; i < methods.length; ++i) {
 methodSig = methods[i].toString();
 Statement before = makeStatement(
 printString + \"" + methodSig + " entered\");");
 Statement after = makeStatement(
 printString + \"" + methodSig + + " exited\");");
 methods[i].getBody().insertElementAt(before, 0);
 methods[i].getBody().add(after);

 }
 }
}

Listing 2.3: An OpenJava Transformation Rule for Adding Method Entry/Exit Traces

3. Aspect-Oriented Software Development

To support software adaptation and evolution, new paradigms such as Aspect-Oriented Software
Development (AOSD) (http://aosd.net) have shown initial promise in assisting a developer in isolating
points of variation and configurability. It has been observed that most programming languages provide
modularization mechanisms that force other non-orthogonal concerns to be scattered and tangled across a
code base [52]. Aspects are a new language construct for cleanly separating concerns that, heretofore,
crosscut the modularization boundaries of an implementation [26]. In a fundamentally new way, aspects
permit a software developer to quantify, from a single location, the effect of a concern across a body of
code [14], thus improving overall modularization. A translator called a weaver is responsible for merging
the separated aspects with the base code. After completing the reflection portion of the course, students are
equipped to understand how AOSD mechanisms improve upon the capabilities provided by reflection
alone.

3.1 Motivating Examples

To motivate the benefits of AOSD, students must see several examples of poor modularity that exist in
real software. These examples should be presented to the students before any technical solutions are
proposed. An appeal can be made that these examples violate fundamental principles of software
engineering (e.g., cohesion and coupling) and that traditional languages lack supporting constructs for
coping with such problems. For instance, one of the earliest studies that documented the benefits of AOSD
was presented in [36]. In this study, an application composed of almost 50K lines of Java source code was
refactored using aspects. The results that were reported are substantial with a reduction in the amount of
exception handling code by a factor of 4. Further redundancy was removed from the code by aspectizing
common pre and post conditions that were spread across the code base. It was reported that 56% of the 375
post-conditions were redundant, and 1510 simple preconditions were reduced down to just 10 pre-
conditions using aspects. As another case study, the benefits of aspectizing four concerns within the
FreeBSD operating system can be introduced to students [9]. For a commercial example, four example
aspects from a client-server application are documented in [20].

3.2 AspectJ: Java-based Tool Support for AOSD

After the motivating examples are presented, the students should be able to understand the
foundational principles of aspect-orientation [39]. Fortunately, almost all of the major research efforts in
AOSD have produced tools that support the integration of the research ideas with Java. Perhaps the most
mature of the AOSD tools is AspectJ [27] (see http://www.eclipse.org/aspectj/ for download information).
In this course, students are given several weeks of lectures on AspectJ along with a plentiful selection of
exercises during each lecture. As an aid for preparing lectures on AspectJ, a large collection of
presentations are available at the original AspectJ site at Xerox PARC (please see
http://www.parc.com/research/csl/projects/aspectj/default.html).

The primary concepts of AspectJ should be introduced first, such as joint points, advice, and
introductions. A join point represents a specific location in the execution of a Java application. A pointcut
is a declarative specification that contains a collection of joinpoints. A pointcut typically defines the
various locations where a concern appears. The complimentary notion of advice prescribes the behavior
that is to be associated with a particular pointcut. As the lecture sequence progresses, students are
eventually exposed to all of the syntax and semantics of AspectJ.

The homework assignment for this part of the course should emphasize the power of AOSD
approaches over the techniques that were introduced in the previous section on reflection. To further
emphasize the benefits of AOSD, students can be asked to perform adaptations on medium-sized open-
source projects. JHotDraw is an excellent choice for such an assignment. The JHotDraw project is a Java
framework for constructing graphical editing tools (see http://jhotdraw.sourceforge.net/). As an easy first
exercise, students can be asked to consider the tracing problem that was previously implemented in
OpenJava in Listing 2.3. Each student can also be asked to compare the two different solutions, and how
each solution is integrated into JHotDraw to trace all method entry and exits.

As shown in Listing 3.1, the AspectJ solution is very concise. In fact, it is quite elegant when
compared to the corresponding solution in Listing 2.3. The single pointcut declaratively specifies all calls

to every method (note that the asterisks represent wild card designations within the signature for the return
type, class name, and method name). The before advice specifies that the name of the method signature
(designated by thisJoinPoint) is to be printed before the method is called. The after advice is similarly
represented, but the affect is rendered after the method call returns. As comparisons are made between the
OpenJava and AspectJ solutions, students report that the AspectJ implementation is much more
comprehensible. This observation was also found among professional software developers [44].
Additionally, the AspectJ solution requires no manual changes to the base code. For the OpenJava solution,
it is necessary to tag each class declaration with “instantiates AddEntryExit” to associate the
meta-class that performs the adaptation. For a system with hundreds of classes, the OpenJava solution is
rendered impractical, but for the AspectJ solution the weaver will include the tracing behavior without any
manual addition to base code. As a more lengthy homework exercise, students can be asked to search
JHotDraw for code that could be aspectized and provide the required separation into an aspect. They may
also be asked to consider the ramifications that aspects have on refactored code [21].

aspect AddEntryExit {

 pointcut allMethodCalls(): call(* *.*(..));

 before(): allMethodCalls() {
 System.out.println(thisJoinPoint + "entered");
 }

 after(): allMethodCalls() {
 System.out.println(thisJoinPoint + "exited");
 }

}

Listing 3.1: AspectJ Code to Add Method Entry/Exit Logs

3.3 Other Approaches to AOSD

Unfortunately, this section only offers a shallow introduction to the important AOSD topics that are
covered in the actual course. Apart from the multiple lectures on AspectJ, a single lecture is devoted to
each of the other main approaches to AOSD, such as Hyper/J (now a part of the Concern Manipulation
Environment) [52], [41], DemeterJ [35], and ComposeJ [4]. Each lecture considers the examples posed in
the original papers. For comparative purposes, the idea of a global tracing concern for method entry/exit is
implemented in each approach. This gives a single frame of reference for understanding commonalities and
differences among the syntax and semantics of each technique. The load-time adaptation tools presented in
Section 2.3 are actually considered techniques for supporting dynamic weaving. During the AOSD section
of the course, the concepts of dynamic weaving are revisited, and another technique is described from [43].

Several researchers have also identified the advantages of language-independent aspect weaving,
which brings the benefits of AOSD to languages other than Java. In [31], a language independent approach
for C# is presented. The technique weaves concerns into the Common Language Infrastructure (CLI) of
.Net. Another language-independent approach, which is also platform independent, is described in [20].
This approach uses a program transformation system, called the Design Maintenance System (DMS) [3], to
build an aspect weaver for Object Pascal.

3.4 AOSD Across the Lifecycle

Proper separation of concerns is beneficial at all levels of the software life-cycle [17]. Although the
idea is not specific to Java, students are asked to think about the benefits that AOSD would bring to
approaches of analysis and design. To motivate example research in this area, the work of Clarke and
Walker is introduced to the students as a technique for improving modularization of properties in UML
class diagrams [8]. Correspondingly, constraints in models of embedded systems can be separated as a type
of higher-level aspects [17]. The examination of AOSD at the design and modeling levels provides a great
transition into the third section of the course, which is focused on meta-modeling tools and program
synthesis from model interpreters.

4. Model-Driven Synthesis of Java Applications

From a modeling perspective, expressive power in software specification is often gained from using
notations and abstractions that are aligned with the problem domain. In domain-specific modeling [19], a
design engineer describes a system by constructing a visual model using the terminology and concepts from
a specific domain. Analysis can be performed on the model, or the model can be synthesized into an
implementation [40]. Model-Integrated Computing (MIC) has been refined over many years to assist in the
creation and synthesis of complex computer-based systems [23], [49]. A key application area for MIC is
those systems that have a tight integration between the computational structure of a system and its physical
configuration (e.g., embedded systems) [51]. In such systems, MIC has been shown to be a powerful tool
for providing adaptability in changing environments [50]. The Generic Modeling Environment (GME) [32]
is a meta-configurable modeling tool for realizing the principles of MIC. The GME provides meta-
modeling capabilities that can be configured and adapted from meta-level specifications (representing the
modeling paradigm) that describe the domain.

In this section of the course, students apply the concepts of reflection and meta-ideas to higher-levels
of abstraction, as represented my meta-modeling tools. The students learn to design the meta-model for a
domain using the GME. In the GME, the meta-model is specified using UML class diagrams and OCL
constraints. The OCL constraints are actually executed within the GME modeling engine to ensure the
domain rules are consistently applied. In addition to the introduction of meta-modeling principles, students
are instructed in the techniques of generative programming [10] and asked to develop a Java code generator
from the domain models. To illustrate the concepts that are taught, a student solution to an actual
homework problem is presented here (the complete example is available from the course web site).

4.1 An Exercise in Meta-modeling

Figure 4.1: Simple Meta-Model for a Finite-State Machine

Figure 4.1 illustrates a screen-shot of the GME showing a simple meta-model for a finite-state machine
(FSM) that was submitted by a student in response to a homework problem. In this meta-model, a
StateDiagram is specified as containing GeneralizedStates and Transitions. The
GeneralizedState entity is a generalization of the three types of states that may appear in a FSM (i.e.,
start states, end states, and intermediate states). Each state has a text attribute that represents the string that
is to be printed to the screen upon entry of the state. Transitions are modeled as connections between
GeneralizedStates. Each transition has two attributes representing the conditional expression
causing the transition to fire, and the text string that is to be displayed when a transition is enabled. As can
be seen from the bottom-right of the figure, visualization attributes can also be associated with each
modeling entity (e.g., the StartState icon will be rendered from the “start.bmp” graphic file).

In addition to the class diagram from Figure 4.1, a meta-model also contains constrains that are
enforced whenever a domain model is created as an instance of the meta-model. Constraints in the GME
are specified in a different context from that shown above, but the following is an example constraint
specification:

parts("StartState")->forAll(x| x.connectedFCOs("dst")->size()=1) and
parts("State")->forAll(x| x.connectedFCOs("dst")->

forAll(y | y.kindName <> "StartState"))

The above constraint captures the idea that “There can only be one transition leaving the start state and
no transitions coming into the start state.” The first line of the above constraint specifies that all
Transitions coming out of a StartState must only have one destination. The second and third lines
of the constraint state that for all of the transitions coming out of a State, none of them can be connected
to a StartState. The constraint is executed each time a new transition is added to a domain model.

4.2 Creating Domain Models as Instances of the Meta-model

Figure 4.2: An Instance of the Meta-Model of Figure 4.1 that Represents an ATM

After creating the meta-model for the FSM, students can then asked to create a domain model that is
based upon the FSM meta-model. As an example, Figure 4.2 shows a domain model for an Automated
Teller Machine (ATM). In the bottom-right of this screenshot, the attributes of the transition connecting the
CardInserted and ValidUser states are shown. The fire expression here reveals that this simple
example has a hardcoded identification code of “777.” That is, the machine enters into the ValidUser
state only when the user enters the correct identification code. As the transition is fired, the associated text
string that is to be displayed is “Valid User.”

4.3 Model Interpreters that Generate Java Applications

The final part of the student meta-modeling project is to create a model interpreter that generates Java
code from the FSM models. In the GME, a model interpreter is a type of plug-in that is associated with a
particular meta-model and can be invoked simply by pressing a single button (the single button is
represented by the italicized “C” on the “Components” toolbar in Figure 4.2). To write an interpreter, the
GME provides an API for accessing the internal structure of the model. Interpreters can be compiled as
Windows DLLs and registered to the GME. From this API, an interpreter walks the tree representation of
the model and generates code at each node. Thus, for the FSM meta-model, Java code is generated that
simulates the execution of a FSM. The FSM interpreter assumes that the user will enter input from the
keyboard in response to the text string that is displayed from a transition firing. From this input, the
interpreter generates code that determines which transition is to be fired next. Note that the code generator
assumes that transition firing expressions consistently reference a variable named “input” (see the fire
expression in Figure 4.2).

Listing 4.1 shows Java code that was generated from a student-written FSM interpreter. This particular
piece of generated code represents the CardInserted state. The first half of the method displays the
Text string of the CardInserted state (e.g., “Please Enter Pin”) and receives the user input. The last half
of the method determines which transition out of the state is to be fired. Other code is generated similarly
for each state and transition that is specified in the model.

static void CardInserted()
{
 int input = 0;
 try
 {
 BufferedReader reader;
 String inputStr;
 reader = new BufferedReader(new InputStreamReader(System.in));
 System.out.println("Please Enter Pin");
 inputStr = reader.readLine();
 input = new Integer(inputStr).intValue();
 }
 catch (Exception e) { }
 if(input != 777)
 {
 System.out.println("Invalid Pin");
 CardInserted();
 }
 else if(input == 777)
 {
 System.out.println("Valid User");
 ValidUser();
 }
}

Listing 4.1: Sample Output from Student-written Java Code Generator

Model-based approaches can improve the ability to adapt to changing requirements [51]. Small

modifications to a model often result in multiple changes to the lower-level representation. Students learn
the benefits of model-integrated techniques by understanding that meta-ideas and reflection can also be

applied to higher-levels of abstraction. It is also possible to combine concepts from AOSD and modeling as
a way to separate modeling properties that are crosscutting [17].

5. Adaptive, Reflective, and Aspect-Oriented Middleware

The final topic area that is covered in the course sequence represents a practical examination of
adaptive techniques applied to distributed computing. Middleware researchers are increasingly looking
toward reflective and AOSD solutions to better modularize middleware implementations [56], [57]. For
instance, a major goal of Zen, an open source CORBA ORB implemented in Real-Time Java, is “to
eliminate common sources of overhead and non-determinism in middleware implementations, as well as to
be space-efficient to meet the needs of embedded applications” [28]. Perhaps the best evidence of the
impact that AOSD approaches are having on middleware research can be found in the full embrace of such
techniques by one of the most popular open-source Java application servers – JBoss [54].

The remainder of this section introduces a case study that is presented to the students, as well as issues
surrounding model-driven configuration of middleware.

5.1 Quality of Service Adaptation in Distributed Objects

The ability to adapt is an essential trait for Distributed Object Computing (DOC) middleware
solutions. In real-time embedded systems, the presence of Quality of Service (QoS) requirements demands
that a system be able to adjust in a timely manner to changes imposed from the external environment [46].
Students should understand that to provide adaptability within distributed real-time systems, there are three
things that must be present: 1) the ability to express QoS requirements in some form, 2) a mechanism to
monitor important conditions that are associated with the environment, and 3) a causal relation between the
monitoring of the environment and the specification of the QoS requirements in such a way that there is a
noticeable change in the behavior of the system as it adapts [22].

As a case-study for adaptive middleware, students learn about a prototype application for an
Unmanned Aerial Vehicle (UAV). A UAV is an aircraft that performs surveillance over dangerous terrain
and hostile territories. The UAV streams video back to a central distributor that forwards the video on to
several different displays [37]. In the presence of changing conditions in the environment, the fidelity of the
video stream must be maintained according to specified QoS parameters. The video must not be stale, or be
affected by jittering, to the point that the operator cannot make an informed decision. Within the UAV
implementation, a contract assists the system developer in specifying QoS requirements that are expected
by a client and provided by a supplier. Each contract describes operating regions and actions that are to be
taken when QoS measurements change. A domain-specific language exists to assist in the specification of
contracts; the name of this DSL is the Contract Description Language (CDL) [13]. A generator translates
the CDL into code that is integrated within the runtime kernel of the application. As students consider the
relationship of the CDL contracts to the dynamic modification of observable behavior, they can relate back
to the earliest parts of the course regarding the essence of causal connection.

5.2 Model-Driven Middleware Configuration

The Object Management Group (OMG) has sponsored an initiative that is focused on modeling the
differentiating characteristics of distributed applications. The Model-Driven Architecture (MDA) provides
the capability to separate the essence of an application (specified in platform-independent models) from
specific bindings to middleware solutions (specified in platform-specific models) [5], [6]. The final topic of
the course is an instance of MDA that focuses on the generation of middleware components from MIC
models [16]. The models of a real-time embedded system are presented to the students along with the
mechanisms for adapting software at multiple levels of abstraction. Boeing’s BoldStroke is a product-line
architecture for mission computing avionics software that is implemented on top of real-time middleware
[47]. The concept of two-level weaving is introduced to the students, such that properties weaved into
domain models trigger the generation of AspectJ code that configures a real-time event channel within
BoldStroke [18].

6. Summary of Course Results

Within a year, the course described in this paper has become one of the most popular offerings in the
computer science graduate curriculum at UAB. Toward the end of the AOSD section of the course, many
students typically begin to formulate their own research questions to be investigated. As a result of the first
year of the course, six Ph.D. students and two Masters students have chosen to explore dissertation and
thesis topics in this area. As a transition to their own research, several students published a paper that
compared the ideas presented in the course (e.g., a comparative survey found that experienced Java
developers prefer AspectJ over OpenJava in terms of comprehensibility [44]). This section gives an
overview of the research that has resulted from this course.

6.1 Two-level Aspect Weaving

In system modeling, constraints may be specified throughout the nodes of a model to stipulate design
criteria and limit design alternatives. A lack of support for separation of concerns with respect to
constraints can pose a difficulty when creating domain-specific models [17]. The scattering of constraints
throughout various levels of a model makes it hard to maintain and reason about their effects and purpose.
In conventional system modeling tools, any change to the intention of a global property requires visiting
and modifying each constraint, for every context, representing the property. This requires the modeler to
“drill-down” (i.e., traverse the hierarchy by recursively opening, with the mouse, each sub-model),
manually, to many locations of the model. It is common for system models to contain thousands of
different modeling elements with hierarchies that are ten or more levels deep.

To provide better support for exploring design alternatives in the presence of crosscutting model
properties, an aspect-oriented approach to modeling has been investigated. The C-SAW weaver framework
serves as a generalized transformation engine for manipulating models. C-SAW is a plug-in for the GME.
When C-SAW is invoked from the GME toolbar, the user is asked to provide a set of files that specify
modeling aspects that describe the location and behavior of the transformation to be performed on the
model. The result of model weaving is a new model that contains adaptations that are spread across the
model hierarchy. These adaptations can be undone and new concerns can be weaved from simply selecting
different model aspects. The concept of a model weaver can be used in many ways beyond the application
of constraints. For example, a weaver can be used to distribute any system property endemic to a specific
domain across the hierarchy of a model. A weaver can also be used to instrument structural changes within
the model according to the dictates of some higher-level requirement that represents a crosscutting concern.

The concept of aspect model weaving, when combined with the idea of model-driven program
transformation, provides a powerful technology for rapidly transforming legacy systems from high-level
properties described in models. The goal is to have small changes at the modeling level trigger very large
transformations at the source level. This can be achieved by applying aspect-oriented techniques and
program transformation concepts. At one level, model transformations allow alternative design
configurations to be explored using an aspect weaver targeted for modeling tools. From generative
programming techniques, the models can be used to generate program transformation rules to adapt legacy
source on a wide-scale. The initial description of C-SAW is given in [18]. The C-SAW website
(http://www.gray-area.org/Research/C-SAW/) contains the plug-in for GME, as well as various video
demos illustrating the approach.

6.2 Language Independent Aspect Weavers

Much of the research in AOSD has been concentrated on Java-based tools, as described in Section 3. Yet,
the vast majority of legacy systems are written in languages other than Java. To apply AOSD principles to
legacy systems, initial work has been performed to harness the power of a commercial program
transformation engine (PTE) in order to construct aspect weavers for other languages. Commercial PTEs
typically provide mature lexers and parsers for several dozen programming languages. Additionaly, a PTE
offers the ability to transform a parse tree through rewrite rules. Thus, the core features that are needed by
an aspect weaver exist in a PTE. The preliminary work on this research idea can be found in [20]. A web
site with video demonstrations of the aspect weavers that were constructed from this approach can be found
at http://www.gray-area.org/Research/GenAWeave.

6.3 Broader Impacts

In addition to graduate research, two Honors undergraduate students at UAB conducted research into
model-based synthesis of Java software to control multi-agent robots [11]. Using the GME, a meta-model
represents a hostile environment containing land mines, rescue targets, and robots. The model interpreter
for this project generates Java code that will control multiple LEGO robots in a rescue mission. This work
is sponsored by a fellowship from the Computing Research Association (CRA) special Collaborative
Research Experience for Women (CREW). The project deliverables are available at the UAB CREW web
site (http://www.gray-area.org/Research/CREW).

The introduction of this course also prompted the formation of a new conference mini-track related to
the course topics (please see http://www.cis.uab.edu/info/HICSS-AESS/), which is now in its second year.

7. Conclusion

Software developers continue to face serious challenges in the presence of changing stakeholder
requirements, which require facilities for effectively evolving software artifacts. Moreover, the majority of
the total global computational cycles today are spent on controlling real-time and embedded systems,
including cell phones, automobile engines and brakes, chemical factories, and avionics applications. In fact,
it has been reported that over 90 percent of all of the world’s microprocessors are used in systems that are
not “traditional” computers [45]. Physical mechanical controls are being replaced every day by software
controllers [33] that must adapt to varying environmental conditions. The reliance on these new devices has
increased the quality of our lives in many ways, yet also has created a critical dependence on technology.
Therefore, additions to computer science curricula are needed so that future software developers are
exposed to techniques that support software evolution. This paper presented an overview of a course that
embraces the concept of software adaptation by using Java-based technologies as a platform for study.

A single foundational language from which to explore new concepts can be beneficial toward student
comprehension and understandability. By fixing Java as the core throughout the course, students are not
forced to relearn other languages for each new concept that is presented. Correspondingly, much of the
interesting research in the area of adaptive software is being conducted within the context of Java. These
factors made the selection of Java an obvious and powerful choice for this course. Other languages, such as
C#, do not provide the breadth across the spectrum of topics considered in this course.

In the initial offerings of this course, students were assigned research papers that were representative of
the topics being studied. These papers typically came from software engineering journals and conference
proceedings. In particular, the October 2001 issue of the Communications of the ACM featured a special
issue on AOSD. Similarly, a special issue on adaptive middleware was published in the June 2002 issue of
Communications of the ACM. In the future, a book that surveys AOSD will replace many of the papers
found in Section 3 [15]. A suggested schedule for introducing the four research areas can be found at
http://www.cis.uab.edu/courses/cs622/Fall2003/schedule.htm.

References

[1] Uwe Aßmann, Invasive Software Composition, Springer-Verlag, 2003.
[2] Don Batory, Jacob Neal Sarvela, and Axel Rauschmeyer, “Scaling Step-Wise Refinement,”

International Conference on Software Engineering, Portland, Oregon, May 2003, pp. 187-197.
[3] Ira Baxter, Christopher Pidgeon, and Michael Mehlich, “DMS: Program Transformation for Practical

Scalable Software Evolution,” International Conference on Software Engineering (ICSE), Edinburgh,
Scotland, May 2004.

[4] Lodewijk Bergmans and Mehmet Aksit, “Composing Crosscutting Concerns using Composition
Filters,” Communications of the ACM, October 2001, pp. 51-57.

[5] Jean Bézivin, “From Object Composition to Model Transformation with the MDA,” Technology of
Object-Oriented Languages and Systems (TOOLS), Santa Barbara, California, August 2001, pp. 350-
354.

[6] Carol Burt, Barrett Bryant, Rajeev Raje, Andrew Olson, and Mikhail Auguston, “Quality of Service
Issues Related to Transforming Platform Independent Models to Platform Specific Models,” The 6th

International Enterprise Distributed Object Computing Conference (EDOC), Switzerland, September
2002, pp. 212-223.

[7] Shigeru Chiba, “Load-time Structural Reflection in Java,” European Conference on Object-Oriented
Programming (ECOOP), LNCS 1850, Springer-Verlag, Cannes, France, June 2000, pp. 313-336.

[8] Siobhán Clarke and Robert J. Walker, “Composition Patterns: An Approach to Designing Reusable
Aspects,” International Conference on Software Engineering (ICSE), Toronto, Ontario, Canada, May
2001, pp. 5-14.

[9] Yvonne Coady and Gregor Kiczales, “Back to the Future: A Retroactive Study of Aspect Evolution in
Operating System Code,” International Conference on Aspect-Oriented Software Development,
Boston, Massachusetts, March 2003, pp. 50-59.

[10] Krzysztof Czarnecki, Ulrich Eisenecker, Generative Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

[11] Rachael Dennison, Bina Shah, and Jeff Gray, “A Model-Driven Approach for Generating Embedded
Robot Navigation Control Software,” 42nd Annual ACM SE Conference, Huntsville, Alabama, April 2-
3, 2004.

[12] E. W. Dijkstra, “Notes on Structured Programming: On Program Families,” Structured Programming,
Academic Press, London, 1972, pp. 39-41.

[13] Gary Duzan, Joesph Loyall, Richard Schantz, Richard Shapiro, and John Zinky, “Building Adaptive
Distributed Applications with Middleware and Aspects,” International Conference on Aspect-Oriented
Software Development (AOSD), Lancaster, UK, March 22-27, 2004, pp. 66-73.

[14] Robert Filman and Dan Friedman, “Aspect-Oriented Programming is Quantification and
Obliviousness,” OOPSLA Workshop on Advanced Separation of Concerns, Minneapolis, Minnesota,
October 2000.

[15] Robert Filman, Tzilla Elrad, Mehmet Aksit, and Siobhán Clarke, editors, Aspect-Oriented Software
Development, Addison-Wesley, 2004.

[16] Aniruddha Gokhale, Douglas Schmidt, Balachandran Natarajan, Jeff Gray, and Nanbor Wang,
“Model-Driven Middleware,” in Middleware for Communications, (Qusay Mahmoud, editor), John
Wiley and Sons, 2004.

[17] Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck, “Handling Crosscutting Constraints in
Domain-Specific Modeling,” Communications of the ACM, October 2001, pp. 87-93.

[18] Jeff Gray, Janos Sztipanovits, Douglas C. Schmidt, Ted Bapty, Sandeep Neema, and Aniruddha
Gokhale, “Two-level Aspect Weaving to Support Evolution of Model-Driven Synthesis,” in Aspect-
Oriented Software Development, (Robert Filman, Tzilla Elrad, Mehmet Aksit, and Siobhán Clarke,
eds.), Addison-Wesley, 2004.

[19] Jeff Gray, Juha-Pekka Tolvanen, and Matti Rossi, guest editors, “Special Issue: Domain-Specific
Modeling with Visual Languages,” Journal of Visual Languages and Computing, March 2004.

[20] Jeff Gray and Suman Roychoudhury, “A Technique for Constructing Aspect Weavers Using a
Program Transformation System,” International Conference on Aspect-Oriented Software
Development (AOSD), Lancaster, UK, March 22-27, 2004, pp. 36-45.

[21] Stefan Hanenberg, Christian Oberschulte, and Rainer Unland, “Refactoring of Aspect-Oriented
Software,” Net.ObjectDays 2003, Erfurt, Germany, September 22-25, 2003.

[22] David Karr, Craig Rodrigues, Joseph Loyall, Richard Schantz, Yamuna Krishnamurthy, Irfan Pyarali,
and Douglas Schmidt, “Application of the QuO Quality-of-Service Framework to a Distributed Video
Application,” International Symposium on Distributed Objects and Applications, Rome, Italy,
September 2001, pp. 299-309.

[23] Gábor Karsai, “A Configurable Visual Programming Environment: A Tool for Domain-Specific
Programming,” IEEE Computer, March 1995, pp. 36-44.

[24] Gregor Kiczales, J. Michael Ashley, Luis Rodriguez, Amin Vahdat, and Daniel G. Bobrow,
“Metaobject Protocols: Why We Want Them and What Else Can They Do?” A. Paepcke, editor,
Object-Oriented Programming: The CLOS Perspective, 1993, pp. 101-118.

[25] Gregor Kiczales, “Beyond the Black Box: Open Implementation,” IEEE Software, January 1996, pp.
8-11.

[26] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin, “Aspect-Oriented Programming,” European Conference on Object-Oriented
Programming (ECOOP), LNCS 1241, Springer-Verlag, Jyväskylä, Finland, June 1997, pp. 220-242.

[27] Gregor Kiczales, Eric Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William Griswold,
“Getting Started with AspectJ,” Communications of the ACM, October 2001, pp. 59-65.

[28] Raymond Klefstad, Sumita Rao, and Douglas C. Schmidt, “Design and Performance of a Dynamically
Configurable, Messaging Protocols Framework for Real-Time CORBA,” 36th Hawaii International
Conference on System Sciences, Big Island, Hawaii, January 2003.

[29] Günter Kniesel, Pascal Costanza, and Michael Austermann, “JMangler - A Framework for Load-Time
Transformation of Java Class Files,” IEEE Workshop on Source Code Analysis and Manipulation
(SCAM), November 2001.

[30] Günter Kniesel, Pascal Costanza, and Michael Austermann, “JMangler - A Powerful Back-End for
Aspect-Oriented Programming,” in Aspect-Oriented Software Development, (Robert Filman, Tzilla
Elrad, Mehmet Aksit, and Siobhán Clarke, eds.), Addison-Wesley, 2004.

[31] Donal Lafferty and Vinny Cahill, “Language-Independent Aspect-Oriented Programming,” Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), Anaheim, California,
October 2003, pp. 1-12.

[32] Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Peter Volgyesi, Greg Nordstrom, Jonathan Sprinkle, and
Gábor Karsai, “Composing Domain-Specific Design Environments,” IEEE Computer, November
2001, pp. 44-51.

[33] Edward Lee, “What’s Ahead for Embedded Software?” IEEE Computer, September 2000, pp. 18-26.
[34] Sheng Liang and Gilad Bracha, “Dynamic Class Loading in the Java Virtual Machine,” Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA), Vancouver, B.C., Canada,
October 1998, pp. 36-44.

[35] Karl Lieberherr, Doug Orleans, and Johan Ovlinger, “Aspect-Oriented Programming with Adaptive
Methods,” Communications of the ACM, October 2001, pp. 39-41.

[36] Martin Lippert and Cristina V. Lopes, “A Study on Exception Detection and Handling Using Aspect-
Oriented Programming,” International Conference on Software Engineering (ICSE), Limmerick,
Ireland, June 2000, pp. 418-427.

[37] Joseph Loyall, Rick Schantz, Michael Atighetchi, and Partha Pal, “Packaging Quality of Service
Control Behaviors for Reuse,” 5th IEEE International Symposium on Object-Oriented Real-time
Distributed Computing (ISORC), Washington, DC, April 29 - May 1, 2002, pp. 375-385.

[38] Pattie Maes, “Concepts and Experiments in Computational Reflection,” Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Orlando, Florida, December 1987,
pp. 147-155.

[39] Hidehiko Masuhara and Gregor Kiczales, “Modeling Crosscutting in Aspect-Oriented Mechanisms,”
European Conference on Object-Oriented Programming (ECOOP), Darmstadt, Germany, July 2003,
pp. 2-28.

[40] Greg Nordstrom, Janos Sztipanovits, Gábor Karsai, and Ákos Lédeczi, “Metamodeling - Rapid Design
and Evolution of Domain-Specific Modeling Environments,” International Conference on Engineering
of Computer-Based Systems (ECBS), Nashville, Tennessee, April 1999, pp. 68-74.

[41] Harold Ossher and Peri Tarr, “Using Multidimensional Separation of Concerns to (Re)Shape Evolving
Software,” Communications of the ACM, October 2001, pp. 43-50.

[42] David Parnas, “On the Criteria To Be Used in Decomposing Systems into Modules,” Communications
of the ACM, December 1972, pp. 1053-1058.

[43] Andrei Popovici, Gustavo Alonso, and Thomas Gross, “Just-in-time Aspects: Efficient Dynamic
Weaving for Java,” International Conference on Aspect-Oriented Software Development, Boston,
Massachusetts, March 2003, pp. 100-109.

[44] Suman Roychoudhury, Jeff Gray, Hui Wu, Jing Zhang, and Yuehua Lin, “A Comparative Analysis of
Meta-programming and Aspect-Orientation,” 41st Annual ACM SE Conference, Savannah, Georgia,
March 7-8, 2003, pp. 196-201.

[45] Brian Santo, “Embedded Battle Royale,” IEEE Spectrum, December 2001, pp. 36-42.
[46] Douglas Schmidt, Rick Schantz, Michael Masters, Joseph Cross, David Sharp, and Lou DiPalma,

“Toward Adaptive and Reflective Middleware for Network-Centric Combat Systems,” Crosstalk: The
Journal of Defense Software Engineering, November 2001, pp. 10-16.

[47] David Sharp, “Reducing Avionics Software Cost Through Component Based Product-Line
Development,” Software Technology Conference, Salt Lake City, Utah, April 1998.

[48] Brian Cantwell Smith, “Reflection and Semantics in Lisp,” Annual Symposium on Principles of
Programming Languages, Salt Lake City, Utah, 1984, pp. 23-35.

[49] Janos Sztipanovits and Gábor Karsai, “Model-Integrated Computing,” IEEE Computer, April 1997, pp.
10-12.

[50] Janos Sztipanovits, Gábor Karsai, and Ted Bapty, “Self-Adaptive Software for Signal Processing,”
Comunications of the ACM, May 1998, pp. 66-73.

[51] Janos Sztipanovits, “Generative Programming for Embedded Systems,” Keynote Address: Generative
Programming and Component Engineering (GPCE), Springer-Verlag LNCS 2487, Pittsburgh,
Pennsylvania, October 2002, pp. 32-49.

[52] Peri Tarr, Harold Ossher, William Harrison, and Stanley Sutton, “N Degrees of Separation: Multi-
Dimensional Separation of Concerns,” International Conference on Software Engineering (ICSE), Los
Angeles, California, May 1999, pp. 107-119.

[53] Tatsubori, M., S. Chiba, M.-O. Killijian, and K. Itano, “OpenJava: A Class-based Macro System for
Java,” in Reflection and Software Engineering (W. Cazzola, R. J. Stroud, and F. Tisato, eds.), LNCS
1826, Springer Verlag, 2000, pp. 117-133.

[54] Eli Tilevich, Stephan Urbanski, Yannis Smaragdakis, and Marc Fleury, “Aspectizing Server-Side
Distribution,” IEEE International Conference on Automated Software Engineering, Montreal, Canada,
October 2003.

[55] Nanbor Wang, Douglas C. Schmidt, Ossama Othman, and Kirthika Parameswaran, “Evaluating Meta-
Programming Mechanisms for ORB Middleware,” IEEE Communication Magazine, special issue on
Evolving Communications Software: Techniques and Technologies (Bill Opdyke and Algirdas Pakstas,
eds.), October 2001, pp. 102-113.

[56] Eric Wohlstadter, Stoney Jackson, Premkumar T. Devanbu, “DADO: Enhancing Middleware to
Support Crosscutting Features in Distributed, Heterogeneous Systems,” International Conference on
Software Engineering, Portland, Oregon, pp. 174-186.

[57] Charles Zhang and Hans-Arno Jacobsen, “Quantifying Aspects in Middleware Platforms,”
Proceedings of the International Conference on Aspect-Oriented Software Development, Boston,
Massachusetts, March 2003, pp. 130-139.

