
Representation, Analysis, and Refactoring
Techniques to Support Code Clone
Maintenance

This research is supported by
NSF grant CPA-0702764

Software Composition and Modeling LabUniversity of Alabama at Birmingham

Dissertation Research Defense

Robert Tairas
tairasr@cis.uab.edu

http://www.cis.uab.edu/tairasr

June 15, 2010

Committee:
Dr. Barrett Bryant (Chair)
Dr. Jeff Gray
Dr. Nicholas Kraft
Dr. Marjan Mernik
Dr. Brian Toone
Dr. Chengcui Zhang

Overview of Presentation
2

Introduction

Code
Clones

Clone Research

Motivation

Process
Disconnect

Size of
Clone Data

Clone View
Level

Scattered
Clones

Approach
Evaluation & Case Studies

Localized
Representation

Clone Group
Relationships CeDAR

CoCloRep Sub-clone
Refactoring

Representation RefactoringAnalysis

Clone Visualizer

Research Objectives

Unify Process
Evaluate Clone

Properties
Clone Group

Representations

Cloning in Software

 Code Clones:
 A section of code that is duplicated in multiple locations in

a program

 Different granularity levels:
 Statements, Block, Method,

Class, Program

 Clone Group:
 Clones of the same duplication

3

Source Code

Cloned Code

int main() {
int x = 1;
int y = x + 5;
return y;

}

int main() {
int x = 1;
int y = x + 5;
return y;

}

Types of Clones
4

Exact match
(Type I)

Original code

int func2() {
int p = 1;
int q = p + 5;
return q;

}

Exact match with differing
(parameterized) identifier names

(Type II)

int main() {
int x = 1;
int y = x + 5;
x++;
return y;

}

Near exact match
(Type III)

Bellon et al., 2007

Reason for the Existence of Clones

 A section of code is copied and
pasted into another part of the
same program
 Code performs some functionality

correctly and copy-and-paste is
relatively easy

 Simion† (Similar code fragments)
 Behaviorally similar
 Origins not from a common code

fragment

5

†Juergens et al., 2010

Clones in Software Maintenance

 Clone maintenance:
 Fix an error, enhance the functionality, or to improve the

structure and/or performance
 Software maintenance consumes up to 90% of software

development effort†

 Clone comprehension:
 Knowledge of their existence, where the duplicates are

located, and what kind of code is being duplicated
 Program comprehension consumes at least 50% of

maintenance cost‡

6

†Erlikh, 2000; ‡Standish, 1984

Clone Detection Techniques and Timeline

 String: Baker ‘92, Johnson ‘93, Davey ‘95, Ducasse ‘99
 Token: Kamiya ‘02, Li ’04
 Tree: Baxter ‘98, Evans ‘05, Jiang ’07, Kraft ‘08
 Program Dependence Graph: Krinke ’01, Gabel ‘08
 Assembler: Davis, ‘10
 Metrics: Mayrand ‘96, Kontogiannis ‘97

7

1992 2010

1993
Johnson

1992
B ake r

1996
M ayrand

1997
K on tog iann is

1998
B ax te r

1999
D ucasse

2002
K am iya

2007
J iang

1995
D avey

2008
G abe l

2008
K ra ft

2001
K rinke

2010
D av is

2004
L i

2005
E vans

Clone Research
8

Detection

Maintenance

In-Place
Duplication

Removal

Analysis

Evolution
Properties

Bug
Detection

Structural
/ Semantic Refactoring

Representation

Textual Visual Intermediate

Overview of Presentation
9

Introduction

Motivation

Process
Disconnect

Size of
Clone Data

Clone View
Level

Scattered
Clones

Representation Challenge: Evaluating Clone Groups

 Current representations and visualizations generally
provide a system-level view

 Clones can be scattered in multiple source files

10

Scatter Plot† Duplication Web¤Clone Cohesion & Coupling‡

Same file Same directory 2nd Cousin 3rd Cousin and more Total

912 135 840 641 2528

Clone pair distribution in Apache§

†CCFInder, 2010; ‡Jiang and Hassan, 2007; ¤Rieger et al., 2004; §Kapser and Godfrey, 2005

Example Detection Results (Textual)
11

76397-C:\...\CMPFieldMetaData.java:134-145,

76296-C:\...\CMPFieldMetaData.java:117-129

433729-C:\...\UsersRolesLoginModuleTest.java:64-68,

420696-C:\...\LoginModulesTest.java:312-316

164262-C:\...\ServerDataCollector.java:230-265,

231230-C:\...\Scheduler.java:552-587

248103-C:\...\EJBVerifier11.java:448-480,

249898-C:\...\EJBVerifier11.java:1073-1109,

250532-C:\...\EJBVerifier11.java:1297-1337

...

Simian Output

Found 6 duplicate lines in the following files:

Between lines 201 and 207 in /.../WritableRaster.java

Between lines 1305 and 1311 in /.../Raster.java

Found 6 duplicate lines in the following files:

Between lines 920 and 926 in /.../JFIFMarkerSegment.java

Between lines 908 and 914 in /.../JFIFMarkerSegment.java

...

SimScan Output

Clone Group

Clone Group

Source File Starting Line Ending Line

Source FileStarting Line Ending Line

Analysis Challenge: Large Amounts of Data

 Clone coverage in software of various sizes and
languages reported by various clone detection tools

 Detection results can yield large amounts of data

12

Program LoC % of Clones

Linux Kernel 4,365K† 15%

JDK 1.4.2 2,418K‡ 8%

JDK 1.3.0 570K¤ 9%

Process-Control System 400K§ 12%

JHotDraw 7.0.7 71K¥ 19%

JavaGenes 0.7.68 45K¥ 10%

Clone coverage percentages in different programs

†Li et al., 2004; ‡Jiang et al., 2007; ¤Kamiya et al., 2002; §Baxter et al., 1998, ¥CloneDR, 2010

Maintaining Clones
13

After a period of time A new programmer

Activity Class Containing Clones Correction Date

New statement insertion ClassDiagramModel March 2002
DeploymentDiagramModel August 2002

Bug fix SelectionComponentInstance October 2002
SelectionComponent February 2003

Updates of clones in ArgoUML† †Aversano et al., 2007

Removing Clones through Refactoring

 Modularizing the code represented by clones through
appropriate abstractions may improve code quality
 Less duplicated code to maintain
 Ease of future maintenance efforts

 Refactoring is one means of improving the quality of code
 The goal of refactoring is to preserve the external behavior

of code while improving its internal structure†

14

Modularized Clone

Clone 1 Clone 2

†Fowler, 1999

Refactoring Challenge: Process Disconnect

 Techniques such as ARIES† and
SUPREMO‡ can assist in determining
clones that can potentially be
refactored

 However, the task of refactoring
clones is delegated to the
programmer

 The programmer must either
manually refactor the clones or
forward the information about the
clones to a refactoring engine

15

Detection

Analysis

Refactoring

†Higo et al., 2004; ‡Koni-N’Sapu, 2001

Summary of Challenges

 Representation
 System-level Views / Scattered Clones

 Analysis
 Large Amounts of Data

 Refactoring
 Process Disconnect

16

Overview of Presentation
17

Introduction

Motivation

Research Objectives

Unify Process
Evaluate Clone

Properties
Clone Group

Representations

Research Scope
18

Detection

Maintenance

In-Place
Duplication

Removal

Analysis

Evolution
Properties

Bug
Detection

Structural
/ Semantic Refactoring

Representation

Textual Visual Intermediate

Research Scope
19

Detection

We focus on supporting two aspects related to the
maintenance of code clones:
1) clone comprehension through its representation and

analysis
2) clone maintenance with a focus on the removal of the

duplication associated with the clones

Research Objectives
20

Detection

Maintenance

In-Place
Duplication

Removal

Analysis

Evolution
Properties

Bug
Detection

Structural
/ Semantic Refactoring

Representation

Textual Visual Intermediate

Research Objectives
21

Maintenance

Unified
Process

Refactoring
Engine Extensions

Analysis

IR-based
Relationships

Historical
Refactorings

Representation

Localized
Visualization

MDE-based
DSL

Detection

Research Objectives: Representation
22

Representation

Localized
Visualization

MDE-based
DSL

 Contribute novel visualizations of clone groups
 Investigate the utilization of Model-Driven Engineering

(MDE) techniques to represent and analyze clone groups

Maintenance

Unified
Process

Refactoring
Engine Extensions

Analysis

IR-based
Relationships

Historical
Refactorings

Analysis

IR-based
Relationships

Historical
Refactorings

Research Objectives: Analysis
23

 Discover relationships of clone groups using an
Information Retrieval (IR) technique

 Observe relationships of clones and actual historic
refactorings

Representation

Localized
Visualization

MDE-based
DSL

Maintenance

Unified
Process

Refactoring
Engine Extensions

Maintenance

Unified
Process

Refactoring
Engine Extensions

Research Objectives: Refactoring
24

 Extend the capabilities of an IDE to unify the phases of
clone detection, analysis, and refactoring

Representation

Localized
Visualization

MDE-based
DSL

Analysis

IR-based
Relationships

Historical
Refactorings

Research Objectives
25

Maintenance

Unified
Process

Refactoring
Engine Extensions

Analysis

IR-based
Relationships

Historical
Refactorings

Representation

Localized
Visualization

MDE-based
DSL

Detection

Overview of Presentation
26

Introduction

Motivation

Approach
Evaluation & Case Studies

Localized
Representation

Clone Group
Relationships CeDAR

CoCloRep Sub-clone
Refactoring

Representation RefactoringAnalysis

Clone Visualizer

Research Objectives

Clone Group Representations
27

Clone group representations

Maintenance

Unified
Process

Refactoring
Engine Extensions

Analysis

IR-based
Relationships

Historical
Refactorings

Representation

Localized
Visualization

MDE-based
DSL

CloViz: Visualization of Clone Detection Results

 Provide an alternative method of viewing clone detection
results from the widely used scatter plot

 Extended from the AspectJ Development Tools
Visualiser plug-in

28

Visualization view in CloViz

Logging concern in Tomcat†

†Hilsdale and Kersten, 2004

Comparison with Scatter Plot
29

Comparison with Scatter Plot
30

Clone group
representation

Extraneous
visualization

Visualizer Utilization
31

 Visualization technique included in clone detection plug-
in developed at Technische Universität München
 Part of ConQAT (Continuous Quality Assessment Toolkit)

Screen shot of visualizer view in ConQAT†

†ConQAT, 2010

Representation within Source Editor

 Refactoring activity requires multiple modal dialog boxes
 Separation between program editing and refactoring tasks

 A solution: visualize refactoring changes directly in the
source editor

32

Screen shot of Refactor! Pro†

†Refactor! Pro, 2010

Localized Clone Representation

 Represent a clone group in a localized manner
 Parameterized differences visualized in representation

33

if (!delete(file)) {

String message = "Unable to delete file "

+ file.getAbsolutePath();

if (failonerror) {

throw new BuildException(message);

} else {

log(message, quiet ? Project.MSG_VERBOSE

: Project.MSG_WARN);

}

}

if (!delete(f)) {

String message = "Unable to delete file "

+ f.getAbsolutePath();

if (failonerror) {

throw new BuildException(message);

} else {

log(message, quiet ? Project.MSG_VERBOSE

: Project.MSG_WARN);

}

}

if (!delete(f)) {

String message = "Unable to delete file "

+ f.getAbsolutePath();

if (failonerror) {

throw new BuildException(message);

} else {

log(message, quiet ? Project.MSG_VERBOSE

: Project.MSG_WARN);

}

}

if (!delete(dir)) {

String message = "Unable to delete directory "

+ dir.getAbsolutePath();

if (failonerror) {

throw new BuildException(message);

} else {

log(message, quiet ? Project.MSG_VERBOSE

: Project.MSG_WARN);

}

}

Displaying Clones in a Localized Manner
34

Original Source
Code

Clone Detection
Tool

Clone Groups

 Localized representation is displayed after a user selects
a clone group

User Selects a
Clone Group

Clone Group

Generate
Suffix Tree

Clone
Differences

Localized
Representation

Generate
Representation

 Determine differences among the clones
 Differences based on first-level statement comparisons

Detecting Parameterized Elements
35

Stmt1 $

Clone 1

$ #

Stmt1
Stmt2 Stmt1 #

Clone 2

Stmt2

Stmt2

Excerpt of
suffix tree

file → dir

 A suffix tree is generated on the AST nodes representing
the statements of a group of clones

 Elements in nodes containing allowed differences are
mapped together

file.getAbsolutePath() dir.getAbsolutePath()

Parameterized
elements mapped

Statement Similarity Levels

 Comparing two statements of two clones
 Level 1: Corresponding nodes are identical and match each

other exactly
 Level 2: Corresponding nodes are identical, but can contain

allowed parameterized differences
 MethodInvocation, NumberLiteral, QualifiedName,

SimpleName, and StringLiteral

 Level 3: Corresponding nodes are not identical, but both
are correspond to types from the Level 2 comparison

36

Exact
Matching

Nodes

Parameterized
Identical Nodes

Parameterized
Non-Identical

Nodes

Stmt in
Clone 1

Stmt in
Clone 2

Match

Non-
Match

Y

N

NN

YY

Example Representations

 Exact statements, statements with parameterized
differences, and non-matching statements

37

Level 1

Level 2
Level 3

Non-match

Example Representations

 Sub-groups of clones
 Tighter similarities: Clones 1 and 4 vs. Clones 2 and 3

38

for (int i = 0; i < params.length; i++) {

if (CONTAINS_KEY.equals(params[i].getType())) {

contains.addElement(params[i].getValue());

}

} Clone 1

for (int i = 0; i < params.length; i++) {

if (COMMENTS_KEY.equals(params[i].getType())) {

comments.addElement(params[i].getValue());

}

} Clone 4

for (int i = 0; i < params.length; i++) {

if (PREFIX_KEY.equals(params[i].getName())) {

prefix = params[i].getValue();

break;

}

} Clone 2

for (int i = 0; i < params.length; i++) {

if (LINE_BREAKS_KEY.equals(params[i].getName())) {

userDefinedLineBreaks = params[i].getValue();

break;

}

} Clone 3

Clone Properties Based on Visualizations
39

Clones with small differences

Quick summary of neighboring clones

Identifying clone with more difference

Evaluation: Fully Representing Clones

 Considers the number of clone groups (i.e., #CG) that
can be appropriately represented
 Evaluated on multiple open source Java projects

40

Project #CG Exact (%) Param (%) StmtDiff (%) Mixed (%)

Apache Ant 1.6.5 429 61 (14%) 152 (35%) 131 (31%) 85 (20%)

ArgoUML 0.26 650 61 (9%) 214 (33%) 124 (19%) 251 (39%)

Jakarta-JMeter 2.3.2 377 77 (20%) 158 (42%) 71 (19%) 71 (19%)

JBoss AOP 2.1.5 159 51 (32%) 81 (51%) 14 (9%) 13 (8%)

JFreeChart 1.0.10 847 151 (18%) 415 (49%) 168 (20%) 113 (13%)

JRuby 1.4.0 318 113 (36%) 70 (22%) 63 (20%) 72 (23%)

EMF 2.4.1 285 54 (19%) 136 (48%) 52 (18%) 42 (15%)

JEdit 4.2 345 91 (26%) 120 (35%) 88 (26%) 46 (13%)

Squirrel-SQL 3.0.3 428 78 (18%) 164 (38%) 70 (16%) 116 (27%)

Evaluation: Fully Representing Clones

 “Exact”  Clones that match each other exactly

41

Project #CG Exact (%) Param (%) StmtDiff (%) Mixed (%)

Apache Ant 1.6.5 429 61 (14%) 152 (35%) 131 (31%) 85 (20%)

ArgoUML 0.26 650 61 (9%) 214 (33%) 124 (19%) 251 (39%)

Jakarta-JMeter 2.3.2 377 77 (20%) 158 (42%) 71 (19%) 71 (19%)

JBoss AOP 2.1.5 159 51 (32%) 81 (51%) 14 (9%) 13 (8%)

JFreeChart 1.0.10 847 151 (18%) 415 (49%) 168 (20%) 113 (13%)

JRuby 1.4.0 318 113 (36%) 70 (22%) 63 (20%) 72 (23%)

EMF 2.4.1 285 54 (19%) 136 (48%) 52 (18%) 42 (15%)

JEdit 4.2 345 91 (26%) 120 (35%) 88 (26%) 46 (13%)

Squirrel-SQL 3.0.3 428 78 (18%) 164 (38%) 70 (16%) 116 (27%)

Evaluation: Fully Representing Clones

 “Param”  Clone groups with parameterized differences
 Majority of the cases except ArgoUML and JRuby
 Four cases almost half of the instances

42

Project #CG Exact (%) Param (%) StmtDiff (%) Mixed (%)

Apache Ant 1.6.5 429 61 (14%) 152 (35%) 131 (31%) 85 (20%)

ArgoUML 0.26 650 61 (9%) 214 (33%) 124 (19%) 251 (39%)

Jakarta-JMeter 2.3.2 377 77 (20%) 158 (42%) 71 (19%) 71 (19%)

JBoss AOP 2.1.5 159 51 (32%) 81 (51%) 14 (9%) 13 (8%)

JFreeChart 1.0.10 847 151 (18%) 415 (49%) 168 (20%) 113 (13%)

JRuby 1.4.0 318 113 (36%) 70 (22%) 63 (20%) 72 (23%)

EMF 2.4.1 285 54 (19%) 136 (48%) 52 (18%) 42 (15%)

JEdit 4.2 345 91 (26%) 120 (35%) 88 (26%) 46 (13%)

Squirrel-SQL 3.0.3 428 78 (18%) 164 (38%) 70 (16%) 116 (27%)

Evaluation: Fully Representing Clones

 “StmtDiff”  Clone groups with statement differences
 “Mixed”  Clone groups containing both “Param” and

“StmtDiff”

43

Project #CG Exact (%) Param (%) StmtDiff (%) Mixed (%)

Apache Ant 1.6.5 429 61 (14%) 152 (35%) 131 (31%) 85 (20%)

ArgoUML 0.26 650 61 (9%) 214 (33%) 124 (19%) 251 (39%)

Jakarta-JMeter 2.3.2 377 77 (20%) 158 (42%) 71 (19%) 71 (19%)

JBoss AOP 2.1.5 159 51 (32%) 81 (51%) 14 (9%) 13 (8%)

JFreeChart 1.0.10 847 151 (18%) 415 (49%) 168 (20%) 113 (13%)

JRuby 1.4.0 318 113 (36%) 70 (22%) 63 (20%) 72 (23%)

EMF 2.4.1 285 54 (19%) 136 (48%) 52 (18%) 42 (15%)

JEdit 4.2 345 91 (26%) 120 (35%) 88 (26%) 46 (13%)

Squirrel-SQL 3.0.3 428 78 (18%) 164 (38%) 70 (16%) 116 (27%)

CoCloRep: Code Clone Representation
44

MDE-based clone representation and analysis

Maintenance

Unified
Process

Refactoring
Engine Extensions

Analysis

IR-based
Relationships

Historical
Refactorings

Representation

Localized
Visualization

MDE-based
DSL

CoCloRep: Code Clone Representation

 An investigation into the development of a Domain-
Specific Language (DSL) for representing code clones

 Utilizing Model-Driven Engineering (MDE) in the context
of clone analysis

45

MDE is concerned
with raising the

abstraction level of
software development
by utilizing models to
specify the application

Models

Model
Transformations

Source Code Models

Higher level
of abstraction

Possibly
automated

First DSL: Clone Representation
46

-- clone instances -- clone group

1: instance r = cg(f, g) { 1: clone cg($a, $b) {

2: t { 2: int $b;

3: i = i + 1; 3: int $a = $b + 3;

4: } 4: {{ t }}

5: }; 5: c = $a + m;

6: 6: }

7: instance s = cg(p, q);

-- clone 1 -- clone 2

1: int g; 1: int q;

2: int f = g + 3; 2: int p = q + 3;

3: i = i + 1; 3: c = p + m;

4: c = f + m;
Variabilities Commonalities

Second DSL: Commands

 Input

 Output

47

variables cg;

1: Variable information for clone group cg

2: Declared variables:

3: b

4: a

5: Outside assigned variables:

6: c

7: i (in instance r)

8: Outside non-assigned variables:

9: m

Model Transformation Process
48

M3

M2

M1 Commands
Model

Commands
on Clones

Code
Clones

EBNFEBNF

Commands
Grammar

Clones
Grammar

Code Clones
Model

KM3

Transformation

EBNF TS MDE Technical Space (TS) EBNF TS

Commands
Metamodel

Clones
Metamodel

Variables
Metamodel

Variables
Model

Variables
Grammar

Variables
Output

ExtractionInjection

Representation and Analysis in CoCloRep

 Representation of clones (as models)
 Commonalities stored in clone groups
 Variabilities stored in clone instances
 Modified / combined AST of all clone instances

 Analysis of clones (via model transformations)
 Transformations with both declarative and imperative

constructs
 Requires more complex transformations

 Not one-to-one

49

Summary
50

 Clone group representation
 Representations provide a low-level view of clones and a

centralized location to view clone properties

 Maintenance
 Visual representations provide a quick summary of clone

properties
 i.e., location of clones, complexity of clone differences

 Preliminary investigation of using MDE for clone
refactoring

Clone analysis using Information Retrieval
51

Clustering of code clones based on non-structural properties

Maintenance

Unified
Process

Refactoring
Engine Extensions

Analysis

IR-based
Relationships

Historical
Refactorings

Representation

Localized
Visualization

MDE-based
DSL

Structure-based Clone Detection
52

static void foo() throws RESyntaxException {
String a[] = new String[] {“123.400”,”abc”,”orange 100”};
org.apache.regexp.RE pat = new org.apache.regexp.RE(“[0-9,]+”);
int sum = 0;
for(int i = 0; i < a.length; ++i)

if(pat.match(a[i]))
sum += Sample.parseNumber(pat.getParen(0));

System.out.println(“sum =“ + sum);
}
static void goo(String[] a) throws RESyntaxException {

RE exp = new RE(“[0-9,]+”);
int sum = 0;
for(int i = 0; i < a.length; ++i)

if(exp.match(a[i]))
sum += parseNumber(exp.getParen(0));

System.out.println(“sum =“ + sum);
}

static void foo () throws RESyntaxException { String a

[] = new String [] { "123.400" ,

"abc" , "orange 100" } ; org . apache . reexp

. RE pat = new org . apache .reexp

. RE ("[0-9,]+") ; int sum = 0

; for (int i = 0 ; i <

a . length ; ++ i) if (pat

. match (a [i])) sum

+= Sample . parseNumber (pat . getParen (0

)) ; System . out . println ("sum = "

+ sum) ; } static void goo (String

[] a) throws RESyntaxException { RE exp =

new RE ("[0-9,]+") ; int sum = 0

; for (int i = 0 ; i <

a . length ; ++ i) if (exp

. match (a [i])) sum

+= parseNumber (exp . getParen (0))

; System . out . println ("sum = " + sum

) ; }

Identifier names ignored
static $ $ () throws $ { $ $

[] = $ $ [] { $,

$, $ } ; $. $. $

. $ $ = new $. $.$

. $ ($) ; $ $ = 0

; for ($ $ = $; $ <

$. $; ++ $) if ($

. $ ($ [$])) $

+= $. $ ($. $ ($

)) ; $. $. $ ($

+ $) ; } static $ $ ($

[] $) throws $ { $ $ =

new $ ($) ; $ $ = $

; for ($ $ = $; $ <

$. $; ++ $) if ($

. $ ($ [$])) $

+= $ ($. $ ($))

; $. $. $ ($ + $

) ; }

static void foo() throws RESyntaxException {
String a[] = new String[] {“123.400”,”abc”,”orange 100”};
org.apache.regexp.RE pat = new org.apache.regexp.RE(“[0-9,]+”);
int sum = 0;
for(int i = 0; i < a.length; ++i)

if(pat.match(a[i]))
sum += Sample.parseNumber(pat.getParen(0));

System.out.println(“sum =“ + sum);
}
static void goo(String[] a) throws RESyntaxException {

RE exp = new RE(“[0-9,]+”);
int sum = 0;
for(int i = 0; i < a.length; ++i)

if(exp.match(a[i]))
sum += parseNumber(exp.getParen(0));

System.out.println(“sum =“ + sum);
}

static $ $ () throws $ { $ $

[] = $ $ [] { $,

$, $ } ; $. $. $

. $ $ = new $. $.$

. $ ($) ; $ $ = 0

; for ($ $ = $; $ <

$. $; ++ $) if ($

. $ ($ [$])) $

+= $. $ ($. $ ($

)) ; $. $. $ ($

+ $) ; } static $ $ ($

[] $) throws $ { $ $ =

new $ ($) ; $ $ = $

; for ($ $ = $; $ <

$. $; ++ $) if ($

. $ ($ [$])) $

+= $ ($. $ ($))

; $. $. $ ($ + $

) ; }

Code Clone Analysis Tool: ICCA

Clone analysis using Information Retrieval

 Investigate additional relationships among clone groups
based on non-structured properties

 Latent Semantic Indexing (LSI) used to cluster clone
groups based on the identifier names in the clones

53

Clone
Detection

Clone group Clone group

Clone group

Related?

Related?Related?

 Latent Semantic Indexing (LSI) can be used to provide
relationships among terms and documents in a corpus

 Document to Document relationships are determined
based on terms in documents

Latent Semantic Indexing
54

Term, Term,
Term, …

Term, …

Document

Corpus

Term, Term,
Term, …

Document

Document

Identifier,
Identifier, …

Identifier, …

Clone Group

Corpus

Identifier,
Identifier, …

Clone Group

Clone Group

In general: In this work:

Approach: Clone Group Clustering
55

Clone
Group 1

CG1 CG2 …

a 3 X …

apache 2 X …

foo 1 X …

getParen 1 X …

i 4 X …

… … …

Term-Document Matrix

static void foo() throws RESyntaxException {

String a[] = new String[] { "123,400", "abc“,

"orange 100"};

org.apache.regexp.RE pat = new

org.apache.regexp.RE("[0-9,]+");

int sum = 0;

for (int i = 0; i < a.length; ++i)

if (pat.match(a[i]))

sum += Sample.parseNumber(pat.getParen(0));

System.out.println("sum = " + sum);

}

Clone Group 1

Clone
Group 2 Clone

Group 3
Singular Value

Decomposition
(SVD)

Matlab Singular Value
Decomposition

Latent Semantic Indexing

5

Information Retrieval-based Process
56

Original Source
Code srcML Source Code in

XML Format

3

Filtered Clone
Groups

Filter Clone
Groups

2
Generate Term-

Document Matrix

Term-Document
Matrix

4

Cluto Clustered Clone
Groups

6

CCFinder Clones in Clone
Groups

1

HTML ReportGenerate Cluster
Information

7

 Case Study: Microsoft Research Kernel
 Available for academic teaching and research
 Basic operating system implementations for the NT Kernel

Cluster Observations: Example

 Clones were grouped based on the method of assigning
RequiredLength

57

[try block]

[if block]

[try block]

[if block]

[try block]

[if block]

[RequiredLength assignment] [RequiredLength assignment] [RequiredLength assignment]

RequiredLength = (ULONG)sizeof(TOKEN_STATISTICS);

RequiredLength = (ULONG)sizeof(TOKEN_GROUPS_AND_PRIVILEGES)

+ PrivilegesLength + RestrictedSidsLength + GroupsLength;

while (Index < Token->RestrictedSidCount) {

RequiredLength += SeLengthSid(Token->RestrictedSids[Index].Sid);

Index += 1;

}

Cluster Observations: Example

 Clones were grouped based on statement sequences

 Clones grouped based on existence of a statement and
arguments

58

1: irp = IoAllocateIrp(deviceObject->StackSize, (...));

2: if (!irp) {

3: if (...) {

4: ExFreePool(event);

5: }

6: IopAllocateIrpCleanup(fileObject, (...));

7: return STATUS_INSUFFICIENT_RESOURCES;

8: }

9: irp->Tail.Overlay.OriginalFileObject = fileObject;

10: irp->Tail.Overlay.Thread = CurrentThread;

[Array Initialization]

[Code Sequence 1]

[Code Sequence 2]

[Code Sequence 1]

[Array Initialization]

[Code Sequence 2]

Clone Clone

Clone GroupClone Group

Sub-Clone Refactoring
59

Observing actual refactorings associated with detected clones

Maintenance

Unified
Process

Refactoring
Engine Extensions

Analysis

IR-based
Relationships

Historical
Refactorings

Representation

Localized
Visualization

MDE-based
DSL

Refactoring Clones
60

public class A {

public void method() {

{cloned statements}
{cloned statements}
{cloned statements}
...

{cloned statements}
{cloned statements}
{cloned statements}

}

}

public class A {

public void method() {

newMethod();

...

newMethod();

}

public void newMethod() {

{cloned statements}
{cloned statements}
{cloned statements}

}

}

Extract-Method
Refactoring

Clone Refactoring Process
61

Manually
Detect Clones

Determine Clones
For Refactoring

Refactoring
Clones

 Changes between two versions
 First version contains original code
 Second version contains refactored code

Clone Refactoring Process
62

Automated Clone
Detection Tool

 What are the refactoring characteristics of clones
detected by a clone detection tool, if such a tool was
used in the clone maintenance process?

Manually
Detect Clones

Determine Clones
For Refactoring

Refactoring
Clones

Approach: Observing Refactorings

 Observing actual clone-related refactorings in multiple
release versions of JBoss

63

Source Code
(Version 1)

Clone
Detection

Code Clones Source Code
(Version 2)

Compare

@@ -2471,13 +2469,7 @@
scan_position.current_slot = Page.INVALID_SLOT_NUMBER;

// release the scan lock now that we have saved away the row.
-
- if (scan_position.current_scan_pageno != 0)
- {
- this.getLockingPolicy().unlockScan(
- scan_position.current_scan_pageno);
- scan_position.current_scan_pageno = 0;
- }
+ unlockCurrentScan(scan_position);

}
}

}

C lo n e c

C lo n e c

d iff reg ion

C lo n e c C lo n e c

d iff reg ion

C lo n e c

V ers ion 1 V ers ion 1 V ers ion 1V ers ion 2 V ers ion 2 V ers ion 2

Refactoring in Clone Ranges
64

1 2 4 5 protected String getValue(String name, String value) {

1 2 4 5 if (value.startsWith("${") && value.endsWith("}")) {

1 2 3 4 5 - try {

1 2 3 4 5 - String propertyName = value.substring(2, value.length()-1);

1 2 3 4 5 - ObjectName propertyServiceON = new ObjectName(“...");

1 2 3 4 5 - KernelAbstraction kernelAbstraction = KernelAbstractionFactory.getInstance();

1 2 3 4 5 - String propertyValue = (String)kernelAbstraction.invoke(...);

1 2 3 5 - log.debug("Replaced ejb-jar.xml element " + name + " with value " + propertyValue);

1 2 3 5 - return propertyValue;

1 2 3 5 - } catch (Exception e) {

1 2 3 5 - log.warn("Unable to look up property service for ejb-jar.xml element " + ...);

1 2 3 5 - }

+ String replacement = StringPropertyReplacer.replaceProperties(value);

+ if (replacement != null)

+ value = replacement;

1 2 5 }

1 2 5 return value;

1 2 5 }

if (edge instanceof MTransition) {

MTransition tr = (MTransition) edge;

- FigTrans trFig = new FigTrans(tr);

- // set source and dest

- // set any arrowheads, labels, or colors

- MStateVertex sourceSV = tr.getSource();

- MStateVertex destSV = tr.getTarget();

- FigNode sourceFN = (FigNode) lay...

- FigNode destFN = (FigNode) lay...

- trFig.setSourcePortFig(sourceFN);

- trFig.setSourceFigNode(sourceFN);

- trFig.setDestPortFig(destFN);

- trFig.setDestFigNode(destFN);

+ FigTrans trFig = new FigTrans(tr, lay);

return trFig;

}

 Refactoring performed on
only part of the reported
clone range
 Sub-clone refactoring

Evaluation: Tool Coverage
65

 21 Extract Method-type Refactoring in JBoss (v2.2.0–4.2.3)
 Clones initially detected by Simian
 Further evaluated with four other tools

 These tools mainly look for the maximal sized clone

Tool Exact
Coverage

Larger
Coverage

1. CCFinder 4 (19%) 8 (38%)

2. CloneDR 6 (28%) 9 (42%)

3. Deckard 8 (38%) 3 (14%)

4. Simian 2 (9%) 0 (0%)

5. Simscan 6 (28%) 12 (57%)

Evaluation: Focus on Deckard
66

 Deckard selected due to tree-based tool performance
 JBoss re-evaluated
 Additional artifacts: ArgoUML (v0.10.1–0.26) and Apache

Derby (v10.1.1.0–10.5.3.0)

Property JBoss ArgoUML Derby

Refactoring
Coverage

Exact coverage 19 17 12

Sub-clone coverage 14 9 15

Coverage
Levels

Same level 4 4 6

1 level above 9 2 8

> 1 level above 1 3 1

Clone
Differences

Refactorable 7 4 8

Not Refactorable 7 5 7

Evaluation: Focus on Deckard
67

 Reported clone range mainly the same level or one
syntactic level above the actual refactored code
 Possibly to keep some logic in the original location

 Programmers only refactored a sub-clone even when the
entire clone was refactorable

Property JBoss ArgoUML Derby

Refactoring
Coverage

Exact coverage 19 17 12

Sub-clone coverage 14 9 15

Coverage
Levels

Same level 4 4 6

1 level above 9 2 8

> 1 level above 1 3 1

Clone
Differences

Refactorable 7 4 8

Not Refactorable 7 5 7

Summary
68

 Analysis of large amounts of clone data
 “Super-clones”

 Clone group clustering based on non-structural information

 “Sub-clones”
 Refactoring performed on partial range of clones

 Maintenance
 Clone groups that are related could be considered for

similar updating
 Support for sub-clone refactoring should be part of

maintenance process

CeDAR: Clone Detection, Analysis, and Refactoring
69

Unifying the process of clone detection, analysis, and refactoring

Maintenance

Unified
Process

Refactoring
Engine Extensions

Analysis

IR-based
Relationships

Historical
Refactorings

Representation

Localized
Visualization

MDE-based
DSL

Eclipse IDE

Current Refactoring Process
70

Original
Source Code

Refactored
Source Code

Analyze Clones Clones to
Refactor

M2

Clones must be analyzed manuallyM2

Internal Clone
Detector

A1

A1  Extract Method refactoring limited to local variable name differences
 Limited to clones in one file
 Clone information only available after selection for refactoring

Refactoring
Engine

M3 Each section of code must be manually selected and forwarded to Refactoring Engine

Select Code for
Refactoring

Code to be
Refactored

M3

Code ClonesDetect Clones

M1

Clones must be detected manuallyM1

Current Approaches
71

Original
Source Code

Eclipse IDE

Refactoring
Engine

M1 Each section of code must be manually selected and forwarded to Refactoring Engine

Select Code for
Refactoring

Code to be
Refactored

M1

Code ClonesDetect Clones

Clones detected automaticallyA1

A1

Analyze Clones Clones to
Refactor

Clones analyzed with automated assistanceA2

A2

Refactored
Source Code

Eclipse IDE

Our Approach: Unified Process
72

Original
Source Code

All clone information forwarded to refactoring engineA2

Refactoring
Engine

Analyze Clones Clones to
Refactor

A2

Refactored
Source Code

Additional parameterized differences such as fields, method calls, and string literals

Code ClonesDetect Clones

Automated clone detection remains an external processA1

A1

CeDAR Eclipse Plug-in

Parameterized Element Mapping

 Include parameterized values of internal and external
fields, method calls, and strings

73

Clone 1 (default)

Class1.num1 (QualifiedName)

getVal1() (MethodInvocation)

bool1 (SimpleName)

...
if (bool1) {
x = getVal1() + Class1.num1;

}
...

...
if (bool2) {
x = getVal2() + Class2.num2;

}
...

Clone 2

Class2.num2

getVal2()

bool2

...
if (bool3) {
x = getVal3() + Class1.num1;

}
...

Clone 3

Class1.num1

getVal3()

bool3

Clone
Detection

Tool

Clone
Refactoring

Original
Source Code

Clone Group

Clone 3
Clone 2
Clone 1

CeDAR Plug-in in Eclipse

Refactored
Source Code

Clone Information
Display

Clone Group

Clone 3
Clone 2
Clone 1

Selected Clone
Group

Type II Clones
74

 “syntactically identical copy; only variable, type, or
function identifiers were changed.” [Bellon et al., 2007]

 Fields
 Include fields that are different between at least two clones
 Include clones with [field]  [local variable] mappings

public class A {
int field1;
int field2;

public void method() {

{cloned statements}
{reference to field1}
{cloned statements}
...

{cloned statements}
{reference to field2}
{cloned statements}

}
}

public class A {
int field1;
int field2;

public void method() {
newMethod(field1);
...
newMethod(field2);

}

public void newMethod(int field) {

{cloned statements}
{reference to field}
{cloned statements}

}
}

Type II Clones
75

 Method calls
 Include methods with no arguments
 Pass method-related expressions if all clones use same

expression

 Strings
 Include strings with 1-to-1 correspondence

public void method() {
...

{reference to p}
{reference to p.call()}
...

{reference to q}
{reference to q.call()}
...

}

public void method() {
...
newMethod(p, p.call())
...
newMethod(q, q.call())
...

}

public void newMethod
(Object a, Object b) {

{reference to a}
{reference to b}

}

public void method() {
...
newMethod(p)
...
newMethod(q)
...

}

public void newMethod
(Object a) {

{reference to a}
{reference to a.call()}

}

Evaluation: Additional Refactorings
76

Project KLoC CG Eclipse CeDAR ∆

Apache Ant 1.7.0 67 120 14 (12%) 28 (23%) +14

Columba 1.4 75 88 13 (15%) 30 (34%) +17

EMF 2.4.1 118 149 8 (5%) 14 (9%) +6

Hibernate 3.3.2 209 177 15 (8%) 18 (10%) +3

Jakarta JMeter 2.3.2 54 68 3 (4%) 11 (16%) +8

JEdit 4.2 51 157 15 (10%) 20 (13%) +5

JFreeChart 1.0.10 76 291 29 (10%) 62 (21%) +33

JRuby 1.4.0 101 81 23 (28%) 23 (28%) 0

Squirrel SQL 3.0.3 141 75 8 (11%) 20 (27%) +12

 In half of the software artifacts evaluated, the number of
refactorings doubled

Parameterized Differences
77

Project Local
Variable

Internal
Field

External
Field

Method
Call String

Apache Ant 1.7.0 10 8 2 8 6

Columba 1.4 14 7 7 7 5

EMF 2.4.1 6 2 0 2 4

Hibernate 3.3.2 3 0 0 2 2

Jakarta JMeter 2.3.2 8 1 1 2 7

JEdit 4.2 4 1 1 1 2

JFreeChart 1.0.10 34 19 11 13 5

Squirrel SQL 3.0.3 12 6 3 9 4

 Each parameterized difference utilized during Extract
Method refactoring activity, albeit in varying occurrences

CeDAR in Eclipse
78

Parsing clone
detection reports

CeDAR in Eclipse
79

Localized
representation

CeDAR in Eclipse
80

Clone location
visualization

CeDAR in Eclipse
81

Sub-clones

CeDAR in Eclipse
82

Centralized
maintenance

Summary
83

 Clone maintenance process (detection, analysis, and
refactoring) unified within Eclipse through CeDAR

 Extensions incorporate more parameterized differences
among clones to enable additional accepted refactorings

 Instances of clone refactoring doubled in many of the
evaluated software artifacts

Contributions

 Representation
 Visualization and representation of clones at the clone

group level and a transformation-based clone analysis
approach

 Analysis
 The discovery of additional clone properties related to the

semantic relationships of clone groups, and refactoring of
partial clones

 Refactoring
 A unified clone maintenance process that reduces the

manual steps required for refactoring and increases
support for refactoring of different clone types

84

Future Research Plan

 Continued Focus on Clone Maintenance
 Increasing refactoring capabilities
 Incorporating visualizations in the refactoring task
 Clone models via model weaving

 Broader Application of Work
 Additional clone property analysis (e.g., outlier clones)
 Information retrieval and model analysis

85

Publications
Journals
R. Tairas, J. Gray, Extending an IDE’s Refactoring Engine for
Additional Clone Refactoring Opportunities, Information and
Software Technology, in preparation.
R. Tairas, J. Gray, An Information Retrieval Process to Aid in the
Analysis of Clones, Empirical Software Engineering, 14(1): 33-56,
02/09.
J. Zhang, Y. Lin, J. Gray, R. Tairas, Aspect Mining from a Modeling
Perspective, Int. J. of Computer Applications in Technology, 31(1/2):
74-82, ‘08.
Conferences and Workshops
R. Tairas, F. Jacob, J. Gray, Visualizing Code Clones in a Localized
Manner, ACM Symposium on Software Visualization, Salt Lake City,
UT, 10/10, under review.
R. Tairas, J. Gray, Sub-clones: Considering the Part Rather than
the Whole, Int. Conf. on Software Engineering Research and Practice
(SERP), Las Vegas, NV, 07/10, to appear.
F. Jacob, R. Tairas, Code Template Inference Using Language
Models, ACM Southeast Conf., Oxford, MS, April 2010.
R. Tairas, J. Gray, Sub-clone Refactoring in Open Source
Software Artifacts, Symp. on Applied Computing (SAC), Sierre,
Switzerland, 03/10: 2364-2365.
R. Tairas, Centralizing Clone Group Representation and
Maintenance, Student Research Competition, Int. Conf. on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Orlando, FL, 10/09: 781-782.
R. Tairas, M. Mernik, J. Gray, Using Ontologies in the Domain
Analysis of Domain-Specific Languages, Workshop on
Transformation and Weaving Ontologies in Model-Driven Engineering
(TWOMDE), Int. Conf. on Model Driven Engineering, Languages, and

86

Systems (MoDELS), LNCS 5421, Toulouse, France, 09/08: 332-
342. (Best Paper Award)
Y. Sun, Z. Demirezen, F. Jouault, R. Tairas, J. Gray, Tool
Interoperability through Model Transformations, Int. Conf. on
Software Language Engineering (SLE), LNCS 5452, Toulouse,
France, 09/08: 178-187.
R. Tairas, A. Liu, F. Jouault, J. Gray, CoCloRep: A DSL for Code
Clones, Int. Workshop on Software Language Engineering (ATEM),
Int. Conf. on Model Driven Engineering, Languages, and Systems
(MoDELS), Nashville, TN, 10/07: 91-99.
R. Tairas, J. Gray, I. Baxter, Visualization of Clone Detection
Results, Eclipse Technology Exchange Workshop (ETX), Int. Conf. on
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), Portland, OR, 10/06: 50-54.
R. Tairas, J. Gray, Phoenix-Based Clone Detection using Suffix
Trees, ACM Southeast Conf., Melbourne, FL, 03/06: 679-684.
Doctoral Symposium
R. Tairas, Clone Maintenance through Analysis and Refactoring,
Int. Symp. on the Foundations of Software Engineering (FSE), Atlanta,
GA, 11/08: 29-32.
R. Tairas, Clone Detection and Refactoring, Int. Conf. on Object-
Oriented Programming, Systems, Languages and Applications
(OOPSLA), Portland, Oregon, 10/06: 50-54.
Tool Demonstrations
R. Tairas, J. Gray, Get to Know Your Clones with CeDAR, Int.
Conf. on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Orlando, FL, 10/09: 817-818.
R. Tairas, J. Gray, I. Baxter, Visualizing Clone Detection Results,
Int. Conf. on Automated Software Engineering (ASE), Atlanta, GA,
11/07: 549-550.

Code Clones Literature

 http://www.cis.uab.edu/tairasr/clones/literature/
 Containing 185 research citations (as of June 2010)
 Includes web sites of tools, events, and research groups
 Has been cited by several research publications

87

This site was very useful for me when I
was studying the clone detection
problem. I think, it is the most useful site
concerning clone detection on the
Internet.

…I often visit and make use of (it). I regard your clone detection
literature page as the most up-to-
date and condensed source of
new clone detection papers.

“
”

“ ”

”
“Your clone bibliography page …

has been a very useful resource
for our work.“ ”

Thank you

 Personal:
 http://www.cis.uab.edu/tairasr

 Code Clones Literature:
 http://www.cis.uab.edu/tairasr/clones/literature

 SoftCom Laboratory:
 http://www.cis.uab.edu/softcom

88

	Representation, Analysis, and Refactoring Techniques to Support Code Clone Maintenance
	Overview of Presentation
	Cloning in Software
	Types of Clones
	Reason for the Existence of Clones
	Clones in Software Maintenance
	Clone Detection Techniques and Timeline
	Clone Research
	Overview of Presentation
	Representation Challenge: Evaluating Clone Groups
	Example Detection Results (Textual)
	Analysis Challenge: Large Amounts of Data
	Maintaining Clones
	Removing Clones through Refactoring
	Refactoring Challenge: Process Disconnect
	Summary of Challenges
	Overview of Presentation
	Research Scope
	Research Scope
	Research Objectives
	Research Objectives
	Research Objectives: Representation
	Research Objectives: Analysis
	Research Objectives: Refactoring
	Research Objectives
	Overview of Presentation
	Clone Group Representations
	CloViz: Visualization of Clone Detection Results
	Comparison with Scatter Plot
	Comparison with Scatter Plot
	Visualizer Utilization
	Representation within Source Editor
	Localized Clone Representation
	Displaying Clones in a Localized Manner
	Detecting Parameterized Elements
	Statement Similarity Levels
	Example Representations
	Example Representations
	Clone Properties Based on Visualizations
	Evaluation: Fully Representing Clones
	Evaluation: Fully Representing Clones
	Evaluation: Fully Representing Clones
	Evaluation: Fully Representing Clones
	CoCloRep: Code Clone Representation
	CoCloRep: Code Clone Representation
	First DSL: Clone Representation
	Second DSL: Commands
	Model Transformation Process
	Representation and Analysis in CoCloRep
	Summary
	Clone analysis using Information Retrieval
	Structure-based Clone Detection
	Clone analysis using Information Retrieval
	Latent Semantic Indexing
	Approach: Clone Group Clustering
	Information Retrieval-based Process
	Cluster Observations: Example
	Cluster Observations: Example
	Sub-Clone Refactoring
	Refactoring Clones
	Clone Refactoring Process
	Clone Refactoring Process
	Approach: Observing Refactorings
	Refactoring in Clone Ranges
	Evaluation: Tool Coverage
	Evaluation: Focus on Deckard
	Evaluation: Focus on Deckard
	Summary
	CeDAR: Clone Detection, Analysis, and Refactoring
	Current Refactoring Process
	Current Approaches
	Our Approach: Unified Process
	Parameterized Element Mapping
	Type II Clones
	Type II Clones
	Evaluation: Additional Refactorings
	Parameterized Differences
	CeDAR in Eclipse
	CeDAR in Eclipse
	CeDAR in Eclipse
	CeDAR in Eclipse
	CeDAR in Eclipse
	Summary
	Contributions
	Future Research Plan
	Publications
	Code Clones Literature
	Thank you

