Raising the Level of Abstraction of GPU-programming

Ferosh Jacob!, Ritu Arora?, Purushotham Bangalore?,
Marjan Mernik32, Jeff Gray!
jacobf@ua.edu, {ritu, puri, mernik}@cis.uab.edu,
gray@Qcs.ua.edu

!Department of Computer Science
University of Alabama, Tuscaloosa, Alabama

2Department of Computer & Info Sciences
University of Alabama at Birmingham, Birmingham, Alabama

3Faculty of Electrical Engineering and Computer Science
University of Maribor, Slovenia

1of19 Julv 13. 2010
EEEEE————————————————————————

Introduction
GPU Programming
CUDA and OpenCL
Why Abstraction?

Example Scenario
Sequential: Vector Addition
CUDA and OpenCL: Vector Addition
Parallel: Vector Addition

Implementation

Experimental Results
Source Code comparison
Execution time Comparison

Related Works

Conclusion and Future Work
An editor for GPU programming

2 of 19
EEEEE————————————————————————

Why GPU Programming?

Extensively parallel programs

Excellent computational platforms for scientific calculations
Introduction of GPGPU

Desktops and laptops with GPUs

OpenCL, CUDA, DirectCompute

3 of 19

Overview: CUDA and OpenCL

Similarities

e C language modified
e Used in GPGPU

e Follows a SPMD

Differences

e CUDA = NVIDIA, OpenCL = Khronos
e OpenCL multi-vendor support

® OpenCL is still evolving

e OpenCL = heterogeneous

4 of 19

Abstraction in GPU

e Allows programmer to focus on essence of parallel computing,
rather than language-specific accidental complexities of CUDA or
OpenCL

e Higher level similarity in program structure
e Duplicated code
e Need to support heterogeneous architecture

e Higher abstraction allows the programmer to focus on the
important issues while technical infrastructure is transparent

5 of 19

Source code for Vector Addition

1 /*

2 * SEQUENTIAL CODE

3 */

4 floatx h_ A = (floatx*) malloc (mem_size_A);
5 floatx h_.B = (floatx) malloc (mem_size_B);
6 floatx h_C = (floatx) malloc (mem_size_C);
7

8 initarray(h_A,h_B);

9 sequentialAdd(h_A,h_B,h_C);

[
o

printArray(h_C);

e
N =

//Release Memory
free(h_A);
free(h_B);
free(h_C);

R e
(SIS

6 of 19

-
CUDA and OpenCL

Five Steps

Allocate memory in host
Copy memory from host to device
Execute the kernel

Copy memory from device to host

o~ b

Release all memory

Host Code

Host Memory CPU |
i

yﬂ\el Code’/ ’ \ \

Device Memory T4 T3 T2 T1 TO

7 of 19

API correspondence

\ Function \ CUDA \ OpenCL

Allocate Memory | cudaMalloc clCreateBuffer
clWriteBuffer

Transfer Memory | cudaMemcpy c1ReadBuffer
clEnqueueNDRange

Call Kernel

all ferne SSSXyees clSetKernelArg

Block Identifier | blockIdx get_group_id

Thread Identifier | threadIdx get_local_id

Release Memory | cudaFree clReleaseMemObject

8 of 19

Source code comparison of parallel to sequential

/%
* PARALLEL CODE
*/

1
2
3
4
5 //Set GPU execution parameters
6 _GPUinit (16,16,4,4);

7 _XPUmalloc(h_A,6"float*" mem_size_A);

8 _XPUmalloc(h_B,"float*" ,mem_size_B);

9 _XPUmalloc(h_C,"float*" ,mem_size_C);

11 initarray(h_A,h_B);

12 _GPUcall("arrayAdd", in(h_A,h_B),out(h_C));
13 printArray(h_C);

15 //Release Memory
16 _XPUrelease();

9 of 19

N oo W N e

© 0 NN W N e

BB R e
w N B O

Generated code for CUDA and OpenCL

/%
* CUDA code _XPUmalloc(h_C,"float*",memsize_C)
*/

float* h_C = (float*) malloc (mem_size_C);

floatx _GEN_PREFIX17;
cutilSafeCall (cudaMalloc ((void*%)&_GEN_PREFIX17,
mem_size_C));

/*
* 0PenCL code _GPUcall("arrayAdd", in(h_A,h_B),out(h_C));
*/
err = clSetKernelArg(kernel[0],0,sizeof(cl_mem),&h_A);

err |= clSetKernelArg(kernel[0],1,sizeof(cl_mem),&h_B);
err |= clSetKernelArg(kernel[0],2,sizeof(cl_mem),&h_C);
assert (err = CL_SUCCESS);

clFinish(cmd_queue);

//Read the results back to host
err — clEnqueueReadBuffer(cmd_queue,h_C,CL_TRUE,O,mem_size_C,

(void x) _GEN_PREFIX20,
10 of 19

Overview
Application
1. C Code with additional Ccode Abstract APls
predefined functions
. pre-compiler
2. Function calls '
(Abstract APIs) COT parser
changed to GPU code l
3. Frequently used block Crite gieieior g Uills
1 o N
of code are saved as \ ‘\‘ ;
functions in Utils CUDA OpencL

11 of 19

Experimentation

| Application | CUDA | CPP | Abstr | # vars,lines | use |
Vector Addition 29 15 13 3,16 6
Matrix Multiplication 28 14 12 3,14 6
Scan Test Cuda 82 NA 72 1,10 12
Transpose 39 17 26 2,13 8
Template 25 13 13 2,12 6

Table: Source code analysis of CUDA, CPP and Abstract API

12 of 19

Execution time comparison

0.5 T T T T
Hand written code
Generated code ==
0.4 e Generated code
Z7 03 performs as efficient
R as hand written for
o different problems

0
VecAdd MatrixMul Scan Transpose Templ
Applications

13 of 19
EEEEE————————————————————————

Related Works

hiCUDA : Use directives in C code, tightly coupled with CUDA

CUDA-lite : Use annotations in base code, targeted for CUDA
programmers

CGIS : A new GPU programming language with support for many
devices, OpenCL not addressed

CUPP : A tool to integrate CUDA into existing C++ applications

Sh : Abstract layer for GPU languages but in graphics domain

14 of 19
EEEEE————————————————————————

Conclusion and future work

Conclusion

e An approach to improve GPU programming
e Static code analysis for host code

* No Performance loss(hand written code versus generated code)

Future work

e Need to generate kernel code for complete evaluation

15 of 19
EEEEE————————————————————————

CUDACL: GPU programming in Eclipse IDE

[€ test.c (@ CSeRFileListenerjav (I] ParseHelper.java [@ MainVisitor.java (@ PartVisitorjava (@ NodeVisitorjava [E CLUDA Editor &2~ "3 = 0O

CLUDA Configuration

Parallel blocks - Variables
The list of parallel blocks from the file ArrayAdd.c Variables identified and classified by static code analysis
AmrayAdd Input Variables D adbdc

Output Variables Wc

Loop Variables [j

~ GPU Execution parameters
Thread (work item) and block (work group) size
Thread(x) |256 | Thread(y) |001 Thread(z) |001

Block(x) [001]Block(y) [001]

@ use OpenCL API based on variable ‘:lz‘

» Linking sequential file

Code Generation
© cubA

© opencL Execute on the device :

© In same file

Generate code

16 of 19
EEEEE————————————————————————

	Outline
	Introduction
	GPU Programming
	CUDA and OpenCL
	Why Abstraction?

	Example Scenario
	Sequential: Vector Addition
	CUDA and OpenCL: Vector Addition
	Parallel: Vector Addition

	Implementation
	Experimental Results
	Source Code comparison
	Execution time Comparison

	Related Works
	Conclusion and Future Work
	An editor for GPU programming

