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Why GPU Programming?

Extensively parallel programs

Excellent computational platforms for scientific calculations
Introduction of GPGPU

Desktops and laptops with GPUs

OpenCL, CUDA, DirectCompute
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Overview: CUDA and OpenCL

Similarities

e C language modified
e Used in GPGPU

e Follows a SPMD

Differences

e CUDA = NVIDIA, OpenCL = Khronos
e OpenCL multi-vendor support

® OpenCL is still evolving

e OpenCL = heterogeneous

4 of 19



Abstraction in GPU

e Allows programmer to focus on essence of parallel computing,
rather than language-specific accidental complexities of CUDA or
OpenCL

e Higher level similarity in program structure
e Duplicated code
e Need to support heterogeneous architecture

e Higher abstraction allows the programmer to focus on the
important issues while technical infrastructure is transparent
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Source code for Vector Addition

1 /*

2 * SEQUENTIAL CODE

3 */

4 floatx h_ A = (floatx*) malloc (mem_size_A);
5 floatx h_.B = (floatx) malloc (mem_size_B);
6 floatx h_C = (floatx) malloc (mem_size_C);
7

8 initarray(h_A,h_B);

9 sequentialAdd(h_A,h_B,h_C);

[
o

printArray(h_C);

e
N =

//Release Memory
free(h_A);
free(h_B);
free(h_C);
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-
CUDA and OpenCL

Five Steps

Allocate memory in host
Copy memory from host to device
Execute the kernel

Copy memory from device to host

o~ b

Release all memory

Host Code

Host Memory CPU |
i

yﬂ\el Code’/ ’ \ \

Device Memory T4 T3 T2 T1 TO
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API correspondence

\ Function \ CUDA \ OpenCL

Allocate Memory | cudaMalloc clCreateBuffer
clWriteBuffer

Transfer Memory | cudaMemcpy c1ReadBuffer
clEnqueueNDRange

Call Kernel

all ferne SSSXyees clSetKernelArg

Block Identifier | blockIdx get_group_id

Thread Identifier | threadIdx get_local_id

Release Memory | cudaFree clReleaseMemObject
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Source code comparison of parallel to sequential

/%
* PARALLEL CODE
*/

1
2
3
4
5 //Set GPU execution parameters
6 _GPUinit (16,16,4,4);

7 _XPUmalloc(h_A,6"float*" mem_size_A);

8 _XPUmalloc(h_B,"float*" ,mem_size_B);

9 _XPUmalloc(h_C,"float*" ,mem_size_C);

11 initarray(h_A,h_B);

12 _GPUcall("arrayAdd", in(h_A,h_B),out(h_C));
13 printArray(h_C);

15 //Release Memory
16 _XPUrelease();
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Generated code for CUDA and OpenCL

/%
* CUDA code _XPUmalloc(h_C,"float*",memsize_C)
*/

float* h_C = (float*) malloc (mem_size_C);

floatx _GEN_PREFIX17;
cutilSafeCall (cudaMalloc ((void*%)&_GEN_PREFIX17,
mem_size_C));

/*
* 0PenCL code _GPUcall("arrayAdd", in(h_A,h_B),out(h_C));
*/
err = clSetKernelArg(kernel[0],0,sizeof(cl_mem),&h_A);

err |= clSetKernelArg(kernel[0],1,sizeof(cl_mem),&h_B);
err |= clSetKernelArg(kernel[0],2,sizeof(cl_mem),&h_C);
assert (err = CL_SUCCESS);

clFinish(cmd_queue);

//Read the results back to host
err — clEnqueueReadBuffer(cmd_queue,h_C,CL_TRUE,O,mem_size_C,

(void x) _GEN_PREFIX20,
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Overview
Application
1. C Code with additional Ccode  Abstract APls
predefined functions
. pre-compiler
2. Function calls '
(Abstract APIs) COT parser
changed to GPU code l
3. Frequently used block Crite gieieior g Uills
1 o N
of code are saved as \ ‘\‘ ;
functions in Utils CUDA  OpencL
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Experimentation

| Application | CUDA | CPP | Abstr | # vars,lines | use |
Vector Addition 29 15 13 3,16 6
Matrix Multiplication 28 14 12 3,14 6
Scan Test Cuda 82 NA 72 1,10 12
Transpose 39 17 26 2,13 8
Template 25 13 13 2,12 6

Table: Source code analysis of CUDA, CPP and Abstract API
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Execution time comparison

0.5 T T T T
Hand written code
Generated code ==
0.4 e Generated code
Z7 03 performs as efficient
R as hand written for
o different problems

0
VecAdd MatrixMul Scan Transpose Templ
Applications
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Related Works

hiCUDA : Use directives in C code, tightly coupled with CUDA

CUDA-lite : Use annotations in base code, targeted for CUDA
programmers

CGIS : A new GPU programming language with support for many
devices, OpenCL not addressed

CUPP : A tool to integrate CUDA into existing C++ applications

Sh : Abstract layer for GPU languages but in graphics domain
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Conclusion and future work

Conclusion

e An approach to improve GPU programming
e Static code analysis for host code

* No Performance loss( hand written code versus generated code)

Future work

e Need to generate kernel code for complete evaluation

15 of 19
EEEEE————————————————————————



CUDACL: GPU programming in Eclipse IDE

[€ test.c (@ CSeRFileListenerjav (I] ParseHelper.java [@ MainVisitor.java (@ PartVisitorjava (@ NodeVisitorjava [E CLUDA Editor &2~ "3 = 0O

CLUDA Configuration

Parallel blocks - Variables
The list of parallel blocks from the file ArrayAdd.c Variables identified and classified by static code analysis
AmrayAdd Input Variables D adbdc

Output Variables Wc

Loop Variables [ j

~ GPU Execution parameters
Thread (work item) and block (work group) size
Thread(x) |256 | Thread(y) |001 Thread(z) |001

Block(x) [001]Block(y) [001]

@ use OpenCL API based on variable ‘:lz‘

» Linking sequential file

Code Generation
© cubA

© opencL Execute on the device :

© In same file

Generate code
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