THE UNIVERSITY OF

ALABAMA

COMPUTER SCIENCE

Design Patterns across the
Modeling Process

PAME Workshop — MODELS 2016

Jeff Gray
University of Alabama
Department of Computer Science

With special thanks to
Huseyin Ergin, Eugene Syriani, and Hyun Cho

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

>
o
Z
i
-
Lo
e
‘};:
o
A
Fd
-
e
P
s
=z
L

Gl st B A BA T, Escher / Caorrhon At - Baam - Hiollamd. ATl rights meseryrd,

Foreword by Grady Booch

Copyrighted Material

Average Customer Review: {ricdcdcsds (457 customer reviews)

Amazon Bga\ Sellers Rank: #5 758 in Books (See Top 100 in Books)

\ Books > Computers & Technology = Programming > Software Design, Testing & Engineering > Software Reuse

Books = Computers & Technology = Computer Science = Al & Machine Leamning > Computer Vision & Pattern Recognition
Books > Textbooks > Computer Science > Object-Oriented Software Design

The “Alexandrian” Definition

Each pattern describes a problem

which occurs over and over again in our
environment,

and then describes
the core of the solution to that problem,

In such a way that

you can use this solution a million times over,

without ever doinq it the same way twice

C. Alexander, “The Timeless Way of Building,” 1979

Must see video: PAME missed Alexander’s 80"
http://bit.ly/alexander-oopsla96 Birthday by one day!

What Makes a Pattern a “Pattern” ?

Pattern characteristics...

e ...itshould solve a problem
— i.e., it should be useful

= . Instructional/educational
» provides sufficient

e ..it has adefinable context description to customize the
— it describes where the solution
solution can be applied
e ..itisrecurring = . distinct name
— relevant in many situations » referred consistently

“Patterns don’t give you code you can drop into your
application, they give you experience you can drop into
your head.” Patrick Logan

Learn the rules and physical requirements

e e.g., pieces, legal movements, chess board
geometry and orientation.

Pieces and Point Value

Learn the principles -~
e e.g., relative value of certain pieces, strategic Knight

values of center squares, power of a threat o
etc. Queen

King

Bishop

o L Lo =

9

priceless

I IE IDE o B Dor

To become a master, one must study the
games of other masters
* these games contain patterns that must be

understood, memorized and applied
repeatedly

There are hundreds, if not thousands, of such
patterns

Becoming a Software Design Master

Top 1 algorithms
every programmer should know about

First learn the rules

* e.g., the algorithms, data structures
and languages of software

Then learn the principles
e e.g., principles that govern different
programming paradigms

e structured, modular, object-oriented,
etc

To truly master software design,
one must study the design of
other masters

* these designs contain patterns that
must be understood, memorized and
applied repeatedly

There are thousands of these
patterns

Search Algorithms e

LEARN DATA STRUCTURE

organizing data

Patterns for Modeling

 What about modeling...

* Areas where students or first-learners may
struggle, and could benefit from experiential
reuse
— Metamodel Patterns: assist students who are

designing their first modeling language through a
metamode

— Transformation Patterns: provide guidance to
those learning to write model transformations

DSML Development Challenge

e Often requires familiarity of
domain knowledge and
language design expertise

Quality of DSML
Implementation &
Maintenance

Quality of Domain
Understanding

Programming
Language
Development

Experts Develop Inaccurate

DSML due to
miscommunication

Increase
development cost

Experts who have both domain knowledge and language
development expertise

Marjan Mernik, Jan Heering, and Anthony M. Sloane, “When and How to Develop Domain-Specific
Languages,” ACM Computing Surveys, vol. 37, no. 4, December 2005, pages 316-344.

Metamodel Design Patterns

e Metamodels can be designed by reusing existing
metamodel concepts that represent commonly recurring
metamodel design concepts across multiple domains.

e Such reuse of metamodeling experience may improve
the quality of metamodel design as well as achieve a
significant increase in productivity in the development of
DSMLs. Perhaps most importantly, metamodel patterns
provide a great educational/instructional tool for those
new to MDE.

Hyun Cho and Jeff Gray, “Design Patterns for Metamodels,” 11t Workshop on
Domain-Specific Modeling (DSM), held at SPLASH 2011, Portland, OR, October 2011, pp.
25-32.

An Approach for ldentifying
Metamodel Design Patterns

Collect various types of DSMLs; examine
concrete syntax of sample instances to
observe emergent classifiers and relations

ldentify characteristics of each DSML and its
modeling elements/relations

Analyze commonality of DSMLs

ldentify candidate metamodel design
problems

Collect and review metamodel samples
Propose metamodel design patterns

Collection of DSMLs Examined

Domain Diagrams Brief Description
Concurrent Discrete Petri Net Modeling systems with concurrency and resource sharin
Event System Modeling &3y Y g
Data Modeling ERD Model the logical structure of database

Model project activities with relevant information (i.e.,

Gantt Chart .
duration, cost, ...)

Project Management
Identify the critical path of the project by modeling the

PERT Chart
sequence of tasks

Represent how electronic components are connected

Schematic Diagram with others

Electronic Circuit Design
Show the placement of electronic components on

PCB Layout . o
y printed circuit board
Molecular Modeling - Model the structures and reactions of molecules
Flowchart Model process or algorithm

Represent static structure of components and their

Component Diagram .
relations

SW Design Describe system functionalities or behaviors with

UseCase Diagram ;.. case and Actor

Describe the static structure of the system in terms of

Class Diagram
classes

|dentify Characteristics of DSMLs

e Classifiers and relations

Entity (Classifier)

T

Database

Input Gu1nut4>{ Customer

Relationship

12

|dentify characteristics of DSMLs

e Electronic Circuit Design: Palm Ill Charger

Dz
. TH4001
! . .
i Schematic Diagram
R5
91 SB0R U1
1 7
WLIMIT REF
DI Wi
green 4
BATT+ Wi
3
PGMD DRV
_4

PGM1T GMD

R& c1 5
470R 1uF THI BATT-
—_ cz '
R3 4 8 g ce |2 10nF|
D
¥ 7
8

Lo !

B3k 3 | i
] Ds I

Ellow 1 : TH4007 ;

TEMP PGM3 : 1

R4 v 3 | 2" A A A= NIMH)
FASTCHG PGME2 | i

22k by | ;
MAX F12 E e}éists 3

| aiready h
' inside PalmPilot |

() 1999 Till Harbamm

Images are copied from http://www.harbaum.org/till/palm/cradle/index.html13

|dentify characteristics of DSMLs (cont.)

e Component Diagram

Datafcoess ‘£
= Facilitics -

Faeﬂ‘ﬁes I—. i
5 L

-

-
-
~ Datafccess

Student

Seminar
Management
<<application>>

B -

PSS,

UML 2.x

-
o) /\/
P
s
Student S Datafcgess s
-
Administration . * Schedule K-
<<application=> T .§f?1*3 & :
| I

Security
=<infrastructures=:=

Persistence
=<infrastructure=>=

|
[University DB JDBC
i niversity _(&)

Seminar il -

Student EI

R 1] S

Administration — —

UML 1.x

Dratady
atafcocess

Facilities,
= —
-

g]

Facilitics

Datafccess

g]

Encryption
0_

Accass Control

N
— ey |

Management Student
<<l =
Y ""‘-Studeg;s
N
N ™
N e 0
Dalaﬁo{:‘ﬁsao_ Seminar

N,

Dataf
Schedule

LLCompongnt=>

Schedule

le

Images are copied from http://www.agilemodeling.com/artifacts/componentDiagram.htm

Security
=<infrasiruciure==

Persistence

g

Persistence
<<infrastruciure==

[

|
il
<<requires==>

SN
— |
University DR
<clduinbase==

JOBC

|dentify characteristics of DSMLs (cont.)

e Component Diagram

id Palicy Admin Components Wiring]

PalicySemce IProductSesnci
0 i
el RulsExecptonAPl
\]1'; RuleEnatut ot
{1 = q]
Aplication ¢ olicy Aumin i TS
Indrastiscture Components:
, adelegaten LTIy
cdelegales
RulExecutonAF]
T _ RulsExecjonAPl
B
Application C be: g g % b3 T 2l :
jan Camponent: lealion C. 7]]
Urhlasweiting & Rating App R 3 |3 el St
Engine =] Application Compenentss: =
ﬂwngér ce Pullt'fsiwl J} W:caw:wfmmr E L TEEARD =z
/@/ IiGeneratipnSerice E
ﬂ‘almg;Fn-cu Wiradarwiti et dhitk chints EI
IUB'""""'”‘F‘“' ProdbciBaice Applicailen Components:
wweh sarices ﬂ Product Admin N
Comp olicy \Eok athon Clents
P by Semice IPolicySerice Applcytien Camponenic: chelegeter &
J\ Fnlmssmcinnsmce Palicy Admin U1
agee ortinlSerace
DocurenlAdeessAlRi w,mst:oi\mlsmca
FomsSelactionSenice
Application Compomunts::
cdikigatas adaipgatis
[Foumrs Management it
Du:umNﬂjfls:APl Fn.msuﬁgmaus r
adalegates w/f
|
‘l—‘ o cLDAP

Infrasiimciure Conpomnents:

Dincumantige sl JH
Diractery Server
Dwumﬁﬁﬁf.tﬂwl lccesiComalSemcn l-\:c-l-s:Cjn’.mrS-lmrp 0TS £ §
—

g] | Infrastnwcture Camponents:
<CO0TEs Application Compenents: ldentity Mamagansant JHD
Mocess Contral

Indiastischir e Tompomentis;
Decumem Managensent
i M”"M "’_-\.a.ﬁ t‘“ﬂhuuz%-:W| AuthertichtionsFl

Image is copied from http://blogs.uis.edu/group8/files/2011/07/800px-Policy_Admin_Component_Diagramlpng

|dentify characteristics of DSMLs (cont.)

 Use Case Diagram

Registrar Applicant

Enroll in _{"‘TG'E’E_”_ Enroll in
University Seminar
Student |
n
{{extehd}}
|
|
(} FE [
G i
International
Student Copyright 2004 Scott W, Ambler

Image is copied from http://www.agilemodeIing.com/artifacts/useCaseDiagramlrétm

Features of DSMLs

Questions for ldentifying
Candidate Patterns

What could be a primitive or base metamodel pattern,
which could be common ground for metamodel
design?

How to extend the base metamodel if a DSML has
complicated language constructs?

— For example, a DSML can have typed relationships such as
include and extend in a Use Case diagram.

How to represent boundedness in the metamodel?

How to design the metamodel to describe
containment and nesting?

Base Metamodel Pattern

What could be a primitive or base metamodel pattern,
which could be common ground for metamodel design?

How to represent boundedness in a metamodel?

Applicable for simple Box-and-Line style DSMLs
— Most common pattern for early stage of DSML development
— Useful for Prototyping DSML

Classifier | source Relationship Classifier | source Relationship
1% * 1,..*
target target
1'...,* * 0,__'*

(a) Modified BPMN p92 (b) Modified Bender et el.
metamodel design

19

Metamodel with (sub)types Pattern

e How to extend the base metamodel if a DSML has
complicated language constructs?

e Extension of base metamodel design pattern
— Add more expressiveness to DSMLs

— Semantics of each relationship is required to enforce
behaviors and properties

e Evaluation Point
— Association point between Classifiers and Relationships

Containment/Nesting Pattern

e How to desigh the metamodel to describe
containment and nesting?

e Some DSMLs may contain or nest modeling elements
to control the abstraction level

— Can focus on core intent by eliminating unnecessary
details or give more descriptions by showing details

e Evaluation Point
— Comprehensibility and Extendibility

Application of Metamodel
Design Patterns

e Composition-based metamodel development

Expected benefits of
Metamodel Design Patterns

Avoid duplication of metamodel design for recurring
design problems

Keep high quality metamodel fragments

Guide and Recognize key patterns and best-practices
of metamodel design

Reduce time-to-market for developing new DSMLs

Examples from Yesterday

 Antonio Garmendia’s Doctoral Symposium talk

— Patterns focused on scalability support for DSLs
* Modularity

* Filter
* Scoping
— Additional pattern of interest
* Integrating different DSLs (Juergen Dingel)

Related Work — Metamodel Patterns

 Ana Pescador, Antonio Garmendia, Esther Guerra, Jesus
Sanchez Cuadrado, and Juan de Lara, “Pattern-based
Development of Domain-specific Modelling Languages,”
Model Driven Engineering Languages and Systems (MODELS),
October 2015, Ottawa, Canada, pp. 166-175.

e Antonio Garmendia, Ana Pescador, Esther Guerra, Juan de
Lara: Towards the Generation of Graphical Modelling
Environments Aided by Patterns. SLATE 2015: 160-168

Model Transformation Design Patterns

e Model transformations often have commonly recurring
themes that can be captured as patterns. Idioms may
also exist for specific transformation languages that can
be described and reused.

e The reuse of transformation knowledge captured in
design patterns may give insight to those who are
learning a new transformation language and associated
tooling.

Huseyin Ergin, Eugene Syriani, and Jeff Gray, “Design Pattern Oriented Development of
Model Transformations,” Computer Languages, Systems & Structures, Volume 46, November
2016, pp. 106-139.

NOT ALWAYS EASY...

e Excerpts from solutions in various MTLs.
FunnyQT!2!

19 (defmacro define-group-rule [n]

GrGen.NET!l

rule findCouples

{
pnl:Person; pn2:Person;
independent {

pnl -:personToMovie-> ml:Movie <-:personToMovie- pn2;

pnl -:personToMovie-> m2:Movie <-:personToMovie- pn2;

pnl -:personToMovie-> m3:Movie <-:personToMovie- pn2;
modify {

c:Couple;

¢ -:pl-> pnl;
c -:p2-> pn2;

exec(addCommonMoviesAndComputeAverageRanking(c, pnl,

}

} \ auto

pn2));

20
21

(let [psyms (map #(symbol (str "p" %)) (range n))]
‘(ip/defrule ~(symbol (str "make-groups-of-" m "!"))
{:forall true :no-result-vec true}
[“’model ~’c]
[“’m<Movie>
:when (>= (person-count ~’m) “n)
“@(mapcat (fn [i]
(let [ps (nth psyms i)]
‘["’m -<persons>-> “ps
:when (>= (movie-count “ps) ~’c)}
“@(when-not (zero? i)
‘[:when (neg? (compare (emf/eget-raw ~(nth psyms (dec i)) :name)
(emf/eget-rav “ps :name)))]
“@(when-not (or (zero? i) (= i (dec n)))
“[:when (n-common-movies? ~’c ~@(take (inc i) psyms))]1)1))
(range n))
:when-let [“’cms (n-common-movies? ~’c ~@psyms)]
:as [“?cms ~@psyms]
:distinct]

15 LHS

IREGE

perl : Person

]

per2 : Person

]

M perl.movies- »intersection(per2.movies)- »sizef) »= 3

perl : Person

]

c pl p2

coupleHasMotBeenCreated

perl : Person

aCouple

a0

per2 : Person

commonMovies = perl.moves->intersection(perd.movies)

[1] GeiB, R. and Kroll, M. (2008) GrGen. net: A fast, expressive, and general purpose graph rewrite tool. Applications of Graph
Transformations with Industrial Relevance, pp. 568-569. Springer.

[2] Tassilo Horn. Model querying with funnyqt - (extended abstract). In Keith Duddy and Gerti Kappel, editors, ICMT, volume 7909 of Lecture

Notes in Computer Science, pages 56-57. Springer, 2013.

[3] Rivera, J.E., Dur’an, F.,, Vallecillo, A.: On the behavioral semantics of real-time domain specific visual languages. In: WRLA. pp. 174-190

(2010)

[~

27

Presenter
Presentation Notes
Explain it is not trivial to come up with these solutions

TRANSFORMATION PATTERNS

Inexperienced model transformation developers
may benefit from transformation design patterns

Requires:

1. Finding the appropriate language to define model
transformation design patterns.

2. ldentifying design patterns from existing transformation
solutions.

Presenter
Presentation Notes
Now I will explain what I did in order to reach these goals.

First lets have some brief background information on Model Driven Engineering, Model Transformation and Design Patterns.

DELTA

* A language to express model transformation design patterns.

* Features:
— Facilitate, reason, understand, document in a standard way!*!
— Independent from existing model transformation languages (MTL).

— Helps to document and specify the entities and collaborations in a model
transformation design pattern.

e DelTa (Design pattern language for model Transformation)
— Offers concepts from existing MTLs.
— Abstracts away MTL-specific concepts.

— Expresses design patterns rather than model transformations.

[1] Syriani, E. and Gray, J. (2012) Challenges for Addressing Quality Factors in Model Transformation. Software Testing, Verification and
Validation, ICST’12, pp. 929-937. IEEE.

Presenter
Presentation Notes
Now, first I designed a language to express model transformation design patterns.

I could have used an existing MTL as a notation, however this can lead developers to think
the language itself is a transformation language and executable.

This is what I will present in 20 days in ICMT, which is a big conference in model transformation area.

DELTA METAMODEL

ModelTransformationDesignPattern

name : String

— T

Transformation | | Transformation | | Pattern

Unit

UnitRelation Metamodel

| l name : String
Annotation —

*

note : String

<— DesignPattemElement

TransformationUnit

dedarations

name : String

*

¥

TransformationUnitRelation

T T R

Decision Sequence | |Choice Parallel

SR =

EF NoSched

=

1 1 24 2¢| 2%
Y Y v ¥
IransformationUnit

PattemMetamodel
T}’pE‘ name : 5tring
name : String
1.“. R .
| S0UNCE 'I, |
Trace [weer 1, | Hlement
T 1
Variable | <l e |
1 Entity| .1 wge |Relation
v
lag Profile
name : $tring name : String
negation : boolean description : String
— 1
ConditionTag
1
ActionTag

i

Variable

Rule

isExhaustive : boolean

exists : boolean
name: 5tring

L 2

» Action
0.1

B Constraint ——

T =

- > NegativeConstraint

qroup :int

L

*

opergtesOn

Expression

v

DesignPattern
Element

+ 7| ForbiddenConstraint

PseudolUnit

T]

END

START

result : boolean

S

Huseyin Ergin, Eugene Syriani, and Jeff Gray, “Design Pattern Oriented Development of
Model Transformations,” Computer Languages, Systems & Structures, Volume 46, November

2016, pp. 106-139.

30

SAMPLE DESIGN PATTERN

* Top-down Phased Construction!l:

— Summary:

= Separates the transformation into phases depending on
how the target model is composed.

— Application conditions: < E%
= When there is a composition hierarchy in the source P
metamodel and the sub-element is mandatory in that t
relation. N
sSub
— Examples:

* The UML class diagram to relational database diagrams; we
first use classes to create tables, and then use attributes to
create columns.

[1]: Lano, K.; Kolahdouz-Rahimi, S., "Model-Transformation Design Patterns," Software Engineering, IEEE Transactions on , vol.40, no.12,

pp.1224,1259, Dec. 1 2014

SAMPLE DESIGN PATTERN

— Solution: The transformation is split into two phases. In the formerPhase
rule, the target element corresponding to the super-element in the source is
first created. In the latterPhase rule, target elements corresponding to the
sub-elements in the source are then created.

Top-down
Phased Construction
(src, trgt)

formerPhase

\SI)

latterPhase

sSuper}- '"?gu

bt
per

A

\srq]

sSub

\SI¢

A 4

o]
sSub [~

Nt
tSuper

_.©

0 \Gdt
tSub

— Benefits: This pattern improves the modularity of the rules, letting each rule
create one layer of target elements.

— Disadvantages: Because the rules are broken into phases, the number of

overall rules will increase.

FIXED-POINT ITERATION PATTERN

e Summary:

— Represents an iteration with a "do-until” loop structure.

— Modifies the input model iteratively until a condition is satisfied.
e Application Conditions:

— Applicable when the problem can be solved iteratively until a fixed point is
reached.

— Each iteration must perform the same modification on the model, possibly

at different locations: either adding new elements, removing elements, or
modifying attributes.

e Examples:

— computing the lowest-common ancestor of nodes in a directed tree
— finding the equivalent resistance in an electrical circuit

— finding the shortest path using Dijkstra's algorithm

FIXED-POINT ITERATION PATTERN IN DELTA

Fixed Point -

Iteration{mm] "

® Elemenﬂ

mark

—
element2

mark

|:he-:b:Fim1 Paint |
- =)
fixedPoint =
—™ marked
fil
1) (o]
SUCCESS Delete
I.-'ru{ih'| %
e anElement
il elementToModify L
® marked : \m
modify elementToDelete
[{reate |
anElement {,__\ : ToC !‘
—— elementloCreate

34

FIXED-POINT ITERATION PATTERN

e Summary:

— Represents a iteration with a "do-until" loop structure.

— Modifies the input model iteratively until a condition is satisfied.
e Application Conditions:

— Applicable when the problem can be solved iteratively until a fixed point is
reached.

— Each iteration must perform the same modification on the model, possibly

at different locations: either adding new elements, removing elements, or
modifying attributes.

e Examples:

— computing the lowest-common ancestor of nodes in a directed tree
— finding the equivalent resistance in an electrical circuit

— finding the shortest path using Dijkstra's algorithm

TRANSFORMATION GENERATOR

{#] DelTa Model Generator Ul -

Generate Models from Design Patterns

Selected design pattern | Entity Before Relation _ e Show Design Pattern Details Participant Customizations
Metamodels
8src
trat
W Rule entityMapping
sent| tEnt sert
o— % : ¢ @ =
SEn Y — \i Rule relationMapping
SEntl tEnﬂ relationapping
sEnt2
tEnt2
relation sEnt sEnt2
relation tEnt tEnt2

Targetlanguage | GrGen.NET w Generate Transformation Model

[~

Related Work — Transformation Patterns

e Agrawal, A. (2005) Reusable Idioms and Patterns in Graph Transformation
Languages. International Workshop on Graph-Based Tools, ENTCS, 127,
pp. 181-192. Elsevier.

e QGuerra, E., de Lara, J., Kolovos, D., Paige, R., and dos Santos, O. (2013)
Engineering model transformations with transML. Software and Systems
Modeling, 12, 555-577.

 Lano, K., Kolahdouz-Rahimi, S., "Model-Transformation Design
Patterns," Software Engineering, IEEE Transactions on , vol. 40, no. 12,
December 2014, pp. 1224-1259.

— A catalog of 29 transformation patterns

* Lano, K., Kolahdouz-Rahimi, S., Poernomo, I., Terrell, J., Zschaler, S.,
“Correct-by-construction Synthesis of Model Transformations using
Transformation Patterns,” Software and System Modeling, Volume 13,
Number 2, June 2014, pp. 873-907.

Conclusion

Defining metamodels for new languages, and the
transformations that evolve their model instances, is
not an easy task for inexperienced or new modelers

The long-known benefits of design patterns seem to
have an obvious advantage also with MDE

Pedagogical needs for teaching MDE can be a source
for additional investigation in MDE patterns

Perhaps the main benefit will be the capture of
experiential reuse, with automated tooling a
secondary concern

Thank you for your attention

EXISTING TEMPLATES

Unified template Bezivin Levendovsky Agrawal lacob Lano Ergin GoF meaning
. — . Goal o Intent
Summary Maotivation Motivation Maotivation — Summary Maotivation
Muotivation
Application condition Applicability Applicability |Applicability |Application conditions Applicability Applicability
Solution Solution Structure Structure Specification |Solution Structure Structure
Benefits Benefits Benefits
- Consequences |Consequences — - Consequences

Disadvantages Limitations Disadvantages

Known uses Known uses N Examples Known uses
Example Example Application and examples -

Implementation Sample code

Implementation Variations Implementation
Related patterns Variations Related patterns Related patterns

e Existing model transformation design pattern (MTDP) studies.
— Not all of them call themselves MTDP though.

— The separation between reusable idioms, patterns, design patterns.

e But the inconsistency is clear.

e Unification will help what is expected from a pattern and what are
the outcomes.

[~

	Design Patterns across the �Modeling Process
	Slide Number 2
	�The “Alexandrian” Definition
	What Makes a Pattern a “Pattern” ?
	An Analogy: Becoming a Chess Master
	Becoming a Software Design Master
	Patterns for Modeling
	DSML Development Challenge
	Metamodel Design Patterns
	An Approach for Identifying �Metamodel Design Patterns
	Collection of DSMLs Examined
	Identify Characteristics of DSMLs
	Identify characteristics of DSMLs
	Identify characteristics of DSMLs (cont.)
	Identify characteristics of DSMLs (cont.)
	Identify characteristics of DSMLs (cont.)
	Features of DSMLs
	Questions for Identifying �Candidate Patterns
	Base Metamodel Pattern
	Metamodel with (sub)types Pattern
	Containment/Nesting Pattern
	Application of Metamodel �Design Patterns
	Expected benefits of �Metamodel Design Patterns
	Examples from Yesterday
	Related Work – Metamodel Patterns
	Model Transformation Design Patterns
	Not always easy…
	Transformation patterns
	DelTa
	DELTA metamodel
	Sample design pattern
	Sample design pattern
	Fixed-Point Iteration Pattern
	Fixed-Point Iteration Pattern in DELTA
	Fixed-Point Iteration Pattern
	Transformation generator
	Related Work – Transformation Patterns
	Conclusion
	Thank you for your attention
	Existing Templates

