
Design Patterns across the
Modeling Process

PAME Workshop – MODELS 2016

Jeff Gray
University of Alabama

Department of Computer Science

With special thanks to
Huseyin Ergin, Eugene Syriani, and Hyun Cho

The “Alexandrian” Definition
Each pattern describes a problem

which occurs over and over again in our
environment,

and then describes
the core of the solution to that problem,

in such a way that
you can use this solution a million times over,

without ever doing it the same way twice

C. Alexander, “The Timeless Way of Building,” 1979

Must see video:
http://bit.ly/alexander-oopsla96

PAME missed Alexander’s 80th

Birthday by one day!

What Makes a Pattern a “Pattern” ?
Pattern characteristics…

• ...it should solve a problem
– i.e., it should be useful

• ...it has a definable context
– it describes where the

solution can be applied

• ...it is recurring
– relevant in many situations

 ... instructional/educational
provides sufficient

description to customize the
solution

 ... distinct name
 referred consistently

“Patterns don’t give you code you can drop into your
application, they give you experience you can drop into
your head.” Patrick Logan

An Analogy: Becoming a Chess Master
• Learn the rules and physical requirements

• e.g., pieces, legal movements, chess board
geometry and orientation.

• Learn the principles
• e.g., relative value of certain pieces, strategic

values of center squares, power of a threat
etc.

• To become a master, one must study the
games of other masters
• these games contain patterns that must be

understood, memorized and applied
repeatedly

• There are hundreds, if not thousands, of such
patterns

Becoming a Software Design Master
• First learn the rules

• e.g., the algorithms, data structures
and languages of software

• Then learn the principles
• e.g., principles that govern different

programming paradigms
• structured, modular, object-oriented,

etc

• To truly master software design,
one must study the design of
other masters
• these designs contain patterns that

must be understood, memorized and
applied repeatedly

• There are thousands of these
patterns

Patterns for Modeling

• What about modeling…
• Areas where students or first-learners may

struggle, and could benefit from experiential
reuse
– Metamodel Patterns: assist students who are

designing their first modeling language through a
metamodel

– Transformation Patterns: provide guidance to
those learning to write model transformations

7

DSML Development Challenge
• Often requires familiarity of

domain knowledge and
language design expertise

8

Domain
Experts

Programming
Language

Development
Experts

Experts who have both domain knowledge and language
development expertise

Quality of DSML
Implementation &
Maintenance

Quality of Domain
Understanding

Marjan Mernik, Jan Heering, and Anthony M. Sloane, “When and How to Develop Domain-Specific
Languages,” ACM Computing Surveys, vol. 37, no. 4, December 2005, pages 316-344.

Increase
development cost

Develop Inaccurate
DSML due to
miscommunication

Metamodel Design Patterns

• Metamodels can be designed by reusing existing
metamodel concepts that represent commonly recurring
metamodel design concepts across multiple domains.

• Such reuse of metamodeling experience may improve
the quality of metamodel design as well as achieve a
significant increase in productivity in the development of
DSMLs. Perhaps most importantly, metamodel patterns
provide a great educational/instructional tool for those
new to MDE.

9

Hyun Cho and Jeff Gray, “Design Patterns for Metamodels,” 11th Workshop on
Domain-Specific Modeling (DSM), held at SPLASH 2011, Portland, OR, October 2011, pp.
25-32.

An Approach for Identifying
Metamodel Design Patterns

10

• Collect various types of DSMLs; examine
concrete syntax of sample instances to
observe emergent classifiers and relations

• Identify characteristics of each DSML and its
modeling elements/relations

• Analyze commonality of DSMLs
• Identify candidate metamodel design

problems
• Collect and review metamodel samples
• Propose metamodel design patterns

Collection of DSMLs Examined

11

Domain Diagrams Brief Description

Concurrent Discrete
Event System Modeling Petri Net Modeling systems with concurrency and resource sharing

Data Modeling ERD Model the logical structure of database

Project Management
Gantt Chart Model project activities with relevant information (i.e.,

duration, cost, …)

PERT Chart Identify the critical path of the project by modeling the
sequence of tasks

Electronic Circuit Design
Schematic Diagram Represent how electronic components are connected

with others

PCB Layout Show the placement of electronic components on
printed circuit board

Molecular Modeling - Model the structures and reactions of molecules

SW Design

Flowchart Model process or algorithm

Component Diagram Represent static structure of components and their
relations

UseCase Diagram Describe system functionalities or behaviors with
UseCase and Actor

Class Diagram Describe the static structure of the system in terms of
classes

Identify Characteristics of DSMLs

12

• Classifiers and relations

Entity (Classifier)

Relationship

Identify characteristics of DSMLs

13

• Electronic Circuit Design: Palm III Charger

Schematic Diagram

PCB Layout Diagram

Images are copied from http://www.harbaum.org/till/palm/cradle/index.html

Identify characteristics of DSMLs (cont.)

14

• Component Diagram

UML 1.x

UML 2.x

Images are copied from http://www.agilemodeling.com/artifacts/componentDiagram.htm

Identify characteristics of DSMLs (cont.)

15

• Component Diagram

Image is copied from http://blogs.uis.edu/group8/files/2011/07/800px-Policy_Admin_Component_Diagram.png

Identify characteristics of DSMLs (cont.)

16

• Use Case Diagram

Image is copied from http://www.agilemodeling.com/artifacts/useCaseDiagram.htm

Features of DSMLs

17

Questions for Identifying
Candidate Patterns

18

• What could be a primitive or base metamodel pattern,
which could be common ground for metamodel
design?

• How to extend the base metamodel if a DSML has
complicated language constructs?
– For example, a DSML can have typed relationships such as

include and extend in a Use Case diagram.

• How to represent boundedness in the metamodel?

• How to design the metamodel to describe
containment and nesting?

Base Metamodel Pattern

19

• What could be a primitive or base metamodel pattern,
which could be common ground for metamodel design?

• How to represent boundedness in a metamodel?
• Applicable for simple Box-and-Line style DSMLs

– Most common pattern for early stage of DSML development
– Useful for Prototyping DSML

Classifier Relationshipsource

target

1,…,*

1,…,* *

*
Classifier Relationshipsource

target

1,..,*

0,..,* *

*

(a) Modified BPMN p92 (b) Modified Bender et el.
metamodel design

Metamodel with (sub)types Pattern

20

• How to extend the base metamodel if a DSML has
complicated language constructs?

• Extension of base metamodel design pattern
– Add more expressiveness to DSMLs
– Semantics of each relationship is required to enforce

behaviors and properties

• Evaluation Point
– Association point between Classifiers and Relationships

Containment/Nesting Pattern

21

• How to design the metamodel to describe
containment and nesting?

• Some DSMLs may contain or nest modeling elements
to control the abstraction level
– Can focus on core intent by eliminating unnecessary

details or give more descriptions by showing details

• Evaluation Point
– Comprehensibility and Extendibility

Application of Metamodel
Design Patterns

22

• Composition-based metamodel development

Expected benefits of
Metamodel Design Patterns

23

• Avoid duplication of metamodel design for recurring
design problems

• Keep high quality metamodel fragments

• Guide and Recognize key patterns and best-practices
of metamodel design

• Reduce time-to-market for developing new DSMLs

Examples from Yesterday

24

• Antonio Garmendia’s Doctoral Symposium talk
– Patterns focused on scalability support for DSLs

• Modularity
• Filter
• Scoping

– Additional pattern of interest
• Integrating different DSLs (Juergen Dingel)

Related Work – Metamodel Patterns

25

• Ana Pescador, Antonio Garmendia, Esther Guerra, Jesús
Sánchez Cuadrado, and Juan de Lara, “Pattern-based
Development of Domain-specific Modelling Languages,”
Model Driven Engineering Languages and Systems (MODELS),
October 2015, Ottawa, Canada, pp. 166-175.

• Antonio Garmendia, Ana Pescador, Esther Guerra, Juan de
Lara: Towards the Generation of Graphical Modelling
Environments Aided by Patterns. SLATE 2015: 160-168

Model Transformation Design Patterns

• Model transformations often have commonly recurring
themes that can be captured as patterns. Idioms may
also exist for specific transformation languages that can
be described and reused.

• The reuse of transformation knowledge captured in
design patterns may give insight to those who are
learning a new transformation language and associated
tooling.

26

Huseyin Ergin, Eugene Syriani, and Jeff Gray, “Design Pattern Oriented Development of
Model Transformations,” Computer Languages, Systems & Structures, Volume 46, November
2016, pp. 106-139.

• Excerpts from solutions in various MTLs.
GrGen.NET[1] FunnyQT[2]

e-Motions[3]

27

[1] Geiß, R. and Kroll, M. (2008) GrGen. net: A fast, expressive, and general purpose graph rewrite tool. Applications of Graph
Transformations with Industrial Relevance, pp. 568–569. Springer.
[2] Tassilo Horn. Model querying with funnyqt - (extended abstract). In Keith Duddy and Gerti Kappel, editors, ICMT, volume 7909 of Lecture
Notes in Computer Science, pages 56–57. Springer, 2013.
[3] Rivera, J.E., Dur´an, F., Vallecillo, A.: On the behavioral semantics of real-time domain specific visual languages. In: WRLA. pp. 174–190
(2010)

NOT ALWAYS EASY…

Presenter
Presentation Notes
Explain it is not trivial to come up with these solutions

TRANSFORMATION PATTERNS

Requires:

1. Finding the appropriate language to define model
transformation design patterns.

2. Identifying design patterns from existing transformation
solutions.

28

Inexperienced model transformation developers
may benefit from transformation design patterns

Presenter
Presentation Notes
Now I will explain what I did in order to reach these goals.First lets have some brief background information on Model Driven Engineering, Model Transformation and Design Patterns.

DELTA
• A language to express model transformation design patterns.

• Features:
– Facilitate, reason, understand, document in a standard way[1]

– Independent from existing model transformation languages (MTL).

– Helps to document and specify the entities and collaborations in a model
transformation design pattern.

• DelTa (Design pattern language for model Transformation)
– Offers concepts from existing MTLs.

– Abstracts away MTL-specific concepts.

– Expresses design patterns rather than model transformations.

29
[1] Syriani, E. and Gray, J. (2012) Challenges for Addressing Quality Factors in Model Transformation. Software Testing, Verification and
Validation, ICST’12, pp. 929–937. IEEE.

Presenter
Presentation Notes
Now, first I designed a language to express model transformation design patterns.I could have used an existing MTL as a notation, however this can lead developers to thinkthe language itself is a transformation language and executable.This is what I will present in 20 days in ICMT, which is a big conference in model transformation area.

DELTA METAMODEL

30

Huseyin Ergin, Eugene Syriani, and Jeff Gray, “Design Pattern Oriented Development of
Model Transformations,” Computer Languages, Systems & Structures, Volume 46, November
2016, pp. 106-139.

SAMPLE DESIGN PATTERN
• Top-down Phased Construction[1]:

– Summary:
 Separates the transformation into phases depending on

how the target model is composed.
– Application conditions:
 When there is a composition hierarchy in the source

metamodel and the sub-element is mandatory in that
relation.

– Examples:
 The UML class diagram to relational database diagrams; we

first use classes to create tables, and then use attributes to
create columns.

31
[1]: Lano, K.; Kolahdouz-Rahimi, S., "Model-Transformation Design Patterns," Software Engineering, IEEE Transactions on , vol.40, no.12,
pp.1224,1259, Dec. 1 2014

SAMPLE DESIGN PATTERN
– Solution: The transformation is split into two phases. In the formerPhase

rule, the target element corresponding to the super-element in the source is
first created. In the latterPhase rule, target elements corresponding to the
sub-elements in the source are then created.

– Benefits: This pattern improves the modularity of the rules, letting each rule
create one layer of target elements.

– Disadvantages: Because the rules are broken into phases, the number of
overall rules will increase.

32

FIXED-POINT ITERATION PATTERN
• Summary:

– Represents an iteration with a "do-until" loop structure.

– Modifies the input model iteratively until a condition is satisfied.

• Application Conditions:
– Applicable when the problem can be solved iteratively until a fixed point is

reached.

– Each iteration must perform the same modification on the model, possibly
at different locations: either adding new elements, removing elements, or
modifying attributes.

• Examples:
– computing the lowest-common ancestor of nodes in a directed tree

– finding the equivalent resistance in an electrical circuit

– finding the shortest path using Dijkstra's algorithm

33

FIXED-POINT ITERATION PATTERN IN DELTA

34

FIXED-POINT ITERATION PATTERN
• Summary:

– Represents a iteration with a "do-until" loop structure.

– Modifies the input model iteratively until a condition is satisfied.

• Application Conditions:
– Applicable when the problem can be solved iteratively until a fixed point is

reached.

– Each iteration must perform the same modification on the model, possibly
at different locations: either adding new elements, removing elements, or
modifying attributes.

• Examples:
– computing the lowest-common ancestor of nodes in a directed tree

– finding the equivalent resistance in an electrical circuit

– finding the shortest path using Dijkstra's algorithm

35

TRANSFORMATION GENERATOR

36

Related Work – Transformation Patterns

37

• Agrawal, A. (2005) Reusable Idioms and Patterns in Graph Transformation
Languages. International Workshop on Graph-Based Tools, ENTCS, 127,
pp. 181–192. Elsevier.

• Guerra, E., de Lara, J., Kolovos, D., Paige, R., and dos Santos, O. (2013)
Engineering model transformations with transML. Software and Systems
Modeling, 12, 555–577.

• Lano, K., Kolahdouz-Rahimi, S., "Model-Transformation Design
Patterns," Software Engineering, IEEE Transactions on , vol. 40, no. 12,
December 2014, pp. 1224-1259.

– A catalog of 29 transformation patterns

• Lano, K., Kolahdouz-Rahimi, S., Poernomo, I., Terrell, J., Zschaler, S.,
“Correct-by-construction Synthesis of Model Transformations using
Transformation Patterns,” Software and System Modeling, Volume 13,
Number 2, June 2014, pp. 873-907.

Conclusion

38

• Defining metamodels for new languages, and the
transformations that evolve their model instances, is
not an easy task for inexperienced or new modelers

• The long-known benefits of design patterns seem to
have an obvious advantage also with MDE

• Pedagogical needs for teaching MDE can be a source
for additional investigation in MDE patterns

• Perhaps the main benefit will be the capture of
experiential reuse, with automated tooling a
secondary concern

39

Thank you for your attention

EXISTING TEMPLATES

40

• Existing model transformation design pattern (MTDP) studies.
– Not all of them call themselves MTDP though.

– The separation between reusable idioms, patterns, design patterns.

• But the inconsistency is clear.

• Unification will help what is expected from a pattern and what are
the outcomes.

	Design Patterns across the �Modeling Process
	Slide Number 2
	�The “Alexandrian” Definition
	What Makes a Pattern a “Pattern” ?
	An Analogy: Becoming a Chess Master
	Becoming a Software Design Master
	Patterns for Modeling
	DSML Development Challenge
	Metamodel Design Patterns
	An Approach for Identifying �Metamodel Design Patterns
	Collection of DSMLs Examined
	Identify Characteristics of DSMLs
	Identify characteristics of DSMLs
	Identify characteristics of DSMLs (cont.)
	Identify characteristics of DSMLs (cont.)
	Identify characteristics of DSMLs (cont.)
	Features of DSMLs
	Questions for Identifying �Candidate Patterns
	Base Metamodel Pattern
	Metamodel with (sub)types Pattern
	Containment/Nesting Pattern
	Application of Metamodel �Design Patterns
	Expected benefits of �Metamodel Design Patterns
	Examples from Yesterday
	Related Work – Metamodel Patterns
	Model Transformation Design Patterns
	Not always easy…
	Transformation patterns
	DelTa
	DELTA metamodel
	Sample design pattern
	Sample design pattern
	Fixed-Point Iteration Pattern
	Fixed-Point Iteration Pattern in DELTA
	Fixed-Point Iteration Pattern
	Transformation generator
	Related Work – Transformation Patterns
	Conclusion
	Thank you for your attention
	Existing Templates

