
Supporting Model Evolution Through Demonstration-based Model Transformation
http://www.cis.uab.edu/softcom/mtbd

Software Composition and Modeling Laboratory
Department of Computer and Information Sciences
University of Alabama at Birmingham

Yu Sun (yusun@cis.uab.edu)
Advisor: Dr. Jeff Gray

Case Study

Conclusion & Future Work

MTBD Solution

Results and Contribution

Background

Research Goal

Problems

Model Evolution

Using model transformation languages presents challenges:

Design an innovative approach to simplify the creation of model
transformations, so that general modeling users can easily
implement model transformations to support model evolution
without the knowledge of a model transformation language or
metamodel definitions. The approach to model transformation by
demonstration (MTBD) allows an end-user to define the
essential transformations in their domain of expertise using
notations and abstractions that are familiar to them.

Model Transformation By Demonstration (MTBD) 
simplifies the creation of model transformations 

by recording and analyzing the operational 
behavior exhibited by end-users

MT-Scribe is an Eclipse plug-in to GEMS (Generic Eclipse Modeling
System), which implements the MTBD idea. The contributions include:
1. A fully automatic inference and generation process to support model

evolution (e.g., model refactoring, aspect weaving, and scalability).
2. Users are completely isolated from knowing any model transformation

languages or metamodel definitions.
3. Complex arithmetic and string attribute operations are supported, which

is a major limitation of other related efforts.

A model refactoring example in MazeGame domain:
Replace the monster in a room with a weapon, and set
the powerValue attribute of the new weapon to half of the
monster.

After the demonstration, a transformation pattern can be generated,
which can be reused to transform all the rooms that contain monsters.

The same process can be applied in UML refactoring as well, showing
improvement of the simplicity of realizing model refactoring tasks to
support model evolution.

More examples and MT-Scribe videos are available at the project site:
http://www.cis.uab.edu/softcom/mtbd

This material is based
upon work supported by
the National Science
Foundation under Grant
No. CAREER-0643725

The primary contribution of this research is an implementation of a
simplified model transformation approach, enabling general users to
easily realize model evolution tasks.
The future work will focus on applying the MTBD idea on model
transformations between two different domains in order to support
other model engineering applications, such as model mapping,
model interoperability and synchronization.

Model Model’

∆M

Model Transformation Language

The traditional approach 
to automate model 
evolution is to use a 
specialized model 

transformation language 
(e.g., QVT, ATL, C-SAW)

 Model transformation languages are
not at the proper level of abstraction
for an end-user; therefore, a steep
learning curve and high training cost is
inevitable.

 Transformation rules are defined at the
metamodel level, requiring a deep and clear
understanding about the complex abstract
syntax and semantics.

1. User demonstrates the transformation process.
The demonstration is given by directly editing a
model instance (e.g., add a new model element,
modify a model element) to simulate a
transformation task on a concrete example.

2. Record and optimize user operations. An engine
has been developed to monitor and capture all the
operations occurring in the model editor, including
related context information. The recorded operations
will also be optimized in order to eliminate all
meaningless operations.

3. Infer the transformation pattern. Based on the
operations recorded, a transformation pattern is
inferred, which describes the precondition of a
transformation (i.e., where the transformation should
be performed), and the actions of a transformation
(i.e., how the transformation should be realized).

4. Pattern execution. By selecting a pattern from the
repository, the MTBD engine automatically traverses
the model instance to search all locations that
match the selected pattern. Once a matching
location is found, the recorded operations will be
replayed to carry out the transformation.

5. Correctness checking. Model instance correctness
checking is performed after every operation
execution to guarantee that the replayed operation
does not violate metamodel definitions.

1. Demonstration

3. Pattern Inference

2. Recording 
& Optimization

4. Pattern Execution

5.Correctness 
Checking

Step Operation Result

1 Select Monster1 in Room2

2 Delete Monster1

3 Add a new Weapon

4 Set the powerValue of the Weapon to 100 
(Monster1.powerValue) / 2

Initial Model Target Model after Evolution

Find a Room that contains a monster, and perform the demonstration:


	Slide Number 1

