
MetamodelMetamodel--Driven Model Interpreter EvolutionDriven Model Interpreter Evolution
Jing Zhang and Jeff GrayJing Zhang and Jeff Gray

Department of Computer and Information Sciences Department of Computer and Information Sciences –– The University of Alabama at BirminghamThe University of Alabama at Birmingham
http://http://www.cis.uab.edu/zhangjwww.cis.uab.edu/zhangj

Domain-specific modeling (DSM) raises the level of abstraction by specifying a
metamodel that is aligned to a particular problem domain and constructing model
interpreters that synthesize the domain models into software artifacts. In the
presence of new stakeholder requirements, it is possible that a metamodel
undergoes numerous changes during periods of evolution. Consequently, there is a
fundamental problem in keeping the model interpreters up to date with these
changes. This poster presents two research objectives to facilitate model
interpreter evolution in the presence of metamodel changes:

Formalization of the interpreter implementation

Evolution of the interpreter from model transformation specification

Key Characteristics of DSM

• Metamodeling is used to define a domain modeling
language and the constraints within that domain.

• From the metamodel, a modeling environment is created for
a specific domain.

• Domain experts work within the generated environment to
create specific instances of domain models.

• The model interpreters traverse the internal representation
of the model and generate new artifacts (e.g., XML
configuration files, source code).

Statement of Purpose Background: Domain-Specific Modeling (DSM)

Key Challenges Technical Approach: Model Interpreter FormalizationEvolution of Models and Interpreters in Terms of Metamodel Changes

Technical Approach: Interpreter Evolution from Model Transformation Specification Case Study: Evolution through Specialization of Domain Concepts

Metamodel Domain Model Model
Interpreter

Software
Artifacts

Interpreter1

Model1

metamodel1

Define

Interpret

Interpretern

Modeln

metamodeln

Define

Interpret

Interpreter0

Model0

metamodel0

Define

Interpret

∆M 1

∆MM 1

∆I 1

∆M 2

∆MM 2

∆I 2

∆M n

∆MM n

∆I n……

……

……

B
ased on

Challenge 1: Lack of formally-written model interpreter
• Different developers may program interpreters in various ways

• Hard to maintain and evolve such subjective realizations of model
interpreters

Challenge 2: Lack of formal specification for metamodel
transformation

• Metamodel transformation specifications must include the entire
knowledge for the underlying interpreter evolution

• ∆MM ∆I
?

Model Xform
Specification

Traversal
Strategy

Traversal
Strategy’

Generate Generate

Defined by Defined by Defined by

Transform

An interpreter implementation is composed of two parts:

Traversal Strategy:
• Formally specified on top of the metamodel

• Determines the control flow of the interpretation, i.e., which
parts of the models are to be navigated, and in which order

• Provides binding and parameterization of the user actions
to specific points

User Actions:
• A fragment of the user-defined code written in the

Interpreter Language

• Denote what operations to take on visited model entities

• Capture the semantic intuition of an interpreter

CBuilderAtom *GetStartState(
CBuilderModel *StateDiagram)

{
CBuilderAtom *startstate = null;
const CBuilderAtomList *states =

StateDiagram->GetAtoms("State");
POSITION pos=states->GetHeadPosition();
while(pos)
{

CBuilderAtom *st = states->GetNext(pos);
CBuilderConnectionList *cons =

st->GetInConnections("Transition");
if (cons == null)

if (startstate == null)
startstate = st;

else <<ERROR: more than one state
has no InConnections>>

}
ASSERT (startstate !=null);
return startstate;

}

CBuilderAtom *GetStartState(
CBuilderModel *StateDiagram)

{
const CBuilderAtomList *startstates =

StateDiagram->GetAtoms("StartState");
ASSERT(startstates->GetCount()==1);
CBuilderAtom *startstate =

startstates->GetHead();
return startstate;

}

Define Interpret

Define Interpret

Old Domain

New Domain

Interpreter
Generator

CString DMSRoot = "";
DMSRoot = SelectFolder("Please Select DMS
Root Folder:");
if (DMSRoot != "") {
DMSRulePath =
DMSRoot + RULESPATH + "Rules\\";

MSRuleApplierPath
= DMSRoot + RULESPATH + "RuleApplier\\";
AfxMessageBox("DMSRulePath =
" + DMSRulePath , MB_OK);

CString OEPRoot = "";
OEPRoot = SelectFolder("Please Selec

CString DMSRoot = "";
DMSRoot = SelectFolder("Please Select DMS
Root Folder:");
if (DMSRoot != "") {
DMSRulePath =
DMSRoot + RULESPATH + "Rules\\";

MSRuleApplierPath
= DMSRoot + RULESPATH + "RuleApplier\\";
AfxMessageBox("DMSRulePath =
" + DMSRulePath , MB_OK);

CString OEPRoot = "";
OEPRoot = SelectFolder("Please Selec

Model
Interpreter

void CComponent::InvokeEx(CBuilder &buil
der,CBuilderObject *focus, CBui
lderObjectList &selected, long param)
{
CString DMSRoot = "";
DMSRoot = SelectFolder("Please Select DMS
Root Folder:");
if (DMSRoot != "") {
DMSRulePath =
DMSRoot + RULESPATH + "Rules\\";

MSRuleApplierPath
= DMSRoot + RULESPATH + "RuleApplier\\";
AfxMessageBox("DMSRulePath =
" + DMSRulePath , MB_OK);

CString OEPRoot = "";
OEPRoot = SelectFolder("Please Selec

Metamodel

Model

Metamodel’

Model’

Interpreter
Transformer

Generate

• Model transformation specification is used to define the transformation of the
models that conform to two different metamodels. It is composed of pattern
specification, replacement rule, and a set of constraints.

• The interpreter transformer analyzes the model transformation specifications,
invokes the pattern matcher to locate the constituents to be transformed within
the traversal strategy model, and eventually updates them according to the
replacement rule specifications.

• User actions should remain intact because they embody the semantic intuition
of a model interpreter.

• The transformed traversal strategy and user action code will be used to
generate the new interpreter that can work under the new metamodel with the
preserved semantics intuition.

G

T
Kernel Engines:

Interpreter Generator

Interpreter Transformer

T

G

This work is partially supported by NSF-CSR.

Interpreter Interpreter’

User Actions

