Depariment of Computer & information Sciences

ral
== This work s partially supported by NSF-CSR.
i 5.

YN

Statement of Purpose

Domain-specific modeling (DSM) raises the level of abstraction by specifying a
metamodel that is aligned to a particular problem domain and constructing model
interpreters that synthesize the domain models into software artifacts. In the
presence of new stakeholder requirements, it is possible that a metamodel
undergoes numerous changes during periods of evolution. Consequently, there is a
fundamental problem in keeping the model interpreters up to date with these
changes. This poster presents two research objectives to facilitate model
interpreter evolution in the presence of metamodel changes:

& Formalization of the interpreter implementation

Q@ Evolution of the interpreter from model transformation specification

Evolution of Models and Interpreters in Terms of Metamodel Changes

metamodel, metamodel;, " o metamodel,

i Define Define i Define
ol 5
ol Av1 Avin
2 [Model. Ul ——N [Model. M| —— e
5 |::> m
= i
Interpret Interpret ! Interpret
A Az
Interpreter, |:> Interpreter, |:> '''''

Metamodel-Driven Model Interpreter Evolution

Jing Zhang and Jeff Gray

Department of Computer and Information Sciences — The University of Alabama at Birmingham

http://www.cis.uab.edu/zhangj

Key Characteristics of DSM

Metamodeling is used to define a domain modeling
language and the constraints within that domain.

From the metamodel, a modeling environment is created for
a specific domain.

Domain experts work within the generated environment to
create specific instances of domain models.

The model interpreters traverse the internal representation
of the model and generate new artifacts (e.g., XML
configuration files, source code).

Metamodel

Key Challenges

Challenge 1: Lack of formally-written model interpreter

« Different developers may program interpreters in various ways

« Hard to maintain and evolve such subjective realizations of model
interpreters

Challenge 2: Lack of formal specification for metamodel
transformation

* Metamodel transformation specifications must include the entire
knowledge for the underlying interpreter evolution

P
s Ayy =D A

* Model transformation specification is used to define the transformation of the
models that conform to two different metamodels. It is composed of pattern
specification, replacement rule, and a set of constraints.

+ The interpreter transformer analyzes the model transformation specifications,
invokes the pattern matcher to locate the constituents to be transformed within
the traversal strategy model, and eventually updates them according to the
replacement rule specifications.

« User actions should remain intact because they embody the semantic intuition
of a model interpreter.

« The transformed traversal strategy and user action code will be used to
generate the new interpreter that can work under the new metamodel with the

preserved semantics intuition. -

Interpreter Generator (G)

Kernel Engines: -{
Interpreter Transformer 0

Defined by

Metamode| |e= = = = = = - mm—_——————- Metamodel’
\
\
Defined by
\

Deflned by

Model Xform

Model Specification

Model’

—

!

T
Interpreter

/ Transformer

Transform

T
1
\
]
\
1
1
\
1
\
\
\
1
\
\
-

Traversal
Strategy’

Traversal
Strategy

User Actions

Generate

Interpreter’

Generate

Interpreter

Software Composision o Modeling Laboratory
SeFrcaolM
J

Department of Computer and Information Sciences
Upiveraity of Alabama at Birmingham

Background: Domain-Specific Modeling (DSM)

Model Software
Interpreter Artifacts

Technical Approach: Model Interpreter Formalization

An interpreter impl

P

Traversal Strategy:
« Formally specified on top of the metamodel

Domain Model

tation is posed of two parts:

« Determines the control flow of the interpretation, i.e., which
parts of the models are to be navigated, and in which order

» Provides binding and parameterization of the user actions
to specific points

Interpreter

User Actions: Generator

« A fragment of the user-defined code written in the
Generate l
Interpreter Language
» Denote what operations to take on visited model entities Model
Interpreter

« Capture the semantic intuition of an interpreter

Case Study: Evolution through Specialization of Domain Concepts

CBulderhtom “GetStariState(
ca State

. Define Interpret
Old Domain n
State3 hsSERT (sarstate -nut
1]
. {
NS Define Interpret mmm,
ew Domain —_— q— T

sarstates->GetHead!):
retum stansiate
)

