
Visualization of Clone Detection Results
Robert Tairas and Jeff Gray

Department of Computer and Information Sciences
University of Alabama at Birmingham

Birmingham, AL 35294-1170
1-205-934-2213

{tairasr, gray}@cis.uab.edu

Ira Baxter
Semantic Designs, Inc.

12636 Research Blvd., C214
Austin, TX 78759-2239

1-512-250-1018
idbaxter@semanticdesigns.com

ABSTRACT
The goal of a clone detection tool is to identify sections of code
that are duplicated in a program. The result of the detection is
presented in some manner for the user to view, which is usually in
the form of a list of clones that are grouped together. Previous
research has shown how scatter plots can be used to render a
graphical representation of the results. This paper describes the
integration of a stand-alone clone detection tool into Eclipse and a
corresponding alternative visualization of clone detection results.
An Eclipse plugin is described that displays the results of a clone
detection tool called CloneDR™. The visualization of the results
is implemented as an extension to the AspectJ Development Tool
(AJDT) Visualiser plugin, which is primarily used to view
crosscutting concerns in aspect-oriented programs.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – restructuring, reverse engineering, and
reengineering.

General Terms
Management, Design, Economics, Human Factors, Languages.

Keywords
clone detection, visualization.

1. INTRODUCTION
Code clones are sections of code that occur in multiple locations
in a program. Clone detection tools aim to automatically search
for clones and report any detected clones back to the user. A
textual representation of the result consists of clones being listed
together, along with the source file names and line locations (i.e.,
starting and ending line locations) of each clone instance. A
scatter plot is a popular graphical representation of clone
detection results where duplicate sections of code are identified as
a sequence of connected dots in a graph.

This paper describes a new approach to visualization of clone
detection results that takes advantage of the ability to extend the
Visualiser plugin that is part of the AspectJ Development Tools

(AJDT) project1. The Visualiser itself is primarily used to display
the location of crosscutting concerns in an aspect-oriented
program. The similarities between aspects and clones [2]
motivated the extension of the Visualiser to accommodate the
visualization of clones. Both aspects and clones share similar
characteristics in representing code that is duplicated and
scattered throughout the source code of a program.

Our plugin connects the CloneDR tool with a visualization feature
that is an extension of the AJDT Visualiser. Additionally, the
integration of CloneDR with Eclipse allows the tool to take
advantage of the rich environment of the IDE, which offers
frameworks for wizards, views, and editor connections.

2. TOOL INTEGRATION & EXTENSION
The two main tools that we integrated and extended are briefly
described in this section. CloneDR serves as an external pre-
existing clone detection tool that is called by the plugin and
executes independently. The results of CloneDR are retrieved and
parsed by our plugin and reported to the user. The visualization
feature is implemented through an Eclipse plugin extension point
provided by the AJDT Visualiser plugin.

2.1 CloneDR
CloneDR is a clone detection tool from Semantic Designs that is
based on research described by Baxter et al. [1]. This tool
examines the abstract syntax tree representation of a program
where subtrees are matched according to a calculated similarity
value to detect code clones in the program. It was one of tools
evaluated in the First International Workshop on the Detection of
Software Clones2. It is able to evaluate large software
applications and is applicable to multiple languages. The version
used in this paper is the Java version that is freely available3.

2.2 AJDT Visualiser
The AJDT Visualiser is an Eclipse plugin that is part of the
AspectJ Development Tools project. The developers of the
Visualiser recently opened the plugin for adaptation by providing
several extension points to allow other types of information to
utilize its visualization features. Some examples of other tools
that use the Visualiser include applications toward Google search
results and CVS file histories4.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

1 http://www.eclipse.org/ajdt
2 http://www.bauhaus-stuttgart.de/clones

OOPSLA 2006 Eclipse Technology Exchange (ETX), October 22-23,
2006, Portland, OR, USA
Copyright 2006 ACM…$5.00.

3 http://www.semdesigns.com/Products/Clone/register-download.html
4 http://www.eclipse.org/ajdt/visualiser

3. PLUGIN DETAILS
In this project, our plugin plays the role of an interface between
CloneDR and the user. It performs the duties of setting up the
configuration file, executing CloneDR as an external task, and
displaying the clone detection results to the user. A diagram of the
connections and processes related to this plugin is shown in
Figure 1.

Figure 1. Plugin architecture and process

When the process is started (i.e., when the user clicks the clone
detection button on the toolbar), the plugin will display a
configuration wizard that assists the user to determine the type of
configuration for the clone detection procedure. Upon completion
of this wizard, the plugin will call CloneDR and give the location
of the file containing the configuration settings (step 1). CloneDR
will then execute and produce a text file containing its clone
detection results. These results are parsed by the plugin (step 2)
and sent to three Eclipse views that will display the results of the
clone detection procedure (step 3). One of these views is an
extension of the Visualiser that produces a graphical
representation of the results of the clone detection. A more
detailed description of the process is given in the following
sections.

3.1 Configuration Setup
A file containing the configuration settings must be provided for
every execution of CloneDR. The user is allowed to set five
configuration settings. The values entered by the user determine
the attributes that determine whether two sections of code are
clones. Examples of these attributes include the similarity of code
sections, the maximum number of parameters contained in each
clone, and the starting depth of the subtree to be evaluated. In
addition to the five configuration settings, the configuration file
will also contain the list of all source files that will be searched
for clones.

Our plugin contains classes that extend the Eclipse INewWizard
and WizardPage classes to produce two wizard pages that assist
the user with the configuration setup. The first wizard page
contains a checkbox listing of files and directories of the Eclipse

project that is currently selected and textboxes for the
configuration settings. The directories are displayed on the left
side using a default plugin class based on
ContainerCheckedTreeViewer. The files for the directory that
are selected on the left are displayed to the right (using
CheckboxTableViewer). The detection of clones usually
includes all files for a project or program, but this setup allows
users to select specific files. The second wizard page assists the
user to determine where to save the configuration file containing
the settings and selected files. Figure 2 shows part of the first
wizard page (the middle part is removed to save space). CloneDR Config Wizard Detection Info

View

Results Text
File Parser

Detected
Clones View

Detected
Clones View

Clone Detection Results Plugin

AJDT Visualiser Plugin

Eclipse
Platform

1

2
3

3

3

Figure 2. First page wizard

3.2 Clone Detection Execution
Our plugin invokes CloneDR as a separate command-line process.
The arguments that are passed to the command include the
location of the configuration file and the location of the file that
will contain the results of the clone detection procedure.
Typically, the name of the results file is the name of the
configuration file with an added .log extension. The results file
will be parsed by the plugin to extract the information about the
detected clones.

3.3 Display of Clone Detection Results
After the clone detection procedure is completed, our plugin will
display the results in three customized views:

• General information view
• Detected clones list view
• Detected clones Visualiser view

The last two views essentially display the same information with
the only difference in appearance - one is textual and the other is
graphical. Both views update their states through listeners that are
triggered when information about a clone is parsed and retrieved
from the results file. A more detailed description of each view is
given below.

Figure 3. General information view

Figure 4. Detected clones list view

3.3.1 General information view
The information in the results file contains the location of clones
in the source files, as well as general and statistical information.
This information includes the values that were selected by the
user for the various configuration settings and statistical
information about the clone detection procedure itself. It is
retrieved by parsing the results file and sending the values to a
content provider class that implements the
ITreeContentProvider interface. This interface was used to
allow the information to be displayed in a tree structure. The tree
has only two levels, but this allows information to be grouped
separately and expanded or collapsed. Figure 3 contains a sample
of this view.

3.3.2 Detected clones list view
Three pieces of information are required to determine where in
the source code a clone can be found: name of the source file
containing the clone, and the starting and ending line numbers of
the section of code. Each clone must be associated with a group of
similar clones. In the results file, the groups of clones are listed
together, which allows extraction of clones by groups. This view
is similar to the general information view in that it contains a
TreeViewer, where each clone group is an element of the root,
and the clones of each group are children of the clone group. This
tree also consists of two levels. Double-clicking on one of the
clones listed will display the clone (with its corresponding lines
highlighted) in the editor view. A sample of this view is given in
Figure 4. Displaying clones in a text list is similar to that used in
the Eclipse plugins for Simian5 and SimScan6, which are also
clone detection tools.

3.3.3 Detected clones Visualiser view
Extending the AJDT Visualiser plugin offers a graphical view of
the clones that were detected in the source files. The Visualiser
plugin provides extension points to allow the development of
visualization of types of information other than aspects in
program modules. Code clones and aspects are very similar to
each other. Both usually occur multiple times and are scattered
throughout the program. These characteristics provide a perfect fit
for the use of the Visualiser for clone detection results. The

5 http://www.integility.com/simian_ui
6 http://www.blue-edge.bg/simscan/simscan_help_r1.htm

“provider” extension point was used to populate the content of the
custom Visualiser view.

The display view of the Visualiser consists of three parts: bars,
stripes, and kinds. In the Visualiser view, a bar represents a
source file and kinds are distinguished by different colors. Stripes
can occur in more than one bar and each stripe can be associated
with one or more kinds. In our tool, a stripe represents a clone and
a kind represents a clone group. In this case, stripes are only
associated with one kind because a clone is only associated with
one clone group. Before the clones are retrieved from the results
file, the bars for the view are generated by traversing through the
Eclipse project and selecting resources that are source files. Once
the bars have been generated, stripes can be added to them to
display the clones in each source file. Similar to the detected
clones list view, double-clicking on a stripe will display the clone
(represented by that stripe) highlighted in the editor view. Figure
5 shows the Visualiser view of a clone detection result. In this
view only source files that contain clones are displayed. The
Visualiser allows for such filtering. Scrollbars at the bottom of the
view (not seen in the figure) can be used if the view does not
display all the bars containing clones.

Figure 5 also displays an example of a popup text that provides
more information about the clone when the stripe representing the
clone is moused over. The information given includes the starting
and ending line numbers of the clone in the source file and the
names of other source files that also contain the stripe with their
respective starting and ending line numbers.

3.3.4 Visualiser view enhancements
Taking advantage of the visualization offered by the Visualiser
plugin through its extension points allows the clones to be
displayed in a more visual manner. However, some limitations
were found in the current state of the Visualiser. This is
specifically true with the limitation of not being able to add
customized actions in the context menu of the Visualiser view.
One predefined action is given in the context menu, which
emerges if the user right-clicks on a bar in the view. This action
will display all bars that contain at least one of the stripes that is
in the currently selected bar. An alternate filtering method was
added that displays all bars that contain the same type (kind) of
stripe that is specifically selected.

Figure 5. Detected clones Visualiser view

This is a useful feature in terms of clone detection results because
only source files (or bars) that contain the same clone (or stripe)
will be displayed. Clones that are scattered throughout the
program can be separated out and viewed together. Additional
context menu options that open the source file of a specific clone
or all files containing the same clone were also included. Figure 6
displays all available options upon right-clicking on an element in
the view.

The context menu for the Visualiser view was not extendable
because it was not registered. The source code of the Visualiser
plugin was edited directly to allow the additional actions in the
context menu. Further enhancements to the Visualiser are
discussed in Section 6 as future work.

Figure 6. Context menu options

4. RESULTS REPRESENTATION
We applied our plugin on two open source programs, JavaGenes7
and JHotDraw8. JavaGenes is an open source NASA program that
has been made available to the public. JHotDraw is an open
source GUI framework that is used frequently in software
engineering tool evaluation. Both programs were written in Java.

CloneDR was selected for this research because it is an
established commercial clone detection tool that will be used for
our future research work. However, the focus of this section is not
about the quality of the clone detection results, but rather an
investigation into the types of clone detection reporting methods.
We implemented the three types of clone detection result
representations: a text listing, an estimation of how a scatter plot
would display the clones, and the new Visualiser extension.

7 http://opensource.arc.nasa.gov/project.jsp?id=14
8 http://www.jhotdraw.org/

4.1 Clones in the same class
Both JavaGenes and JHotDraw contain an example where one
group of clones is located in multiple locations in the same source
file. In JHotDraw, CTXWindowMenu.java contains five sections
of code that are the same clone. Similarly, the file named
AvailabilityTimeLineTest.java in JavaGenes contains six
sections of code that are clones in the same file. Figure 7 provides
a sample of how the clones of the latter group are displayed in
three different types of representations: (a) a text listing, (b) a
scatter plot, and (c) a Visualiser view. The scatter plot consists of
dots where each dot represents two statements that are duplicates
of each other. When multiple dots generate a semblance of a
diagonal line that is parallel to the main diagonal line, the section
of code that is represented by the dots are clones. Compared to the
diagonally separated lines, the Visualiser view provides a
straightforward representation of the sections of code that are
duplicated in a single source file. The clone group represented in
Figure 7 corresponds to methods that contain identical statements
with varying degrees of time values.

(a) text listing

(b) scatter plot
 (c) Visualiser view

Figure 7. Three types of representations

4.2 Ubiquitous clones
As shown in Figure 8, several clones can be seen to be ubiquitous
in that they are present throughout multiple source files in
JHotDraw. A feature in the Visualiser view can filter the bars
representing the source files to show only those containing a
particular clone type. This is a feature that scatter plots can not
offer because non-connected sections that contain the same clone
can not be grouped together. These ubiquitous clones in particular
are short methods that perform a specific task, such as returning a
new Rectangle object, drawing two ovals (including setting
their colors), and setting the undo and redo flags for the drawing
view.

Figure 8. Ubiquitous clones

5. RELATED WORK
CCFinder [3] and Duploc [5] contain visualization of clone
detection results using scatter plots. As seen in the previous
section, this type of visualization has its limitations. As an
alternative to scatter plots, CLICS [3] uses a visualization feature
provided by a program called LSEdit that can display
dependencies within the architecture of an application. In CLICS,
the dependencies or relationships between entities represent the
clones. Users can see how the entities in the architecture relate to
each other through their cloned code.

Simian and SimScan are Eclipse plugins that contain the main
components for the clone detection process. They allow users to
setup the configuration for the search and once the search has
completed, they display the results in views. However, the results
are only represented in a textual form containing a list of clones.

6. CONCLUSION AND FUTURE WORK
Extending the AJDT Visualiser provides a new way of visualizing
clone detection results in a manner that is observably different
from the popular visualization using scatter plots. The clone
visualization described in this paper compliments the standard
text listing and scatter plot visualization and can help users to
identify certain characteristics of the clones by graphically
isolating clone groups across a list of source files. With the
addition of the Visualiser view, the CloneDR tool has been
enhanced to provide a graphical interface through Eclipse

integration. Video demonstrations of our plugin can be found at:
http://www.cis.uab.edu/tairasr/visual

The Visualiser plugin was extended through one of the provided
extension points, but some features that were needed required
modification of the Visualiser source code. Additional features
that would assist users to understand the clone detection results
and enhance the clone detection process are planned as future
work, as listed below:

• A more structured view of the source code files: If the
language is object-oriented, the classes could be displayed
with respect to their relationships in a manner similar to a
UML class diagram. This display could reveal clones such as
those that are duplicates in subclasses, which could be
addressed through the Pull-Up Method refactoring.

• Incorporating more information from the results file: The
results file produced by CloneDR contains additional
information about the detection process that includes the
timing of most procedures and parameter bindings of each
clone. These are not currently displayed in our plugin, but
will be incorporated in future versions.

• Tighter integration of CloneDR in Eclipse: A mechanism
that can allow CloneDR to be integrated further into Eclipse
could simplify and speed up the detection and visualization
process by providing the Visualiser direct access to the
CloneDR internal representation.

REFERENCES
[1] Baxter, I., Yahin, A., Moura, L., Sant’Anna, M., and Bier, L.

Clone Detection using Abstract Syntax Trees. In
Proceedings of the International Conference on Software
Maintenance, Bethesda, MD, November 1998, pp. 368-377.

[2] Bruntink, M., van Deursen, A., van Engelen, R., and
Tourwé, T. On the Use of Clone Detection for Identifying
Crosscutting Concern Code. IEEE Transactions on Software
Engineering, vol. 31, no. 10, October 2005, pp. 804-818.

[3] Kapser, C. and Godfrey, M. Improved Tool Support for the
Investigation of Duplication in Software. In Proceedings of
the 2005 International Conference on Software
Maintenance, Budapest, Hungary, September 2005, pp. 305-
314.

[4] Kamiya, T., Kusumoto, S., and Inoue, K. CCFinder: A
Multilinguistic Token-Based Code Clone Detection System
for Large Scale Source Code. IEEE Transactions on
Software Engineering, vol. 28, no. 2, July 2002, pp. 654-670.

[5] Rieger, M. and Ducasse, S. Visual Detection of Duplicated
Code. In Proceedings ECOOP Workshop on Experiences in
Object-Oriented Re-Engineering, LNCS 1543, Springer-
Verlag, July 1998, pp. 75-76.

	1. INTRODUCTION
	2. TOOL INTEGRATION & EXTENSION
	2.1 CloneDR
	2.2 AJDT Visualiser

	3. PLUGIN DETAILS
	3.1 Configuration Setup
	3.2 Clone Detection Execution
	3.3 Display of Clone Detection Results
	3.3.1 General information view
	3.3.2 Detected clones list view
	3.3.3 Detected clones Visualiser view
	3.3.4 Visualiser view enhancements

	4. RESULTS REPRESENTATION
	4.1 Clones in the same class
	4.2 Ubiquitous clones

	5. RELATED WORK
	6. CONCLUSION AND FUTURE WORK
	REFERENCES

