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Abstract. Domain-Specific Modeling Languages (DSMLs) enable domain 
experts to participate in software development tasks and to specify their own 
programs using domain abstractions. Many Model-Driven Engineering (MDE) 
platforms primarily concentrate on structural aspects of DSMLs and only 
provide techniques to define abstract and concrete syntax. Only a few platforms 
provide built-in support for specification of behavioral semantics and 
verification tasks. In this paper, we focus on how to specify the behavioral 
semantics of a DSML by a sequence of graph transformation rules. We also 
discuss how to transform a DSML specification into Alloy, a model checking 
tool. These transformations demonstrate that DSML models specified in a 
visual notation can be verified by means of existing model checking tools. 
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1   Introduction 

Model-Driven Engineering (MDE) has been shown to increase productivity and 
reduce development costs [1]. The concepts advocated by MDE focus on abstractions 
tied to a specific domain that provide tailored modeling languages for domain experts. 
Domain-Specific Modeling Languages (DSMLs) [2], used within the MDE context, 
enable end-users who are domain experts to participate in software development tasks 
and to specify their own programs using domain concepts in the problem space, rather 
than programming language concepts in the technical solution space. However, there 
remain several challenges that drive new research in DSMLs. For example, 
simulation, code generation, model checking and different kinds of analysis require a 
precise definition of the semantics of a DSML that is not provided sufficiently in 
many modeling toolsets. 

Due to the complexity of the software engineering process, formal verification 
tools are often required to detect design errors, which are difficult to recognize by 
checking manually. In this context, model checkers [3] provide a technique for finite 
state systems to detect design errors automatically. In most erroneous situations, these 
checkers find counter examples to reveal error cases. Although formal verification 



tools enable analysis of the correctness of a system, the low-level details of 
verification tools make it challenging to use by end-users. One solution to overcome 
this situation is the use of automated transformations that map a designer’s high level 
definitions into the representation used by a model checker. 

The purpose of the study described in this paper is to demonstrate how DSML 
designers can define semantic and verification specifications using visual models. The 
long-term goal of our project is a language design approach that addressees the 
automated model checking of DSML instances. The paper discusses how to specify 
behavioral semantics by a sequence of graph transformation rules and how to map 
DSML definitions into Alloy. These mappings demonstrate that DSML models 
designed by a visual notation can be verified by existing model checking tools. 

The rest of the paper is organized as follows. Section 2 explains the syntax and 
semantic specifications of DSMLs using graph grammars. This section also briefly 
introduces Alloy and discusses the mapping of DSML specifications into Alloy 
models. Section 3 demonstrates the idea of DSML model checking in Alloy with a 
case study. Section 4 lists related work in this area. The paper closes with the 
concluding remarks in Section 5. 

2   Specification of DSMLs 

DSMLs, like any other language, consist of definitions that specify the abstract 
syntax, concrete syntax, static semantics and behavioral semantics of a language. 
Specification of abstract syntax includes the concepts that are represented in the 
language and the relationships between those concepts. In MDE, domain metamodels 
are often used to define the structural rules for the abstract syntax. Concrete syntax 
definition provides a mapping between meta-elements and their textual or graphical 
representations. Well-formedness rules, which represent the static semantics of a 
language, can be defined to check model consistency. Such rules are often specified in 
constraint languages (e.g., OCL) that enforce rules among metamodel elements. The 
runtime behavior of each syntactical meta-element defined in the DSML represents 
the behavioral semantics of the language, which is often challenging to specify. 

Behavioral semantics of DSMLs can be represented by a sequence of state 
transition rules. This approach divides all semantic concerns into discrete states and 
transition relations. All of the defined state changes represent operational semantics of 
the domain elements. In particular, in-place model transformations [4] represent an 
approach for designing state transitions. This technique is similar to the Structural 
Operational Semantics (SOS) defined by Plotkin [5], who proposes SOS to give 
computational state transitions by means of the abstract syntax of a language. 
Therefore, SOS defines an abstract behavior for an abstract syntax that allows model 
checking, correction of proofs and other verification activities. 

2.1   Specifying Dynamic Semantics using Graph Grammars 

One of the main characteristics of the in-place model transformation is that target and 
source models are always instances of the same metamodel. An in-place model 



transformation rule is defined as L: [NAC]*LHS->RHS, where L is the rule label, 
LHS denotes the left-hand side rule stating the precondition pattern to trigger the rule; 
the RHS represents the right-hand side rule that specifies the final model part after 
execution of a rule. NAC is the optional negative condition that disables the rule if it 
is satisfied. Graph grammars [6] provide visual rules to specify in-place 
transformations based on precondition and postcondition steps. The notation proposed 
by AGG [7] to model graph transformations is used to define these rules visually. 
AGG is a rule-based visual language supporting an algebraic approach to graph 
transformation. The AGG visual structure enables DSML designers to define 
transformation rules in a model-driven manner. 

Each AGG transformation specifies the runtime behavior for one of the state 
transitions. However, to give the complete semantics for a DSML, a sequence of state 
changes also needs to be defined. These sequence definitions control what state 
transition is to be fired, in what order, and what condition. An activity diagram is an 
appropriate state machine to define these transition sequences. It enables the design of 
simple and compound states, branches, forks, and joins. When the activity of a state 
completes, a transition enables the flow to pass to the next activity. Although flow 
may continue as sequential transitions, branches can exhibit alternate paths. 

2.2   Verifying Properties of a DSML using Alloy 

Alloy [8] is a structural language based on first-order logic, which provides effective 
techniques for model checking. An Alloy model consists of Signatures, Relations, 
Facts, Predicates, and Asserts. Signatures represent the concepts of the domain, such 
as the meta-elements. Signatures consist of relations, which are similar to the meta-
attributes. Alloy provides Facts to enable users to define constraints about the 
Signatures and the Relations. Facts are similar to well-formedness rules of 
metamodels. Alloy consists of a consistency checker and counter extraction tool. The 
consistency checker operates on Predicates, which are defined to analyze the model 
during its evolution. The counter extraction tool utilizes Asserts to check model states 
to find a counterexample. All of these definitions enable checking the reachability of 
a given configuration through a finite sequence of steps. 

2.3   Mapping a DSML Model to an Alloy Model 

Automated model checking of a DSML requires interoperation of existing model 
checking tools with the syntax and semantics of a DSML. To enable this capability, 
syntax and semantics specifications, and an instance model specified by these 
specifications, must be converted into the formalism expected by an underlying model 
checking tool. Next, the properties that the model must satisfy need to be stated by a 
logical formalism expressed in the format expected by the verification tool. Graph 
transformations (described using AGG) can be transformed into an Alloy Model [9]. 
Metamodel specifications can be mapped into Alloy signatures and predicates. The 
transformation steps proposed in this paper are summarized by the following items: 



 mapping metamodel elements to Alloy abstract signatures, 
 mapping model elements to Alloy concrete signatures, 
 mapping graph transformation rules to Alloy predicates, and  
 mapping verification tasks to Alloy asserts. 

3   Case Study: The Maze Game  

The Maze Game example has a simple metamodel shown in Figure 1a. From this 
metamodel definition, a maze consists of rooms, which can be connected to each 
other. Each room can contain a weapon and/or a monster with the power attribute. 
This modeling language is used to generate a game, enabling users to type commands 
to move in the maze and finish the game without being killed by monsters. A model 
instance describes a specific maze configuration. Collecting weapons during game-
play increases a user’s power, which can be used to kill monsters. A model instance is 
shown in Figure 1b. In the context of this domain, the semantics definition is required 
for the user movement between rooms. These movements result in state transitions 
within the model instance. This example contains several situations that demonstrate 
graph transformation rules and verification of movements using Alloy. 
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a. Maze Game Metamodel b. Maze Game Instance  with 3 Rooms, 
6 Doors, 2 Weapon, and 1 Monster 

Fig. 1. Metamodel and Model Instance 

The behavioral semantics of a user move is shown in Figure 2. This activity consists 
of three tasks and two decision points. The CheckMove decision point and the 
ChangeRoom, SubstractMonsterPower tasks are shown in Figure 2. The LHS 
definition of CheckMove searches for the matching room and door combination that 
a user wants to move. If this matching is satisfied, it returns true to enable branching 
to the ChangeRoom task. Otherwise, the IllegalMove status is set. The 
ChangeRoom task searches for the matching room-door combination and moves the 
user into the new room. The SubstractMonsterPower task locates the room-
monster combination and then subtracts the Monster’s power from the User’s power.  
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Fig. 2. User Move Semantics 

3.1   Mapping Metamodel Elements to Alloy Abstract Signatures 

Each meta-element in the Maze Game metamodel is transformed into an Alloy 
abstract signature definition. A part of the specification is shown in Figure 3. This is 
an enhanced model of the Maze Game metamodel. For example, the User signature 
includes roomIn, as well as other attributes to track user position and status during 
the execution of a game. This detailed definition represents the runtime metamodel 
[10]. 
 



 
abstract sig Game{ 
  rooms:set Room, 
  user: one User 
} 
abstract sig Room{ 
  number:one Int, 
  doors:set Door, 
  monster:one Monster, 
  weapon:one Weapon 
} 
abstract sig Door{ 
  number:one Int, 
  openTo:one Room 
} 
 

abstract sig User{ 
  power:one Int, 
  roomIn:one Int, 
  status:one Int 
} 
 
abstract sig Weapon{ 
  power:one Int 
} 
abstract sig Monster{ 
  power:one Int 
} 
 

Fig. 3. Maze Game Alloy Abstract Signatures 

3.2   Mapping Model Elements to Alloy Concrete Signatures 

In the previous subsection, each meta-element in the Game metamodel is defined as 
an abstract signature. Abstract signatures are used to define the meta-layer of the 
Maze Game. To define a model layer in Alloy, these abstract signature definitions are 
extended into concrete signatures. Each model element is mapped into an appropriate 
concrete signature in Alloy. Figure 4 shows model elements of the Maze game, which 
appeared initially in the diagram in Figure 1b. To create the initial model instance in 
the Alloy system, the InitGame predicate is specified. This predicate establishes all 
the relations between signature definitions and creates a Maze Game Instance with 
three Rooms, six Doors, two Weapons, and one Monster. 

 
one sig R1,R2,R3 extends Room{}
one sig D1,D2,D3,D4,D5,D6 extends Door{} 
one sig M1 extends Monster{} 
one sig G1,G2 extends Weapon{} 
one sig U1 extends User{} 
 
pred initGame(g:Game){ 
  D1.number=1 && D2.number=2 && D3.number=3 &&  
  D4.number=4 && D5.number=5 && D6.number=6 && 
 
  D1.openTo=R2 && D2.openTo=R3 && D3.openTo=R1 &&  
  D4.openTo=R3 && D5.openTo=R1 && D6.openTo=R2 &&  
 
  g.rooms=R1+R2+R3 && R1.number=1 && R2.number=2 &&  
  R3.number=3 && M1.power=10 && G1.power=4 && G2.power=11 && 
 
  g.user=U1 && R1.weapon=G1 && R1.doors=D1+D2 &&  
  U1.power=9 && U1.status=0 && R2.monster=M1 &&  
  R2.doors=D3+D4 && R3.weapon=G2 && R3.doors=D5+D6 && U1.roomIn=1  
} 

Fig. 4. Maze Game Alloy Concrete Signatures and InitGame Predicate 



3.3   Mapping Graph Transformation Rules to Alloy Predicates 

All previous signature definitions show static parts of the Maze Game. Behavioral 
specifications, which are defined by means of graph transformation rules, are mapped 
into Alloy predicates. Each task defined in a semantics definition is transformed into 
an Alloy predicate having two parameters, g and g’, representing the current state and 
the next state of the Maze Game. The body of the predicate implements the LHS rule 
and provides matching expressions based on the current state. The predicate also 
contains an RHS expression to define the next state that enables the state transition as 
a result of task execution. If the graph transformation rule includes the NAC part, the 
predicate specification also contains the NAC definition. 

 
pred changeRoom(g:Game, g’:Game, rNo:Int){ 

(g.user.roomIn!=g’.user.roomIn) && 
one room: g.rooms | one door:room.doors | one nextRoom: door.openTo |  
          g.user.roomIn=room.number &&  
nextRoom.number=rNo && g’.rooms=g.rooms  &&  
g’.user.power=g.user.power && g’.user.roomIn=rNo) 

} 
 
pred subtractMonsterPower(g:Game, g’:Game){ 

one room: g.rooms | one monster:room.monster | 
g.user.roomIn=room.number && g’.rooms=g.rooms  &&  
g’.user.power=g.user.power-monster.power &&  
g’.user.roomIn=g.user.roomIn 

} 
 
pred checkMove(g:Game, rNo:Int){ 

one room: g.rooms | one door:room.doors |  
one nextRoom: door.openTo |  
g.user.roomIn=room.number && nextRoom.number=rNo  

} 
 
run{ 

one init:Game | one g2:Game | one g3:Game | one g4:Game 
|initGame[init] && ((!checkMove[init,2] && IllegalMove[init,g2]) ||  
((checkMove[init,2]&& changeRoom[init,g2,2] &&  
((checkMonsterPower[g2] && subtractMonsterPower[g2,g3] && 
collectWeapon[g3,g4]) || (!checkMonsterPower[g2] && dead[g3,g4]))) 

} for 5 but 7 int 

Fig. 5. Maze Game Alloy Predicates 

Figure 5 shows ChangeRoom and SubtractMonsterPower predicates as 
examples. Predicate SubtractMonsterPower consists of a query part to find the 
current room in the Game, and a translation part to subtract monster power from the 
user’s power and leave other parts untouched. To complete the semantics 
specification mapping to Alloy, we need to define branch definitions and show the 
sequence of predicates in the run predicate. The CheckMove branch task is shown as 
an Alloy predicate in Figure 5. The CheckMove predicate queries the current room 
and checks whether that room has the door with the number queried. The run 
command shows the execution sequence of each task defined by predicates. The run 
is executed on the predicates to show the instance for which predicates are true. 
Execution of the run can be restricted to the maximum number of objects with an 
argument. This scope declaration binds the size of the instances or counter examples. 



3.4   Mapping Verification Tasks to Alloy Asserts 

The verification task checks whether the given configuration is reachable from the 
initial graph. In the maze game, the designer defines one task to check the status of 
the user when he/she runs out of weapon power. This specification is transformed into 
an Alloy assert definition as shown in Figure 6. The UserStatus assert states that 
if power is negative, user status must be dead. The Alloy system searches the state 
space to find a counterexample to reveal the design problem, if it exists. 
 

-power :  = <0
-status :  = 1

User

 

assert UserStatus(g:Game){
g.user.power<0 &&  
g.user.status=1 

} 

   Fig. 6. Maze Game UserStatus Assert 

4   Related Work 

Several techniques for the analysis of graph transformation systems exist. Varro [11] 
focused on automated formal verification of graph transformation systems and 
proposed optimization techniques that operate on dynamic parts of models. This 
research provided reductions in the state space during model checking. Heckel et al 
[12] discussed states and transitions in the context of graph systems. According to this 
idea, graphs are shown as states and rules are defined as state transitions. GROOVE 
[13] was developed based on Heckel’s idea. GROOVE provides model verification 
activities using graph transformation rules. Rensink [14] focused on the state 
explosion problem in model checking and studied allocation and deallocation 
problems. Eshuis and Wieringa [15] proposed model verification techniques for 
activity diagrams. Their tool translates an activity diagram into an input format used 
by a model checker. Additionally, Baresi and Spoletini [9] demonstrated how the 
Alloy tools can be used in graph transformation systems. Their study defined 
transformation techniques between transformation rules and the Alloy transition 
system. 

5   Conclusion  

This paper presented a case study for the verification of simple models using Alloy. 
We introduced the transformation steps from DSML specifications to Alloy models 
by an example. Although the metamodel, model, and semantic specification are 
mapped into a model checker model, Alloy suffers from the state explosion problem, 
which yields limitations during model checking. In future work, we will study 
optimization techniques during mapping steps to reduce state explosion. Our future 
plan also includes automatic transformation of DSML specifications into Alloy 



models. Our current investigation was performed manually and on a very simple 
example. The process needs to be generalized. Through further automation of these 
ideas, we plan to demonstrate that models designed by visual notations within MDE 
boundaries can be automatically verified by the use of existing model checking tools.  
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