
Verification of DSMLs Using Graph Transformation:
A Case Study with Alloy

Zekai Demirezen1, Marjan Mernik1, 2, Jeff Gray1, Barrett Bryant1

1Department of Computer and Information Sciences

University of Alabama at Birmingham, Birmingham, AL 35294-1170
{zekzek, gray, bryant}@cis.uab.edu

2Faculty of Electrical Engineering and Computer Science
University of Maribor, 2000 Maribor, Slovenia

marjan.mernik@uni-mb.si

Abstract. Domain-Specific Modeling Languages (DSMLs) enable domain
experts to participate in software development tasks and to specify their own
programs using domain abstractions. Many Model-Driven Engineering (MDE)
platforms primarily concentrate on structural aspects of DSMLs and only
provide techniques to define abstract and concrete syntax. Only a few platforms
provide built-in support for specification of behavioral semantics and
verification tasks. In this paper, we focus on how to specify the behavioral
semantics of a DSML by a sequence of graph transformation rules. We also
discuss how to transform a DSML specification into Alloy, a model checking
tool. These transformations demonstrate that DSML models specified in a
visual notation can be verified by means of existing model checking tools.

Keywords: model checking, verification, domain-specific modeling languages,
operational semantics, graph transformation systems, activity diagram.

1 Introduction

Model-Driven Engineering (MDE) has been shown to increase productivity and
reduce development costs [1]. The concepts advocated by MDE focus on abstractions
tied to a specific domain that provide tailored modeling languages for domain experts.
Domain-Specific Modeling Languages (DSMLs) [2], used within the MDE context,
enable end-users who are domain experts to participate in software development tasks
and to specify their own programs using domain concepts in the problem space, rather
than programming language concepts in the technical solution space. However, there
remain several challenges that drive new research in DSMLs. For example,
simulation, code generation, model checking and different kinds of analysis require a
precise definition of the semantics of a DSML that is not provided sufficiently in
many modeling toolsets.

Due to the complexity of the software engineering process, formal verification
tools are often required to detect design errors, which are difficult to recognize by
checking manually. In this context, model checkers [3] provide a technique for finite
state systems to detect design errors automatically. In most erroneous situations, these
checkers find counter examples to reveal error cases. Although formal verification

tools enable analysis of the correctness of a system, the low-level details of
verification tools make it challenging to use by end-users. One solution to overcome
this situation is the use of automated transformations that map a designer’s high level
definitions into the representation used by a model checker.

The purpose of the study described in this paper is to demonstrate how DSML
designers can define semantic and verification specifications using visual models. The
long-term goal of our project is a language design approach that addressees the
automated model checking of DSML instances. The paper discusses how to specify
behavioral semantics by a sequence of graph transformation rules and how to map
DSML definitions into Alloy. These mappings demonstrate that DSML models
designed by a visual notation can be verified by existing model checking tools.

The rest of the paper is organized as follows. Section 2 explains the syntax and
semantic specifications of DSMLs using graph grammars. This section also briefly
introduces Alloy and discusses the mapping of DSML specifications into Alloy
models. Section 3 demonstrates the idea of DSML model checking in Alloy with a
case study. Section 4 lists related work in this area. The paper closes with the
concluding remarks in Section 5.

2 Specification of DSMLs

DSMLs, like any other language, consist of definitions that specify the abstract
syntax, concrete syntax, static semantics and behavioral semantics of a language.
Specification of abstract syntax includes the concepts that are represented in the
language and the relationships between those concepts. In MDE, domain metamodels
are often used to define the structural rules for the abstract syntax. Concrete syntax
definition provides a mapping between meta-elements and their textual or graphical
representations. Well-formedness rules, which represent the static semantics of a
language, can be defined to check model consistency. Such rules are often specified in
constraint languages (e.g., OCL) that enforce rules among metamodel elements. The
runtime behavior of each syntactical meta-element defined in the DSML represents
the behavioral semantics of the language, which is often challenging to specify.

Behavioral semantics of DSMLs can be represented by a sequence of state
transition rules. This approach divides all semantic concerns into discrete states and
transition relations. All of the defined state changes represent operational semantics of
the domain elements. In particular, in-place model transformations [4] represent an
approach for designing state transitions. This technique is similar to the Structural
Operational Semantics (SOS) defined by Plotkin [5], who proposes SOS to give
computational state transitions by means of the abstract syntax of a language.
Therefore, SOS defines an abstract behavior for an abstract syntax that allows model
checking, correction of proofs and other verification activities.

2.1 Specifying Dynamic Semantics using Graph Grammars

One of the main characteristics of the in-place model transformation is that target and
source models are always instances of the same metamodel. An in-place model

transformation rule is defined as L: [NAC]*LHS->RHS, where L is the rule label,
LHS denotes the left-hand side rule stating the precondition pattern to trigger the rule;
the RHS represents the right-hand side rule that specifies the final model part after
execution of a rule. NAC is the optional negative condition that disables the rule if it
is satisfied. Graph grammars [6] provide visual rules to specify in-place
transformations based on precondition and postcondition steps. The notation proposed
by AGG [7] to model graph transformations is used to define these rules visually.
AGG is a rule-based visual language supporting an algebraic approach to graph
transformation. The AGG visual structure enables DSML designers to define
transformation rules in a model-driven manner.

Each AGG transformation specifies the runtime behavior for one of the state
transitions. However, to give the complete semantics for a DSML, a sequence of state
changes also needs to be defined. These sequence definitions control what state
transition is to be fired, in what order, and what condition. An activity diagram is an
appropriate state machine to define these transition sequences. It enables the design of
simple and compound states, branches, forks, and joins. When the activity of a state
completes, a transition enables the flow to pass to the next activity. Although flow
may continue as sequential transitions, branches can exhibit alternate paths.

2.2 Verifying Properties of a DSML using Alloy

Alloy [8] is a structural language based on first-order logic, which provides effective
techniques for model checking. An Alloy model consists of Signatures, Relations,
Facts, Predicates, and Asserts. Signatures represent the concepts of the domain, such
as the meta-elements. Signatures consist of relations, which are similar to the meta-
attributes. Alloy provides Facts to enable users to define constraints about the
Signatures and the Relations. Facts are similar to well-formedness rules of
metamodels. Alloy consists of a consistency checker and counter extraction tool. The
consistency checker operates on Predicates, which are defined to analyze the model
during its evolution. The counter extraction tool utilizes Asserts to check model states
to find a counterexample. All of these definitions enable checking the reachability of
a given configuration through a finite sequence of steps.

2.3 Mapping a DSML Model to an Alloy Model

Automated model checking of a DSML requires interoperation of existing model
checking tools with the syntax and semantics of a DSML. To enable this capability,
syntax and semantics specifications, and an instance model specified by these
specifications, must be converted into the formalism expected by an underlying model
checking tool. Next, the properties that the model must satisfy need to be stated by a
logical formalism expressed in the format expected by the verification tool. Graph
transformations (described using AGG) can be transformed into an Alloy Model [9].
Metamodel specifications can be mapped into Alloy signatures and predicates. The
transformation steps proposed in this paper are summarized by the following items:

 mapping metamodel elements to Alloy abstract signatures,
 mapping model elements to Alloy concrete signatures,
 mapping graph transformation rules to Alloy predicates, and
 mapping verification tasks to Alloy asserts.

3 Case Study: The Maze Game

The Maze Game example has a simple metamodel shown in Figure 1a. From this
metamodel definition, a maze consists of rooms, which can be connected to each
other. Each room can contain a weapon and/or a monster with the power attribute.
This modeling language is used to generate a game, enabling users to type commands
to move in the maze and finish the game without being killed by monsters. A model
instance describes a specific maze configuration. Collecting weapons during game-
play increases a user’s power, which can be used to kill monsters. A model instance is
shown in Figure 1b. In the context of this domain, the semantics definition is required
for the user movement between rooms. These movements result in state transitions
within the model instance. This example contains several situations that demonstrate
graph transformation rules and verification of movements using Alloy.

Game

-power : Integer

Weapon
-power : Integer

Monster

-number : Integer

Door

-number : Integer

Room

-power : Integer
-status : Integer

User

1

*

1 1

1

*

1

0..1
1

0..1

1

-openTo 1

1

-roomIn

1

a. Maze Game Metamodel b. Maze Game Instance with 3 Rooms,
6 Doors, 2 Weapon, and 1 Monster

Fig. 1. Metamodel and Model Instance

The behavioral semantics of a user move is shown in Figure 2. This activity consists
of three tasks and two decision points. The CheckMove decision point and the
ChangeRoom, SubstractMonsterPower tasks are shown in Figure 2. The LHS
definition of CheckMove searches for the matching room and door combination that
a user wants to move. If this matching is satisfied, it returns true to enable branching
to the ChangeRoom task. Otherwise, the IllegalMove status is set. The
ChangeRoom task searches for the matching room-door combination and moves the
user into the new room. The SubstractMonsterPower task locates the room-
monster combination and then subtracts the Monster’s power from the User’s power.

ChangeRoom

SubtractMonsterPower

CollectWeapon

Move Door#

LegalMove

IlegalMove

MonsterPowerful

UserPowerful

Successful Move

(Check Move)

(Check Power)

Check Move
LHS RHS

User

Room

Door

-number : . = Door#

* -roomIn*

1

1

TRUE

Change Room
LHS RHS

User

-number : . = X

Room

-number : . = Door#

Door

*

-roomIn*

1

1

-number : . = Y

Room

1
-openTo1

User

-number : . = Y

Room

*

-roomIn

*

-number : . = X

Room

-number : . = Door#

Door

1

1

1

-openTo1

Subtract Monster Power
LHS RHS

-power : . = X

User

Room

* -roomIn*

-power : . = Y

Monster

1

0..1

-power : . = X-Y

User

Room

* -roomIn*

-power : . = 0

Monster

1
0..1

Fig. 2. User Move Semantics

3.1 Mapping Metamodel Elements to Alloy Abstract Signatures

Each meta-element in the Maze Game metamodel is transformed into an Alloy
abstract signature definition. A part of the specification is shown in Figure 3. This is
an enhanced model of the Maze Game metamodel. For example, the User signature
includes roomIn, as well as other attributes to track user position and status during
the execution of a game. This detailed definition represents the runtime metamodel
[10].

abstract sig Game{
 rooms:set Room,
 user: one User
}
abstract sig Room{
 number:one Int,
 doors:set Door,
 monster:one Monster,
 weapon:one Weapon
}
abstract sig Door{
 number:one Int,
 openTo:one Room
}

abstract sig User{
 power:one Int,
 roomIn:one Int,
 status:one Int
}

abstract sig Weapon{
 power:one Int
}
abstract sig Monster{
 power:one Int
}

Fig. 3. Maze Game Alloy Abstract Signatures

3.2 Mapping Model Elements to Alloy Concrete Signatures

In the previous subsection, each meta-element in the Game metamodel is defined as
an abstract signature. Abstract signatures are used to define the meta-layer of the
Maze Game. To define a model layer in Alloy, these abstract signature definitions are
extended into concrete signatures. Each model element is mapped into an appropriate
concrete signature in Alloy. Figure 4 shows model elements of the Maze game, which
appeared initially in the diagram in Figure 1b. To create the initial model instance in
the Alloy system, the InitGame predicate is specified. This predicate establishes all
the relations between signature definitions and creates a Maze Game Instance with
three Rooms, six Doors, two Weapons, and one Monster.

one sig R1,R2,R3 extends Room{}
one sig D1,D2,D3,D4,D5,D6 extends Door{}
one sig M1 extends Monster{}
one sig G1,G2 extends Weapon{}
one sig U1 extends User{}

pred initGame(g:Game){
 D1.number=1 && D2.number=2 && D3.number=3 &&
 D4.number=4 && D5.number=5 && D6.number=6 &&

 D1.openTo=R2 && D2.openTo=R3 && D3.openTo=R1 &&
 D4.openTo=R3 && D5.openTo=R1 && D6.openTo=R2 &&

 g.rooms=R1+R2+R3 && R1.number=1 && R2.number=2 &&
 R3.number=3 && M1.power=10 && G1.power=4 && G2.power=11 &&

 g.user=U1 && R1.weapon=G1 && R1.doors=D1+D2 &&
 U1.power=9 && U1.status=0 && R2.monster=M1 &&
 R2.doors=D3+D4 && R3.weapon=G2 && R3.doors=D5+D6 && U1.roomIn=1
}

Fig. 4. Maze Game Alloy Concrete Signatures and InitGame Predicate

3.3 Mapping Graph Transformation Rules to Alloy Predicates

All previous signature definitions show static parts of the Maze Game. Behavioral
specifications, which are defined by means of graph transformation rules, are mapped
into Alloy predicates. Each task defined in a semantics definition is transformed into
an Alloy predicate having two parameters, g and g’, representing the current state and
the next state of the Maze Game. The body of the predicate implements the LHS rule
and provides matching expressions based on the current state. The predicate also
contains an RHS expression to define the next state that enables the state transition as
a result of task execution. If the graph transformation rule includes the NAC part, the
predicate specification also contains the NAC definition.

pred changeRoom(g:Game, g’:Game, rNo:Int){

(g.user.roomIn!=g’.user.roomIn) &&
one room: g.rooms | one door:room.doors | one nextRoom: door.openTo |
 g.user.roomIn=room.number &&
nextRoom.number=rNo && g’.rooms=g.rooms &&
g’.user.power=g.user.power && g’.user.roomIn=rNo)

}

pred subtractMonsterPower(g:Game, g’:Game){

one room: g.rooms | one monster:room.monster |
g.user.roomIn=room.number && g’.rooms=g.rooms &&
g’.user.power=g.user.power-monster.power &&
g’.user.roomIn=g.user.roomIn

}

pred checkMove(g:Game, rNo:Int){

one room: g.rooms | one door:room.doors |
one nextRoom: door.openTo |
g.user.roomIn=room.number && nextRoom.number=rNo

}

run{

one init:Game | one g2:Game | one g3:Game | one g4:Game
|initGame[init] && ((!checkMove[init,2] && IllegalMove[init,g2]) ||
((checkMove[init,2]&& changeRoom[init,g2,2] &&
((checkMonsterPower[g2] && subtractMonsterPower[g2,g3] &&
collectWeapon[g3,g4]) || (!checkMonsterPower[g2] && dead[g3,g4])))

} for 5 but 7 int

Fig. 5. Maze Game Alloy Predicates

Figure 5 shows ChangeRoom and SubtractMonsterPower predicates as
examples. Predicate SubtractMonsterPower consists of a query part to find the
current room in the Game, and a translation part to subtract monster power from the
user’s power and leave other parts untouched. To complete the semantics
specification mapping to Alloy, we need to define branch definitions and show the
sequence of predicates in the run predicate. The CheckMove branch task is shown as
an Alloy predicate in Figure 5. The CheckMove predicate queries the current room
and checks whether that room has the door with the number queried. The run
command shows the execution sequence of each task defined by predicates. The run
is executed on the predicates to show the instance for which predicates are true.
Execution of the run can be restricted to the maximum number of objects with an
argument. This scope declaration binds the size of the instances or counter examples.

3.4 Mapping Verification Tasks to Alloy Asserts

The verification task checks whether the given configuration is reachable from the
initial graph. In the maze game, the designer defines one task to check the status of
the user when he/she runs out of weapon power. This specification is transformed into
an Alloy assert definition as shown in Figure 6. The UserStatus assert states that
if power is negative, user status must be dead. The Alloy system searches the state
space to find a counterexample to reveal the design problem, if it exists.

-power : = <0
-status : = 1

User

assert UserStatus(g:Game){
g.user.power<0 &&
g.user.status=1

}

 Fig. 6. Maze Game UserStatus Assert

4 Related Work

Several techniques for the analysis of graph transformation systems exist. Varro [11]
focused on automated formal verification of graph transformation systems and
proposed optimization techniques that operate on dynamic parts of models. This
research provided reductions in the state space during model checking. Heckel et al
[12] discussed states and transitions in the context of graph systems. According to this
idea, graphs are shown as states and rules are defined as state transitions. GROOVE
[13] was developed based on Heckel’s idea. GROOVE provides model verification
activities using graph transformation rules. Rensink [14] focused on the state
explosion problem in model checking and studied allocation and deallocation
problems. Eshuis and Wieringa [15] proposed model verification techniques for
activity diagrams. Their tool translates an activity diagram into an input format used
by a model checker. Additionally, Baresi and Spoletini [9] demonstrated how the
Alloy tools can be used in graph transformation systems. Their study defined
transformation techniques between transformation rules and the Alloy transition
system.

5 Conclusion

This paper presented a case study for the verification of simple models using Alloy.
We introduced the transformation steps from DSML specifications to Alloy models
by an example. Although the metamodel, model, and semantic specification are
mapped into a model checker model, Alloy suffers from the state explosion problem,
which yields limitations during model checking. In future work, we will study
optimization techniques during mapping steps to reduce state explosion. Our future
plan also includes automatic transformation of DSML specifications into Alloy

models. Our current investigation was performed manually and on a very simple
example. The process needs to be generalized. Through further automation of these
ideas, we plan to demonstrate that models designed by visual notations within MDE
boundaries can be automatically verified by the use of existing model checking tools.

Acknowledgments. This work was supported in part by NSF CAREER award (CCF-
0643725).

References

1. Schmidt, D.C.: Model-Driven Engineering. In: IEEE Computer, Volume 39, Issue 2, pp. 25-
31, (2006)

2. Sprinkle, J., Mernik, M., Tolvanen, J-P., Spinellis, D.: What Kinds of Nails Need a Domain-
Specific Hammer? In: IEEE Software, Volume 26, Issue 4, pp. 15-18, (2009)

3. Clarke, E.M.: The Birth of Model Checking. In: Grumberg, O., Veith, H. (eds.) 25 Years of
Model Checking. LNCS, Volume 5000, Springer, Heidelberg, pp. 1–26, (2008)

4. Czarnecki, K., Helsen, S.: Feature-based Survey of Model Transformation Approaches. In:
IBM Systems Journal, Volume 45 , Issue 3, July, pp. 621-645, (2006)

5. Plotkin, G. A Structural Approach to Operational Semantics, Technical Report DAIMI FN-
19, Department of Computer Science, Aarhus University, Denmark, (1981)

6. de Lara, J., Vangheluwe, H.: Translating Model Simulators to Analysis Models. In: Proc. of
Fundamental Approaches to Software Engineering (FASE 2008), Volume 4961 of LNCS,
Springer, pp. 77-92, (2008)

7. Beyer, M.: AGG1.0. Tutorial, Tech. Univ. of Berlin, Dept. of Computer Science, (1992)
8. Jackson, D., Shlyakhter, I., Sridharan, M.: A Micromodularity Mechanism. In: Proceedings

of the 8th European Software Engineering Conference (ESEC 2001), Vienna, Austria, pp.
62–73, (2001)

9. Baresi, L., Spoletini, P.: On the Use of Alloy to Analyze Graph Transformation Systems. In:
Proceedings of the Fifth International Conference on Graph Transformation (ICGT 2006),
Volume 4178 of LNCS, Springer, pp. 306–320, (2006)

10. Hausmann, J.H.: Dynamic Meta Modeling. A Semantics Description Technique for Visual
Modeling Languages. PhD thesis, Universität Paderborn, Germany (2005)

11. Varro, D.: Automated Formal Verification of Visual Modeling Languages by Model
Checking. In: Journal of Software and Systems Modeling, Volume 3, Issue 2, pp. 85-113,
(2004)

12. Heckel, R., Ehrig, H., Wolter, U., Corradini, A.: Integrating the Specification Techniques of
Graph Transformation and Temporal Logic. In: Proc. Mathematical Foundations of
Computer Science (MFCS’97), Volume 1295, Springer, Bratislava, pp. 219–228, (1997)

13. Rensink, A.: The GROOVE simulator: A Tool for State Space Generation. In: Applications
of Graph Transformations with Industrial Relevance (AGTIVE), Volume 3062, LNCS, pp.
479–485, (2004)

14. Rensink, A.: Model Checking Graph Grammars. In: Leuschel M, Gruner S, Lo Presti S (eds)
Proc. of the 3rd Workshop on Automated Verification of Critical Systems (AVOCS2003),
Technical Report DSSE–TR–03–2, pp.150-160, (2003)

15. Eshuis, R., Wieringa, R.: Tool Support for Verifying UML Activity Diagrams. In: IEEE
Transactions on Software Engineering, Volume 30, Issue 7, pp. 437-447, (2004)

