
Levels of Independence in Aspect-Oriented Modeling

Jeff Gray, Yuehua Lin, Jing Zhang

University of Alabama at Birmingham
Department of Computer and Information Sciences

Birmingham, Alabama USA
{gray, liny, zhangj}@cis.uab.edu

http://www.gray-area.org

Abstract

We are investigating the application of aspect-oriented principles as an aid toward improving the capabilities of
domain-specific modeling. The approach, in general, provides transformations by weaving modeling aspects into a
base model. The modeling aspects provide variation points within the model and can be used to drive the synthesis
of the model into different artifacts. In this brief position paper, we describe how our current and future work
improves the capabilities offered in a model-based tool. We highlight several levels of independence that make the
approach applicable to numerous modeling situations.

1. Introduction

... program structure should be such as to
anticipate its adaptations and modifications.
Our program should not only reflect (by
structure) our understanding of it, but it
should also be clear from its structure what
sort of adaptations can be catered for
smoothly. E. Dijkstra [2]

A longstanding goal in software development is to
construct systems that are easily modified and
extended. The desired result is to achieve
modularization such that a change in a design/modeling
decision is isolated to one location of a system. The
proliferation of software in everyday life (e.g.,
embedded systems found in automobiles, mobile
phones, and television sets) has increased the
conformity and invisibility of software. The key
characteristics of such software are its tight integration
of information processing and the physical
environment. As demands for such software increase,
future requirements will necessitate new strategies for
improved modularization in order to support the
requisite adaptations.

Model-Driven Architecture (MDA) [4] is one such
technology that many believe will be a leading force in
improving adaptability in the software construction.
Several of the concepts in the MDA are not new (e.g.,
the concept of platform independence has been around
for a long time, and was particularly popularized in
[15]), but the timing of several factors currently make it

a viable technology. In the MDA, it is possible to model
application functionality and non-functional aspects at
higher levels of abstraction. It is also possible to model
the interfaces among various components in terms of
standard middleware. The result is middleware that is
more flexible and robust. As Gerald Sussman observes,
in traditional system development, “Small changes in
requirements entail large changes in the structure and
configuration” [13]. This statement is also true
regarding model-based approaches. Often, a single
change to a modeling element results in a super-linear
production of generated code, for example. This is a big
challenge facing modelers. Our research focuses on
improving the changeability of domain modeling that
contributes to rapid construction and evolution of
models.

In the remaining part of this position paper, we give a
brief introduction to the background of our research and
then enter into a discussion of our current and future
research goals.

2. Model Integrated Computing

Model Integrated Computing (MIC) is a model-based
approach to software development, facilitating the
synthesis of application programs from models created
using customized, domain-specific program synthesis
environments [9]. MIC employs domain-specific
models to represent the software, its environment, and
their relationship and thus, is well suited for the rapid
design of complex computer based

Figure 1: Overview of Model Integrated Computing Process

systems. With MIC, a modeling environment operates
according to a modeling paradigm, which is a set of
requirements that govern how a system within a domain
is to be modeled. The modeling paradigm is captured in
the form of formal modeling language specifications
called a meta-model. As shown in Figure 1, once a
meta-model is created for a particular domain, a
modeling environment is constructed (through meta-
level translation) that allows a modeler to create
domain-specific models that can be synthesized into
various artifacts. The Generic Modeling Environment is
a meta-programmable tool that implements the ideas of
MIC [9]. The GME has been successfully used on
dozens of research projects representing numerous
domains (avionics, automotive, electrical utilities,
chemical plants, and numerous military projects – see
http://www.isis.vanderbilt.edu).

In most model-based approaches, like MIC and the
MDA, a base model is often created that is independent
of several implementations. In our approach to MIC,
this base model is augmented with various system
constraints that refine the model into a more concrete
representation. There is a fundamental problem,
however, in the practical introduction of constraints into
a base model. It is often difficult to specify and manage
constraints that crosscut the model [5]. That is, the
insertion of a global system constraint often requires a
modeler to visit and change multiple locations within
the model, or across the model. This can be a very
difficult task for anything but a simple model (see

Figure 2). A solution technique for handling this
problem is presented in the next section.

The MIC approach provides the first level of
independence in the CoSMIC (Component Synthesis
using Model-Integrated Computing) [11] solution to
MDA. Through meta-modeling and generative
programming techniques [1], it permits the construction
of models for any domain as well as its synthesis to any
underlying platform (a modeler must still write the
associated interpreters to provide the platform target
generation, however).

3. Aspect-Oriented Domain Modeling

As an initial solution to the problem of modeling
crosscutting modeling concerns, an aspect-oriented
approach [8] to domain-modeling has been adopted. In
our current implementation, a special language has been
created to describe the crosscutting features of the
model. Initially, there was a lack of tool support for
automatically weaving constraints into model-based
systems. We have constructed a model weaver to
accomplish the task of providing proper modularization
of crosscutting modeling concerns [5]. This permits a
modeler to more easily make changes to the base model
without manually visiting multiple locations in the
model. Thus, the weaver and its associated language
permit the modeler to make statements of quantification
across the model (an important part of aspect-
orientation, as noted in [3]).

Meta-models

Meta-level
Translator

Domain-Specific
Models

Model
Interpreter

Artifacts
(Source code,
simulations,…)

System
Constraints

Figure 2: The Multi-dimensions of Crosscutting Model Aspects

Our approach to model weaving is depicted in Figure 3.
In this figure, constraint-free base models serve as an
input to the weaver, and the output of the weaver is a
new model that has the constraints dispersed across the
original base. To perform this process, specification
aspects are used to denote those locations in the model
where a crosscutting constraint is to be applied. A
strategy is a general heuristic for performing the
transformation that is needed to properly insert the
constraint into a given context.

There have been other approaches to applying aspect-
orientation to higher levels of abstraction. For example,
an idea for aspect-oriented requirements specification is
presented in [10]. Additionally, there are several
workshops that have been conducted on the topic of
aspect-oriented modeling. However, these previous

efforts do not provide the type of tool support that is
needed to realize an MDA-based solution.

This approach to weaving as a supplementation to
MDA is a key part of the CoSMIC toolsuite that is
being constructed in our collaboration with Vanderbilt
University [11]. This idea of Aspect-Oriented Domain
Modeling (AODM) represents the second level of
independence by permitting the separation of the base
model from a concretizing set of system constraints that
are used to drive the platform dependent code
generation. (Note: Here, platform dependence does not
always imply the generation of targeted middleware
variations. It often means, as in the case of modeling
embedded systems, the notion of platform representing
specific hardware configurations.)

A

B

d
B

d

F

B

d

Multiple
Levels Replicated

Structures

Context
Sensitive

Changeability??

Crosscutting Constraints

Figure 3: Effect of Domain-Specific Weaving

4. Tool-Independent Model Weaving

We are currently working on a new focus for applying
our ideas of model weaving. The previous two sections
describe levels of independence for supporting variation
within a particular domain, and a specific targeted
platform. In this section, we describe yet another level
of independence for concepts of model weaving. This
third level of independence addresses the need for a
core weaving engine that is independent of modeling
environments.

Our current implementation of the model weaver is
specifically tied to the GME modeling tool. Our next
goal is to construct the core of our weaving engine such
that it can be adapted and used with different modeling
tools. For example, the core of the weaving engine
could be adapted to work with other modeling tools,
such as Rational Rose, or new environments like
Cadena [6] (this is a modeling tool for the CCM that is
based upon the Eclipse environment).

To construct a tool-independent weaver, we are
focusing our efforts on two primary components: 1) a
core weaving engine, and 2) the associated adapters that
are needed to wrap the engine around the exposed APIs
for accessing the model data structures of each tool.

The core weaving engine can be adapted to multiple
modeling environments to weave cross-cutting
constraints to domain models. The adapters are used to
integrate the core weaving engine to different modeling
tools. Figure 4 depicts this process.

5. Conclusion

Aspect-Oriented weaving of domain models is a
technique that combines the ideas of MIC [9] and AOP
[8]. The main benefit is to facilitate rapid construction
and evolution of domain models via flexible weaving of
cross-cutting constraints [5]. We are applying this idea
to support the basic tenets of MDA, whereby platform
specific attributes are separated from a base model.

In this paper, we described three different levels for
achieving independence within a specific approach to
MDA. That is, the MIC/GME tools provide the needed
level of domain independence; the aspect weavers are a
great help for separating platform specific details; and
the future goal supports a third level that is concerned
with tool-independence.

Figure 4: Core Weaving Engine Adapted to Different Modeling Environments

We are beginning a detailed effort to model and
synthesize CCM using the GME. At the workshop, we
would like to demonstrate our tools by weaving various
modeling aspects into a base model. After weaving in a
set of crosscutting modeling concerns, our demo will
show the generation of CIAO [14] and FACET [7] code
from the transformed models, as applied to Boeing’s
BoldStroke framework [12].

Acknowledgement

This research is funded by the DARPA Information
Exploitation Office (DARPA/IXO), under the Program
Composition for Embedded Systems (PCES) program

References

[1] Krzysztof Czarnecki and Ulrich Eiseneker,

Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.

[2] E. W. Dijkstra, “Notes on Structured
Programming: On Program Families,”
Structured Programming, Academic Press,
London, 1972, pp. 39-41.

[3] Robert Filman and Dan Friedman, “Aspect-
Oriented Programming is Quantification and
Obliviousness,” OOPSLA Workshop on
Advanced Separation of Concerns, Minneapolis,
Minnesota, October 2000.

[4] David S. Frankel, Model Driven Architecture:
Applying MDA to Enterprise Computing, John
Wiley and Sons, 2003.

[5] Jeff Gray, Ted Bapty, Sandeep Neema, and
James Tuck, “Handling Crosscutting Constraints
in Domain-Specific Modeling,” Communications
of the ACM, October 2001, pp. 87-93.

[6] John Hatcliff, William Deng, Matthew Dwyer,
Georg Jung, Venkatesh Prasad, “Cadena: An
Integrated Development, Analysis, and
Verification Environment for Component-based
Systems,” To appear in Proceedings of the
International Conference on Software
Engineering, Portland, OR, May 2003.

[7] Frank Hunleth, Ron Cytron, and Chris Gill,
“Building Customized Middleware Using
Aspect-Oriented Programming,” OOPSLA
Workshop on Advanced Separation of Concerns,
Tampa, Florida, October 2001.

[8] Gregor Kiczales, Eric Hilsdale, Jim Hugunin,
Mik Kersten, Jeffrey Palm, and William
Griswold, “Getting Started with AspectJ,”
Communications of the ACM, October 2001, pp.
59-65.

[9] Ákos Lédeczi, Arpad Bakay, Miklos Maroti,
Peter Volgyesi, Greg Nordstrom, Jonathan
Sprinkle, and Gábor Karsai, “Composing
Domain-Specific Design Environments,” IEEE
Computer, November 2001, pp. 44-51.

[10] Awais Rashid, Ana Moreira, Joao Araujo,
“Modularization and Composition of Aspectual
Requirements,” Conference on Aspect-Oriented
Software Development, Boston, MA, March
2003.

[11] Douglas C. Schmidt, Aniruddha Gokhale,
Balachandran Natarajan, Sandeep Neema, Ted
Bapty, Jeff Parsons, Andrey Nechipurenko, Jeff
Gray, and Nanbor Wang, “CoSMIC: A MDA
tool for Component Middleware-based
Distributed Real-time and Embedded
Applications,” OOPSLA Workshop on
Generative Techniques for Model-Driven
Architecture, Seattle, WA, November 5, 2002.

[12] David Sharp, “Reducing Avionics Software Cost
Through Component Based Product-Line
Development,” Software Technology
Conference, Salt Lake City, Utah, April 1998.

[13] Gerald Jay Sussman, “Robust Design through
Diversity,” DARPA Amorphous Computing
Workshop, 1999.

[14] Nanbor Wang, Krishnakumar Balasubramanian,
and Chris Gill, “Towards a real-time CORBA
Component Model,” in OMG Workshop On
Embedded & Real-Time Distributed Object
Systems, Washington, D.C., July 2002, Object
Management Group.

[15] Paul Ward and Stephen Mellor. Structured
Development for Real-Time Systems Yourdon
Press, 1985.

