
Model Co-evolution and
Consistency Management (MCCM’08)

Dirk Deridder1, Jeff Gray2, Alfonso Pierantonio3, and Pierre-Yves Schobbens4

1 Vrije Universiteit Brussel, Belgium, dirk.deridder@vub.ac.be
2 University of Alabama at Birmingham, USA, gray@cis.uab.edu
3 Università degli Studi dell’Aquila, Italy, alfonso@di.univaq.it

4 Université de Namur, Belgium pierre-yves.schobbens@fundp.ac.be

Abstract. The goal of the workshop was to exchange ideas and expe-
riences related to Model (Co-)evolution and Consistency Management
(MCCM) in the context of Model-Driven Engineering (MDE). Contem-
porary MDE practices typically include the manipulation and transfor-
mation of a large and heterogeneous set of models. This heterogeneity
exhibits itself in different guises ranging from notational differences to
semantic content-wise variations. These differences need to be carefully
managed in order to arrive at a consistent specification that is adapt-
able to change. This requires a dedicated activity in the development
process and a rigourous adoption of techniques such as model differenc-
ing, model comparison, model refactoring, model (in)consistency man-
agement, model versioning, and model merging. The workshop invited
submissions from both academia and industry on these topics, as well as
experience reports on the effective management of models, metamodels,
and model transformations. We selected ten high-quality contributions
out of which we included two as best-papers in the workshop reader. As a
result of the high number of participants and the nice mix of backgrounds
we were able to debate lively over a number of pertinent questions that
challenge our field.

1 Introduction

In general, software artifacts and applications are subject to many kinds of
changes. These range from technical changes due to rapidly evolving technology
platforms, to modifications resulting from the natural evolution of the business
that is supported. This includes changes at all levels, from requirements through
architecture and design, to source code, documentation and test suites. They typ-
ically affect various kinds of models including data models, behavioral models,
domain models, source code models, goal models, etc. Coping with and manag-
ing the changes that accompany the evolution of software assets is therefore an
essential aspect of Software Engineering as a discipline.

Model-Driven Engineering (MDE) is an approach to software design and
development in which models are the primary artifacts of software development.
The major objective of MDE is to increase productivity and reduce time-to-
market by raising the level of abstraction. In part this is done by using concepts



closer to the problem domain instead of those offered by programming languages.
Such models represent domain-specific concepts and conform to metamodels.

A core task of MDE is the manipulation and transformation of models. Thus,
Model (Co-)evolution and Consistency Management (MCCM) are crucial activ-
ities to cope with the natural changes of the corresponding software system.
Currently, there is an increasing need for more disciplined techniques and en-
gineering tools to support a wide range of model evolution activities, including
model differencing, model comparison, model refactoring, model inconsistency
management, model versioning and model merging.

Recently, a number of works devoted to the detection of differences between
models has emerged to foster enhanced model management practices. The ex-
ploitation of differences is an appropriate solution for version management, be-
cause in general the complete system model is far larger than the modifications
that occur from one version to another. Apart from these works, further research
is required to address the rest of the model evolution activities (refactoring, in-
consistency management, versioning, etc.). Moreover, the different dimensions
of evolution make the problem intrinsically difficult because modifications can
reflect coherent adaptations of correlated artifacts at several layers of the meta-
modeling architecture. For example, some well-formedness rules can be invali-
dated when a metamodel evolves. The same happens with the associated model
transformations. Furthermore, model adaptations should be propagated to arti-
facts interconnected by means of model transformations. Finally, the evolution
of model transformations should be reflected in both source and target models.

In addition, there is a substantial difference between the modeling of evolu-
tion and the evolution of models. There are plenty of works on the former topic,
while our proposed workshop focuses on the evolution of models. One of the
goals of this workshop was to explain and clarify the difference between these
two notions, by explicitly identifying the concepts and mechanisms involved in
each one. In particular, we targeted the cross-fertilization of both the MDE and
software evolution communities. This is why we considered models in a very
broad sense to allow researchers from different communities to identify and dis-
cuss commonalities/differences among their specific MCCM problems.

2 About the Workshop

The workshop was a great success5. We had 59 registered participants which
resulted in many interesting and lively discussions. In total we accepted 10 sub-
missions for presentation which are listed below (presenters are underlined). The
contributions marked with an (*) were selected as best-papers and are included
in the Workshop Reader. The other papers are available in the electronic work-
shop proceedings6.

5 MCCM’08 was organised in cooperation with the MoVES network, funded by the
Belgian State, Belgian Science Policy http://moves.vub.ac.be/.

6 MCCM’08 Workshop Proceedings: http://www.info.fundp.ac.be/mccm/



An Inconsistency Handling Process,
by Ragnhild Van Der Straeten

Retainment Rules for Model Transformations,
by Thomas Goldschmidt and Axel Uhl

(*) Triple Graph Grammars or Triple Graph Transformation Sys-
tems? A Case Study from Software Configuration Management,
by Bernhard Westfechtel, Thomas Buchmann and Alexander Dotor

MOD2-SCM: Experiences with Co-evolving Models when Designing
a Modular SCM System,
by Thomas Buchmann, Alexander Dotor and Bernhard Westfechtel

Efficient Recognition and Detection of Finite Satisfiability Problems
in UML Class Diagrams: Handling Constrained Generalization
Sets, Qualifiers and Association Class Constraints,
by Azzam Maraee, Victor Makarenkov Makarenkov and Mira Balaban

COPE: A Language for the Coupled Evolution of Metamodels and
Models,
by Markus Herrmannsdoerfer, Sebastian Benz and Elmar Juergens

(*) On Integrating OCL and Triple Graph Grammars,
by Duc-Hanh Dang and Martin Gogolla

Model Engineering using Multimodeling,
by Christopher Brooks, Chih-Hong Cheng, Thomas Huining Feng, Edward A. Lee
and Reinhard von Hanxleden

AMOR Towards Adaptable Model Versioning,
by Kerstin Altmanninger, Gerti Kappel, Angelika Kusel, Werner Retschitzeg-
ger, Martina Seidl, Wieland Schwinger and Manuel Wimmer

Co-Evolution and Consistency in Workflow-based Applications,
by Mario Sanchez, Jorge Villalobos and Dirk Deridder

After the presentations we scheduled a number of plenary discussions. Each
discussion was focused on a particular question that addressed a major theme
in model consistency management and model (co-)evolution.

What are the steps required to install a full-fledged MCCM process?
The need for having a rigourous consistency and co-evolution process in
place was widely acknowledged. A number of participants pointed out that
setting up and (technologically) supporting an MDE process is already a big
challenge. It was agreed upon that more effort should go into defining an
integral approach.

What are the MCCM challenges when managing large models?
Several issues were discussed related to working with large models (both in
terms of size and diversity). In particular, the scalability of existing consis-
tency handlers was questioned, this not only with respect to the computa-
tional side but also to the possible cascade of inconsistencies. A challenge
in the future will be to derive which inconsistencies to address first in order
to reduce the size of problems reported. In addition, it is desirable to guide
developers to cope with the ‘unstructured’ set of inconsistencies (e.g., by



tagging the inconsistencies with their type and importance). Also, the need
to temporarily tolerate inconsistencies was identified, which requires a mech-
anism to reason with inconsistent models (e.g., by using a kind of ‘closest
semantic match’ to overcome problems).

How does bridging semantic domains impact MCCM?
The main issue discussed was how inconsistency handling techniques are
challenged by having to address model elements that stem from different se-
mantic universes. It was suggested that we also need dedicated formalisms to
specify cross-domain incompatibilities. This is in line with the growing ten-
dency towards domain-specific modeling languages, and it requires to balance
the benefits of domain-independent support versus dedicated support (e.g.,
dedicated detection engines, formalisms, resolution strategies).

What are the different perspectives on MCCM and how can we learn
from each other?
One of the goals of the workshop was to assemble researchers from diverse
fields in which MCCM is being addressed. We believe this goal was met as
exemplified by the contributions of the participants. Some participants dis-
cussed the topic from a generic MDE point of view, whereas others discussed
it specific to a particular application domain (e.g., software configuration
management, workflow-based applications). Also, in terms of the proposed
techniques we had a good distribution of topics (e.g., retainment rules, triple
graph grammars, ocl, coupled evolution of metamodels and models). As a
result, we were able to hold a lively debate during which we focused on
identifying and relating the commonalities and differences of the different
perspectives. There was a general consensus that the community would ben-
efit from bringing together existing categorisations of co-evolution scenarios
and (in)consistency types. Additionally, it was suggested to record the dif-
ferences in terminology since there are often subtle semantic deltas that
might cause misunderstandings (e.g., co-evolution versus coupled evolution
versus co-adaptation). During the workshop we were already able to clarify a
number of misconceptions. The alignment of terminology was also useful to
identify how we might possibly benefit from each other’s techniques and ap-
proaches. Therefore, a number of workshop participants suggested to set up
an online community in the form of a wiki. It is our hope that this wiki will
further enable the cross-fertilisation of both the MDE and software evolution
communities with respect to consistency and (co-)evolution problems.

3 Acknowledgements

We thank our programme committee members for their help in the paper selec-
tion process: Jean Bézivin, Rubby Casallas, Antonio Cicchetti, Serge Demeyer,
Stéphane Ducasse, Vincent Englebert, Jean-Marie Favre, Tudor Gı̂rba, Reiko
Heckel, Viviane Jonckers, Frederic Jouault, Ralf Lämmel, Kim Mens, Tom Mens,
Jonathan Sprinkle, Antonio Vallecillo, Ragnhild Van Der Straeten. We also thank
Anthony Cleve and Andreas Classen for the considerable effort they put into the
practical organisation of MCCM’08.


