
EXPLORING EFFICIENT AND SCALABLE OMNISCIENT DEBUGGING FOR MDE

by

JONATHAN CORLEY

JEFF GRAY, COMMITTEE CHAIR
JEFFREY C. CARVER

RANDY SMITH
SUSAN VRBSKY

EUGENE SYRIANI

A Dissertation

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the Graduate School of
The University of Alabama

TUSCALOOSA, ALABAMA

2016

Copyright Jonathan Corley 2016
ALL RIGHTS RESERVED

ABSTRACT

Model-Driven Engineering (MDE) has emerged as a software development paradigm that

can assist in separating the issues of the problem space of a software system from a particular

solution space of implementation. MDE approaches often use customized domain-specific mod-

eling languages that capture the intent of a particular group of end users through abstractions and

notations that fit a specific domain of interest. In MDE, the execution and evolution of models is

commonly defined using model transformation languages, which can be used to specify the distinct

needs of a requirements or engineering change at the software modeling level, or defining directly

executable models. Like more traditional software development artifacts, both model transfor-

mations and executable models are subject to human error, and common software engineering

practices (e.g., debugging) are still prevalent in MDE.

The primary thrust of the work described in this dissertation concerns investigating the

application of omniscient debugging in an MDE context. The work also explores how developers

form and use queries during debugging tasks, thereby promoting a better understanding of the

types of data developers seek during debugging tasks and how tool support can assist developers

during these activities. Furthermore, as distributed development becomes ever more prevalent, I

explored supporting collaborative development processes (e.g., paired debugging) in a distributed

modeling environment. The work presented in this dissertation has impacted the MDE community

by developing new applied techniques and provided an improved understanding of the process

used by developers during debugging tasks.

ii

DEDICATION

To my best friend and wife, Stephanie Corley. You have pushed me to be a better man, and

to never compromise my dreams. I look forward to all that the future has in store for us and our

family.

To my brilliant, exasperating, and perfectly imperfect children; Elizabeth, James, and Anas-

tasia. I strive daily to be a man that you are proud to know as your father.

iii

LIST OF ABBREVIATIONS

API Application Program Interface

CIM Computation Independent Model

CoV Coefficient of Variation

CPU Central Processing Unit

CRUD Create, Read, Update, and Delete

DSML Domain-Specific Modeling Language

EMF Eclipse Modeling Framework

FIFO First In, First Out

fUML Functional Unified Modeling Language

GB GigaByte

GHz Giga Hertz

GPL General-Purpose Language

GUI Graphical User Interface

H0 Null Hypothesis

HA Alternative Hypothesis

HTML5 HyperText Markup Language version 5

IDE Integrated Development Environment

JSON JavaScript Object Notation

LAN Local Area Network

iv

LHS Left-Hand Side

MDA Model-Driven Architecture

MDE Model-Driven Engineering

MOF Meta-Object Facility

MoTif Modular Timed Graph Transformation Language

MT Model Transformation

MTL Model Transformation Language

MvK Modelverse Kernel

NAC Negative Application Condition

OCL Object Constraint Language

OO Object-Oriented

PIM Platform Independent Model

QBD Query-based Debugging

QVT-O Operational Query/View/Transformation Language

RAM Random Access Memory

REST Representational State Transfer

RHS Right Hand Side

SE Software Engineering

UML Unified Modeling Language

V&V Verification and Validation

xDSML Executable Domain-Specific Modeling Language

XMI XML Metadata Interchange

XML Extensible Markup Language

v

ACKNOWLEDGMENTS

First, I would like to acknowledge my wife, Stephanie Corley, who has motivated me to

achieve more than I could have dreamed possible. Her love and support over the past 12 years, and

especially as I undertook to earn a Ph.D., has been invaluable.

I would like to thank my parents for all of the support and guidance they have provided me.

I remember many conversations with both my father and mother concerning their experiences, and

the wisdom gained from their honest discussions with me of both their successes and failures has

shaped me into the man that I am today.

I would like to thank Dr. Jeff Gray for his guidance and advise throughout my dissertation

work. Dr. Gray has been an incredible mentor throughout my dissertation work. His mentorship

has guided me in this research, but also he has afforded me the opportunity to explore teaching and

outreach activities that have been the highlights of my time at the University of Alabama.

I would also like to thank my friends and colleagues, Dr. Brian Eddy and Dr. Dustin

Heaton. They have been my sounding board, first round reviewers, collaborators, and party mem-

bers. The time spent with both of them collaborating on research and academic projects or sitting

around a table slaying dragons has been, and will continue to be, some of the best times of my life.

I would also like to thank Dr. Nicholas Kraft for his mentorship and support during my

initial years in graduate school pursuing my Masters. It was the experiences during these years

that led me to pursue a Ph.D. and a career as a professor. The time spent working with Dr. Kraft

vi

assisting with courses, research, and outreach activities was a critical time of my life that has set

me on the path that I now pursue fervently.

I would also like to thank Dr. Eugene Syriani for his mentorship and the opportunities

he has afforded me over the past several years. Dr. Syriani has been a great mentor, teacher, and

collaborator for me during my graduate studies, and much of the work presented in this dissertation

could not have been completed without the opportunites that he has made available to me over the

past few years.

I would also like to thank my Committee members: Dr. Jeffrey Carver, Dr. Susan Vrbsky,

and Dr. Randy Smith, who have provided me with invaluable advise and guidance in my research

and truly memorable and engaging learning experiences in their courses. All that I have learned

from each of you over the past few years, I will carry forward with me into my career.

The work presented in this dissertation has been supported by the NSF CE21 grant, and

previously by a Department of Education GAANN fellowship.

vii

CONTENTS

ABSTRACT . ii

DEDICATION . iii

LIST OF ABBREVIATIONS . iv

ACKNOWLEDGMENTS . vi

LIST OF TABLES . xvi

LIST OF FIGURES . xvii

1 INTRODUCTION . 1

1.1 Tool Support and Debugging for MDE . 2

1.2 Supporting Debugging in a Heterogeneous, Distributed Environment 3

1.2.1 Challenges and Potential Impact for Distributed Debugging Tool Support . 4

1.2.2 Supporting Distributed Debugging . 8

1.3 Structure of the Dissertation . 9

1.3.1 Collaborative Modeling . 10

1.3.2 Omniscient Debugging for MDE . 10

1.3.3 How Developers Debug . 10

2 BACKGROUND AND MOTIVATION . 12

2.1 Model-Driven Engineering . 12

2.1.1 Model: The Object of MDE . 12

2.1.2 Introducing Meta-Models and Meta-Meta-Models 13

viii

2.1.3 A Brief Introduction to MTs . 15

2.1.4 Defining Executable Models . 18

2.2 Debugging Techniques . 20

2.2.1 Language and Basic Tool Support . 21

2.2.2 Tracing . 22

2.2.3 Stepwise Execution and Breakpoints . 23

2.2.4 Omniscient Debugging . 25

2.2.5 Query-based Debugging . 27

2.3 The State of Debugging in MDE . 28

2.3.1 Language and Basic Tool Support . 29

2.3.2 Tracing . 31

2.3.3 Stepwise Execution and Breakpoints . 32

2.3.4 Omniscient Debugging . 35

2.3.5 Query-based Debugging . 35

3 SUPPORTING COLLABORATION IN A CLOUD-BASED MDE ENVIRONMENT . . 37

3.1 Introduction . 37

3.2 Collaboration Scenarios in Multi-View Modeling 39

3.2.1 Multi-User Single-View (1 in Figure 3.1) 40

3.2.2 Multi-View Single-Model (2 in Figure 3.1) 40

3.2.3 Multi-View Multi-Model (3 in Figure 3.1) 41

3.2.4 Single-View Multi-Model (4 in Figure 3.1) 41

3.3 Design Goals and Concerns . 42

ix

3.3.1 Responsiveness . 42

3.3.2 Distinct View and Mode of Interaction . 42

3.3.3 Distinct Mode of Interaction . 43

3.3.4 Managing Conflicting Requests . 44

3.4 Multi-View Modeling in AToMPM . 45

3.4.1 Client . 45

3.4.2 Modelverse Kernel . 47

3.4.3 Controllers . 48

3.5 Evaluating the AToMPM Architecture in Collaboration Scenarios 50

3.5.1 Experimental Setup . 51

3.5.2 Experiments Evaluating Collaboration Scenarios 51

3.5.3 Results . 52

3.5.4 Discussion . 55

3.5.5 Threats to Validity . 56

3.6 Related Work . 57

3.7 Conclusion . 58

4 OMNISCIENT DEBUGGING FOR MODEL TRANSFORMATIONS 59

4.1 Introduction . 59

4.2 Background and Related Work . 63

4.2.1 Omniscient Debugging for MDE . 63

4.2.2 Tracing in MDE . 64

4.2.3 AToMPM . 66

x

4.3 An Illustrative Omniscient Debugging Scenario 66

4.3.1 Transformation Details . 67

4.3.2 Omniscient Debugging Scenario . 69

4.4 Omniscient Debugging for Model Transformations 72

4.4.1 Execution Traversal Features for Omniscient Debugging 73

4.4.2 Collecting a History of Execution . 76

4.4.3 Traversing a History of Execution . 79

4.4.4 Recognizing Patterns of Change . 80

4.4.5 Efficient Omniscient Traversal Using MacroSteps 82

4.4.6 Maintaining Scope in History . 87

4.4.7 Supporting Omniscient Debugging in Other Modeling Platforms 88

4.5 Study Design - Evaluating Efficiency and Scalability of AODB 89

4.5.1 Research Questions . 89

4.5.2 Debuggers and Model Transformations used in Evaluation 91

4.5.3 Measures Used in the Evaluation . 94

4.5.4 Configuration of Experimental Platform 95

4.5.5 Data Collection and Analysis . 96

4.5.6 Threats to Validity . 97

4.6 Results - Evaluating Efficiency and Scalability of AODB 99

4.6.1 Is there a significant difference in execution time between executing a
model transformation with omniscient debugging versus stepwise execu-
tion? (RQ 1) . 99

4.6.2 Is there a significant difference in execution time between executing a
model transformation with or without macro steps? (RQ 2) 101

xi

4.6.3 Is there a significant difference in execution time between the iterateSteps
and
iterateElements algorithms? (RQ 3) 102

4.6.4 At what point does omniscient debugging outperform restarting a model
transformation in terms of total execution time? (RQ 4) 104

4.6.5 What is the effect of changes and steps on memory consumption in history?
(RQ 5) . 105

4.6.6 What is the impact of history on total memory consumption? (RQ 6) 107

4.7 Discussion - Evaluating Efficiency and Scalability of AODB 108

4.7.1 Is there a significant difference in execution time between executing a
model transformation with omniscient debugging versus stepwise execu-
tion? (RQ 1) . 109

4.7.2 Is there a significant difference in execution time between executing a
model transformation with or without macro steps? (RQ 2) 110

4.7.3 Is there a significant difference in runtime between the iterateSteps

algorithm and the iterateElements algorithm? (RQ 3) 111

4.7.4 At what point does omniscient debugging outperform restarting a model
transformation in terms of total execution time? (RQ 4) 112

4.7.5 What is the effect of changes and steps on memory consumption in history?
(RQ 5) . 114

4.7.6 What is the impact of history on total memory consumption? (RQ 6) 116

4.7.7 Evaluating the efficiency and scalability of the technique 116

4.8 Conclusions . 118

5 MULTIDIMENSIONAL OMNISCIENT DEBUGGING FOR XDSMLS 120

5.1 Introduction . 121

5.2 Model Debugging . 124

5.2.1 Debugging Approaches . 124

xii

5.2.2 Sample xDSML . 126

5.2.3 Example Debugging Scenario . 127

5.3 Efficient and Advanced Omniscient Debugging for xDSMLs 128

5.3.1 Overview of the Approach . 128

5.3.2 Execution Engine . 130

5.3.3 Domain-Specific Trace Metamodel . 131

5.3.4 Trace Constructor . 133

5.3.5 Generic Trace Metamodel . 134

5.3.6 State Manager . 136

5.3.7 Domain-Specific Trace Manager . 136

5.3.8 Generic Multidimensional Omniscient Debugger 137

5.4 Tooling for Omniscient Debugging . 141

5.4.1 The GEMOC Studio . 141

5.4.2 Omniscient Debugging in the GEMOC Studio 141

5.5 Evaluating Efficiency and Scalability of a Generative Approach to Omniscient De-
bugging for xDSMLs . 143

5.5.1 Research Questions and Experimental Setting 143

5.5.2 Data Collection and Analysis . 145

5.5.3 Results and Discussion . 145

5.6 Related Work . 147

5.6.1 Omniscient Debugging in MDE . 147

5.6.2 Trace Visualization and Debugging in MDE 148

5.6.3 Domain-Specific Execution Traces in MDE 148

xiii

5.7 Conclusion . 149

6 HOW DEVELOPERS DEBUG . 150

6.1 Introduction . 150

6.2 Background and Related Work . 153

6.2.1 QBD Systems . 154

6.2.2 Query Types . 155

6.2.3 Exploring the Debugging Process . 156

6.3 Exploratory Study of Query Formation, Use, and Impact 157

6.3.1 Study Procedure and Setting . 157

6.3.2 Bug Reports . 158

6.3.3 Demographics . 159

6.3.4 Data Collection . 160

6.3.5 Data Analysis . 162

6.3.6 Threats to Validity . 164

6.4 Observations and Discussions Regarding Queries During a Software Debugging Task165

6.4.1 Do developers form queries during debugging tasks? (RQ 1) 167

6.4.2 What types of queries are formed by developers during debugging tasks?
(RQ 2) . 168

6.4.3 What leads developers to generate new queries and how do they relate to
previous queries? (RQ 3) . 177

6.4.4 Which (if any) observed aspects of queries correlate with successful de-
bugging task completion? (RQ 4) . 182

6.5 Conclusion . 190

7 CONCLUSION & FUTURE WORK . 193

xiv

7.1 Collaborative Modeling . 194

7.2 Omniscient Debugging for MTs and xDSMLs . 195

7.3 Exploring Query Formation and Impact . 196

7.4 Perspectives on Future Research . 197

7.4.1 User Study of Omniscient Debugging for MTs 197

7.4.2 Exploring Query Formation and Impact for MDE 197

7.4.3 Exploring Tool Support and the Debugging Process 198

7.4.4 Efficient, Distributed Storage and Processing of Models 198

REFERENCES . 199

APPENDICES . 209

A IRB CERTIFICATES . 210

xv

LIST OF TABLES

2.1 Common Debugging Features Implemented in Model Transformation Tools 32

4.1 Number of model elements for each generation of the Sierpinski Triangle transfor-
mation . 93

6.1 Summary Statistics for Location Queries . 169

6.2 Summary Statistics for Structure Queries . 171

6.3 Summary Statistics for Behavior Queries . 173

6.4 Summary Statistics for State Queries . 173

6.5 Summary Statistics for Responsibility Queries . 174

6.6 Summary Statistics for Support Queries . 175

6.7 Summary Statistics for Relevance Queries . 177

6.8 Summary Statistics for Query Relationships . 178

6.9 Summary Statistics for Query Generation Factors 180

xvi

LIST OF FIGURES

2.1 Example of four layer meta-model hierarchy . 14

2.2 Sample Graph Transformation Rule . 16

2.3 An Exception Hierarchy for Model Transformation [1] 30

3.1 Scenarios in multi-view modeling . 39

3.2 Overview of AToMPM architecture . 44

3.3 Overview of AToMPM architecture . 46

3.4 Create, Load, and Delete requests on a model controller with local MvK 52

3.5 Results for experiment 1 . 53

3.6 Results for experiment 2 . 54

3.7 Results for experiment 3 . 55

4.1 Solution to Task 2 of the 2014 TTC Movie Database Case as presented in [2] . . . 67

4.2 Defective Variant of findStarsAndCreateCouple 68

4.3 Sample Model for Movie DB Case . 70

4.4 Stepwise and Omniscient Continuous Play Features 72

4.5 Stepwise and Omniscient Step Features . 72

4.6 Structure of history. 75

4.7 Patterns to identify required changes between the current step and a target step. . . 81

4.8 IterateElements Algorithm: builds a macrostep by iterating over all elements
that have been changed. 83

4.9 IterateSteps Algorithm: builds a macrostep by iterating over all steps in history. 83

xvii

4.10 Sierpinski Triangle TTC Details . 92

4.11 Measuring differences in execution time: omniscient vs. stepwise (RQ 1) 99

4.12 Measuring differences in execution time: jump vs. stepping (RQ 2) 102

4.13 Measuring differences in execution time: IterateSteps algorithm vs. IterateEle-
ments algorithm (RQ 3) . 103

4.14 From the end of execution, what percentage of the system can be re-executed be-
fore omniscient traversal is more efficient. (RQ 4) 104

4.15 History Memory Usage (RQ 5) . 106

4.16 Percentage of total memory usage for the transformation engine due to history
(RQ 6). 108

5.1 Feature comparison of the debugging approaches 125

5.2 Petri net xDSML . 126

5.3 Example of Petri net execution trace annotated with the use of a selection of de-
bugging services . 127

5.4 Overview of the approach . 129

5.5 Interactions when a small step is to be computed and added to the trace 130

5.6 Petri net rich domain-specific trace metamodel . 132

5.7 Generic Trace Metamodel Interface . 134

5.8 Definition of the Omniscient Debugging Services 138

5.9 Definition of the Standard Debugging Services 138

5.10 Definition of the Multidimensional Omniscient Debugging Services 139

5.11 GEMOC Studio with the multidimensional omniscient debugger prototype running
an fUML activity. 140

5.12 Time required to perform a jumpToState . 145

5.13 Memory used by the execution trace . 147

xviii

6.1 Sample Defect Output for Bug 2 . 159

6.2 Sample Correct Output for Bug 2 . 160

6.3 Data Collection Form . 161

6.4 Number of Queries Observed for Each Task . 166

6.5 Occurence of Queries During the Debugging Process 168

6.6 Query Type Hierarchy . 169

6.7 Total Observed Queries for Participants that Successfully Completed Task 1 (Suc-
cess) or Did Not Complete Task 1 (Fail) . 183

6.8 Overall Query Completion Rate Distribution for Participants that Successfully Com-
pleted Task 1 (Success) or Did Not Complete Task 1 (Fail) 185

6.9 Fundamental Query Completion Rate Distribution for Participants that Success-
fully Completed Task 1 (Success) or Did Not Complete Task 1 (Fail) 187

6.10 Summary of Tool Usage for Participants that Successfully Completed Task 1 (Suc-
cess) or Did Not Complete Task 1 (Fail) . 189

6.11 Fundamental Query Prevalence Distribution for Participants that Successfully Com-
pleted Task 1 (Success) or Did Not Complete Task 1 (Fail) 191

xix

CHAPTER 1

INTRODUCTION

Model-Driven Engineering (MDE) has emerged as a software development paradigm that

can assist in separating the issues of the problem space of a software system from a particular so-

lution space of implementation. MDE approaches often use customized domain-specific modeling

languages (DSMLs) that capture the intent of a particular group of end users through abstractions

and notations that fit a specific domain of interest [3]. In MDE, the execution and evolution of

models is commonly defined using model transformation languages (MTL), which can be used to

specify the distinct needs of a requirements or engineering change at the software modeling level,

or defining directly executable models. Like more traditional software development artifacts, both

model transformations (MTs) and executable models are subject to human error, and common

software engineering (SE) practices (e.g., debugging) are still prevalent in MDE.

The majority of the existing work concerning debugging (i.e., the process of locating and

correcting bugs) has focused on the application of debugging approaches to General-Purpose Lan-

guages (GPLs), such as C and Java. A wide variety of debuggers, tools and techniques that aid

developers in the process of debugging have been created, studied, and evolved. A variety of dis-

tinct approaches have been introduced including the traditional step-through debugging approach,

as well as more advanced approaches, such as Omniscient Debugging (also referred to as Back-In-

Time or Reverse Debugging) and Query-Based Debugging (QBD). Over the course of conducting

the research described in this dissertation, I have investigated the application of omniscient de-

1

bugging to both a model transformation environment and an executable modeling environment,

explored how developers debug with special emphasis on the impact and formation of queries,

and investigated how to support collaborative processes in a distributed modeling environment.

Through this work, I hope both to impact the MDE community by developing a new applied tech-

niques and to generate a better understanding of the debugging process used during debugging

tasks by developers.

1.1 Tool Support and Debugging for MDE

The primary thrust of my research has been related to debugging support for MDE. Debug-

ging is a common task that all software developers encounter across different software artifacts.

Seifert and Katscher [4] state that, “the search for defects in programs has become a common ac-

tivity of every software developer’s life.” Despite the longstanding need for debugging support,

the state of tool support for debugging tasks has changed little over the past half century compared

to other advances in development methodologies and techniques [4, 5]. There have been several

novel research approaches to debugging, such as omniscient (or back-in-time debugging) [6–10]

and QBD [5, 11–15]. However, commercial debugging tools available to mainstream developers

are focused primarily on stepwise execution of code and utilization of breakpoints [5]. The tools

available for MDE are not exceptional in this regard, and are in fact less mature than tools available

for traditional GPLs.

Mannadier and Vangheluwe [16] have observed, “very little attention has been paid to de-

bugging” in the context of MDE. An investigation into the state of debugging support for MTs

revealed only one (experimental) MDE tool called TROPIC [17–19] that offers capabilities be-

2

yond stepwise execution and breakpoints. Several MDE tools (e.g., GReAT 1 [20], ATL 2 [21],

TEFKAT 3 [22], UML Model Debugger 4, AToM3 5, AToMPM [23–25], VIATRA2 6 [26],

AGG [27], and Fujaba 7 [28]) provide basic debugging support in the form of stepwise exe-

cution facilities; GReAT, ATL, TEFKAT, and UML Model Debugger also provide support for

breakpoints.

A central goal of MDE is to improve developer productivity. This goal is obtained primarily

through raising the level of abstraction away from the solution domain by focusing on models and

model transformations that focus on the problem domain. Despite the focus on models and model

transformations as opposed to GPLs, traditional development concerns such as debugging must

still be undertaken by developers adopting MDE practices. Bran Selic commented that if devel-

opers are not satisfied with the “day-to-day” application of MDE then MDE will be rejected [29].

Because one of the most common tasks undertaken by software developers is debugging, improved

debugging approaches for model transformations have the potential to improve the acceptability of

MDE from an industrial perspective and aids in attaining the goal of improved developer produc-

tivity.

1.2 Supporting Debugging in a Heterogeneous, Distributed Environment

MDE has emerged as a software development paradigm that can assist in separating the

issues of the problem space of a software system from the accidental complexities of implementa-

tion in the solution space. MDE approaches often use customized DSMLs that capture the intent

1 www.isis.vanderbilt.edu/tools/GReAt
2 www.eclipse.org/atl/
3 tefkat.sourceforge.net
4 http://www.research.ibm.com/haifa/projects/services/uml/index.shtml
5 atom3.cs.mcgill.ca
6 wiki.eclipse.org/VIATRA2
7 www.fujaba.de

3

www.isis.vanderbilt.edu/tools/GReAt
www.eclipse.org/atl/
tefkat.sourceforge.net
http://www.research.ibm.com/haifa/projects/services/uml/index.shtml
atom3.cs.mcgill.ca
wiki.eclipse.org/VIATRA2
www.fujaba.de

of a particular group of users through abstractions and notations that fit a specific domain of inter-

est. Through the application of DSMLs, various stakeholders in a project are enabled to view and

edit the system using an abstraction most appropriate to their needs and expertise. However, the

disparate abstractions introduced can create barriers between components in the same project by

separating these concerns into distinct DSMLs without the ability to describe interactions between

components [30]. An electrical engineer may produce a wiring diagram while a software engineer

produces a component diagram. If the two engineers are both working on a shared project then the

implementation of these designs will impact each other. This scenario indicates a need for shared

reasoning, analysis, and communication between these two groups to enhance the cohesiveness of

the final design and resulting implementation. As the development of support for heterogeneous,

distributed modeling environments progresses, a key concern is what support is expected in these

new environments. Debugging is a common task that all software developers encounter across

different software artifacts [4].

1.2.1 Challenges and Potential Impact for Distributed Debugging Tool Support

Though the various debugging techniques can be applied to an MDE context, the applica-

tion of these techniques to a distributed, heterogeneous modeling system brings new challenges

that must be overcome. This section discusses challenges unique to this paradigm.

1.2.1.1 Supporting an Extensible Debugging Environment

In a heterogeneous modeling environment, the underlying system natively supports a va-

riety of DSMLs. This requirement is not a consideration in GPL design where a single language

is supported. The more versatile MDE system must be able to represent information in the most

appropriate formalism. However, the developers of these systems cannot always anticipate the

unique concerns and features of future developers. The issue of supporting debugging for the vari-

4

ety of DSMLs available encounters similar concerns. To address these concerns, a heterogeneous

modeling system must be extensible, and may require developers to provide the debugging support

appropriate to their formalism with no support from the underlying tool. However, this creates a

scenario where future developers will often duplicate effort for common concerns. An alternative

is to provide an extensible base of support that future developers may extend. This base of support

should handle simple concerns including the ability to manually control execution of the system,

visualize and explore state information, and collect state information as the system progresses.

Providing these three basic features enables stepwise execution, omniscient debugging, and query-

based debugging. An extension to these features that would enrich debugging tool support is the

ability to reload transformations and alter model elements at runtime. This extension would enable

a developer to freely explore and modify the system in order to identify faults and test alterations.

A heterogeneous modeling environment may also enable the execution of multiple MTLs

providing a range of potential features. Consider a system that includes a distinct MTL for both

inplace and outplace transformations. These scenarios each create a unique concern for debugging

support. The inplace transformation displays a single model (or set of models), but the outplace

transformation must provide facilities for identifying input and output models. If providing trace-

ability features, the inplace transformation would link elements from a previous version of the

same model(s), whereas the outplace transformation would link elements from input model(s) to

output model(s). These differences can lead to a varied implementation of the same concerns,

but a heterogeneous environment may need to consider either or both. Such an environment must

also enable defining the basic characteristics of stepwise execution (e.g., what constitutes a step or

scope). A step in a GPL is a statement. However, MTLs are typically defined by rules. A rule

may be a simple graph transformation or a more complex component that can contain other rules

5

(e.g., ATL pre and post conditions [31]). The definition of step may therefore occur at various

levels of granularity. Future designers should be able to define precise semantics for this concern

that match most closely with the intended MTL environment. Similarly, defining what constitutes

a scope is vital to a stepwise execution environment.

1.2.1.2 Supporting Many Formalisms in a Consistent Debugging Interface

QBD is a promising debugging technique that provides developers with facilities to ask

questions directly to the system. Query languages are typically strongly coupled with the target

language. The target language may have concepts of classes and inheritance or functions and

return types. However, in a heterogeneous modeling environment the target language is not fixed.

The system allows (and encourages) developers to use a wide array of DSMLs to facilitate the

goal of using the most appropriate abstraction. This design results in a system that may or may

not possess a vast and varying set of concepts and structures. Applying QBD in a heterogeneous

environment must therefore provide some design to handle the variability of DSMLs without the

designers of the system making any assumptions regarding the specific terminology and structures

available to future developers. This concern is further exacerbated by the inclusion of graphical

query languages.

A modeling system is not always designed with the intention to limit the system to a single

view. The system may include multiple metamodels and even multiple concrete syntax for the same

metamodel. For example, a vehicle may contain many varied subsystems such as brakes, steering,

power windows, blinkers, and many more. A vehicle is also a single unit where many subsystems

have a direct impact on others. A prime example is how electrical wiring directly impacts the

functioning of the power window subsystem. If the power windows exceed the capacity for the

electrical wiring system then the windows will fail to open and close properly. However, these two

6

systems may be designed using different DSMLs and in a typical modeling environment would be

in separate models. However, a heterogeneous modeling environment would enable developers to

view these systems either together or separately as needed. This leads to further concerns when

applying QBD. If the developer of the car system were to pose a query such as, “Why did the

power window not rise?” the system may need to search through models defined using several

DSMLs to provide the answer. However, current work in the area of QBD has always assumed a

single language and there is no existing technique that is concerned with searching across multiple

languages.

A primary concern for omniscient debuggers is the collection of trace information required

to revert the system to previous states of execution. This collection of trace information forms a

history of execution for the system. In a heterogeneous modeling environment, the collection of

trace information is complicated by the varying structures. An omniscient technique must collect

the smallest units of information for each modification in order to minimize the space consumption

of the history structure. However, an omniscient debugger must also collect information relevant

to the structure of the model in order to ensure proper application of any change. For example, as-

sume a model element X relies on model element Y and both are deleted. When reverting the delete

operation, the system must ensure there is never a state where X exists without Y to avoid violating

constraints of the modeling environment. Similarly, if element X is always altered to match any

modification in Y, the underlying execution environment may capture these modifications indepen-

dently, but upon replaying these modifications may incur an additional modification to element X

(both when Y is reverted causing X to be automatically altered and when X is directly altered to

revert the recorded modification). However, these structural concerns may vary depending on the

specific formalisms used.

7

1.2.1.3 Supporting Debugging in a Distributed Environment

Geographically distributed development teams necessitate some manner of distributed SE

system. This system could be managed manually, but would incur significant cost of effort and risk

of error. A preferable solution would be a software system designed to manage SE projects with

a distributed (or cloud) environment. A natural implication of this environment is that developers

will utilize separate physical machines even while actively collaborating. However, the implica-

tions of separate machines accessing a common environment can be more subtle. The typical

debugging environment includes a single machine and therefore assumes a single point of control

for the debugging environment. The introduction of additional points of access to control the en-

vironment creates a more complex scenario. Consider the following scenario: James is inspecting

the state of execution at a specific point, and Elizabeth (unaware of James’s intent) progresses the

transformation to a state she is interested in investigating. In this scenario, James and Elizabeth

are each intent on exploring distinct points in history. A simple solution is to provide facilities for

James to express his intent to explore the current state and even possibly lock the system to the

current state. However, this solution restricts Elizabeth from following her own thread of inves-

tigation. A distributed omniscient debugging system could also offer facilities for both parties to

explore the system independently while simultaneously enabling the two developers to share an

environment. Thus, Elizabeth and James could work both collaboratively on a single issue and in

parallel on separate related issues within the same environment.

1.2.2 Supporting Distributed Debugging

As distributed development becomes increasingly prevalent, need is increasing for model-

ing environments that support collaborative processes. The distributed environment must support

sharing a consistent model view and editing/transformation control among potentially many devel-

8

opers. Furthermore, because modelers often work within projects including many discrete domains

of interest, the supporting environment must provide a consistent environment across the various

domains of interest for a project that can also be extended to support new domains. Chapter 3

presents an investigation into supporting such a modeling environment. The contributions of the

chapter begin with exploring a set of collaboration scenarios detailing how modelers could share

and interact within the modeling environment. Next, the architecture of AToMPM is presented

which supports multi-view, multi-paradigm modeling within a cloud-based architecture. Finally,

Chapter 3 provides an initial evaluation of the architecture of AToMPM with a series of experiments

designed to reflect the collaboration scenarios. Thus, the contributions address the challenges of

supporting an extensible modeling environment and many formalisms in a consistent environment.

Chapter 4 then presents the results of an investigation into omniscient debugging of MTs within

AToMPM. Thus, the combined contributions of these chapters provide support for debugging in

an extensible, consistent, distributed modeling environment.

1.3 Structure of the Dissertation

The overall theme for the dissertation has been introduced, and the current lack of research

in this area and need for debugging support and support for a distributed, heterogeneous modeling

environment has been motivated citing key literature from the MDE community. Chapter 2 will

survey existing work and introduce relevant concepts in MDE and debugging. Chapters 3-6 will

present the research projects comprising the core dissertation research. Finally, Chapter 7 will

provide concluding remarks and outline further avenues for research.

The remainder of this section briefly overviews the projects comprising my dissertation.

9

1.3.1 Collaborative Modeling

In this project, I worked as part of a team of researchers spanning the University of Al-

abama, the University of Montreal, and the University of Antwerp to investigate supporting a

cloud-based collaborative modeling architecture [24, 25]. This work has explored how to support

modeling for projects distributed across many artifacts and with team members geographically

distributed. This work addresses many of the debugging concerns discussed in Section 1.2.1.

1.3.2 Omniscient Debugging for MDE

This project investigated omniscient debugging, explored previously for GPLs, within the

new context of MDE. This work explores efficient trace-based techniques to support omniscient

traversal (i.e., either forward or backward in execution history). The technique has been applied

in a graphical modeling environment supporting MT [32–34], AToMPM8, and a textual/graphi-

cal modeling environment supporting executable domain-specific modeling [35], GEMOC9. The

investigation of omniscient debugging for MTs within AToMPM is presented in Chapter 4. The in-

vestigation of omniscient debugging for xDMSLs was part of a collaborative research project with

researchers from INRIA/IRISA and the University of Rennes. The collaborative work presented

in Chapter 5 extends the traversal techniques introduced in Chapter 4 and introduced a relevant

visualization technique supporting omniscient debugging.

1.3.3 How Developers Debug

The final contribution of this dissertation is an exploratory study investigating the formation

and use of queries during debugging tasks in an object-oriented system [36]. This study follows

from existing work (as discussed further in Chapter 6). The study provides insight into the type of

8 http://www-ens.iro.umontreal.ca/ syriani/atompm/atompm.htm
9 http://gemoc.org/ins/

10

queries used by developers and how queries impact the debugging process. Thus, a key outcome

of the study is empirical evidence informing future debugging tools and techniques. Furthermore,

the study establishes a base study of GPL environments enabling comparisons to a future related

study to be performed using a model transformation system.

11

CHAPTER 2

BACKGROUND AND MOTIVATION

This chapter introduces MDE including models, metamodels, model transformations, and

executable models. Then, the chapter discusses several debugging techniques and explores the

concerns and challenges to providing debugging for MDE.

2.1 Model-Driven Engineering

MDE is a subfield of SE focused on the development of software utilizing modeling tech-

niques. Mens and Gorp describe MDE as “a discipline in software engineering that relies on

models as first-class entities and that aims to develop, maintain and evolve software by performing

model transformations” [37]. This description provides two basic components of MDE: models

and model transformations.

2.1.1 Model: The Object of MDE

To understand MDE, a proper definition of the notion of what is meant by model in this

context is required. Bézivin [38] illustrates the importance of models in MDE by comparing

the principle “Everything is an object” to the comparable concept in MDE that “Everything is

a model.” Bézivin and Gerbé state that a model is a simplification of a system with a specific

intention and that the model should be usable in place of the fully realized system for the given

intention [39]. Kühne [40] provides a similar definition for model, “A model is an abstraction of

a (real or language-based) system allowing predictions or inferences to be made.” Czarnecki and

Helsen [41] describe an example of a civil engineer creating a model of a bridge to test the bridge

12

before generating the physical bridge. The model does not possess the full complexity and expense

of the physical bridge, but rather provides an abstraction that can be used to test certain properties

of the bridge. The model of the bridge could be utilized to predict the structural capacity of the

bridge, but does not contain the full complexity and cost of the physical bridge.

Just as high-level languages provide abstractions from the accidental complexity of low-

level languages, MDE seeks to shift the focus of developers away from the solution domain, and

any accidental complexity inherent to the solution domain, and bring development closer to the

problem domain [3]. MDE achieves this by considering model abstractions that are focused purely

on the essential characteristics of the system. The Model-Driven Architecture (MDA) concepts

of a platform-independent model (PIM) and computation-independent model (CIM) illustrate this

process. A PIM is developed independent of any platform-specific implementation details (e.g., de-

tails of a Java library or Windows specific threading implementation). A CIM is similarly inde-

pendent of any computation-specific details (e.g., details of how a random item from a collection

is selected) [42]. The platform and computation-specific details are incorporated into the model

through the use of forward engineering model transformations that incorporate the concepts de-

fined across the two models [42]. The incremental incorporation of the solution domain concerns

enables developers to focus on the problem domain during design and early implementation stages.

In addition, forward engineering model transformations also enable a PIM to be deployed to many

platforms by varying the platform-specific details to be incorporated.

2.1.2 Introducing Meta-Models and Meta-Meta-Models

Models are an abstraction of a system, but the model is also a system that may be modeled.

The model of a model is a metamodel, and the model of a metamodel is a meta-metamodels [42].

The Object Management Group (OMG) (an international organization focused on defining stan-

13

Figure 2.1: Example of four layer meta-model hierarchy

dards for software development practices and protocols) advocates a four layer metamodel hierar-

chy [42] (as illustrated in Figure 2.1) in the MDA [42]. In the four layer metamodel hierarchy, the

top level (M3) contains the meta-metamodel. The M2 level contains any metamodels that are an

instance of the meta-metamodel defined at the M3 level. The M1 level contains any user-defined

models that are an instance of one of the metamodels at the M2 level. The M0 level represents a

system that is modeled by user-defined models at the M1 level.

The common definition of the correspondence between model, metamodel, and meta-

metamodel is the instanceOf relationship1. A model is an instanceOf a metamodel, which is

then an instanceOf a meta-metamodel [40]. A metamodel may be the definitive source for an in-

finite number of models (in the same sense that a grammar is the definition for an infinite number

1 The conformantTo or conformsTo relationship is also discussed in existing literature [40]. To simplify discussion,
only the instanceOf relationship utilized by the OMG standards [42–45] is defined here.

14

of programs), but a model is an instanceOf exactly one metamodel. Similarly, a meta-metamodel

can be used to define any number of metamodels, but a metamodel is an instanceOf exactly one

meta-metamodel [46]. One of the most common metamodels is the Unified Modeling Language

(UML) [43, 44], which can be used to model software and systems using object-oriented (OO) ab-

stractions. The modeling concepts defined in UML are instantiated from UML’s meta-metamodel,

the Meta Object Facility (MOF) [45], which is the OMG standard meta-metamodel intended to

provide a common core for tool support. The concepts within the MOF meta-metamodel can

be used to define itself, which is why the reflective tower stops at the level of meta-metamodel.

However, other architectures might extend beyond four levels to have higher level metamodels.

2.1.3 A Brief Introduction to MTs

MTs are core operations that drive evolution and maintenance within the MDE paradigm.

An MT converts source model(s) to target model(s) by following a set of rules. MTs may ei-

ther be outplace (source model(s) and target model(s) are distinct sets) or inplace (source and

target model(s) are the same set). The rules may be purely imperative, such as in QVT-O [47];

purely declarative, such as in a graph transformation [41]; or combine imperative and declarative

elements, such as in ATL [48]. An imperative language functions similarly to traditional GPLs

(e.g., Java or C++) by having a structured and rigid control flow scheme. In an imperative ap-

proach, the conversion process is defined explicitly, similar to a GPL [47].

Declarative approaches do not express how a transformation is implemented, but rather

focus on what should occur during the transformation. A common declarative approach is graph

transformation, which includes a left-hand side (LHS), a model pattern that is matched to a subset

of the source model(s) to be transformed, and a right-hand side (RHS), a model pattern that is

matched to a portion of the target model(s) to be created or updated [41]. The combination of

15

Figure 2.2: Sample Graph Transformation Rule

LHS and RHS rules produces pre- and post-condition definitions of what should occur during the

transformation, but the details of how are not specified. Additionally, some graph transformation

environments enable the use of one or more negative application conditions (NAC), which specifies

a constraint that, if true, prevents execution. Figure 2.2 presents a sample graph transformation rule

with a NAC. The LHS specifies two nodes (labeled 1 and 2) connected by a link. The rule will

only be applied if the LHS is properly matched, but may be applied to any element set within

the model that matches the LHS. The RHS then adds a new node (labeled 3) which is linked to

both of the existing nodes (1 and 2). However, the NAC may prevent executing the rule if the two

existing nodes (1 and 2) are already connected to another node (labeled 4). Thus, the rule will only

be applied if two nodes are connected by a link and the two nodes are not already connected to

a shared third node. Furthermore, graph transformation rules may be used in hybrid approaches

(e.g., ATL or MoTif [49]) that focus on defining declarative rules in combination with a mechanism

to schedule and combine rules. In MoTif, the order of rule execution is defined by a structure

resembling an activity diagram. Each rule may potentially call numerous graph transformation

rules, and the selection and order of graph transformation rules is potentially nondeterministic.

16

2.1.3.1 Nondeterminism in Model Transformations

Nondeterminism is a key feature of hybrid and declarative model transformation languages

(MTLs), but not found commonly in GPLs. Scheduling of rules (i.e., how the order of rule ap-

plication is decided at runtime) may be nondeterministic [41]. Nondeterministic rule scheduling

depends on the rules being defined in a way that prevents variations in order from providing in-

correct results. However, in practice it is possible to define transformations such that varying the

order of rules can produce incorrect or even invalid results. In this scenario, a traditional debugger

that relies on restarting the transformation to revisit a past state suffers from more than needing

to re-execute the transformation. If the error is due to a specific ordering of rule application then

nondeterministic rule scheduling prevents a stepwise execution debugger from guaranteeing the

ability to revisit an observed result. This can be further expanded to situations where the rule order

is not a factor in the error, but presents a variation in the processing of intermediate events that may

complicate the process of bug localization. MTLs (particularly those using graph transformation

rules) also support nondeterministic selection of model elements when executing a transformation

rule [41]. The LHS of a graph transformation may match many distinct sets of elements, but the

order in which these sets are chosen is often nondeterministic. Thus, a developer may re-execute

a system to find the elements are changed in a new way. In fact, the bug may even be due to the

choice of elements made by this nondeterministic system. Thus, while nondeterministic systems

are central to many MTLs, the use of non-determinism presents an obstacle to bug localization

that is not adequately managed by stepwise execution debuggers that can only progress forward.

However, an omniscient debugger that can progress forward or back through execution provides

an ideal solution to this concern. The nondeterministic behavior is captured by the omniscient

debugger. Thus, within a given debugging session, the developer can revisit past states exactly as

17

they occurred during initial execution. This enables developers to track an error to the initial failure

without concern for the nondeterministic decisions made by the underlying execution engine.

2.1.3.2 Bidirectional Transformations

An interesting feature of MTs is the direction of the transformation flow. Typically, trans-

formations proceed from source(s) to target(s), but transformations may also be bidirectional to

accommodate translation both from source(s) to target(s) and target(s) to source(s) [50]. Bidirec-

tional transformation rules provide an alternative to storing trace information. For systems with

bidirectional transformations, the assumption that the bidirectional nature of the transformation

is implemented properly may not hold unless a strict bijective approach (which requires a single

reversible operator) is used, and a strict bijective approach is not always possible [50]. Addition-

ally, transformation rules are not always defined as bidirectional. Thus, a system (e.g., a debugger)

built assuming bidirectional transformations would be required to derive an inverse for each rule.

However, an inverse rule is not always possible. Consider a model transformation rule that deletes

a model element. Because any information in the deleted element is lost once deleted, an inverse

rule would not be possible. Similarly, updates can be ambiguous; e.g., setting an element to a

specific value does not provide any clue to the prior value. More complex scenarios also exist. An

element might be updated based on the value of a second element (e.g., e1.value += e2.value). If

the second element is then deleted, the inverse rule is no longer applicable because the value of e2

has been lost. Thus, while bidirectional transformation is possible, a general solution supporting

model transformation should not rely on bidirectional transformation.

2.1.4 Defining Executable Models

The purpose of metamodeling is to define languages. Executable metamodeling also in-

cludes defining execution semantics within the language definition. This is typically practiced in

18

a domain-specific environment with xDSMLs, languages that include the definitions of the exe-

cution state of a model conforming to the language and execution semantics that operate on this

state. Given an xDSML, executing a model conforming to the xDSML consists of the application,

on demand, of the transformation rules that define its operational semantics. An xDSML is defined

by:

• An abstract syntax is a metamodel. An immutable property (i.e., property defining a value

that will not vary during execution) can be introduced in this metamodel. At the model level,

an immutable field (i.e., field with a value that does not vary during execution) is an object’s

field based on an immutable property.

• An execution metamodel extends the abstract syntax by package merge 2. A mutable prop-

erty (i.e., property defining a value that will vary during execution) can be introduced in

this metamodel. In a model, a mutable field (i.e., field with a value that does vary during

execution) is an object’s field based on a mutable property.

• Operational semantics are a set of rules that modify a model conforming to the execution

metamodel by changing values of mutable fields and creating/destroying instances of classes

introduced in the execution metamodel.

• An initialization function that, when given a model conforming to the abstract syntax, returns

a model conforming to the execution metamodel.

2 Note that in practice, existing tools and approaches use different, but similar, extension mechanisms; e.g., Ker-
meta [51] uses aspect weaving and xMOF [52] uses generalization.

19

2.2 Debugging Techniques

Hibberd, Lawley, and Raymond [53] define the debugging process as a combination of the

following three steps:

1. Spotting the Bug: Identifying the existence of a bug.

2. Finding the Bug: Localizing the fault(s) causing the observable failure(s).

3. Fixing the bug: Making any corrections necessary to remove the bug from the system.

Hibberd, Lawley, and Raymond [53] state “traditionally, the majority of effort is spent on

bug localization and the case in model transformations is no different.” Over the years, many ap-

proaches to debugging have been identified (usually focused on the more mature tool environments

for GPLs), including traditional stepwise debugging with breakpoints, omniscient debugging [54],

and query-based debugging [13]. These approaches focus primarily on supporting the task of Find-

ing the Bug. Seifert and Katscher [4] state “the common goal of all debugging methods is to ease

the localization of errors in programs.” This section briefly reviews five approaches to debugging

in a general SE context:

1. Utilization of Language and Basic Tool Features to Support Debugging

2. Stepwise Execution and Breakpoint based Debugging

3. Omniscient Debugging

4. Query-based Debugging

20

2.2.1 Language and Basic Tool Support

As discussed in [16] and [15], a number of language features enable what Mannadier and

Vangheluwe [16] term a “poor man’s debugger.” The following features enable developers to

perform a debugging process, but do not provide the level of support of a dedicated debugging

approach such as stepwise execution with breakpoints. These features focus on exact points in

code, but a dedicated debugging approach supports features that enable exploration of code either

dynamically (i.e., at runtime) or statically (e.g., during post-mortem analysis).

2.2.1.1 Print Statement

A print statement is a common language feature available in all major GPLs and can be

used to output state information or track control flow at runtime [16]. This technique is very basic

and requires additions to the system that must be maintained and evolved based on a need for

particular debugging information not relevant to normal functioning of the system.

2.2.1.2 Assertions

Assertions enable a developer to check a specified condition (often expressed as some re-

lational expression over the current program state) at runtime. Assertions cause the program to

abort if the condition fails, where failure is determined by the result of checking a specified condi-

tion [15, 16]. Assertions are managed more easily than print statements due to common implemen-

tation of release and debug modes in languages and associated tool support [16]. In “debug” mode,

assertions work as described, but in “release” mode assertions are ignored at runtime. This allows

a developer to manage the addition and removal of assertions without concern for the assertions

causing unexpected or unwanted behavior when released.

21

2.2.1.3 Exceptions

Exceptions are the most advanced language feature for debugging support. Syriani, Kien-

zle, and Vangheluwe [1] state “debugging a model transformation is not trivial and exceptions are

very helpful for debugging, namely to detect logical errors in the design of a transformation.” An

exception is thrown at runtime and signifies an error during execution. Exceptions contain infor-

mation concerning the state of the program at the time the error was encountered. An exception

may be caught and handled by custom exception handlers [1, 16]. A developer may associate

specific code in the body of an exception handler to attempt correction of the error and continue

execution at the same or different point in the control flow. A developer may also abort execution

and provide the state information as output to aid in a post mortem analysis of the error. If the ex-

ception is not caught by an appropriate handler, then execution will be aborted with a stack dump

provided as typical output. In addition to being able to use predefined exceptions, many languages

provide support for defining customized exceptions [1, 16].

2.2.2 Tracing

Traditional GPL tools offer support for stack traces that provide the developer with infor-

mation concerning the current scope at a particular time during program execution [16]. Stack

traces are commonly provided during stepwise debugging processes (discussed later) and as a part

of the information included by exceptions. In addition, traceability links have been utilized to aid

in a variety of tasks including verification and validation (V&V) such as requirements traceabil-

ity [55]. The concept of tracing follows the trail of associations between two software elements

that can be either design or implementation elements. The application of tracing to debugging is

fairly common in usage and a powerful technique for understanding the relationships across arti-

facts in the development lifecycle. Tracing provides the developer with an accurate record of the

22

history of execution, which can be used during live or forensic [53] debugging to better understand

how an error state has been reached and what portions of the system were involved.

2.2.3 Stepwise Execution and Breakpoints

The stepwise execution of a program is the most common form of tool support provided for

debugging and available in the majority of integrated development environments (IDEs) for most

languages (e.g., Eclipse provides an open debug tool extension interface to which new languages

may extend). Stepwise execution allows a developer to examine the state of a program during a

dynamic execution while offering access to state information that would otherwise be hidden from

the developer. The goal of this debugging approach is to allow the developer to examine a seg-

ment of a program more closely during execution to identify erroneous code. Stepwise Execution

debuggers typically provide two key features: stepwise execution and breakpoints [15, 16]. Tools

providing Stepwise Execution also support viewing dynamic state information while the program

is paused at a certain point, and some tools allow the alteration of state information during run-

time [16]. Thus, developers may execute the system in a stepwise manner and pause at predictable

points in execution to view dynamic state data to better understand the behavior of the system

under study.

2.2.3.1 Stepwise Execution

Most development tools support three basic stepwise execution features: stepOver, stepInto,

and stepOut [16]. StepOver executes a single unit before pausing execution again. The unit

stepped over may be a composite unit such as a function, but will be executed completely before

pausing execution. StepOver enables developers to maintain focus within a certain scope during

stepwise execution. StepInto moves to the first executable unit within a composite unit of code.

StepOut moves execution to the first unit of executable code in the containing scope, and executes

23

any remaining code in the current scope. Two additional commands are play (which causes the

program to execute until either a breakpoint is reached, or the pause command is activated) and

pause (which halts execution at the current point). The combination of these commands enables

developers to traverse the dynamic execution of their program and, with careful navigation, view

any state of interest. It is possible for a developer to mistakenly navigate beyond a point of interest,

such that the only method of returning to past points in the execution history using traditional step-

wise execution requires restarting the program execution. However, several approaches exist that

can address this issue. Omniscient debugging (discussed in Section 2.2.4) allows the developer

to return to past points in execution history during a debugging session. Alternatively, techniques

such as program slicing and QBD (discussed in Section 2.2.5) can be used to identify points of

interest before execution and prevent unnecessary repeat executions.

2.2.3.2 Breakpoints

A key feature of most implementations of stepwise execution is the concept of a break-

point [15, 16], which represents a point in the code where the developer wants to pause the ex-

ecution of a program. Breakpoints enable developers to run a program and only pause at areas

of interest within the code. Without breakpoints a developer would either need to carefully time

the invocation of the pause command during stepwise execution or manually step through many

uninteresting areas to reach an area of interest. Breakpoints may be further enhanced in the form

of conditional breakpoints that only pause execution if a certain condition is found true when the

breakpoint is reached [15, 56]. Conditional breakpoints are particularly useful regarding looping

structures or commonly executed code where a traditional breakpoint would cause the debugger to

manually examine many uninteresting states before reaching a state of interest [16].

24

2.2.4 Omniscient Debugging

The IEEE Systems and Software Engineering – Vocabulary provides the following three

definitions:

• Error: “The difference between a computed, observed, or measured value or condition and

the true, specified, or theoretically correct value or condition.” [57]

• Fault: “An incorrect step, process, or data definition.” [57]

• Failure: “Termination of the ability of a product to perform a required function or its inability

to perform within previously specified limits.” [57]

Omniscient debugging enables a developer to trace backward in time through a program’s

execution history from the location an error was identified and trace to the location of the fault

that caused the failure. This terminology is important to clarify that the underlying cause of an

error is not always located at the point in execution where the error is identified. Lienhard, Gîrba,

and Nierstrasz [8] state, “the hardest task is to find the actual root cause of the failure as this can

be far from where the bug manifests itself.” Omniscient debugging implementations combine the

advantages of tracing techniques with those of stepwise execution and breakpoint based debugging

techniques [9, 10].

Omniscient Debugging is not a new technique in the realm of GPLs. Zelkowitz published

on the concept of reversible execution in the early 1970s [54]. Since this time, significant work

has been undertaken in the context of GPLs including several commercial products [58]. How-

ever, these techniques have been focused on either utilizing low-level machine implementations

to support reverse and replay, or utilizing traces designed to capture information for a given GPL.

25

The work described in this dissertation has focused on a trace-based omniscient debugging ap-

proach initially supporting hybrid model transformation languages, as discussed in Chapter 4, and

later expanding to xDSMLs in a collaborative project with researchers from IRISA/INRIA and the

University of Rennes, discussed in Chapter 5. Both debuggers are defined at the level of the trans-

formation engine. Thus, omniscient debugging is supported at the level of CRUD (Create, Read,

Update, and Delete) operations in a modeling environment.

The primary challenges of omniscient debugging are scalability and usability. Scalability

refers to the challenge of maintaining enough state information to enable debugging backwards in

time to any previous point in the execution history of a system. This issue has been explored by

many researchers and several potential solutions have been presented. These solutions are outlined

in the following:

• Utilizing garbage collection similar to the facilities available in modern GPLs such as Java [6–

8]. The garbage collector removes references to elements that are no longer referenced and

not relevant to the execution history. This approach attempts to minimize data collected

over time, but in some scenarios these elements may need to be regenerated, thus reducing

runtime efficiency.

• Limit the portion of execution history that can be navigated [6], which would provide a

window effect (statically located at an area of interest or dynamically located around the

current point of execution). The effect, advantages, and disadvantages of this solution are

similar to utilizing garbage collection, but whereas garbage collection would maintain some

history of elements and try to identify only irrelevant elements for destruction, the window

solution removes all information outside of the current window.

26

• Identify a subset of the program as being of interest to the debugging process [6] and only

record information concerning these elements. This solution can be applied in a static man-

ner (e.g., select elements of interest before playback begins) or in a dynamic manner (e.g., se-

lect elements no longer of interest during runtime) [10]. This approach creates the challenge

of discerning which elements will be of interest. This is particularly a concern for the static

approach, which requires foreknowledge of all interesting elements. Several analysis tech-

niques could be used to inform this decision (e.g., impact analysis or program slicing), but

the potential exists for false positives that would decrease the efficiency, and false negatives

that can cause important information to be ignored.

In addition to the scalability challenge, omniscient debugging introduces the usability chal-

lenge of navigating to meaningful locations in the execution history. Some existing tools provide

a means to utilize query-based debugging to identify elements of interest and locations in the ex-

ecution history of interest. The query-based debugging approach provides useful information, but

represents a cost to runtime efficiency because of the need to evaluate queries, in addition to pro-

viding omniscient debugging facilities. TOD (trace-oriented debugger) [9, 10] incorporates this

approach, but implements a minimal query language compared to focused query-based debuggers

in order to preserve runtime efficiency.

2.2.5 Query-based Debugging

QBD reduces the burden of bug localization on developers utilizing debugging approaches

such as stepwise execution and breakpoints or, as discussed in Section 2.2.4, omniscient debug-

ging [14]. QBD implementations provide query languages that enable developers to ask questions

about a program. The developer-provided queries analyze the program for portions of the code

27

that are relevant to the query [14]. The query-based approach provides a semi-automated solu-

tion for bug localization. Both static [15, 59–61] and dynamic [5, 11–15, 61] approaches to QBD

have been investigated. Static approaches focus on utilization of trace information and analysis of

static documents including any input, output, and executable elements. The static approaches do

not necessitate the inclusion of any trace information or additional features added to runtime en-

vironments or code in order to utilize the technique [59]. However, trace information, which may

require some of these alterations, is helpful during the debugging process. The dynamic approach

requires additional support for query evaluation.

One noteworthy query-based debugger is Whyline [5, 11, 12], originally introduced for

debugging Alice code [5, 11] and later evolved to debug Java code [12]. The Whyline focuses

on providing a guided debugging session by offering suggested queries to the user. The queries

presented by the Whyline focus on questions such as “why does property x of object y have this

value?” and “why is property x of object y not set to this value?” The suggested queries focus on

exploring the reasons behind a failure 3. This differs from typical query-based debuggers that offer

an expressive query language and require the developer to provide custom queries.

2.3 The State of Debugging in MDE

This section briefly reviews the five approaches to debugging (as described in Section 2.2)

within the context of MDE.

3 Failure was previously defined to be “termination of the ability of a product to perform a required function or its
inability to perform within previously specified limits” [57]

28

2.3.1 Language and Basic Tool Support

2.3.1.1 Print Statement

In many model transformation languages the equivalent of a print statement is either not

available or is complicated to implement, thus limiting the usefulness of this debugging approach [16].

Mannadier and Vangheluwe described several potential methods for implementing a print state-

ment in model transformations [16]. The simplest technique uses action code in a transforma-

tion to add printing features such as calling the print function provided by Python action code in

AToM3 4 [16]. Alternatively, entire rules focused on providing print statements could be created,

but these rules would need to be constructed carefully to avoid altering the models and to ensure

proper termination [16]. The final option presented by Mannadier and Vangheluwe is to provide

language support by adding special print rules to MTLs. Mannadier and Vangheluwe argue in fa-

vor of adding print rules and comment that every GPL incorporates print rules despite the function

of print rules being largely limited to debugging in modern practice [16]. It is worth mentioning

that GPLs are also used in the creation of command line programs that require some form of print

command for output purposes, but modern development is primarily focused on the creation of

graphical interfaces that typically do not require the use of print statements. A similar example

in favor of adding print rules to provide debugging support is the inclusion of assertions in many

modern GPLs.

2.3.1.2 Assertions

Mannadier and Vangheluwe briefly discuss the possible application of assertions to MTs [16].

Two methods for implementing assertions for model transformations are proposed: 1) encoding as-

sertions as rules or patterns for the MTL, and 2) adding support for assertions as a feature of the

4 atom3.cs.mcgill.ca

29

atom3.cs.mcgill.ca

Figure 2.3: An Exception Hierarchy for Model Transformation [1]

MTL [16]. The first option (encoding assertion) has the same issues as were mentioned for print

statements. The developer must ensure the assertion is side-effect free and properly terminates.

The second option (adding language support for assertions) is more promising, but requires sup-

port from the developers of the MTL to implement the necessary features.

2.3.1.3 Exceptions

Applying the concept of exceptions to model transformations has been explored by Syr-

iani, Kienzle, and Vangheluwe [1]. They introduce a set of proposed exception types for model

transformations and an experimental version of the exceptions is implemented in MoTif [1]. The

proposed exception types are illustrated in Figure 2.3 and briefly described as follows:

• Rule Design Exception occurs when there is an error in the transformation rule declaration.

– Inconsistent Use Exception occurs when a rule or set of rules may be applied in several

legal orders, but produce different results depending on order of execution.

– Synchronization Exception occurs when a set of parallel transformations affect each

other and therefore cannot be applied in parallel.

• Runtime Exception occurs when an exception is encountered at runtime in the transformation

engine.

30

– System Exception occurs when the virtual machine executing the transformation en-

counters a runtime error, such as running out of memory.

– Action Language Exception occurs when an exception occurs in the action language.

• Transformation Language-Specific Exception is a class of exceptions specific to a particular

transformation language, such as an unbound parameter exception in languages that allow

parameterized rules.

• Transformation-Specific Exception is a class of exceptions that can be defined by the devel-

oper and encompasses exceptions specific to a particular transformation set.

A model for handling exceptions in model transformations is also proposed that includes

adding an additional output for exceptions originating from a transformation [1]. The exception

output may be connected to a handler that resolves the particular exception. The handler may re-

sume execution normally for the transformation, restart execution to return to the beginning point

of execution for the transformation, or terminate execution to cancel execution of the transforma-

tion [1]. The three options may all be undertaken without any portion of the system outside of

the current scope being aware that an exception was encountered. Alternatively, the handler can

propagate the exception to any enclosing scope. If no further enclosing scope exists, the execution

is halted and the state information encapsulated in the exception is displayed. If an exception is

not caught, then the exception is propagated as described previously [1].

2.3.2 Tracing

Amstel, van den Brand, and Serebrenik [62] state, “traceability plays an essential role in a

number of typical model development scenarios such as debugging.” Mannadier and Vangheluwe

point out that the application of traditional stack traces is very dependent on specific details of the

31

Name Stepwise Execution Breakpoints
TROPIC X X
UML Model Debugger X X
ATL X X
Tefkat X X
GReAT X
AToM3 X
VIATRA2 X
Graphical Model Debugger Framework X

Table 2.1: Common Debugging Features Implemented in Model Transformation Tools

MTL [16]. An MTL such as ATL that supports invoking a rule from within another rule would

benefit from stack traces similarly to GPLs for debugging. However, if all rules are atomic, then

stack traces would only inform the developer of the current rule, which is not a significant aid in

the debugging process. However, the traceability links are significant for any MTL because it can

provide a detailed execution history including the order of transformation execution [63] (espe-

cially useful in an environment with nondeterministic scheduling) and links between source and

target models [64] that can be used to reason about the runtime behavior of a transformation [65].

2.3.3 Stepwise Execution and Breakpoints

Several model transformation tools support the application of stepwise execution along

with observing and altering the state during debugging. A few of those tools also support break-

points for debugging. Table 2.1 summarizes the model transformation tools that have been identi-

fied within the literature as offering these debugging features.

2.3.3.1 Stepwise Execution

All of the identified tools that support debugging concerns implemented some form of

stepwise execution. The typical step-over, step-into, and step-out functions are supported by

all of the environments identified. All tools except the Graphical Model Debugger Framework

(GMDBF) [66] implement the play and pause commands of stepwise execution discussed in Sec-

32

tion 2.2.3.1. Some of the tools, such as AToM3 5, additionally include the ability to control the

nondeterministic scheduling of rule execution (i.e., manually choose the rule to be executed from

a set of applicable rules) or to allow the scheduling engine to determine the next rule application.

Generally, all tools possess the same level of implementation and only differed in features derived

from differences in the environments, such as allowing rules to contain other rules, imperative

vs. declarative vs. hybrid style rules, and deterministic vs. nondeterministic scheduling. One

exception was GMDBF [66], which was focused on enabling the developer to view live runs of

an embedded system at the model level. GMDBF may result in updates that occur too quickly

for a human to monitor and does not allow controlled execution during live debugging sessions.

However, GMDBF includes a replay engine that allows a user to replay system execution using

trace information gathered during a live run. The live run does not allow the developer to control

the underlying system execution, but the offline simulation allows such control [66]. Most tools

focus on providing debugging support within the constraints of the chosen implementation lan-

guages (source model(s), target model(s), and model transformation), but TROPIC [17] converts

the entire system to a custom colored Petri net. The primary benefits of this approach are that the

Petri net gives the transformation process an explicit definition and the Petri net provides access to

potentially useful automatic verification. For example, a Petri net can be automatically checked to

make sure it is possible for all transitions to fire. If a transition is found to be unable to fire at any

point during execution, this indicates a portion of the model transformation will never be invoked

(similar to unreachable code in a GPL) [17]. Several more examples are provided of automatic

verification supported by the Petri net formalism being applied to indicate potential faults in the

model transformations.

5 atom3.cs.mcgill.ca

33

atom3.cs.mcgill.ca

TROPIC allows stepwise execution where each step furthers the execution of the Petri net

by invoking a transition and allowing the developer to observe the movement of tokens (which

represent model elements and properties) through the system [17]. However, the conversion to a

Petri net removes the developer from the context provided by the source model(s), target model(s),

and model transformation and places the developer in the context of debugging a Petri net with

places, tokens, and transitions derived from the original system. The Petri net labels for places are

taken from the models to retain domain terms, but any carefully constructed formalism is traded

for the generic, but powerful, Petri net formalism. The developer is able to debug in a Petri net to

view the process that provides clear control flow and animations for the debugging process, but the

developer must debug in a language other than the one chosen for implementing the system being

debugged. This creates a language mismatch between how the developer described and developed

the system, and how the debugger is executing and displaying the system. All other surveyed tools

focused on providing facilities focused on debugging within the context of the source modeling

language, but no other tool provides the facilities for the automatic verification properties available

in TROPIC due to the use of the Petri net formalism.

2.3.3.2 Breakpoints

Several existing tools support the use of breakpoints during debugging tasks, including

TROPIC [17], UML Model Debugger6, ATL7, and Tefkat8. The breakpoint implementations func-

tion similar to traditional breakpoints, as seen in GPLs, with a given point in the model transforma-

tion process tagged as a location of interest and execution halted when the breakpoint is reached.

From a survey of supporting modeling tools, only TROPIC enables the use of conditional break-

6 http://www.research.ibm.com/haifa/projects/services/uml/index.shtml
7 www.eclipse.org/atl/
8 tefkat.sourceforge.net

34

http://www.research.ibm.com/haifa/projects/services/uml/index.shtml
www.eclipse.org/atl/
tefkat.sourceforge.net

points that allow the breakpoint to halt execution if a specified condition is evaluated true. TROPIC

implements conditional breakpoints using an OCL query language that can specify constraints and

conditions to be checked when the breakpoint is reached.

2.3.4 Omniscient Debugging

Recently, there has been some work in the area of MDE toward the application of om-

niscient debugging. My prior work, discussed further in Chapter 4, has investigated applying

omniscient debugging to model transformations toward a scalable and performant omniscient tech-

nique [32, 33]. Furthermore, in collaboration with researchers from IRISA/INRIA and the Univer-

sity of Rennes, I have explored applying omniscient debugging to an xDSML environment [35].

The collaborative work, discussed further in Chapter 5, describes a technique that utilizes gener-

ated domain-specific trace metamodels along with a generated domain-specific trace manager to

support a generic omniscient debugger implementation for xDSMLs. This collaborative work also

investigated multi-dimensional omniscient debugging traversal features. These features enable a

user to explore history through only the steps relevant to a given model element. Thus, the devel-

oper can minimize the time spent reviewing steps not of interest. Van Mierlo presented a proposal

toward the debugging of executable models defining simulation semantics [67]. A particular focus

of the work addressed handling simulated real-time. The scope of my contributions presented in

Chapter 4 and Chapter 5 concerns applying omniscient debugging to MTs and an environment sup-

porting xDSMLs, respectively. My work does not concern handling simulated real-time or relating

the model entities with generated code.

2.3.5 Query-based Debugging

Although some support for model querying has been explored in the existing literature [68–

71], TROPIC [17–19] is the only tool that supports query-based debugging in the context of model

35

transformations. TROPIC includes a debugging console (based on the Interactive OCL Console

provided by Eclipse) that can be used to invoke OCL functions to generate queries that can be

evaluated in the runtime environment [17]. TROPIC provides an adequate query engine, but suf-

fers from the same language mismatch described previously. The use of OCL for debugging has

also been discussed briefly in the context of debugging for C++ by Hobatr and Malloy [72], who

presented a UML metamodel and OCL compiler to compile the OCL queries into C++ code. Their

approach utilized modeling techniques, but is focused on the application of debugging a GPL.

Important to the discussion of QBD is knowledge about the queries that developers use

during the debugging process. Hibberd, Lawley, and Raymond [53] introduced three categories of

questions that developers may ask during the debugging process for model transformations. The

first category of questions is concerned with logical bugs, “violation of a relationship constraint

between the source and target model” [53] (e.g., “Why didn’t source type, t, result in any target

objects being created?” [53]). The second category of questions is concerned with well-formedness

bugs, “violation of the constraints specified by the target metamodel(s)” [53] (e.g., “Why was the

single valued reference, r, assigned more than once?” [53]). The final category of questions is

concerned with analysis questions and is composed of two sub-categories. Sub-category I concerns

bug smells or static analysis questions that focus on identifying structures commonly associated

with bugs (e.g., “For all source types, which source objects of the selected type did not contribute

to the creation of any target objects?”). Sub-category II concerns information discovery questions

which, intuitively, gather information from the available sets of data such as trace information,

source model(s), target model(s), and model transformation(s) (e.g., “Given a target object, what

source objects contributed to its creation?” [53]).

36

CHAPTER 3

SUPPORTING COLLABORATION IN A CLOUD-BASED MDE ENVIRONMENT

In MDE, stakeholders work on models in order to design, transform, simulate, and analyze sys-

tems. Complex systems typically involve many stakeholder groups working in a coordinated man-

ner on different aspects of a system. Therefore, there is a need for collaborative platforms to allow

modelers to work together. This chapter presents a collaborative project developing a multi-user,

multi-view architecture for AToMPM and an initial evaluation of its performance and scalability.

3.1 Introduction

Complex systems engineering typically involves many stakeholder groups working in a

coordinated manner on different aspects of a system. Each aspect addresses a specific set of sys-

tem concerns and is associated with a domain space consisting of problem or solution concepts

described using specialized terminology. Therefore, engineers express their models in different

DSMLs to work with abstractions represented in domain-specific terms [30]. Recently, there has

been a growing trend toward collaborative environments, especially those utilizing browser-based

interfaces. Common tools include Google Docs1, Trello2, Asana3, and more. Additionally, this

trend can be seen in software development tools including WebGME [73], a web-based collab-

1 https://docs.google.com
2 http://www.trello.com
3 https://www.asana.com/

37

https://docs.google.com
http://www.trello.com
https://www.asana.com/

orative modeling version of GME, and Eclipse webIDE4. These tools bring together developers,

including geographically distributed teams, in a collaborative development environment to work

on a shared set of software artifacts. However, the introduction of these collaborative environments

brings new concerns.

My prior work has defined the requirements and challenges for a collaborative modeling

environment [25]. In that work, Eugene Syriani and I refined a set of basic collaboration scenarios

for multi-view modeling, discussed further in Section 3.2. Although there is a growing need for

such collaborative environments (as discussed in Section 1.2), few modeling tools allow multiple

stakeholders to work on their modeled system concurrently. The degree of collaboration between

developers is often restricted to the version control repository used by the tool (e.g., subversion,

github). The lack of focus on the collaboration and integration of models and languages among

teams and users has been a major impediment for industries who operate globally around the

world [74]. To ensure consistency and synchronization among the artifacts produced by each

stakeholder in a live environment, a cloud-based environment is preferrable. My prior work also

presented the architecture of AToMPM [24, 25, 75], a cloud architecture designed for collaborative

modeling, along with both a detailed description of how AToMPM addresses the challenges of the

presented collaboration scenarios [25] and an initial evaluation of the architecture [75]. The work

described in this chapter builds upon the prior work of my collaborators Eugene Syriani, Simon

van Mierlo, and Hüseyin Ergin to define an in-browser multi-paradigm modeling environment [23]

which is overviewed in Section 3.4.1.1; and the prior work of Simon van Mierlo to define a basic

model storage and processing system (Modelverse Kernel or MvK) [76] which is overviewed in

Section 3.4.2.

4 https://eclipse.org/ide/

38

https://eclipse.org/ide/

1

2

3
4

view

user

model

Figure 3.1: Scenarios in multi-view modeling

The chapter is structured as follows. Section 3.2 overviews the collaboration scenarios

for modelers in a multi-view modeling environment. Then, Section 3.3 discusses further goals

and concerns motivating the design of the architecture. Next, Section 3.4 presents the cloud ar-

chitecture of AToMPM, designed to support collaborative modeling, and Section 3.5 empirically

evaluates the performance and scalability of the architecture. Finally, Section 3.6 summarizes and

discusses related work, and concluding remarks are provided in Section 3.7.

3.2 Collaboration Scenarios in Multi-View Modeling

In practice, teams of stakeholders work together in order to produce a coherent and com-

plete system. Modeling tools, frameworks, and language workbenches typically consider all de-

veloped artifacts as models. In the context of a collaborative effort among individuals, such tools

must separate views from models. A view is a projection of the model, showing only a part of the

model in its own concrete syntax representation. Models are stored in a cloud-based repository and

can only be accessed via their views. However, it is not necessary for a model to have a view to

exist. For tools to support collaborative modeling activities, four possible collaboration scenarios

are explored here for multi-view modeling. These are illustrated in Figure 3.1. For simplicity, the

39

discussion is restricted to two users/views/models, although generalizable to an arbitrary number

of each component. For each scenario, a briefly discussion is provided of what conflicts can occur

when users are connected live to the cloud and an idea is offered on how to resolve them. Note that,

in practice, any combination of these scenarios is possible, but each one will be treated separately

in the following discussion.

3.2.1 Multi-User Single-View (1 in Figure 3.1)

Stakeholders are working on the exact same artifact. This is equivalent to having both of

them share the same screen to manually inspect a model together during training. In this case,

two users are working on the same view of the model. They both see the exact same data in the

same concrete syntax. Changes made by one user are reflected automatically to the other. In the

case of simultaneous conflicting changes (e.g., one user is deleting an element that the other user

is updating), the conflict is resolved in a first come, first served fashion.

3.2.2 Multi-View Single-Model (2 in Figure 3.1)

Stakeholders are working on different parts of the same artifact. This situation is useful

when artifacts can be designed incrementally and in parallel. In this case, two users are each

working on a different view of the model. The two views may be presenting the same elements

in the same or different concrete syntax. They may also share only some or no elements between

them. In any case, the views represent a part of the same model and therefore the models in the

views conform to the same modeling language. In the non-intersecting views cases, changes in

one view are not reflected in the other view. Otherwise, if an element is present in both views,

changes in its abstract syntax in one view are reflected in the other view. However, changes that

only affect the concrete syntax of the element are not reflected in the other view. Note that some

changes in the abstract syntax of an element may change its concrete representation. In the case of

40

simultaneous conflicting changes on a shared element, a conflict management strategy must be put

in place to solve the conflict and maintain the two views consistent with each other.

3.2.3 Multi-View Multi-Model (3 in Figure 3.1)

Stakeholders with differing expertise are working on distinct artifacts that, together, com-

pose the overall system. In this case, each artifact represents a concern of the overall system

(e.g., the electrical and software concerns of an automotive). Two users are each working on a

different view and each view is a projection of a different model. The models define together the

overall system. This means that elements in each view are part of models conforming to different

modeling languages. However, the two models are subject to global consistency constraints (e.g., a

method call to an object in a UML sequence diagram can only be established if the UML class

diagram has defined that method on the target class of the object). Furthermore, an element in

one model may explicitly rely on elements in the other model, by having a reference to it. Only if

that reference is part of the view of the second model, then changes to the referenced element in

the first model may be reflected in that view. In particular, if the referenced element is deleted in

the original model, then a decision must be made for whether the deletion should cascade to the

reference or not. Simultaneous conflicting changes to that element are not existent between the

two views, since one view passively references the element.

3.2.4 Single-View Multi-Model (4 in Figure 3.1)

This is a particular case of the previous scenario where one user is working on a view that

projects two models, while another user is working on a view of one of these models. In this case, it

is the view that makes the link between elements of the two models as opposed to the previous case

where that link is defined in the model. Typically, the view represents an abstraction of elements

of the two models (e.g., a correspondence relation between the resistors of the electrical circuit and

41

the heat sensor of the engine). This view is generally the one that defines the consistency relation

between elements of the models. A change that occurs on the abstract syntax of an element in one

of the models may therefore affect the view. This scenario is outside the scope of this chapter.

3.3 Design Goals and Concerns

The primary guiding concern driving this contribution to the dissertation is to create a

system that can support collaboration and modeling where it is most natural to the users. Thus

far, the focus has been on the motivating scenarios for collaboration (Section 3.2). However, a

number of additional factors also motivated the design. This section describes some of the goals

and concerns that have guided the design of the AToMPM architecture.

3.3.1 Responsiveness

A primary concern for the architecture is to provide an acceptable level of responsiveness.

Because of the focus on small scope CRUD operations, it is imperative to ensure these operations

process in a minimal amount of time. A user across a session will make many individual CRUD

operations (e.g., updating the number of tokens in a Petri net place), and these operations should

not present a notable delay in a user’s process. Additionally, these CRUD operations form a basis

for model transformations and larger processes.

3.3.2 Distinct View and Mode of Interaction

Modelers working within a shared artifact to collaborate on a larger project may not always

share the same focus, working with subsets of the same model. Alternatively, they may desire to

visualize a model for varying purposes. AToMPM utilizes views to provide each modeler with

the capability to refine the scope and style of visualization when working on shared artifacts. A

specific view may contain only a portion of a model or utilize a distinct visualization.

42

3.3.2.1 Models and Views

Within AToMPM, models are separated into two categories: abstract models and views.

The distinction between views and abstract models allow modelers to work with portions of a

model and use distinct representation, arrangement, and sizing for the elements of their view.

Thus, stakeholders are able to share models, allowing modelers with varying skills to work col-

laboratively on the same model. An abstract model is the abstract syntax of a model conforming

to the metamodel of a given DSL. Conceptually, a view is a projection of an abstract model onto

a DSL that uses the most appropriate representation of a subset of the model’s elements for the

needs of the expert modeler working on that part of the model. A view references a set of elements

from the abstract model. The view also maintains a list of other models necessary to use the spe-

cific view. The most common example of a model found in this list is a concrete syntax model.

By varying the concrete syntax between views, different users may view the same model using

varying visualizations (e.g., textual or graphical). Other inclusions in the list could be executable

models used for simulating the model through model transformation. Finally, the view includes a

mapping of model elements to concrete syntax information, because these mappings are specific to

a representation of the model. These mappings might include the absolute position, rotation angle,

and size scaling of the element.

3.3.3 Distinct Mode of Interaction

Additionally, the architecture of AToMPM separates the processing for model and view

actions from the specifics of the client. Thus, it is possible for developers to work within varying

client systems. A modeler may choose to utilize a tablet or other touch-enabled device to manip-

ulate a primarily graphical view, but the modeler could also utilize a purely textual command line

environment to manipulate the model.

43

Model-verse

Supercontroller

Clients

NODE

MsgKForwarder

ModelKController
Proxy

CloudKArchitecture

MvKControllers
MvK

RespKForwarder

Figure 3.2: Overview of AToMPM architecture

3.3.4 Managing Conflicting Requests

As the number of concurrent users accessing a shared resource increases, conflicting re-

quests become innevitable. Managing conflicting requests is a primary concern for systems en-

abling shared access to resources. However, due to the nature of request management within the

Controllers portion of the architecture, conflicting requests are not truly processed concurrently.

The system will always be able to process requests with conflicting requests being automatically

resolved based on order of arrival. However, the client systems may still detect failures or even lost

updates (e.g., a scenario where a second update overwrites a prior update before the second user is

made aware of the first update) due to the stream of updates from the Model Controller. Thus, the

client system may provide further, more advanced and costly, methods of conflict management.

The core architecture focuses upon resolving all messages with minimal processing to pre-

serve responsiveness. This focus on responsiveness also works to reduce the possibility of conflict-

ing requests. Decreasing time spent processing and providing updates to the user more quickly,

decreases the window in which users may provide conflicting requests. If the time to process a

request and update all clients is 1 second, then a conflicting request must occur within 1 second of

44

the previous request being made. If the time is reduced to 0.1 seconds, then the conflict must occur

within 0.1 seconds of the prior request.

3.4 Multi-View Modeling in AToMPM

This section presents the architecture of AToMPM. This architecture has been designed

to resolve the challenges of providing a performant multi-user, multi-view modeling environ-

ment. Figure 3.2 illustrates the components of this architecture: client systems, Modelverse Ker-

nel (MvK), and a set of controllers coordinating the other two components (referred to as the

Controllers). The three components communicate by exchanging changelogs encoded in JSON

that contain all the necessary information to perform a task. This design implements the classic

Model-View-Controller pattern, but a distributed network of controllers is provided to manage the

concerns of a multi-user, multi-view modeling system.

3.4.1 Client

AToMPM includes a web client that runs in-browser. However, the underlying architecture

is designed to be client agnostic and supports a wide variety of clients. The distributed system that

manages models and views exposes a simple API with connections and transmissions made using

0MQ 5, an open source socket messaging library with support for a large variety of languages

and platforms. The initial target client for the architecture is the AToMPM Web Client that was

demonstrated at MoDELS 2013 [23], but the architecture is available to any client that can maintain

a live connection to the back-end system. Thus, it is possible (in the future) to have a developer

working on a tablet application, another using the AToMPM Web Client, and yet another using a

command line editor. Each of these disparate users would have live access to the same model and

able to collaborate in live time. To accomplish this goal, multi-view modeling, wherein a model

5 http://zeromq.org/

45

http://zeromq.org/

Figure 3.3: Overview of AToMPM architecture

is separated from its representation, is supported. The model may be represented through many

views, which allows access to the same elements across such disparate environments that may not

even support the same style of visualization and interaction.

46

3.4.1.1 AToMPM Web Client

AToMPM provides an in-browser GUI client for the user. Therefore, there is no installation

required to perform modeling tasks. In the back-end, a node.js web server hosts the pages. The

main features of the web-based GUI are:

• Creating DSMLs

– Creating metamodels

– Designing and assigning concrete syntax to metamodel elements

• Manipulating models through an HTML5 canvas

– Creating, updating and deleting elements

– Undoing, redoing changes

– Copying and pasting elements

• Executing and debugging model transformations

• Collaborating with other users in real time

3.4.2 Modelverse Kernel

The Modelverse [76] is a centralized repository to store and manipulate models. All ar-

tifacts in the Modelverse are considered models, whether they describe a view, a model, a meta-

model, or a model transformation. It provides an API, the MvK, to perform CRUD (create, read,

update, delete) operations on model elements, check for linguistic conformance (with metamodels

and constraints), and execute particular models of computations (built-in action language, transfor-

47

mations, and state machines). The MvK processes all modeling actions, such as primitive requests

and execution, directly on models that are stored in the Modelverse.

3.4.3 Controllers

The Controllers portion of the architectures encompasses a series of distinct controllers

that ensure consistency among clients, view(s), and the model(s). A user can perform CRUD op-

erations, create a model, load a model, add or remove elements from a view, create new views,

and execute a model or set of models. These requests are sent into the system through a message

forwarder that routes messages to the proper controller for processing. Similarly, responses return

to the clients via a response forwarder. Forwarders make use of the extended publish-subscribe

pattern (provided by 0MQ). This pattern enables both clients and controllers to subscribe to mes-

sages regarding a specific view of an abstract model without needing to connect to the dynamically

spawned controllers that manages the relevant views and abstract model. A client or controller

can be subscribed to many models. The following describes how models are represented in the

Controllers and presents three controller types.

3.4.3.1 Model Controller

The model controller provides a layer on top of the MvK that incorporates multi-user,

multi-view modeling. A model controller manages a given model and all views of that model,

and there exists one model controller per active abstract model. In this way, the processing of

concurrent user requests is distributed based on the artifact being used. However, all requests

for a given model are managed by a single controller ensuring consistency for the model and the

associated views. Whenever a model operation alters a portion of the abstract model, the resulting

changelog is published to all that have subscribed to a view that references the updated portion

of the model. The view operations are guaranteed to have no side effect on the model and thus

48

do not need to update users of other views. Load and read requests are performed directly at the

model controller, which are resolved locally using cached information. For all other operations, the

model controller coordinates the processing of primitive operations within the MvK. The model

controller ensures that the sequence of primitive operations is valid, and separates models from

views, whereas they are treated uniformly within the MvK.

To enable automatic resolution of conflicting messages, the model controller guarantees

one message must complete successfully (win) and other conflicting messages will fail. Incoming

client changelogs are queued to be processed using a FIFO (first-in-first-out) strategy. Thus, oper-

ations that originate from clients sending a changelog may fail based on the results of a previous

message. By allowing the earlier message to win, the system does not need to process any rollback

operations due to conflicting messages. This scenario of conflicting messages is mitigated in prac-

tice by publishing update messages to ensure all users maintain a consistent copy of the model.

Thus, even if multiple users send conflicting messages simultaneously, the users will be notified of

the resolution for all messages. Furthermore, because users are notified of all updates immediately,

the likelihood of generating conflicting messages is minimized.

3.4.3.2 Supercontroller and Node Controllers

Model controllers manage all model and view related operations. For each model, there

exists exactly one model controller. However, the system may have any number of models. If the

system maintained these model controllers at all times, a significant amount of resources would

be wasted on model controllers that are not in use. To mitigate this issue, model controllers are

spawned as needed on a distinct processor. Controlling which model controllers are active and as-

signing the model controllers to resources is the primary responsibility of the supercontroller. The

supercontroller ensures there exists at most a single model controller for a given abstract model

49

and its related view(s), and it monitors all client changelogs entering the system. When a client

changelog is encountered that requires a model controller not yet spawned, the supercontroller as-

signs the model controller to a node controller, collects all requests until the model controller is

spawned, and forwards the requests when the model controller is ready to process requests. Ad-

ditionally, the supercontroller ensures all client changelogs received during the spawning process

are queued and forwarded after the model controller is sucessfully spawned. Any client changelog

intended for an already active model controller is ignored by the supercontroller. When a model

controller is spawned, it is assigned to a node controller. Node controllers are abstract representa-

tions of available hardware computing resources (e.g., nodes in a cluster, CPUs, cores), and provide

an interface to these resources for the supercontroller.

3.5 Evaluating the AToMPM Architecture in Collaboration Scenarios

This section presents an empirical evaluation of the architecture, focusing on the Con-

trollers, targeting two key concerns: communication time for transmitting requests and processing

time for handling requests transmitted. AToMPM is evaluated through a series of experiments

where the size of models and number of concurrent users are varied independently. These experi-

ments exercise the system in a wide variety of expected conditions including worst case scenarios

to evaluate the performance of the system. Three experiments were conducted to answer the fol-

lowing research questions:

RQ 1 How does the architecture scale regarding the number of concurrent users?

RQ 2 How effective is the architecture in responding to a user request as the size of the model

increases?

50

3.5.1 Experimental Setup

The supercontroller was running on a dual-core machine (3.33 GHz, 4GB RAM) and the

MvK on a quad-core machine (3.1 GHz, 8GB RAM). Two dual-core machines (3.33 GHz, 4GB

RAM) and a quad-core machine (2.4 GHz, 8Gb RAM) were simulating users to have true concur-

rency. The node controllers were running on three dual-core machines (3.33 GHz, 4GB RAM) and

a quad-core machine (3.1 GHz, 8GB RAM).

This resulted in a load of 50 users and 50 model controllers per machine for each experi-

ment. The experiment setup preloaded all users, model controllers, and models in the MvK before

measuring. This warmup phase put the system in an average expected case; i.e., how the system

would perform after initial requests for each model controller. The startup time for a model con-

troller is significant at approximately 2-3 seconds to spawn its process and some additional time

spent building the cache of elements for the model and initial view. The time to load a view and

the related model pair depends on the size of the models, but tends to be approximately 1 second

per 2,000 elements in the abstract model, assuming the maximal case where the view references all

elements (see startup time in Figure 3.4). The same Petri net models were used in all experiments

with varying numbers of places and views. Note that all views referenced every element of the

associated abstract model; i.e., the experiments measured a worst case scenario for performance.

3.5.2 Experiments Evaluating Collaboration Scenarios

Each of the following experiments varied the number of concurrent users and model size

independently. The variable for the number of concurrent users is U = 1,25, . . . ,200 with incre-

ments of 25. The variable for model size is N = 1,50, . . . ,200 with increments of 50. Here, N

represents the number of places (i.e., elements) in the Petri net model. Three experiments were

conducted. Each experiment varied the resources shared by the users. However, all users send a

51

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Re
qu

es
t D

ur
at

io
n

(m
s)

Model SizeCreate Load Update

Figure 3.4: Create, Load, and Delete requests on a model controller with local MvK

series of load, create, and delete requests. Load is a read-all request sent to obtain an initial version

of the model. Create is the most expensive single element operation. Delete is the least expensive

single element operation. The load requests have a list of N dictionaries for a model of size N with

each dictionary containing the relevant information for a specific model element. Each request is

repeated 10 times by each user to minimize random machine and network effects on transmission

time. Furthermore, all transmissions were performed on a LAN to minimize network latency and

routing effects on transmission time. Below is a brief description of each experiment.

Experiment 1 Each user connects to the same view of the same model.

Experiment 2 Each user connects to a distinct view of the same model.

Experiment 3 Each user connects to a distinct view of a distinct model.

3.5.3 Results

Before discussing the three experiments, the Controllers were evaluated without network

overhead in the communication with the MvK and with a single user (i.e., a best case scenario).

52

0

100

200

300

400

500

600

700

800

900

1000

1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0

R
eq

u
es

t
D

u
ra

ti
o

n
 (

m
s)

Model Size

Concurrent User Requests
1 50 100 150 200

(a) Create request

0

100

200

300

400

500

600

700

800

1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0

R
eq

u
es

t
D

u
ra

ti
o

n
 (

m
s)

Model Size

Concurrent User Requests
1 50 100 150 200

(b) Load request

Figure 3.5: Results for experiment 1

Figure 3.4 presents the results from a best-case scenario. Create requests are not affected by the

size of the model, but are slower than delete requests. The time to perform a load request is

linear with respect to the size of the model, because load requires accessing each element in the

model. Also, unlike the other three operations, load bypasses the MvK using a cache in the model

controller.

3.5.3.1 Experiment 1 - Same View, Same Model

This experiment demonstrates an approximately constant response time, except at 1 user,

for all operations. Only the create and load operations are shown in Figure 4.10 because delete

performs similarly to create. Smaller model sizes have a lot of variance, because the network

communication is predominant. The most important result of experiment 1 is the large ranges for

most runs. All runs contain approximately 1,500 data points that are typically uniformly distributed

over a wide standard deviation. The average coefficient of variance (CoV) across all runs was

63.5% and the median CoV was 46.6%. The large variation is due to the fact that all messages are

being sent at approximately the same time, similar to a distributed denial-of-service. This results

in messages being queued at the model controller and MvK which must be processed sequentially.

The variance grows more significant as the number of users increases (i.e., the number of messages

53

0

500

1000

1500

2000

2500

1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0

M
es

sa
ge

 D
u

ra
ti

o
n

 (
m

s)

Model Size

Concurrent User Requests
1 50 100 150 200

(a) Create request

0

300

600

900

1200

1500

1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0

M
es

sa
ge

 D
u

ra
ti

o
n

 (
m

s)

Model Size

Concurrent User Requests
1 50 100 150 200

(b) Load request

Figure 3.6: Results for experiment 2

received concurrently increase). Experiments 1 and 2 share this quality due to their design: all

users are on the same abstract model, thus both experiments will be processed by a single model

controller. Nevertheless, all clients receive their response within less than a second.

3.5.3.2 Experiment 2 - Multiple Views, Same Model

This experiment demonstrates a linear increase as the number of users increases, but again

model size has little to no impact, as depicted in Figure 3.6. This is because of the additional

processing and fetching required to process many distinct view models, as opposed to experiment

1. Load operations, which ignore the MvK, scale similarly albeit slightly improved compared to

the create requests. Thus, the bottleneck lies in how the model controller is managing multiple

concurrent views. The performance of the operations are twice as slow as experiment 1. That

is because priority is placed on the case where distinct users are typically using distinct abstract

models and thus communicating with distinct model controllers. This design is more efficient with

regards to the number of users, but not the number of views per model. Users are expected to

collaborate on the same model and the architecture is designed for consistency in this scenario, but

small numbers of users (on the order of 10 users per Model Controller) are expected in practice.

54

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0 1

5
0

1
0

0

1
5

0

2
0

0

R
eq

u
es

t
D

u
ra

ti
o

n
 (

m
s)

Model Size

Concurrent User Requests
1 50 100 150 200

(a) Create request

0

2

4

6

8

10

12

14

0 50 100 150 200

R
eq

u
es

t
D

u
ra

ti
o

n
 (

m
s)

Concurrent Users
Model Size 1 Model Size 50 Model Size 100 Model Size 150 Model Size 200

(b) Load request

Figure 3.7: Results for experiment 3

3.5.3.3 Experiment 3 - Multiple Views, Multiple Models

This experiment is designed to test the scalability in the expected case where users are

more evenly distributed across model controllers. In Figure 3.7, load is constant with respect to the

number of concurrent users. However, the other operations perform slowly, taking at least a second.

The main reason for that is the current implementation of the MvK. Although the Controllers are a

distributed system, the MvK queues all requests and processes them sequentially. Performance of

these operations will improve after the MvK is transitioned to a distributed design.

3.5.4 Discussion

The following discusses the implications of the results with regard to the two identified

research questions.

3.5.4.1 RQ1: How does the architecture scale regarding the number of concurrent users?

Experiment 1 for all request types and experiment 3 for load demonstrate promising scal-

ing with regards to increased number of concurrent users. However, experiment 2 identifies that

many users accessing distinct views poses a concern for scalability with performance at U = 200

approaching 2 seconds for a create request. Nevertheless, the most significant concern is the limi-

tation of the current MvK as demonstrated by comparing the create and load results for experiment

55

3. Create scales linearly reaching response times in excess of 5 seconds while load requests do

not scale with the number of users in experiment 3. The results indicate a strong need for dis-

tributed processing in the MvK, and strong promise for the overall performance in experiment 3;

i.e., my expected average case. Overall, the system performs well with deficiencies when many

users (U > 50) employ distinct views of the same system. Also, the system is unable to leverage

the full potential of the model controllers due to the current performance bottle neck of the MvK. In

conclusion, the Controllers portion of the architecture can efficiently handle multiple users sending

concurrent requests, but large numbers of users on one or more views of a model will adversely

affect scalability.

3.5.4.2 RQ2: How effective is the architecture in responding to a user request as the size of the
model increases?

The results for the main experiments do not indicate scaling as model size varies. However,

due to limitation of the MvK, it was not possible to test reasonably large models during the three

main experiments. As a result, a smaller performance test was run using a single model controller

with a localhost connection to the MvK. These results in Figure 3.4 report that create, update, and

delete requests are not influenced by the size of the model. This is expected because these requests

target a single element. However, load is affected by the model size, since it reads all the elements

in both the abstract model and the view. In conclusion, the system scales as expected with regards

to model size, but further work should investigate potential interactions of the variables N and U

(i.e., repeating the main experiments with larger scale models).

3.5.5 Threats to Validity

The first threat to validity regards the metamodel. The performance results have only been

measured on similar Petri net models. Different formalisms may influence the results, in particular

56

those exposing complex inter-object relationships or heavy objects (i.e., many attributes or large

attributes). Another threat to validity is that the experiments did not measure models with more

than thousands of elements, due to limitations at the MvK level where loading a distinct view model

and Petri net model for hundreds of users exceeds memory bounds. Because of this deficiency, the

experiments focused primarily on how the system scales with respect to the number of concurrent

users. A third threat to validity regards the experimental setup. The way controllers are distributed

on machines has an influence on the overall performance.

3.6 Related Work

Modern modeling tools are primarily native desktop applications, e.g., EMF [77] and

MetaEdit+ [78]. AToMPM is one of the first web-based collaboration tools for MDE. It takes

advantage of the ever increasing capabilities of web technologies to provide a purely in-browser

interface for multi-paradigm modeling activities. Nevertheless, Clooca [79] is a web-based mod-

eling environment that lets the user create DSMLs and code generators. However, it does not offer

any collaboration support.

Recently, Maroti et al. proposed WebGME, a web-based collaborative modeling version

of GME [73]. It offers a collaboration where each user can share the same model and work on it. In

contrast with the Modelverse, WebGME relies on a branching scheme (similar to the GIT version

control system) to manage the actions of different users on the same model. Thus, WebGME

supports multi-user single-view and multi-view single-model scenarios, but not in an always-online

environment, unlike in AToMPM where operations immediately succeed or fail.

The GEMOC Initiative [30] has produced GEMOC Studio6, a modeling system within the

Eclipse ecosystem. Users can compose multiple DSMLs into a cohesive system with well-defined

6 http://gemoc.org/studio/

57

http://gemoc.org/studio/

interaction of the various models [80]. GEMOC Studio provides a solution for multi-view multi-

model similarly to AToMPM, but does not handle concurrent users.

Gallardo et al. proposed a three-phase framework to create collaborative modeling tools

based on Eclipse [81]. The difference between creating a regular DSML and creating a collabora-

tive modeling tool in their system is the addition of the technological framework, which adds the

collaboration support to the DSML. Naming it “TurnTakingTool,” multiple users are able to modify

an existing model by utilizing a turn-based system. The framework helps users create the DSML

as a native Eclipse plug-in with concurrency controls, graphical syntax, and multi-user support.

Basciani et al. proposed MDEForge [82], a web-based modeling platform. MDEForge

offers a set of services to the end-user by a REST API, including transformation, model, metamodel

editing. The authors also mention adding the collaborative capabilities of the platform in the future.

The distributed databases community has also dealt with some of the issues of collaborative

environments [83]. However, the primitives of modeling and distributed databases are not the same.

Databases manage a restricted set of low-level data representations, and collaborative modeling

systems utilize higher level abstractions that commonly include domain-specific concerns.

3.7 Conclusion

This chapter motivated the growing need for collaborative modeling environments to ad-

dress the needs of domain experts working in a coordinated manner to model complex systems.

The architecture of a cloud-based environment for collaborative modeling was presented with dis-

cussion of how it ensures consistency and synchronization among artifacts produced by each stake-

holder. Finally, preliminary results were reported evaluating the scalability and performance of the

arhitecture. The results reveal that the Controllers portion of the architecture is efficient with re-

gards to the number of concurrent users, but distributing the MvK is necessary.

58

CHAPTER 4

OMNISCIENT DEBUGGING FOR MODEL TRANSFORMATIONS

This chapter discusses a technique for supporting omniscient debugging for model transformations,

which are used to define core operations on software and systems models. Similar to software

systems developed using GPLs, model transformations are also subject to human error and may

possess defects. Existing MDE tools provide stepwise execution to aid developers in locating and

removing defects. This chapter describes a technique and associated algorithms that support om-

niscient debugging features for model transformations. Omniscient debugging enables enhanced

navigation and exploration features during a debugging session beyond those possible in a strictly

stepwise execution environment. Finally, the execution time performance is comparatively eval-

uated against stepwise execution, and the scalability (in terms of memory usage) is empirically

investigated.

4.1 Introduction

MDE approaches often use customized domain-specific modeling languages that capture

the intent of a particular group of end users through abstractions and notations that fit a specific

domain of interest [3]. Thus, the domain-specific abstractions and notations aid in eliminating

the accidental complexities of implementation. In MDE, the evolution, simulation, generation,

and translation of models is commonly defined using MTLs, which can be used to specify the

59

distinct needs of a requirements or engineering change at the software modeling level [84]. Model

transformations are also a type of software abstraction that can be subject to human error and

traditional approaches to bug localization have also been applied to assist in locating errors in

model transformations [17]. Despite the focus on models and model transformations, traditional

development concerns such as debugging must still be undertaken by developers adopting MDE

practices.

Debugging is a fundamental SE task. However, despite the common need for debugging

in software development, tool support for debugging has changed little over the past half cen-

tury [4]. Several novel approaches to debugging have been introduced for general-purpose lan-

guages (GPLs), such as omniscient debugging [58]. However, stepwise execution is the most

common debugging technique provided in both GPL tools (e.g., Eclipse and Visual Studio) and

MDE tools (e.g., ATL [48]). Stepwise execution enables developers to control the execution of

the system and view normally hidden state information through a set of execution traversal fea-

tures enabling continuous execution, pausing or stopping execution, and traversing execution in a

stepwise manner. As noted in Section 2.3.5, the only modeling tool identified in a survey of ex-

isting literature that includes an advanced dynamic debugging technique for model transformation

is TROPIC [17], which provides support for QBD using OCL to pose queries against a Petri net

based translation of the target system.

Omniscient debugging enables a developer to revert a software system to a prior state dy-

namically at runtime. This allows developers to investigate a system starting from the location

where an error was identified and trace to the location of the fault (informally referred to as the

bug) that caused the failure. These three terms (i.e., error, failure, and fault) each receive a distinct

definition in the IEEE 610.12-1990 standard glossary of software engineering terminology [85].

60

This distinction highlights the fact that visible signs of a defect may not manifest at the location

of the defect. Omniscient debugging provides facilities to help developers explore these complex

errors. A survey of the existing literature suggests that there is a distinct lack of support for om-

niscient debugging in MDE tools. However, other techniques such as model slicing [86, 87] and

QBD [17] have been explored in the context of models and transformations that could also aid in

identifying similar issues. Omniscient debugging provides a live exploratory approach where the

developer may freely traverse the execution history of a given system. Techniques such as QBD

and model slicing would be complimentary to omniscient debugging by aiding the developer in

selecting points of interest in the execution history to explore via omniscient traversal.

Existing literature for omniscient debugging focuses on GPLs (e.g., Java and C++). How-

ever, MTs are also subject to errors, and these errors may not manifest at the location of the defect.

If a developer were to misidentify the location of a defect by targeting the location of an error, a

traditional debugger would require restarting the system. Restarting can be expensive, requiring a

nontrivial amount of time to re-execute or a significant delay due to manual input from the devel-

oper. Omniscient debugging avoids the need to re-execute to reach a prior state. MTs also have

concerns not traditionally found in GPL systems that would benefit from omniscient debugging.

Declarative MTLs commonly provide nondeterministic rule scheduling. The nondeterminism is

commonly accepted because the rules should not be dependent on ordering to produce correct re-

sults. However, it is frequently possible to define transformations improperly such that the ordering

of rule execution may vary the final result. In this scenario, it may be difficult to fully trace the

source of a defect because the bug may manifest in one execution, but not in a subsequent execu-

tion. In these situations, an omniscient debugger enables the developer to fully explore the context

in which the bug may be observed.

61

When considering support for omniscient debugging of MTs, the need for an efficient and

scalable solution is evident. The organizers of the Scalability in Model Driven Engineering work-

shop state that current modeling and MT environments are being pushed to the limits of the ca-

pability, and further research and development is imperative [88]. Numerous works have been

presented discussing topics such as parallel processing of MTs [89], techniques supporting in-

cremental processing of model transformations [90], and cloud-based architectures for modeling

and transformation [25, 82, 90]. Therefore, the technique presented in this chapter is designed to

utilize a minimal structure to store required information in support of omniscient debugging, and

has been developed with a set of algorithms designed to support efficient omniscient traversal of

MTs. Kolovos et al. [91] define large-scale models as being on the order of millions of elements.

As models continue to grow in size, the transformations and supporting transformation tooling

operating on such large models must be designed for efficiency and scalability.

The major contributions of this chapter focus on providing and evaluating an efficient and

scalable technique supporting basic omniscient debugging features for model transformations. The

contributions can be summarized as:

• Defining basic omniscient debugging features, and extending traditional stepwise execution

features to support omniscient traversal (i.e., both executing a transformation forward and

reverting it back).

• Defining a minimal structure to store history for a MT engine.

• Discussing how the minimal history structure can be used to provide efficient omniscient

traversal.

• Finally, providing an empirical evaluation of an implementation of the technique as com-

62

pared to a traditional stepwise execution debugger within the same context. The empiri-

cal evaluation includes evaluating execution time variance, memory consumption, and re-

executing a transformation as opposed to using omniscient traversal.

The remainder of the chapter is structured as follows. Section 4.2 will overview related

work in the area of omniscient debugging. Section 4.3 will present an illustrative scenario of

a developer employing omniscient debugging. Section 4.4 will describe a novel technique en-

abling omniscient debugging for model transformations including theoretical analysis of runtime

and space complexity bounds. Section 4.5, Section 4.6, and Section 4.7 will discuss the design

and results of an empirical analysis of the performance and scaling of the technique. Finally,

Section 4.8 will provide concluding remarks.

4.2 Background and Related Work

A wide variety of tools and techniques that aid developers in the process of debugging have

been created, studied, and evolved. This section overviews relevant existing work on debugging in

MDE and relates these works to the contributions presented in this chapter.

4.2.1 Omniscient Debugging for MDE

Recently, there has been some work in the area of MDE toward the application of omni-

scient debugging. Van Mierlo presented a proposal toward the debugging of executable models

defining simulation semantics [67]. A particular focus of the work addressed handling simulated

real-time. The scope of the novel contribution of this chapter concerns applying omniscient debug-

ging to MTs. The work described in this chapter does not concern handling simulated real-time

or relating the model entities with generated code. This work investigates applying omniscient

debugging to model transformations toward a scalable and performant omniscient technique [32–

63

34]. Furthermore, in collaboration with researchers from IRISA/INRIA and University of Rennes,

I explored applying omniscient debugging to an xDSML environment [35]. The collaborative

work utilized domain-specific trace metamodels that were generated along with a domain-specific

trace manager to enable developers to utilize a generic omniscient debugger implementation with

xDSMLs. This collaborative work also investigated multi-dimensional omniscient debugging

traversal features. These features enable a user to explore history through only steps relevant

to a given model element. Thus, the developer can minimize the time spent reviewing steps not

of interest. This chapter focuses on evaluating the changes to the underlying model transforma-

tion engine to support omniscient debugging. Because the multidimensional features are defined

using a subset of omniscient debugging features (primarily jump), these additional features are not

included in this chapter.

4.2.2 Tracing in MDE

My approach to providing omniscient debugging support for model transformations relies

strongly on a trace of execution history. Several other researchers have investigated storing trace

information for MDE systems. Falleri et al. presented work toward adding support for traces to

Kermeta [65]. The presented trace framework for Kermeta implements basic traceability items

including the concepts of link, step, and trace, trace serialization to XMI, and conversion of trace

information to Graphviz’s dot language for visualization. Jouault [21] also presented an implemen-

tation of traceability concerns for ATL. He mentioned that traceability has built-in support within

ATL due to implementation concerns of declarative languages. However, the implementation of

traceability generating code is not tightly coupled with program logic. In fact, the traceability pre-

sented by Jouault is woven into existing code in an aspect-oriented manner. In his implementation,

the generation of traceability artifacts is a generic concern and can be applied via rules to existing

64

code without adding to the existing code base, which differs from the implementation in Kermeta

discussed in [65]. Overall, the ATL implementations are very similar to the Kermeta-based imple-

mentation. The Kermeta-based implementation [65] provides a more detailed tracing metamodel

and the ATL-based implementation [21] provides the ability to weave in traceability concerns in an

aspect-oriented manner. The history trace used in my approach differs from these in several ways.

The trace structure presented by Jouault [21] creates simple traceability links between elements,

but does not contain any state information necessary to replay through a trasnformation. The trace

structure presented by Falleri et al. [65] is much more similar to history structure defined in this

chapter containing the basic concepts of steps with names that could be used to indiciate the trans-

formation rules generating the step, but there is still no explicit storing of state data preventing it

from being useful for an omniscient debugger. Furthermore, history is a much richer data struc-

ture. In addition to storing the necessary state data, history also caches information regarding when

model elements were changed to assist in omniscient traversals (described further in Section 4.4.2).

Bousse et al. [92] introduce a trace structure similar to the history trace employed in my

omniscient debugger. However, Bousse et al. are focused on generating domain-specific traces

for executable domain-specific modelling languages (xDSML) within the GEMOC environment1.

The trace structure they utilize stores a full set of data for all elements at each step even though

most elements are not utilized at every step. Thus, my trace is much more efficient in terms of

memory consumption. However, the trace structures presented in their work include links between

what they term events, which would correspond to atomic rules within a MT context, and every

occurence within the trace for the given event. In this way, their trace stores a richer set of infor-

mation enabling potential for more complex views of history (e.g., limited history to a view of only

1 http://gemoc.org/ins/

65

http://gemoc.org/ins/

steps where a certain event occurs). Chapter 5 describes a collaborative project with researchers

from IRISA and the University of Rennes to bring a more efficient omniscient debugging imple-

mentation to GEMOC which employs the generated domain-specific traces introduced in [92].

4.2.3 AToMPM

My omniscient debugger prototype is implemented within the context of AToMPM, which

is a cloud-based modeling solution with an associated graphical, browser-based user interface.

The back-end structure of AToMPM is intended to provide a scalable solution to modern modeling

concerns. The current release version of AToMPM was demonstrated at MoDELS 2013 [23].

AToMPM provides two basic transformation languages: MoTif and T-Core. MoTif provides basic

support for rule scheduling and control flow with graph transformation rules defining the primitive

operations. As discussed by Syriani et al., T-Core provides a set of primitives derived from studying

existing MTLs [93]. Although the context for exploration of omniscient debugging in this work is

AToMPM, the algorithms and general approach of the omniscient debugger as described here can

be ported to other modeling tools.

4.3 An Illustrative Omniscient Debugging Scenario

This section describes an illustrative scenario of a developer using an omniscient debugging

technique to locate a defect in an MT. This scenario describes the efforts of a developer (who we

will refer to hereafter as Anastasia) attempting to find a defect using omniscient features. This

illustrative scenario makes use of a model transformation solution for the 2014 Transformation

Tool Contest (TTC) Movie Database Case (Movie DB Case) [94] originally presented in [2]. The

transformation pairs actors with movies and records the ratings for those movies in which they

appear. The main task of the model transformation is to identify all actor couples that appear in at

least three movies together and to compute the average rating of those movies. This task can be

66

Figure 4.1: Solution to Task 2 of the 2014 TTC Movie Database Case as presented in [2]

broken into three subtasks: generating the data, identifying couples, and averaging the ratings of

the movies. The scenario will focus on the second subtask, identifying couples. The solution was

developed in MoTif [49] and executed in AToMPM [23]. For the sake of simplicity, this scenario

focuses primarily on a specific rule, but the transformation contains many rules. See [94] for the

full details of this transformation, and [2] for a solution created in AToMPM. In this example,

focusing on a single transformation rule can be likened to focusing on a single method of a Java

program.

4.3.1 Transformation Details

The transformation presented in Figure 4.1 (which employs graph grammar rules as dis-

cussed in Section 2.1.3) identifies pairs of actors/actresses who have at least three movies in com-

mon, links the two actors/actresses to a shared couple node, and then links the couple node to

each movie shared by the two actors/actresses comprising the couple. The transformation contains

two graph transformation rules, findStarsAndCreateCouple and referenceToCoupleMovies. The first,

67

Figure 4.2: Defective Variant of findStarsAndCreateCouple

findStarsAndCreateCouple, identifies a pair of actors/actresses who are both linked to at least three

movies with each other and creates a new couple node that is connected to both actors/actresses.

The first rule also uses two NACs to ensure the two actors/actresses are not already attached to a

shared couple node. The second, referenceToCoupleMovies, identifies a couple transitively linked

to a movie through both actors/actresses comprising the couple, and then referenceToCoupleMovies

links the couple directly to the Movie. A NAC ensures that couples are not linked to the same

Movie more than once. Finally, a MoTif transformation seen to the right of findStarsAndCreate-

Couple defines the control flow for the transformation. The transformation starts by executing

findStarsAndCreateCouple. After creating a new couple, the transformation repeatedly executes ref-

erenceToCoupleMovies to link the new couple to each Movie linked to both actors/actresses compris-

ing the couple. The transformation exits successfully if findStarsAndCreateCouple fails, indicating

no further actor/actress couples exist. The transformation exits with failure status if referenceTo-

CoupleMovies fails to apply at least once.

Consider the scenario where the developer must fix a defective implementation of find-

StarsAndCreateCouple, as presented in Figure 4.2. The defective rule may identify a pair of ac-

tors/actresses that only share two movies (where they should only be matched if the actors share

three movies). The defective rule then creates a new link such that the pair of actors now appears to

68

be linked to three movies. Alternatively, the defective rule might identify a correct couple, but then

link one of the actors/actresses to a new movie. After the rule has been executed, the model appears

to be in a correct state. However, the model has been subtly corrupted and the transformation will

not produce correct results.

4.3.2 Omniscient Debugging Scenario

The developer, Anastasia, might execute a set of test cases where the resulting couples and

couple averages (i.e., average of all shared movie ratings for a given couple) are known. In the

process of executing the tests, Anastasia notices that in a specific test case the average for a cer-

tain couple has been computed incorrectly. She executes the transformation using an omniscient

debugger and initially traverses to Task 3 to observe the couple’s average being computed. After

stepping through and locating the step that computed the couple’s average, Anastasia notices that

the couple’s average has been correctly computed based on the existing links. Further investigation

identifies that the couple has been computed with an additional movie incorrectly included. She

jumps back to Task 1 to observe the actors, movies, and linking edges being generated. However,

she immediately finds that the two actors have been correctly generated with the expected movie

links. Anastasia now continues re-executing the system to see the couple being created and the

movies linked to the couple. She then steps through the defective findStarsAndCreateCouple rule.

From this navigation sequence, she is able to observe that the rule has incorrectly matched a movie

only connected to a single actor, and she can even back up the system and re-execute to confirm her

initial observation. She observes the extra link being created and understands that this rule is the

defect causing the error. Anastasia investigates the rule definition, identifies the missing edge, and

is able to correct the defect. Further testing verifies the change is correct and the issue is resolved.

69

Figure 4.3: Sample Model for Movie DB Case

In the scenario, Anastasia is able to freely traverse the execution history of the system en-

abling her to directly follow the trail of clues to eventually identify the defective rule. When Anas-

tasia first observes the defective behavior she is even able to immediately revert and re-execute the

rule to verify the defective behavior. Anastasia uses the jump feature to quickly move through the

system’s execution history to an interesting point (i.e., where the actors, movies, and linking edges

are created). The omniscient features enabled a simple, intuitive exploration of the system’s execu-

tion to identify the defect. Anastasia made use of numerous basic features (e.g., jump, back, step)

to explore the system. If Anastasia had been using a stepwise debugger, she would have needed

to restart the system at least twice. The first time, she would need to restart when moving from

Task 3 (where the couple average is computed) to Task 1 (where the actors, movies, and linking

edges are generated). The second time, she would restart when she re-executed the defective rule

to verify the rule was producing incorrect results.

In this scenario, re-executing costs time. Depending on the transformation, the time to

re-execute can be significant. Individual rules involving complex searches of large models can

take 5 to 10 minutes. In particular, a transformation that generates a model(s) (e.g., generating

70

test cases for mutation testing) or simulates a complex model(s) (e.g., a physics simulation of the

interaction of stellar objects) can take significant time to execute. Additionally, the size of input

for a transformation directly impacts the execution time (especially concerning rules that must

search the model). Kolovos et al. describe large models as containing on the order of millions

of elements [91]. However, in some cases, re-executing may also cause the developer to lose the

context where the defect occurs. The defect may be lost because some defects do not appear in all

executions given the same input conditions. This is due to the nondeterministic behavior of MTs as

discussed in Section 2.1.3.1. Consider the sample model presented in Figure 4.3. When processing

this sample model, the transformation should couple the two actors and provide a couple average

of 100. However, due to the nondeterministic selection of model elements when multiple matches

are present for a rule’s LHS, the defective rule may match either movies A, B, and C or some

triple containing movie D. In the case where the rule matches Movies A, B, and C, the result will

be calculated correctly, but if the Movie D is matched the result will be calculated incorrectly to

be 75. This is because the defective rule would create a link between both the right actor and

Movie D, increasing the number of movies associated with the couple, and decreasing the couple’s

average movie score. Omniscient debugging preserves the context in which the defect occurs (such

as connecting the couple to Movie A, B, and D in Figure 4.2). Thus, Anastasia may fully explore

the context where the defect is presented initially, and avoid applying to a different set of elements

which may not present the defective behavior. Re-execution may result in the nondeterministic

matching algorithm identifying a distinct set of elements that may or may not trigger the defect.

Thus, the omniscient debugger prevents Anastasia from losing the context of the defect by making

it possible to reach prior states without needing to re-execute the system.

71

Figure 4.4: Stepwise and Omniscient Continuous Play Features

Figure 4.5: Stepwise and Omniscient Step Features

4.4 Omniscient Debugging for Model Transformations

Omniscient debugging is a natural extension of stepwise execution that enables reverse ex-

ecution. The AToMPM Omniscient Debugger (AODB) was developed as a prototype omniscient

debugger within AToMPM [32, 33]. AODB implements the technique described in this section

to support omniscient debugging for MTs. The technique provides the common features of step-

wise execution (i.e., play, pause, stepIn, stepOut, stepOver, and stop) [33]. The stepwise

features have been modified to leverage an execution trace history supporting omniscient traversal

that avoids the need to re-execute transformation rules in many cases. A rule is only executed the

first time a particular step in the transformation is reached. If the developer moves back through

history and then steps forward again, changes are applied from the stored history. The technique

also provides a set of features that mimic stepwise execution, but revert execution. The omniscient

features are playBack, backIn, backOver, and backOut. This section defines the supported

72

traversal features (both stepwise execution and omniscient) as illustrated in Figure 4.4 and Fig-

ure 4.5, and then discusses how history is collected and stored. Finally, this section also presents

an algorithm for more efficient traversal of history.

4.4.1 Execution Traversal Features for Omniscient Debugging

The following defines standard stepwise execution traversal features as found in a typical

debugging environment:

• Play: Continuously execute the system.

• Pause: Suspend execution until restarted using another traversal feature.

• Stop: Cease execution and clear any intermediate data stored during execution.

• StepIn: Execute a single atomic step of the system, entering into any contained scopes.

• StepOut: Execute the system until the first atomic step outside of the current step is reached.

• StepOver: Execute the system until the next atomic step in the current scope is reached.

In an omniscient environment, executing the same stepwise execution process may occur

in two contexts. The debugging session may be at the most current step of history, in which case

the execution engine will execute the next step as a typical case of a stepwise execution debugger.

However, if the user is not at the most current step, then the omniscient portion of the debugger

will replay the rule from history. Consider a user executing a transformation rule that scans the

model to identify a specific pattern of model elements to be modified by a subsequent series of

transformation rules. This exact scenario can be seen in the Sierpinski Triangle transformation

(described in Section 4.5.2) where all sets of triangles currently existing are found and then a

73

subsequent set of rules operates on these triangles. In this scenario, replaying from history may

save substantial time in only a single rule application. Additionally, in scenarios where multiple

rule applications can be reduced to a single set of changes, traversal time can be reduced. In each

of these scenarios, the stored history of execution is utilized rather than the execution engine as

typical for stepwise execution features. Thus, the implementation of AODB considers both of these

scenarios as summarized in the following definitions.

Stepwise Execution Traversal Features Modified for Omniscient Traversal

• Play: If at the most current step of history, continuously execute the system. If not at the

most current step of history, continuously replay the system.

• StepIn: If at the most current step of history, execute a single atomic step of the system

execution, entering into any contained scopes. If not at the most current step of history,

replay a single atomic step of the system execution, entering into any contained scopes.

• StepOut: If at the most current step of history, execute the system until the first atomic step

outside of the current step is reached. If not at the most current step of history, replay the

system until the first atomic step outside of the current step is reached.

• StepOver: If at the most current step of history, execute the system until the next atomic

step in the current scope is reached. If not at the most current step of history, replay the

system until the next atomic step in the current scope is reached.

Finally, a set of additional features is provided to enable traversal back through the history

of execution. These features are designed to mirror the traditional stepwise execution environment

to provide an intuitive extension to the most common debugging environment (stepwise execution).

74

Figure 4.6: Structure of history.

Omniscient Execution Traversal Features

• PlayBack: Continuously revert the system.

• BackIn: Revert a single atomic step of the system execution, entering into any contained

scopes.

• BackOut: Revert the system until the first atomic step outside of the current step is reached.

• BackOver: Revert the system until the next atomic step in current scope is reached.

• Jump: If the target step of the jump is located in history before the current step, revert the

system until the target step is reached. If the target step of the jump is located after the

current step, replay the system until the target step is reached.

Further advanced navigation facilities (as seen in [35]) could be introduced to the environ-

ment, but these features would be defined using a set of the features defined above. The goal of this

chapter is to evaluate the efficiency and scalability of the model transformation engine modified

to handle omniscient debugging. Thus, advanced traversal features are not defined here, such as

traversing history by navigating through only the steps relevant to a specified element or transfor-

mation rule.

75

4.4.2 Collecting a History of Execution

The technique supporting omniscient debugging collects a history of execution to enable

traversal without re-executing rules. Figure 4.6 presents the structure of the trace of execution used

in AODB, hereafter referred to as history. History is defined using the following terminology and

structures.

Change: A single atomic change operation.

• CRUD Type: Type of change made. Changes can be create, update, or delete. Reads are

not stored, because they are not necessary to recreate the model state at a given state, but

this information might be useful to developers (e.g., identify elements matched by LHS,

but not altered by the transformation rule). Future studies could evaluate the impact of

recording reads, but the current work is focused on efficiency of execution time and memory

consumption.

• Element: ID of the element that was changed. An element is defined at the most atomic

level. If two attributes of an object were changed, two changes would be stored. One for

each distinct element, because each attribute is treated as an atomic element.

• Before Data: Value of the element before the change.

• After Data: Value of the element after the change.

Step: A step stores the full history of changes related to a single invocation of an atomic

transformation rule (i.e., a rule that does not contain any other rules). In practice, this means that

history must maintain placeholder steps for any rule that is defined using contained rules. The

placeholder is used to maintain a proper history of scope transitions.

76

• Changes: A set of all changes that occurred during this step.

• Rule: ID of the model transformation rule related to this step.

• MT Engine State: A general storage bucket for any auxiliary storage necessary for the

MT Engine (e.g., T-Core introduced by Syriani et al. [93] maintains a packet that is passed

between all transformation rules and is altered during each step).

• Scope Stack: Maintains any scoping information. The scope stack stores the ID of the last

step at the containing scope (nil if there is no containing scope). The transformation rule

referenced by the last step of the previous scope contains the current step’s transformation

rule. Thus, each step only stores a single reference, but has access to the full scope stack at

every step.

History: The complete record of all changes that have occurred during the transformation.

• Steps: Sequentially ordered series of all Step entities in History.

• Current Step: Index indicating the current step being observed.

• Window Size: Size of the active window of history. History stores up to this limit in memory,

and the remainder of history is serialized to permanent storage. This provides an upper

limit to the memory consumption of history. By default, the window size is set to infinite

(i.e., memory size of history is not limited).

• Revisions Cache: A cache that stores a mapping of each element that has been changed to

the set of steps where that element has been changed. This is used to quickly identify where

a given element has been changed in history.

77

4.4.2.1 Evaluating the Memory Consumption of History

The space complexity upper bound of history, O(As+Bc), is influenced by two key factors,

the number of steps s and the number of changes stored in history c. A is a constant referring to

the transformation state information, and B is the average size of a change (influenced by the type

of data stored in the associated model element). Because changes are defined at the smallest unit

(e.g., the tokens attribute of a Petri net place), B will vary minimally. Thus, for transformations

affecting a large number of elements and containing a large number of steps, the structure performs

poorly. However, the scaling concerns are due to the need for a complete trace of execution as

assumed by the technique.

The current space complexity, O(As+Bc), ignores the impact of the revisions cache stored

in history, because the cost of the lookup table can be amortized across the set of changes stored

in history. For each change in history, there will be a single entry in the lookup table. For each

change in history, there is a constant amount of increase to the overall size of history. Therefore,

B can be redefined to be the sum of the average memory consumption of a single change and the

overage memory consumption of a single reference added to the lookup table.

Despite storing minimal information, history may eventually exceed the bounds of memory

if the system is very large or the transformation involves enough changes. To address this concern,

the technique maintains a window of active history. As mentioned in Section 4.2, this technique

has been explored previously by Lewis [6]. However, as opposed to prior work, history outside of

the current window is stored in permanent storage. Thus, the full history of execution is always

available, but accessing some portions of history may require loading a new window from disk.

Loading and storing portions of history impacts the execution time of the system, but the window

78

ensures that the system remains within memory bounds for large-scale scenarios while maintaining

access to the full history of execution.

4.4.3 Traversing a History of Execution

The goal of the majority of existing literature in the area of omniscient debugging is to

provide a scalable technique, in terms of memory usage, that enables reversing the execution of a

software system. However, this chapter also explores a technique to efficiently, in terms of exe-

cution time performance, revert execution by identifying and executing a minimal set of changes.

The technique described here utilizes the execution history to create a macro step that avoids un-

necessary CRUD operations. A macro step contains changes from potentially many traditional

steps (i.e., those associated with a single rule). Changes store a complete state for the associated

element. Thus, if a model element is found in several changes, then the macro step would use only

the most recent change and all other changes can be ignored with one exception. If the element

has been deleted, it must be recreated and then reset to the correct state because the creation of

an element always assumes default values within AToMPM. This technique is designed for a jump

feature, where the user could provide a target step and then move to the target step by executing

a minimal set of changes. However, backOut, backOver, stepOut, and stepOver can also

utilize the technique when reverting/replaying previously executed portions of the transformation.

For these steps, the target step for the jump is implied by the type of step and the scope. When

executing a stepOver, the target step is the next step in the same scope or a containing scope.

Thus, these features each have the potential for iterating over an indeterminately large number of

steps and changes.

79

4.4.4 Recognizing Patterns of Change

The technique described here increases the efficiency of traversing history by identifying

a minimal set of changes to execute. The set of changes executed avoids redundant incremental

updates, and executes direct state changes. To identify a minimal set of changes, an algorithm

could recognize a set of special cases where it can ignore changes. The algorithm (defined in

Section 4.4.5.1) recognizes five patterns to discern required vs. redundant changes. All patterns

consider only changes between the current step (i.e., the step being observed before the traversal)

and a target step (i.e., the step being observed after the traversal). An individual change may be

either create (C), update (U), or delete (D). The five patterns are defined as sequences of these three

change types. The five patterns, illustrated in Figure 4.7, are as follows:

1. If only a single change (create, update, or delete) is identified for a given element, then the

change is considered required and included in the minimal set of changes.

2. If multiple updates are identified for a given element, then only the update most local to the

target step is included in the minimal set of changes. This pattern is particularly significant,

because it may occur during the three remaining patterns. Only the update most local to the

target step is included. All other updates are ignored.

3. If a create and an update are identified for a given element, both the create and update are

included in the minimal set of changes. The create operation is required to recreate the

element and the update to reset the element to the appropriate state.

4. If an update and delete are identified for a given element, only the delete is included in the

set of changes. Any update can be ignored, because the element will not exist after the set

of operations.

80

Figure 4.7: Patterns to identify required changes between the current step and a target step.

5. If a create and delete are identified for a given element, no changes are included for this

element. All changes can be ignored, because the element does not currently exist and will

not exist afterward. Thus, taking no action will result in the model being in the correct state.

These patterns are described assuming the target step is after the current step in history

(i.e., forward traversal). However, the patterns can still be applied when the target step is before

the current step (i.e., backward traversal). When reverting execution, a create change is treated as

a delete, and a delete change is treated as a create with an associated update to revert the element

to its state before the recorded delete change.

81

4.4.5 Efficient Omniscient Traversal Using MacroSteps

Thus far, traversal of execution has been defined using Steps, where a Step relates to exe-

cuting a single transformation rule. However, when traversing through history it is not necessary

to re-execute every CRUD operation. The omniscient debugger takes advantage of this fact by

constructing and using MacroSteps to traverse history. As illustrated in Figure 4.6, a MacroStep

is similar to a Step in that it contains a set of changes, but a MacroStep contains a subset of

the changes contained by a sequence of Steps. Furthermore, history uses, but does not store,

MacroSteps.

Consider the following scenario: a developer is debugging a model transformation. Over

the course of the transformation, a given element might be updated numerous times incrementally

reducing the value of the element (e.g., a timer or resource indicator). However, if the developer

wanted to jump back to the beginning of the transformation, the transformation engine could ignore

most of these changes and revert the place directly to the appropriate state. To accomplish this, the

debugger builds a MacroStep by identifying the change that will revert the place to the correct state

(ignoring all other changes). Then, the MacroStep is used in place of a Step to revert the system.

The changes contained by the MacroStep represent the minimal set of CRUD operations necessary

to traverse from the current step to a given target step. When building a MacroStep the patterns

described in Section 4.4.4 are used to identify unnecessary changes that are then omitted from the

MacroStep.

4.4.5.1 Algorithms to Construct a MacroStep

In the technique, the debugger stores history using a structure that provides efficient ac-

cess to the most recent change. Furthermore, the debugger maintains a revisions cache for each

element containing a record of every step where the associated element was altered. The history

82

1 for element from history in topologically sorted order
2 if (element is not changed between current and target step)
3 move on to next element
4 else
5 find the firstChange and lastChange between current and target steps
6 #pattern 1
7 if (firstChange and lastChange are the same)
8 store the change
9 #pattern 2

10 else if (firstChange and lastChange are updates)
11 store the change closest to target step
12 #pattern 3
13 else if (firstChange is a create and lastChange is an update and current is before target)
14 store both changes
15 else if (lastChange is a delete and firstChange is an update and current is after target)
16 store both changes
17 #pattern 4
18 else if (lastChange is a delete and firstChange is an update and current is before target)
19 store lastChange
20 else if (firstChange is a create and lastChange is an update and current is after target)
21 store firstChange
22 #pattern 5
23 else if (firstChange is a create and lastChange is a delete)
24 do not store either change

Figure 4.8: IterateElements Algorithm: builds a macrostep by iterating over all elements that
have been changed.

1 for each step from current to target in order of execution
2 for each change in the step
3 #pattern 1
4 if (we have not seen a change for this element)
5 add change to createCache, updateCache, or deleteCache
6 #pattern 2
7 else if (the change is an update and we have only seen updates)
8 keep the change closest to the target step in updateCache
9 #pattern 3

10 else if (the change is an update and we have seen a create and target is after current)
11 replace any current change in updateCache
12 else if (the change is a delete and we have not seen a create and target is before current)
13 add chance to deleteCache
14 #pattern 4
15 else if (the change is a delete and we have not seen a create and target is after current)
16 add the change to deleteCache
17 remove any changes for this element from updateCache
18 else if (the change is an update and we have seen a create and target is before current)
19 add change to updateCache if no update has been seen yet
20 #pattern 5
21 else if (the change is a delete and we have seen a create)
22 remove changes for this element from createCache and updateCache

Figure 4.9: IterateSteps Algorithm: builds a macrostep by iterating over all steps in history.

83

stores all steps in increasing order within a dynamic array structure, and each step provides sim-

ilar facilities for storing changes. Therefore, once the appropriate change is identified using the

revisions cache constant time access to the associated change in history can be guaranteed. The

IterateElements algorithm, provided in Figure 4.8, uses these facilities to construct a minimal

set of changes for a MacroStep to traverse from the current step to the target step.

Assuming an element is changed at some point between the current and target steps, the

IterateElements algorithm finds the first change and last change within the interval then ap-

plies each of the five patterns discussed in Section 4.4.4. The first and second patterns are straight-

forward. First, if there is only one change for the element then that change must be kept. Second,

if there are only updates then only the update closest to the target step is kept. The algorithm can

easily detect if there are no creates or deletes, because any create must be the first change, and

any delete must be the last change. The third and fourth patterns rely on the direction of traver-

sal. When traversing back through history, create and delete Changes are treated as their opposite.

Thus, if a create and an update are recognized when moving forward, the algorithm applies pattern

3. If a delete and an update are recognized when moving backward, the algorithm also applies

pattern 3. Similarly, an update and a delete moving forward applies pattern 4, and a create and

an update moving backward applies pattern 4. Finally, if a create and a delete are identified, then

(as pattern 5 states) the element is both created and destroyed during the intervening steps and the

related changes can be ignored.

The algorithm in Figure 4.8 is designed assuming that when building the macro step, it-

erating over the changes contained in the sequence of steps from current to target is more costly

than iterating over every element in the model to find the required set of changes. When the size

of the steps or number of the steps being traversed is large enough, this assertion does hold true.

84

However, if the size and number of steps is relatively small or the size of the model is relatively

large, the cost of iterating over all model elements may exceed the cost of iterating over all the

steps. Thus, the debugger compares the number of changes that must be iterated over to the num-

ber of elements in the model and then decides if iterating over the changes is more or less costly.

However, the algorithm still ensures that a minimal set of changes is identified for the MacroStep.

The upper bound of overall execution time remains the same, because the algorithm ensures that

iterating over the changes will have similar lower bound or it iterates over the model elements.

History maintains a count of the total number of previous changes in history at each step. The

debugger then uses these counts to determine whether to iterate over the model elements or the full

set of changes. The IterateSteps algorithm in Figure 4.9 provides the details of how a macro

step is generated when iterating over the intervening steps (from current step to target step).

The IterateSteps algorithm also identifies each of the five patterns discussed in Sec-

tion 4.4.4 to provide a minimal set of changes. Unlike the IterateElements algorithm, the

IterateSteps algorithm does not have access to all of the changes for a given element at a time.

Therefore, changes are stored in a set of caches that can be referenced later to identify cumulative

effects. Each pattern is recognized incrementally until the full pattern has been identified. When

the first change for a given element is identified, pattern 1 is assumed and the change is stored in

the relevant cache. If no further changes are identified, then pattern 1 is confirmed. If multiple

updates are identified, then pattern 2 is recognized and only the update closest to the target step is

kept. There are two conditions where pattern 3 can be identified (one for each direction of traver-

sal): 1) when traversing forward and an update is identified after having identified a create, and 2)

when traversing backward and an update is identified after having identified a delete. Similarly,

there are two conditions where the debugger identifies pattern 4: 1) when traversing forward and a

85

delete is identified after having identified an update, and 2) when traversing backward and a create

is identified after having identified an update. Finally, if a delete is identified and a create has

already been identified (or vice versa) then pattern 5 is recognized.

4.4.5.2 Evaluating the MacroStep Construction Algorithms

The IterateElements algorithm (Figure 4.8) has O(n∗ lg(n)+n∗ lg(m)) execution time

complexity, which can be simplified to O(n∗ lg(n)) in practice, especially for large-scale models.

Here, n is the number of elements in the model that have been altered (only elements that have

been altered are stored in history) and m is the number of steps where a given element is altered.

The upper bound assumes the algorithm makes use of a structure with constant time access for

the relevant change and at least O(lg(m)) access to change locations stored in the cache. To

maintain O(n ∗ lg(m)) the history must have as many or more changes per element as there are

elements stored in history (previously stated to be only those elements that are changed). As

n reaches levels where scale is a concern, and even for small scale scenarios with thousands of

elements in history, the number of changes per element required becomes unreasonable for most

transformations. The number of changes for a given element are expected to be small. Thus, the

execution time complexity upper bound will approach O(n∗ lg(n)) in practice.

The upper bound of execution time complexity for the IterateSteps algorithm, when it-

erating over the steps from current step to target step, is determined by the total number of changes

that must be evaluated for inclusion in the macro step. Thus, the IterateSteps algorithm (Fig-

ure 4.9) has an O(abs(ccurrent − ctarget)), where ccurrent is the sum total number of changes for all

steps up to and including the current step, and ctarget is the sum total number of changes for all

steps up to and including the target step. Therefore, the theoretical tipping point for choosing it-

86

erating over changes (Figure 4.9) rather than iterating over all elements (Figure 4.8) is when the

number of changes, abs(ccurrent− ctarget), is less than n∗ lg(n).

4.4.6 Maintaining Scope in History

As mentioned previously, the omniscient technique described in this chapter is an exten-

sion of stepwise execution. As such, the technique described here provides scope-based operations

(i.e., stepIn, stepOver, stepOut, backIn, backOver, and backOut) that enable the devel-

oper to navigate based upon the current scope (e.g., stepping into or over a given scope). In a

traditional GPL such as Java or C++, typically methods or functions are used to define scope.

Similarly, in model transformations there exist rules that may contain as part of their definition

references to other rules. Thus, scope-based traversal can be used in a MT context as is typical

in a GPL context. To support these operations while traversing through history, scope informa-

tion must be provided. The naive solution is to provide a full scope stack at any given step. By

providing the full stack, the debugger can also incorporate stack traces similar to those generated

by exceptions in GPLs (e.g., Python, C++, or Java). However, including a full copy of the stack

trace for each element can create a state space explosion by replicating scope information between

multiple steps. Every step stores a pointer to a step where the current (relative to the step) top of the

stack is stored. A given scope’s information is stored only a single time for each traversal through

the scope. When a scope is entered, the current step has the scope information added, and each

subsequent step which is directly contained in the same scope stores a link to the initial step for the

scope. Each scope node then stores a link to its containing (or parent) scope. Thus, history stores

a single node for each time a scope is encountered. A flyweight pattern could also be applied to

this technique [95]. This pattern prevents duplicate primitive constructs by linking all occurences

to a single instance. Thus, the flyweight variant would present a minimal trace of scope stack

87

information through eliminating redundancy of changes and values. Consider if a string value is

repeated throughout history that could be replaced with a single object referenced in each location

rather than repeating the string value.

4.4.7 Supporting Omniscient Debugging in Other Modeling Platforms

Although the context for exploration of omniscient debugging is AToMPM, the algorithms

and general technique of the omniscient debugging prototype implementing the technique de-

scribed here should be able to be ported to other modeling tools. The technique, at the most

primitive level, is based upon capturing and replaying CRUD level operations resulting from ap-

plying model transformation rules. As such, the history structure presented is generic and does

not rely on any specific transformation features. The technique requires only the ability to capture

and replay CRUD level operations during execution. However, some transformation environments

may need to be modified to emit the CRUD operations during execution to enable the collection

of history. This modification should not cause a significant difference in transformation execution,

but the details may vary with implementation specifics. The omniscient traversal methods do not

require modifying the transformation engine because they entail only executing CRUD operations

on the model. Furthermore, supporting the algorithms as presented here requires only the ability

to support constant time access array-like structures and support for a cache structure that maps

elements to a listing of the steps where the element is changed. Because these describe basic data

structures, the implementation environment of any model execution engine should be able to meet

these requirements.

Beyond the mechanical requirements, the environment would need to be attuned to any

differences between the languages. The most significant concern here is regarding the selection of

the granularity at which to define a Step. A Step in MoTif is defined as a single non-composite

88

MoTif Transformation rule, and in T-Core as a single T-Core primitive. However, in other lan-

guages the rules may be defined using a set of lower level operations, similar to a method in Java.

Here, the implementation will need to decide on the precise level of granularity that defines a Step.

Additionally, the implementation will need to precisely define scope to employ the scope stack

(assuming the concept of scope is relevant to the target transformation language). The structure for

storing the scope stack is generic in assuming a layered scoping mechanism common throughout

many GPLs and MTLs (e.g., helper functions in ATL2), but the recognition of scoping will need to

be tailored to the specific MTL. This recognition is expected to be a constant time addition to the

initial execution time because it is already available within the implementation of AODB as part

of the AToMPM environment. Thus, no significant differences in runtime are expected, but the

implementation in other modeling tools must be customized to match the relevant MTL structure

and semantics.

4.5 Study Design - Evaluating Efficiency and Scalability of AODB

To evaluate the performance and scalability of the omniscient debugging technique, an

empirical study utilizing two distinct model transformations was performed. This section describes

the design of the empirical study as well as a discussion of the threats to the validity of the results.

4.5.1 Research Questions

The primary goal of the study is to understand the execution time performance and scala-

bility (in terms of memory consumption) of the omniscient debugging technique described in this

chapter and implemented in AODB on two model transformations designed in two different MTLs.

The focus of the study is to address the following questions:

2 http://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language#ATL_Helpers

89

http://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language#ATL_Helpers

RQ 1: Is there a significant difference in execution time between executing a model transformation

with omniscient debugging versus stepwise execution?

RQ 2: Is there a significant difference in execution time between executing a model transformation

with or without macro steps?

RQ 3: Is there a significant difference in execution time between the iterateSteps algorithm

and the iterateElements algorithm (presented in Section 4.4.5)?

RQ 4: At what point does omniscient debugging outperform restarting a model transformation in

terms of total execution time?

RQ 5: What is the effect on the changes and steps on memory consumption in history?

RQ 6: What is the impact of history on total memory consumption?

Wilcoxon signed-rank tests were performed to resolve RQ 1, RQ 2, and RQ 3. For each

hypothesis test, the directionality of the difference was not presupposed during testing. Therefore,

each hypothesis test is two-tailed. For each test, a null hypothesis was formulated to evaluate if

there is a significant difference between the two sets under comparison. If, after testing the null

hypothesis, it can be rejected with a high confidence (p = 0.05), then the alternative hypothesis is

accepted. Accepting the alternative hypothesis corresponds to there being a significant difference

between the two sets. The following presents an example null hypothesis (H0) followed by the

corresponding alternative hypothesis (HA).

H0 : timewithomniscience = timewithoutomniscience

HA : timewithomniscience 6= timewithoutomniscience

90

The null hypothesis asserts that omniscient debugging does not significantly affect the exe-

cution time of the model transformation, and the alternative hypothesis states exactly the opposing

view that omniscient debugging does significantly affect the execution time of the model transfor-

mation.

4.5.2 Debuggers and Model Transformations used in Evaluation

In this study, two model transformations were executed using both AODB and the standard

stepwise debugger provided in AToMPM v0.5.4. AODB is provided within an extended version of

AToMPM v0.5.4 where the transformation engine has been extended to support omniscient traver-

sal features. Thus, the omniscient debugger and stepwise debugger within AToMPM can provide

a direct comparison. For the AODB omniscient debugger, play was executed until the end of the

transformation was reached, and then BackIn was invoked repeatedly until the system reverted to

the initial step. After returning to the intial step, each step of the transformation was re-executed

using StepIn. During calls to BackIn and StepIn to proceed backwards and forwards through

the transformation, execution time and memory usage statistics for the history of the transforma-

tion were collected. After finishing the StepIn task, the collected history was divided into ten

partitions resulting in eleven boundary steps. The boundary steps were then used as jump points

such that the system jumped from every jump point to every other jump point (i.e., 1 to 2, 2 to 1, 1

to 3, etc.).

For the stepwise execution, play was used to execute the entire transformation. Because

history does not exist and the omniscient traversal features are not supported for stepwise execu-

tion, this was the only task performed. However, incremental step times were captured throughout

the play operation enabling direct comparison with the data collected from the omniscient debug-

ger.

91

(a) Sierpinski Triangle TCore Transformation (b) Graph Grammar Rule Used by the Sierpinski
Triangle TCore Transformation

(c) Sierpinski Triangle Metamodel

Figure 4.10: Sierpinski Triangle TTC Details

The two model transformations selected for this study were acquired from the 2007 and

2014 TTC. The first of these transformations is the Movie DB Case described in Section 4.3 drawn

from the 2014 TTC. This study includes models with 116, 580, and 1,160 elements for the Movie

DB Case transformation. For details of the Movie DB Case transformation implementation, please

refer to the solution from the 2014 TTC by Ergin and Syriani [94]. In this study, the transformation

was modified only to connect the three primary tasks within a single transformation.

The second transformation, drawn from the 2007 TTC, constructs a Sierpinski triangle

(metamodel provided in Figure 4.10c), which is a fractal where each generation creates an addi-

tional level of depth. The triangle is created by starting with an initial equilateral triangle with a

horizontal base. The next step shrinks the triangle in half, makes two copies, and positions the

92

Generation Model Elements

0 12

1 33

2 96

3 285

4 852

5 2,553

6 7,656

7 22,956

8 68,892

9 206,673

Table 4.1: Number of model elements for each generation of the Sierpinski Triangle transformation

three smaller triangles so that each triangle touches the two other triangles at a corner, effectively

splitting each triangle into three smaller triangles (Figure 4.10b). The second step is then repeated

to create each new generation. Table 4.1 lists the generations used in this study and the number

of model elements created by AToMPM at each generation. The number of model elements in

Table 4.1 is higher than in the conceptual problem. This variance is due to the underlying model

representation of AToMPM where an edge is represented as a specially typed node with two edges

connecting the edge node to the two traditional nodes connected by the edge. The additional com-

plexity is necessary to represent typed edges, because the underlying low-level representations

allow only generic edges.

The two transformations possess distinct properties that impact the results of various tests

for the analysis tasks described in Section 4.5.5. The Sierpinski Triangle transformation is able

to perform a single search for all triangles that must be split to create the next generation. Fig-

ure 4.10a displays the T-Core transformation that generates the next generation of the Sierpinski

Triangle transformation (splits all triangles) by executing the pattern matching and graph rewriting

93

defined in a graph transformation rule. The Matcher (FindTriangles) identifies all triangles in

the current generation, then the Iterator (SelectTriangle) repeatedly selects a triangle for the

Rewriter (SplitTriangle) to split until no matches from the previous generation remain. Thus,

the Sierpinski Triangle transformation is able to perform a single search over the entire graph for

each generation. However, the Movie DB Case transformation must search again after identifying

each couple. This is due to the update statements making previous matches invalid for the rule.

Thus, the Movie DB Case transformation spends a significant amount of additional time searching

over the model than the Sierpinski Triangle transformation. This difference is especially inter-

esting given that executing in history does not require repeating these computationally expensive

searches. Additionally, both transformations generate their own sample models with the Sierpinski

Triangle transformation always starting with the same initial model for all target generations (i.e., a

single triangle representing generation 0).

4.5.3 Measures Used in the Evaluation

A central goal of omniscient debugging is to reduce the time for a developer to return to a

previous state in execution. Omniscient debugging achieves this goal by allowing for bidirectional

execution through the history of an execution. Without omniscient debugging, the developer must

re-execute the transformation starting from the beginning. To understand how time can be saved

using AODB, the execution time for each step and jump through history was recorded in millisec-

onds and compared to the time required for standard execution. The system also recorded which

rule was executed at each step. This added information allowed reference back to the transforma-

tion to determine the types of operations that were applied during the step.

In addition to the execution time required for moving through history, the system collected

the added memory usage required to store the changes that occur at each step. Because changes

94

during the model transformation can be ambiguous (as discussed in Section 2.1.3.2), this additional

memory usage is required to recreate the exact changes. For this reason, it is necessary to under-

stand the impact history has on memory usage. To investigate the impact, memory usage (in bytes)

was collected at each step for the overall system, the revisions cache, state information for the most

recent step, and the changes in the most recent step. Memory usage is also recorded for each macro

step built during a jump. Each of these measures are used to give an overall understanding of the

impact on the system.

4.5.4 Configuration of Experimental Platform

The study utilized a 64-bit Windows 8 machine with an Intel dual-core 3.33 GHz processor

with 4 GB of RAM. The tool used for the study was AToMPM which had a model transformation

engine written in 32-bit Python. Due to using the 32-bit version of Python, AToMPM is limited

in the amount of memory it can address. AToMPM uses Python-igraph3 for holding and manip-

ulating the low-level graph representation of the model. The tool is capable of executing model

transformations in both the T-Core and MoTif hybrid MTLs. In this context, hybrid refers to the

combination of graph rewriting rules, which are purely declarative, and imperative control flow.

AToMPM is a cloud-based modeling tool that sends communications between the model

transformation engine and the front-end client across a network. The client is written in HTML5

and JavaScript with the Chrome browser as the main development environment. For the purposes

of this study, communications to the client was disabled. This allowed isolating execution time on

the model transformation engine and removed the additional overhead of network transmissions.

3 https://pypi.python.org/pypi/python-igraph/0.6.5

95

https://pypi.python.org/pypi/python-igraph/0.6.5

4.5.5 Data Collection and Analysis

The model transformation engine was instrumented to collect information during the exe-

cution of the model transformation. For each step, the system recorded the time it took to execute

the step, the number of changes in the step, the number of elements in the step, and the number

of creates, deletes, and updates involved in the step. The model transformation was then exe-

cuted in the forward direction, backward through history, forward through history, and jumping

through history after splitting the history into ten partitions. Afterwards, each model transforma-

tion was re-executed while forcing the macro step to be built using either the iterateSteps or

iterateElements portions of the algorithm. The data collected from these distinct runs was

used for comparison of the two techniques.

For RQ 1, RQ 2, and RQ 3, Wilcoxon signed-rank tests were conducted to determine

whether a significant difference was observed. The Wilcoxon signed-rank test is the non-parametric

analog of the t-test. The directionality of the difference was not assumed when performing these

tests.

For RQ 1, differing step types and levels of the model transformations were compared, as

well as all steps across all types and all levels. The types of steps considered were search, scope,

and change. The levels used included the 1 iteration, 5 iterations, and 10 iterations of the Movie

DB Case model transformation, as well as the combination of all iterations. Also, 8 iterations of the

Sierpinski Triangle transformation was used. For RQ 2 and RQ 3, 7 different levels across the two

model transformations were used. The same iterations of the Movie DB Case model transformation

included in RQ 1 were used in RQ 2 and RQ 3, and then 3, 5, 6, and 8 iterations of the Sierpinski

Triangle transformation were also included. Then all iterations of both model transformations were

96

combined to form a combined Movie DB Case and Sierpinski Triangle transformation. Finally, all

levels of both model transformations were combined.

For RQ 4, cases were identified that highlight the different circumstances that can make

traversing through history either faster or slower than re-executing the code. These cases were

used to give a high-level view of how characteristics of the model transformation can impact the

effectiveness of history.

Finally, in RQ 5 and RQ 6, the memory consumption of the system was captured as the

model transformation was executed. This information was compared to the amount of information

contained in history, as well as to the number of changes and number of steps currently in history

(that were also captured during execution). Empirically evaluating these questions provided a

sound understanding of the impact of omniscient debugging on the memory usage of the model

transformation engine.

4.5.6 Threats to Validity

The study has limitations that may affect the validity of the findings reported here. This

section describes the identified limitations as well as the measures taken to mitigate the them.

Threats to conclusion validity concern the degree to which the conclusions about the rela-

tionships in the data are reasonable. To mitigate these concerns, the comparisons made to execution

time on the model transformation system were limited and the effects of other variables were lim-

ited as possible, such as communication time to the client. In addition, non-parametric statistical

tests were used and no assumptions were made about the distributions of the data (i.e., nonpara-

metric tests were used).

Threats to construct validity concern how well the measurements used in the study describe

the concept being studied. Possible threats to construct validity include the effects other processes

97

on the host machine have on the time required to execute the steps in the transformation. To limit

these issues, a minimal set of processes were allowed to run on the host.

Threats to internal validity include possible errors in executing the study procedure or de-

fects in the tools used. To mitigate these issues, the model transformation engine was instrumented

to automatically log execution time performance and memory usage along with which debugger

generated the log, which transformation was run, what size model was used during the run, and

which traversal feature (e.g., stepIn or stepOut) was used to generate the log. The instrumen-

tation of the system may have affected the execution time performance, and to account for this

possibility, logging was instrumented outside of the measured tasks to limit the total impact when

possible. When not possible to instrument logging outside the measured tasks, all runs were per-

formed similarly and any impact of the instrumentation was recorded to enable later removal of

the impact from recorded observations.

Threats to external validity concern the extent that results can be generalized. Two model

transformations were chosen with, intentionally, varying factors to gain a more complete under-

standing of how the omniscient debugger will work on other model transformations written in these

languages. Furthermore, model transformations written in two distinct MTLs were used. Under-

standing how the technique would be affected by other transformation languages would require

replicating the experiments in the languages of interest. However, the observed results should be

similar for other model transformations written in T-Core and MoTif, as well as languages with a

similar feature sets.

98

(a) Movie DB Case 1 Iteration (b) Movie DB Case 5 Iteration

(c) Movie DB Case 10 Iteration (d) Sierpinski Triangle

Figure 4.11: Measuring differences in execution time: omniscient vs. stepwise (RQ 1)

4.6 Results - Evaluating Efficiency and Scalability of AODB

This section presents quantitative data from statistical tests and descriptive statistics orga-

nized according to research question being addressed. Section 4.7 will discuss the implications

and provide qualitative analysis.

4.6.1 Is there a significant difference in execution time between executing a model transformation
with omniscient debugging versus stepwise execution? (RQ 1)

To answer this question, the elapsed time was recorded while running each model trans-

formation. Between the two transformations, the elapsed time was recorded for four different

99

levels: 1, 5, and 10 iterations of the Movie DB Case and 8 generations of the Sierpinski Triangle

transformation. The evaluation can be limited to only a single case of the Sierpinski Triangle trans-

formation, because each subsequent generation executes the same steps as the previous step plus an

additional generation. The elapsed time was also recorded for three different types of step: change,

scope, and search. Change steps are only concerned with executing some change (e.g., creating

new nodes). Scope steps refer to a subprocess and do not make any direct changes. Search steps

may include some changes, but also include a significant find operation. An example of a search

operation is the findTriangles step of the Sierpinski Triangle transformation, which searches

over the entire model and identifies all triangles.

The results of all steps for each of the four levels are represented by the boxplots in Fig-

ure 4.11. From these boxplots it can be seen that the times for each step are similar. The biggest

difference is visible for the Sierpinski Triangle transformation. A series of Wilcoxon Signed-Rank

tests were conducted to determine if a significant difference exists between omniscient and step-

wise debugging for any level, any step type, for any step of any level, or for all steps of all levels

and step types combined.

The results of the Wilcoxon tests failed to show any significant difference with the excep-

tion of the change step type for 10 iterations of the Movie DB Case model transformation. For this

level, building the changes in history for omniscient debugging showed a slight increase in execu-

tion time over the stepwise debugging. All 23 other cases failed to display a statistically significant

difference in execution time.

100

4.6.2 Is there a significant difference in execution time between executing a model transformation
with or without macro steps? (RQ 2)

The intent of RQ 2 is to determine whether there was a significant difference between

traversing history via executing all intermediate changes (i.e., using back or stepForward) versus

jumping through history. When jumping, MacroSteps are computed to define the precise set of

changes that will be executed to traverse to the target location in history. Jumping through history

uses MacroSteps and stepping through history does not. For each model transformation, history

was divided into ten partitions of steps. This resulted in eleven distinct endpoints for moving

through history. Then, the elapsed execution time was recorded for jumping from each endpoint to

each other endpoint (in both the forward and backward directions). This experiment was replicated

for seven distinct levels across the two model transformations including 1, 5, and 10 iterations for

the Movie DB Case transformation as well as 3, 5, 7, and 8 generations for the Sierpinski Triangle

transformation. Finally, the combined result sets for each model transformation at all levels and

the combination of all levels across both transformations were also analyzed.

Figure 4.12a contains boxplots representing the steps for all iteration levels (1, 5, and 10)

of the Movie DB Case model transformation. The boxplots show that for moving forward through

history, the spread increases for stepping forward over jumping forward while the median for

stepping forward goes down. While moving backward, there is an increase in the entire spread for

moving back through history versus jumping backward. Also worth noting, it was observed that

moving backward through history results in higher execution times than stepping forward through

history.

Figure 4.12b contains boxplots for the Sierpinski Triangle transformation. Unlike the re-

sults in Figure 4.12a, where an increase was observed in the spreads for moving (i.e., either step-

101

(a) Movide DB Case All Levels (b) Sierpinski Triangle All Levels

Figure 4.12: Measuring differences in execution time: jump vs. stepping (RQ 2)

ping or jumping) forward and backward through history, in Figure 4.12b a decrease was observed

in the spread for both stepping forward and stepping backward in history versus jumping.

Wilcoxon Signed-Rank tests were conducted for each of the different levels and combi-

nations. Furthermore, tests were conducted to determine if there exists a significant difference

between jumping of any type and the combination of stepping forward and moving back. For the

Movie DB Case, no significant difference was found between jumping through history and step-

ping through history. However, for the Sierpinski Triangle transformation, a significant difference

was found for all comparisons except for stepping forward at the 3 iteration level. No significant

differences were found when looking at the combination of the two model transformations.

4.6.3 Is there a significant difference in execution time between the iterateSteps and
iterateElements algorithms? (RQ 3)

There are two possible paths for building a MacroStep during the execution of the model

transformation. The first is iterateSteps, which normally is used by the MacroStep building

102

(a) Movide DB Case All Levels (b) Sierpinski Triangle All Levels

Figure 4.13: Measuring differences in execution time: IterateSteps algorithm vs. IterateElements
algorithm (RQ 3)

algorithm when the number of steps is less than the number of elements in the system. The sec-

ond is iterateElements, which normally is used by the MacroStep building algorithm in the

opposing situation. To better understand the impact of the differences in how these two methods

build the MacroStep, this research question focuses on whether there is a significant difference in

the execution time between the two. For this question, MacroSteps were forced to be built in one

of the two paths (without regard for the number of steps and number of elements in history) and

then observations of execution time were compared. The same levels as described for RQ 2 were

used here.

Figure 4.13a shows the spread of building each step for all iterations of the Movie DB Case

model transformation. From this graph, there appears to be a slight decrease in iterateElements

versus iterateSteps. Figure 4.13b shows the spreads for all iterations of the Sierpinski Triangle

transformation. In the case of the Sierpinski Triangle transformation, the iterateElements was

observed to have a large increase in spread versus iterateSteps.

103

Figure 4.14: From the end of execution, what percentage of the system can be re-executed before
omniscient traversal is more efficient. (RQ 4)

Again, Wilcoxon Signed-Rank tests were conducted to determine whether there was a sig-

nificant difference between iterateSteps and iterateElements at any level. For the Movie

DB Case, no significant difference was identified at any level. However, for the Sierpinski Triangle

transformation and for the combination of the two systems, a significant difference was identified

for every level.

4.6.4 At what point does omniscient debugging outperform restarting a model transformation in
terms of total execution time? (RQ 4)

It is possible that there exists a point for which re-executing a given model transformation

is faster than executing a jump through the history for a given transformation. To gain a better

understanding of this situation, the elapsed time was recorded when executing from beginning to

end of the model transformation, as well as when jumping back to different points in history. The

case of jumping from the end of the model transformation to a previous point was then compared

to that of re-executing to reach the same point.

104

Figure 4.14 shows the tipping point when re-execution becomes better than omniscient

traversal. In other terms, the graph shows the percentage of the model transformation that may

be re-executed before it would be better to jump back from the end. For all levels of the Movie

DB Case, and for 3 iterations of the Sierpinski Triangle transformation, it was always better to

jump back from the end than to re-execute the transformation. For 5 iterations of the Sierpinski

Triangle transformation, 70% of the model transformation may be re-executed before jumping

back becomes better. For 7 iterations, the tipping point is 80%.

It is important to note that the performance focus of this discussion does not consider the

importance of nondeterminism as described in Section 2.1.3.1. This question focuses only on

evaluating matters of execution time. However, many situations exist where re-execution might

lose the context of a defect (as illustrated in Section 4.3), and in these situations re-execution

should not be used as a replacement for omniscient traversal.

Multiple factors and characteristics influence the observed results as discussed further in

Section 4.7.

4.6.5 What is the effect of changes and steps on memory consumption in history? (RQ 5)

To determine whether the changes or the steps have a greater overall influence on the mem-

ory consumption of history (see Section 4.4.2), AODB was instrumented to record the total amount

of memory used by the history as well as the amount of memory used by the changes and the

amount of memory used by the steps. When recording the memory used by a given step, the

changes included in the step were omitted to focus memory usage of a step on the other step fea-

tures (e.g., scope information and transformation rule information). After the system executed

each subsequent step of the transformation, the percentage of memory composed of changes and

the percentage composed of steps was calculated. The results of this analysis for 7 generations of

105

(a) Movie DB Case 10 iterations

(b) Sierpinski Triangle 7 Generations

Figure 4.15: History Memory Usage (RQ 5)

106

the Sierpinski Triangle transformation are shown in Figure 4.15b. The results of this analysis on

the Movie DB Case with 10 iterations are shown in Figure 4.15a.

For both model transformations, the percentage of memory usage by steps is significantly

lower than the percentage of memory usage by changes. For the Sierpinski Triangle transforma-

tion, sudden drops are observed in the memory usage of changes with each new generation of the

transformation.

4.6.6 What is the impact of history on total memory consumption? (RQ 6)

In addition to the amount of memory used by changes and steps in history, the percentage

of memory used by history for the entire model transformation engine is of interest, because it

indicates the significance of history to overall memory usage. To calculate the ratio of history

memory usage to overall memory usage, the system recorded the total amount of memory usage by

history as well as the total memory usage of the entire model transformation engine. Figure 4.16b

presents the results of this analysis for 7 generations of the Sierpinski Triangle transformation.

Figure 4.16a presents the results of this analysis for the Movie DB Case with 10 iterations.

It is worth noting that these figures use a y-axis with a maximum value of 25%. The

reduced scale on the y axis (25% rather than 100%) is because the total usage of history in the most

extreme case observed is less than 15% of the total amount of memory usage of the entire model

transformation engine. For the Movie DB Case model transformation, the total memory usage for

history is always below 5%, while the total memory usage for the history of the Sierpinski Triangle

transformation is always below 15%.

107

(a) Movie DB Case 10 iterations

(b) Sierpinski Triangle 7 Generations

Figure 4.16: Percentage of total memory usage for the transformation engine due to history (RQ 6).

4.7 Discussion - Evaluating Efficiency and Scalability of AODB

This section addresses each research question providing a discussion about the implication

of the results presented in Section 4.6. The section is organized according to the research question

being addressed.

108

4.7.1 Is there a significant difference in execution time between executing a model transformation
with omniscient debugging versus stepwise execution? (RQ 1)

The goal of this research question was to show that there is not a significant difference

between running the model transformation using normal stepwise execution and omniscient de-

bugging. Because building the dynamic structure of history requires time, it may affect the per-

formance of the technique if the debugger results in a significant change of the execution time

performance. Therefore, when studying this question, the desired result would be to find no sig-

nificant differences.

Three step types were chosen to be included in this study: scope, search, and change.

Each of these steps has a different effect on what the model transformation engine does at that

step. Search steps are meant to identify elements in the model based on some pattern. This type

of step does not typically generate any changes, and the time spent for the searching operation

typically vastly outweighs time spent changing the model. Thus, the omniscient debugger performs

a minimal set of operations (i.e., only creating a new empty step) in addition to basic execution

concerns common to both debugging approaches. Therefore, a significant difference in observed

execution times was not expected except for those produced from noise external to the system.

Similarly, the scope steps are used to enter and exit different levels of scope in the transformation

and do not result in changes to the model. Similarly, a significant difference was not expected in

this case. However, for the change step types, changes must be added to the trace in history. Thus,

with enough changes, there could be a significant difference in the execution time of steps of this

type. This assumption was supported by the results of the study. For smaller cases, no significant

difference was found for the change type. However, for the largest level of 10 iterations of the

Movie DB Case model transformation, a significant difference was identified.

109

Though a significant difference was found for the change type of the 10 iteration Movie

DB Case level, no significant differences were identified for any level when considering all step

types together. This is an important result because it indicates that building the history should not

significantly decrease execution time performance of a model transformation engine.

4.7.2 Is there a significant difference in execution time between executing a model transformation
with or without macro steps? (RQ 2)

One of the benefits of having history is that it allows the developer to jump to any step that

has already been executed. To facilitate such a traversal, an algorithm was implemented that builds

a MacroStep with all changes from the current step to the target step (see Section 4.4.5). Addition-

ally, while building the MacroStep the debugger may exclude redundant changes from execution.

However, a consequence of building the MacroStep is that it requires additional computation that

is not required in other steps. If this additional computation is more costly than moving through

history, the benefits of the macro step are diminished.

The purpose of RQ 2 is to understand how building the MacroStep compares to moving

through execution (either forward or backward) via a more traditional stepping algorithm in which

all changes are executed for each step iteratively until the traversal is complete. The steps in history

were partitioned into ten different sets. The partitioning resulted in eleven endpoints. For each of

the eleven endpoints, the debugger jumped from each point to every other point in both the forward

and the backward directions. For each direction, the elapsed time was computed for traversing us-

ing back and stepForward through history. Then, the times were compared for each of these

moves. Observations showed that, for the Movie DB Case model transformation, there was a de-

crease in the overall time required to move through history by using steps. However, no significant

difference was detected. For the Sierpinski Triangle transformation, a significant difference was

110

detected between the jumps and stepForward and back. The main cause of this difference is a

result of the difference in performance between iterateSteps and iterateElements. Thus,

a result of these observations is that the performance of jump could be improved by changing the

cutoff point between iterateSteps and iterateElements.

An additional finding during this question is that for both model transformations, there is

a significant difference between moving forward and moving backward in history. There are two

reasons for this. The first is that a large increase in changes was found for moving backward

versus moving forward resulting in added computation in the backwards direction. The second

reason is due to the need to reverse the changes that were added in the MacroStep. In the current

implementation of the debugger, changes must be added to the step in the forward direction and

then the resulting set is reversed to move in the backward direction. This added to the time required

for both stepping backward and jumping backward.

4.7.3 Is there a significant difference in runtime between the iterateSteps algorithm and the
iterateElements algorithm? (RQ 3)

Depending on the number of changes and elements in the system, MacroSteps will either

be built by iterating over all elements in history or by iterating over all steps. The purpose of this

question is to gain a better understanding of the efficiency of the two techniques and whether one

significantly outperforms the other.

The results of this study found that for the Movie DB Case model transformation the two

techniques did not have a significant difference and are roughly the same in terms of execution

time performance. However, for the Sierpinski Triangle transformation, there was a significant

difference at all levels. The iterateElements algorithm has a few shortcomings that make it a

bad choice to use when there are a lot of elements and few changes per element. One concern is

111

the need to identify the mostLocal and mostRecent changes for each element in the system. If

the number of steps is large and the element is changed frequently, then identifying mostLocal

and mostRecent changes becomes an issue because the process must search through a cache

of revisions to identify the mostLocal and mostRecent changes. In the case of the Sierpinski

Triangle transformation, there exist a large number of elements in history, but few changes per

element. Another potential concern is the need to reorder the changes for a MacroStep. In the

iterateElements algorithm, the changes are not identified based on when the change occurred

during the initial execution (as they are in the iterateSteps algorithm). However, as the changes

must be completed in a set order to prevent conflicts (e.g., attempting to update an attribute before

an element has been created), the resulting set must have the appropriate order. This results in a

need to reorder elements. This difference in performance also affects the results of the jumps in

RQ 2. Because of the difference in performance in certain cases, it can be concluded that changing

when the algorithm determines whether to use iterateSteps versus iterateElements will

result in a significant increase in performance of the MacroStep building algorithm.

4.7.4 At what point does omniscient debugging outperform restarting a model transformation in
terms of total execution time? (RQ 4)

One of the arguments presented in favor of omniscient debugging was to reduce the cost of

reaching a desired state by removing the need to re-execute the system. However, depending on the

transformation and the amount of changes in the system, there are times when using omniscient

traversal may be more expensive than re-executing the system from the beginning. There are a

number of factors that affect the boundary points for when re-executing should be selected over

reverting execution through omniscient features. If the number of steps between moving from the

current point in history to the target point is greater than the number of steps that would need to

112

be executed from the beginning of the transformation, then it may be better to re-execute the trans-

formation. However, if these steps are computationally expensive to execute and trivial to revert

using logged information, the larger number of steps may take less time to revert than executing

the smaller number of computationally expensive steps.

These boundary points were studied for all levels of the two model transformations to iden-

tify when it would be better to select re-execution over omniscient traversal. The history for each

execution was divided into 10 partitions which enabled comparisons between re-executing from

the first step to the target and reverting from the last step to the target. The set of targets included

the beginning, end, and the boundaries between each of the 10 partitions of history (i.e., 0% exe-

cuted, 10% executed, 20% executed, 30% executed, 40% executed, 50% executed, 60% executed,

70% executed, 80% executed, 90% executed, 100% executed). For all levels of the Movie DB

Case transformation, omniscient traversal was observed to be more efficient. This is due to the

costly search steps that are a part of this transformation. The amount of time required for iden-

tifying couples that match the search criteria is costly and this cost is incurred repeatedly during

the transformation. Thus, avoiding the search process with omniscient traversals after the initial

execution is preferable.

For the Sierpinski Triangle transformation, it is better to use omniscient traversal when the

number of iterations is low. The omniscient traversal was only preferable for small jumps back

through the system. The Sierpinski Triangle transformation does have a costly search step, but

the search step (findTriangles) is only executed at the beginning of each generation. As the

generations increase, the number of change steps compared to search steps grows significantly

in favor of the change steps. Therefore, traversing through the latter generations of the model

transformation is less efficient than in the earlier generations of the transformation. If the current

113

execution has reached the end of the transformation, omniscient traversal only provides a benefit

when moving back to the point where 70% of the execution has been executed for generation 5.

Re-executing is faster at any earlier point. For generation 7, the boundary shifts to 80%. Again,

this is due to the high growth rate and number of changes at the end of the model transformation.

4.7.5 What is the effect of changes and steps on memory consumption in history? (RQ 5)

In addition to the added processing required to perform omniscient debugging, AODB also

requires a history of previous changes that have occurred within the transformation. The history is

required for the debugger to return to any previous state of the transformation, but comes at the cost

of additional memory consumption. Both RQ 5 and RQ 6 are designed to assist in understanding

the overall impact that history has on memory consumption.

History is composed of three main components. The first is the changes that occur during

the transformation. The second is the steps or the discrete units of execution that contain the

changes. Finally, the revisions cache contains a link between the elements in the model and the

changes in history. Additional minor elements are also included in history (i.e., a pointer to the

current step), but these elements provide only static memory usage and are trivial compared to the

three main components. To investigate the impact of these three components, AODB recorded the

amount of memory used to store the changes and the amount used to store the overhead of the

steps (i.e., the memory usage of the steps not including any contained changes). Only these two

concerns can be considered because the cost of the revisions cache can be amortized among all

changes to produce a constant increase per change, because the revisions cache stores an entry for

each change that has occurred. Thus, the primary component is the number of changes, because

the memory usage of the revisions cache is dependent upon the number of changes. Furthermore,

it was observed that the main contributing component to the memory consumption of history for

114

the observed systems (Sierpinski Triangle and Movie DB Case) is due to the changes. This was

expected because steps are a containing unit of the changes and each step has an almost constant

memory consumption.

There are several points during execution when notable reductions were observed in the per-

centage of history’s memory usage due to the changes (as seen in Figure 4.15). These reductions

are observed in both model transformations. For the Sierpinski Triangle, the model transforma-

tion is written in T-Core, which maintains an internal store of dynamic information that includes

a set of matched sets (i.e., subgraphs matched by the matcher rule, findTriangles). As the

transformation progresses through the remainder of the generation, the iterator removes elements

from the matched set, and the rewriter uses the removed match set to process a triangle. Over

the course of the generation, the matched sets slowly decrease and the total number of changes

steadily increases. At the beginning of the next generation, a new (significantly larger) matched

set is generated. Because history stores step information such as the matched sets, the percentage

of history will vary based on the current point in the generation. The Movie DB Case, however,

appears to only have a single transition rather than repeated transitions from continuous searches,

but the reduction in this case is due to the same concern. Internally, MoTif rules possess a similar

structure to the matched sets in T-Core that are used for the same purpose. However, the Movie

DB Case has a constant series of searches after the initial building phase of Task 1. Thus, when

Task 1 completes, the transformation will then continuously have a matched set component that

does not slowly reduce in size as seen in the Sierpinski Triangle transformation. Thus, the result

is a single reduction at the point where Task 1 ends, but the reduction is due to the same cause as

observed for the Sierpinski Triangle transformation.

115

4.7.6 What is the impact of history on total memory consumption? (RQ 6)

RQ 5 focused on the composition of history to determine the main components impacting

memory consumption. However, this question did not address the impact of history on overall

memory usage for the transformation engine. RQ 6 addresses the effect of history on the memory

consumption of the model transformation engine as a whole.

For each model transformation, the percentage of the model transformation engine’s mem-

ory accounted for by history was mapped out as the number of executed steps increases. For the

Movie DB Case transformation, this value never surpassed 5% of memory consumption, and dis-

played a slow growth rate. In contrast, the Sierpinski Triangle transformation grew at a roughly

logarithmic rate as the number of executed steps in the transformation increased. Additionally, the

Sierpinski Triangle transformation has several observable sharp increases in memory usage which

are due to the matched sets generated at the beginning of generation (as discussed in the previous

section). However, even with this growth rate and the sharp increases, the memory usage never

surpassed 15% of the overall memory usage for the model transformation engine.

This would seem to indicate that there is still considerable room for the history to grow,

allowing for a larger number of model elements and changes. Furthermore, it was observed that

the size of a model and other factors seem to be contributing more significantly to memory con-

sumption than history.

4.7.7 Evaluating the efficiency and scalability of the technique

Each of the previous questions addressed a different point regarding the efficiency and the

scalability of the technique. The answers to these questions help address when the algorithms

discussed in this chapter can be used by a developer during MT debugging. Due to the nondeter-

ministic nature of model transformations, omniscient debugging allows for the developer to debug

116

an execution that may have been difficult to recreate without these features. However, it is impor-

tant to ensure that the techniques used to provide these features avoid adding significant overhead

affecting either runtime performance or memory consumption.

The results of the study found that the omniscient debugging technique does not signifi-

cantly affect the execution time of a model transformation when compared with stepwise execu-

tion. This is an important finding as it indicates that the developer should not notice a difference

when utilizing the omniscient features. In addition, memory usage of the history structure required

to make omniscient debugging possible was examined. History was found to have an overall mi-

nor impact on the system. The major contributors to memory usage include the size of the model

and other standard features of the transformation engine. With this in mind, the dominating factor

for determining memory resources to allocate is still the size of the model and not the additional

storage of history.

In terms of the effectiveness of the MacroStep building algorithms, a significant differ-

ence was found between iterating through the steps (IterateSteps) and iterating through the

elements (IterateElements). Analysis of the results indicated the performance could be im-

proved by altering the cutoff points for using one algorithm over the other. This alteration should

lead to significant gains when jumping through history and, thus, improve the overall omniscient

debugging process.

Finally, even in cases where nondeterminism was not a factor and a model transformation

could simply be re-executed by the developer, it is still often superior with regards to execution

time to use the omniscient features. This is especially true when the transformation incorporates

costly search steps or when the number of changes grows large. As the performance of building the

117

macro-steps are improved (as discussed previously), this difference should grow more prominent

for all cases.

4.8 Conclusions

Like all software systems, evolution also occurs in software models. In MDE, the evolution

of models is commonly defined using MTLs, which can be used to specify the distinct needs of a

requirements or engineering change at the software modeling level. Model transformations are also

a type of software abstraction that can be subject to human error. This chapter presented an om-

niscient debugging technique and associated algorithms for model transformations. The technique

provides an intuitive extension to stepwise execution to enable free traversal of execution history

through a set of omniscient features that control the execution of the system in a stepwise man-

ner. The technique provides the ability to continuously execute or revert the system (i.e., play

and playback), progress stepwise through the execution of the transformation (i.e., stepIn,

stepOver, or stepOut), revert the system in a mirror of the stepwise features (i.e., backIn,

backOver, and backOut), and jump directly to a target step of execution. The chapter discussed

the use of a trace of execution history to enable the various omniscient traversals. Finally, an algo-

rithm was introduced that efficiently identifies a minimal set of changes, MacroStep, that must be

executed to complete a traversal through history (either forward or backward) along with a set of

patterns used to determine which changes must be included.

The chapter also provides discussion of the theoretical execution time performance scaling

of the MacroStep building algorithm and the theoretical memory consumption scaling of history.

This theoretical discussion was followed with an empirical evaluation of these concerns guided by

a set of 6 research questions. The evaluation indicates execution time performance was not signif-

icantly different than a stepwise debugger when considering initial execution (where omniscient

118

debugging must provide additional processing to manage history) and the memory scaling of the

overall system was not observed to have a primary effect on the memory usage of the model trans-

formation execution engine as a whole. Additionally, numerous features and components were

explored such as comparing two approaches to building a MacroStep.

The work presented in this chapter has focused on the application of omniscient debugging

to an MT environment with specific focus on two transformation languages. However, modelers

may also make use of directly executable modeling languages, and especially xDSMLs where the

language and execution semantics are specific to a given domain. Several recent efforts have ex-

plored providing facilities to design xDSMLs [52, 96, 97]. Chapter 5 presents an exploration into

applying omniscient debugging within this new context, as well as introducing a history visualiza-

tion strategy and more advanced omniscient traversal features that build upon the work presented

in this chapter.

119

CHAPTER 5

MULTIDIMENSIONAL OMNISCIENT DEBUGGING FOR XDSMLS

Omniscient debugging is a promising technique that relies on execution traces to enable free traver-

sal of the states reached by a system during an execution. While Chapter 4 explored omniscient

debugging for MDE in the context of MTs, modelers may also make use of xDSMLs where the

processes inherent to a given domain may be defined directly within the language semantics. One

solution to providing omniscient debugging for xDSMLs is to define a generic omniscient debugger

for all xDSMLs. However, generically supporting any xDSML both compromises the efficiency

and the usability of such an approach. The contribution of this collaborative work relies on a partly

generic omniscient debugger supported by generated domain-specific trace management facilities.

Being domain-specific, these facilities are tuned to the considered xDSML for better efficiency.

Usability is strengthened by providing multidimensional omniscient debugging. Results show that

our approach is on average 3.0 times more efficient in memory and 5.03 more efficient in time

when compared to a generic solution that copies the model at each step. Additionally, in this chap-

ter, a novel set of omniscient traversal features are described, and a novel visualization of history

is presented.

120

5.1 Introduction

Many recent efforts have explored providing tools and techniques to support xDSMLs [52,

96, 97], which allow system engineers to analyze behavioral properties early in the development

process. Debugging is a common dynamic feature to observe and control an execution in order

to better understand a behavior or to look for the cause of a defect. However, standard debugging

features only provide the ability to pause and step forward during execution. Thus, developers

must restart from the beginning to obtain a second look at a state of interest. To cope with this defi-

ciency, a technique supporting omniscient debugging of MTs was explored in Chapter 4. However,

when designing a technique to support xDSMLs, the variety of language semantics and features

must be considered. Despite the specificities of each xDSML, it is possible to identify a common

set of debugging facilities applicable to any xDSML. Thus, to avoid manual creation of each de-

bugger, a possible solution is to define a generic omniscient debugger that would work for any

xDSML. However, providing generic debugging facilities to handle any xDSML has two main

consequences:

1. There is a trade-off between genericity and efficiency of the debugging operations, because

supporting any xDSML requires the use of expensive introspection, conditionals, or type

checks to support a wide variety of abstract syntax and runtime data structures. More-

over, because debugging is an interactive activity, responsiveness is of primary importance.

Hence, the efficiency of a generic debugger is a primary concern.

2. The execution data structure defined in an xDSML can be arbitrarily complex (e.g., a large

object-oriented structure), and therefore difficult to comprehend in a debugging session, es-

pecially if the execution leads to a large number of states.

121

Another key concern is the usability of omniscient debugging for xDSMLs, and specific

advanced facilities can significantly aid in managing the complexity and size of the executions.

The following summarizes key objectives that drive the focus of this chapter:

Objective 1: Support efficient omniscient debugging, to ensure responsiveness of the debugger.

Objective 2: Offer advanced omniscient debugging traversal features, to improve the usability.

Previously, I investigated efficient, generic omniscient debugging services for model trans-

formations [34] (presented in Chapter 4), and Bousse et al. explored generating domain-specific

trace metamodels [92]. In the work presented in this chapter, we collaborated to explore adapting

domain-specific trace metamodels to support generic omniscient debugging services for xDSMLs.

To address Objective 1, this chapter presents a generative approach to define omniscient debuggers.

Such a generative approach can provide an efficient and finely tuned omniscient debugger for any

xDSML. Yet, considering a generic set of debugging services for all xDSMLs, both the interface

and some underlying logic of the debugger can remain generic without compromising efficiency.

Hence, the contributions of this chapter rely on a partially generic omniscient debugger supported

by generated domain-specific trace management facilities. The trace management facilities in-

clude a domain-specific trace metamodel that precisely captures the execution state of a model

conforming to the xDSML, and a domain-specific trace manager providing all the required ser-

vices to manipulate the execution trace generically. Because the trace manager is domain-specific,

it is finely tuned to the considered xDSML and to the generated trace metamodel, and hence more

efficient than a generic one. To address Objective 2, the contributions of this chapter provide mul-

tidimensional omniscient debugging services, which mix both omniscient debugging services, and

advanced facilities to navigate among the values of specific elements of the executed model.

122

In this collaborative project, my primary contributions were as follows:

• designing the omniscient debugging features

• designing and prototyping the visual interface to support the new debugging features

I also contributed significantly to the following components of the collaborative work:

• designing an interface between the generated traces and the omniscient debugging features

• designing the empirical evaluation

• evaluating the results of the empirical study

We implemented our approach as part of the GEMOC Studio1, a language and modeling

workbench, and we conducted an empirical evaluation. To evaluate the efficiency of our solution,

we assessed its quality with regard to both memory consumption and the time required to run

omniscient debugging operations. We compared our approach with two generic omniscient debug-

gers: one that simulates omniscient debugging by resetting the execution engine and re-executing

until the target state is reached, and one that copies the model at each execution step. Obtained

results show that our approach is on average 3.0 times more efficient in memory when compared to

the second debugger, and respectively 54.1 and 5.03 times more efficient in time when compared

respectively to the first and the second debugger.

The remaining sections are as follows. Section 5.2 defines the considered scope of model

execution and model debugging. Section 5.3 presents our generative approach to provide generic

multidimensional omniscient debugging. Section 5.4 describes a prototype supporting the tech-

1 http://gemoc.org/studio/

123

http://gemoc.org/studio/

nique in the GEMOC Studio. Section 5.5 discusses the evaluation of our approach. Finally, Sec-

tion 5.6 discusses related work and Section 5.7 concludes the chapter.

5.2 Model Debugging

This section defines the scope of the advanced omniscient debugging facilities proposed to

analyze executable models.

5.2.1 Debugging Approaches

Debugging an executable model involves controlling the model’s execution and observing

the states traversed. Figure 5.1 shows four approaches to achieve this, with different levels of con-

trol over the execution. First, stepwise debugging only traverses forward through the states reached

by the model through the application of the operational semantics rules. Second, we call weak om-

niscient debugging the possibility to go backward in the exploration of the states through a restart

of the execution engine and a re-execution until the target state is reached. Note that this can be

accomplished manually with any stepwise debugger. Third, omniscient debugging relies on an

execution trace to revert the executed model into a prior state. Using a trace makes the procedure

deterministic (i.e., the exact same states are visited) even if the model or the operational seman-

tics are nondeterministic. Finally, our proposal relies on multidimensional omniscient debugging,

which adds facilities to navigate among the values of mutable fields of the model. In the remainder

of this section, we present these debugging approaches as sets of provided services. Note that all

these services are only valid when the execution is paused; i.e., when the execution engine waits

for instruction before applying a transformation rule.

Stepwise Debugging Most debuggers only provide stepwise debugging, as discussed previ-

ously in Section 4.4.1.

124

Weak omniscient
debugging
(without a trace)

Omniscient
debugging
(with a trace)

Multidimensional
omniscient
debugging

Multidimensional
exploration

Backward
exploration

Standard debugging

Deterministic,
without engine

restart

Forward
exploration

Figure 5.1: Feature comparison of the debugging approaches

Omniscient Debugging To explore previously visited states, omniscient debugging relies on

the construction of an execution trace to extend stepwise debugging as discussed previously in

Section 4.4.1.

Multidimensional Omniscient Debugging With the ability to go both forward and backward, a

developer can explore any state of a model’s execution. Yet, large traces are difficult to navigate

practically, and information stored within a state can be arbitrarily complex, compromising usabil-

ity (Objective 2). To cope with this issue, we investigate multidimensional omniscient debugging;

i.e., facilities to navigate among the values of the mutable fields of the model:

• jumpValue: jump to the first state in which a given mutable field has a given value.

• stepValue: given a mutable field, jump to the next value of this field.

• backValue: given a mutable field, jump to the previous value of this field.

• visualization of the value sequences: display an interactive representation of the reached

values of the mutable fields and show which values are the current ones.

125

Abstract Syntax

input
1..*
output
1..*

Net

Place
+name: string
+initialTokens: int

Transition
+name: string

transitions
*

places
*

imports

merges

Execution Metamodel

Place
+tokens: int Operational Semantics

(shortened)

run(Net)
fire(Transition)

Figure 5.2: Petri net xDSML

5.2.2 Sample xDSML

Before covering a sample scenario that illustrates the omniscient debugging features, the

following is a simple xDSML to be used during the scenario.

Figure 5.2 shows an example of a Petri net xDSML. At the top, its abstract syntax is de-

picted with three classes Net, Place and Transition. At the bottom-left is the execution meta-

model, that extends the class Place using package merge with a new mutable property tokens.

The initialization function (not shown) transforms each original object into an executable object

(e.g., a Place object gains a tokens field) as defined in the execution metamodel. The function

also initializes each tokens field with the value of initialTokens. At the bottom-right are the

signatures of the rules defined in the operational semantics. The rules are defined as follows: run

continuously looks for enabled transitions, and uses fire to transfer tokens from input to output

places of such transitions. Note that a Place object cannot be created during execution, because

the Place class was introduced in the abstract syntax.

126

(3) backInto (x2)

p1

p3

p2

p4

p5

t1

t2

t3

p1

p3

p2

p4

p5

t1

t2

t3

p1

p3

p2

p4

p5

t1

t2

t3

p1

p3

p2

p4

p5

t1

t2

t3

fire(t1) fire(t2) fire(t3)

run(net)

(2) stepOut

(5) stepOver

(1) stepInto (x2)

(4) backValue(p4.tokens)

A B C D

Figure 5.3: Example of Petri net execution trace annotated with the use of a selection of debugging
services

Figure 5.3 presents a trace from the execution of a Petri net model conforming to the Petri

net xDSML shown in Figure 5.2. The trace is composed of four states, on top of which the steps of

the execution are depicted. States are separated by three small steps that represent the applications

of the fire transformation rule. A big step goes from the first state to the last state to represent the

application of the run rule.

5.2.3 Example Debugging Scenario

Consider a complete execution and debugging scenario with a Petri net model conforming

to the xDSML shown in Figure 5.2. The initial state of the considered Petri net model is depicted

at the left of Figure 5.3 with the label A. First, we set a breakpoint to pause execution at state A.

Next, we execute stepInto, which does not change the current state, but enters into the execution

process of the run rule pausing immediately before executing the first fire rule. Then, we exe-

cute stepInto a second time, which applies the fire rule and brings us to state B. From there,

we use stepOut (2) to move out of the current big step (i.e., run), which brings us to state D. At

this point, the system has been completely executed, and the trace is fully constructed Thus, no ad-

ditional transformation rules will be applied, but we can still traverse the system using omniscient

traversals.

127

Similar to the beginning of the scenario, we execute backInto twice (3) to move into run

and revert the last fire to reach state C. Then, we use backValue (4) to go back to the previous

value reached by the tokens field of the p4 Place object. While p4 has one token in state C, its

previous amount was zero, which started in state A. Using this traversal we have moved directly

to the previous state of interest for the p4 Place object avoiding needing to manually traverse and

inspect the intervening steps. Hence, we reach state A again. Finally, we use stepOver (5) to

execute the entirety of run without considering each contained rule separately, and we reach state

D again. Note that in this case, stepOver (despite being a common stepwise execution feature)

does not execute any transformation rules, but simply uses information from the execution trace to

directly revert the executed model into the stored state D.

5.3 Efficient and Advanced Omniscient Debugging for xDSMLs

This section presents our approach that provides efficient and advanced omniscient debug-

ging for xDSMLs using a partially generic, multidimensional omniscient debugger supported by

generated domain-specific trace management facilities.

5.3.1 Overview of the Approach

Defining an xDSML implies the definition of a number of domain-specific facilities to edit

or analyze a model conforming to the language. In particular, one method to provide a visual ani-

mation of a model execution is to observe the model and react to changes. Because such a pattern

is common when defining tools for xDSMLs, our approach is designed to have a single instance

of the executed model loaded at any given time that can be modified throughout the execution and

the debugging session.

Figure 5.4 shows an overview of our approach. We assume the initialization function of

the xDSML was already applied to an input model, creating the executable model. The first step

128

Execution
Engine

Execution
Metamodel

Executable
Model

Operational
Semantics

Domain-
specific (DS)

Execution Trace

DS Trace
Metamodel
(generated)

DS Trace Manager
(generated)

Trace
Constructor

State
Manager

Generic Trace
Metamodel
Interface

xDSML

Generators

e

g

a

Generic Multidim.
Omniscient
Debugger

c

b

d

f

h

Depends on /
Uses

Conforms to

Produces

Modifies

Figure 5.4: Overview of the approach

of our approach relies on generators (a), which take the considered xDSML as input to produce

two domain-specific components: a trace metamodel (b) and a trace manager (c). The second

step is the execution and the debugging of the model. The execution engine (d) applies the opera-

tional semantics to change the model and uses the trace constructor (e) from the trace manager to

construct a domain-specific trace. The generic multidimensional omniscient debugger (f) provides

all the services described in Section 5.2.1 by controlling the execution engine and relying on the

state manager (g) to revert the model into previous states. Additionally, the debugger relies on the

generic trace metamodel interface (h) to manipulate the trace.

To illustrate a subset of the interactions between the components shown in Figure 5.4, Fig-

ure 5.5 shows a sequence diagram that sketches what happens when a small step must be computed

and stored in the trace. Duration bars depicted in gray represent changes made in the affected el-

129

:ExeEngine :ExeModel :TraceConstructor :DSTrace

read

update

notify constructor with step

apply rule

find next rule to apply

d e

Figure 5.5: Interactions when a small step is to be computed and added to the trace

ement. First, the engine (d) determines the next rule to apply then notifies the trace constructor

(e) that a small step will occur. As a result, the trace constructor reads the executed model, and

updates the domain-specific trace with new elements accordingly (e.g., add a new small step and,

if the model was altered, a new state). Finally, the execution engine applies the rule and modifies

the executed model accordingly.

We present all of these components in more detail in the remainder of this section.

5.3.2 Execution Engine

First and foremost, an omniscient debugger must provide precise control over the execution

of a model, such as the ability to pause during execution or traverse the trace in a controlled manner.

For this to be possible, the execution engine (d) must adhere to certain specifications. The engine

must be able to drive the execution of the model (i.e., initialization, start, stop), and to provide the

debugger some control over the execution. This includes the ability to pause the execution at a

130

specific state during execution, and the ability to resume the execution from a paused state. We

assume that the engine provides at least the following services:

• pauseWhen: suspend the execution in between two transformation rule applications as soon

as a given predicate is true.

• isPaused: return true if the engine is paused.

• resume: resume execution (i.e., cancel a pause).

As presented in Section 5.4.1, we developed an execution engine that encompasses the

aforementioned services.

5.3.3 Domain-Specific Trace Metamodel

In the prior work of Bouse et al. [92], we presented a generative approach that automati-

cally provides a rich domain-specific trace metamodel for an xDSML. Instead of relying on clones

of the executed model to construct a trace, the metamodel precisely captures its execution state

through an efficient object-oriented structure based on the mutable properties of the xDSML. In

addition, the structure provides rich navigation facilities to browse a trace according to the values

reached by the mutable fields of the model. To benefit from such efficient trace structures (Ob-

jective 1), we rely on this approach for the automatic generation (a in Figure 5.4) of the domain-

specific trace metamodel (b in Figure 5.4).

To support omniscient debugging, we extended this generative approach with the notion

of big step, in addition to small step. This included adding a BigStep class to the base classes

that are generated, the derivation of domain-specific big step classes from the xDSML operation

definitions, and extending the generation algorithm to create inheritance links from big step classes

to BigStep.

131

States

Abstract Syntax

1..*

1..*

Net

Place

1

0..*

*

Transition
*

Steps

originalObject
1

Trace

TokensValue
+tokens: int

TracedPlace

exeTrace
0..*

tracedPlaces
*

1..*
precState
1 smallStep

0..1

{ordered=true}

<<abstract>>

SmallStep

ExecutionState

states Fire

Run
<<abstract>>

BigStepstState
1

stBigSteps
0..*

enState
0..1

enBigSteps
0..*

parents

{ordered=true}

{ordered=true}

{ordered=true}
tokensSequence

tokensValues
0..*

{ordered
=true}
runSeq
0..*

{ordered =true}
fireSeq

0..*

runned
1

fired
1

Figure 5.6: Petri net rich domain-specific trace metamodel

Figure 5.6 presents an example of a rich domain-specific trace metamodel generated to

capture state information for Petri nets using our approach. In the trace metamodel, the state of the

model is captured in the ExecutionState class, which is composed of a tuple of TokensValue

objects, with each representing the value of a tokens field at a given point during execution.

Each TracedPlace object captures all the values of the mutable fields of a specific Place object

of the executed model. On the right, the steps are Run and Fire, which inherit BigStep and

SmallStep respectively.

132

5.3.4 Trace Constructor

To provide omniscient debugging, we must construct an execution trace during the execu-

tion of the model. We have defined the following set of operations to be provided by the trace

constructor (e in Figure 5.4):

• initialize: create the base elements of the trace.

• addState: add a new state in the trace if a mutable field of the model changed, or if instances

of classes introduced in the execution metamodel are created/deleted.

• addSmallStep: add a small step in the trace.

• bigStepStarted: notify that a big step has started.

• bigStepEnded: notify that a big step has ended.

As explained in Section 2.1.4, the execution of a model consists of the application of a

sequence of transformation rules. To capture an execution state that matches a model conform-

ing to the execution metamodel, the operation addState must be called just before or after the

transformation rule.

Since a big step is simply a sequence of small steps, we only need to capture states before

and after small steps. However, we also need to capture when steps occur, hence addSmallStep

must be called at each transformation rule that matches a small step, while bigStepStarted and

bigStepEnded must be called before and after a rule matching a big step, respectively. In sum-

mary, all the calls required to construct the trace are as follows:

133

Generic Trace Metamodel

Metamodeling Language

1
appliedRule

1

1

ExecutionState

Trace

ExecutionStep

TracedObject

startingState
1

startingSteps
*

endingState
0..1

endingSteps
*

tracedObjects
*

valueSequences
*

*

{ordered=true}

{ordered=true}

values
{ordered=true}

values
*

executionStates
{ordered=true}

states
{ordered=true}
0..*

0..1
/previousEnding

0..1
/next
0..1
/previous
0..1

/currentState

/currentState

/nextStarting
0..1

/previousStarting /subSteps
0..*

/nextEnding
currentStepForward
0..1

currentStepBackward
0..1

*

Object

Operation

PropertytracedProperty
1

originalObject
0..1

/parentStep
0..1

0..1

ValueSequence

/next
0..1

/previous
0..1

<<abstract>>

Value

Figure 5.7: Generic Trace Metamodel Interface

• Just before the first small step: initialization

• Just before a small step: addState, addSmallStep

• After the last small step: addState

• Just before a big step: bigStepStarted

• Just after a big step: bigStepEnded

5.3.5 Generic Trace Metamodel

Our approach relies on the generation of a domain-specific trace metamodel for the con-

sidered xDSML. Because the debugger is generic, an interface must also be defined to manipulate

traces in a generic way despite their various possible data structures. We defined this structural

interface as a generic trace metamodel (h in Figure 5.4) specifying all the information that should

be accessible within a domain-specific trace. Thus, it has a similar structure to generated domain-

specific trace metamodels, except it contains less classes and properties.

Figure 5.7 shows the generic trace metamodel interface. To summarize, we have the

same base classes (Trace and ExecutionState) as generated domain-specific trace metamod-

els (e.g., the Petri net trace metamodel shown in Figure 5.6), and classes to represent both steps

134

(ExecutionStep) and values (TracedObject, ValueSequence, Value). Primitive types that

extend the Value class (e.g., IntegerValue) are not shown due to space limitations. We use

references to elements of the execution metamodel, operational semantics, and executed model:

appliedRule to specify which rule was applied, originalObject to specify which object of

the original model is traced by a TracedObject, and tracedProperty to specify the prop-

erty traced by a ValueSequence. Also note that derived properties are defined to facilitate

the navigation among the trace, such as nextState. Finally, ExecutionStep objects are or-

dered either by starting time, or by ending time, hence the derived properties nextStarting

and previousStarting for the starting time, then nextEnding and previousEnding for the

ending time.

In order to go back and forth through the execution states and steps, a Trace has a

reference currentStepForward to the ExecutionStep object that represents the next for-

ward execution step, and a similar reference currentStepBackward for the next backward

step (e.g., to backOver the last step handled by the debugger). The current state is accessible

with currentState, which is derived from currentStepForward. Similarly, the property

currentValue of ValueSequence is indirectly derived from currentState.

To provide this interface, our solution relies on a generated one-way model transforma-

tion from the domain-specific trace metamodel to the generic trace metamodel. Thereby, we

have a generic read-access to the trace. Regarding write-accesses, we store the debugging state

(e.g., currentState) in a separate generic structure, hence avoiding the need to modify the

domain-specific trace.

135

5.3.6 State Manager

An omniscient debugger must be able to revisit a previous state by reverting the executed

model into the state stored in the execution trace. The operation enabling a debugger to return to

a past state is provided by the state manager (g in Figure 5.4), which we specified with a single

service, restoreModelToState, which restores the executed model into a given execution state.

The idea is similar to the well-studied memento design pattern [95], albeit at the model

level. The originator is the model being executed; the memento is an execution state of the trace;

and the caretaker is both the trace and the trace manager.

5.3.7 Domain-Specific Trace Manager

To implement both the trace constructor and the state manager and to generically expose as

much information as stated in the generic trace metamodel, our approach relies on the generation

of a domain-specific trace manager (c in Figure 5.4). The reason for generating this component is

efficiency (Objective 1), because trace manipulations can be tuned for both the considered xDSML

and the generated domain-specific trace metamodel (introduced in Section 5.3.3).

Consequently, the domain-specific trace manager and trace metamodel generation are cou-

pled. Because all generated operations manipulate a trace conforming to this metamodel, a set of

traceability links obtained from the generation of the domain-specific trace metamodel is provided

to the generator. From there, the main steps of the generation are as follows:

1. The systematic base structure of the generated trace metamodels is known from the domain-

specific trace metamodel generator. Thus, initialize can be generated;

2. The mutable fields of the execution metamodel and the corresponding classes in the trace

metamodel are known. Thus, addState can be generated. An implementation of this ser-

136

vice includes looking for changes among mutable fields then creating a state and new values

if any change is detected. Likewise, revertModelToState can be generated, which relies

on links from the trace to the model to restore values and re-create objects.

3. The operational semantics (defined in Section 2.1.4) and the corresponding step classes in the

trace metamodel are known. Thus, step creation can be generated. While addSmallStep

is straightforward, bigStepStarted requires stacking big steps that are in progress, and to

unstack them in bigStepEnded.

4. Finally, the systematic shape of generated trace metamodels is known. Thus, a generic trace

metamodel interface can be provided, as defined in Section 5.3.5.

5.3.8 Generic Multidimensional Omniscient Debugger

The last component to define is the generic multidimensional omniscient debugger (f in

Figure 5.4) that relies on the execution engine to control the current execution, on the state manager

to restore previous states, and on the generic trace metamodel interface to manipulate traces.

Figures 5.8, 5.9, and 5.10 provides a precise definition of each service required for multi-

dimensional omniscient debugging using the services of the three aforementioned required com-

ponents. These components are represented by three singletons: engine represents the execution

engine, trace represents the root element of a model conforming to the generic trace metamodel,

and manager represents the state manager. In the following paragraphs, we explain the definitions

of all the services provided by the debugger defined in Figures 5.8, 5.9, and 5.10.

5.3.8.1 Jump services

Figure 5.8 starts with the definition of the most important omniscient debugging service,

jump. Jumping consists of going back to a chosen state in the execution trace, and is accomplished

137

Figure 5.8: Definition of the Omniscient Debugging Services

Figure 5.9: Definition of the Standard Debugging Services

138

Figure 5.10: Definition of the Multidimensional Omniscient Debugging Services

via the jumpToState service. First, it uses the restoreModelToState service from the state

manager to modify the model, then updates the debugger state represented by currentForwardStep

and currentBackwardStep. Additionally, we need to be able to jump back either right before or

after an execution step, which is provided by the services jumpBeforeStep and jumpAfterStep.

5.3.8.2 Other omniscient debugging services

Next, we define the remaining omniscient debugging services. backInto, backOver and

backOut directly rely on jumps to reach the correct state. The last service, playBackwards, is

a loop backwards until either the initial state is reached or the engine is paused.

5.3.8.3 Standard debugging services

Figure 5.9 defines the standard debugging services; i.e., breakpoints and forward stepping.

toggleBreakpoint provides a generic way to define a breakpoint through a predicate, which

can be defined on the model state (e.g., watching for a specific instruction to be reached) or on

the trace (e.g., verifying a temporal property or watching for a specific step to be applied). It is

defined using the pauseWhen service that must be provided by the execution engine. The next

services are the standard step operations: stepInto, stepOver, and stepOut. There are two

cases to consider: (1) When the current step is at the end of the trace, we rely on pauseWhen and

resume to apply the operational semantics up until the correct situation is reached (e.g., waiting

139

Figure 5.11: GEMOC Studio with the multidimensional omniscient debugger prototype running
an fUML activity.

for the current big step to be finished with stepOver). (2) When the execution state is at a past

state (e.g., after a jump backwards), jump services are called (even though these step services are

not specific to omniscient debugging) while the engine remains paused.

5.3.8.4 Multidimensional omniscient debugging services

Figure 5.10 define the final set of services providing multidimensional omniscient debug-

ging facilities. The goal of these services is to provide the capacity to debug a model by following

the sequences of values of specific mutable fields, thereby improving the usability of omniscient

debugging for xDSMLs (Objective 2). Implementing these services is simplified by the structure

of the trace metamodel providing access to each of the value sequences. Thus, jumpToValue is

140

a use of jumpToState; and backValue directly uses jumpToValue; while stepValue is very

similar to stepOver.

5.4 Tooling for Omniscient Debugging

This section presents the language and modeling workbench called GEMOC Studio and

explains how we applied a subset of our approach (i.e., the generative part and a debugger with

basic operations) to offer a proof-of-concept prototype multidimensional omniscient debugger.

5.4.1 The GEMOC Studio

The GEMOC Studio is an Eclipse package atop the Eclipse Modeling Framework (EMF)

including both a language workbench to design and implement tool-supported xDSMLs, as well as

a modeling workbench where the xDSMLs are automatically deployed to allow system designers to

edit, execute, simulate, and animate their models. The modeling workbench includes an advanced

generic execution engine that can be used to execute any model conforming to an xDSML defined

within the language workbench. An API is available to extend the engine with addons through the

use of an observer pattern [95]: the engine sends notifications to all its addons to inform them about

the execution progress (e.g., a step is starting/ending). Lastly, it supports pausing and resuming the

execution between steps.

Our prototype focused on the operational semantics implementation language Kermeta [51]

that relies on aspects to modularly implement the operational semantics and weave them into the

provided metamodel.

5.4.2 Omniscient Debugging in the GEMOC Studio

The prototype demonstrating our approach to support multidimensional omniscient debug-

ging is implemented in GEMOC Studio. The prototype requires the creation and integration of the

components described in the following subsections.

141

5.4.2.1 Trace addon generator

The generative part of our approach takes the form of a trace addon generator, that receives

as input an xDSML composed of an Ecore abstract syntax and Kermeta aspects. Note that Ker-

meta aspects function both as an execution metamodel and operational semantics, because aspect

weaving allows the definition of new mutable properties in classes and operations used as trans-

formation rules. The generator produces a GEMOC engine addon with a domain-specific trace

metamodel and a domain-specific trace manager. Using the addon mechanism, the manager reacts

to the execution steps of the engine to construct the trace accordingly. It also provides an interface

to revert the state of the model (i.e., a state manager), and an interface to query the trace (i.e., a

generic trace metamodel interface).

5.4.2.2 Generic debugger logic

The generic part of our approach includes multidimensional omniscient debugging services

within the GEMOC studio. Our prototype provides toggleBreakpoint with only one kind of

predicate (i.e., a model element is targeted by a step), stepInto, jumpToState, jumpToValue,

and visualization (see next paragraph).

5.4.2.3 Graphical interface

The graphical user interface of the debugger includes a prototypical graphical widget that

shows both the execution trace and the value sequences of all mutable fields. Figure 5.11 shows

the GEMOC Studio with a model animator on the left and the omniscient debugging widget on

the right. Double clicking on a model element triggers a toggleBreakpoint that pauses the

execution when this element is targeted by a step. In the right widget showing the trace, the first row

of numbered squares represents all the execution states. Each subsequent row represents the value

sequence of a specific mutable field. The yellow rectangle indicates the current execution state and

142

orange circles indicate current values of the mutable fields. Double-clicking on a state (numbered

squares) triggers a jumpToState to the corresponding execution state. Similarly, double-clicking

on one of the values (circles) triggers a jumpToValue to the corresponding value. Because the

GEMOC Studio provides animation of the executed model, the left view showing the model is

updated at each action.

5.5 Evaluating Efficiency and Scalability of a Generative Approach to Omniscient Debugging

for xDSMLs

In this section, we first present the design and results of an empirical study providing an ini-

tial evaluation of the efficiency of our approach. Then, we discuss the benefits of multidimensional

omniscient debugging.

5.5.1 Research Questions and Experimental Setting

To evaluate the efficiency of our approach (Objective 1), we considered the following re-

search questions:

RQ 1: Is our approach more efficient in memory as compared to a clone-based omniscient debug-

ger?

RQ 2: Is our approach more efficient in time for omniscient debugging services as compared to a

weak omniscient debugger and to a clone-based omniscient debugger?

The evaluation of efficiency presented in this section is the comparison of three omniscient

debuggers as presented in Section 5.2.1 and in Figure 5.1. First, WeakDebugger is a weak generic

omniscient debugger. Such a debugger is expected to be efficient in memory, because there is

no trace to store; and inefficient in time, because the execution engine must be restarted at each

jump backward. Second, CloneBasedDebugger is a clone-based generic omniscient debugger that

143

constructs a generic trace using deep cloning (i.e., the complete model is copied at each step) and

implements jumps using the model differencing library EMF Compare2. Because this debugger

relies on an execution trace, it is expected to be less efficient in memory and more efficient in time

than WeakDebugger. Finally, MultiDimDebugger is the prototype multidimensional omniscient

debugger applying our approach. All three debuggers were implemented in the GEMOC Studio.

We applied our approach to a subset of a real-world xDSML, namely fUML [98]. The

considered subset contains the Activity Diagram portion of the language. In summary, a model

conforming to this xDSML is made of an activity, which consists of control nodes and action

nodes. Nodes are linked by control flow links, starting with an initial node and ending with a final

node. Similarly to a Petri Net, tokens are passed along nodes to drive the execution. In addition,

variables can be defined in activities and modified with actions. The xDSML was implemented

with GEMOC Studio using Ecore for the abstract syntax and Kermeta for both the execution meta-

model and the operational semantics.

As in our previous work [92], we used models3 taken from the case study of Maoz et

al. [99]. This choice was made to help establish a benchmark, facilitate comparison with future

work, and because the models were drawn from industrial sources. The dataset we obtained con-

tains 40 models whose sizes range from 36 to 51 objects. We plan to integrate larger models to

the dataset for a future study, but are confident in the current ones to provide initial meaningful

comparison.

144

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

TI
M

E
(M

S)

MultiDimDebugger CloneBasedDebugger WeakDebugger

Figure 5.12: Time required to perform a jumpToState

5.5.2 Data Collection and Analysis

To compare efficiency in memory, instead of observing the memory usage of the complete

environment (e.g., execution engine and loaded model), we measured the memory used only by

the debugger. More precisely, for each of the considered models, we collected the amount of

memory required to store the execution trace at the end of its execution by making precise memory

measurements using heap dumps and Eclipse MAT4.

To compare efficiency in time, we focused on the main operation used by all omniscient

debugging services: jumpToState. More precisely, for each of the considered models, we mea-

sured the average amount of time required to perform a jumpToState by jumping to each pre-

viously visited state once and in a random order. Measures were done using Java’s operation

System.nanoTime.

Data was collected in a reproducible way through a programmatic use of GEMOC Studio’s

engine (see the companion webpage). Each result is an average value computed from five identical

measurements made using an Intel i7-3720QM CPU with 8GB of RAM.

5.5.3 Results and Discussion

Here, we provide a summary and discussion of the results we obtained from our evaluation.

2 https://www.eclipse.org/emf/compare/
3 Models available at http://www.se-rwth.de/materials/semdiff/
4 https://www.eclipse.org/mat/

145

https://www.eclipse.org/emf/compare/
http://www.se-rwth.de/materials/semdiff/
https://www.eclipse.org/mat/

5.5.3.1 RQ 1: Efficiency in memory

Figure 5.13 shows the results obtained regarding the memory required to store an execution

trace. The x-axis shows the number of elements in the trace, while the y-axis shows the amount of

memory used in kB. First, WeakDebugger does not use memory, because it does not store a trace.

Second, we observe that our approach is always more efficient in terms of memory usage than the

CloneBasedDebugger with 3.0 times improvement on average. We hypothesize this is due to the

domain-specific traces obtained with our approach that are designed to only contain the evolution

of the mutable fields of the model with minimal redundancy, whereas cloning implies significant

redundancy. In addition, we note that our approach has a gentler slope than CloneBasedDebugger,

which suggests better scalability with large traces. To summarize and answer RQ 1, we observe

that our approach is more efficient in memory than a clone-based approach.

5.5.3.2 RQ 2: Efficiency in time

Figure 5.12 presents the results obtained regarding the average amount of time required to

perform a jumpToState. The x-axis shows the identifier of the executed model, while the y-axis

shows the amount of time in milliseconds. First, we observe that trace-based debuggers are always

better than WeakDebugger (right), in particular MultiDimDebugger (left) being 54.1 times faster

than WeakDebugger. This is explained by the time required to reset the execution engine. Second,

we observe that MultiDimDebugger is more efficient than CloneBasedDebugger (center) with 5.03

times improvement on average. We hypothesize this is due to the generated trace manager, which

contains code specific and tuned to both the xDSML and the generated domain-specific trace meta-

model. To summarize and answer RQ 2, we observe our approach is more efficient in time than

the traceless approach and clone-based approach.

146

0

200

400

600

800

55 60 65 70 75 80 85 90

M
EM

. U
SA

G
E

(K
B

)

NUM STATES TRAVERSED
MultiDimDebugger CloneBasedDebugger WeakDebugger

Figure 5.13: Memory used by the execution trace

5.5.3.3 Benefits of Multidimensional Facilities

To ensure the usability of omniscient debugging (Objective 2), our approach provides mul-

tidimensional omniscient debugging; i.e., facilities to navigate among values of mutable fields of

an executed model. In essence, we believe that providing explicit visualization of the dimensions

of a trace (see Figure 5.11) and means to traverse such trace according to specific dimensions

(e.g., stepValue), has a significant positive impact on usability (Objective 2). To completely

validate Objective 2 requires user experiments to empirically assess the expected benefits of mul-

tidimensional facilities. We defer this task to future work.

5.6 Related Work

This section overviews relevant existing work on debugging and trace visualization in MDE

and relates these works to the contributions presented in this chapter.

5.6.1 Omniscient Debugging in MDE

Maoz and Harel [100] and Hegedüs et al. [101] present trace exploration tools that con-

tain similar facilities to an omniscient debugger. However, these techniques are defined for post-

147

mortem analysis rather than use during live sessions, whereas our technique supports live debug-

ging sessions. Additionally, Maoz and Harel do not support domain-specific execution traces for

xDSMLs.

Chapter 4 explored applying omniscient debugging to model transformations within the

context of AToMPM. The focus of that debugger was the two basic transformation languages

provided by AToMPM. Also, Van Mierlo recently presented a proposal toward the debugging of

executable models defining simulation semantics [67]. A particular focus of the work addressed

handling simulated real-time. The work presented in this chapter was concerned with xDSMLs.

5.6.2 Trace Visualization and Debugging in MDE

Existing work on trace visualization, such as MetaViz by Aboussoror et al. [102], or the

work of Maoz and Harel [100], would be strongly complimentary with our approach. Indeed,

while we focused on the back-end concern of omniscient debugging, trace visualization is required

for the front-end.

More recently, the work of Chis et al. on a Moldable Debugger [103] can be compared to

the work presented in this chapter. The technique described in this chapter provides generic de-

bugging operations supported by domain-specific trace management facilities, but Chis et al. pro-

vide a framework to define domain-specific debugging operations and user interfaces. Also, the

approach described here is completely automatic given a well-formed xDSML, whereas manual

work is required to extend the Moldable Debugger to support an xDSML. Yet, both approaches

tackle different and independent challenges, and provide complementary results.

5.6.3 Domain-Specific Execution Traces in MDE

Meyers et al. introduced the ProMoBox framework [104], which generates a set of meta-

models from an annotated xDSML, including a domain-specific trace metamodel. Among others,

148

a difference with our work is that they consider an annotated abstract syntax whose properties are

annotated either as runtime or event, while we consider the abstract syntax and the execution meta-

model distinct to improve separation of concerns. In addition, they do not provide alternative ways

to explore a trace, while we provide various navigation paths for multidimensional debugging.

Similarly, Gogolla et al. [105] generate filmstrip models from UML class diagrams. Such

filmstrip models match what we call domain-specific trace metamodels, and provide some navi-

gation paths among object states. However, film strip models do not address redundancy. Object

states are always recreated at each model change, and the states store values of both mutable and

immutable fields.

5.7 Conclusion

Omniscient debugging is a promising dynamic V&V approach for xDSMLS that enables

free traversal of the execution of a system. While most GPLs already have efficient debuggers,

bringing omnicient debugging to any xDSML is a tedious and error-prone task. A solution is to

define a purely generic debugger, but this requires managing both efficiency and usability issues

that emerge. The approach we presented relies on generated domain-specific trace management

facilities for improved efficiency and provides multidimensional omniscient debugging facilities

for improved usability. The debugger relies on an execution engine to control the execution and a

generated domain-specific trace manager to provide omniscient services. The states reached dur-

ing an execution are stored in a trace conforming to a generated domain-specific trace metamodel.

Outcomes of this project included a prototype within GEMOC Studio, a language and modeling

workbench, and an evaluation performed using the fUML language. An improvement was ob-

served regarding both the memory consumption and the time to perform a jump, when compared

to two generic omniscient debugger variants.

149

CHAPTER 6

HOW DEVELOPERS DEBUG

Maintenance tasks make up a significant portion of the effort and cost of software projects. To

address this concern, techniques and tools have been developed to provide support during mainte-

nance and comprehension tasks. Among such tools, several have emerged that enable developers

to query the system in both static and dynamic contexts. This chapter presents the design and re-

sults of an exploratory study concerning the use of informal queries during a debugging task. The

study was designed to identify how developers utilize queries during a maintenance task in OO

programming. The empirical human-based study investigated how developers acquire knowledge

about a software system, specifically with regards to forming and resolving queries. The results of

the study provide insight and new understanding about how these queries impact both task com-

pletion and source navigation during a debugging session. The insights gained from this study are

intended to inform future research efforts focused on developing improved query-based debuggers

and general debugging tool support by identifying the importance of queries and categorizing the

types of queries developers seek to answer during debugging tasks.

6.1 Introduction

Maintenance tasks are a significant software development concern with estimates of around

20% of this effort focused on defect correction [106]. To address this concern, techniques and tools

have been developed to provide support during maintenance and comprehension tasks. Among

150

such tools, several have emerged that enable developers to query the system in both static and

dynamic contexts [12, 14, 17, 56, 59, 61, 72].

QBD provides developers with query languages that facilitate asking questions about a

program (typically either structure or runtime behavior) [14]. QBD tools must provide some range

of available query types. This leads to the question of what query types are most important to

support? Previous researchers have approached this question. Sillito et al. present a set of 44

generic questions drawn from an exploratory study [107]. The 44 questions are categorized based

on when the question was posed during the mental model building process. LaToza et al. presented

a detailed analysis of a single type of question that they termed reachability questions [108]. A

reachability question was defined as a question searching across all possible paths of execution.

Hibberd, Lawley, and Raymond [53] introduced three categories of queries that developers may

ask during the debugging process for model transformations: queries concerned with logical bugs,

queries concerned with well-formedness bugs, and queries concerned with analyzing the system to

identify bugs. Collectively, these works have categorized query types [53, 107] and discussed in

depth a single query type [108].

The work presented in this chapter focuses on categoring query types according to the type

of information the query is seeking. The novel query categorization presented in this chapter is

complimentary to existing work in further examining and categorizing the types of queries devel-

opers utilize during a debugging task. Additionally, because the types are defined according to the

kind of information the observed queries are seeking, they can be mapped to existing and future

tool support and techniques to identify any gaps or to evaluate the impact of the tooling. In addition

to identifying and categorizing query types, the impact of queries and the use of existing tools with

a standard IDE to resolve queries was investigated.

151

A grounded theory approach was used to identify the types of queries formed by developers.

Grounded theory [109] is a research methodology that relies on deriving results from analyzing and

coding observed results. The results are coded, and as more results are compiled, categorizations

can be derived. These categorizations are based on empirical data and can serve to found new

theories or support existing theories.

The study presented in this chapter was performed in the context of OO development us-

ing the Java language within the Eclipse IDE. Participants were asked to debug two defects in the

APACHE ANT system. Despite the larger scope of this dissertation work focusing on an MDE

context, this study was performed in a GPL context. This decision was made based on several

factors. First, the more common nature of GPL development provides for a larger participant pool

that has a more consistent educational background in the specific development paradigm of GPLs

when compared to MDE. This larger pool of participants eases recruitment, and the more consis-

tent background of participants ensures more reliable results. Second, the available development

environments for GPLs are overall more mature than those available in MDE with researchers

commonly commenting on tools as a factor in the lack of MDE adoption in industry [110]. How-

ever, projects such as Epsilon1, EMF2, AToMPM3, the GEMOC Studio4, and GME5 are all making

strides toward a more mature and industry ready stable of development environments for MDE. Fi-

nally, an initial study in the more common development paradigm of GPLs serves as a foundation

on which to expand to an MDE context (as discussed in Section 7.4). By first investigating within a

GPL context and then replicating to an MDE context, the results of the later study may be linked to

1 http://projects.eclipse.org/projects/modeling.epsilon
2 https://eclipse.org/modeling/emf/
3 http://www-ens.iro.umontreal.ca/~syriani/atompm/atompm.htm
4 http://gemoc.org/studio/
5 https://webgme.org/

152

http://projects.eclipse.org/projects/modeling.epsilon
https://eclipse.org/modeling/emf/
http://www-ens.iro.umontreal.ca/~syriani/atompm/atompm.htm
http://gemoc.org/studio/
https://webgme.org/

other related work in a GPL context through the more direct comparison to the study presented in

this chapter. Thus, an initial study in the context of GPL development improves quality of analysis

possible and the contribution of a later study in the context of MDE.

The following research questions guided the design of the study.

RQ 1: Do developers form queries during debugging tasks?

RQ 2: What types of queries are formed by developers during debugging tasks?

RQ 3: What leads developers to generate new queries and how do they relate to previous queries?

RQ 4: Which (if any) observed aspects of queries correlate with successful debugging task com-

pletion?

To address these research questions, an exploratory empirical study investigating queries

formed by developers without formal query-based debugging support was performed with devel-

opers using Eclipse to debug several defects in an industrial quality system, ANT. The remainder

of the chapter is structured as follows. Section 6.2 overviews QBD and discusses previous studies

exploring query types and the processes used by developers. Section 6.3 details the study de-

sign. Then, Section 6.4 overviews the results of the empirical study and discusses implications and

outcomes of the results. Finally, Section 6.5 provides concluding remarks.

6.2 Background and Related Work

QBD implementations provide query languages that enable developers to ask questions

about a program. The developer-provided queries analyze the program for portions of the code

that are relevant to the query [14]. The query-based approach provides a semi-automated solution

for bug localization. Each query-based debugger provides a formal language that developers use

153

to formulate queries. These languages have varying syntaxes ranging from machine-like to natural

language.

6.2.1 QBD Systems

One noteworthy query-based debugger is Whyline [12]. Whyline focuses on providing

a guided debugging session by offering suggested queries to the user. The queries presented by

Whyline focus on “why did” and “why didn’t” questions such as, “Why did property x of object

y have this value?” and “Why did property x of object y not get set to this value?” The query

language used by Whyline focuses on presenting questions in a natural language, but does not

enable the user to provide custom queries.

Other query-based debuggers offer more machine-like languages. Lencevicius presented

query-based debuggers for Java and Self that utilize the expressions of the specific language for the

query language [14]. Potanin et al. introduced FQL (Fox Query Language), which provides a set

of predefined functions that allow the developer to filter and summarize the information contained

in the object graph, as well as control functions that allow actions such as loading and saving

object graphs and query results [59]. Coca enables developers to query events during execution

using a query language based on Prolog [56]. PQL (Program Query Language) enables developers

to produce queries by specifying minimal code snippets using the target language [61]. Hobatr

and Malloy discuss using OCL queries to debug C++ systems [72]. Schoenboeck et al. also

utilize OCL queries in their debugger, TROPIC, which enables debugging QVT systems that are

converted to a variant of Petri nets that the authors refer to as Translation Nets [17].

Each of these proposed techniques derive their query language from a programming lan-

guage. However, these works focus on providing support to developers before exploring the type

and focus of queries used by developers. The study presented on this chapter provides insights

154

regarding the queries formed by developers during debugging tasks including what types of infor-

mation developers seek, why they form queries, and the dominant types of information developers

seek.

6.2.2 Query Types

As research has emerged exploring query-based debugging techniques, an important com-

ponent to the discussion of query-based debugging has investigated the type of queries that devel-

opers use during the debugging process.

Sillito et al. present a set of 44 generic questions drawn from an exploratory study [107].

The 44 questions are categorized based on when the question was posed during the mental model

building process. LaToza et al. presented a detailed analysis of a single type of question that they

termed reachability questions [108]. A reachability question was defined as a question searching

across all possible paths of execution.

Hibberd, Lawley, and Raymond [53] introduced three categories of questions that develop-

ers may ask during the debugging process for model transformations. The first two categories focus

on understanding behavior (typically as it relates to producing the observed output), and the third

category focuses on gathering information not directly related to the behavioral concerns covered

by the previous categories. These categories were identified with a specific focus on model trans-

formation concerns. Furthermore, the categories were not identified from observed query usage,

but rather from analyzing the context of MTs and MDE. As such, the work presented in this chap-

ter is not directly related to these queries, but a separate empirical study exploring the formation

and use of queries would be warranted to explore fully categorizing queries in the context of an

MT system. However, it is worth noting that the query types covered focus primarily on behavior

of the system (two of three categories), and the final category covers a very broad spectrum of

155

questions. The results presented in this chapter will be built up from the set of observed queries.

Thus, the resulting query types will each cover specific focuses, and the count of observed queries

will be presented for each type. The count of queries for each type provides insight into the focus

of developers (e.g., do developers focus on queries related to system behavior?).

6.2.3 Exploring the Debugging Process

Several existing studies have explored developers’ behavior during maintenance tasks [111,

112]. However, these studies have focused on how developers navigate code during a maintenance

task. Ko et al. had developers debug a Java system using Eclipse, and the developers were ob-

served during the tasks. They were focused on studying how developers seek information during

debugging tasks [111]. Lawrance et al. performed a similar study, which compared the process

used by subjects during the debugging task with a conceptual model known as Information For-

aging [112]. The information foraging model would posit that a developer (referred to as the

‘predator’) follow a series of cues (referred to as ‘scents’) in search of the defect (referred to as

‘prey’). The model is inspired by the process used by predators to hunt prey in the natural world.

Unlike the study detailed in this chapter, the studies by Ko et al. and Lawrance et al. investigated

how developers navigate code without considering queries. However, the design of the study pre-

sented in this chapter is modeled after the design used in both of these previous studies with the

focus shifted to exploring how developers form and use queries. The work presented in this chapter

identifies the queries developers form and categorizes them according to the type of information

the developer is seeking. Additionally, the factors that lead a developer to form a query and how

the query is resolved are collected. This information provides an improved understanding of the

process used by developers as well as key insights into how available tool support can address the

needs of developers during debugging tasks.

156

6.3 Exploratory Study of Query Formation, Use, and Impact

This section briefly introduces the design of the study, overviews the demographics of the

participants, describes the data collection and analysis processes, and discusses the potential threats

to validity for the study.

6.3.1 Study Procedure and Setting

Subjects were asked to assume the role of a new developer for Apache Ant and work to

resolve two distinct bugs (IDs 38175 and 38082). The goal was to identify all relevant portions

of the source code and perform any necessary modifications to the system. The two bug reports

provided to the subjects were retrieved from the Apache Bugzilla repository6.

Subjects were given instructions for completing the debugging tasks which included bug

reports and discussion of the available resources to be used during the tasks. The subjects were

provided with Eclipse v4.2 and a workspace including the source code for Apache ANT and two

runtime configurations designed to test the bugs. Apache Ant (v1.6.5, rev 367135) was selected

as the subject system based on size (tens of thousands of lines of code) and quality of the system

(i.e., the system adheres to common practices regarding Java coding style and structure, and the

system is well-tested). Additionally, subjects were provided with the ANT documentation and Java

SE7 javadocs.

A screen capture application was run during the experiment. Subjects were required to

use the screen capture software monitoring their interactions with the system and to capture their

vocalizations as part of the think-aloud method. Subjects were provided with instruction in the

think-aloud method [113] that was required during the study. The think-aloud method requires

subjects to explain verbally their internal processes that are not otherwise observable. Thus, de-
6 https://issues.apache.org/bugzilla/

157

velopers would provide continuous discussion of their actions and why they were taking these

actions. Through analyzing these vocalizations, we were able to much more accurately identify

the queries being formed, if and how the query was resolved, and why the query was formed. Upon

completing the task or reaching one hour of elapsed time, the subjects were asked to complete a

post-survey for each task to rank perceived difficulty, frustration, effort, as well as briefly describe

the process used to complete or attempt the task. Additionally, participants were asked to complete

a brief demographic survey collecting their experience with the language and environment used

during the study.

6.3.2 Bug Reports

This section provides the two bug reports, as presented to participants, including informa-

tion about how to reproduce the bugs.

6.3.2.1 Bug 1: The failonerror=“no” Option Does not Work for Locked Files

When we try to perform a recursive copy in a directory that contains a locked file, the copy

fails before the end of the whole copy, even if I have the attribute failonerror set to “no.”

How to reproduce Open Mozilla Thunderbird, then in Eclipse, run using the “bug1” configu-

ration. The “bug1” configuration will invoke Ant with testBuild/bug1/build.xml. If Mozilla Thun-

derbird is open, there is a locked file in the profile directory, parent.lock. The locked file will fail to

copy. As a result of the failed copy, you will receive a warning message stating parent.lock could

not be copied. This single failure should result in the source directory having exactly one more

file than the destination directory. If you right click on a directory in windows explorer and select

properties, you will be able to view the number of files in the directory. The defect will cause the

158

number of files in the source directory to exceed the number of files in the destination directory by

more than one.

How to verify If the process is working correctly, the destination directory should have exactly

one less file than the source directory.

6.3.2.2 Bug 2: SCP Task Password with Special Characters

The SCP task does not handle passwords with special characters such as “@”.

How to reproduce In Eclipse, run using the “bug2” configuration. The “bug2” configuration

will invoke Ant with the build.xml in the testBuild/bug2/ directory. You should receive output

similar to that presented in Figure 6.1.

Figure 6.1: Sample Defect Output for Bug 2

How to verify When the bug has been fixed, the SCP task will connect to the server and transfer

the files, and you should receive output similar to that presented in Figure 6.2

6.3.3 Demographics

The study included 16 participants including both graduate students and senior level un-

dergraduate students. Subjects had an average of 4.25 years experience working in Java including

an average of 8.5 projects. Subjects also had an average of 4 years experience working in Eclipse

159

Figure 6.2: Sample Correct Output for Bug 2

including an average of 6.75 projects. A few subjects had prior industry experience, but subjects

primarily reported on academic experience. The subjects had all taken an SE course, and some

participants were enrolled in a Verification and Validation course. Furthermore, these participants

did not have prior experience with the ANT project used during the study as would be expected of

a new developer in an organization. Thus, these subjects represent a typical range of experience

expected of entry level developers.

6.3.4 Data Collection

The screen captures were reviewed and results were collected into a data collection form

that collected a variety of aspects related to the query occurence (as illustrated in Figure 6.3). In-

stances of queries were recorded according to the data collection form. Queries could either be

directly expressed or implied. An implied query was identified through developer actions (e.g., us-

ing a print statement to determine a variable’s state). The implied queries represent queries that

were explicitly stated, but clearly present the developer seeking some information in pursuit of

160

Figure 6.3: Data Collection Form

completing the debugging task. To avoid misinterpreting participants or failing to identify queries,

the recorded sessions were independently reviewed by at least two separate researchers during data

collection. Each video was reviewed carefully and any queries noted by the reviewer were collected

using a data collection form (see Figure 6.3). Thus, each reviewer formed an indepently identified

set of queries for each subject. The independently collected query sets were then compared and

assessed as part of a first round review to identify the most accurate and complete set of queries.

After, the first round review the resulting query set was carefully reviewed in a second round re-

view. The second round review was used to identify query types, query generation factors, and to

clarify and formally code previously noted query relationships. The queries and related informa-

161

tion collected through the second round review were then used to address the research questions

driving the study. This process resulted in seven hundred ten identified queries across the sixteen

participants.

Results of the post and demographic surveys were collected through a Google form into a

spreadsheet that enabled basic statistical analysis. The results of the post survey failed to reveal

any additional insight beyond the data collected from the screen capture video recordings.

6.3.5 Data Analysis

The process used to address each research question is briefly summarized below, and the

full discussion of the results and implications are provided in Section 6.4.

6.3.5.1 Do developers form queries during debugging tasks? (RQ 1)

The primary thrust of RQ 1 is addressed through confirming that each developer formed

queries. However, to fully address the intent of the question, basic descriptive statistics are in-

cluded. These descriptive statistics explore the number of queries formed by participants (e.g., mean,

median, min, and max) and the rate at which developers form queries over the course of the de-

bugging task.

6.3.5.2 What types of queries are formed by developers during debugging tasks? (RQ 2)

To address this research question, the full set of 710 queries were reviewed by two re-

searchers during the secound round review and each individual query was categorized according

to the type of information the developer was seeking. A grounded theory approach revealed a set

of 28 individual query types being identified through reviewing the observed queries. The full

hierarchy of query types will be discussed in Section 6.4.2.

162

6.3.5.3 What leads developers to generate new queries and how do they relate to previous queries?
(RQ 3)

To address this question, the full set of 710 queries were reviewed by two researchers

during the secound round review and each individual query was annotated with the general cause

for forming the query and the relationship to any existing queries. A grounded theory approach

revealed a set of generic causes and relations describing why developers formed the observed

queries. The full discussion of the query generation process is provided in Section 6.4.3.

6.3.5.4 Which (if any) observed aspects of queries correlate with successful debugging task com-
pletion? (RQ 4)

The final research question focused on identifying aspects that were indicative of successful

debugging task completion. To identify these aspects, a set of interesting aspects were identified by

reviewing the full set of collected data (after the second round review). Then, the developers were

separated into two groups, 1) those successfully completing the task, and 2) those that failed to

complete the task. These groups were then compared based upon the relevant details as appropriate

to each aspect to identify any statistically significant relationships. A sample aspect considered as

part of RQ 4 is listed below along with a sample null hypothesis (H0) and alternative hypothesis

(HA):

Query completion rate: the percent of queries resolved by a participant for a given task.

H0: Participants that successfully completed task 1 have a higher query completion rate

than those that failed to complete task 1.

HA: Participants that successfully completed task 1 have either the same or a lower query

completion rate when compared to those that failed to complete task 1.

The remaining aspects considered during data analysis are as follows:

163

• Total Queries Observed: the total number of queries observed for each participant.

• Fundamental Query Type Completion Rate: the percentage of queries of a given funda-

mental query type resolved by a participant for a given task (e.g., the percentage of Behavior

queries resolved by participant 5).

• Use of Tooling: the percentage of queries resolved compeltely or in part through the use of

available tool support in the development environment.

• Fundamental Query Type Prevalence: the percentage of overall queries formed by a

given participant that are a given fundamental query type (e.g., percentage of overall queries

formed by participant 2 that were Behavior queries).

The full set of aspects considered, the set of aspects found to be indicative of successful

task completion, and the implications of these results are discussed in Section 6.4.4.

6.3.6 Threats to Validity

A vital concern is the implied queries (i.e., queries not directly stated by the developer, but

evident through their actions). Implied queries are a strength of this study. The implied queries

represent queries that might be expressed by developers given the proper query language or tools.

To avoid misinterpreting participants, the recorded sessions were independently reviewed by at

least two individuals during initial data collection and then reviewed again during the first round

review by two reviewers collectively before inclusion in the final set of queries. As such, we

are confident that every query included represents an occurence of the participant seeking some

information during the observed debugging tasks.

The experimental environment imposed a limited set of conditions that may not be present

in a typical development environment. In particular, all participants were required to both record

164

their actions and speak throughout the debugging process. Developers may have acted differently

due to this variation. However, the experimental environment is necessary to capture all relevant

data. The recording and vocalizations were required for data collection, but may have influenced

participant behavior.

These results may not be representative of the overall population. The results provide an

initial exploratory evaluation of the use and impact of informal queries during a debugging task.

Future replications of the study, both exact and variant, should be undertaken to provide more

significance to the results reported here.

These results may not be typical for developers using languages other than Java. Only 2%

of queries were coupled to the specific syntax or semantics of Java, and these queries typically

concerned understanding the functionality of a standard library method which is a concern gener-

alizable to many other languages. Therefore, the results reported here are expected to be typical of

other OO languages. However, nearly one quarter of the queries observed related to OO concerns

such as a Class or Method. While many of these queries could be related to similar constructs in

other development paradigms, a replication study is needed to verify the generalizability of results

in another development paradigm (e.g., MDE).

6.4 Observations and Discussions Regarding Queries During a Software Debugging Task

This section begins with an overview of the general data collected as a response to RQ 1

in Section 6.4.1 and to discuss the proliferance of queries and some basic information collected

with regards to the queries. Then, the results of the grounded theory analysis performed in support

of RQ 2 and RQ 3 are provided along with discussion of the implications in Section 6.4.2 and

Section 6.4.3. Finally, the results of the statistical analysis performed in support of RQ 4 are

summarized and discussed in Section 6.4.4.

165

(a) Total Number of Queries Observed per Participant for Task 1

(b) Total Number of Queries Observed per Participant for Task 2

Figure 6.4: Number of Queries Observed for Each Task

166

6.4.1 Do developers form queries during debugging tasks? (RQ 1)

To briefly answer RQ 1, each participant demonstrated a minimum of 13 queries across

the two tasks attempted. The lowest number of queries identified for a single task was 2 queries

presented for task 2. However, the subject that generated 2 queries for task 2 spent less than 3

minutes working on the defect during the allotted hour for the two tasks. Similar experiences were

observed for other participants with regards to task 2. The following two paragraphs describe the

number of queries observed and how often developers formed queries.

Queries Observed Overall, we had 16 subjects participate in the study. These subjects pre-

sented 710 total queries with an average of 44.38 queries per subject over the two tasks. The

minimum number of queries spanning both tasks was 13, and the maximum was 100. While task

1 was attempted by all 16 participants, task 2 was only attempted by 10 participants. A breakdown

of the total queries observed for each participant for each task is presented in Figure 6.4.

Occurence of Queries During the Debugging Process For each query an estimate of the time

it was presented during the task was recorded. Figure 6.5 plots a running sum of the total queries

presented at each 5 minute interval during the task. This visualization clearly illustrates that the

subjects (both those that succeed and those that failed at the tasks) produced new queries with an

overall linear trend during the tasks. This is an interesting observation, because it indicates that

queries are a driving force during the debugging process.

Every subject that attempted a given task formed queries during that task. Furthermore,

participants formed queries consistently throughout the observed time period spent debugging.

Therefore, RQ 1 can be answered positively with strong evidence supporting the claim that devel-

opers do form queries during debugging tasks.

167

Figure 6.5: Occurence of Queries During the Debugging Process

6.4.2 What types of queries are formed by developers during debugging tasks? (RQ 2)

To address RQ 2, each of the 710 observed queries was reviewed and categorized accord-

ing to the type of information the subject was seeking. The analysis revealed a query hierarchy

with 7 fundamental types that are decomposed down to 29 specific query types as illustrated in

Figure 6.6. Several specific query types were observed to have strong similarities to a subset of the

specific types under their fundamental type. These highly related specific query types were then

reorganized under group types to further distinguish them from the less related specific types un-

der the same fundamental type. For example, Class and Method are grouped under the Definition

group within the Location fundamental type to distinguish these query types from text that is also

under the Location fundamental type. Each specific query type represents a general type of infor-

mation that developers were observed to seek during a debugging task, and the fundamental query

types represent general categories of information. These types are presented with the number of

occurences indicating the prevalence of developers seeking the specified type of information. As

168

Figure 6.6: Query Type Hierarchy

Query Type Total Occurences Percentage of Total Queries
Location 261 36.8%
System 13 1.8%
Function 18 2.5%
Text 152 21.4%
Method Definition 29 4.1%
Class Definition 10 1.4%
Attribute Definition 5 0.7%

Table 6.1: Summary Statistics for Location Queries

such, the query type categorization presented here provides insight that can be used to inform the

development of future tools as well as providing a method of reviewing existing tools (with the

latter concern discussed further in Section 7.4.3). A detailed description of each fundamental type

and the various specific query types follows. Each Specific query type includes a brief description,

sample query, the number of occurences observed, and the typical purpose of the query as part of

the debugging process.

169

6.4.2.1 Location

The most commonly occuring fundamental query type was Location. This type is focused

primarily on locating entities within the system source. However, the fundamental type also in-

cludes System queries that focus on locating non-source entities. System queries seek where a

file or non-source entity is stored. For example, “Where is the directory that contains the output?”

These queries were primarily used to identify relevant input or output entities. Function queries

seek the entity in the source that handles a specific behavior. For example, “What entity is printing

the error message?” These queries were primarily used to identify occurences of specific observ-

able behavior related to the observable error (e.g., localizing the entity generating a given portion

of output or setting a key flag such as the failonerror flag). Concept queries seek the entity(ies)

that handle a given responsibility or feature for a system. For example, “What entity(ies) handle

logging?” These queries were primarily used as large encompassing queries seeking entities re-

lated to the process associated with the defect (e.g., Copying), and often involved resolving more

focused queries. Text queries seek the source entity(ies) that include specific text. For example,

“Where does ‘failonerror’ occur in the system?” These queries were well supported by standard

tools (though approximately 10% of Text query occurences were resolved manually), and Text

queries were commonly used as part of larger query types such as Concept queries.

Definition Group The Definition group contains those queries associated with identifying where

in the source specific coding structures are defined or declared. These queries were used primarily

during navigating the system source, and are often associated with more complex queries falling

under the Fundamental types of Behavior or Responsibility. This group of queries was well sup-

ported within Eclipse with tools available to jump from occurences of a Class, Method, or Attribute

170

Query Type Total Occurences Percentage of Total Queries
Structure 54 7.6%
Control Flow 1 0.1%
Contained Entities Hierarchy 15 2.1%
Inheritance Hierarchy 7 1.0%
Method Reference 25 3.5%
Class Reference 3 0.4%
Attribute Reference 3 0/4%

Table 6.2: Summary Statistics for Structure Queries

to the relevant definition or declaration. Method queries seek where in the source a given method

is defined or declared. For example, “Where is Copy.execute defined?” Class queries seek where

in the source a given class is defined or declared. For example, “Where is Copy defined?” At-

tribute queries seek where in the source a given attribute is defined. For example, “Where is

Copy.failonerror defined?”

6.4.2.2 Structure

The Structure fundamental type is driven by the inherent structure of source code entities.

Specific types focus on various relationship types (e.g., parent/child inheritance relationships or

caller/callee method relationships). The typical structure query was used as part of source code

navigation to expand the search space based upon the relationship to an existing relevant source

entity. Control Flow queries seek a portion of the source related via the structure of the control

flow. For example, “What is the if related to this else?” Control Flow queries can be resolved triv-

ially without need for dedicated tool support or a significant manual process. However, navigating

the source to observe control flow and following these relationships is a basic task when examining

source code. This query may have had a higher occurence than recorded due to the trivial nature

of most occurences.

171

Hierarchy Group The Hierarchy Group contains query types dedicated to identifying source

entities that form a clear hierarchy. These queries can be explored easily through tree-based view-

ers such as the Package Explorer available in Eclipse. Contained Entities queries seek entities

contained within a given entity. For example, “What classes exist within org.apache.tools.ant.util?”

These queries were commonly used as part of an exploratory process to aid in localizing relevant

entities. Inheritance queries seek the parent or children of a given class. For example, “What

class does Copy inherit from?” These queries were used to further identify the design intent of a

given class or to identify relevant inherited structures (e.g., inherited method behavior).

Reference Group The Reference Group contains query types focused on identifying source

entities related via a reference (e.g., method call or attribute reference). This group of queries

was most commonly used to identify the context in which a method was called or to dive further

into the details of a methods behavior by exploring called methods. However, the references to

a given class provided context for the use of classes (e.g., “Where is the Copy class used?”),

and attribute references explored the use of relevant attributes (e.g., “Where is Copy.failonerror

used?”). Method queries seek the entity(ies) that reference a given method. For example, “What

entity(ies) call Copy.execute?” Class queries seek the entity(ies) that reference a given class. For

example, “Where is the Copy class used?” Attribute queries seek the entity(ies) that reference a

given attribute. For example, “What entity(ies) reference Copy.failonerror?”

6.4.2.3 Behavior

The Behavior fundamental type was the second most common category of query presented.

These queries focused on the behavior of the system with regards to specific portions of the source

or the behavior of features that may be crosscutting concerns relevant to numerous source code en-

172

Query Type Total Occurences Percentage of Total Queries
Behavior 126 17.7%
Method Behavior 45 6.3%
Class Behavior 18 2.5%
Code Segment 16 2.3%
Feature 47 6.6%

Table 6.3: Summary Statistics for Behavior Queries

Query Type Total Occurences Percentage of Total Queries
State 26 3.7%
Local Variable 22 3.1%
Attribute State 4 0.6%

Table 6.4: Summary Statistics for State Queries

tities. Method queries seek to determine how a particular method behaves at runtime. For example,

“How does Copy.doFileOperations work?” Class queries seek to determine how a particular class

behaves at runtime. For example, “How is failonerror used in Copy?” This query type identifies

behavior of concerns that are inherent to a given class such as the use of the failonerror flag to

determine when to raise or suppress exceptions in the Copy class. Code Segment queries seek to

determine how a particular code segment behaves at runtime. For example, “How does this loop

work?” These queries focus on small segments of the source code to identify the pecularities of the

relevant logic and control flow. This query type was commonly used when investigating the behav-

ior of loops and decision structures within the source code. Feature queries seek to determine how

a particular feature is performed in the system. For example, “How is copying done?” This query

structure concerned large crosscutting behaviors of the system that involve many different entities

in the source. Often, Feature queries provided a starting point for investigation as key concerns

were identified during the debugging process.

173

Query Type Total Occurences Percentage of Total Queries
Responsibility 62 8.7%
Method Responsibility 23 3.2%
Class Responsibility 37 5.2%
Package Responsibility 2 0.3%

Table 6.5: Summary Statistics for Responsibility Queries

6.4.2.4 State

The State fundamental type is strongly related to both Location Definition queries, Struc-

ture Reference queries, and Behavior queries. This type of query focuses on the typing and state

of a given variable. These values available at runtime are strongly related to the behavior of the

associated entities, and investigating a State query could provide insight into resolving a Behav-

ior query. On the other hand, both Location Definition and Structure Reference queries could be

used to resolve a State query. This relationship between query types underscores a key finding

of the study (as will be discussed further in Section 6.4.3), which observes that the queries posed

by developers are not isolated occurences that are investigated completely before beginning a new

branch of exploration. Rather, developers form queries as part of an iterative and branching pro-

cess. Resolving a State query might not provide enough insight to resolve a defect in isolation, but

the contribution of this fundamental query type is typically part of a larger process. Local Vari-

able queries seek the type and/or value of a given local variable. For example, “What is the state

of toFiles?” This query type was typically used to gather further information regarding a Method

Behavior query. Attribute queries seek the type and/or value of a given attribute. For example,

“What is the state of userInfo.password?” This query type was typically used to gather further

information regarding a Method Behavior query.

174

Query Type Total Occurences Percentage of Total Queries
Support 64 9.0%
Environment 16 2.3%
Language 15 2.1%
Intent 11 1.5%
Bug 20 2.8%
Domain 2 0.3%

Table 6.6: Summary Statistics for Support Queries

6.4.2.5 Responsibility

The Responsibility fundamental query type investigates the concerns related to a given

source entity. Through these queries, subjects identified the purpose and often began to explore

entities at various levels. In the process of resolving these queries, subjects often resorted to ex-

ploring comments (especially docstrings), but other queries such as Text Location queries and

Inheritance Hierarchy Structure queries were also generated to resolve these queries. This funda-

mental type was often used as a first step for resolving Relevance queries and Behavior queries for

the associated type of source entity (e.g., Method or Class). Method queries seek to identify the

concerns related to a given method. For example, “What is the purpose of Copy.execute?” Class

queries seek to identify the concerns related to a given class. For example, “What is the purpose

of Copy?” Package queries seek to identify the concerns related to a given package. For example,

“What is the purpose of TaskDef?” This query type was often formed as developers were explor-

ing the source code and as part of resolving Concept Location queries. Typically, this query type

formed a filter that would be followed by subsequent more focused exploration depending on the

answer.

175

6.4.2.6 Support

The Support fundamental query type is centered around providing relevant information to

further more focused exploration of the source code. The results of these queries were often used

to identify relevant concepts or text to spark a new path of investigation. However, Support queries

were also used in support of the processes being employed by the subject, such as learning how

to search in Eclipse or how language features and standard library components function. Thus,

this query type is not typically focused on directly resolving the defect, but the associated queries

provide valuable information to the developer in support of localizing or correcting the defect.

Environment queries seek information related to the development environment. For example,

“How do I search in Eclipse?” These queries were typically used to find tool support for resolv-

ing existing queries. Language queries seek to understand or identify relevant language features

or standard library components. For example, “How do I get the last index of a String?” Intent

queries seek information from documentation sources. For example, “What does the documen-

tation say about tasks?” Both Intent and Bug queries were typically used as a starting point for

investigation into the source of the defect. Bug queries seek information from the bug report, rel-

evant error messages, or similar sources referring to the software bug or related information. For

example, “What can I gain from the bug report?” Domain queries seek information related to the

domain of the problem space. For example, “What is a valid URI structure?” Domain queries ex-

plore the concepts drawn from the problem space in support of understanding the related structures

and processes in the source code.

6.4.2.7 Relevance

The Relevance fundamental query type was typically used by subjects to filter through the

source code entities or concepts recognized from the bug report or similar source. This query

176

Query Type Total Occurences Percentage of Total Queries
Relevance 117 16.5%
Entity 116 16.3%
Concept 1 0.1%

Table 6.7: Summary Statistics for Relevance Queries

type served as an early stage of the process where subjects were inspecting superficial elements

to determine promising paths for further investigation. Entity queries seek to identify if a given

source element (e.g., class or method) is relevant to the bug. For example, “Is Copy relevant?”

The second most common specific query type, Entity queries were often used to filter through the

identified source code entitites. Subjects frequently formed Responsibility queries in support of

Entity Relevance queries, and followed with Behavior queries to further investigate the relevant

entity. Concept queries seek to identify if a recognized concept (e.g., logging) is relevant to the

bug. For example, “Could the bug be due to an error in parsing?”

6.4.3 What leads developers to generate new queries and how do they relate to previous queries?
(RQ 3)

The context and events leading to each observed query were collected during the initial,

independent data collection process. The resulting data collection forms for each query were then

reviewed during the first round review, and a set of general factors that lead subjects to generate

each query were identified during the second round review. Furthermore, many queries were noted

to have related to a prior query as part of the recorded events leading to the query. In response

to this observation, during the first round review each query was further analyzed to determine if

the query was related to a previous query. Then as part of the second round of review, a set of

general relationships was defined based on the observed relationships. Thus, to address RQ 3, a set

of general factors leading to generating new queries and query relationships have been identified.

177

Query Relationships Total Occurences Percentage of Total Queries
Subquery 288 40.6%
Filtering Results 50 7.0%
Formed Through 59 8.3%
Follows Result 209 29.4%
No Relation 104 14.6%

Table 6.8: Summary Statistics for Query Relationships

6.4.3.1 Relationship to Existing Query(ies)

Approximately 85.4% of all observed queries were found to be associated with an existing

query or queries. Additionally, after carefully reviewing the query relationships as part of the

second round review, it can be noted that the query relationships demonstrate a clear overarching

process used by developers to follow along a series of queries. This observation would seem to

support the idea of developers using an information foraging strategy as claimed by Lawrance et

al. [112]. However, significant further analysis would be needed to claim support of information

foraging, and this additional analysis is outside the scope of the current study intent. The query

relationships are detailed below along with a brief example.

Subquery A query used to assist in resolving a prior query was considered to be related as a

subquery of the prior query. For example, the Text Location query, “Where does the text ‘copy’

occur in the system?” could be used to aid in resolving the Concept Location query, “What en-

tity(ies) are related to copying?” Thus, the Text Location query would be identified as a subquery

of the Concept Location query.

Filtering Results A query used to reduce the set of results identified from a previous query was

considered to be related as filtering the results of the prior query. For example, the Entity Relevance

178

query, “Is the method CopyFile.execute executed when exercising the defect?” might be used to

filter the results of the Text Location query, “Where does ‘failonerror’ occur in the system?”

Formed Through A query that is not directly related to a prior query, but was formed due to

some information encountered during the investigation of a prior query was considered to be related

as a query formed through a prior query. For example, while investigating the Class Responsibility

query, “What is the purpose of the Copy class?” the subject could right-click on the class name

in Eclipse and be presented with the context sensitive option Open Type Hierarchy. As a result of

identifying this new environment feature, the subject might form the Environment Support query,

"What is the purpose of the Open Type Hierarchy tool?" Thus, the Environment Support query is

formed through investigating the Class Responsibility query.

Follows Result A query that is formed directly as a response to the results of a prior query

was considered to be related as following the results of the prior query. For example, the Entity

Relevance query, “Is the Copy.doFileOperations method invoked when exercising the defect?”

would result in identifying that the Copy.doFileOperations is invoked, and result in forming the

Method Behavior query, “How does the Copy.doFileOperations method work?” Thus, the Method

Behavior query would be identified as following the results of the Entity Relevance query.

6.4.3.2 Query Generation Factor

After carefully reviewing the context and the events leading to each query as identified in

the data collection forms, along with further investigating the relevant video segments for numer-

ous queries, a set of 6 generic query generation factors was identified. Each query generation factor

is listed below along with a brief description and discussion of any significant query relationship(s)

associated with the factor.

179

Query Generation Factor Total Occurences Percentage of Total Queries
Finding A New Path 113 15.9%
Search Results 42 5.9%
Related Entity 45 6.3%
Conceptual Trigger 77 10.8%
Textual Trigger 73 10.3%
Further Investigation 360 50.7%

Table 6.9: Summary Statistics for Query Generation Factors

Finding A New Path The second most common reason subjects generated a new query was to

identify a new starting point of exploration. This process was typically not related to any existing

query as would seem expected. However, occasionally developers did return to the results of a

prior query to find a new path of exploration. For example, a developer might return to the results

of an initial Text Location query to identify a new set of entities to investigate.

Search Results Often subjects identified a set of entities or source locations as the result of

a prior query. These were collectively referred to as search results, and were a common source

of new queries. The search results factor was nearly always related to a prior query through

the filtering results relationship. Thus, it can be noted that queries identifying large result sets are

followed by a process of filtering the results to identify relevant entities. An immediate implication

of this outcome is that work to identify relevance of result in an automated fashion through textual

or other similarity measures are likely to present a significant benefit to developers.

Related Entity As subjects investigated the source code of the system, often queries were

spawned through identifying related entities such as a method call or inheritance relation. This

generation factor was most commonly formed through investigating an existing query that spawned

an unrelated query to investigate the related entity. Investigating related entities was also observed

180

to follow the results of a prior query (e.g., following the Entity Relevance query, “Is Copy.execute

invoked during exercising the defect?” could be followed by an Entity Relevance query on the

Copy.doFileOperations method called by the Copy.execute method) or as a subquery to help re-

solve a prior query (e.g., the Method Behavior query “How does the Copy.doFileOperations method

work?” could be used to help resolve the Method Behavior query, “How does the Copy.execute

method work?”). This generation factor would offer support to visualization strategies such as call

graphs or class diagrams that aid developers in identifying related entities during the debugging

process.

Conceptual Trigger Subjects were observed to generate some queries due to identifying a par-

ticular concept. For example, a developer might inspect the bug report and identify the concept

of Copy as being related to the defect, and then investigate the Concept Location query, “What

entity(ies) are related to Copy?” Queries generated from conceptual triggers were typically sub-

queries, and the result of the investigation spawned by the concept was used to inform the prior

query.

Textual Trigger Similar to conceptual triggers, developers formed some queries as a result

of identifying some specific portion of text. Textual triggers were also most commonly used as

subqueries.

Further Investigation The most common cause for subjects to generate new queries was to

further investigate an entity, concept, or other concern. This result shows a strong support for the

Information Foraging model of the debugging process as proposed by Lawrance et al. [112]. This

generation factor was typically related to prior queries as either a subquery or following the results

181

of the prior query. For example, after resolving the Entity Relevance query, “Is Copy.execute

invoked during exercising the defect?” the developer might investigate the Method Behavior query,

“How does the Copy.execute method work?”

6.4.4 Which (if any) observed aspects of queries correlate with successful debugging task com-
pletion? (RQ 4)

As a final contribution of the work presented in this chapter, several aspects related to

queries were investigated to identify if subjects that were successful in completing the task pre-

sented a statistically signficiant difference in that aspect’s measure as compared to subjects that

were not successful. The purpose of this investigation was to identify some measure of the aspects

related to the observed queries that indicates the developer is more likely to succeed in completing

the debugging task. The following will describe each aspect investigated and the results of the

appropriate statistical tests.

Successful Task Completion For each subject, the researchers recorded if the subject success-

fully completed each task attempted. To resolve the task successfully, the subject was expected to

clearly identify the source of the defect. All but one participant that clearly identified the source

of the defect, also corrected the defect. The one exceptional subject clearly identified the source of

the defect (i.e., stated the incorrect logic and explained why the logic was incorrect), but ran out of

time before correcting the defect. A total of seven subjects successfully completed both tasks. An

additional one subject successfully completed task 1 (i.e., corrected bug 1) only, and two subjects

successfully completed task 2 only (i.e., corrected bug 2). Leaving a total of six subjects that failed

to complete either task successfully.

Task 2 was only attempted by ten of the sixteen participants. Of the six participants that

did not attempt task 2, five failed to complete task 1. Furthermore, several participants attempting

182

Figure 6.7: Total Observed Queries for Participants that Successfully Completed Task 1 (Success)
or Did Not Complete Task 1 (Fail)

task 2 (including the one that attempted and failed task 2) spent the majority of their allotted time

completing task 1, and did not have a comparable amount of time remaining to attempt the second

task. Thus, due to the overall inconsistent amount of time and effort spent on the second task and

the reduced set of participants, only queries related to task 1 are considered in the following results.

6.4.4.1 Total Queries Observed

The first measure explored was the total number of queries presented by a developer. A

developer who explored a larger set of queries might have spent more time inspecting unrelated

queries (as was observed of at least one subject). Alternatively, a developer presenting a smaller set

of queries might have spent the majority of their time failing to identify a relevant path to explore

more completely, which would then generate more queries (again, this was observed of at least

one subject). The total queries observed by participants is summarized in the box plots presented

183

in Figure 6.7. The box plots presents the distribution of total observed queries per participant for

each group (successful and unsuccessful).

To investigate this aspect, the following null hypothesis and alternative hypothesis were

tested using a two-tailed t-test with α = 0.05.

H0: Subjects that successfully completed task 1 have generated the same number of queries

as those that failed to complete task 1.

HA: Subjects that successfully completed task 1 have generated a different number of

queries that those that failed to complete task 1.

Despite the large variance in number of queries presented, there was no significant re-

lationship identified between the number of queries presented by the developers and success in

completing the two tasks. This indicates that presenting more or less queries during a debugging

task was not related to successfully completing the debugging task.

6.4.4.2 Overall Query Completion Rate

To identify a resolved query, the recordings were carefully reviewed during the initial in-

dependent data collection and during the first round review to identify if the subject discovered

an answer for the query. A clearly identified lack of result was considered an answer for a given

query. For example, a developer might search for the occurence of a portion of the error message

for bug 1 in the CopyFile class. The message does not occur in this class (i.e., the error message

originates from the Copy class), but a rigorous exploration of the CopyFile class would identify

that the error message does not occur in the CopyFile class. The range of observed query com-

pletion rates for the participants that successfully completed task 1 or did not complete task 1 is

presented in Figure 6.8.

184

Figure 6.8: Overall Query Completion Rate Distribution for Participants that Successfully Com-
pleted Task 1 (Success) or Did Not Complete Task 1 (Fail)

The ability of developers to resolve queries posed during the debugging process could contribute

to completing the debugging task successfully. Thus, the query completion rate (or percentage

of queries a subject resolved) was explored in a similar fashion as the total queries observed. To

investigate query completion rate the following null hypothesiss and alternative hypothesis were

tested using a single-tailed t-test with α = 0.05.

H0: Subjects that successfully completed task 1 displayed a higher query completion rate

than those that failed to complete task 1.

HA: Subjects that successfully completed task 1 displayed a lower or the same query com-

pletion rate compared to those that failed to complete task 1.

With p < 0.01, the subjects successfully completing task 1 were confirmed to display a

statistically significant increase in overall query completion rate. The successful participants had

185

an average query completion rate of 91.3% (minimum of 83% and maximum of 100%), and unsuc-

cessful subjects had an average query completion rate of 64.3% (minimum of 31% and maximum

of 83%). These results indicate that the percentage of queries resolved by developers is related to

successfully completing the debugging task. This would support providing relevant tool support to

aid developers in resolving queries.

6.4.4.3 Fundamental Query Type Completion Rate

To further investigate the significance of query completion rate, the query completion rate

of each fundamental query type was investigated to identify statistically significant differences be-

tween the two groups (i.e., successful and unsuccessful subjects). The completion rates for each

fundamental query type are summarized in the box plots presented in Figure 6.9. To investigate

query completion rate for each fundamental query type, a null hypothesis and alternative hypothe-

sis similar to the following were tested for each fundamental query type using a single-tailed t-test

with α = 0.05.

H0: Subjects that successfully completed task 1 displayed a higher query completion rate

for Behavior queries than those that failed to complete task 1.

HA: Subjects that successfully completed task 1 displayed a lower or the same query com-

pletion rate for Behavior queries compared to those that failed to complete task 1.

The resulting statistical tests identified four fundamental query types to display a signifi-

cantly larger query completion rate: Behavior with p < 0.01, Responsibility with p < 0.01, Rel-

evance with p = 0.01, and Support with p = 0.05. The significance of Behavior, Responsibility,

and Relevance queries is rather intuitive as identifying relevant entities and understanding both

their purpose and behavior are significant concerns when localizing and correcting a software de-

fect. The significance of Support queries indicates that understanding the language features and

186

(a) Behavior Query Completion Rate (b) Relevance Query Completion Rate

(c) Support Query Completion Rate (d) Structure Query Completion Rate

(e) State Query Completion Rate (f) Location Query Completion Rate

(g) Responsibility Query Completion Rate

Figure 6.9: Fundamental Query Completion Rate Distribution for Participants that Successfully
Completed Task 1 (Success) or Did Not Complete Task 1 (Fail)

187

environment, as well as being able to identify relevant information from the bug report and similar

entities are also significant concerns for the debugging process.

Other fundamental query types either possessed very similar completion rates (e.g., Struc-

tural queries that had a 100% rate for successful and a 96% rate for unsuccessful) or too few

occurences (e.g., State queries with only 3.7% of overall queries observed) to identify a significant

p value.

6.4.4.4 Use of Tooling

Every developer made use of some tooling in the development environment ranging from

basic text searches to more complex tools, such as viewing type hierarchies or call hierarchies. The

use of tools was investigated to determine if the developers that successfully completed the task

were observed to use more tools from the development environment. The percentage of queries

observed that were resolved at least partially through tool support is summarized in the box plots

presented in Figure 6.10a. Additionally, data was collected regarding if the tool used for a given

query was able to resolve the query in a completely automated process (e.g., linking directly to the

definition of a method from an identified method call). The percentage of queries observed that

were resolved completely through tool support is summarized in the box plots presented in Fig-

ure 6.10b. These two aspects (i.e., number of queries resolved using tooling, and number of queries

resolved automatically using using tooling) were investigated similar to prior occurences using a

two-tailed t-test with target α = 0.05. The test did not indicate a statistically significant difference

between successful and unsuccessful subjects in the number of queries resolved using tools. This

result only indicates that the observed developers did not demonstrate a significant difference in

their use of tools. A distinct experiment would be required to investigate this aspect completely.

A control group composed of developers that are deprived of tools completely with an additional

188

(a) Percentage of Queries Resolved with the Assistance of Tool Support

(b) Percentage of Queries Resolved Automatically by Tool Support

Figure 6.10: Summary of Tool Usage for Participants that Successfully Completed Task 1 (Suc-
cess) or Did Not Complete Task 1 (Fail)

189

group(s) provided with some set of tooling would be more appropriate to investigate the signif-

icance of tooling used by developers. However, we can conclude that despite variations in the

experience with Ecipse (subjects ranged from 0 years of experience to 10+ years of experience

with Eclipse), successful subjects did not demonstrate a significant difference in their use of tools

compared to unsuccessful subjects.

6.4.4.5 Fundamental Query Type Prevalence

The final aspect considered was the percentage of queries presented by a user correspond-

ing to a specific fundamental query type. The prevalence (i.e., percentage of overall queries for

a given participant) for each fundamental query type are summarized in the box plots presented

in Figure 6.11. This aspect explores if the focus on a certain fundamental query type was sig-

nificanty different for successful subjects as compared to unsuccessful subjects. The goal was to

identify if developers could be encouraged to focus on certain query types to improve debugging

effectiveness. However, despite the significant difference in completion rate for several fundamen-

tal query types, no significant difference was found for the prevalence of any fundamental query

type. This aspect was investigated in the same manner as previous aspects, using a two-tailed t-test

with α = 0.05. As a result, it can be concluded that successful subjects did not demonstrate a

significant difference in focus on any specific fundamental query type.

6.5 Conclusion

This chapter has presented the design and results of an exploratory empirical study ex-

ploring the formation and use of queries during the debugging process of entry level developers

working in the Eclipse environment on two defects in the industrial quality OO system, ANT. The

results presented in this chapter support that queries are a natural part of a developer’s debugging

and maintenance process. A set of 7 fundamental query types covering 29 specific query types

190

(a) Behavior Query Prevalence (b) Relevance Query Prevalence

(c) Support Query Prevalence (d) Structure Query Prevalence

(e) State Query Prevalence (f) Location Query Prevalence

(g) Responsibility Query Prevalence

Figure 6.11: Fundamental Query Prevalence Distribution for Participants that Successfully Com-
pleted Task 1 (Success) or Did Not Complete Task 1 (Fail)

191

were identified using a grounded theory approach to analyze the type of information the queries,

presented by participants in the study during their debugging process, were seeking. The query

type categorization provides insight into the type of information developers seek during a debug-

ging task, and can be used to support both development of new tools and review of existing tools

support. Additionally, a set of query generation factors and query relationships were identified to

explain why developers formed new queries. The exploration of these query generation factors

and query relationships indicated that developers form individual queries as part of a larger inves-

tigation process. This finding seems to support the prior work of Lawrance et al. that investigated

the Information Foraging model as a model of the process used by developers during the debug-

ging process. However, further analysis outside the scope of the work presented in this chapter is

necessary to confirm this finding. Finally, the analysis indicate that overall query completion rate

and the query completion rate specifically for Behavior queries, Relevance queries, and Support

queries are significant factors indicating successful task completion.

192

CHAPTER 7

CONCLUSION & FUTURE WORK

MDE has provided a new paradigm for software development focused on the use of soft-

ware models. However, traditional SE concerns such as maintenance and evolution are still com-

mon and significant concerns for practicioners of MDE [29]. As discussed in Chapter 1, re-

searchers have noted a lack of research concerning the significant software maintenance task of

debugging in an MDE context [16]. While many debugging techniques have been explored in a

GPL context (e.g., omniscient debugging [6–10] and QBD [5, 11–15]), relatvely little work has

explored debugging techniques in an MDE context.

Over the course of the work presented in this dissertation, I have made several contributions

to the MDE community and the general SE community. I have contributed to the MDE community

through the investigation of omniscient debugging for MTs and xDSMLs. This investigation has

resulted in a prototype supporting omniscient debugging of MTs in AToMPM and a prototype sup-

porting omniscient debugging of xDSMLs in GEMOC Studio. The investigation into omniscient

debugging of MTs contributed a new scalable technique to support efficient omniscient traversals,

and the collaborative investigation of omniscient debugging for xDSMLs contributed a novel set of

multi-dimensional omniscient traversal features and a novel interactive visualization of execution

history to support omniscient debugging. I have also contributed to the MDE community through

identifying a set of collaboration scenarios for MDE and investigating a live, cloud-based solu-

tion to support these scenarios. Finally, I have contributed to the general SE community through

193

an exploratory empirical study regarding the formation, use, and impact of queries presented by

developers while debugging an OO system. The contributions of this project include identifying

a categorization of queries according to the information the query was seeking, a general set of

factors that led developers to generate new queries, and a set of general relationships describing

how newly formed queries related to prior queries presented during the debugging process. Fur-

thermore, the exploration of queries during the debugging process presented a set of aspects found

to be linked to successful completion of the observed debugging task.

7.1 Collaborative Modeling

As the first contribution of my dissertation work, I presented the results of a project that

explored the challenges and some initial solutions to supporting collaborative modeling processes

in a distributed environment. The growing trend for collaborative environments was discussed,

and the needs of domain experts to work in a coordinated manner to model complex systems were

motivated The exploration of collaborative modeling identified a set of 4 collaboration scenarios

that describe how modelers could collaborate in a modeling environment. These scenarios ranged

from simple sharing of elements to more complicated scenarios involving interdependent mod-

els. The cloud-based architecture of AToMPM supporting collaborative modeling was presented,

. Discussion then detailed how the architecture ensures consistency and synchronization among

artifacts produced by each stakeholder across the identified collaboration scenarios. Preliminary

results evaluating the scalability and performance of the architecture reveal that the Controllers

portion of the architecture is efficient with regards to the scaling of number of concurrent users,

but distributing the low level processing and storage of models remains an open challenge (see

Chapter 3 for more details).

194

7.2 Omniscient Debugging for MTs and xDSMLs

The primary contribution of the work presented in this dissertation investigated the applica-

tion of omniscient debugging, a traditional approach to identify and resolve software errors drawn

from existing GPL literature, to debugging MDE artifacts. The investigation focused primarily on

the application of omniscient debugging to MTs with additional collaborative work extending this

investigation to xDSMLs.

The investigation of omniscient debugging for MTs culminated in a prototype in the AToMPM

environment, AODB, and an empirical evaluation of the technique regarding performance in terms

of execution time and scalability in terms of memory usage. The technique supported efficient

omniscient traversal through the use of two novel algorithms designed to construct a MacroStep

(i.e., a construct used to traverse multiple incremental prior states of execution) without replicating

unnecessary change operations. The primary results of the empirical evaluation indicated that the

technique performs similarly to a standard stepwise execution debugger in the same environment

and that the addition of omniscient debugging features had only a modest impact on scalabil-

ity. Additionally, the evaluation explored the comparative performance of the two MacroStep

building algorithms identifying results that indicate how to utilize the algorithms together most ef-

ficiently, as well as exploring the efficiency of using the omniscient traversal features as compared

to restarting the transformation system (see Chapter 4 for more details).

While the investigation into omniscient debugging for MTs focused on basic omniscient

traversal features, the investigation regarding xDMSLs introduced multi-dimensional omniscient

traversal features and a novel interactive visualization of execution history to support omniscient

debugging. The investigation into omniscient debugging of xDSMLs resulted in a technique sup-

195

porting generic omniscient debugging (including both basic and multi-dimensional omniscient

features) for the various DSMLs typical of xDSMLs in the GEMOC Studio environment. The

technique relied on the generation of domain-specific trace management facilities to support arbi-

trary xDSMLs. Similar to AODB, a prototype was constructed in the GEMOC Studio environment

and evaluated with regards to performance and scalability. The results indicated that the generative

technique supporting omniscient debugging performed similarly to a stepwise execution debugger

in terms of execution time, and the generative technique both performed (in terms of execution

time) and scaled (in terms of memory usage) more efficiently than a clone-based omniscient de-

bugger (see Chapter 5 for more details).

7.3 Exploring Query Formation and Impact

Finally, the debugging process used by developers was investigated with special empha-

sis on the impact and formation of queries through an exploratory empirical study. The results

presented in Chapter 6 found that queries are a natural part of a developer’s debugging and mainte-

nance process, and identified a set of query types based upon the type of information the observed

queries were seeking. Additionally, a set of query generation factors and query relationships were

identified to explain why developers formed new queries. The exploration of these query gener-

ation factors and query relationships indicated support for the prior work of Lawrance et al. that

investigated the Information Foraging model to describe the process used by developers during the

debugging process [112]. Finally, the results presented indicated several aspects related to query

completion that were significantly linked to successful completion of the debugging tasks (see

Chapter 6 for more details).

196

7.4 Perspectives on Future Research

As I look forward to continuing my research beyond the work presented in this dissertation,

I have identified several prospects to further my research in the area of debugging and MDE.

7.4.1 User Study of Omniscient Debugging for MTs

I plan to pursue a user study to validate the omniscient debugging technique presented in

Chapter 4. The technique has been evaluated through analyzing the performance and scalability

of a prototype implemented in AToMPM. However, the technique should also be evaluated when

used in practice by developers to identify impact of the tool when used in a practical debugging

scenario. A study design and relevant materials have already been prepared in preparation for this

work, and I need only identify a set of participants to perform this study. This study will exlore

the impact of omniscient debugging when applied to the debugging process in terms of efficiency

and effectivenes, as well as investigating the perceptions and opinions of developers concerning

the technique. These perceptions must be understood as they will directly impact the adoption of

the technique by practitioners.

7.4.2 Exploring Query Formation and Impact for MDE

Following the results of the study of query formation and impact in a GPL context as

presented in Chapter 6. I plan to pursue empirical research concerning queries and the debugging

process in an MDE context. The new paradigm of MDE pushes developers closer to a domain view

of software development through the use of software models. As a result there is fundamental shift

from more traditional software development focused on the use of GPLs and MDE. However, many

traditional SE concerns such as debugging are still relevant in an MDE context. Thus, a replication

study with modification would be warranted to evaluate the concerns discussed in Chapter 6 within

197

this new context. This study would be designed to both explore the formation and impact of queries

in the context of MDE, as well as draw conclusions comparing the observations directly with those

from a GPL context (drawn from the results presented in Chapter 6).

7.4.3 Exploring Tool Support and the Debugging Process

I also plan to further explore the debugging process used by developers to improve the

pairing of tool support and developer exploration. I intend to perform a comprehensive review

of existing modern tool support. The resulting set of tools will be mapped to the fundamental

and specific query types discussed in Chapter 6 to identify any gaps and to review the quality of

coverage provided by existing modern SE tools. Additionally, this work will further explore the

process used by developers seeking to confirm or deny existing proposed theories (e.g., information

foraging theory [112]). The results of this exploration will aim to guide the development of future

tool support through identifying how tool support can assist and improve the debugging process.

Furthermore, exploring the debugging process through observing and analyzing the processes used

by developers will enable future researchers to identify best practices that can be used to educate

new generations of practicioners.

7.4.4 Efficient, Distributed Storage and Processing of Models

I have also identified, as a result of the work presented in Chapter 3, the need for improved

solutions to the challenge of collaborative modeling. The key concern for this continued work is

how to efficiently distribute storage and low-level processing of models. The significant challenges

will be to create a low-level structure that is aware of the unique relationships and processes specific

to models. Such concerns include the ability to properly coordinate metamodels and models across

storage solutions to enable direct processing, and to support advanced processing such as MTs and

conformance checking.

198

REFERENCES

[1] E. Syriani, J. Kienzle, and H. Vangheluwe, “Exceptional transformations,” in Proceedings
of the 3rd International Conference on Model Transformation, June 2010, pp. 199–214.

[2] H. Ergin and E. Syriani, “AToMPM solution for the IMDB case study,” in Proceedings of
the 7th Transformation Tool Contest at STAF, July 2014, pp. 134–138.

[3] J. Gray, J.-P. Tolvanen, S. Kelly, A. Gokhale, S. Neema, and J. Sprinkle, “Domain-specific
modeling,” Handbook of Dynamic System Modeling, vol. 7, pp. 7–1, 2007.

[4] M. Seifert and S. Katscher, “Debugging triple graph grammar-based model transforma-
tions,” in Proceedings of 6th International Fujaba Days, Dresden, Germany, 2008.

[5] A. J. Ko and B. A. Myers, “Designing the whyline: A debugging interface for asking ques-
tions about program behavior,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, April 2004, pp. 151–158.

[6] B. Lewis, “Debugging backwards in time,” in Proceedings of the Fifth International Work-
shop on Automated Debugging, October 2003.

[7] A. Lienhard, J. Fierz, and O. Nierstrasz, “Flow-centric, back-in-time debugging,” in Pro-
ceedings of Objects, Components, Models and Patterns, July 2009, pp. 272–288.

[8] A. Lienhard, T. Gîrba, and O. Nierstrasz, “Practical object-oriented back-in-time debug-
ging,” in Proceedings of 22nd European Conference on Object-Oriented Programing,
July 2008, pp. 592–615.

[9] G. Pothier, E. Tanter, and J. Piquer, “Scalable omniscient debugging,” in Proceedings of
the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems
and Applications, October 2007, pp. 535–552.

[10] G. Pothier and E. Tanter, “Back to the future: Omniscient debugging,” IEEE Software,
vol. 26, no. 6, pp. 78–85, November 2009.

[11] A. J. Ko, “Debugging by asking questions about program output,” in Proceedings of the
28th International Conference on Software Engineering, May 2006, pp. 989–992.

199

[12] A. J. Ko and B. Myers, “Debugging reinvented: Asking and answering why and why not
questions about program behavior,” in Proceedings of the 30th International Conference
on Software Engineering, May 2008, pp. 301–310.

[13] R. Lencevicius, U. Hölzle, and A. K. Singh, “Query-based debugging of object-oriented
programs,” in Proceedings of the 12th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, October 1997, pp. 304–317.

[14] R. Lencevicius, U. Holzle, and A. K. Singh, “Dynamic query-based debugging of object-
oriented programs,” Automated Software Engineering, vol. 10, pp. 39–74, October 2003.

[15] R. Lencevicius, “Query-based debugging,” 1999, dissertation, Accessed: 09-02-2015.
[Online]. Available: http://www.cs.ucsb.edu/research/tech-reports/1999-27

[16] R. Mannadiar and H. Vangheluwe, “Debugging in domain-specific modelling,” in Proceed-
ings of the 4th International Conference on Software Language Engineering, July 2011,
pp. 276–285.

[17] J. Schoenboeck, G. Kappel, A. Kusel, W. Retschitzegger, W. Schwinger, and M. Wimmer,
“Catch me if you can – debugging support for model transformations,” in Proceedings
of the 12th International Conference on Model-Driven Engineering, Languages, and
Systems, October 2009, pp. 5–20.

[18] J. de Lara and E. Guerra, “Formal support for QVT-relations with coloured Petri nets,” in
Proceedings of the 12th International Conference on Model-Driven Engineering, Lan-
guages, and Systems, October 2009, pp. 256–270.

[19] M. Wimmer, G. Kappel, J. Schoenboeck, A. Kusel, W. Retschitzegger, and W. Schwinger,
“A Petri net based debugging environment for QVT relations,” in Proceedings of the 24th
IEEE/ACM International Conference on Automated Software Engineering, November
2009, pp. 3–14.

[20] D. Balasubramanian, A. Narayanan, C. van Buskirk, and G. Karsai, “The graph rewriting
and transformation language: GReAT,” in Proceedings of the 3rd International Work-
shop on Graph Based Tools, September 2006.

[21] F. Jouault, “Loosely coupled traceability for ATL,” in Proceedings of the European Confer-
ence on Model-Driven Architecture - Foundations and Applications Workshop on Trace-
ability, November 2005, pp. 29–37.

[22] M. Lawley and J. Steel, “Practical declarative model transformation with Tefkat,” in Satellite
Events at the 8th International Conference on Model-Driven Engineering, Languages,
and Systems, October 2006, pp. 139–150.

200

http://www.cs.ucsb.edu/research/tech-reports/1999-27

[23] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, and H. Ergin,
“AToMPM: A web-based modeling environment,” in Joint Proceedings of the MOD-
ELS’13: Invited Talks, Demos, Posters, and ACM SRC, October 2013.

[24] J. Corley and E. Syriani, “A cloud architecture for an extensible multi-paradigm modeling
environment,” in Joint Proceedings of 8th Internations Conference on Model-Driven
Engineering, Languages, and Systems Poster Session and the ACM Student Research
Competition, October 2014, pp. 6–10.

[25] J. Corley, H. Ergin, S. Van Mierlo, and E. Syriani, Modern Software Engineering Method-
ologies for Mobile and Cloud Environments. IGI Global, January 2016, ch. Cloud-
based Multi-View Modeling Environments.

[26] G. Bergmann, A. Ökrös, I. Ráth, D. Varró, and G. Varró, “Incremental pattern matching in
the viatra model transformation system,” in Proceedings of the 3rd International Work-
shop on Graph and Model Transformations, May 2008, pp. 25–32.

[27] G. Taentzer, “AGG: A graph transformation environment for modeling and validation of
software,” in Proceedings of the 2nd International Workshop on Applications of Graph
Transformations with Industrial Relevance, September 2003, pp. 446–453.

[28] L. Geiger and A. Zündorf, “Graph based debugging with Fujaba,” in Proccedings of the 1st
International Workshop on Graph-based Tools, no. 2, October 2002, p. 112.

[29] B. Selic, “The pragmatics of model-driven development,” IEEE Software, vol. 20, no. 5, pp.
19–25, September 2003.

[30] B. Combemale, J. Deantoni, B. Baudry, R. France, J.-M. Jézéquel, and J. Gray, “Globalizing
modeling languages,” IEEE Computer, vol. 47, no. 6, pp. 10–13, June 2014.

[31] F. Jouault and I. Kurtev, “Transforming models with ATL,” in Proceedings of the Satellite
Events at the 8th International Conference on Model-Driven Engineering, Languages,
and Systems, October 2006, pp. 128–138.

[32] J. Corley, “Exploring omniscient debugging for model transformations,” in Joint Proceed-
ings of 8th Internations Conference on Model-Driven Engineering, Languages, and Sys-
tems Poster Session and the ACM Student Research Competition, October 2014, pp.
63–68.

[33] J. Corley, B. P. Eddy, and J. Gray, “Towards efficient and scalable omniscient debugging
for model transformations,” in 14th Workshop on Domain-Specific Modeling, October
2014, pp. 13–18.

201

[34] J. Corley, B. P. Eddy, E. Syriani, and J. Gray, “Efficient and scalable omniscient debugging
for model transformations,” Software Quality Journal, pp. 1–42, 2016.

[35] E. Bousse, J. Corley, B. Combemale, J. Gray, and B. Baudry, “Supporting efficient and
advanced omniscient debugging for xDSMLs,” in Proceedings of the 8th International
Conference on Software Language Engineering, October 2015, pp. 137–148.

[36] B. P. Eddy and J. Corley, “Searching for answers: An exploratory study of the formation,
use, and impact of queries during debugging,” in Proceedings of the Companion Publi-
cation of the 2014 ACM SIGPLAN Conference on Systems, Programming, and Applica-
tions: Software for Humanity, October 2014, pp. 51–52.

[37] T. Mens and P. Van Gorp, “A taxonomy of model transformation,” Electronic Notes in The-
oretical Computer Science, vol. 152, pp. 125–142, March 2006.

[38] J. Bézivin, “On the unification power of models,” Software & Systems Modeling, vol. 4,
no. 2, pp. 171–188, May 2005.

[39] J. Bézivin and O. Gerbé, “Towards a precise definition of the OMG/MDA framework,” in
Proceedings of the 16th IEEE International Conference on Automated Software Engi-
neering, November 2001, p. 273.

[40] T. Kühne, “Matters of (meta-) modeling,” Software & Systems Modeling, vol. 5, no. 4, pp.
369–385, December 2006.

[41] K. Czarnecki and S. Helsen, “Feature-based survey of model transformation approaches,”
IBM Systems Journal - Model-Driven Software Development, vol. 45, no. 3, pp. 621–
645, July 2006.

[42] “MDA guide version 1.0.1,” 2003, accessed: 09-02-2015. [Online].
Available: http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_
MDA_Guide_v1.0.1.pdf

[43] “Unified modeling language (OMG UML) infrastructure version 2.4.1,” 2013, accessed: 09-
02-2015. [Online]. Available: http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

[44] “Unified modeling language (OMG UML) superstructure version 2.4.1,” 2013, accessed:
09-02-2015. [Online]. Available: http://www.omg.org/spec/UML/2.4.1/Superstructure/
PDF/

[45] “Meta object facility (MOF) version 2.4.1,” 2013, accessed: 09-02-2015. [Online].
Available: http://www.omg.org/spec/MOF/2.4.1/PDF

202

http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.omg.org/spec/MOF/2.4.1/PDF

[46] C. Atkinson and T. Kühne, “Profiles in a strict metamodeling framework,” Science of Com-
puter Programming, vol. 44, no. 1, pp. 5–22, July 2002.

[47] “Meta object facility (mof) 2.0 query/view/transformation (QVT) version 1.2,” 2015,
accessed: 09-02-2015. [Online]. Available: http://www.omg.org/spec/QVT/1.2

[48] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model transformation tool,” Sci-
ence of Computer Programming, vol. 72, no. 1-2, pp. 31–39, June 2008.

[49] E. Syriani and H. Vangheluwe, “A modular timed model transformation language,” Software
& Systems Modeling, vol. 12, no. 2, pp. 387–414, May 2013.

[50] P. Stevens, “Bidirectional model transformations in QVT: semantic issues and open ques-
tions,” Software & Systems Modeling, vol. 9, no. 7, pp. 7–20, January 2010.

[51] J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus, and F. Fouquet, “Mashup of
metalanguages and its implementation in the Kermeta language workbench,” Software
& Systems Modeling, vol. 14, no. 2, pp. 905–920, May 2015.

[52] T. Mayerhofer, P. Langer, M. Wimmer, and G. Kappel, “xMOF: Executable dsmls based
on fUML,” in Proceedings of the6th International Conference on Software Language
Engineering, October 2013, pp. 56–75.

[53] M. Hibberd, M. Lawley, and K. Raymond, “Forensic debugging of model transformations,”
in Proceedings of the 10th International Conference on Model-Driven Engineering Lan-
guages and Systems, 2007, pp. 589–604.

[54] M. V. Zelkowitz, “Reversible execution,” Communications of the ACM, vol. 16, no. 9, p.
566, September 1973.

[55] B. Ramesh, C. Stubbs, T. Powers, and M. Edwards, “Requirements traceability: Theory and
practice,” Annals of Software Engineering, vol. 3, no. 1, pp. 397–415, January 1997.

[56] M. Ducasse, “Coca: an automated debugger for C,” in Proceedings of the 21st International
Conference on Software Engineering, May 1999, pp. 504–513.

[57] “Systems and software engineering – vocabulary,” ISO/IEC/IEEE 24765:2010(E), pp. 1–
418, Dec 2010.

[58] J. Engblom, “A review of reverse debugging,” in Proceedings of the 4th System, Software,
SoC and Silicon Debug Conference, September 2012, pp. 1–6.

[59] A. Potanin, J. Noble, and R. Biddle, “Snapshot query-based debugging,” in Proceedings of
the 6th Australian Software Engineering Conference, April 2004, p. 251.

203

http://www.omg.org/spec/QVT/1.2

[60] J. K. Czyz and B. Jayaraman, “Declarative and visual debugging in Eclipse,” in Proceedings
of the 5th Workshop on Eclipse Technology eXchange at OOPSLA, October 2007, pp.
31–35.

[61] M. Martin, B. Livshits, and M. S. Lam, “Finding application errors and security flaws using
PQL: A program query language,” in Proceedings of the 20th ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages & Applications, October,
2005, pp. 365–383.

[62] M. F. van Amstel, M. G. J. van den Brand, and A. Serebrenik, “Traceability visualization in
model transformations with TraceVis,” in Proceedings of the 5th International Confer-
ence on Model Transformation, May 2012, pp. 152–159.

[63] P. Dhoolia, S. Mani, V. S. Sinha, and S. Sinha, “Debugging model-transformation failures
using dynamic tainting,” in Proceedings of the 24th European Conference on Object-
Oriented Programming, June 2010, pp. 26–51.

[64] M. Seifert, “Opportunities and challenges for traceable graph rewriting systems,” in Pro-
ceedings of the 3rd International Workshop on Graph and Model Transformations at
ICSE, May 2008, pp. 33–36.

[65] J.-r. Falleri, M. Huchard, and C. Nebut, “Towards a traceability framework for model trans-
formations in Kermeta,” in Proceedings of the 2nd ECMDA Traceability Workshop at
ECMDA-FA, July 2006, pp. 26–35.

[66] K. Zeng, Y. Guo, and C. K. Angelov, “Graphical model debugger framework for embedded
systems,” in Proceedings of the 13th Conference on Design, Automation and Test in
Europe, March 2010, pp. 87–92.

[67] S. V. Mierlo, “Explicit modeling of model debugging and experimentation,” in Proceedings
of Doctoral Symposium co-located with 17th International Conference on Model-Driven
Engineering Languages and Systems, October 2014, pp. 1–8.

[68] D. Lucrédio, R. P. de M. Fortes, and J. Whittle, “Moogle: A model search engine,” in
Proceedings of the 11th International Conference on Model-Driven Engineering, Lan-
guages, and Systems, October 2008, pp. 296–310.

[69] D. H. Akehurst and B. Bordbar, “On querying UML data models with OCL,” in Proceed-
ings of the 4th International Conference on The Unified Modeling Language, Modeling
Languages, Concepts, and Tools, October 2001, pp. 91–103.

204

[70] G. Bergmann, A. Hegedüs, A. Horváth, I. Ráth, Z. Ujhelyi, and D. Varró, “Integrating effi-
cient model queries in state-of-the-art EMF tools,” in Proceedings of the 50th Interna-
tional Conference on Objects, Models, Components, Patterns, C. A. Furia and S. Nanz,
Eds., 2012, pp. 1–8.

[71] G. Bergmann, Z. Ujhelyi, I. Ráth, and D. Varró, “A graph query language for EMF mod-
els,” in Proceedings of the 4th International Conference on Model Transformation, June
2011, pp. 167–182.

[72] C. Hobatr and B. A. Malloy, “Using OCL-queries for debugging C++,” in Proceedings of
the 23rd International Conference on Software Engineering, May 2001, pp. 839–840.

[73] M. Maróti, T. Kecskés, R. Kereskényi, B. Broll, P. Völgyesi, L. Jurácz, T. Levendovszky,
and A. Lédeczi, “Next generation (meta)modeling: Web- and cloud-based collabora-
tive tool infrastructure,” in 8th International Workshop on Multi-Paradigm Modeling at
MODELS, October 2014, pp. 41–60.

[74] M. Voelter, “Md* best practices,” Journal of Object Technology, vol. 8, no. 6, pp. 79–102,
September 2009.

[75] J. Corley and E. Syriani, “Modeling as a service: Scalability and performance of the cloud
architecture of atompm,” in Proceedings of 4th Internations Conference on Model-
Driven Engineering and Software Development, February 2016.

[76] S. Van Mierlo, B. Barroca, H. Vangheluwe, E. Syriani, and T. Kühne, “Multi-level mod-
elling in the modelverse,” in 8th International Workshop on Multi-Paradigm Modeling
at MODELS, October 2014, pp. 83–92.

[77] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling Frame-
work, 2nd ed. Addison Wesley Professional, December 2008.

[78] S. Kelly, K. Lyytinen, and M. Rossi, “MetaEdit+ a fully configurable multi-user and multi-
tool CASE and CAME environment,” in Proceedings of the 8th International Confer-
ence on Advanced Information Systems Engineering, May 1996, pp. 1–21.

[79] S. Hiya, K. Hisazumi, A. Fukuda, and T. Nakanishi, “CLOOCA : Web-based tool for do-
main specific modeling,” in Join Proceedings of the MODELS’13: Invited Talks, Demos,
Posters, and ACM SRC, October 2013, pp. 31–35.

[80] B. Combemale, J. Deantoni, M. V. Larsen, F. Mallet, O. Barais, B. Baudry, and R. France,
“Reifying concurrency for executable metamodeling,” in Proceedings of the 6th Inter-
national Conference on Software Language Engineering, October 2013, pp. 365–384.

205

[81] J. Gallardo, C. Bravo, and M. A. Redondo, “A model-driven development method for collab-
orative modeling tools,” Journal of Network and Computer Applications Special Issue
on Trusted Computing and Communications, vol. 35, no. 3, pp. 1086–1105, May 2012.

[82] F. Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. Iovino, and A. Pierantonio, “MDE-
Forge: An extensible web-based modeling platform,” in Proceedings of the 2nd Inter-
national Workshop on Model-Driven Engineering on and for the Cloud at MoDELS,
September 2014, pp. 66–75.

[83] M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems. Springer Science
& Business Media, 2011.

[84] L. Lúcio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. M. K. Selim, E. Syriani, and
M. Wimmer, “Model transformation intents and their properties,” Software & Systems
Modeling, pp. 1–38, 2014.

[85] “IEEE 610-12.1990 IEEE standard glossary of software engineering terminology,” https:
//standards.ieee.org/findstds/standard/610.12-1990.html.

[86] Z. Ujhelyi, A. Horváth, and D. Varró, “Dynamic backward slicing of model transforma-
tions,” in Proceedings of the 5th International Conference on Verification & Validation,
April 2012, pp. 1–10.

[87] K. Androutsopoulos, D. Clark, M. Harman, J. Krinke, and L. Tratt, “State-based model
slicing: A survey,” ACM Computing Surveys, vol. 45, no. 4, pp. 53:1–53:36, August
2013.

[88] D. Di Ruscio, D. S. Kolovos, and N. Matragkas, “Scalability in model-driven engineering:
BigMDE ’13 workshop summary,” in Proceedings of the 1st International Workshop on
Scalability in Model-Driven Engineering at STAF, June 2013, pp. 1:1–1:2.

[89] L. Burgueño, J. Troya, M. Wimmer, and A. Vallecillo, “Parallel in-place model transforma-
tions with LinTra,” in Proceedings of the 3rd International Workshop on Scalability in
Model-Driven Engineering at STAF, July 2015, pp. 52–62.

[90] G. Szárnyas, B. Izsó, I. Ráth, D. Harmath, G. Bergmann, and D. Varró, “Incquery-d: A
distributed incremental model query framework in the cloud,” in Proceedings of the
17th International Conference on Model-Driven Engineering, Languages, and Systems,
October 2014, pp. 653–669.

[91] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra, J. S. Cuadrado, J. De Lara,
I. Ráth, D. Varró, M. Tisi, and J. Cabot, “A research roadmap towards achieving scal-
ability in model-driven engineering,” in Proceedings of the 1st International Workshop
on Scalability in Model-Driven Engineering at STAF, June 2013, pp. 2:1–2:10.

206

https://standards.ieee.org/findstds/standard/610.12-1990.html
https://standards.ieee.org/findstds/standard/610.12-1990.html

[92] E. Bousse, T. Mayerhofer, B. Combemale, and B. Baudry, “A generative approach to define
rich domain-specific trace metamodels,” in Proceedings of the 11th European Confer-
ence on Modelling Foundations and Applications, July 2015, pp. 45–61.

[93] E. Syriani, H. Vangheluwe, and B. LaShomb, “T-core: A framework for custom-built model
transformation engines,” Software & Systems Modeling, vol. 14, no. 3, pp. 1215–1243,
July 2015.

[94] T. Horn, C. Krause, and M. Tichy, “The transformation tool contest 2014 movie database
case,” in Proceedings of the 7th Transformation Tool Contest at STAF, July 2014, p. 93.

[95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., 1995.

[96] B. Combemale, X. Crégut, and M. Pantel, “A design pattern to build executable DSMLs and
associated V&V tools,” in Proceedings of the 19th Asia-Pacific Software Engineering
Conference, December 2012, pp. 282–287.

[97] J. Tatibouët, A. Cuccuru, S. Gérard, and F. Terrier, “Formalizing execution semantics of
UML profiles with fUML models,” in Proceedings of the 17th International Conference
on Model Driven Engineering, Languages, & Systems, October 2014.

[98] “Semantics of a foundational subset for executable UML models, v 1.1,” Object
Management Group, August 2013, last accessed: 5/17/2016. [Online]. Available:
http://www.omg.org/spec/FUML/1.1/

[99] S. Maoz, J. O. Ringert, and B. Rumpe, “Addiff: Semantic differencing for activity dia-
grams,” in Joint Proceedings of the 19th ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering and the 13th European Software Engineering Conference,
September 2011, pp. 179–189.

[100] S. Maoz and D. Harel, “On tracing reactive systems,” Software & Systems Modeling, vol. 10,
no. 4, pp. 447–468, October 2011.

[101] Á. Hegedüs, I. Ráth, and D. Varró, “Replaying execution trace models for dynamic model-
ing languages,” Periodica Polytechnica Electrical Engineering and Computer Science,
vol. 56, no. 3, pp. 71–82, March 2012.

[102] E. A. Aboussoror, I. Ober, and I. Ober, “Seeing errors: Model-driven simulation trace visu-
alization,” in Proceedings of the 15th International Conference on Model-Driven Engi-
neering, Languages, and Systems, October 2012, pp. 480–496.

207

http://www.omg.org/spec/FUML/1.1/

[103] A. Chiş, T. Gîrba, and O. Nierstrasz, “The moldable debugger: a framework for develop-
ing domain-specific debuggers,” in Proceedings of the 7th International Conference on
Software Language Engineering, October 2014, pp. 102–121.

[104] B. Meyers, R. Deshayes, L. Lucio, E. Syriani, H. Vangheluwe, and M. Wimmer, “Pro-
mobox: A framework for generating domain-specific property languages,” in Proceed-
ings of the 7th International Conference on Software Language Engineering, October
2014, pp. 1–20.

[105] F. Hilken, L. Hamann, and M. Gogolla, “Transformation of UML and OCL models into
filmstrip models,” in Proceedings of the 7th International Conference on Model Trans-
formations, October 2014, pp. 170–185.

[106] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus, “Does code decay?
assessing the evidence from change management data,” IEEE Transactions on Software
Engineering, vol. 27, no. 1, pp. 1–12, Jan. 2001.

[107] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering questions during a pro-
gramming change task,” IEEE Transactions on Software Engineering, vol. 34, no. 4, pp.
434–451, July 2008.

[108] T. D. LaToza and B. A. Myers, “Developers ask reachability questions,” in Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering, May 2010, pp.
185–194.

[109] B. G. Glaser and A. L. Strauss, The discovery of grounded theory: strategies for qualitative
research, 1st ed. Aldine Publishing Company, 1967.

[110] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal, “A taxonomy of tool-
related issues affecting the adoption of model-driven engineering,” Software & Systems
Modeling, pp. 1–19, 2015.

[111] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory study of how
developers seek, relate, and collect relevant information during software maintenance
tasks,” IEEE Transactions on Software Engineering, vol. 32, no. 12, pp. 971–987, Dec
2006.

[112] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D. Fleming, “How pro-
grammers debug, revisited: An information foraging theory perspective,” IEEE Trans-
actions on Software Engineering, vol. 39, no. 2, pp. 197–215, Feb 2013.

[113] T. Boren and J. Ramey, “Thinking aloud: Reconciling theory and practice,” IEEE Transac-
tions on Professional Communication, vol. 43, no. 3, pp. 261–278, Sep 2000.

208

Appendices

209

APPENDIX A
IRB CERTIFICATES

210

211

	ABSTRACT
	DEDICATION
	LIST OF ABBREVIATIONS
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Tool Support and Debugging for MDE
	Supporting Debugging in a Heterogeneous, Distributed Environment
	Challenges and Potential Impact for Distributed Debugging Tool Support
	Supporting Distributed Debugging

	Structure of the Dissertation
	Collaborative Modeling
	Omniscient Debugging for MDE
	How Developers Debug

	Background and Motivation
	Model-Driven Engineering
	Model: The Object of MDE
	Introducing Meta-Models and Meta-Meta-Models
	A Brief Introduction to MTs
	Defining Executable Models

	Debugging Techniques
	Language and Basic Tool Support
	Tracing
	Stepwise Execution and Breakpoints
	Omniscient Debugging
	Query-based Debugging

	The State of Debugging in MDE
	Language and Basic Tool Support
	Tracing
	Stepwise Execution and Breakpoints
	Omniscient Debugging
	Query-based Debugging

	Supporting Collaboration in a Cloud-based MDE Environment
	Introduction
	Collaboration Scenarios in Multi-View Modeling
	Multi-User Single-View (1 in Figure 3.1)
	Multi-View Single-Model (2 in Figure 3.1)
	Multi-View Multi-Model (3 in Figure 3.1)
	Single-View Multi-Model (4 in Figure 3.1)

	Design Goals and Concerns
	Responsiveness
	Distinct View and Mode of Interaction
	Distinct Mode of Interaction
	Managing Conflicting Requests

	Multi-View Modeling in AToMPM
	Client
	Modelverse Kernel
	Controllers

	Evaluating the AToMPM Architecture in Collaboration Scenarios
	Experimental Setup
	Experiments Evaluating Collaboration Scenarios
	Results
	Discussion
	Threats to Validity

	Related Work
	Conclusion

	Omniscient Debugging for Model Transformations
	Introduction
	Background and Related Work
	Omniscient Debugging for MDE
	Tracing in MDE
	AToMPM

	An Illustrative Omniscient Debugging Scenario
	Transformation Details
	Omniscient Debugging Scenario

	Omniscient Debugging for Model Transformations
	Execution Traversal Features for Omniscient Debugging
	Collecting a History of Execution
	Traversing a History of Execution
	Recognizing Patterns of Change
	Efficient Omniscient Traversal Using MacroSteps
	Maintaining Scope in History
	Supporting Omniscient Debugging in Other Modeling Platforms

	Study Design - Evaluating Efficiency and Scalability of AODB
	Research Questions
	Debuggers and Model Transformations used in Evaluation
	Measures Used in the Evaluation
	Configuration of Experimental Platform
	Data Collection and Analysis
	Threats to Validity

	Results - Evaluating Efficiency and Scalability of AODB
	Is there a significant difference in execution time between executing a model transformation with omniscient debugging versus stepwise execution? (RQ 1)
	Is there a significant difference in execution time between executing a model transformation with or without macro steps? (RQ 2)
	Is there a significant difference in execution time between the iterateSteps and iterateElements algorithms? (RQ 3)
	At what point does omniscient debugging outperform restarting a model transformation in terms of total execution time? (RQ 4)
	What is the effect of changes and steps on memory consumption in history? (RQ 5)
	What is the impact of history on total memory consumption? (RQ 6)

	Discussion - Evaluating Efficiency and Scalability of AODB
	Is there a significant difference in execution time between executing a model transformation with omniscient debugging versus stepwise execution? (RQ 1)
	Is there a significant difference in execution time between executing a model transformation with or without macro steps? (RQ 2)
	Is there a significant difference in runtime between the iterateSteps algorithm and the iterateElements algorithm? (RQ 3)
	At what point does omniscient debugging outperform restarting a model transformation in terms of total execution time? (RQ 4)
	What is the effect of changes and steps on memory consumption in history? (RQ 5)
	What is the impact of history on total memory consumption? (RQ 6)
	Evaluating the efficiency and scalability of the technique

	Conclusions

	MultiDimensional Omniscient Debugging for xDSMLs
	Introduction
	Model Debugging
	Debugging Approaches
	Sample xDSML
	Example Debugging Scenario

	Efficient and Advanced Omniscient Debugging for xDSMLs
	Overview of the Approach
	Execution Engine
	Domain-Specific Trace Metamodel
	Trace Constructor
	Generic Trace Metamodel
	State Manager
	Domain-Specific Trace Manager
	Generic Multidimensional Omniscient Debugger

	Tooling for Omniscient Debugging
	The GEMOC Studio
	Omniscient Debugging in the GEMOC Studio

	Evaluating Efficiency and Scalability of a Generative Approach to Omniscient Debugging for xDSMLs
	Research Questions and Experimental Setting
	Data Collection and Analysis
	Results and Discussion

	Related Work
	Omniscient Debugging in MDE
	Trace Visualization and Debugging in MDE
	Domain-Specific Execution Traces in MDE

	Conclusion

	How Developers Debug
	Introduction
	Background and Related Work
	QBD Systems
	Query Types
	Exploring the Debugging Process

	Exploratory Study of Query Formation, Use, and Impact
	Study Procedure and Setting
	Bug Reports
	Demographics
	Data Collection
	Data Analysis
	Threats to Validity

	Observations and Discussions Regarding Queries During a Software Debugging Task
	Do developers form queries during debugging tasks? (RQ 1)
	What types of queries are formed by developers during debugging tasks? (RQ 2)
	What leads developers to generate new queries and how do they relate to previous queries? (RQ 3)
	Which (if any) observed aspects of queries correlate with successful debugging task completion? (RQ 4)

	Conclusion

	Conclusion & Future Work
	Collaborative Modeling
	Omniscient Debugging for MTs and xDSMLs
	Exploring Query Formation and Impact
	Perspectives on Future Research
	User Study of Omniscient Debugging for MTs
	Exploring Query Formation and Impact for MDE
	Exploring Tool Support and the Debugging Process
	Efficient, Distributed Storage and Processing of Models

	REFERENCES
	Appendices
	IRB Certificates

