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ABSTRACT

Software maintenance and evolution are the most costly and time consuming ac-

tivities during the software development life cycle. One of the biggest challenges

of software evolution is to adapt a software system to the ever-changing require-

ments from users or operating environments. An ideal goal is to encapsulate these

requirements into a high-level abstraction, which can be used to drive large-scale

adaptation of the underlying software implementation. Model-Driven Engineering

(MDE) is one of the enabling techniques that support this objective, in that it allows

the domain experts or application designers to synthesize various software artifacts

from high-level models that represent domain concepts or system design logic. The

state-of-the-art MDE techniques, however, lack support for advanced processes and

constructive methods involved within the context of the evolution of software systems.

With respect to large legacy systems written in disparate programming languages,

the primary problems of evolution are the difficulty of adapting the legacy source

to match the evolving requirements specified in the corresponding models and the

incapability of developing and applying evolutionary tasks in a modular way.

In order to overcome such difficulties, this dissertation introduces a Model-Driven

Aspect Adaptation (MDAA) framework that unites the MDE and Aspect-Oriented

Software Development (AOSD) approaches to support modular software evolution

driven by changing requirements. AOSD offers an advanced technique that supports

invasive adaptation by weaving aspect modules that encapsulate the evolutionary

crosscutting changes into the software system. By combining MDE and AOSD, the

evolutionary change requirements are specified in the high-level aspect models, which
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in turn drive the generation of the low-level aspect code used to perform legacy

system evolution. This way, the whole software evolution process is performed in a

modular manner, which enables the changeability, comprehensibility and independent

development of the evolved implementation.

The dissertation provides two case studies to demonstrate the applicability and

benefit of the approach, according to two distinct instantiations of the MDAA frame-

work. One is based on the paradigm of Domain-Specific Modeling (DSM), which

leverages a DSM modeling environment, a model transformation engine and a pro-

gram transformation system to provide evolution support for legacy systems from the

high-level modeling abstraction that depicts the application domain concepts. An-

other case study is based on a more general modeling mechanism – UML activity

modeling. An Aspect-Oriented Activity Modeling (AOAM) approach is implemented

to facilitate modular evolution for UML activity models. In addition, the aspect mod-

els drive the generation of the corresponding AspectJ code, which in turn performs

the evolutionary adaptation of the underlying legacy source.
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CHAPTER 1

INTRODUCTION

Software permeates all aspects of our lives. It spans from small personal embed-

ded devices (e.g., mobile phones and digital watches) to large enterprise solutions

(e.g., avionics and automobiles systems), from human-centered applications (e.g.,

computer-aided design systems and e-commerce service platforms) to autonomous

systems (e.g., robot software and self-managed networks). The proliferation of soft-

ware in daily life has increased the level of responsibility placed on software appli-

cations [60, 176]. Nevertheless, software often inevitably falls short of expectations

as demands for new requirements increase. New user requirements or improved ex-

ecution environments demand additional functionality that makes existing software

applications obsolete. This is called software aging [144] – a phenomenon that occurs

when software applications fail to meet the changing needs and environments. In

order to overcome the negative effects of software aging, future requirements will ne-

cessitate new strategies to support the requisite adaptations across various software

artifacts (e.g., documentation, design models, source code and test cases) [25, 132].

According to Bennett and Rajlich [29], software evolution is a type of software

maintenance task that takes place at the later stage of the software development

life cycle after the initial development was accomplished successfully. The goal of

evolution consists of adapting the software application to the ever-changing, often

unanticipated requirements from users or operating environments. It should be noted

that software evolution is different than revolution. It is assumed that software and

1
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its evolved new version are more similar than different. Software revolution, on the

contrary, often refers to the activity of wiping out the old software and rewriting or

even redesigning a new solution.

Software evolution is characterized by its high cost and slow speed of implementa-

tion. Numerous investigations have shown that the relative cost for maintaining soft-

ware and managing its evolution represents more than 90% of its total cost [59, 135].

One study showed that about 65% of software evolution activities were found to be

perfective maintenance tasks (i.e., new user/functionality requirements) [121] and

another study found that about 75% of the evolution cost was spent for providing

adaptive enhancements (i.e., changing environment requirements) [182]. About two

decades ago, there were an estimated 120 billion lines of source code being main-

tained, primarily COBOL and FORTRAN programs [180]. Gartner estimates that

there are over 230 billion lines of COBOL and RPG code in existence with 5 bil-

lion added annually. This dissertation is intended to address the issue of software

evolution by providing an initial experimentation on legacy system evolution with

advanced software engineering techniques.

1.1 Challenges in Software Evolution

As observed by Lehman [119], continuous change is the first law of software evo-

lution, i.e., “software that is being used must be continually adapted or it becomes

progressively less satisfactory.” Because of this intrinsic nature of software, the need

for software to evolve constantly poses stiff challenges for software engineers. The

investigation of software evolution has received considerable attention in the research

literature. The workshop on “Challenges in Software Evolution (ChaSE)” [56] was

particularly dedicated to identifying substantial obstacles to software evolution re-

search and practice, and to propose and discuss challenges in software evolution.

As summarized in [130] and [132], eighteen different categories of challenges were
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identified during the workshop, among which a representative list of the most impor-

tant challenges contains:

1. Supporting Model Evolution

Most state-of-the-art evolution techniques and supporting tools are primarily

focused on source code. For instance, program transformation [27, 40] and

program refactoring [71, 142] are the two well-known techniques that are both

applied to the program representation of the software for facilitating evolu-

tion. Much less evolution support can be found at the design and modeling

stages. With more adoption of Model-Driven Engineering (MDE) techniques

(e.g., Domain-Specific Modeling (DSM) [80] and UML modeling [38]), models

are becoming first-class citizens during the development process. As shown in

Figure 1.1, during the evolution process, there exists some difference, ∆M (i.e.,

maintenance delta as defined in [26]), between the old models and the new ones,

which capture additional system requirements. Models can be evolved under

the same modeling paradigm (i.e., the meta-level specification that defines the

valid syntax and semantics of models) or driven by the modeling paradigm evo-

lution. As the size of system models grow, techniques and tools that automate

complex change evolution are urgently needed.

Figure 1.1: Model Evolution
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2. Supporting Legacy Evolution

In contrast to modern software systems that are usually derived from a higher

level of abstraction via advanced techniques and have built-in support for easy

extension and modification (e.g., MDE offers system extensibility through high-

level models), legacy systems are often manually written with limited or no

support for evolution. Often, business requirements are expressed by source

code that is hardcoded deep within an application. It is a great challenge to

maintain and evolve such systems in terms of their low-level implementation,

because even a small modification in the requirements may trigger drastic man-

ual changes in large portions of the source code [83]. Legacy evolution is usually

accomplished through source code evolution, as shown in Figure 1.2.

Figure 1.2: Legacy Evolution

3. Supporting Co-evolution

Co-evolution, also called coupled transformation, is defined by Lämmel [115] as:

“two or more artifacts of potentially different types are involved, while transfor-

mation at one end necessitates reconciling transformations at other ends such

that global consistency is reestablished.” In a software system that contains

multiple software artifacts (e.g., documentation, design models, source code
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and test cases), co-evolution techniques are indispensable for maintaining the

fidelity of the whole system. A typical co-evolution scenario, as shown in Figure

1.3, is concerned about the consistent evolution between the high-level abstract

models and the low-level source code. An advanced mechanism is needed to

map the model changes (∆M) to the source code changes (∆S) and enforce the

conformity between the models and underlying code.

Figure 1.3: Models and Source Code Co-Evolution

With the assistance of state-of-the-art MDE techniques, source code evolution

is usually performed through modification of the existing models, from which a

new application will be regenerated completely. Consequently, the application



6

source is actually replaced instead of updated. A challenge arises when the

MDE approach is to be applied to literally several hundred billion lines of legacy

source [181] in production use today 1. Reproducing a large code base each time

is extraordinarily expensive and inefficient, especially when the evolutionary

changes are applied incrementally with most of the source remaining unaffected.

Thus, complete regeneration is not always a plausible solution for source code

evolution when applied to existing legacy applications, nor is it feasible or even

possible for very large systems.

To apply model-based techniques to large legacy systems, it is beneficial to

have an approach that is transformational (i.e., one that actually modifies the

source code representation) rather than translational (i.e., one that generates

the source code) 2. However, support for parsing and invasively transforming

legacy source code from high-level models is not well-represented in the research

literature. This is because of the following challenges:

(a) It is often the case that a slight change in the system requirements would

necessitate extensive modifications that are widely spread over a vast sec-

tion of the source code. With the DSM approach, this situation can be

mitigated by providing a Domain-Specific Modeling Environment (DSME)

that is customized for the domain experts so that they are able to manip-

ulate the system at a higher level of abstraction, instead of the low-level

source code. The desired result is to achieve modularization such that

a change in a design decision is isolated to one location within the model

[79]. However, this approach alone cannot solve the problem because small

changes in the models might still necessitate drastic changes throughout

1The key difference here is between modeling and generation of brand new (also known as “green-
field”) applications, versus the application of modeling to support evolution of legacy systems with
existing code.

2The difference between transformational and translational approaches will be further illustrated
in Chapter 2.
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the source code. The question remains as to how the underlying existing

legacy source is to be modified from the models. It is one of the key chal-

lenges to maintain the fidelity between the mapping of model properties

and the corresponding source code.

(b) Many legacy systems are usually large (e.g., hundreds of thousands, or

even millions of lines of source code) and represented by a variety of pro-

gramming languages. In order to transform such diverse systems, different

parsers are needed for each language. In addition, if support for a new

language is required, an individual new parser for this particular language

must be necessarily included in the transformation toolsuite. Develop-

ing industrial-scale parsers to support all languages, and integrating them

within the modeling tool, is prohibitively time-consuming (if not unfeasi-

ble) [116].

(c) Even if a mature parser is available and applicable for handling all of the

languages in the underlying source, a full-featured program transformation

engine is also required in order to perform the invasive [19] adaptations to

the large legacy source base. Using a program transformation system is

also an arduous task and requires skills that many programmers do not

possess.

This dissertation is devoted to addressing these three challenge problems in the

software evolution area by using advanced software engineering techniques. Before

the elaboration of the approach, the criteria first must be identified for evaluating the

quality of the software evolution techniques.
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1.2 Criteria for Software Evolution

A long-standing goal of software engineering is to construct software that is

easily modified and extended. A desired result is to achieve modularization such

that a change in a design decision is isolated to one location. During the soft-

ware development process, modularization represents a design rationale that con-

cerns decomposing software systems into a set of manageable building blocks, or

modules. Representative examples of modular software development techniques are

object-oriented design and programming [155] (i.e., modularization by classes or ob-

jects), Component-Based Software Engineering (CBSE) [100] (i.e., modularization by

components), Service-Oriented Architecture (SOA) [58] (i.e., modularization by ser-

vices), and Aspect-Oriented Software Development (AOSD) [2] (i.e., modularization

by crosscutting concerns or aspects).

The goal of modular software development is to improve the flexibility and com-

prehensibility of a software system while reducing its development time. In order

to achieve this goal, the system must be modularized using certain criteria, such as

changeability, comprehensibility and independent development, as promoted by David

Parnas in the early 1970s in his influential paper “On the Criteria to Be Used in De-

composing Systems into Modules” [143]. These three criteria were originally created

for the software development process. However, it is interesting to note that they are

also suitable to be used for evaluating the quality of software evolution techniques.

• Changeability

In a highly modularized system, changeability typically means that individual

modules should be able to change without radical impact to the rest of the

system. A key enabler is information hiding, i.e., hiding the design decisions

that are likely to change and thus protecting other modules from modification

if the design decisions are changed. However, no matter how well a system is
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decomposed into loosely-coupled modules, there always exist some evolutionary

requirement concerns that cut across the chosen modularization mechanism.

This is generally referred to as the problem of “the tyranny of the dominant

decomposition” [177], from which most of the modularization mechanisms suf-

fer, because they only allow a single means of decomposition. In the software

evolution process, it is indispensable to provide support for encapsulating these

crosscutting concerns into isolated modules such that changes to these concerns

can be conducted in a localized manner.

• Comprehensibility

Comprehensibility is another major objective of modular development. It offers

the possibility of studying the system one module at a time. The whole system

can therefore be better designed, developed and analyzed, because the system

is better understood at a higher level of abstraction. The concept of abstraction

is complementary to that of information hiding, in that it presents a simplified

view of something – depicting only the relevant aspects and ignoring irrelevant

details. Comprehensibility is also a crucial factor in the software evolution pro-

cess in that high-level evolutionary requirements need to be well-understood

and thus systematically translated into the low-level change adaptation. As

stated by Favre [62], “large scale software evolution should be driven by much

higher levels of abstraction.” This necessitates intrinsic encapsulation and ab-

straction of the evolutionary changes such that different changes can be studied

and specified individually.

• Independent Development

In a large software system, the total development time can be shortened and

the cost can be reduced if separate groups are able to work on each module

concurrently with little communication. Independent development is extremely
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useful during the software evolution process. As the complexity of a system

increases, different types of evolutionary changes may require different evolution

techniques. Also, different parts of the system may exhibit different rates of

change [131]. By dividing evolution tasks into individual modules that can be

developed and maintained by different groups, the whole evolution process can

be sped up considerably and the complexity of the evolution can be reduced

drastically.

The above three criteria, when applied to the software evolution process, all point

to one principle – modular evolution. In this dissertation research, evolution is treated

as just another type of software development task. Similar to modular development,

modular evolution enables the system maintainer to develop and apply evolutionary

changes in a modular way. Each module encapsulates one kind of change requirement

and may be designed and programmed independently. Advanced composition tech-

niques are thus needed to integrate these evolution modules into the base system to

produce the new version of the evolving system. Aspect-oriented software develop-

ment (AOSD) [2] is such a key enabling technology that supports modular evolution

to the greater extent. In AOSD, the unit of modularity is called an aspect, which en-

ables the modularization of concerns such as evolutionary change requirements that

usually cut across multiple types and objects. The composition mechanism provided

by AOSD is referred to as aspect weaving, whereby aspects are woven into the base

modules by a specific AOSD compiler called an aspect weaver. The general concepts

of AOSD will be further introduced in Chapter 2.

1.3 Research Objectives

The research described in this dissertation investigates advanced techniques that

provide modular evolution solutions for addressing the three challenge problems de-

scribed in Section 1.1. An overview of the research is shown in Figure 1.4. First,
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Figure 1.4: Research Overview

an aspect-oriented approach is applied to support the modular evolution of models

at a higher level of abstraction. Then, a model-driven aspect adaptation approach

is initiated by uniting the model-driven approach with aspect-oriented techniques to

provide the systematic co-evolution between the models and the corresponding source

code. Co-evolution is also the key enabler to support the evolution of the legacy code

from the high-level change requirements that are represented by models. The overall

research is conducted with an aim to satisfy the three evolution criteria as described

in Section 1.2, i.e., changeability, comprehensibility and independent development.

Specifically, the contributions described in this dissertation can be summarized by

the following two objectives:

• Aspect-Oriented Activity Modeling

The first part of the research is focused on supporting evolution for a particular

kind of model, i.e., UML activity model. Activity modeling is a well-adopted

design and specification paradigm that is usually employed to describe the con-

trol flow and data flow of a system using a set of graphical notations. When a
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new evolution task requires modification that spreads across multiple different

actions in an activity model, it may be difficult to comprehend and change.

Aspect-Oriented Activity Modeling (AOAM) offers a solution to handle such

kind of evolutionary change (i.e., crosscutting concerns) by introducing some of

the concepts and methods of Aspect-Oriented Software Development (AOSD)

into the activity modeling space. During the evolution process, each evolution-

ary requirement can be encapsulated within a specific abstraction module called

an aspect, which intends to break “the tyranny of the dominant decomposition”

[177] of the activity modeling constructs. The key benefit of AOAM is to en-

able the model engineer to study, specify, analyze and change one requirement

individually with great flexibility (i.e., apart from the original model and the

other requirement modules). The aspects are automatically integrated with the

original model using an underlying model composition engine called an aspect

model weaver. The research contributions lie in the introduction of a specific

modeling language that allows the model engineer to specify activity aspects,

as well as the implementation of an aspect weaver that supports different types

of composition mechanisms.

• Model-Driven Aspect Adaptation

The second part of the research advocates a synergy of Model-Driven Engi-

neering (MDE) and AOSD for facilitating model/code co-evolution as well as

legacy evolution. A generic framework called Model-Driven Aspect Adapta-

tion (MDAA) has been developed to support this objective. Using the MDAA

framework, a modeling paradigm is pre-defined to express high-level domain

requirements or application design concepts.

During the system evolution phase, the business users or domain experts specify

the new requirement changes in a high-level aspect modeling language (e.g.,

AOAM). Those models are then interpreted to generate low-level aspect code
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that will invasively modify a large cross-section of the corresponding code base

by an underlying code weaver. The model engineers do not need to understand

the accidental complexities of the aspect code or the source code written in

programming languages. That process is transparent and is driven by an aspect

code generator that maintains the consistent mappings between the models and

the source code.

When MDAA is leveraged to assist in legacy evolution, the legacy source first

needs to be extracted into the modeling space by a model extractor, based

on a modeling paradigm that is appropriate to describe the domain knowl-

edge or design architecture of the legacy system. The problem of legacy evo-

lution can be addressed by the solution of model/code co-evolution provided

by the MDAA framework. Such an approach offers a capability for performing

wide-scale source adaptation of legacy systems from requirements properties

described in high-level models. The key contribution of this research lies in

the construction of the framework that is composed of a collection of methods,

components, modeling artifacts and tools. Two instantiations of the frame-

work are implemented for supporting different styles of modeling paradigms for

evolving legacy systems. In addition, an aspect mining technique is presented

to support aspect identification on high-level models, which intends to improve

software modularization and allows a legacy system to benefit from AOSD.

1.4 Outline

The rest of the dissertation is structured as follows. A background introduction

of the related literature is provided in Chapter 2. The chapter starts by giving an

overview of the existing software restructuring techniques, which are foundations that

support software evolution. Then, the concept of MDE is introduced, including two

different implementation approaches. One is based on the generic UML standard,



14

and another is based on DSM. Lastly, the technical approaches supporting AOSD are

given, both at the modeling level and at the programming level.

Chapter 3 introduces the details of implementing the AOAM approach that sup-

ports modular evolution for UML activity models. A brief overview of the activity

metamodel definition is given, upon which the aspect-activity specification is defined

via the UML profiling mechanism. The approach is illustrated through a case study

based on an industry inspired problem.

Chapter 4 presents the implementation of the MDAA framework. The frame-

work is instantiated to accommodate two different modeling approaches, i.e., UML

and DSM. The experimental results and comparison between the two approaches are

provided to evaluate the feasibility of the approach. The aspect mining approach on

models is also presented in this chapter.

Related work is discussed in Chapter 5, including research on applying aspect-

oriented techniques to models and approaches that support legacy evolution.

Lastly, Chapters 6 and 7 offer future extensions of this research, as well as sum-

mary remarks.



CHAPTER 2

BACKGROUND

This chapter introduces some relevant background material as preliminaries for

the following chapters. An overview of software restructuring approaches is first

presented, which prepares the introduction of the key enabling techniques that are

involved in the Model-Driven Aspect Adaptation (MDAA) research, as will be demon-

strated in Chapters 3 and 4. These enabling techniques are reverse engineering,

Model-Driven Engineering (MDE), model transformation, program transformation

and Aspect-Oriented Software Development (AOSD).

2.1 Software Restructuring

Research into software restructuring techniques, and the resulting tools supporting

the underlying science, has enhanced the ability to modify the structure and function

of a software representation in order to address changing stakeholder requirements

[86]. As shown in Figure 2.1, software restructuring techniques can be categorized

as either horizontal or vertical. The research into horizontal transformation concerns

modification of a software artifact at the same abstraction level. This is the typical

connotation when one thinks of the term transformation [185], with examples be-

ing model transformation [32] and particularly aspect weaving at a higher modeling

level [1], as well as program transformation [183] and Aspect-Oriented Programming

(AOP) at the implementation level [109]. Horizontal transformation systems often

15
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lead to invasive composition of the software artifact [19]. In contrast, vertical transfor-

mation is typically more appropriately called translation (or synthesis) [185] because

a new artifact is being synthesized from a description at a different abstraction level

(e.g., reverse engineering [47], generative programming [52], and specifically model-

driven software synthesis [139]).

Software restructuring techniques are essential enablers to support software evo-

lution. The following sections will introduce a number of techniques that fall into

these two distinct types of software restructuring approaches.

Figure 2.1: Two Types of Software Restructuring

2.2 Reverse Engineering

Whether it is for fixing a glitch or rebuilding a machinery engine, it is possible

to retrieve much of the information (mostly undocumented) by deconstructing and

observing individual pieces of the whole. This is the basic concept behind reverse

engineering – taking apart an object to see how it works in order to understand it,

improve it or build a copy out of it. Reverse engineering is used for many reasons:
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for document discovery, for product analysis, for learning purposes, for improving the

product or making it interoperable with other systems/platforms.

The practice, taken from older industries, is now frequently adopted in the area of

computer hardware and software. Software reverse engineering involves “the process

of analyzing a subject system to create representations of the system at a higher

level of abstraction,” as defined in [47]. More specifically, it is referred to as “going

backwards through the software development cycle” [97]. In this sense, the output

of the implementation phase (i.e., mostly referred to as the source code form of the

system) is reverse engineered back to the requirements analysis and design phase, in an

inversion of the traditional waterfall model [152] that represents forward engineering.

Reverse engineering is a broad term and can take many forms. In one form it

involves disassembly (i.e., translation of machine code into assembly code) or decom-

pilation (i.e., translation of the output from a compiler into source code written in a

relatively high-level programming language such as C++ or Java). In another form it

deals with design recovery, either from the source code or any other available software

artifacts. In this research, reverse engineering is applied in the latter case, in partic-

ular, to the extraction of high-level models from the examination of source programs,

as well as to the identification of crosscutting concerns (i.e., aspects) on the models.

As will be described in Chapter 4, reverse engineering is the first step toward legacy

source adaptation from evolving requirements that are specified by high-level domain

or design models.

2.3 Model-Driven Engineering

The word modeling comes from a Latin word modellus [157]. It describes a

human activity to deal with the real-world via the media of models that are essentially

abstract representations of real-world objects. The approach of using models during

the software development process has a long-standing history (e.g., the Moore and
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Mealy state machine models [128, 136] have been widely adopted since the early

1950s).

With the initiative of the de facto standard Unified Modeling Language (UML)

[38], model-based development has become more popular. Yet, many developers

consider a model as pure documentation and the relationship between models and

the actual implementation is only intentional but not formal [168]. That is, designers

put the domain requirements or design logic in models, according to which, developers

then implement the system in some programming language. Therefore, the models

and the code are under development and maintenance independently. This poses two

significant disadvantages. First, it purely depends on the developers’ interpretation to

lead to the executable implementation from the models. Additionally, every software

system is subject to change during all the phases of its life cycle. The documentation

represented in the models and the implementation codified in the source program are

inevitably out of sync and thus need to be adapted to each other scrupulously. This

is an arduous task if it cannot be automated.

Model-Driven Engineering (MDE) [31] offers a distinct approach to supporting

the development of Computer-Based Systems (CBSs). The key differentiator is that

models are not treated as pure documentation, but are first-class citizens during the

development process. MDE allows for modeling software at a much higher abstraction

level, using business concepts rather than developing on a low technical implementa-

tion level (e.g., with programming language terms such as class or function). That

is, modeling allows one to specify “what to do” instead of “how to do it.” The

whole implementation is thus completely driven or automated from the models by

the supporting model manipulation tools. With a model-driven approach, software

development not only becomes more efficient but also enables stakeholders without

programming experience to participate and contribute to the development cycle [173].

MDE is based on a classical four-layer modeling architecture [89], which is com-
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posed by four different layers or levels of abstraction. As shown in Figure 2.2, the

topmost layer (i.e., the meta-metamodel, or M3 layer) defines an abstract language

and framework for specifying, constructing and managing metamodels. It forms the

foundation for the whole architecture and conforms to itself. The metamodel, or M2

layer, is an instance of the meta-metamodel and defines a language to describe a

model. The models of the underlying system, represented by concepts defined in the

corresponding metamodel at the M2 layer, are at the model or M1 layer. Finally,

at the M0 layer are objects from the real-world system. The architecture also pro-

vides a framework that enables exchanging metamodels and models among different

metamodeling environments, which is critical for tool interoperability. The four layer

modeling architecture can also be put into a modeling pyramid [64], as the lower layer

is dependent on and more concrete than the higher level of abstraction.

Figure 2.2: Four-Layer Modeling Architecture



20

2.3.1 Unified Modeling Language

The growing number of heterogeneous models that are used to facilitate software

development has divided the modeling community into two different camps. One

camp advocates special-purpose models that tend to focus on individual application

domains. An approach called Domain-Specific Modeling (DSM) [82] is a development

paradigm that supports this objective. Another camp is interested in general-purpose

models that tend to address a wider range of problems that span all different aspects in

various systems. The Unified Modeling Language (UML) [38] is the de facto standard

that falls into this camp. This section covers some basic ideas in UML. The concepts

of DSM will be introduced later in Section 2.3.3.

UML was first initiated by the Object Management Group (OMG) in 1997 as

a general-purpose modeling language for describing the architecture of software sys-

tems. Later in 2003, the growing requirement of MDE necessitated the advent of a

major revision of UML. UML is the de facto standard formalism that can be used in

a wide range of application domains. As such, it contains many diagrams and con-

structs that represent various perspectives of a system from different viewpoints. The

static structural view captures the structure of the system using objects, attributes,

operations and relationships. Examples are class diagrams and component diagrams.

The dynamic behavior of the system is illustrated by collaborations among objects

and changes to the internal states of objects. Examples are sequence diagrams, ac-

tivity diagrams and state machine diagrams.

UML’s definition is based on the Meta-Object Facility (MOF) [93], which is a M3

layer meta-metamodel that is used to build various types of metamodels, including the

UML metamodel. An example of the MOF/UML implementation of the four-layer

modeling architecture is illustrated in Figure 2.3.

It is generally recognized that there is no single universal modeling language that

is suitable to cover every perspective for every domain. Therefore, UML is equipped
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Figure 2.3: A UML Example of the Four-Layer Modeling (Adapted from [95])
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with a built-in extension mechanism to accommodate additional concepts beyond

those that are defined in the UML specification. There are two options to carry out

the extension – the constrained approach via profiles or the augmented approach via

MOF.

The constrained approach is realized by the UML profile mechanism. A UML

profile provides a generic extension mechanism for customizing UML models for par-

ticular domains (e.g., financial or healthcare) and platforms (e.g., J2EE or .NET). It

is defined by a collection of stereotypes, tagged values, and constraints that extend

elements of the UML metamodel. A model engineer can adopt and implement the

profile-based approach with all the generic UML tools that offer the profile feature.

This is in contrast to the heavyweight approach that relies on the augmentation of the

UML metamodel via the MOF specification (i.e., the metamodel and model spaces

are extended), which often depends on vendors to revise their tools (unless a MOF-

based metamodeling facility is in place). However, the augmented approach does not

have the problem of restricted semantic power as exposed in the profile approach,

because model engineers are free to use MOF’s rich set of modeling mechanism to

create new modeling languages. In Chapter 3, a specific UML profile is constructed

to define an aspect metamodel for activity diagrams.

There exist a number of tools that support development, analysis, testing and

code generation of UML models. In this dissertation research, Telelogic TAU [13] was

chosen as the experimental platform to perform model specification and evolution.

Details will be presented in Chapters 3 and 4.

2.3.2 Model-Driven Architecture

Model-Driven Architecture (MDA) is the OMG’s initiative for advocating the

use of models as a complete specification of software artifacts. One of the major

objectives of the MDA is to decouple design from architecture. The design concerns
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the functional requirements while architecture provides the infrastructure through

which non-functional requirements like scalability, reliability and performance are

realized. Such separation allows the design specification and the technologies used

to realize the architecture to be constructed and changed at their own pace. In

MDA, system functionality and domain-related specifications are defined in Platform-

Independent Models (PIM) (shown in Figure 2.4) using UML (mostly UML profile).

Then, given a Platform Definition Model (PDM) (e.g., J2EE, .NET or any proprietary

frameworks and platforms), the PIM is translated to a Platform-Specific Model (PSM)

that contains the target platform’s specific concepts. The PSM may be subsequently

transformed into more PSMs, which eventually lead to the actual implementation via

code generation. Although this dissertation research is not focused on the MDA per

se, one of our future works described in Chapter 6 will investigate the leverage of the

MDA technology in terms of legacy system evolution.

2.3.3 Domain-Specific Modeling

From a modeling perspective, expressive power in software specification is often

gained by using notations and abstractions that are aligned to a specific problem

domain. According to Evans [60], “Every software program relates to some activity

or interest of its user. That subject area to which the user applies the program is the

Figure 2.4: MDA Overview
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domain of the software.” This can be further enhanced when graphical representations

are provided to model the domain abstractions. Domain-Specific Modeling (DSM)

[82, 80] techniques offer such support for customization of modeling tools that enable

domain experts to construct visual models by making use of a graphical domain-

specific language (DSL) [133] directly related to the domain concepts.

DSM is an instantiation of a broader design rationale called “Domain-Driven De-

sign (DDD),” which aims to develop software for complex needs by deeply connecting

the implementation to an evolving model of the core business concepts. It is based

on two premises [4, 60]:

1. For most software projects, the primary focus should be on the domain and

domain logic (as opposed to the particular technology used to implement the

system)

2. Complex domain designs should be based on a model.

As shown in Figure 2.5, DSM development starts with the specification of a meta-

model that represents the ontology [96] of a particular domain. That is, the meta-

model identifies the pertinent entities of the domain, as well as their various asso-

ciations and constraint rules. Once the domain has been defined, the metamodel is

then used to construct a Domain-Specific Modeling Environment (DSME) through

the phase of meta-level translation [117]. Subsequently, domain models can be cre-

ated within this DSME, using the concepts and notations that are associated with the

environment. Finally, these models need to be converted into the artifacts that are

valuable to the domain experts. This is achieved by model interpreters (also called

model compilers, or translators). A DSME may have multiple model interpreters as-

sociated with it that possess various semantic intuitions and permit synthesis or gen-

eration of different types of application artifacts. For example, one interpretation may

synthesize a model to C++ program source code, whereas a different interpretation
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Figure 2.5: Domain-Specific Modeling Development (Adapted From [140])

may synthesize to a simulation engine or analysis tool [139]. A range of tools has been

implemented in order to facilitate DSM development, such as the Generic Modeling

Environment (GME) [68], DOME [101], MetaEdit+ [179] and Microsoft’s Software

Factory tools [85].

A comparison can be made between the metamodel and its instance model to

that of a programming language definition and a particular program written in that

language [24]. The metamodel defines the schema specification for expressing the

correct syntax and static semantics of instantiations. Furthermore, a model inter-

preter, which captures the dynamic semantics of the domain models and generates

application artifacts, is akin to a compiler [17] that generates machine code from a

programming language. Table 2.1 compares DSM with the similar concepts in the

areas of programming language and database definition.
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Table 2.1: Comparison of DSM to Programming Language, and Database Definition

Domain-Specific
Modeling

Programming
Language
Definition

Database Schema
Definition

Information
Schema
Definition

Meta-metamodel
(e.g., MOF)

Backus-Naur Form
(BNF)

Data Definition
Language (DDL)

Schema
Definition

Metamodel for a
specific domain (e.g.,
Petri Net)

Grammar for a spe-
cific language (e.g.,
Java)

Table, constraint, and
stored procedure
definitions for a
specific domain (e.g.,
payroll database)

Schema
Instance

Domain model (e.g.,
Petri Net model of a
teller machine)

A program written in
a specific language

Intension of a
database at a specific
instance in time (e.g.,
the June 2008 payroll
instance)

Schema
Execution

Model interpreter Language compiler or
interpreter

Transactions and
behavior of stored
procedures in an
executing application

The Generic Modeling Environment

Model-Integrated Computing (MIC) [175] has been refined at Vanderbilt Univer-

sity over the past decade to assist with creation and synthesis of computer-based

systems. In MIC, multiple-view models are used to capture the information relevant

to the system, represent the dependencies and constraints among different modeling

views, and automatically synthesize different kinds of software artifacts. As a variant

of the Model-Driven Architecture (MDA) [73], a key application area for MIC is those

domains that tightly integrate the computational structure of a system and its phys-

ical configuration (i.e., embedded system domains such as avionics and automotive
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software). In such systems, MIC has been shown to be a powerful tool for providing

adaptability in frequently changing environments.

A specific instance of the type of DSM supported by MIC is implemented using the

Generic Modeling Environment (GME) [68]. The GME is a UML-based metamod-

eling environment that can be configured and adapted from meta-level specifications

(i.e., the modeling paradigm) that describe the domain. When using the GME, a

modeling paradigm is loaded into the tool to define an environment containing all of

the modeling elements and valid relationships that can be constructed in a specific

domain [117]. A set of generic modeling concepts are supported to represent entities,

relationships and attributes. An atom is the most basic type of entity that cannot

have any internal structures. A model is another type of entity that can contain

other modeling types. A connection represents the relationship between two entities.

Attributes are used to record state information and are bound to atoms, models, and

connections. Model interpreters supply an ability to generate other software artifacts

(e.g., code or simulation scripts) from the models.

As an example, Figure 2.6 illustrates a simplified Petri Net [147] domain as im-

plemented in the GME. The left part of the figure indicates a basic metamodel to

represent Petri Nets. The metamodel is described in a UML class diagram [38] with

OCL constraints [188] (not shown). It defines places and transitions of a Petri Net

(PN) [147], as well as various visualization attributes. From this metamodel, a new

PN modeling environment is generated (i.e., bootstrapped from within the GME).

The middle of the figure defines an instance of the metamodel that represents a so-

lution to the dining philosopher’s problem [54] as specified in the Petri Net modeling

language. The GME permits model interpreters to be associated with specific domains

as tool plug-ins. A model interpreter traverses the internal structure of a model and

generates different artifacts during the interpretation. The GME provides an API for

accessing the internal model structure to permit interpreters to be written in C++ or
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Figure 2.6: A Petri Net Domain in GME
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Java. The bottom of Figure 2.6 symbolically represents the generated artifacts from

the interpretation of the dining philosopher’s model; these artifacts could be source

code, an XML representation of the model, or some other translation.

Although the example in Figure 2.6 was chosen for simplicity, the GME has been

used to create very rich modeling environments containing thousands of modeling

components [118]. The GME is a core tool for several dozen research projects with

hundreds of users. In this research, the GME is selected as one of the experimental

platforms to perform legacy evolution from high-level domain models. However, the

presented approach is domain-independent and tool-independent, in the sense that it

can be customized to many different domains and tools within any DSM development

context.

2.3.4 DSM Evolution

Based on different layers of specification, as shown in Figure 2.5, current DSM

techniques are intended to provide support for two types of software evolution: appli-

cation evolution and environment evolution. This section outlines these two categories

and reveals the fundamental issues involved within each.

Application Evolution

Application evolution (as shown on the bottom of Figure 2.5) is concerned with

the evolution of the artifacts in an application domain. The issue of application

evolution within the context of DSM corresponds to the model and code co-evolution

challenge as described in Section 1.1 of Chapter 1. That is, a robust transformation

mechanism is needed as the bridge to enforce the conformity between models and

the underlying source code. Although program transformation systems have been

under development for several decades, there is little investigation into the merging of

mature program transformation systems within model-driven tool-suites. In Chapter
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4, a Model-Driven Aspect Adaptation (MDAA) approach is presented to facilitate

application evolution in terms of legacy source via the union of model-driven and

aspect-oriented techniques.

Environment Evolution

A special case of application evolution occurs when the changes are made to the

DSME itself, as denoted on the mid-left of Figure 2.5. Changing stakeholder require-

ments often necessitate the need for evolution of the modeling language associated

with a domain. The evolution of a domain requires that changes be made to the un-

derlying metamodel. As shown in Figure 2.7, with the evolution of the metamodel, the

models and underlying source code that were defined under the previous metamodel

are often made invalid under the new metamodel. There exists some difference, ∆MM ,

between the old metamodel and the new one, which captures the evolving features

of the domain. For the sake of reusability, ∆MM must reflect the difference between

the old and new instance models (annotated as ∆M) such that the new models can

preserve the original semantics under the new metamodel definition.

The problem of schema evolution is common across many software development

activities (e.g., database schema evolution [120]). To understand this phenomenon

better, consider the evolution of a programming language and a compiler defined for

a specific definition of the language. If the language were to evolve (e.g., Ada 83

to Ada 95) to a new syntax and semantics, the previous programs may no longer

be valid and the previous compilers will not work under the new definition. After a

programming language definition changes, it may be necessary to evolve the previous

programs defined by the language (e.g., when older programs use deprecated features

in previous Java libraries).

Regarding the notion of model evolution in the presence of metamodel schema

changes (i.e., the automatic mapping from ∆MM to ∆M), work has already been done
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Figure 2.7: Evolution of Models and Source Code in Terms of Metamodel Changes
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by others to address this problem [103, 167]. The typical approach is to perform model

migration from one representation schema to another using a model transformation

engine, as will be described in the next section.

2.4 Model Transformation

Model transformation is at the core of MDE [159] and represents the process of

taking one or more source models as input to produce one or more target models as

output by following a set of transformation rules. A significant amount of research

has been performed on supporting model evolution by means of various model trans-

formation technologies, as noted in several surveys on model transformation [53, 129].

2.4.1 Model Migration

Sprinkle [166, 167] first generalized and formalized the concepts of model migration

(MM) to solve the domain environment evolution problem. Model migration is defined

as:

“a total function that operates on a model database, M, and produces a model

database, M’, using a set of m-functions (i.e., partial functions that operate on a

model, m, which is contained in M). In the absence of a defined m-function for m,

the model is isomorphically copied into the model database, M’.” [166]

This definition indicates:

• Each to-be-modified model is associated with a unique mapping function.

• Mapping functions are provided ONLY for the to-be-modified models.

• A model is kept unchanged in the absence of the mapping function.

In MM, the mapping pattern is specified by a visual model composed of entities

from the old and new metamodels along with an algorithmic specification for the
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model transformation. Figure 2.8 illustrates the form of the MM solution, which

operates on a set of domain models to produce another domain model set that will

comply with the syntax and semantics of a distinct new metamodel.

Figure 2.8: Form of the Model Migration solution (Adapted from [166])

2.4.2 GReAT

The Graph-REwriting And Transformation Language (GReAT) [16, 106] is a gen-

eral model transformation language, following a similar mapping specification as in

the MM solution. The difference between model migration (evolution) and transfor-

mation is that migration assumes a metamodel and its evolved form are more similar

than different; thus, mapping functions are only provided for the differences of two

models. However, a transformation approach often converts one model in entirety

to another, which requires mapping functions for all of the model elements in the

ontology [166].

Graph grammars and graph rewriting [36] have been developed for more than two

decades as techniques for formal modeling and tools for high-level programming. The

goal of GReAT is to allow the operational specification of rather complex model trans-

formations by utilizing well-known graph grammar and graph transformation [153]

methodologies. GReAT adopts a very expressive language to specify patterns, graph

rewriting rules and transformation control flow. Besides multiplicities for graph nodes,



34

the language introduces multiplicities for edges in graph rewriting rules for simultane-

ous manipulation of sets of rule matches. Additionally, it offers sophisticated control

structures, such as sequences, non-determinism, hierarchical expressions, recursion,

and branching. The metamodel for all GReAT input graphs (and thus individual

nodes and edges) is UML.

The GReAT language is supported through a graph rewriting engine implemented

as a plug-in within the GME. The engine works as an interpreter – it takes the model

transformation in the form of a data structure, and interprets and executes the model

transformation on an input graph to produce an output graph. Because GReAT

makes extensive use of the Universal Data Model (UDM) [21] that contains a generic

set of APIs, it is suitable to handle all types of model transformations.

2.4.3 ATL

The Atlas Transformation Language (ATL) [103], which is developed under the

Eclipse Model-to-Model transformation (M2M) project [7], aims to define and per-

form model transformations based on several proposed standards of the Object Man-

agement Group (OMG) - the Meta-Object Facility (MOF) and the Query/View/

Transformation (QVT) [94] standards [104]. The ATL is a model transformation lan-

guage that serves as both a metamodel and a textual concrete syntax. It is also a

hybrid of declarative and imperative languages. The declarative constructs specify

the mappings between source and target patterns according to the source and target

metamodels, respectively. When the declarative approach falls short in specifying

complex rules, ATL offers an action block with imperative constructs that are used

to implement sequences of instructions, such as assignments, loops and even exter-

nal code invocations. An ATL transformation specification is composed of rules that

define how source model elements are matched and navigated to create and initialize

the elements of the target models.
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The underlying operational mechanism of ATL is shown in Figure 2.9. Tab is a

transformation program whose execution results in automatic creation of the model

Mb from Ma. These three entities are all model specifications that conform to MMt,

MMb, and MMa MOF metamodels, respectively. MMt corresponds to the abstract

syntax of the transformation language. ATL is a key building block that defines model

transformation facilities in the ATLAS Model Management Architecture (AMMA)

platform [35], a framework that offers basic facilities to manipulate models, and onto

which a variety of different modeling tools may be plugged.

Figure 2.9: Model Transformation through ATL (Reprinted from [104], with permis-
sion from Frédéric Jouault)

2.5 Program Transformation

Program transformation is about changing one program into another. It is used

in a wide range of software engineering areas such as compilation, refactoring, evo-

lution, and optimization. The objective of a program transformation system is to

increase the productivity of programmers and reusability of programs by conducting

transformation tasks in an automated manner.
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A typical program transformation system is built on top of the chosen program

representation (e.g., parse/syntax trees or graph), the kind of transformation it spe-

cializes for (e.g., compilation/decompilation or refinement, compile-time or run-time

transformation), as well as the mechanism adopted for specifying and executing trans-

formations (e.g., term/functional rewriting or strategy-based) [185]. Although a num-

ber of techniques have been investigated and developed to support certain kinds of

transformations, very few have made it into practice in terms of efficiency and scal-

ability. The next section will introduce a practical, commercial program transforma-

tion system that has proven to be applicable to large-scale applications for software

analysis, modification, and enhancement.

2.5.1 Design Maintenance System

As a type of program transformation technique, source-to-source transformation

systems provide the ability to parse many different programming languages and to

perform transformations on the abstract syntax trees (ASTs). The Design Mainte-

nance System (DMS)3 is a source-to-source transformation engine and re-engineering

toolkit developed by Semantic Designs (www.semdesigns.com). The core component

of DMS is a term rewriting engine that provides powerful pattern matching and source

translation capabilities [26, 27]. In DMS terminology, a language domain represents

all of the tools (e.g., lexer, parser, pretty printer) for performing translation within a

specific programming language. In addition, DMS defines a specific language called

PARLANSE as well as a set of APIs (e.g., Abstract Syntax Tree API and Symbol

Table API) for writing DMS applications to perform sophisticated program analysis

and transformation tasks (see Figure 2.10).

DMS provides pre-constructed domains for several dozen languages (e.g., C++,

Java, COBOL, and Pascal). Moreover, these domains are very mature and have

3In this thesis, there is a distinction between the acronyms DSM and DMS.
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Figure 2.10: DMS Overview (Reprinted from [14], with permission from Ira Baxter)

been used to parse several million lines of code, including the millions of lines of the

targeted system explored in the experimental validation plan of the research presented

in this thesis [83, 193, 195]. Utilization of mature parsers that have been tested on

industrial projects offers a solution to the evolution challenges mentioned in Section

2.3.4. Furthermore, the underlying rewriting engine of DMS provides the machinery

needed to perform invasive [19] software transformations on source code. Examples

of DMS transformation rules will be given in Section 4.2.

In addition to DMS, there are other popular program transformation systems, such

as ASF+SDF [40], TXL [49] and Stratego [186]. DMS, as well as other transformation

systems, aim to make it easier to define languages and transformations over those

languages. For the technique described in this research to have a real impact, the

ability to parse large code bases in multiple languages is essential toward providing a

framework for supporting evolution of legacy applications. For this particular reason,

DMS was chosen as the underlying program transformation system based on our

previous research collaboration with the vendor of DMS (Semantic Designs). From
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this collaboration, we were assured that DMS was capable of parsing and transforming

millions of lines of code base, which served as one of the experimental platforms for

this dissertation research.

2.6 Aspect-Oriented Software Development

Traditional software development and modularization mechanisms suffer from an

inherent problem – “the tyranny of the dominant decomposition” [177]. That is,

the system can be modularized using only one kind of decomposition mechanism at

a time, which results in a single concern (e.g., a specific functionality, requirement,

feature or task) scattered across many different modules. In other cases, numerous

concerns may be tangled within the boundary of one single module. Such concerns

are referred to as crosscutting concerns that are hard to modularize into distinct

modules using the chosen decomposition techniques [109]. As illustrated in Figure

2.11, logging, error handling, synchronization and authorization are representative

examples of crosscutting concerns that spread across the base functionality of many

system modules.

The occurrence of tangling and scattering often leads to several negative impacts

on the software quality in terms of comprehensibility, adaptability and evolvability:

1. Discovering or understanding the representation of a specific crosscutting con-

cern that is spread over the system hierarchy is difficult, because the concern is

not localized in one single module. This limits the ability to reason analytically

about such a concern.

2. Changing concerns to reflect evolving requirements is also difficult and time

consuming, because the engineers must go into each relevant module and modify

the specific elements one by one. The change process is error-prone and affects

productivity and correctness [79]. As a real-world case study reported in [151],
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Figure 2.11: Crosscutting Concerns
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a change to the logging strategies on an Apache Tomcat server would “require

the developer to consider 47 of the 148 (32%) Java source files comprising the

core of Tomcat.” This is because the logging concern is spread over 47 different

locations without a cohesive container to modularize this concept.

Aspect-Oriented Software Development (AOSD) [2] offers a powerful technology

for handling such concerns, whereby the crosscutting is explicitly specified in a stand-

alone module called an aspect. Thus, a logging module only deals with logging and is

not tangled with other business logic. An aspect contains information about what is

the behavior of the crosscutting concern and where it is to emerge. Taking account

of such information, a specialized composition engine called an aspect weaver is re-

sponsible for integrating the crosscutting concerns represented by aspects into the

base system modules. The whole integration process is thus called aspect weaving.

As depicted in Figure 2.12, the four different concerns (i.e., logging, error handling,

synchronization and authorization) are extracted and modularized into separate as-

pects, respectively. This way, the system modules can be considered highly cohesive

in terms of the clean separation of functionality. Crosscutting concerns are no longer

distributed over different modules. Therefore, the system is easier to understand,

maintain and evolve.

AOSD can be beneficial at various levels of abstraction and at different stages

of the software life cycle. The next two sections will introduce aspect-oriented ap-

proaches at the programming language level as well as higher levels of abstraction

(e.g., the modeling level).

2.6.1 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) deals with crosscutting concerns at the

implementation level. A distinguishing characteristic of AOP is that “it allows pro-

gramming by making quantified programmatic assertions over programs written by
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Figure 2.12: Aspect Weaving



42

programmers oblivious to such assertions” [66]. The quantification lies in the abil-

ity to identify specific locations in the program that may have arisen under certain

conditions. The term obliviousness means that programmers are unaware of the fact

that their programs are interwoven by external behavior introduced by aspects. This

indicates three essential constituents of an AOP implementation:

1. The constructs to specify different kinds of conditions (or locations) during the

program execution.

2. The constructs to specify different kinds of behavior (or actions) that crosscut

the base program.

3. The mechanism to compose crosscutting behavior with the base program.

A wealth of technologies and tools are currently available that support AOP, such

as AspectJ [108], AspectC++ [165], JAC [146] and JAsCo [174]. Based on different

target programming paradigms (e.g., functional languages, object-oriented program-

ming, or component-based programming) and weaving requirements (e.g., compile-

time or run-time weaving), different technologies may adopt various approaches to

implementing the above three constituents of AOP. The next section will focus on

the introduction of AspectJ – the most popular and mature language to offer AOP

capabilities.

AspectJ

AspectJ had its genesis from the early work in 1996 by Kiczales and his team

at Xerox PARC [15], and ever since then, it has become the most widely-used AOP

implementation. It is often regarded as a general-purpose aspect language in that

it provides a rich set of constructs to capture a wide variety of different kinds of

crosscutting concerns.
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As an extension to Java, AspectJ is specifically tailored for the object-oriented

programming paradigm. It stays as close as possible to the original Java syntax and

concepts, and uses Java to implement whatever behavior an aspect should provide.

In AspectJ terminology, an aspect is a new class-like language construct that contains

several special entities:

1. Aspect

An aspect is a modular unit that implements a crosscutting concern, comprising

pointcuts, advice, and inter-type declarations. An abstract aspect contains one

or more abstract pointcuts and can be specialized by the extending aspects.

2. Pointcut

A pointcut denotes certain conditions or locations in the program flow. These

locations are referred to as join points that are well-defined points in the exe-

cution of a program. Due to the essential nature of object orientation, the join

points in AspectJ include method or constructor call or execution, the initial-

ization of a class or object, field read and write access, and exception handlers.

A pointcut is specified by a declarative expression called a pointcut designator

that is used to determine whether a given join point matches during run-time

execution. A pointcut supports quantification over the source code. A point-

cut can be declared as abstract without a body definition. Abstract pointcuts

can be specialized by providing a concrete pointcut definition in the extend-

ing aspects. This is similar to the way methods can be declared abstract and

later defined in sub-classes. Some of the primitive pointcuts and combinators

provided by AspectJ are as follows:

call(MethodPattern)

every method call join point whose signature matches MethodPattern
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execution(MethodPattern)

every method execution join point whose signature matches MethodPattern

! Pointcut

every join point not picked out by Pointcut

Pointcut1 && Pointcut2

each join point picked out by both Pointcut1 and Pointcut2

Pointcut1 || Pointcut2

each join point picked out by either Pointcut1 or Pointcut2

(Pointcut)

each join point picked out by Pointcut

cflow(Pointcut)

every join point in the control flow of each join point P picked out by

Pointcut, including P itself

cflowbelow(Pointcut)

every join point below the control flow of each join point P picked out by

Pointcut, excluding P itself

within(TypePattern)

every join point where the executing code is defined in a type matched by

TypePattern

3. Advice

Pointcuts represent where the crosscutting concerns emerge. Advice specifies the

actual implementation of a crosscutting concern. Advice binds an action body

to a pointcut, meaning that the body executes at join points that the pointcut

matches. There are three different kinds of advice. Before advice executes just

before the program execution flow reaches the join points that are picked up by

the specified pointcut. For instance, before advice on a method call would run
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before the method is invoked. Similarly, after advice runs after the join point

execution and around advice runs in place of the join point. AspectJ provides a

special reference variable, thisJoinPoint, which contains reflective information

about the current context of the join point for the advice to use.

4. Inter-type declaration

Pointcuts and advice are often used to intercept a program’s execution flow

dynamically during run-time. There is another type of weaving called an inter-

type declaration that enables a static addition to the structural hierarchy of

the program. It allows a programmer to add fields, methods, or interfaces to

existing classes from within the aspect. A new type of class can also be declared

to extend (or implement) the existing class (or interface).

There are different ways to weave aspects into the base program. Source weaving

requires access to program source files and produces source files that are augmented

with aspects. Bytecode weaving performs the weaving at the bytecode level and is able

to work with any Java program in the form of a class file. With load-time weaving,

the weaving process is defered until the point that a class loader loads a class file and

registers the class to the underlying JVM. AspectJ started with the implementation

of source-level weaving at the beginning, delivered a bytecode weaver later, and now

offers a number of mechanisms to support load-time weaving. Some research has

focused on a more advanced mechanism called dynamic AOP that enables run-time

weaving [6]. AspectJ does not currently support the full feature of run-time weaving,

though it is claimed that advice can be enabled and disabled in aspects dynamically.

In this dissertation research, AspectJ has been used as one of the underlying aspect

languages supported in the Model-Driven Aspect Adaptation (MDAA) framework

that will be introduced in Chapter 4. Examples of aspect specification in AspectJ

will be given in Section 4.3.
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2.6.2 Aspect-Oriented Modeling

As AOP handles crosscutting concerns at the programming language level, Aspect-

Oriented Modeling (AOM) denotes a technology that focuses on specifying crosscut-

ting concerns at a higher level of software abstraction. As a motivating example for

AOM, Figure 2.13 illustrates a model of a system that contains concerns that cut

across the modeling hierarchy. The top of the figure shows the interaction among

components in a mission-computing avionics application (detailed introduction will

be given in Chapter 4). The middle of the figure shows the internal representation

of two components, which reveals the data elements and other constituents intended

to describe the infrastructure of component deployment and the distribution middle-

ware.

Among the components in Figure 2.13 are a lock element, a logging element, a

condition element and two data elements (circled). Each of these modeling elements

represents a system concern that is spread across the model hierarchy. The lock

element (solid gray circle) identifies a system property that corresponds to the syn-

chronization strategy distributed across the components. The collection of elements

(dotted gray circle) defines the recording policy of a black-box flight data recorder.

Some data elements also have an attached precondition (dotted black circle) to assert

a set of valid values when a client invokes the component at run-time.

To analyze the effect of an alternative design decision manually, model engineers

must change the synchronization or flight data recorder policies, which requires mak-

ing the change manually at each component’s location. The partial system model in

Figure 2.13 is a subset of an application with more than 6,000 components. Manually

changing a policy will strain the limits of human ability in a system that large. As

an alternative solution, AOM offers a powerful mechanism to automate such change

evolution in a modular way. The next section will introduce an AOM weaver that is

tailored for addressing the crosscutting issue in models.
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Figure 2.13: Crosscutting Concerns in Models (From [79])
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Constraint-Specification Aspect Weaver

The Constraint-Specification Aspect Weaver (C-SAW) is an AOM engine imple-

mented as a plugin component for GME. C-SAW unites the ideas of AOSD [2] with

MIC [175] to provide better modularization of model properties that are crosscut-

ting throughout multiple layers of a model [77]. C-SAW offers the ability to ex-

plore numerous modeling scenarios by considering crosscutting modeling concerns as

aspects that can be rapidly inserted and removed from a model. This permits a

model engineer to make changes more easily to the base model without manually

visiting multiple locations in the model. Until C-SAW, these transformations and

translations have largely been performed manually in practice. Additional informa-

tion about C-SAW, including software downloads and video demos, is available at:

http://www.cis.uab.edu/gray/Research/C-SAW.

The C-SAW model transformation engine is depicted in Figure 2.14. In this figure,

a source model serves as input to the model weaver, and the output is a target model

that has a crosscutting concern dispersed across the original base. To perform this

process, the transformation specifications describe the binding and parametrization of

strategies to specific entities in a model. A transformation specification is composed

of an aspect and several strategies. An aspect is the starting point of a transformation

process. A strategy is used to specify elements of computation and the application of

specific properties to the model entities.

The specification aspects and strategies are based on a special underlying lan-

guage, called the Embedded Constraint Language (ECL) [84]. The ECL is an ex-

tension of the Object Constraint Language (OCL) [188], and provides many of the

common features of OCL, such as arithmetic operators, logical operators, and numer-

ous operators on collections (e.g., size, forAll, exists, select). ECL also provides special

operators to support model aggregates (e.g., models, atoms, attributes), connections

(e.g., connpoint, target, refs) and transformations that provide access to modeling
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Figure 2.14: C-SAW Overview (From [79])

concepts that are within the GME (e.g., addModel, setAttribute, removeNode).

ECL is distinct from OCL with respect to side-effects and model manipulation

features. OCL is a declarative language and cannot support operations to create,

update or remove the entities within a model, whereas the use of ECL requires the

capability to introduce side-effects into the underlying model. This is needed because

the strategies often specify transformations that must be performed on the model.

This requires the ability to make modifications to the model as the strategy is applied.

ECL supports an imperative transformation style with a number of operations that

can modify the structure of the model.

Figure 2.15 lists an example of the aspect specification in ECL for enforcing certain

constraints to the data element in the component model as described previously

in Figure 2.13. The Precondition aspect (line 22 to 26) specifies that all the data

elements named data2 must be associated with a precondition defining the valid range
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1 defines Precondition, InsertPrecondition2Data, InsertPrecondition;

2

3 strategy InsertPrecondition2Data(data, condition, expr: string)

4 {

5 atoms()->select(a | a.kindOf() == data)->

6 InsertPrecondition(condition, expr);

7 }

8

9 strategy InsertPrecondition(condition, expr string)

10 {

11 declare parentModel : model;

12 declare dataAtom, conditionAtom : atom;

13

14 dataAtom := self;

15 parentModel := parent();

16 conditionAtom := parentModel.addAtom("Condition", condition);

17 conditionAtom.setAttribute("Kind", "Precondition");

18 conditionAtom.setAttribute("Expression", expr);

19 parentModel.addConnection("AddCondition", conditionAtom, dataAtom);

20 }

21

22 aspect Precondition()

23 {

24 rootFolder().findFolder("Component").models().

25 InsertPrecondition2Data("data2_", "Data2Cond", "value>100");

26 }

Figure 2.15: The ECL Aspect Code for Inserting Precondition Element to the
Component Model in Figure 2.13 (From [79, 195])

of values (value>100). The strategies InsertPrecondition2Data and InsertPrecondition

implements such a functionality and is invoked within the aspect under the context of

component models. More examples and detailed explanation will be given in Chapter

4, where C-SAW is used as an underlying model transformation engine to perform

aspect weaving within the Model-Driven Aspect Adaptation (MDAA) framework.

Motorola WEAVR

Motorola has previously developed an industry-strength weaver [50] for enabling

aspect-oriented weaving for transition-oriented state machine models [51, 191, 192].
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The Motorola WEAVR follows the AspectJ approach in terms of language construct

definition (e.g., aspect, pointcut, join point and advice). Based on the UML concepts

that actions are executed during a transition from one state to another state, two

distinct types of join points are supported in the WEAVR: action and transition

join points, referring to the actions and transitions declared in the state machines,

respectively. All these constructs are denoted by corresponding UML stereotypes

that are defined by a UML profile. By weaving aspects into executable UML models,

the platform-specific models and the source code can be generated in an automated

manner. In addition, the WEAVR provides a join point visualization engine that

allows the effects of an aspect on a state machine model to be visualized and validated.

A simulation engine is also enabled that allows aspect models to be simulated, without

breaking the modular structure of aspects. The aspect-oriented activity modeling

approach, as will be introduced in Chapter 3, extends the Motorola WEAVR to

support aspect weaving for activity-based behavioral models.

In addition to C-SAW and the Motorola WEAVR, a number of AOM approaches

have been proposed based on different modeling paradigms and different purposes to-

wards aspect-orientation. In contrast to C-SAW, most of these approaches are based

on UML, such as the Theme/UML Approach [48], the Aspect-Oriented Design Model

(AODM) [169] and Aspect-Oriented Architecture Models (AAM) [72]. However, very

few proposals have tool support for aspect weaving. As stated in a recent survey

paper [156], only two out of eigth UML-based AOM approaches have real tool imple-

mentation, which indicates that research on AOM is still in its early phases and has

a long way toward maturity. As a step toward this direction, an AOM approach for

UML activity modeling will be presented in the next chapter. The implementation

details and representative examples will also be given for illustrating the approach.
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ASPECT-ORIENTED ACTIVITY MODELING

Activity modeling is a core part of the UML that is frequently used to specify

the dynamic behavior of a system. Activity models are often applied to document

workflows in a system (e.g., the logic of a single operation, the scenario of a use

case, or the flow logic of a business process). In UML 1.x [90], activity models were

defined as a special case of state machines, mainly for describing a computational

process in terms of control flow and data flow in state-transition-oriented systems.

Since the adoption of the new UML 2.x specification [95], activity modeling has been

redesigned and based on Petri Net (PN) [147] semantics instead of state machines,

which “widens the number of flows that can be modeled, especially those that have

parallel flows” [95]. It is believed that with such enriched expressive power and

well-defined semantics, activity modeling will gain more popularity in the design and

development of complex software systems.

Due to the increasing complexity of software systems, it is often the case that

a single activity may be scattered over several different activity modules. Such ac-

tivities are crosscutting concerns that are hard to modularize into separate units

using existing activity modeling constructs. With the intent to support separation of

crosscutting concerns involved in activity specification, this chapter applies an AOSD

approach to activity modeling. An aspect-oriented extension to activity modeling

is introduced for encapsulating crosscutting concerns in the constructs of aspects,

which are systematically integrated with the base activities by an underlying aspect

52
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model weaver. This work extends the Motorola state machine weaver (as introduced

in Chapter 2) with support for activity models. The goal is to provide designers

with more coherent and manageable activity modules through the clean separation

of concerns.

The remainder of this chapter is structured as follows. Section 3.1 gives a brief

overview of activity modeling, including the activity metamodel definition. Based on

the activity metamodel, Section 3.2 presents an aspect-oriented extension to activity

modeling. The underlying aspect composition mechanism is described in Section 3.3.

Finally, a case study that illustrates the Aspect-Oriented Activity Modeling (AOAM)

approach is given in Section 3.4, which specifies a timeout handler aspect for a network

fault management system.

3.1 Activity Modeling

Activity modeling is intended to specify the behavioral aspects of a system. It

is typically used to define a computational process in terms of the control flow and

data flow among its constituent actions. This section provides a basic background

introduction to activity modeling in order to set the context for our aspect-oriented

enhancement to activity modeling.

Figure 3.1 shows the simplified activity metamodel in the Meta-Object Facility

(MOF) [93] specification. An activity contains various kinds of nodes connected by

edges to form a complete flow model. The sequencing of actions is controlled by

control flow and object flow edges. An activity node can be an action, an object

node or a control node. Some of the common kinds of actions are listed in Figure

3.1. An operation action may reference an activity specification, which means that

the invocation of the operation involves the execution of the referenced activity. The

send signal action and accept event action deal with signal and event transmission,

respectively. An object node holds data that flow through the activity model. A pin
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Figure 3.1: Simplified Activity Metamodel (Adapted from [95])
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is an object node that can be attached to actions for expressing inputs and outputs.

Control nodes are responsible for routing control and data flows in an activity. For

instance, decision node and merge node are used to designate conditional behavior,

but fork node and join node are used to delineate parallel behavior. Activities can

be divided into different partitions that represent various kinds of activity groups

for identifying actions that have some characteristics in common. Activity actions

can also be grouped into an interruptible region, within which all execution can

be terminated if an interrupting activity edge is leaving the region. The graphical

symbols that are used in the activity modeling diagram are shown in Table 3.1.

As an illustrative example, an order processing activity model is specified in Figure

3.2. Two concurrent flows are involved. One focuses on the normal procedure for order

processing, including order receiving (indicated by the Receive Order action), order

processing (i.e., the Op Process Order action), payment handling (denoted by the

Request Payment send signal action and Payment Confirmed accept event action) and

order shipment (i.e., the Ship Order action). Another flow indicates that during the

same period of time that the first flow proceeds, the order will be cancelled whenever

a Cancel Order Request event is received.

3.2 Aspect-Activity Model Specification

As the complexity of the described system grows, activity specifications also in-

crease in complexity. This growth requires lifecycle maintenance for the concerns

that crosscut different activity modules. For instance, a new requirement asking for

a tracing capability that logs all the information of all operation actions results in

appending a trace activity to every operation action. The trace activity is a cross-

cutting concern that is hard to modularize into a single activity or action unit using

existing activity modeling techniques. Such a concern can be extremely difficult to

comprehend and change due to its scattering nature.
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Table 3.1: Graphical Symbols in Activity Diagram

Node Type Symbol

Initial Node

Final Node

Fork Node

Join Node

Merge Node

Decision Node

Operation Action Node

Send Signal Action Node

Accept Event Action Node

Accept Time Event Action Node
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Figure 3.2: An Order Processing Activity Model (Adapted from [95])

The application of aspect-oriented approaches [1, 2] to activity modeling provides a

solution to support this kind of modularization by encapsulating crosscutting concerns

in a specialized unit called an aspect. Following the Aspect-Oriented Programming

(AOP) [109] terminology, two fundamental constructs are involved in an aspect model.

First, we need to specify “where” (i.e., the locations, or join points) in the models

the crosscutting behavior emerges. Based on the activity metamodel definition, which

defines an activity as being composed of a sequence of actions, join points refer to

various kinds of actions that are allowed in activity modeling. A group of particular

join points are represented in a pointcut, which defines a pattern to identify matching

join points.

Second, we need to specify “what” (i.e., the behavior) makes up the crosscutting

concern. In activity modeling, the concern behavior is implemented using an activity
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model referenced by a special action called advice. An advice may contain a pro-

ceed operation action that refers to the current join point (i.e., a proceed is used to

invoke the original matched join point action). An advice can also obtain the join

point information through a set of predefined reflective APIs (e.g., getSignature() and

getKind() operations as shown in the thisJoinPoint class in Figure 3.3).

3.2.1 Aspect-Activity Metamodel

The aspect-activity modeling concepts are defined upon a light-weight extension

of UML through profiles and stereotypes [95]. As shown in Figure 3.3, an aspect

is a special activity that encapsulates a crosscutting concern. Pointcuts and advice

are denoted as special actions that refer to different types of actions as defined in

the activity metamodel. An aspect-activity model contains a binding diagram that

defines which advice is bound to which pointcuts. Those bindings are realized by

Figure 3.3: Aspect-Activity Modeling Profile



59

a stereotype named binds, which is a special association 4 that denotes the binding

relationship between two modeling elements (i.e., the advice action and pointcut

action in the aspect-activity metamodel definition). Aspects are deployed to the

base activity models through a special association stereotyped by the name crosscuts.

The thisJoinPoint class defines a set of APIs that are used to retrieve the reflective

information of the matched join points, including the signature of an operation action

and the kind of the join point action (e.g., operation action, send signal action or

accept event action).

As an illustrative example, Figure 3.4 specifies a trace aspect model, with an aspect

called TracingAspect applied to a base activity model. The purpose is to keep track

of certain actions involved throughout the execution of the base activity flow. This

aspect contains one advice that is bound to four different pointcuts. The pointcut

Cancel * denotes all of the operation actions whose names start with Cancel (e.g.,

the Cancel Order operation action in Figure 3.2). The underlying pattern matching

is based on the node type mapping as well as the regular expression mapping against

the pointcut name. The pointcut Op Process Order refers to an operation action that

has one parameter of the type Order. Request Payment and Cancel Order Request

match to a send signal action and an accept event action, individually. The advice

action Trace is implemented by an activity model, which extends the original join

point action (denoted by proceed) with an operation action that logs the join point

information (e.g., action signature or operation parameter value). An aspect model

can also introduce inter-type members [108] that are to be inserted into the join point

action implementations (e.g., the integer flag declared in TracingAspect).

The aspect and the base models are automatically composed together through a

specialized aspect weaver for activity models, as indicated in Figure 3.5. The weaving

procedure starts with instantiating advice based on the pointcuts they are bound to.

4In UML, an association specifies a semantic relationship that can occur between typed elements.
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Figure 3.4: Tracing Aspect, Pointcuts and Advice

All of the calls to the reflective API are resolved based on the current join point.

The proceed actions are replaced by the original join point action. These advice

instances are in turn woven into the base models in one of the following two ways:

wrapping or inlining. In the wrapping mode, the original join point action is replaced

by an operation invocation to the corresponding advice instance. For the inlining

version, the contents of all the advice instances are directly embedded into the base

activity models. Figure 3.6 illustrates the inlining version of the composed activity

model for the order processing example as shown in Figure 3.2. Four join points are

matched according to the pointcut specification in Figure 3.4 and augmented with

the LogThisJoinPoint action. The aspect-activity weaving process conforms to the one

developed for aspect-oriented state machine in the current Motorola aspect weaver.
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For more details about the Motorola aspect weaver, please refer to [51, 192].

3.3 Compositions in Aspect-Oriented Activity Modeling

One of the fundamental issues in AOSD is the potential conflicts that may occur in

the presence of interactions among aspects (i.e., when multiple aspectual behaviors are

superimposed at the same join point, different composition orders may reveal various

inconsistency problems). In such circumstances, the aspects interfere with each other

in a potentially undesired manner, either due to the side-effects caused by the aspects

(e.g., several aspects change the state of the base system simultaneously) or due to

the requirements enforced by the system (e.g., the logging aspect may be applied

only in the presence of the encryption aspect because some particular systems require

Figure 3.5: Aspect Weaving on Activity Models
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all logged data to be encrypted). Durr et al. [57] use the term “semantic conflict”

to designate the aspect interference problem. In their example, a user credit check

aspect and a playlist creation aspect both select a particular method call as the join

point. Without specifying any precedence relationships between aspects, unexpected

behavior would occur. In [137], four requirements (i.e., monitoring salaries, checking

salary raises, database persistence and XML representation persistence) were imposed

on a personnel management system. Each of the requirements was realized by an

aspect, which would be superimposed on the same join point and may affect each

Figure 3.6: Augmented Order Processing Activity Model with the Tracing Aspect
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others’ functionality. In addition to these two cases, a number of aspect interference

examples have been described in [110, 114, 145, 162].

Several techniques have been proposed and developed to resolve or reduce as-

pect interference. For the most light-weight approach, the execution orders between

aspects are governed by declaring precedence relationships, such as in AspectJ [108]

and some aspect modeling approaches [149]. Some other approaches extend the sim-

ple precedence declaration and introduce more complex dependencies and ordering

relationships between aspects, such as [111, 137]. Aspect interactions can be identified

through static analysis on the crosscutting concerns and the base module [55, 171].

Advanced approaches require extra behavior specifications from the user for each ad-

vice [57, 145] or each aspect [114, 162]. The conflict between aspect semantics can

then be detected automatically based on the specified contracts.

The problem of aspect interference is intrinsic to every AOSD technique (i.e.,

interference is at the essence of aspects due to the focus of multiple concerns that may

crosscut at common locations). As an initial step towards resolving the interference

issue in AOAM, we adopt a light-weight approach following and extending the AspectJ

[108] notation. Aspect precedence can be specified explicitly at the modeling level in

order to reduce the occurrence of aspect interference in AOAM.

According to the distinct definition of the aspect constructs introduced in the last

subsection, two kinds of interference problems may occur during the weaving process:

advice-to-advice and aspect-to-aspect. (Note: pointcut-to-pointcut interference is

not considered in this thesis because pointcuts do not own any behavior on their

own. Research on the pointcut-to-pointcut interference is considered as part of future

work.) This section introduces precedence declarations on advice and aspects. The

explicitly specified precedence constraints reduce undesired interference at the shared

join point and will be passed to the underlying model composition mechanism to

compute a proper weaving order.
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Three distinct categories of composition mechanisms (i.e., pointcut composition,

advice composition and aspect composition) have been implemented in AOAM for

reducing aspect interference as well as facilitating aspect reuse to a large extent. In the

following sub-sections, each mechanism will be illustrated in detail. Comparisons to

the corresponding AspectJ notation are also provided, with the intent to demonstrate

the advantages of the AOAM composition approach.

3.3.1 Pointcut Composition

In AOAM, the pointcut composition semantics strictly follow the AspectJ seman-

tics. Pointcuts can be composed with Boolean operators to build other pointcuts. The

Boolean expression is specified in a separate text box within the composite pointcut

diagram. (Note: Currently, a primitive and intuitive way is adopted to represent the

pointcut compositions. However, the composition syntax can also be specified in a

graphical notation through the extensions of the pointcut metamodel definition.) The

supported Boolean operators are: AND (&&), OR (||) and NOT (!), indicating the

intersection, union and negation of the set of the join point selections, respectively.

Furthermore, AOAM also supports cflow, cflowbelow and within pointcut designa-

tors (see the AspectJ interpretation of these designators in Section 2.6.1). cflow(Point-

cut) picks out each join point in the control flow of the join points P picked out by

Pointcut, including P itself. cflowbelow(Pointcut) is similar to cflow(Pointcut) except

that the matched join points do not include P itself. within(Scope) picks out every join

point within a specific scope (e.g., class or package). In this sense, within is usually

combined with other pointcut designators, for the sake of further filtering join points.

As illustrated in Figure 3.7, CompositePointcut is constructed by two sub-pointcuts,

* Order and Cancel *, which means that CompositePointcut will pick out join points

matched by * Order (i.e., all the operation actions ending with Order) that are not

in the control flow of any join point picked out by Cancel * (i.e., any accept event
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Figure 3.7: Pointcut Composition in AOAM

action starting with Cancel ). After applying pointcut matching to the order pro-

cessing model in Figure 3.2, the resulting join points will be three operation actions:

Receive Order, Op Process Order and Ship Order.

One advantage of our approach over AspectJ is that a pointcut can be directly

referenced (e.g., through dragging and dropping in the model view) and reused in any

other aspect. AspectJ, however, only allows the abstract aspect (see Section 2.6.1 for

the explanation of abstract aspect) to be reused by inheritance. Concrete aspects

extending an abstract aspect must provide concrete definitions of abstract pointcuts.

Reusing pointcuts among multiple aspects is not possible in AspectJ.

3.3.2 Advice Composition

Advice composition binds and executes the advice instances that perform at the

same join point in a certain appropriate order. In AOAM, advice are ordered based

on the precedence relationships that are specified by the aspect developers. The

<<follows>> relationship has been implemented between advice. As shown in Figure

3.8, Advice2 follows Advice1, which means that at a particular join point, Advice1 has
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Figure 3.8: Advice Composition in AOAM

precedence over Advice2, and the instances of Advice2 will be executed closer to the

join point than the instances of Advice1 (i.e., the before actions in Advice1 instances

will always be executed prior to the before actions in Advice2 instances, and the after

actions will be carried out in the opposite order). In the absence of an ordering

constraint, the execution order of the corresponding advice instances is undefined

and controlled by the underlying AOAM weaver.

Ordering relationships specify a partial order upon the execution of a set of advice

instances. In order to obtain a composition and execution order, a topological sort

is performed on the advice. Circular dependencies among the advice are detected

when their corresponding pointcuts match to the same join point. Under such a

circumstance, the AOAM weaver will abort with an error message, indicating the

problematic advice involved in the circularity.

When executing an advice instance, the call to proceed will be redirected to the

invocation of the advice instance with the next precedence, or the computation under



67

the join point if there is no further advice instance. In the case of Figure 3.8, suppose

Pointcut1 and Pointcut2 both match a single join point (in the following, PCT replaces

Pointcut and ADV replaces Advice). The advice instantiation order at this join point

could be:

PCT1-ADV1, PCT2-ADV1, PCT1-ADV2, PCT2-ADV2

If both Advice1 and Advice2 contain a proceed action, the execution order of the

woven model at this join point would be as follows:

1. Before actions in the advice instance: PCT1-ADV1

2. Before actions in the advice instance: PCT2-ADV1

3. Before actions in the advice instance: PCT1-ADV2

4. Before actions in the advice instance: PCT2-ADV2

5. Original join point action

6. After actions in the advice instance: PCT2-ADV2

7. After actions in the advice instance: PCT1-ADV2

8. After actions in the advice instance: PCT2-ADV1

9. After actions in the advice instance: PCT1-ADV1

By comparing our advice composition mechanism with AspectJ, we believe that

our approach offers two advantages:

1. In AOAM, the concepts of pointcuts and advice are loosely decoupled. An

advice is named, which allows it to be associated with not just one, but multiple

pointcuts as long as they share compatible interfaces. Therefore, an advice can

be directly referenced (e.g., through dragging and dropping in the model view)

and reused in different aspects in a compositional way. In AspectJ, advice is
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unnamed and can only be bound to one particular pointcut. The tight coupling

between pointcuts and advice makes aspects difficult to reuse. The only way to

reuse advice in AspectJ is by means of inheritance, which is known to be more

brittle and less flexible than the composition-based solution [74].

2. In AspectJ, the precedence of advice relies completely on their textual loca-

tions in an aspect file. The underlying interpretation rules, as stated in the

AspectJ Programmers Guide [3], declare that, “for two advice within a single

aspect, if either is after advice, then the one that appears later in the aspect has

precedence over the one that appears earlier; otherwise, the one that appears

earlier in the aspect has precedence over the one that appears later.” These

rules have limitations and cannot express all composition orders, as pointed

out in [126]. Our approach resolves the above problems because there is only

one advice type (i.e., around advice) in AOAM, which decreases the complex-

ity of handling three different types (i.e., before, after and around) of advice

as in AspectJ. Furthermore, by declaring the advice precedence explicitly, the

interference between the advice is reduced.

3.3.3 Aspect Composition

Aspect composition is achieved through a deployment diagram (Figure 3.9), which

is used to bind aspects to the base models, with the precedence relationships declared.

Aspects can be bound to multiple base models through the stereotype <<crosscuts>>

(e.g., ExceptionAspect and TracingAspect are both applied to the base activity). As-

pects can also be deployed to other aspects or advice. In the absence of the <<cross-

cuts>> relationship, aspects will be applied to all the base activity models in the cur-

rent active project (e.g., LoggingAspect and EncryptionAspect). The precedence rela-

tionships between aspects can be <<follows>>, <<hidden by>> and <<dependent -

on>>. The remainder of this section explains these three concepts in detail based on
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Figure 3.9: Aspect Composition in AOAM

the example provided in Figure 3.9. The symbols that are used in the relationship

expressions between aspects are denoted in Table 3.2.

1. TracingAspect follows ExceptionAspect: TracingAspect (as defined previ-

ously in Figure 3.4 of Section 3.2.1) is used to print out signatures and parameter

values of some particular action join points. ExceptionAspect encapsulates ex-

ception detection and handling mechanisms to certain actions. The <<follows>>

relationship between these two aspects means that at a single join point, Ex-

ceptionAspect has higher precedence than TracingAspect. Therefore, all of the

advice in the ExceptionAspect have higher precedence than the ones in the

TracingAspect. In other words, the advice instantiations from TracingAspect

will be executed closer to the join point than the ones instantiated from Excep-

tionAspect. The execution order of the woven model at this shared join point

would be as follows:
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Table 3.2: Symbols for Denoting Aspect Relationships

Symbol Meaning

<− (aspect) applied to

=> implies

¬ in absence

&& and

|| or

− subtract

• Before advice instances in ExceptionAspect

• Before advice instances in TracingAspect

• Join point action

• After advice instances in TracingAspect

• After advice instances in ExceptionAspect

2. LoggingAspect is hidden by TracingAspect: LoggingAspect stores the at-

tributes and data of a particular interest into a database whenever they are

used or modified. However, the system may not always want to log everything,

such as those data that are being traced by TracingAspect. The <<hidden by>>

relationship inactivates LoggingAspect whenever it matches the same join point

as TracingAspect. The correlation between TracingAspect and LoggingAspect can

be described using the following expression:

TracingAspect => ¬ LoggingAspect

This notation means that the presence of TracingAspect implies the absence

of LoggingAspect. For each pointcut denoted as PointcutLoggingAspect in Loggin-

gAspect, the actual corresponding pointcut exposed by this particular deploy-

ment strategy is:
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PointcutLoggingAspect’ = PointcutLoggingAspect && ¬ PointcutTracingAspect

3. LoggingAspect is dependent on EncryptionAspect: The <<dependent -

on>> relationship enforces the LoggingAspect to be applied only in the presence

of the EncryptionAspect. This is enforced because some systems may require all

logged data to be encrypted (i.e., LoggingAspect will only be applied at the

join points when EncryptionAspect and LoggingAspect both match. Therefore,

LoggingAspect will be disabled at the other join points where it matches apart

from EncryptionAspect). The relationship between LoggingAspect and Encryp-

tionAspect is denoted as follows:

LoggingAspect => EncryptionAspect

This means that the presence of LoggingAspect implies that EncryptionAspect

has to be present at the same join point as well. Therefore, under this particular

condition, the actual pointcut exposed by LoggingAspect is:

PointcutLoggingAspect’ = PointcutLoggingAspect && PointcutEncryptionAspect

The resulting join point selection set for LoggingAspect is indicated by the

striped area in Figure 3.10. In addition, as illustrated in Figure 3.9, Encryp-

tionAspect also <<follows>> LoggingAspect, which forces encryption actions to

be executed closer to the join point than logging procedures.

In order to detect and collect all of the join points by traversing the whole model

in linear time, the base model is divided into several exclusive sets from the deploy-

ment diagram. The derived aspect composition order for Figure 3.9 is:
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Figure 3.10: Results of Join Point Selection for Aspect Deployment Strategy in
Figure 3.9

Base Activity <− ExceptionAspect,

TracingAspect,

LoggingAspect’,

EncryptionAspect

ALL − Base Activity <− LoggingAspect’,

EncryptionAspect

Within the scope of Base Activity, ExceptionAspect will be applied first, followed

by TracingAspect, LoggingAspect (with the new composite pointcut) and Encryp-

tionAspect. For all of the other models that are not within the scope of Base Activity

(denoted by subtracting Base Activity from ALL with a minus sign “−”), only Log-

gingAspect and EncryptionAspect will be applied. Circular and conflict relationships

among the aspects will be detected and reported when they are superimposed at the

same join point.

The advantages of our approach over AspectJ are:

1. In AOAM, aspects are explicitly deployed by means of a deployment diagram.

Aspects can be bound to different fragments of the base models; in AspectJ,

aspects are applied everywhere and the only way to apply an aspect to a certain
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scope is to restrict every pointcut specification by using the “within” keyword,

which are bound lexically to method or class names. This makes pointcuts and

aspects less reusable.

2. The semantics of the <<follows>> relationship in AOAM correspond to the

“declare precedence” form in AspectJ. In addition, AOAM is able to handle

two more dependency relationships between aspects (i.e., <<hidden by>> and

<<dependent on>>), which further restrict application of an aspect at the same

join point. In AspectJ, however, when a pointcut matches a certain join point,

the corresponding aspect is always applied.

This section introduced composition mechanisms implemented in AOAM in three

distinct categories: pointcut, advice and aspect. From our experience, we have found

that by integrating compositions at different granularity levels, the aspect expres-

siveness and reusability can be extended to a larger extent. By declaring precedence

relationships between crosscutting concerns, aspect interference can be reduced and

controlled by the aspect developers.

3.4 Case Study

To illustrate the presented approach, a case study is provided in this section that

applies a timeout handler aspect to a real-world network fault management system

using aspect-oriented activity models.

3.4.1 Background

The Intelligent Network Fault Management (INFM) system [123] is being devel-

oped within Motorola for providing solutions to manage faults in a CDMA (Code

Division Multiple Access) cellular network. One of the most important features of a

fault management system is alarm correlation, which provides functionalities to filter
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out informational alarms, report meaningful alarms that are regarded as actionable

or as requiring operator attention and provide assistance in troubleshooting. Net-

work operators rely on the alarm correlation feature to reduce the number of alarms

to a limited number that could be handled within the required time constraints.

The significant reduction, usually greater than 80% on average [124], is achieved by

correlating the alarms using patterns and hidden correlations discovered by machine

learning algorithms.

INFM carries out the alarm correlation by applying frequent pattern discovery

algorithms, which use certain parameters to control how candidate patterns are con-

structed from the learning data (i.e., alarm instances). When the number of alarm

instances is fairly large (e.g., thousands of alarms), the time complexity of the algo-

rithm increases dramatically (e.g., the computation might take from tens of minutes

to a couple of hours depending on the specific algorithms that are chosen), which

causes a violation of real-time constraints and fails to provide a prompt correlation

operation. This motivates the addition of a timeout handling capability to resolve

such failures and maintain the healthy state of the fault management system.

Figure 3.11 illustrates a fragment of the simplified activity model for specifying

the flow of the alarm correlation process logic in the INFM system. The control

flow starts with configuring the data source for streaming event data from either a

database server or an FTP site. After the connection is established, the process then

initiates the parameters for the pattern discovery algorithm. The algorithm execution

returns a list of discovered patterns among the alarm instances, such as “Alarm 1 is

related to Alarm 2 and Alarm 3 with a certain correlation value within a certain

time interval.” After the algorithm execution is completed, a special operation will

be invoked to process the patterns that are generated (e.g., filter out those patterns

whose correlation values are under a certain threshold).
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Figure 3.11: Extracted INFM Alarm Correlation Activity Base Model
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3.4.2 Modeling Timeout Handler Activity Aspect

Timeout is among the most common software failures that can occur in almost

every operation or service invocation. The timing failure is usually associated with

certain time constraints, which can be a real-time constraint or a relative deadline

with respect to certain events. For example, a time limit can be imposed on the alarm

correlation process in a fault management system, as opposed to the relative deadline

which states that “the alarm correlation must be completed before the next batch of

alarms is received.”

Figure 3.12 shows an aspect-activity model for managing the timeout failure for

Figure 3.12: A Timeout Handler Aspect
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the INFM alarm correlation system. The proceed action refers to an operation that

has sensitive timing concerns and needs to be analyzed upon the timeout failure. The

aspect model intercepts and wraps this action with a sequence of failure management

activities. The aspect process first initiates the counter for the allowed number of

iterations. If the counter already exceeds the allowed number of iterations, it means

that the failure cannot be resolved and has to be reported. Thus, the whole appli-

cation must be aborted. Otherwise, the process will start a timer with a value T,

synchronously with the execution of the proceed action. The proceed action and the

timer are surrounded by an interruptible activity region (denoted as a dashed rect-

angle with rounded corners), representing that whenever the flow leaves the region

via interrupting edges, all of the activities in the region will be terminated. Specifi-

cally, if the proceed action completes execution successfully before it runs out of time,

the control flow will return to the base process (via a bull’s eye symbol) and continue

with the next activity that follows the proceed action. Otherwise, the proceed process

will be shut down properly and a timeout failure will be captured and passed to the

failure analyzer and mitigator, which are responsible for determining the failure risk

and calculating the corresponding mitigation strategies for reconfiguring algorithm

parameters. The control loop for handling the timeout failure is thus realized by

re-running the algorithm with the new parameter values.

3.4.3 Deploying the Timeout Handler Aspect on a Base Model

The timeout handler aspect is deployed to the base models of the INFM alarm

correlation activity, particularly the ExecuteAlgo action. The base models and the

aspect models are then integrated through the underlying AOAM weaver. The wo-

ven model resulting from the inlining mode of weaving is shown in Figure 3.13. The

proceed action in the aspect specification is replaced by the ExecuteAlgo action. The

initial and return symbol of the aspect models are connected to the pre- and post-
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Figure 3.13: Integrating the Timeout Handler Aspect with the INFM Alarm Corre-
lation Base Model
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flow of the ExecuteAlgo action, respectively. By adopting the aspect-oriented ap-

proach to specifying activities, the aspect models (usually non-functional activities)

are defined independently from the base functionality. From our experience in apply-

ing the AOAM weaver to this case study, we have found that such kind of separation

of concerns can help improve the reusability, changeability, and maintainability of the

system. Reusability is enhanced in AOAM by enabling composition at three different

levels (i.e., pointcut composition, advice composition and aspect composition). The

separation of concerns allows better modularity such that each evolutionary change

can be localized in an individual aspect model, which results in a more maintainable

system.

3.5 Summary

In this chapter, an aspect-oriented approach has been presented to support sepa-

ration of crosscutting concerns in activity modeling. Aspect-specific constructs have

been introduced as an extension to the activity models using UML profiles and stereo-

types. The AOAM weaver has been implemented in Telelogic Tau [13] (a UML-based

MDE environment), as an extension of the Motorola state machine weaver [50]. Other

work related to the AOAM approach will be presented later in Chapter 5. In Chapter

4, we will show how this technique can be leveraged to facilitate activity-based legacy

system evolution.

The contents presented in this chapter have been published in [191, 192, 198],

among which [191] and [192] covered the underlying aspect composition mechanism

offered by the Motorola AOM Weaver. The AOAM approach, along with the INFM

case study, was presented in [198].



CHAPTER 4

LEGACY EVOLUTION THROUGH MODEL-DRIVEN ASPECT ADAPTATION

Legacy systems affect many aspects of daily life (e.g., software to control commer-

cial transaction systems [18], avionics systems [160], network management systems

[172], or even healthcare systems [141]). As noted in [181], “any application system

that is functioning in a production environment within an enterprise can be consid-

ered as a legacy system.” In the context of this dissertation, legacy software systems

particularly refer to the source code implementation that is hand-crafted rather than

derived or generated from a high-level software abstraction. Some legacy software

systems have poor or very limited requirements or design documentation, if there

is any at all. Some have comprehensive documentation, but are hard to map re-

quirement/design concepts into the code, because causal relationships are missing

between the high-level requirement/design and the low-level source code. These soft-

ware systems are notoriously difficult to maintain and evolve in terms of low-level

source code, because it is often the case that even a small change in the requirements

of the application domain might necessitate drastic changes in large portions of the

source code. This is fundamentally different than the systems that are completely

created by the model-driven software development process, in which the source code

is systematically generated from the high-level requirements and design models.

The objective of Model-Driven Aspect Adaptation (MDAA) is the evolution of

the source code of a legacy software system from the domain properties described

in high-level requirement and design models. The domain evolution changes, which

80
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usually represent crosscutting concerns that would affect multiple system modules,

are specified in aspect models that are translated into the the aspects that are codified

at the programming language level. These code aspects are in turn composed with the

original legacy source using an underlying aspect weaver or program transformation

engine. A key feature of the approach is the ability to accommodate evolutionary

changes in a manner that does not require manual instrumentation of the actual

source. An essential characteristic of the model-driven process is the existence of a

causal connection between the models and the underlying source representation. That

is, as model changes are made to certain properties of a system, those changes must

have a corresponding effect at the implementation level. This process is called two-

level weaving [78, 81], which allows aspects at the modeling level to drive widespread

adaptations of the representative source code.

The rest of this chapter is organized as follows. Section 4.1 introduces a framework

that supports legacy source evolution through MDAA. Sections 4.2 and 4.3 present

two instantiations of the framework for realizing MDAA in terms of domain-specific

models and UML activity models. Section 4.4 introduces an approach that supports

automated identification of aspects in models, called aspect model mining.

4.1 The Model-Driven Aspect Adaptation Framework

Figure 4.1 depicts the general framework for realizing MDAA, which enables a

round-trip engineering of legacy software systems from the source code to the higher

level models, on which evolving domain requirements can be applied and transformed

back to the source code. The MDAA framework is a generic representation of a collec-

tion of methods, components, modeling artifacts and tools (as highlighted in the gray

boxes in Figure 4.1) that can be used to perform consistent evolution of both models

and source code. The MDAA reengineering process starts with a model extractor

analyzing legacy code and extracting high-level models that are defined based on a
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Figure 4.1: Model-Driven Aspect Adaptation Framework
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specific metamodel [63]. This can be accomplished manually or through the use of

reverse engineering techniques (e.g., MoDisco [33] proposed a generic and extensible

metamodel-driven approach to model discovery). After the models that represent a

particular aspect of the system are constructed, the new domain requirements that are

specified in separate aspect models can be integrated with the extracted base model

through model composition techniques (e.g., an AOM weaver). The aspect models are

then translated into the aspect code through customized transformation generators

that conform to the corresponding aspect metamodel. Finally, the generated aspect

code serves as input to the underlying program composer (e.g., an AOP weaver),

together with the legacy source, to produce the enhanced system that incarnates the

new domain requirement features.

The legacy system evolution often requires the leveraging of knowledge and ex-

pertise in different engineering disciplines. The successful adoption of the MDAA

approach necessitates the collaboration of model extraction engineers, aspect devel-

opers, as well as domain experts. Figure 4.2 visualizes these different roles that are

involved in the MDAA approach. The solid black lines indicate the order of the tasks

to be conducted. The dotted lines denote the dependencies between different tasks.

In a typical MDAA process, the following three steps are involved:

1. During the preprocessing step, the model extraction engineers identify the base

metamodel for the legacy domain and extract the base models that conform

to this metamodel definition. Model extraction engineers must possess both

programming skills (in the sense that they need to be able to understand and

analyze the source code) and domain-specific knowledge (in the sense that they

need to be able to identify the suitable metamodel).

2. Aspect developers are experienced in programming, especially in the area of

developing both AOM and AOP technologies. For each new requirement that

is introduced to the legacy system, the aspect developer creates an aspect meta-
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Figure 4.2: Roles in the MDAA Process

model that captures the requirement constructs and relationships. The aspect

metamodel refers to the base metamodel that is produced during the preprocess-

ing step. Each aspect metamodel is associated with one aspect code generator

(usually written in a general-purpose language (GPL) like C++ or Java).

3. Domain experts are individuals who are both knowledgeable and experienced

with application domains. However, they usually do not possess any specific

programming skills. During the system evolution, the domain experts make

changes to the models using the customized evolutionary requirement constructs

defined in the aspect metamodel. After the changes are completely specified,

they then invoke the aspect code generator, which results in the generation of

corresponding aspect source that is used by the underlying program composer

to perform legacy evolution.
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Among various modeling techniques, domain-specific modeling (DSM) [82] and

UML are the most popular ones to be adopted widely for specifying domain require-

ments and design. Sections 4.2 and 4.3 will present two instantiations of the MDAA

framework in terms of DSM and UML (particularly, UML activity diagrams). The

case studies illustrate the approaches and support a context for comparison.

The rest of this section will cover each of the components in the MDAA frame-

work in detail, i.e., model extractor, aspect metamodel, model composer, aspect code

generator, and program composer.

4.1.1 Model Extractor

In order for a legacy system to benefit from the MDAA process, the initial step is

to bring the legacy system into the modeling space, i.e., to construct the models that

represent the base legacy system domain at a higher level of abstraction. A technique

called metamodel-driven reverse engineering [65] can be adopted to realize model

extraction from legacy source according to the corresponding metamodel definition.

Figure 4.3 depicts the general principle for conducting metamodel-driven reverse

engineering. Metamodel-driven means that the whole model extraction process is

guided by a metamodel. Thus, the very first step is to define the metamodel, which

captures the essential concepts (i.e., structural and/or behavioral information) to

represent the legacy system. Then, extractors need to be developed to extract nec-

essary information from the system in order to build the model that conforms to the

predefined metamodel.

Due to the highly heterogeneous nature (e.g., various techniques, platforms, and

languages that are used) of a legacy system, different legacy systems might require

distinct technologies to extract models. Even a single legacy system can be mapped

to different models in various ways (e.g., one model can represent the static structural

information of the system and another model can represent the dynamic behavioral
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Figure 4.3: Metamodel-Driven Model Extraction (Adapted from [33])

aspects). Because of such diversity of the legacy system and the models, most of the

model extractors have to be created manually and the extraction is an iterative pro-

cess, though some can be semi-automated through the use of the existing information

retrieval tools (e.g., a sequence of shell scripts including commands like “find” and

“grep” can be treated as a specific extractor for generating a model of the file system

that conforms to the metamodel for the UNIX system [34]). In Sections 4.2 and 4.3,

two distinct approaches are introduced to extract structural and behavioral models

from different legacy source.

4.1.2 Aspect Metamodel

In this section, ideas and approaches from AOSD [2] are applied to accommodate

legacy source evolution from high-level models. Evolutionary changes are represented

by aspect models that conform to a specific aspect metamodel. In essence, an aspect

metamodel is a modeling language with specific syntax and semantics to support

aspect specification at the modeling level.

There are two different approaches for constructing an aspect metamodel. The
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light-weight extension approach takes advantage of the UML extension mechanisms

(e.g., stereotypes, tagged values and constraints) to refine the UML metamodel to

support aspect modeling concepts. AOAM, as introduced in Chapter 3, falls into this

category, in which the AspectJ concepts such as aspects, pointcuts, and advice are

modeled as specialized UML activity constructs.

The heavyweight approach advocates that aspects are first-class entities in the

models, which necessitates a self-contained aspect metamodel that is not tied to

the base metamodel definition. This approach has more expressive power than the

lightweight approach, but is more complex to implement.

Regardless of the disparate mechanisms of these two approaches, their aspect

metamodels always share the same meta-metamodel with the base metamodel, which

enables further development of a model weaver. Sections 4.2 and 4.3 will present the

heavyweight and lightweight approaches to define an aspect metamodel, respectively.

4.1.3 Model Composer

Model composition (as shown in Figure 4.4) involves merging two or more models

to obtain a single integrated model according to certain composition relations. A

composition relation denotes how models are to be composed by identifying overlap-

ping constructs in different models and specifying how models should be integrated.

Such relations are either embedded in the models themselves (e.g., the pointcut des-

ignators in aspect models) or captured in a separate relation model (e.g., a weaving

model [61] that denotes the mapping links between different models).

In the context of MDAA, an AOM weaver serves as a model composer, which

binds the aspect model to the base model and produces a composed model that cor-

responds to an enhanced version of the represented system. In Section 4.2, C-SAW [77]

along with a specialized metamodel composer is leveraged to realize aspect weaving

for Domain-Specific Models (DSMs). Aspect-Oriented Activity Model (AOAM), yet
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Figure 4.4: Integration of Models by a Model Composer

another model weaver with distinct aspect representation and weaving mechanisms,

will be conducted for activity model composition in Section 4.3.

4.1.4 Aspect Code Generator

In order to support execution on a target implementation platform, the model

often has to be translated into a more concrete form, e.g., source code artifacts written

in a GPL. In the MDE space, source code generation usually involves a certain kind

of de-abstraction or concretization of the model, which results in the production of

executable code. In the MDAA framework, the aspect models have to be mapped to

the aspect representation at the source code level, in order to perform the source code
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Figure 4.5: One-to-one Mapping Between Aspect Model and Aspect Source Code

adaptation for legacy evolution. This is accomplished through the use of an aspect

code generator.

The aspect code generator is a key enabler for enforcing a causal connection be-

tween the model changes and the underlying change effect at the implementation

level. As shown in Figure 4.5, there exists a one-to-one mapping between the model

changes that are encapsulated in an aspect model and the source changes that are

codified in an aspect source specification. Such a direct link is defined and maintained

in the aspect code generator, which takes an aspect model, traverses and parses it

according to its metamodel, and produces the corresponding aspect code that can

serve as input to an underlying aspect weaver to perform the code level composition.

4.1.5 Program Composer

The program composer takes the generated aspect code, together with the base

legacy source, to produce a new system that is enhanced with the evolutionary changes

that are codified in the aspects. Similar to model composition, program composition

denotes a specific type of program transformation, i.e., the creation of integrated

source code from other code. In Section 4.2, a generic program transformation en-

gine, the Design Maintenance System (DMS), is leveraged as a program composer,
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wherein aspects are specified as transformation rules in the Rule Specification Lan-

guage (RSL), which allows source-level transformation-based on the internal Abstract

Syntax Tree (AST) representation of the source code of a legacy system. Section 4.3

adopts a different composition approach by utilizing an existing aspect weaver – As-

pectJ, which enables transformation at the bytecode level.

4.2 DSM-Driven Aspect Adaptation

The MDAA framework must be instantiated or specialized to be applicable.

Specifically, a particular model extraction procedure must be developed to retrieve

the high-level design models. A modeling environment must be provided for enabling

metamodel/model specification, as well as for implementing a model composer and

aspect code generator. In addition, a program composer must be available to support

the source code transformation. This section presents a DSM and program trans-

formation based instantiation of the MDAA framework through the illustration of

a case study on a legacy system called Bold Stroke [160]. DSM allows the domain

experts to manipulate the system by directly using the concepts of the system do-

main. In our experimental approach, the domain-specific models are constructed in

the Generic Modeling Environment (GME). The underlying program transformation

system adopted is DMS [27], which has already been introduced in Section 2.5.1.

Figure 4.6 illustrates an overview of the MDAA realization within the context of

DSM. The base metamodel that reflects the existing domain concepts and relation-

ships is predefined within the GME metamodeling environment. The model extrac-

tion engineer then binds the modeling constructs to the underlying legacy source, in

order to construct the base models that are valid under the definition of the base

metamodel. After the legacy system is mapped into the modeling space, evolution-

ary changes can be performed by specifying the aspect models that conform to the

aspect metamodels. In this research, C-SAW is adopted as the underlying engine for
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model weaving, due to its built-in support for DSM as well as its scalable weaving

power. Utilizing C-SAW, a model engineer can specify a property (e.g., “Record All

updates to All variables in All components matching condition X”) from a single

specification and have it weaved into hundreds of locations in a model. This permits

plugging/unplugging of specific properties into the model 5.

C-SAW, however, can only deal with models that are based on the same meta-

model (i.e., the source model and the target model are under the definition of the

same metamodel, as shown in Figure 2.14). This is categorized as endogenous trans-

formation by [129] (in contrast to exogenous transformations that are between models

under different metamodel definitions). In MDAA, a new aspect metamodel needs to

be introduced to the existing base metamodel, in order to incorporate a new evolu-

tionary change requirement. Therefore, a preprocessing step is required to compose

the base metamodel and aspect metamodel before invoking C-SAW. The intention is

to produce an enhanced metamodel upon which the aspect models encapsulated in

an ECL specification can be inserted.

Each aspect metamodel is integrated with the base metamodel via the help of

a generic metamodel composer. The composition mechanism implemented in the

metamodel composer is based on matching and binding, i.e., searching for the over-

lapping model elements and inserting the unmatched ones in the aspect metamodel

to the base model. The detailed algorithm for metamodel composition will be given

in Section 4.2.3.

Due to the intrinsic characteristics of DSM, a different metamodel requires a

distinct interpretation mechanism, in order to generate different software architectures

for various purposes. In this sense, each aspect metamodel may correspond to a

different underlying source weaving mechanism, which results in the association of a

different MDAA interpreter to one aspect metamodel for generating different aspect

5This dissertation does not claim to make a contribution to C-SAW, but rather makes use of
C-SAW to illustrate the MDAA approach.
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Figure 4.6: DSM-Driven Source Adaptation
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code represented in DMS transformation rules. The overall benefit of the approach is

large-scale adaptation across multiple source files that is driven by model properties.

Such adaptation can be accomplished through minimal changes to the models. Such

super-linearity is at the heart of the abstraction power provided by model-driven

techniques [81, 176].

In summary of Figure 4.6, the model engineer simply makes changes to models

using a higher level modeling language (either manually or by using C-SAW). Those

models are then interpreted to generate transformation rules that will invasively mod-

ify a large cross-section of an application. It should be noted that the model engineer

does not need to understand the accidental complexities of the transformation rule

language. That process is transparent and is automated by the MDAA interpreter.

This section is structured as follows. Section 4.2.1 provides an overview of the

Bold Stroke case study and sets the background and motivation for applying MDAA

for legacy evolution. A domain-specific visual modeling environment for embedded

systems is introduced in Section 4.2.2. The heart of the approach is contained in

Section 4.2.3, which also presents two illustrative examples of the approach applied

to concurrency control and a black-box flight data recorder. Finally, Sections 4.2.4

and 4.2.5 offer experimental results, discussion, as well as summary remarks.

4.2.1 Background: Bold Stroke

Bold Stroke is a product-line architecture written in several million lines of C++

that was developed by Boeing to support mission computing avionics applications

for a variety of military aircraft [160]. As past participant researchers in DARPA’s

Program Composition for Embedded Systems (PCES), we had access to the Bold

Stroke source code as an experimental platform on which to conduct our research on

MDAA. The following section describes the Bold Stroke concurrency mechanism that

will be used later as an example to demonstrate the applicability of MDAA.
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Bold Stroke Concurrency Mechanisms

To set the context for the following sections, the Bold Stroke concurrency mecha-

nism is presented to provide an example for the type of transformations that can be

performed in order to improve better separation of concerns within components that

have been specified in a Domain-Specific Modeling Language (DSML).

There are three kinds of locking strategies available in Bold Stroke: Internal Lock-

ing, External Locking and Synchronous Proxy. The Internal Locking strategy requires

the component to lock itself when its data are modified. External Locking requires

the user to acquire the component’s lock prior to any access of the component. The

Synchronous Proxy locking strategy [158] involves the use of cached states to maintain

state coherency through a chain of processing threads.

Figure 4.7 shows the code fragment in the Update method of the BM ClosedED-

Component in Bold Stroke. This method participates in the implementation of a

real-time event channel [99]. In this component, a macro statement (Line 3) is used

to implement the External Locking strategy. When system control enters the Update

method, a preprocessed guard class is instantiated and all external components that

are trying to access the BM ClosedEDComponent will be locked.

After performing its internal processing, the component eventually comes to up-

date its own data. At this point, another macro (Line 11) is used to implement the

Internal Locking strategy, which forces the component to lock itself. Internal Locking

is implemented by the Scoped Locking C++ idiom [158], which ensures that a lock is

acquired when control enters a scope and released automatically when control leaves

the scope. Specifically, a guard class is defined to acquire and release a particular

type of lock in its constructor and destructor. There are three types of locks: Null

Lock, Thread Mutex, and Recursive Thread Mutex. The constructor of the guard

class stores a reference to the lock and then acquires the lock. The corresponding

destructor uses the pointer stored by the constructor to release the lock.
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1 void BM__ClosedEDComponentImpl::Update (const UUEventSet& events)

2 {

3 UM__GUARD_EXTERNAL_REGION(GetExtPushLock()); // <-Locking Macro

4

5 BM_CompInstrumentation::EventConsumer(GetId(), "Update", events);

6 unsigned int tempData1 = GetId().GetGroupId();

7 unsigned int tempData2 = GetId().GetItemId();

8

9 //* REMOVED: code for implementing Real-time Event Channel

10

11 UM__GUARD_INTERNAL_REGION; // <-Locking Macro

12 data1_ = tempData1; //* REMOVED: actual var names (proprietary)

13 data2_ = tempData2;

14 }

Figure 4.7: The Update Method in Bold Stroke BM ClosedEDComponentImpl.cpp

The existence of locking macros, as shown in Figure 4.7, is representative of the

original code base for Bold Stroke. During the development of that implementation,

the concurrency control mechanisms implemented as locking macros occur in many

different places in a majority of the components comprising Bold Stroke. In numerous

configuration scenarios, the locking macros may evaluate to null locks, essentially

making their existence in the code of no consequence. The presence of these locks

(in lines 3 and 11 of Figure 4.7), and the initial effort needed to place them in the

proper location, represents a point of concern regarding the manual effort needed

for their initial insertion, and the future maintenance and evolution regarding this

concern as new requirements for concurrency are added. The macro mechanism also

represents a potential source of error for the implementation of new components - it

is an additional design concern that must be remembered and added manually in the

proper place for each component requiring concurrency control.

In Section 4.2.3, we remove the locking macros from the Bold Stroke source and

show how the MDAA approach offers automated assistance in adding them back into

the code only in those places that are implied by properties described in a model.
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Before describing the details of the approach, however, it is essential to introduce the

modeling language that is used to specify embedded systems like Bold Stroke.

4.2.2 Embedded Systems Modeling Language

In this section, the Embedded Systems Modeling Language (ESML) [107] is de-

scribed as a domain-specific graphical modeling language for modeling real-time mis-

sion computing embedded avionics applications. Its main goal is to address the is-

sues arising in system integration, validation, verification, and testing of embedded

systems. ESML has been defined within the GME and is being used on several

US-government funded research projects sponsored from DARPA. The ESML was

primarily designed by the Vanderbilt DARPA MoBIES team, and can be downloaded

from the project website at http://www.isis.vanderbilt.edu/Projects/mobies/. There

are representative ESML models for all of the Bold Stroke usage scenarios that have

been defined by Boeing 6.

Figure 4.8 shows the metamodel for the ESML component specification. The cen-

tral element in the ESML component metamodel is ComponentType, which captures

the modal behavior of a component. From the ESML metamodel, the GME pro-

vides an instantiation of a new graphical modeling environment supporting the visual

specification and editing of ESML models (see Figures 4.9 and 4.10). The model of

computation used for ESML leverages elements from the CORBA Component Model

(CCM) [187] and the Bold Stroke architecture, which also uses a real-time event

channel [99].

The ESML provides the following modeling categories to allow representation of

an embedded system: a) Components, b) Component Interactions, and c) Component

Configurations. Figure 4.9 illustrates the components and interactions for a specific

scenario within Bold Stroke (i.e., the MC BasicSP scenario, which has components

6This dissertation does not claim to make a contribution to ESML, but rather makes use of ESML
to illustrate the MDAA approach.
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Figure 4.8: ESML Component Metamodel (From [138])
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Figure 4.9: Bold Stroke Component Interaction in ESML
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operating in a single-processor avionics backplane). This high-level diagram captures

the interactions among components via an event channel. A system timer is also

specified in this diagram.

Figure 4.10 shows a ComponentType model, labeled BM ClosedEDComponent,

which illustrates the ESML modeling capabilities for specifying the internal con-

figuration of a component. For this component, the facet (i.e., functional features

offered by the component) and receptacle (i.e., functional features required by the

component) interface descriptors are specified, as well as internal data elements and

events. The BM ClosedEDComponent model is manually constructed by a model ex-

traction engineer, based on the mappings between the Bold Stroke source code and

ESML metamodel. Some of the mappings are listed in Table 4.1. For instance, a com-

ponent class in Bold Stroke corresponds to the ComponentType model in an ESML

specification. A component data member (e.g., data1 and data2 as shown in Figure

4.7) is mapped to a Data element as shown in Figure 4.10. Furthermore, the macro

statements in the original source represent different locking strategies as specified in

the ESML model.

Table 4.1: Some Mappings between Bold Stroke Source and ESML Metamodel

Bold Stroke ESML

Component Class ComponentType

Component Data Member Data

UM GUARD INTERNAL REGION; Concurrency.LockStrategy:

Internal Locking

UM GUARD EXTERNAL REGION Concurrency.LockStrategy:

(GetExtPushLock()); External Locking

The result of modeling in ESML is a set of diagrams that visually depict compo-

nents, interactions, and configurations, as shown in Figures 4.9 and 4.10. The objec-

tive of the design is to create, analyze, and integrate real systems; thus, a number of
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Figure 4.10: Internal Representation of BM ClosedEDComponent in ESML



101

interfaces are defined to support these activities.

A very important feature of domain modeling within the GME is the capability of

creating model interpreters. The modeling environment stores the model as objects

in a database repository, and it provides an API for model traversal using a standard

integration mechanism (i.e., COM [39]) provided by the GME. Using the API, it is

possible to create model interpreters that traverse the internal representation of the

model and generate new artifacts (e.g., XML configuration files, source code, or even

hardware logic) based on the model properties. It is possible to associate multiple

interpreters to the same modeling language.

A variety of model interpreters have been created for the ESML by the Vander-

bilt DAPA MoBIES team. The Configuration Interface interpreter is responsible for

generating an XML file that is used during load-time configuration of Bold Stroke.

The locking macros of Figure 4.7 are configured from this generated file. The Config-

uration Interface provides an example of vertical translation that is more aligned with

the synthesis idea for generating new artifacts, rather than a pure transformation

approach that invasively modifies one artifact from descriptions in a model (as in

Section 4.2.3). Another interpreter for ESML is the Analysis Interface, which assists

in integrating third-party analysis tools.

In the approach described in this dissertation, a specific family of ESML inter-

preters are created to invasively modify a very large code base from properties spec-

ified in an ESML model. Such an interpreter enables the ideas of MDAA.

4.2.3 Applying MDAA to Bold Stroke

The objective of MDAA is evolution of legacy source from properties described

in high-level aspect models. As model changes are made to certain properties of a

system, those changes must have a corresponding effect at the implementation level.

A common way to achieve this correspondence is through load-time configuration of
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property files that are generated from the models (e.g., the XML configuration file

deployed by the Configuration Interface interpreter). There are two key problems with

the load-time configuration file technique, however:

1. The load-time configuration mechanism must be built into the existing imple-

mentation. The source implementation must know how to interpret the config-

uration file and make the necessary adaptations at all of the potential extension

points. For example, in Bold Stroke the locking strategy used for each compo-

nent is specified in an XML configuration file, which is loaded at run-time during

initial startup. The component developer must know about the extension points

and how they interact with the configuration file at load-time.

2. A typical approach to support this load-time extension is macro tailorability,

as seen in Figure 4.7. At each location in the source where variation may

occur, a macro is added that can be configured from the properties specified

in the XML configuration file. However, this forces the introduction of macro

tags in multiple locations of the source that may not be affected under many

configurations. The instrumentation of the source to include such tailoring is

often performed by manual adaptation of the source (see lines 3 and 13 of

Figure 4.7). This approach also requires the ability to anticipate future points

of extension, which is not always possible for a system with millions of lines of

code and changing requirements.

These problems provide a major hurdle to the transfer of model-driven and load-

time configuration approaches into large legacy systems. As an example, consider the

two hundred billion lines of COBOL code that are estimated to exist in production

systems [181]. To adopt the load-time configuration file approach to such systems

will require large manual modifications to adjust to the new type of configuration.



103

The following two sub-sections represent how the MDAA approach can facilitate

legacy evolution from the model properties without manual instrumentation to the

source code. Two examples are illustrated, representing crosscutting concerns related

to concurrency control and recording of flight data information.

Weaving Concurrency into Bold Stroke

Recall the concurrency mechanism supported within Bold Stroke, as described in

Section 4.2.1. In particular, consider the source code presented in Figure 4.7. There

are a few problems with the macro tailorability approach, as used in this example

code fragment:

1. Whenever a new component is created, the developer must remember to ex-

plicitly add the macros in the correct place for all future components (a large

source of human error).

2. Because a component may be used in several contexts, it is typical that dif-

ferent locking strategies are used in various usage scenarios. For example, the

very existence of a Null Lock type is a direct consequence of the fact that a

component is forced to process the macro even in those cases when locking may

not be needed for a particular instantiation of the component. The result is

that additional compile-time (or, even run-time overhead, if the chosen C++

compiler does not provide intelligent optimizations) is incurred to process the

macro in unnecessary cases.

As an alternative, MDAA provides a solution that does not require the locking

to be explicitly added by the developer to all components. The approach only adds

locking to those components that specify the need in a high-level model, which is

based on the requirements of the specific application scenario that is being modeled.
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Figure 4.11 shows the ESML concurrency metamodel, which contains the concur-

rency model specification as well as its association to the ESML base model element

(i.e., ComponentType in this case), indicating that the Concurrency atom is to be

inserted as a part of the ComponentType model in ESML. The Concurrency atom cap-

tures the configurable concurrency requirements of a component. The attributes of

this atom (i.e., Enable, LockType, LockStrategy and UpdateRate) capture the specifics

of the concurrency mechanism. LockType denotes the three locking types, i.e., Null

Lock, Thread Mutex, and Recursive Thread Mutex. LockStrategy is an enumeration

attribute that specifies the three kinds of locking strategies (i.e, Internal Locking,

External Locking, or Synchronous Proxy) that can be used.

An aspect element named as ConcurrencyAspect is also attached to the Component-

Type model (as shown in Figure 4.12), indicating that the Concurrency atom belongs

to the ConcurrencyAspect and is visible from the ConcurrencyAspect point of view 7.

In our approach, we leverage the concept of aspect in GME and link it to the well-

known definition of aspect in terms of AOSD [2]. Therefore, each aspect along with

its group members in the GME metamodel corresponds to an aspect specification

that represents an evolutionary change requirement and can be translated into the

low-level aspect code to perform source-level aspect weaving. By utilizing the concept

of aspect in GME, the base model and the evolutionary changes that are captured in

the aspect models can be separated in terms of different viewpoints, which offers a

clear separation of concerns for the purpose of understandability and analyzability.

The concurrency aspect metamodel can be integrated with the ESML base model

via the metamodel composer, which produces the augmented version of the ESML

component metamodel as shown in Figure 4.13. The metamodel composer is imple-

mented as a plug-in component in the GME environment and can be invoked upon

7Please note that aspect has a special meaning in GME, which is used to partition the models
into different visibility groups. When a model is displayed, it is always viewed from one particular
aspect at a time. Some model elements may be visible in more than one aspect while others may be
visible only in a single aspect [68].
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Figure 4.11: ESML Concurrency Aspect Metamodel

Figure 4.12: ESML Concurrency Metamodel Aspect View
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Figure 4.13: ESML Component Metamodel (Augmented with the Concurrency
Metamodel)

any metamodel. The composition process starts with loading the aspect metamodel

and locating the aspect element in it. For each model element that belongs to this

aspect and does not exist in the base metamodel, it will be inserted in turn to the

base metamodel, along with its attributes and relevant associations. The algorithm

to perform the metamodel composition is described in Figure 4.14.

The updated ESML metamodel as shown in Figure 4.13 now contains the Con-

currency atom that is associated to the ComponentType model, indicating that the

concurrency concern is now added to the domain. The new metamodel thus drives
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1 open BaseMetamodel

2 load AspectMetamodel

3 select Aspect in the AspectMetamodel

4 for (each model element m in the Aspect) do

5 if (m does not exist in the BaseMetamodel)

6 for (each m’s connection c) do

7 e = get_connection_end(m, c)

8 insert m to the BaseMetamodel

9 add m’s attributes to m

10 insert c to the BaseMetamodel connecting m and e

11 add c’s attributes to c

12 end for

13 end if

14 end for

15 insert the Aspect to the BaseMetamodel

16

17 function get_connection_end(model m, connection c)

18 e = the model element at the other end of the connection c of model m

19 if (e does not exist in the BaseMetamodel)

20 for (each e’s connection cc) do

21 ee = get_connection_end(e, cc)

22 insert e to the BaseMetamodel

23 add e’s attributes to e

24 insert cc to the BaseMetamodel connecting e and ee

25 add cc’s attributes to cc

26 end for

27 end if

28 return e

29 end function

Figure 4.14: Metamodel Composition Algorithm
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the generation of a new ESML model editing environment that is able to configure

the concurrency requirements for each component. Figure 4.15 illustrates the up-

graded version of the BM ClosedEDComponent model as was shown in Figure 4.10.

In this new environment, the Concurrency atom is the only model element that is

visible within the Concurrency aspect (see the bottom part of the figure). Two types

of concurrency strategies are created in this particular example, i.e., Internal Locking

and External Locking.

The concurrency model element can be added to the ESML component model

manually or automatically via the use of C-SAW when the same concurrency strategy

is applied to multiple component models. Sample code of the ECL specification to

enable External Locking for an ESML component is shown in Figure 4.16. The aspect

specification finds all of the component models whose name ends with Impl (Lines 19

to 20). For each resulting component model, the weaving strategy prescribes that one

Concurrency atom be inserted. The External Locking Concurrency is set to be enabled,

with the type Recursive Thread Mutex and an update rate at 40Hz.

So far, the model-level aspect weaving has been accomplished by leveraging the

metamodel composer and C-SAW. The next step is to generate the source-level aspect

representation in order to enforce the transformational changes to the source code.

This is automated by the MDAA interpreter that is customized for each specific aspect

metamodel. The MDAA interpreter is a special model interpreter that is intended to

generate a transformation specification in the form of an aspect representation, which

is unlike the other model interpreters that are often used to synthesize executable code

in the system’s execution environment. In the Bold Stroke experimental case study,

for instance, the concurrency aspect metamodel is associated with a specific MDAA

interpreter that will be used to generate a concurrency transformation specification

to transform the Bold Stoke base source from configuration of the ESML models.
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Figure 4.15: Internal Representation of the BM ClosedEDComponent in ESML
(Augmented with the Concurrency Aspect)
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1 defines Start, AddExternalLocking;

2

3 strategy AddExternalLocking()

4 {

5 declare parentModel : model;

6 declare concurrencyAtom : atom;

7

8 parentModel := parent();

9 concurrencyAtom := parentModel.addAtom("Concurrency",

10 "External_Locking");

11 concurrencyAtom.setAttribute("Enable", "true");

12 concurrencyAtom.setAttribute("LockType", "Recursive Thread Mutex");

13 concurrencyAtom.setAttribute("LockStrategy", "External Locking");

14 concurrencyAtom.setAttribute("UpdateRate", "40Hz");

15 }

16

17 aspect Start()

18 {

19 rootFolder().findFolder("ComponentTypes").models().

20 select(m|m.name().endWith("Impl"))->AddExternalLocking();

21 }

Figure 4.16: ECL Specification for Adding External Locking to ESML Component
Models (Adapted from [122])



111

The transformation specification generation is based on the mappings between the

aspect metamodel definition and the source representation. For instance, in ESML,

the attribute value Internal Locking for the locking strategy of the concurrency atom

corresponds to the C++ macro expression UM GUARD INTERNAL REGION; in Bold

Stroke, as listed previously in Table 4.1. In addition, the MDAA interpreter also

encodes and maintains the locations or join points where the source statement is to

be inserted (e.g., UM GUARD INTERNAL REGION; needs to be added just before

any update to any data member).

Figure 4.17 is an example of a generated transformation specification from the

ESML models via the MDAA interpreter. The transformation specification is writ-

ten in the Rule Specification Language (RSL) provided by the DMS transformation

engine. RSL provides basic primitives for describing numerous transformations that

are to be performed across the entire code base of an application. It consists of dec-

larations of patterns, rules, conditions, and rule sets using the external form (i.e.,

concrete syntax) defined by a language domain. Typically, a large collection of RSL

files are needed to describe the full set of transformations. The patterns and rules

can have associated conditions that describe restrictions on when a pattern legally

matches a syntax tree, or when a rule is applicable on a syntax tree.

Figure 4.17 shows the RSL specification for incorporating two kinds of concur-

rency strategies: insertion of an External Locking Statement and an Internal Locking

Statement. The first line of the figure establishes the default language domain to

which the DMS rules are applied (in this case, it is the implementation environment

for Bold Stroke - Visual Studio C++ 6.0). Eight patterns are defined from line 3 to

line 26, followed by two transformation rules. The patterns on lines 3, 6, 9, 13, 26 -

along with the rule on line 28 - define the external locking transformation. Likewise,

the patterns on lines 16, 19, 22 - and the rule on line 36 - specify the internal locking

transformation.
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1 default base domain Cpp~VisualCpp6.

2

3 pattern UM_GUARD_EXTERNAL_REGION_as_identifier_or_template_id():

4 identifier_or_template_id = "UM__GUARD_EXTERNAL_REGION".

5

6 pattern GetExternPushLock_as_identifier_or_template_id():

7 identifier_or_template_id = "GetExternalPushLock".

8

9 pattern ExternLockStmt(): expression_statement =

10 "\UM_GUARD_EXTERNAL_REGION_as_identifier_or_template_id\(\)

11 (\GetExternPushLock_as_identifier_or_template_id\(\)());".

12

13 pattern ExternLockAspect(s: statement_seq): compound_statement =

14 "{\ExternLockStmt\(\) {\s}}".

15

16 pattern InternLockStmt(): expression_statement =

17 "UM__GUARD_INTERNAL_REGION;".

18

19 pattern InternLockJoinPoint(expr:logical_or_expression): statement =

20 "data1_= \expr;".

21

22 pattern InternLockAspect(expr:logical_or_expression, s:statement_seq):

23 statement_seq = "\s {\InternLockStmt\(\)

24 \InternLockJoinPoint\(\expr\)}".

25

26 pattern JoinPoint(id:identifier): qualified_id = "\id :: Update".

27

28 rule insert_extern_lock(id:identifier, s: statement_seq,

29 p:parameter_declaration_clause):

30 function_definition -> function_definition =

31 "void \JoinPoint\(\id\)(\p) {\s} " ->

32 "void \JoinPoint\(\id\)(\p) {\ExternLockAspect\(\s\)}"

33 if ~[modsList:statement_seq. s matches

34 "\:statement_seq \ExternLockAspect\(\modsList\)"].

35

36 rule insert_intern_lock(expr:logical_or_expression, s:statement_seq):

37 statement_seq -> statement_seq =

38 "\s \InternLockJoinPoint\(\expr\)" ->

39 "\InternLockAspect\(\expr\,\s\)"

40 if s ~= "\:statement_seq \InternalLockStmt\(\)".

41

42 public ruleset applyrules={insert_extern_lock, insert_intern_lock}.

Figure 4.17: A Set of Generated Locking Transformation Patterns and Rules in the
DMS Rule Specification Language
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Patterns describe the form of a syntax tree. They are used for matching purposes

to find a syntax tree having a specified structure. Patterns are often used on the

right-hand side (target) of a rule to describe the resulting syntax tree after the rule is

applied. In the first pattern (line 3, Figure 4.17), a very simple pattern is described.

This pattern matches the inserted macro (named UM GUARD EXTERNAL REGION)

to the syntax tree expression that is defined as identifier or template id in the grammar

definition of the DMS VC++ 6.0 domain. The third pattern (line 9) is used to

combine the first and second pattern into a larger one, in order to represent the full

macro statement along with its parameters. The target rule that describes the form

of the resulting syntax tree is specified in the fourth pattern (line 13). This fourth

pattern scopes the protected region and places the external locking statement as the

first statement within the scope. Similarly, the pattern on line 22 describes the form

of the resulting syntax tree after inserting an internal locking statement in front of

any update of data1 . The last pattern (line 26) provides the context in which the

transformation rules will be applied. Here, the rules will be applied to all of the

components containing an Update method. This pattern is similar to a join point in

AspectJ [108]. Although this last pattern is very simple, it quantifies over the entire

code base and selects all of those syntax trees matching the pattern.

The RSL rules describe a directed pair of corresponding syntax trees. A rule

is typically used as a rewrite specification that maps from a left-hand side (source)

syntax tree expression to a right-hand side (target) syntax tree expression. As an

example, the rule specified on line 28 of Figure 4.17 represents a transformation on

all Update methods (specified by the JoinPoint pattern). The effect of this rule is to

add an external locking statement to all Updates, regardless of the various param-

eters of each Update method. Notice that there is a condition associated with this

rule (line 33). This condition describes a constraint that this rule should be applied

only when there already does not exist an external locking statement. That is, the
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transformation rule will be applied only once. Without this condition, the rules would

be applied iteratively and fall into an infinite loop. The rule on line 36 applies the

transformations associated with inserting an internal locking statement just before

modification of the internal field named data1 . Rules can be combined into sets of

rules that together form a transformation strategy by defining a collection of trans-

formations that can be applied to a syntax tree. In the ruleset defined on line 42,

the two locking rules are aggregated to perform a sequence of transformations (i.e.,

External/Internal Locking).

Supporting a Black Box Data Recorder

In avionics systems, an essential diagnostic tool for failure analysis is a “black

box” that records important flight information. This device can be recovered during

a failure, and can reveal valuable information even in the event of a total system

loss. There are several factors that make development of such a data recording device

difficult:

1. During ground testing and simulation of the complete aircraft system, it is often

useful to have a liberal strategy for collecting data points. The information that

is collected may come from a large group of events and invocations generated

during testing of a specific configuration of Bold Stroke.

2. However, an actual deployed system has very limited storage space to record

data. In a deployed system, data may be collected from a small subset of the

points that were logged during simulation. For example, only a few components

may be of interest during specific phases of a mission. Also, only a subset of

events may be recorded in an operational fighter jet.

It is a desirable feature to support the various types of recording policies that

may be observed throughout development, testing, and deployment. Currently, the
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development tools associated with Bold Stroke do not support a capability to plug

recording policies easily into the code base. The manual effort that would be required

to plug/unplug different data recording policies throughout all components would be

unfeasible in general practice. It is possible to transform existing Bold Stroke code

by adding the black box flight recorder concern. The recorder information is specified

by a logging policy (as can be seen in the Log modeling element in the logging aspect

metamodel as shown in Figure 4.18). Within the logging policy, a model engineer can

specify policies such as “Record the values upon <entry/exit> of <a set of named

methods>” or “Record the value upon every update to the <data variable>.”

Figure 4.19 contains the ECL aspect specification to connect Log atoms (of type

On Method Exit) to Data atoms in ESML models (see the resulting model in Figure

4.20). The aspect specification finds all of the Data atoms (line 3 to line 6) in every

component whose name ends with Impl (line 21 to line 25). For each Data atom, a

Figure 4.18: ESML Logging Metamodel
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1 defines Start, logDataAtoms, AddLog;

2

3 strategy logDataAtoms()

4 {

5 atoms()->select(a | a.kindOf() == "Data")->AddLog();

6 }

7

8 strategy AddLog()

9 {

10 declare parentModel : model;

11 declare dataAtom, logAtom : atom;

12

13 dataAtom := self;

14 parentModel := parent();

15 logAtom := parentModel.addAtom("Log", "LogOnMethodExit");

16 logAtom.setAttribute("Kind", "On Method Exit");

17 logAtom.setAttribute("MethodList", "Update");

18 parentModel.addConnection("AddLog", logAtom, dataAtom);

19 }

20

21 aspect Start()

22 {

23 rootFolder().findFolder("ComponentTypes").models().

24 select(m|m.name().endWith("Impl"))->logDataAtoms();

25 }

Figure 4.19: ECL Specification for Adding LogOnMethodExit in ESML Models (From
[83])

new Log atom is created. Finally, it connects this new Log atom to its corresponding

Data atom (line 18). As a result, after using C-SAW to apply this ECL specification,

LogOnMethodExit atoms will be inserted into each component that has a Data atom.

As a front-end design capability, the model weaving drives the automatic generation

of the DMS RSL rules to transform the underlying Bold Stroke C++ source program.

The generated logging transformation represented in RSL can be found in Figure

4.21. In this example, the LogOnMethodExit logging policy is illustrated (this is

specified as an attribute in the Log modeling element of Figure 4.20). The patterns on

lines 3, 5, 8 - with the rule on line 10 - denote the update logging transformation. The
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Figure 4.20: Internal Representation of the BM ClosedEDComponent in ESML
(Augmented with the Logging Aspect)
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1 default base domain Cpp~VisualCpp6.

2

3 pattern LogStmt(): statement = "log.add(\"data1_=\" + data1_);".

4

5 pattern LogOnMethodExitAspect(s: statement_seq): statement_seq =

6 "\s \LogStmt\(\)".

7

8 pattern JoinPoint(id:identifier): qualified_id = "\id :: Update".

9

10 rule insert_log_on_method_exit(id:identifier, s:statement_seq,

11 p:parameter_declaration_clause):

12 function_definition -> function_definition =

13 "void \JoinPoint\(\id\)(\p) {\s} " ->

14 "void \JoinPoint\(\id\)(\p) {\LogOnMethodExitAspect\(\s\)}"

15 if ~[modsList:statement_seq. s matches

16 "\:statement_seq \LogOnMethodExitAspect\(\modsList\)"].

17

18 public ruleset applyrules={insert_log_on_method_exit}.

Figure 4.21: A Set of Generated Logging Transformation Patterns and Rules in the
DMS Rule Specification Language

pattern on line 5 shows the resulting form after inserting a log statement on all exits of

the Update method. The corresponding rule on line 10 inserts the logging statement

upon the exit of every Update method of every component. Figure 4.22 presents the

resulting Bold Stoke source code that is enhanced with the logging statement inserted

at the end of the method Update.

It is important to reiterate that the domain model engineer does not create (or

even see) the RSL transformation rules. These are created by the MDAA interpreter

and directly applied toward the aspect-oriented transformation of Bold Stroke code

using the DMS transformation engine.

4.2.4 Experimental Results

A set of experimental case studies have been performed to validate the feasibility

and advantages of the MDAA approach.
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1 void BM__ClosedEDComponentImpl::Update (const UUEventSet& events)

2 {

3 BM_CompInstrumentation::EventConsumer(GetId(), "Update", events);

4 unsigned int tempData1 = GetId().GetGroupId();

5 unsigned int tempData2 = GetId().GetItemId();

6

7 //* REMOVED: code for implementing Real-time Event Channel

8

9 data1_ = tempData1; //* REMOVED: actual var names (proprietary)

10 data2_ = tempData2;

11

12 log.add("data1_=" + data1_);

13 log.add("data2_=" + data2_);

14 }

Figure 4.22: The Update Method in Bold Stroke BM ClosedEDComponentImpl.cpp
(Enhanced with the Logging Aspect)

Table 4.2 summarizes the comparison of the manual effort versus the MDAA ap-

proach to perform Bold Stroke source evolution. The experiment was conducted on

25 components contained in the Bold Stroke avionics system. Three specific evo-

lutionary changes were applied, i.e., concurrency requirement, logging support and

assertion checking. Assertion checking is a requirement that adds the Design-by-

Contract (DBC) [134] paradigm to certain methods in the system. Details can be

found in [195].

The comparison is based on the number of places that need to be changed and

Table 4.2: Comparison of Manual Modification to the MDAA Approach

Manual Changes Aspect Model ECL Generated

Interpreter RSL

(No. of Places) (LOC) (LOC) (LOC)

Concurrency 50 257 25 1250

Logging 200 305 37 3750

Assertion 100 270 33 2500
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the lines of code that are involved in different MDAA components. As listed in Table

4.2, for instance, the full support of logging (including Log on Read/Write/Method

Exit/Entry) would require manual instrumentation of the logging statements at 200

different locations that span over 25 different source files. One requirement change

would result in the system maintainer revisiting all of these 200 different places and

making corresponding modifications one by one, which is very time-consuming and

error-prone. However, by adopting the MDAA approach, the change requirement is

encapsulated within an ECL aspect specification module in a much more concise and

localized manner (only 37 lines of ECL code in one file). Furthermore, the logging

aspect interpreter only needs to be written once and is able to generate the low-level

DMS RSL rules from various configurations of logging properties as specified in the

logging models (which are also automated from the ECL specification by C-SAW).

The table provides some insights into how much effort the MDAA approach would

need in order to conduct the same evolutionary changes as manual modification.

Initially, the MDAA approach seems to involve more work (i.e., define the aspect

metamodel, create the aspect interpreter and specify the ECL aspect specification)

than simple source editing. However, the aspect metamodel and interpreter are only

defined once by the aspect developer at the beginning and the rest of the evolution

tasks are conducted by domain experts by using the modeling constructs and ECL

specifications, as well as by invoking the interpreter to derive low-level rules. This is

called “Write Once, Derive N” (adapted from the “Write Once, Deploy N” pattern

from [75]), which provides a systematic solution to legacy evolution by reducing the

accidental complexity in the manual and ad-hoc approach.

4.2.5 Discussion

This section presents an instantiation of the MDAA framework to support legacy

evolution in terms of domain-specific models. The primary benefit of adopting DSM
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is to allow domain experts to adapt the underlying source system from domain con-

cepts that are specified in customized models. Domain experts do not have to under-

stand programming concepts because the models are automatically synthesized by

the MDAA interpreters.

This approach, however, requires each new aspect metamodel to be associated

with a new MDAA interpreter. This is because each specific new aspect metamodel

introduces different types of modeling elements, syntax and semantics that are unique

to that particular aspect domain, which require different interpretation for generating

different sets of aspect code for evolving the legacy system. As Figure 4.23 illustrates,

the Concurrency aspect model requires a different interpreter than the Logging aspect

model.

Figure 4.23: MDAA Interpreters for Different Aspect Models
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The next section will introduce a more generic MDAA approach based on the

mechanism of activity modeling, which only requires one aspect metamodel and one

interpreter for aspect code generation.

4.3 Activity-Based System Evolution through MDAA

This section presents a UML (more specifically, UML activity modeling) based

approach to realizing the MDAA framework. The approach is illustrated through

a case study on adding failure handling activities to the Intelligent Network Fault

Management (INFM) system [123] (see the INFM background introduction in Section

3.4.1). The experimental case study is implemented using the AOAM mechanism that

was previously presented in Chapter 3 in combination with AOP [109].

Figure 4.24 shows the flow chart for the approach. Similar to Figures 4.1 and 4.6,

the evolution process starts with model extraction. At this time, an activity model

that abstracts the control flow logic of a system is constructed using the well-defined

activity constructs (as described previously in Figure 3.1). Then, an aspect-activity

model is specified to capture the new requirement changes that are to be applied to

the system. The aspect-activity model is constrained by the definition of the aspect-

activity profile (as shown in Figure 3.3). Subsequently, the aspect code generator

navigates and parses the aspect model and produces the corresponding aspect code

(e.g., written in AspectJ), which is in turn fed into the underlying AOP weaver (e.g.,

AspectJ weaver), along with the original base code. The generated enhanced version

of the source code can be simulated and validated against the enhanced model that

results from the model-level aspect weaving via the AOAM weaver (as introduced in

Chapter 3).

The next two subsections will present the adoption of the activity-based MDAA

approach on the INFM case study. The failure handler aspect models are introduced

in Section 4.3.1, and Section 4.3.2 will demonstrate the generated aspect code.
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Figure 4.24: Activity-Based System Evolution through MDAA
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4.3.1 Modeling Failure Handler Aspects

During our experiment, we first studied the INFM system as well as the poten-

tial failures that might occur during the system execution and their corresponding

resolutions. Then, a fragment of the INFM system (i.e., alarm correlation activity)

was manually extracted for applying failure handling features (as previously shown

in Figure 3.11 in Chapter 3). The performance of the alarm correlation algorithms is

very sensitive to the settings of both parameters of the pattern discovery algorithms,

namely the minimum support value and the minimum confidence value, denoted by

supp and conf in the rest of this section. Table 4.3 lists the run-time failures that

have occurred during operations that were not covered in the original system design,

the possible causes of these failures, and the intended resolutions for the failures.

These three major failure conditions listed in the table are considered dependability

critical because:

• It is imperative not to violate the real-time constraints on operations for the on-

line correlation algorithm as well as to avoid the possible operational problems

caused by resource exhaustion for the off-line correlation algorithm.

• Relatively small values of supp and conf might cause the algorithms to return a

large number of patterns. Although small values of both parameters would pro-

vide a more comprehensive list of candidate patterns, it raises issues in handling

the large quantity of patterns. Furthermore, low supp and conf values increase

the likelihood of applying false positive patterns to the succeeding correlation

procedures.

• Relatively large values of supp and conf , on the other hand, might cause the

algorithms to return too few patterns. This can negate the effectiveness of the

correlation algorithms and increase the false negative ratio in pattern validation.
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Table 4.3: INFM Software Failures and Resolution Table for Alarm Correlation

Failure Possible Causes Resolution

Timeout supp set too low Increase supp and re-run

Too many(> U) patterns
returned

supp or conf set too low 1) Increase conf and
recheck patterns;

if too many(> U) pat-
terns returned;

2) Increase supp and re-
run.

Too few(< L) patterns
returned

supp or conf set too high 1) Decrease conf and
recheck patterns;

if too few(< L) patterns
returned;

2) Decrease supp and re-
run.

The timeout failure is considered critical for on-line execution. Since it is less

hazardous for off-line alarm correlation, the allowed times for re-run could be ad-

justed to a larger number. Similarly, too few patterns and too many patterns might

have different risks under different operational modes. The adjustment of parameters

in both situations needs further analysis, whereby a failure analyzer is required to

carry out the predictive reasoning based on current environmental conditions and

constraints, as well as the history performance of the algorithms. In other words, the

failure analyzer is indeed an adaptive component that fine-tunes the behavior and

strategy of the self-healing actions.

In Chapter 3, Figure 3.12 shows an aspect-activity model for managing timeout

failure. Similarly, the pattern failure management aspect is modeled as in Figure

4.25. In contrast to the timeout failure, the pattern failure is identified by a spe-

cial component after the proceed algorithm is completed. If a failure is detected,

RecheckPatterns will filter the returned patterns by adjusting the value of conf . If
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Figure 4.25: Pattern Failure Management Aspect Model
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the failure still exists, the control flow will be passed to the pattern failure analyz-

er/mitigator, which will adjust the algorithm parameters based on the reasoning of

different failure types, as shown in Figure 4.26.

4.3.2 Aspect Code Generation

AOP [109] is applied to support source code composition. The failure handling

aspect models are translated into an aspect program in AspectJ [108] by a specialized

aspect-activity code generator. The pointcut in this case refers to the operation Exe-

cuteAlgo. The failure detection and resolution activity is captured in an advice. The

base code for the alarm correlation process is augmented with the failure handling

instrumentation by a weaver. (In this particular case study, AspectJ [108] is chosen

as the underlying weaver, because INFM is implemented in Java and AspectJ is a

mature aspect weaver for Java.) As a result, a failure handling enabled INFM system

is constructed from the high-level model specifications. An example of the generated

AspectJ code is depicted in Figure 4.27. The PatternFailureHandlerAspect introduces

four fields (from Line 3 to Line 6) that are necessary to implement the pattern failure

Figure 4.26: Pattern Failure Analyzer Model
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1 aspect PatternFailureHandlerAspect

2 {

3 int N = 10;

4 int counter = 0;

5 boolean hasFailure;

6 Param deltaParam;

7

8 pointcut pct() : call(ExecuteAlgo(...));

9

10 around() : pct() {

11

12 while (counter < N) {

13 proceed();

14 hasFailure = IdentifyPatternFailure();

15 if (hasFailure) {

16 hasFailure = RecheckPatterns();

17 if (hasFailure) {

18 deltaParam = AnalyzePatternFailure();

19 ReconfigureAlgo(deltaParam);

20 counter ++;

21 }

22 else { break; }

23 }

24 else { break; }

25 }

26 }

27 }

Figure 4.27: The Generated AspectJ Program for the Pattern Failure Handler Aspect

handling capability. The pointcut pct picks out each join point that is a call to the

ExecuteAlgo method regardless of the method’s parameters. The around advice (Line

10) runs in place of its join point picked out by the pointcut pct. Within the advice,

four methods (i.e., IdentifyPatternFailure, RecheckPatterns, AnalyzePatternFailure, and

ReconfigureAlgo) will be invoked given different conditions. The body/implemen-

tation of these methods can be either denoted using another activity model (e.g.,

AnalyzePatternFailure is specified further in Figure 4.26), or embedded with a source

code fragment written in a GPL (e.g., Java).
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4.3.3 Discussion

This section presents an activity model-driven approach to realize the MDAA

framework. In contrast to the DSM-based MDAA as described in Section 4.2, activity-

based MDAA only requires one aspect metamodel because the interpretation for the

activity modeling elements is well-defined and fixed. Activity modeling, however, is

only well-suited to specify process and control flow in a standardized fashion. It does

not possess the expressive power for elaborating other domain-specific concepts when

compared to the DSM approach.

4.4 Aspect Mining from a Modeling Perspective

For legacy software to benefit from AOSD, it is necessary to analyze the existing

implementation to discover the crosscutting concerns and refactor them into aspects.

The research on aspect mining refers to the identification and analysis of non-localized

crosscutting concerns throughout an existing legacy software system [43]. The ulti-

mate goal of aspect mining is to support aspect-oriented refactoring [113] to improve

software comprehensibility, reusability and maintainability.

The challenges of aspect mining are focused along three separate phases:

• Aspect Identification

This phase is concerned with an analysis task that leads to identification of

a suggested set of candidate aspects. This phase may require user interaction

to provide initial seed information, or to assist in sifting through false positive

noise (i.e., suggested aspects that are not really representative of a crosscutting

concern).

• Aspect Extraction

After a set of candidate aspects has been identified, the crosscutting concern
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must be extracted from the existing representation (i.e., all of the locations in

the legacy software where the aspect appears must be removed).

• Aspect Refactoring

After extracting the aspects from the base representation, an equivalent aspect

must be specified in an aspect language in order to preserve the initial function-

ality. The result is improved modularization as captured in the newly created

aspect.

Most of the current research on aspect mining focuses solely on the implementation

as applied to source code. However, an aspect-oriented approach can be beneficial

at various levels of abstraction and at different stages of the software lifecycle. For

instance, research in AOM [1] has the potential to help define common characteristics

(which are encapsulated within aspects) from a perspective that is at a more abstract

level. For existing models to benefit from AOSD, it is indispensable to perform

reengineering techniques, such as aspect mining, at many different stages throughout

the software development lifecycle.

This section presents our initial investigation into raising the benefits of aspect

mining to a higher level of abstraction through application of aspect mining algorithms

to domain-specific models. Specifically, the section describes an approach to tackle

the aspect identification problem at the modeling level, rather than at the source code

level. A clone detection technique is applied to identify crosscutting concerns that

are represented as similar or duplicated (clone) modeling elements, which assists in

modularizing a design through aspects before proceeding to the implementation level.

Furthermore, our experience has led us to believe that aspects are easier to identify

at the modeling level, because much of the accidental complexities of implementation

concerns have been removed in the corresponding modeling abstractions.

The remainder of this section is structured as follows. Section 4.4.1 presents a

clone detection-based approach aspect identification. Section 4.4.2 offers a case study
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by applying clone detection to identify crosscutting concerns in ESML models.

4.4.1 Clone Detection for Aspect Modeling Mining

Pattern matching and clone detection are the two main approaches that can be

applied for aspect identification. The pattern matching process is conducted by a

human designer who suspects the existence of aspects in a model. The designer has

to comprehend the domain information contained in a model and provide a pattern

(“seed”) to indicate properties of potential aspects. Such a seed serves as the starting

point for discovering all matched concerns. The seed can be represented based on a

textual expression or on graphical models, as described in [196].

The pattern matching techniques assist users in efficiently locating predefined

crosscutting concerns. However, users of pattern matching are required to have a

considerable amount of knowledge about the domain and overall model structure.

The users must input a particular format of seed so that the aspect mining process

can be partially automated. Moreover, pattern matching cannot explore unknown

classes of crosscutting concerns (i.e., those for which no seed is known) and will often

result in missing some desirable aspects. In order to overcome the deficiencies of

pattern matching, a clone detection technique has been developed for aspect mining

that is applied to models.

Various clone detection techniques (as referenced in Section 5.3 of Chapter 5) have

been investigated to detect duplicated source code. The intention of applying clone

detection for aspect mining is to reveal the unknown crosscutting concerns through

full automation of the aspect mining process. In terms of modeling, clone detection

identifies the similar (clone) model fragments throughout the model hierarchy. The

similarity of elements of sub-models are determined based on one of the three levels

of similarity described below in terms of metamodeling concepts.

In the context of metamodeling, an atomic modeling element (e.g., an atom in
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GME) is defined by a combination of its type, name, and set of attributes. Cor-

respondingly, a model consists of a set of elements, including atoms, sub-models or

connections. Three levels of similarity can be defined based on the type, name, and

attribute (see Table 4.4) of the model elements:

• Level 1 indicates the most liberal policy (i.e., two atoms are considered clones

as long as they have the same type; two models are clones if they own the same

type and all of their elements are correspondingly Level 1 clones).

• Level 2 represents a moderate clone detection philosophy (e.g., two connections

are considered clones if their source and targets are Level 2 clones, in addition

that each connection has the same type and name).

• Level 3 defines the most stringent rule (i.e., two models are considered clones

only when they hold the same type, name, and attribute set; furthermore, all

of their elements should be correspondingly recognized as Level 3 clones.)

Table 4.4: Three Levels of Similarity

Atom Model Connection

Level 1 Type Type
Elements

Type
Source
Target

Level 2 Type
Name

Type
Name
Elements

Type
Name
Source
Target

Level 3 Type
Name
Attributes

Type
Name
Attributes
Elements

Type
Name
Attributes
Source
Target

Based on the above levels of similarity, the four steps of the clone detection algo-

rithm for models are:
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1. Metamodel preprocessing

The first step involves the partition of the metamodel entities into different

groups that need to be compared. Each group includes a set of the type pairs,

such as {Type-model} : {Type-element}, where {Type-model} is a collection

of types whose model instances comprise some common elements, and {Type-

element} is the collection of model elements that {Type-model} share. Because

{Type-element} is contained by more than one model, it has the potential to

become one of the selected crosscutting concerns.

As shown in Figure 4.28, the type ModelA and ModelB share the element

AtomAB. ModelB and ModelC both contain AtomBC. So the partition of the

illustrated metamodel would be:

{ModelA, ModelB} : {AtomAB}

{ModelB, ModelC} : {AtomBC}

The preprocessing of the metamodel partition facilitates the desired steps of

the algorithm, because only those models that have the same type or fall into

the same group will be compared. Furthermore, only the shared elements of

Figure 4.28: A Metamodel Example
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the two models should be compared. For example, imagine that there is one

instance of ModelA and one instance of ModelB. In such a case, we only need

to consider whether their shared atoms (instances of AtomAB) are clones. Any

other irrelevant elements will not be considered.

2. Model fragments comparison

The second step of clone detection in models determines if the elements of a

sub-model pair are clones by comparison. From the root of the model hierarchy,

each sub-model is compared with the other sub-models that either have the same

type or fall into the same group in step 1. As an example, suppose a comparison

is to be made between sub-model instance X and sub-model instance Y:

• If X and Y are of the same type, every element inside should be compared

correspondingly. The comparison is based on the choice of the level of

similarity as defined in Table 4.4. Each time, the atoms are compared

first, then the models, followed by the connections.

• If X and Y are in the same group, only their shared elements need to be

compared.

• If X and Y do not have the same type, and do not fall into the same group,

it means that they cannot have an intersection; thus, further comparison

is not necessary.

3. Maximally similar model fragments grouping

For all of the clone elements that sub-model instance X and Y share, we group

them together as a common property named P, which is considered as the

maximally similar model fragments of X and Y. If P is not null, the next

task is to find out whether P is already stored in the list of maximally similar

fragments. An efficient way to search for commonalities on a list is to construct

a hash function h(P), which computes the number of a bucket (hash value)
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based on P [28]. The hash function will always return the same bucket number

given the same P. If P is not in the bucket h(P), then X, Y, and P will be added

to this bucket. If P is already in such a bucket, only X or Y will be added into

the collection of the sub-models that share the same property P.

4. Aspect filtering

The maximally similar model fragments generated from the above steps (i.e.,

the initial result of the clones) may contain too much noise and need to be

refined further (i.e., many false positives could be suggested, which can be

removed on further analysis). For instance, based on our experimentation we

found that if one model entity in a maximally similar model fragment group

has a connection (in or out) that does not fall into the same group, then this

model entity is seldom considered as an aspect and can be filtered out.

4.4.2 Case Study: Aspect Mining in ESML

This section presents a case study that applies clone detection for aspect min-

ing on the ESML [107] models (see the introduction of ESML in Section 4.2.2). As

previously described in Figure 2.13 of Chapter 2, an ESML model has a tree-like

hierarchical structure. The model on the first layer is the root of InteractionModel,

which specifies a particular scenario that involves certain configurations of various

sub-models. These sub-models belong to the second layer. In this figure, only two

component sub-models are depicted on the second layer (e.g., BM UserInputCompo-

nentImpl and BM OpenEDComponentImpl). Several models and atoms representing

the containments of the second layer models are depicted separately on the third

layer (e.g., BM OpenFunctionalFacetInterface represents an interface for the compo-

nent BM UserInputComponentImpl). The fourth layer is the last layer shown in Figure

2.13 (e.g., the SetData1 atom denotes a method object that is contained by the cor-

responding component interface model BM OpenFunctionalFacetInterface and BM -
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OpenFunctionalFacet). A solid line between any two layers represents containment,

and a dotted line with an arrow represents connections that may occur on the same

layer or across layers.

In the case where users have no knowledge of the system (or, they have some

knowledge, but not enough to express textual or graphical patterns), the clone detec-

tion technique for aspect mining may be applied to suggest possible aspects within an

ESML model. The level of similarity is set to Level 2 (i.e., only compare the type and

the name, without considering the attributes) for this particular case study. After

applying the algorithm, the maximal similar model fragments of BM UserInputCom-

ponentImpl and BM OpenEDComponentImpl are:

{data2 , Data2Cond, AddCondition}

{data1 , LogOnRead, AddLog}

{InternalLock}

{ANY sub, ANY ref, EventTyping}

{ANY pub, ANY ref, EventTyping}

The last two groups both contain model entities that carry connections out of

the group (e.g., ANY sub in BM UserInputComponentImpl and ANY pub in BM -

OpenEDComponentImpl). Therefore, these two elements (as well as their relationships

in the group) should be filtered out. Thus, the algorithm identifies the resulting aspect

candidates for the three component models as:

{data2 , Data2Cond, AddCondition}

{data1 , LogOnRead, AddLog}

{InternalLock}

As the additional concerns that were identified automatically by our algorithm,

consider the interface models BM OpenFunctionalFacetInterface and BM OpenFunc-

tionalFacet, whose maximal similar model fragments are:
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{SetData1}

{SetData2}

{operator new}

{operator delete}

{SetMemoryStore}

{GetMemoryStore}

In this example, SetData1 will be removed in the filtering process because it has

connections coming into or going out from the group. Consequently, the rest of the

five atoms indicate the clone methods in the interface models and can be regarded

as the potential aspect candidates (as a matter of fact, these five atoms appear in 7

different interface models).

4.5 Summary

In this chapter, two different modeling techniques, i.e., DSM and UML activity

modeling, have been adopted to instantiate the MDAA framework for evolving legacy

software systems. By applying evolutionary changes to the aspect models at a higher

level of abstraction, low-level aspect code can be derived and woven into the legacy

source to perform large scale adaptation.

There has always been an active debate between DSM and UML since the emer-

gence of MDE. Table 4.5 compares these two approaches in terms of the MDAA

realization. As stated by Booch et al. [37], the full value of MDE “is only achieved

when the modeling concepts map directly to domain concepts rather than computer

technology concepts.” DSM is best known for achieving this goal by allowing domain

experts to work directly using the concepts that are familiar to them. Therefore, one

domain is accommodated with one specific well-defined metamodel. On the contrary,

UML is a general-purpose modeling language that uses graphical notations to create

abstract models of a system from different perspectives. It is often considered as a
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visualization of the low-level implementation concepts in terms of source code and it

contains a set of fixed metamodels that are generic to all kinds of different domains.

Table 4.5: Comparison of DSM-based and UML-based MDAA

DSM-based MDAA UML-based MDAA

Base Metamodel Domain-specific Domain-generic

Model Close to the domain con-
cepts

Close to the implementa-
tion concepts

Aspect Metamodel Multiple for one base
metamodel

Only one for one base
metamodel

Aspect Code Generator Multiple for one base
metamodel

Only one for one base
metamodel

Although it is claimed that DSM is 5 to 10 times more productive than the UML

approach [5], the benefit does not come without compromise. In DSM, code genera-

tors have to be customized for each domain in order to produce quality and efficient

code, which requires more tooling effort when compared to UML, which offers a stan-

dardized way to interpret the fixed metamodels with well-defined semantics. When

DSM is applied to the MDAA framework to support legacy evolution, each new evo-

lutionary change requirement must be addressed by one aspect metamodel together

with one aspect code generator, because each one of the change requirements intro-

duces new domain concepts that necessitate different mapping mechanisms to the

underlying aspect code. This can be considered as an augmented modeling approach

as previously introduced in Section 2.3.1. In the UML-based approach, only one

aspect metamodel (defined by a special UML profile) and one aspect code genera-

tor is required, which falls into the lightweight constrained modeling approach (as

introduced in Section 2.3.1).

The MDAA framework, including the Bold Stroke experimental case study, has

been published in [83, 190, 193, 195]. The mechanism and case study for the activity-

based system evolution, as presented in this Chapter and Chapter 3, have been covered
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in [123, 191, 192, 198]. Other contents related to MDAA have been presented in [196]

(aspect mining on models), [102, 125] (a modeling framework for constructing self-

healing software systems) and [194] (model-driven interpreter evolution).



CHAPTER 5

RELATED WORK

In this chapter, related works from different perspectives are presented. Section

5.1 discusses different techniques that relate to aspect and activity models. Section

5.2 compares state-of-the-art approaches for legacy evolution through model-driven

techniques. Section 5.3 gives an overview of the existing aspect mining techniques.

5.1 Research on Aspect-Oriented Activity Modeling

Although aspect-orientation originated at the programming language level [109],

it now extends to other software lifecycle stages and is applied to different levels

of software abstractions. For example, there is a growing community investigating

Aspect-Oriented Modeling (AOM) [1] techniques, providing various concepts, nota-

tions and mechanisms to handle crosscutting concerns at the modeling level. This

section summarizes some of the existing research that relates to aspect and activity

models.

Barros et al. [23] propose a graphical composition operation supporting the ad-

dition of crosscutting requirements in activity models through node fusion, addition,

and subtraction. In contrast to our current implementation of the aspect-activity

extension, their approach considers all types of activity nodes as potential join points

(i.e., not only action nodes, but also object and control nodes). However, as their

approach is based on pure graph composition theory, it lacks semantic support for non-

140
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graphical activity node specification, such as reflective APIs and regular expression-

based operation pattern matching.

Charfi et al. [45] introduce an aspect-oriented extension to Business Process Ex-

ecution Language for Web Services (BPEL4WS) - a variation and application of the

activity modeling language. With web service composition captured in aspects, dy-

namic adaptation of composition logic can be supported. In their model, each BPEL

activity is a possible join point during the execution of processes. Their aspect lan-

guage is similar to ours except that they use XPath (a query language for XML

documents) as the pointcut designator language, whereas our aspect-activity models

are based on MOF/UML specification, which is more generic and can be applied to

any activity model based on UML.

Solberg et al. [163] present a Model-Driven Engineering (MDE) framework that

uses aspect-orientation to facilitate separation of concerns. The primary and aspect

models defined in a platform-independent manner are transformed to platform-specific

models through separate mappings. The resulting models are in turn composed to

obtain an integrated design view. Unlike our approach, they do not provide an explicit

support for modeling aspect constructs. Instead, the weaving mechanism is controlled

by using extra composition directives that instantiate aspect models and bind them

to the primary models.

Grassi et al. [76] propose a UML-based graphical notation for specifying aspects

for the static and dynamic structure of the system model. Similarly, Cazzola et

al. [44] present a high-level join point selection mechanism, which decouples the

aspect definition from the base program structure and syntax. Both approaches focus

on using activity models to represent pointcut patterns, rather than provide aspect

support to activity models.
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5.2 State-of-the-Art on Model-Driven Legacy Evolution

This section summarizes some related research in the area of software evolution

in terms of model-driven techniques.

5.2.1 Architecture-Driven Modernization

The MDAA approach falls into the concept of Architecture-Driven Moderniza-

tion (ADM) [88], which is the process of understanding and evolving existing soft-

ware assets by leveraging some existing Object Management Group (OMG) modeling

standards and its Model Driven Architecture (MDA) [164] initiative8. ADM aims

at various purposes, such as software improvement, modification, interoperability,

refactoring, restructuring, reuse, porting and migration.

Software modernization (i.e., “the process of understanding and evolving existing

software assets” [69]) is driven by the need to capture and retool various architec-

tural aspects of existing application systems. Three major architectural perspectives

have been identified within two domains. The business domain corresponds to “the

business architecture (i.e., models and correspondent diagrammatic views of organiza-

tional governance, business semantics, business rules and business processes), whereas

the IT domain is focused on application, data and technical architectures” [70]. The

software evolution at each architecture level requires three elements [70]:

• Knowledge discovery of the existing solution

The knowledge obtained from existing software is usually presented in the form

of models to which various queries can be made when necessary. ADM com-

prises a standard called the Knowledge Discovery Metamodel (KDM) [92], which

serves as one of the foundations to provide a common repository structure to fa-

cilitate the exchange of software assets. KDM is a metamodel that covers a large

8It is interesting to note that the acronym ADM looks like MDA in reverse, and in reality ADM
does involve reverse engineering in that it incorporates an extraction of architectural models followed
by applying the MDA forward engineering process for legacy system modernization.
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and diverse set of applications, platforms, and programming languages. There-

fore, it is a uniform language and platform-independent representation. How-

ever, it also allows addition of domain and implementation-specific knowledge

with its extensibility mechanism. Although KDM provides a comprehensive

view of application structure and data, it does not consider software elements

below the procedure level, which is instead captured by another foundation of

ADM – the Abstract Syntax Tree Metamodel (ASTM) [91]. ASTM unifies all

syntactical language constructs into a common abstract syntax metamodel. The

KDM and ASTM are complementary to each other, with the intent to enable a

comprehensive representation of applications at different abstraction levels and

facilitate the exchange of various metadata across multiple software artifacts.

• Target architecture definition

In order for the system to be modernized, a clear definition of the target archi-

tecture is required. This phase is the pivotal and most demanding one in ADM

[30], because the architecture should be formulated based on the requirements

from various perspectives as well as the existing models of business domains

and IT technologies.

• Transformative steps that move from the source architecture to the

target architecture

This phase completes the ADM process in providing a transformational bridge

between existing systems and target architectures. The MDA model transfor-

mation techniques (e.g., MOF QVT standard [94]) can be leveraged to enable

the mappings and transformation between the source architecture models and

target architecture models. Consistency between different abstraction levels of

the models must be maintained during each transformation step.
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5.2.2 Model-Driven Legacy Migration

Research on model-driven legacy migration [112] proposes to use a variety of

models to define, analyze, and execute legacy migration procedures. By leveraging

the traditional migration process with the modeling approach, the migration models

streamline the process of legacy migration through a set of models. The application

aspect model acts as a container to define a software application in terms of source

code, domain concepts, architecture, and life cycle processes. The data layer model

captures the persistence aspect of the system, such as the storage mechanism and

schema. The platform model specifies the environment within which the system

is operating. Finally, the migration mapping model describes a set of activities,

methods, and tools that transforms a source model into the target model.

The model-driven legacy migration research claims that the use of migration mod-

els can accommodate the migration requirements from all different types of stakehold-

ers (e.g., users, vendors, and administrators). Furthermore, with the clearly-defined

migration activities through the migration mapping models, the migration project can

be well-planned and estimated. The approach, however, does not take into account

the mapping problems between the existing systems and the corresponding high-level

models, nor does it provide any tool support or real-world implementation.

5.2.3 Model-Driven Modernization of Complex Systems

Similar to the OMG’s ADM, the project “MOdel driven MOdernization of Com-

plex Systems (MOMOCS)” [9] aims at investigating the methodology and related

tools for fast re-engineering of complex systems (i.e., systems that are composed by an

interconnection of hardware, software, user interfaces, firmware, business and produc-

tion processes). It leverages OMG’s modeling standards, and provides a model-based

solution to help abstract away unnecessary details and concentrate on the character-

istics of interest of the systems that need to be modernized [20].
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Figure 5.1 illustrates an overview of the modernization process that is adopted by

MOMOCS. The process model is called XIRUP (eXtreme end-User dRiven Process).

It starts with a preliminary evaluation on the underlying system to assess whether

the modernization is feasible. If so, knowledge of the system will be acquired dur-

ing the system understanding phase for identifying and quantifying the components

(features) that need to be improved or added. Then, transformations are applied to

the existing components in order to build the new adapted ones that are deployable.

After the transformations are validated, the new components are ready for migration

that involves deployment on specific platforms. The whole modernization process is

thus carried out in an incremental and iterative manner.

Figure 5.1: The XIRUP Process Model (Adapted from [20])
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5.2.4 Model-Driven Software Evolution

Another relevant research work is being investigated as a European research

project named Model-Driven Software Evolution (MoDSE) [10]. Instead of using

model-driven techniques to support legacy system evolution, the goal of this project

is focused on developing a systematic approach to supporting evolution for software

systems that are particularly constructed via MDE techniques.

As previously introduced in Section 2.3.4 of Chapter 2, the state-of-the-art MDE

techniques are well-equipped to support application evolution, which is accomplished

through modification of the existing models, from which a brand-new application

can be regenerated completely. However, less support exists for environment evolu-

tion, which includes metamodel evolution as well as platform evolution (i.e., model

interpreter/code generators and application framework changes that reflect new re-

quirements on the target platform). With the intent to fill in this gap, the MoDSE

project is dedicated to developing a prototype programming environment that assists

software engineers with development and maintenance of MDE systems.

In their recent research on metamodel evolution [184], a heterogeneous approach

is developed to support coupled evolution [115] for any scenario of software lan-

guage evolution. Similar to the model transformation techniques as introduced in

Section 2.4, this research provides a generic architecture from which the model-level

transformation can be automatically generated from the metamodel-level evolution

specification that is defined in a domain-specific transformation language (DSTL).

In contrast to the traditional model transformation approaches that rely on a single

fixed transformation language, DSTL is tailored for each specific domain (e.g., pro-

gramming languages, modeling or data modeling) and can be automatically derived

from a given meta-metamodel definition.
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5.2.5 Model-Driven Engineering for Software Migration

Legacy evolution is not only an academic research topic, but also a real problem

and key issue in industry and business. Numerous industrial solutions have been

proposed and developed to facilitate the evolution of existing software. Sodifrance

Inc. [11] is such a company dedicated to providing efficient solutions to modernize

large industrial IT systems.

Since 1994, Sodifrance has adopted MDE approaches for modernization projects

[67]. A tool suite called Model-In-Action (MIA) [12] has been developed for au-

tomating the software migration process through model manipulation techniques. As

illustrated in Figure 5.2, the model-driven process is divided into four steps. The

first step is to parse the legacy source code into the code model that conforms to the

metamodel (L) of the legacy application implementation language. Then, reverse en-

gineering is performed to abstract a high-level view and build a platform-independent

model (PIM) from the code model. This step is realized by model transformation

from the legacy language meta-model (L) to a pivot metamodel (ANT ) that contains

built-in packages to represent different viewpoints of the system, such as generic

static data structures, actions, algorithms, and graphical user interfaces (GUI). The

obtained PIM thus needs to be transformed to a platform-specific model (PSM) of

the application in order to fit the target platform requirements. The UML metamodel

is adopted as the paradigm to describe a PSM, which is finally translated into the

source code of the new application using template-based text generation techniques.

Similar to Sodifrance, Interactive Objects’ [8] MDA-based legacy transformation

process also consists of four steps, i.e., source parsing, grammar model building,

generic model transformation and UML model/code generation [150]. Their solutions

are completely compliant to OMG’s MDA standard, based on MOF, UML and M2M

transformations.

In contrast to these industrial approaches, the MDAA framework is not constrained
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Figure 5.2: Model-driven Migration Process in Sodifrance (Adapted from [67])

by any particular modeling paradigm – there does not exist a single generic meta-

model to cover all the perspectives of all the distinct systems. We believe that dif-

ferent application systems and different evolution tasks require disparate modeling

solutions. For example, Domain-Specific Modeling (DSM) might be beneficial in de-

scribing real-time embedded systems by using the concepts that are directly related

to the problem domain, whereas UML-based modeling might be more appropriate in

representing application logic that is closer to the implementation level. Furthermore,

with the aspect-orientation capability, the application source code does not have to be

regenerated as a whole (which is inefficient and sometimes impossible). Instead, only

the transformation logic that is represented in the aspect code needs to be generated

from the separate aspect models.
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5.3 Approaches on Aspect Mining

The topics of clone detection and aspect mining have received considerable atten-

tion in the research literature. Various clone detection techniques have been developed

and implemented to detect duplicated source code. Baker [22] applies a token-based

analysis to locate the duplication in large software systems. CCFinder [105] is a tool

that also uses a token-based representation of source code to find clones. Baxter et

al. [28] use the abstract syntax tree (AST) representation of a source program to

find clones through the discovery of similar sub-trees. Our approach is similar to

Baxter’s technique. However, since these two approaches are working at different lev-

els of abstraction, they differ on what are compared. Baxter’s approach determines

the similarity of sub-trees based on the number of shared and different nodes of the

sub-trees. Our approach determines the similarity of elements of sub-models based

on one of the three levels of similarity for the model elements. Mayrand et al. [127]

use metrics that are calculated from the source fragment to find clones.

As for aspect mining, the current state-of-the-art is represented by the collection

of tools described below. All of these tools are focused on source code analysis.

The Aspect Browser [87] enables users to enter regular expressions as patterns to

identify aspects. An early contribution of Aspect Browser was an aspect visualizer

that graphically conveyed a visual overview of the crosscutting effect of a specific

aspect. The Aspect Mining Tool (AMT) [98] augments the Aspect Browser with

type-based mining.

In the Prism tool [189], users define a fingerprint that captures a certain property

of a crosscutting concern in code. The Prism advisor autonomously computes the

crosscutting property of the mining target and returns all of the matches, which are

called footprints.

FEAT [151] introduces the concept of a concern graph that localizes an abstracted

representation of program elements contributing to the implementation of the concern.
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FEAT enables users to perform maintenance tasks that involve non-localized changes.

Users initiate the search process by providing a seed, which is expressed through a

text file using a declarative language to describe a concern. FEAT generates the

concern graph automatically according to the declared concern. Users can visit the

source file corresponding to each class in the concern graph.

Ophir [161] is a fully automatic mining and refactoring tool based on the com-

bination of a program dependence graph (PDG) and abstract syntax tree (AST).

Ophir’s aspect identification algorithm starts only at specific points of each method

in order to speed up the processing time. However, this approach may overlook some

potential aspects.

ER-Miner [154] provides automated support for identifying crosscutting concerns

within the requirement documents by using natural language processing techniques.

While it is intended to be applied at the requirements level, our approach is performed

on the design of domain-specific models.

Breu and Zimmermann [41] use version history to mine aspect candidates. Their

approach yields a high precision for big projects with a long history but suffers from

the much fewer available data for small projects.

Aspect Browser, AMT, Prism, and FEAT all require user interaction. Users must

understand the application domain and provide the pattern seed from their knowledge

of the code. This limitation is in addition to the fact that these tools only look for

source code level aspects. To our knowledge, no other research has been presented

that focuses on the implications of aspect mining from a modeling perspective. Our

approach can be distinguished from all of the related work summarized above by the

observation that we have applied clone detection to search for aspects at the model

level. The primary benefit our approach offers over the existing techniques is that

modularization of a design through aspects is done even before proceeding to the

implementation level.
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FUTURE WORK

This chapter puts forth some ideas about the future work based on the contents

presented in Chapters 3 and 4. In the area of Aspect-Oriented Modeling (AOM),

future research includes introduction of new types of join points, extensions to aspect

mining from models and aspect interference handling. As for the Model-Driven As-

pect Adaptation (MDAA) framework, the potential future work may support model

simulation, version control of models as well as the alignment with the Model-Driven

Architecture (MDA) and Architecture-Driven Modernization (ADM) standards.

6.1 Aspect-Oriented Modeling

In this dissertation research, an aspect-oriented approach is applied to the mod-

eling level to capture evolutionary changes at the requirements/design phase. AOM

is a key technique to support modular evolution in that evolutionary requirements

are encapsulated in a localized fashion. During our experiments, two different aspect

modeling paradigms were investigated and leveraged, i.e., Aspect-Oriented Activity

Modeling (AOAM) as well as aspect-oriented domain-specific modeling. This section

will discuss some of the potential future works that fall into this category.

• More types of join points

In AOM terminology, a join point represents a point of interest in the model-

ing hierarchy through which evolutionary requirement concerns may be woven.
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Therefore, the type of chosen join point is based on the unique modeling con-

structs in a specific modeling language. In our current implementation of the

AOAM approach, join points are limited to the action nodes (see Figure 3.3 for

the aspect-activity modeling profile definition), because actions are considered

the most meaningful constituents in the activity model. In fact, it is hypo-

thetically valid that join points can be all types of the modeling elements. For

example, additional behavioral activities might be required at a certain decision

point that is represented by a control node (see the activity metamodel defini-

tion as shown previously in Figure 3.1). Future work will include investigations

of other types of join points as well as more advanced pointcut expressions.

• Aspect mining

The research on aspect mining of models is still in its infancy. Very few tech-

niques and supporting tools are currently available to support aspect identifi-

cation, let alone aspect extraction and refactoring. There are several areas that

need additional investigation to further the maturity of model-driven aspect

mining:

– Noise Filtering: The result of the clone detection is usually adulterated

with too much undesired noise. Currently, we only use one filter layer

that is based on model connections. Other metrics can be taken into

account for the filtering analysis (e.g., model containment or other types

of relationships).

– Visualization of Modeling Aspects: An aspect mining tool enables identifi-

cation of the potential aspects and often provides the capability to visualize

the various locations affected by an aspect. Traditional aspect mining tech-

niques work on the source code level, thus their corresponding visualization

tools are based on a graphical notation that is particular for line-oriented
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software statistics [87]. Because a model is a containment hierarchy of

entities, it is necessary to develop a specific means to visualize the cross-

cutting aspects over different levels of models. Our future visualization

tool will use a tree structure to display the model hierarchy natively with

potential aspects highlighted across the whole structure. Users will have

the option to expand or collapse any level of a specific model.

– Aspect Extraction and Refactoring: With respect to general model refac-

toring, we have already implemented a model refactoring browser in GME

by means of a model transformation engine [197]. The research on aspect-

oriented refactoring is still under investigation, which aims to extract the

mined crosscutting concerns into the separately described aspects. For

instance, these aspects can be represented by aspect-oriented model trans-

formation rules written in the Embedded Constraint Language (ECL).

• Aspect interference analysis

A key point when dealing with aspects is the notion of aspect interference (i.e.,

when multiple aspectual behaviors are superimposed at the same join point,

different composition orders may reveal various inconsistency problems). In

such circumstances, the aspects interact with each other in a potentially un-

desired manner, due to the side-effects caused by the aspects. The problem

of aspect interference is intrinsic to every AOSD technique. As a preliminary

investigation that addressed this issue, the AOAM approach as described in

Chapter 3 allows precedence relationships to be specified at the modeling level

to prevent undesirable interference (i.e., the <<follows>> relationship between

advice and aspects as well as the <<hidden by>> and <<dependent on>> re-

lationship between aspects). Model engineers make design decisions explicitly

based on the dependencies between aspectual behaviors, from which the under-

lying composition mechanism in the AOAM weaver derives a proper composition
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order automatically. The current implementation has not taken into account

pointcut-to-pointcut interference. However, in recent AOSD literature, the so-

called “fragile pointcut” problem [170] has been studied as an important aspect

interference issue. The future work will include investigation on the topic of

pointcut interference. In addition, the aspect precedence specification only pro-

vides a preventive solution. Formal evaluation and analysis is thus needed to

detect the aspect interference on the specification of the aspect models as well

as during the run-time execution of the composed activity models. Future work

also contains the integration of the activity-aspect composition mechanism with

the debugging and simulation feature provided by Telelogic TAU [13]. A com-

ponent called a model verifier in TAU allows model engineers to simulate the

UML models in a similar way to the debugging capability provided by most

programming language IDE tools (e.g., Eclipse and Microsoft Visual Studio).

For instance, one can simulate the activity models automatically or can manu-

ally step through actions and control flows. By integrating the AOAM weaver

with the built-in model verifier, the activity-aspect models can be simulated

with the base activity model. This way, model engineers can verify the impacts

that are caused by each applied aspect.

6.2 Model-Driven Aspect-Adaptation for Software Evolution

Chapter 4 presented a MDAA framework to facilitate legacy software evolution by

incorporating AOSD and MDE techniques. This section will cover the future works

that need to be investigated in this area.

• System validation through model simulation

The enhanced system resulting from the MDAA framework needs to be vali-

dated to ensure that it meets the evolution requirements. According to the Ca-

pability Maturity Model (CMM) [178], “validation confirms that the product,
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as provided, will fulfill its intended use. In other words, validation ensures that

‘you built the right thing’.” Within the context of MDE, the validation process

can be facilitated by integrated model simulation, which is “simulation-based

validation” [148]. By providing the traceability between the high-level design

models and the corresponding implementation, not only the enhanced system

can be validated as a whole by simulating the composed models (see Figure

4.1), each individual evolutionary change to the system can also be validated

as a separate part by simulating the corresponding aspect models.

• Version control support

Along with the system evolution, various versions of the base system, modeling

artifacts (e.g., base metamodels, aspect metamodels, base models, and aspect

models), and aspect code generators would co-exist. It becomes extremely dif-

ficult to track and manage dependencies, consistencies and variations among

all these artifacts over time. Thus, a well-managed traceability mechanism be-

tween different artifacts needs to be in place to support software evolution.

Our future work is to design and develop a robust version control system that

is customized for the MDAA framework to maintain consistency between the

different versions of a variety of software assets.

• MDA/ADM alignment

As introduced in Chapter 5, ADM [88] provides a set of standards to facilitate

the evolution of legacy software. A future work of the MDAA framework would

be to leverage the ADM resources to make the approach more applicable. For

example, extracting models that conform to the KDM (Knowledge Discovery

Metamodel) [92] or ASTM (Abstract Syntax Tree Metamodel) [91] would result

in more reusable models that are able to fit into other ADM standard packages

(e.g., analysis package, visualization package or refactoring package). Future
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work can also involve the discovery of the architecture-related implementation

in the legacy system. The Platform Definition Models (PDM) can be extracted

to denote the non-functional architectural aspects of the system. The Platform-

Independent Models (PIM) can also be constructed to represent the functional

design decisions in the system. This way, the legacy system can be refactored

and further evolved by leveraging the existing MDA technologies.



CHAPTER 7

CONCLUSION

Software is subject to change in order to adapt to the altering and evolving re-

quirements. Therefore, a desired result is to achieve modularization such that an

evolutionary change in a design decision is isolated to one location [143]. This disser-

tation research is focused on providing a solution to modular software evolution by

leveraging Model-Driven Engineering (MDE) and Aspect-Oriented Software Devel-

opment (AOSD) techniques. This chapter concludes the contributions of the disser-

tation research, and provides a summary of a few lessons learned during the research

investigation.

7.1 Aspect-Oriented Activity Modeling

Activity modeling has a long history of being adopted as a popular means for

specifying behavioral aspects of a system. As the described system becomes more

complicated, a single concern may cut across multiple places that spread over the

complete set of activity models. In order to better encapsulate crosscutting concerns

and support the evolution of activity models in a modular fashion, this dissertation re-

search investigated the Aspect-Oriented Activity Modeling (AOAM) approach, which

brings the AOSD solution to the activity modeling space. Aspect-specific constructs

(i.e., aspects, pointcuts and advice) have been introduced as an extension to the

activity models by use of the UML profile technique. Three kinds of composition
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mechanisms (i.e., pointcut composition, advice composition and aspect composition)

have been developed for reducing aspect interference as well as facilitating aspect

reuse. The prototype of the AOAM approach has been implemented as a part of

the industrial strength Aspect-Oriented Modeling (AOM) weaver that was initiated

at Motorola. Experimental studies have been performed on a real-world use case.

From our experience, compositions at different granularity levels improve the aspect

reusability to a greater extent. In addition, the capability of separating different con-

cerns as provided by AOAM allows each concern to be changed and maintained in a

modular fashion.

7.2 Model-Driven Aspect-Adaptation

The MDAA approach presented in this dissertation supports the modular evo-

lution of legacy software systems by uniting model-driven and aspect-oriented tech-

niques. The modularity is realized by encapsulating evolutionary changes in the high-

level aspect models that are translated into the low-level aspect code to be woven into

the base system. The components involved in the MDAA framework are: 1) model

extractor (which reverse engineers the legacy source to base models that conforms to

a pre-defined metamodel); 2) aspect model specification environment (which is used

for the domain engineer or requirements engineer to specify evolutionary changes in

the high-level aspect model); 3) model composer (which refers to the aspect model

weaver that composes the base models and the aspect models); 4) aspect code gen-

erator (which takes the aspect models and produces the aspect source code); and 5)

program composer (which generates the composed system source by taking the base

legacy source code and the generated aspect code). The research conducted exper-

imental studies on different systems (e.g., a mission computing avionics system and

a network fault management system) based on various modeling approaches (e.g.,

UML-based and DSM-based). The comparison of the two approaches are discussed
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in Chapter 4. Each approach has its own advantages and disadvantages. It is worth

noting that there does not exist a general standard on which modeling approach

should be chosen. Such a decision depends on the specific use case and the envi-

ronments/tools available. In addition, the initial stages of the MDAA solution (i.e.,

model extraction, aspect metamodel definition and aspect code generator implemen-

tation) may require a large amount of development effort. But once these resources

are in place, MDAA can provide useful facilities to the domain experts or business

users in terms of system evolution.

7.3 Lessons Learned

This section lists a few lessons that were learned during the dissertation research:

1. Reducing aspect interference

During the design of the AOAM aspect modeling constructs, the aspect inter-

ference problem was not taken into account at the beginning. We soon ran into

the problem of having multiple aspects imposed at the same join point. Further-

more, the ordering of these aspects were unpredictable because it is randomly

determined by the underlying weaver. We then studied the area of aspect inter-

ference and designed a solution to reduce this issue by introducing precedence

relationships in the aspect definition. Although the interference problem is not

completely resolved (which requires a formal validation mechanism), it can be

prevented by specifying precedence and dependence explicitly.

2. Constructing a metamodel composer

The DSM-based MDAA framework implementation relies on the C-SAW model

transformation engine to realize the model-level aspect weaving. However, C-

SAW can only be used for composing models that are under the definition of

the same metamodel. Due to the evolving nature of systems, each type of
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evolutionary change might correspond to a new aspect metamodel. In order

to apply C-SAW, a metamodel-level composer is needed to integrate the base

metamodel and aspect metamodel. The new composed metamodel thus serves

as the input to the C-SAW engine.

3. Utilizing a robust program transformation engine

During the experimental study with the MDAA approach, our earlier inves-

tigation with OpenC++ [46] and AspectC++ [165] suggests that the parsers

in these tools are not adequate to handle the complexities that exist in the

million lines of C++ code in Bold Stroke. We then turned to the commercial

tool DMS, which was able to parse and transform the Bold Stroke component

source. The only pitfall with DMS is the complexities of its rule specification

language (RSL). However, the RSL is supposed to be hidden from the domain

engineer and generated from the high-level models that are augmented with

aspect specification.
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