
Model-Driven Configuration of Automated

Parking Facilities
Abstract Purpose

 Methodology

This project represents an investigation into the

customization of an environment that supports a fleet

of autonomous vehicles cooperating to solve a

common task. Specifically, the project is scoped

within the context of an automated parking facility,

whereby a driver may drop a car off at the entrance

to a garage, receive a reservation code, and leave the

car behind. The vehicle will then be instructed on

how to drive itself to an open parking space. The

owner of the car may return to the facility to retrieve

their vehicle, which will be autonomously returned

to the owner amid a set of other vehicles that may be

entering and leaving the facility concurrently.

Determination of parking location and maneuvering

to and from the space is coordinated between each

vehicle and a host controller at the facility, which

can be configured for specific parking lots using a

high-level modeling language. The controller

handles all communication between vehicles and

provides instructions to each car regarding the

directions to the assigned parking space. For the

purposes of this project, small robots were used to

simulate cars and Bluetooth was the wireless

communications medium between the cars and host

controller.

Our research focuses on the development of a smart garage that contains information about

parking space availability and that is able to transmit that information to vehicles. The

project provides an investigation that addresses this problem through a software-driven

solution that supports customization through visual, domain-specific models.

• The creation of the modeling tool can be broken down into two steps: creating the metamodel, which defines the

domain-specific modeling language, and programming the interpreter.

• A Garage contains ParkingLots, and a ParkingLot contains ParkingSpaces. ParkingLots mimic the different floors of

a garage. We developed a metamodel that conformed to the rules above, using the GEMS (Generic Eclipse Modeling

System) plugin for the Eclipse IDE (Integrated Development Environment).

• Interpreters can be used to generate actual code in any programming language at the click of a button. In our case, we

decided to use the interpreter to generate the attributes for each parking space in the garage in a text file.

• Another program was written that would read in this “space information” using file streams, and use this data to help

a vehicle navigate through the parking facility.

• We used Java as the programming language for this project..

• A parking garage and a car, represented by the NXT robot, are the main objects.

• A garage can be divided into different floors, or parking lots. These lots can be further subdivided into a basic

unit, the parking space.

• The project was modularized into two parts, a component dealing with the robotics and communication between

the robot and the garage, and the composition of the garage itself.

• From this, four classes (Garage, ParkingSpace, ParkingLot, and Car) were implemented.

• The host computer sends commands through Bluetooth to the robot using a string of characters.

• Each robot runs the same basic application. This client software contains:

• collision avoidance algorithms

• a line tracer algorithm for following the guideline

• communication capabilities to retrieve the parking direction string from the host controller.

As vehicles enter the parking facility, they wait for a connection from the host controller in the garage, and then

accept instructions from the host that represent navigation control and directions to a parking space. The flowchart

depicts the flow of the autonomous navigation.

• We constructed the representative garage out of foam board. We delineated parking spaces using tape.

• We also used tape as the guideline.

• Initially, the robots would only use their tachocounts to find parking spaces, but parking was not always accurate.

• We revised our method to use a color sensor to detect parking spaces. This did not work as well as planned, due

to the sensitivity of the color sensor.

• We then used the light sensor in place of the color sensor, and replaced the colored markers with black markers,

as they were of a different light sensor reading than the foam board.

• This modification was more effective than using the color sensor, with the robots parking more accurately.

Visual representation of parking process

Objectives

Specific goals for this project were as follows:

• Investigating issues related to autonomous control of vehicles using the Lego

Mindstorms NXT as an experimental platform.

• Designing an efficient method of traversal in a parking garage.

• Designing and implementing a communications protocol for the garage vehicle system.

• Implementing collision avoidance for vehicles moving in the garage.

• Developing a flexible, domain-specific modeling language for the customization of

different parking garages, to allow for wider use in garage construction or improvement.

Foam board garage construction, initial and revised
These are the types of garages we simulated and made automated.

Screenshot of actual modeling

tool, and demonstration of how to

invoke the interpreter in order to

generate the space information.

Text files generated by the interpreter for two separate garage

configurations. Each line in the text file represents a unique

space and lists each of that space’s attributes.

Robotics and Communications Domain-Specific Modeling

Future Work

In the future, we will improve and add to the functionality of the project in the following ways:

• Improving the algorithm used to trace the guideline. This will ensure accurate positioning which will in turn lead to better parking.

• Adding sensors to parking spaces for extra confirmation and safety. The garage will know if some vehicle accidently went to the wrong

space, and will therefore not send another vehicle to that space.

• Implementing some form of localization, such as Monte Carlo localization, to allow more accurate traversal of the parking garage. This

could also improve safety in the garage.

• Implementing subsumption and more behavior-based programming. A robot follows a simple command, such as moving forward, but

switches to more complicated procedures when obstacles are encountered, such as nearing a wall.

• Redesigning the robots so that they resemble traditional vehicles. We can then determine the best way to implement parking procedures

for different types of automobiles.

• Implementing a method to quickly retrieve vehicles without scanning each parking space.

• Testing alternative implementations of the interpreter with other garage configurations.

• Developing a new metamodel that can make the modeling tool more intuitive.

The garage gets a list of available spaces

by checking which ones are not filled.

We were able to meet our initial goals that were enumerated at the start of the project. Multiple robots were able to navigate through the garage

via Bluetooth instructions from a host controller, and the model can successfully generate multiple parking garage configurations. We were also

able to implement collision detection and prevention within the garage using ultrasonic sensors that came with the NXTs. This enabled us to

coordinate entry and exit of the parking facility with multiple vehicles. However, while the project has shown many promising signs, there is

still much we can improve.

This segment shows how monitoring

of the Light(Color) sensor is done

This segment is a line following

algorithm taken from a LeJOS sample.

This code shows that the robot moves

until its tachocount (or marker count)

is equal to the tachocount (marker

number) for the assigned space. The

robot also only moves when it has a

certain clearance.

• The Garage class keeps track of all the empty parking spaces in the garage using an ArrayList of empty parking spaces. Initially, all

parking spaces start empty, filling up as cars enter and leave the garage.

• The garage updates the status of a parking space with each delivery and retrieval to and from that space.

• When a user wants to leave their vehicle, the garage connects to it through Bluetooth, and then send the appropriate data string.

• It will then fill the available space and store the Bluetooth address of the vehicle. When leaving the garage, the garage scans each space

for the correct vehicle. Once found, the garage gives instructions on how to return to the start of the garage.

• The garage regenerates the reservation code for each space that is emptied.

Robot construction

Software Excerpts

The final version of the application achieved the goals of the project: the brain of the garage, the controller residing at the parking facility, is

able to send Bluetooth instructions to multiple NXT robots concurrently to coordinate entry and exit of the facility. The robots are then able

to parse that input and follow the instructions to park in specific parking spaces. The robots are also able to receive instructions to back out

of parking spaces and exit the garage. Several video demonstrations have been captured and are archived on a project web site.

The research done in this project has shown that domain-specific modeling can be a very useful tool in the parking garage. With the focus on

writing code diminished, it is now possible to focus on improving the functionality of the garage. However, there are still many limitations

that have not been addressed in the project in terms of modeling. Our own inexperience with domain-specific modeling may have led to an

inefficient design of the metamodel, and consequently, the modeling tool and interpreter. As of right now, however, the initial goals we set

out to accomplish have been met. The modeling tool for the parking facility follows all rules laid out in the metamodel, and the code

generator was able to write out the attributes for each parking space (such as tachometer counts) to a text file using file streams. This was

accomplished for one physical garage and one other configuration.

This shows how a parking space is

constructed.

Results

This excerpt shows how the garage

sends instructions to the NXTs. The

first character sent is the direction the

robot should turn into the parking

space. The remaining is either the

tachocount of the parking space, or the

number of the parking space.

Screenshot of the metamodel. Connections between classes are containment

relationships. The connection object (LotConnection) specifies which classes

can be connected in the actual modeling tool. In this case, ParkingLots can be

connected to other ParkingLots, mimicking consecutive floors in a garage.

Above is an excerpt of code from the program that reads in

parking space information from the text file generated by the

interpreter. Data is read in line by line, so that each space is

initialized with the correct attribute values.

Above is a screenshot of the interpreter. This specific

method, visitParkingSpace(), illustrates the process that

generates code for each space in the garage.

The modeling tool greatly increases the versatility and adaptability of the garage. Since one is no longer confined to one fixed

configuration of parking spaces, there are nearly limitless possibilities for different garage designs. While the use of domain-specific

modeling has shown great promise, there is still much that needs to be addressed.

The Lexus LS460 employs Lane Keep Assist (LKA) which helps

drivers maintain position on the road. The car uses a stereo camera

and other sensors to monitor position. This is similar to our concept of

the NXTs following a guideline through the garage.

