
A Grammar-Based Approach to Class Diagram Validation
Faizan Javed

Department of Computer and
Information Sciences

University of Alabama at Birmingham
1300 University Boulevard

Birmingham, AL 35294-1170, USA

javedf@cis.uab.edu

Marjan Mernik
Faculty of Electrical Engineering and

Computer Science
University of Maribor

Smetanova 17
2000 Maribor, Slovenia

marjan.mernik@uni-mb.si

Barrett R. Bryant, Jeff Gray
Department of Computer and

Information Sciences
University of Alabama at Birmingham

1300 University Boulevard
Birmingham, AL 35294-1170, USA

{bryant, gray}@cis.uab.edu

ABSTRACT
The UML has grown in popularity as the standard modeling
language for describing software applications. However, UML
lacks the formalism of a rigid semantics, which can lead to
ambiguities in understanding the specifications. We propose a
grammar-based approach to validating class diagrams and
illustrate this technique using a simple case-study. Our technique
involves converting UML representations into an equivalent
grammar form, and then using existing language transformation
and development tools to assist in the validation process. A string
comparison metric is also used which provides feedback, allowing
the user to modify the original class diagram according to the
functionality desired.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
Model Checking, Validation.

General Terms

Algorithms, Design, Reliability, Languages, Verification.

1. INTRODUCTION
The software industry continues to experience rapid growth with a
side effect of rising costs. A common critique of today’s software
projects is that developers spend too much time on the coding
process and begin the implementation phase prematurely.
Throughout the development lifecycle, the system is tested
according to the requirements to uncover any anomalies. In the
event of any deviation from the original specifications, it is more
costly in terms of time and money if the problem is rectified after
the coding stage rather than at some point before it [11].

The Unified Modeling Language (UML) [1] was created to
address some of these issues faced in the software design process.
UML provides the ability to model both the static and dynamic
aspects of an application. Using UML, classes that model a
system can be described using class diagrams, and collaborations

between classes to perform the use cases can be modeled by UML
dynamic diagrams, such as sequence diagrams or activity
diagrams.

Static validation can be used to check whether a model conforms
to a valid syntax. Techniques supporting static validation can also
check whether a model includes some related snapshots (i.e.,
system states consisting of objects possessing attribute values and
links) desired by the end-user, but perhaps missing from the
current model. We believe that the latter problem can occur as a
system becomes more intricate; in this situation, it can become
hard for a developer to detect whether a state envisaged by the
user is included in the model. As an alternative, dynamic
validation can be used to check if the dynamic features of the
model exhibit the behavior required by the end-user. For
performing static and dynamic validation of UML models, we
propose a grammar-based approach to validating UML models
with an initial focus on static validation.

Grammar-based systems [5] make use of a grammar or sentences
generated by a grammar to solve problems outside the domain of
programming languages. The rationale of this approach is that
tools for working with grammars already exist; the problem-
solving process can be expedited if a suitable representation of the
problem in the form of a grammar can be found. The approach
also involves the use of a compiler-generator tool called LISA [2]
that is used to construct a Domain-Specific Language (DSL),
which are languages designed specifically for a particular domain.
The defining properties of DSL’s are that they are small, more
focused than general-purpose programming languages (e.g., Java),
and usually declarative [4]. The technique also uses XSLT [3], a
translation language for XML documents.

The rest of the paper is organized as follows: Section 2 describes
the related work in this area. Section 3 gives an overview of the
technologies used in the overall architecture of the approach.
Section 4 presents the approach applied to a video store case
study, while section 5 introduces some novel ideas in the context
of this work. The paper concludes with summary remarks and a
mention of future research directions in Section 6.

2. RELATED WORK
Various distinctive approaches have been taken to validate UML
models. In [7], OCL expressions are employed to generate
complex snapshots representing system states automatically at a
particular point in time. Another approach makes use of the
semantic model given by Abstract State Machines [9] to validate
both the static and dynamic aspects of a UML model [8]. A

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
4th Int. Workshop on Scenarios and State Machines: Models,
Algorithms and Tools, 21 May 2005, Saint-Louis
ISBN 1-59593-130-9

formal methods based framework has been proposed in [11],
where the system specification is first described by a graphical
intuitive model before being made precise and validated by use of
a formal specification tool. Story Driven Modeling [12] is a
software development process which converts textual use case
scenarios into storyboards (i.e., sequences of UML interaction
diagrams) from which the modeler derives class diagrams and
UML based behavior specifications and JUnit tests. These are
then turned into Java implementations by a code generator, and
the JUnit tests are run to check whether the method behavior
conforms to the use case scenario. An approach involving
validation of UML models using theorem proving is discussed in
[16], while [17] exploits use-cases by transforming them into
planning problems to derive a sequence of messages. Relational
logic has also been used to generate system snapshots, as in the
case of the Alloy constraint analyzer [18].
Our work differs from previous approaches in that we represent
the class diagram as a context-free grammar (CFG), and scenarios
as a series of object instantiations of the class diagram. If a
scenario is successfully parsed by the CFG, it indicates that the
particular scenario can be represented by the class diagram.

3. THE VALIDATION PROCESS
Figure 1 gives an overview of the grammar-driven approach to
UML validation. The remainder of this section will elaborate on
the various stages of the approach and provide a brief introduction
to the tools and technologies used at each step.

3.1 CONVERTING TO A GRAMMAR
In Stage 1, a UML class diagram for a particular application is
converted into an equivalent XML representation. Stage 2 uses
XSLT and LISA to perform transformations on the XML
representation. XSLT is a language that can transform an XML
document into any other text-based format [3]. LISA is an
interactive environment for programming language development
where users can specify, generate, compile-on-the-fly and execute
programs in a newly specified language [2]. The XSLT portion of
the process transforms the XML file to generate an equivalent
CFG representation of the class diagram. Note that we are not
dealing explicitly with objects when using the CFG
representation. The CFG describes the structure of the class
diagram albeit in a textual form, and does not contain type
information of the attributes. Thus, this CFG can be viewed as a
DSL for representing the domain of the original class diagram. A
LISA specification file is created, which makes use of the
generated DSL grammar to create a parser for the language. All
the steps required to convert the class diagram to a DSL are
automated.

3.2 CALCULATING VARIABILITY
After Stage 2, a textual representation of the original class
diagram in the form of a grammar has been obtained. Stage 3
shows that all possible instantiations of this CFG correspond to
valid strings in this language, which in turn correspond to all valid
object diagram configurations of the UML diagram. Because the
language that the CFG describes could be infinite, it is not
feasible to perform static validation at this step by enumerating all
possible strings of the CFG generated, and then testing if the use
case string exists in this set. Hence, using this naïve approach of
generating all possible use cases can be laborious and in some

cases, impossible to achieve. A key observation here is that to
generate all possible use cases, all possible combinations of the
production rules in the CFG need to be generated. If the CFG
includes recursive rules, then these rules need to be exercised only
once because multiple runs through the rules will not append any
new meaning to the use cases. Taking this into account we can
calculate exactly how many different use cases need to be
generated. The calculation is similar to the variability calculation
of feature diagrams [13], with additional rules to handle recursion.
The number of all possible different use cases is calculated by the
rules in Table 1, where A stands for non-terminals, a is a terminal
symbol, B denotes a non-terminal or terminal symbol, and Var
stands for Variability:

Figure 1. Architecture of the Validation Approach

Calculating the variability and eliciting all possible use cases is an
automated process achieved by performing an exhaustive search
to derive all string instances reachable from the start symbol. A
concrete example will be detailed in section 4.1.

Var (A ::= B1 … Bn) = Var(B1) * … * Var(Bn)

Var (A ::= B1 | … | Bn) = Var(B1) + … + Var(Bn)

Var (A ::= a) = 1 (single non-terminal)

Var (A ::= eps) = 1 (empty production)

Var (A ::= AB) = Var(B) (left recursion)

Var (A ::= BA) = Var(B) (right recursion)

Table 1. Rules for Variability Calculation

3.3 THE FEEDBACK SYSTEM
In Step 4, the user presents a set of positive strings in the language
that correspond to scenarios in the use case model. The user may
also provide a set of negative strings. In UML, use cases capture
the requirements of the customer and describe the functionality of

the system. The user-supplied strings are tested against the parser
generated for the DSL by LISA. Ideally, only all the positive
strings should be parsed successfully. If a positive string is not
parsed, it indicates that a use case desired by the user can not be
represented by the current class diagram. As additional feedback
(Stage 5), the approach provides a list of strings that are most
similar to the string provided. This metric is calculated using the
Levenshtein distance [6]. The Levenshtein distance, also known
as the Edit Distance, measures the similarity between two strings.
The distance is the number of deletions, insertions, or
substitutions required to transform a source string into a target
string. The greater the Levenshtein distance, the more dissimilar
the strings are. In the next section, we illustrate the validation
process using a Video Store case study.

4. CASE-STUDY: A VIDEO STORE
This section presents a brief description of a video store case
study. A video store consists of a video and customer database.
The video database contains information on all video titles
currently on file, and the user (customer) database contains
information on all current members of the video store, as well as
all videos currently rented by each customer. A customer can walk
into the video store and either rent a movie, or become a member
of the store. The customer is served by the owner of the store (or
an employee). The store owner can also add new titles to the
video database. Figure 2 gives the use case diagram for this
example.

Figure 2. Use case diagram for the Video Store System

In UML, the functionality of the system is represented by use
cases that interact with the system actors. In the video store
example, the actors are the customer and owner. Each use case
can be refined to an activity diagram. Activity diagrams focus on
work performed during the activities in a use case instance or in
an object. Due to space limitations, we only present the activity
diagram for the rent movie use case (see Figure 3). The use case
and activity diagrams are used by the user in forming the input
test cases for the feedback component of the process. The activity
diagrams are not used by the automated component of the
validation process, but they are used by the user when
constructing appropriate use cases while analyzing the CFG. The
activity diagram also helps the user better formulate the desired
functionality of the system.

4.1 Validating Static Behavior
In UML, class diagrams model the static structure of a system –
the classes and their relationships. However, class diagrams do
not explain how these structures cooperate to manage their tasks
and provide the functionality of the system. The video store
system is composed of the classes VideoStore, User and Movies
(see Figure 4). The association Rentals describes the videos rented
by a customer.

Figure 3. Activity Diagram for the rent movie use case.

Figure 4. Class Diagram for the VideoStore Case Study.

Initially, the class diagram is converted into an XML
representation. During Stage 2 of the validation process, the XML
representation of the class diagram is converted into a CFG
representation, as shown in Table 2.

1. VideoStore � MOVIES CUSTOMERS | CUSTOMERS
MOVIES | MOVIES | CUSTOMERS
2. MOVIES � MOVIES MOVIE | MOVIE
3. MOVIE � title type
4. CUSTOMERS � CUSTOMERS CUSTOMER | eps
5. CUSTOMER � name days RENTALS
6. RENTALS � RENTALS RENTAL | RENTAL
7. RENTAL � MOVIE1
8. MOVIE1 � title type

Table 2. Video Store Class Diagram Represented as a CFG

A CFG consists of a start symbol, a set of production rules,
terminals, and non-terminals. The CFG in Table 2 contains seven
productions with the start symbol indicated by VideoStore.

Terminals are represented in lower-case letters, and upper-case
letters correspond to non-terminals. This CFG describes a
particular language, and instantiations of this CFG correspond to
use cases of the video store system. Note that the relation Rentals
is translated to a separate non-terminal Movie1, which goes to the
terminal title type (the terminal set can be any subset of the list of
attributes of the class Movie), describing the movie title(s) being
rented by the user. This translation scheme helps prevent cyclical
relationships to occur in the CFG. An example demonstrating the
robustness of this approach when confronted with such situations
is shown in section 4.3.
The user can provide positive use case scenarios as strings from
this language to the parser generated by LISA. If a string can be
parsed, it signifies that the use case scenario represented by that
string can be generated by the UML class diagram. To obtain all
possible use cases for the VideoStore class diagram, we compute
the variability of the VideoStore CFG as given in Table 3:

Var(VideoStore ::= MOVIES CUSTOMERS | CUSTOMERS
vdvcvcvcvcvcvcvcvcvMOVIES | MOVIES | CUSTOMERS)

 = (Var(MOVIES) * Var(CUSTOMERS)) * 2 +
xcxcxcVar(MOVIES) + Var(CUSTOMERS)

 = (2 * 3) * 2 + 2 + 3 = 17

Var(MOVIES ::= MOVIES MOVIE | MOVIE)

 = Var(MOVIES MOVIE) + Var(MOVIE)
 = Var(MOVIE) + Var(MOVIE)
 = 1 + 1 = 2

Var(MOVIE ::= title type)

 = Var(title) * Var(type)
 = 1 * 1 = 1

Var(CUSTOMERS ::= CUSTOMERS CUSTOMER | eps)
 =Var(CUSTOMERS CUSTOMER) +
dddddddddddddddVar(eps)
 = Var(CUSTOMER) + 1
 = 2 + 1 = 3

Var(CUSTOMER ::= name days RENTALS)

 = Var(name) * Var(days) * Var(RENTALS)
 = 1 * 1 * 2 = 2

Var(RENTALS ::= RENTALS RENTAL | RENTAL)

 = Var(RENTALS RENTAL) + Var(RENTAL)
 = Var(RENTAL) + Var(RENTAL)
 = 1 + 1 = 2

Var(RENTAL ::= MOVIE1) = Var(MOVIE1) = 1

Var(MOVIE1 ::= title type)

 = Var(title) * Var(type)
 = 1 * 1 = 1

Table 3. Variability Calculation for the VideoStore CFG
The variability value obtained from the start rule (rule 1 in Figure
5) indicates the total number of unique use cases, which are 17 in
our example. We enumerate 6 of these use cases:

1. Insert one movie in the database:
 title type
2. Insert one or more movies in the database:
 title type title type
3. Insert customer with a rent transaction:
 name days title type
4. Insert movies and a customer without a rent transaction:
 title type title type name days
5. Insert one movie and a customer with a rent transaction:
 title type name days title type
6. Insert multiple movies and a customer with a rent transaction:
 title type title type name days title type

As an example, a possible use case description for Add Movie is:

1. Request movie title
2. Request movie type
3. Insert the movie in movie database

An example scenario for this would be:

Titanic reg

where reg stands for regular, the type of the movie. This would
also be one of the positive samples, i.e., one of the functionalities
required by the user.

Similarly, the Rent Movie use case is:

1. Request user name
2. Request total days for rent
3. Request movie name
4. Request movie type.
5. Update movie database
6. Update customer database

A scenario for this use case is:

Mike 5
 TheRing horror
 Shrek child

The Rent Movie scenario can be parsed by production 4. Class
diagrams lack an explicit order for processing or instantiating
their various entities while CFG’s implicitly define a sequence of
events beginning from the start symbol. Thus, in our
representation of class diagrams as CFG’s, the CFG’s are initiated
by enumerating all possible permutations of the class non-
terminals, which in the case study are MOVIES and
CUSTOMERS. This allows a more extensive and definite
representation of the class diagrams for validation purposes, and
expedites the testing process by allowing the user to concentrate
on analyzing strings corresponding to particular use case
scenarios only, rather than presenting a complete system-wide
scenario every time..

4.2 REFACTORING THE CLASS DIAGRAM
An example of a negative sample would be a string representing a
Delete Movie use case scenario, which is not one of the desired
functionalities. If such a string can be parsed by the CFG, it would
indicate an error in the class diagram; thus, the class diagram

would need to be revised. Correspondingly, if a positive sample
fails, then it would mean that a required functionality cannot be
obtained from the class diagram, and the class diagram needs to
be reconsidered. As an example, it can be observed that the Add
Customer use case cannot be satisfied by the class diagram in
Figure 4. In other words, the derived CFG is not able to generate
any strings corresponding to the Add Customer scenario. Upon
noticing this lack of functionality, the UML class diagram can be
refactored as follows: note that class Customer contains the
attributes name and daysRented. A new class Rental is added, and
attribute daysRented is shifted to class Rental. After this
refactoring, the Add Customer use case is possible. Figure 5
shows the refactored class diagram.

Figure 5. Refactored Class Diagram for the Video Store.

Step 5 of the process provides feedback to the user in the event
that a string is not in the language of the CFG. In this case, the
user is provided a set of strings that are similar (to a certain
extent) to the string provided by the user in the hope that one of
the strings in the feedback set would be what the user really
desires. The total size of the feedback string set and the similarity
degree of the strings are parameters provided by the user. As an
example, consider the following string, which is rejected by the
CFG in Figure 5:

TheRing

The closest match for this string is rule 3. Although this string will
fail to be parsed, the user might be provided with the feedback set
given in Table 4.

Similarity: 60%

Total number of strings: 4

1) TheRing a

2) TheRing aa

3) TheRing aaa

4) TheRing aaaa

Table 4. A Sample Feedback Set Provided by the System
The similarity measure of 60% requires that the total number of
strings in the set is at least 60% similar to the original string. As
an example, compare the following two strings: TheRing, and
TheRing a. These two strings differ by only 1 character.

4.3 CYCLICAL RELATIONS
Naïve approaches to generating CFG’s from UML diagrams can
encounter complications like an infinite, non-terminating
recursive grammar. Our approach is able to derive a correct
infinite terminating recursive grammar in the presence of such
relationships, and we demonstrate this by proposing a small
modification to the VideoStore case study example.

Assume that in the class diagram of Figure 4, a 1-to-many relation
Rental2 exists between Movie and Customers. This would make
sense if multiple copies of a movie exist, and can be rented by
many customers. An example of a naïve CFG produced from this
class diagram would be:

1. VideoStore � MOVIES CUSTOMERS | CUSTOMERS
MOVIES | MOVIES | CUSTOMERS
2. MOVIES � MOVIES MOVIE | MOVIE
3. MOVIE � title type RENTALS2
4. RENTALS2 � RENTALS2 RENTAL2 | RENTAL2
5. RENTAL2 � CUSTOMER
6. CUSTOMERS � CUSTOMERS CUSTOMER | CUSTOMER
7. CUSTOMER � name days RENTALS
8. RENTALS � RENTALS RENTAL | RENTAL
9. RENTAL � MOVIE

Production sets (3, 4, 5) and (7, 8, 9) indicate a cyclical non-
terminating relationship in the grammar. In this situation, use case
strings will fail to be parsed because the grammar is non-
terminating and infinite. This problem arises whenever a class,
modeled by a non-terminal, is referred to by another class via a
relation, which is also modeled by a non-terminal. We propose
using a new non-terminal to model the destination class pointed to
by the source class in a relation. This prevents the problem of
inheriting the relation non-terminals of the destination class by the
source class. Using this technique, the CFG for the modified
VideoStore example changes to the CFG in Table 5.

1. VideoStore � MOVIES CUSTOMERS | CUSTOMERS
dfdfdfdfdffdfdfffMOVIES | MOVIES | CUSTOMERS
2. MOVIES � MOVIES MOVIE | MOVIE
3. MOVIE � title type RENTALS2
4. RENTALS2 � RENTALS2 RENTAL2 | RENTAL2
5. RENTAL2 � CUSTOMER1
6. CUSTOMER1 � name days
7. CUSTOMERS � CUSTOMERS CUSTOMER | CUSTOMER
8. CUSTOMER � name days RENTALS
9. RENTALS � RENTALS RENTAL | RENTAL
10. RENTAL � MOVIE1
11. MOVIE1 � title type

Table 5. VideoStore CFG to Handle Cyclical Relations
An example of a string in this CFG would be:
1. theRing horror
2. Jack 5 Ann 5 Mike 10
3. jurassicPark child
4. John 1 Jane 5
5. Bruce 10
6. theRingTwo horror
Sentences 1-4 correspond to two instances of the Rentals2
relation, and sentences 5 and 6 are an instance of the Rental
relation.

4.4 MULTIPLE INHERITANCE
Figure 6 shows a class diagram example using diamond
inheritance, a special case of multiple inheritance. Class Person
has attributes id and name, and classes Student and Assistant are
subclasses of Person with attributes Grades and Salary
respectively. Class Student Assistant inherits from both Student
and Assistant. Thus, class Student Assistant has base class Person
appearing more than once as an ancestor. Our translation scheme
generates the CFG given in Table 6 for this example (note that for
brevity, we have not included the start production which
enumerates all possible class non-terminals).

Figure 6. A Diamond Inheritance Example

1. STUDENTASSISTANT � workload SA1
2. SA1 � STUDENT ASSISTANT
3. STUDENT � grades PERSON
4. ASSISTANT � salary PERSON
5. PERSON � id name

Table 6. CFG for the Diamond Inheritance Example
A statement in this language, corresponding to an instance of the
Student Assistant class, is:

“workload grades id name salary id name”

This statement exhibits the same problem found in class structures
using diamond inheritance in that base class attributes id and
name are duplicated. Thus, our method is able to cope with class
diagrams implemented with inheritance hierarchies.

5. OTHER IDEAS
The main gist of our work involves obtaining a CFG
representation of the class diagram, and validating the class
diagram by using use case scenarios to test whether the current
class diagram configuration can generate the particular scenario.
An interesting research direction is to see whether we can obtain a
class diagram structure just by using positive and negative use
case scenarios. This process would involve learning a CFG from
language samples, and then constructing the class diagram from
the inferred CFG. Learning a CFG from positive and negative
samples is known as grammar induction [14]. However, the
largest class of languages that can be efficiently learned by
provably converging algorithms are regular languages. Learning

CFG’s has proved to be a harder problem and is still considered a
real challenge in the grammar induction community. Our work in
this area [15] makes some contributions towards inferring CFG’s
for simple DSL’s. For the VideoStore class diagram in Figure 4,
when provided with the positive and negative use case scenarios,
our grammar induction engine inferred the CFG in Table 7.

1. NT15 ::= NT11 NT7 NT15 | eps
2. NT11 ::= NT10 NT6
3. NT10 ::= NT5 NT10 | eps
4. NT7 ::= NT5 NT7 | eps
5. NT6 ::= name days
6. NT5 ::= title type

Table 7. Inferred CFG for the VideoStore Case Study
From the inferred CFG, the UML class diagram in Figure 7 can be
constructed by hand, which is very similar to the original
VideoStore class diagram. The non-terminals NT5 and NT6
correspond to the classes Movie and Customer, respectively. This
is a simple example that illustrates some future ideas, and we
believe that this idea warrants more in-depth research work.

Figure 7. Inferred Class Diagram for the VideoStore CFG

6. CONCLUSION
This paper introduced a novel grammar-based approach to the
UML static validation problem. The approach involves the
representation of UML class diagrams as a DSL. An XSLT
transformation is used to convert an XML representation of a
model to the representative DSL. A parser for the DSL is
generated by the LISA compiler generator tool. Positive and
negative use cases are provided to the generated parser in the form
of strings in the DSL. A string similarity measure is employed in
order to provide feedback to the user regarding validation
criterion. It is also shown that the approach can deal with issues
like cyclical relations and multiple inheritance in class diagrams.

The future work involves application to more complex examples.
Because a real application makes use of both dynamic and static
views of a UML model, we also intend to extend this work to be
able to validate dynamic aspects of a UML model via the use of
state diagrams or activity diagrams. Our future work also involves
validating OCL constraints as well as validating state charts from
sequence diagrams, with a long term goal of inferring class
diagrams from use cases and state charts from sequence diagrams.

REFERENCES
[1] OMG Unified Modeling Language Specification, Version

1.5. OMG, March 2003. OMG Document formal / 03-03-01,
http://www.omg.org/uml.

[2] M. Mernik, M. Leni�, E. Avdi�auševi�, and V. Žumer,
“LISA: An Interactive Environment for Programming
Language Development,” 11th International Conference on
Compiler Construction, Springer-Verlag LNCS 2304,
Grenoble, France, April 2002, pp. 1-4.

[3] J. Clark, “XSL Transformations (XSLT) (Version 1),” W3C
Technical Report, November 1999,
http://www.w3.org/TR/1999/REC-xslt-19991116 .

[4] M. Mernik, J. Heering, and T. Sloane, “When and How to
Develop Domain-specific Languages,” CWI Technical
Report, SEN-E0309, 2003.

[5] M., Mernik, M. �repinšek, T. Kosar, D. Rebernak, and V.
Žumer, “Grammar-Based Systems: Definition and
Examples,” Informatica, vol. 28, no. 3, 2004, pp. 245-254.

[6] V. Levenshtein, “Binary Codes Capable of Correcting
Deletions, Insertions and Reversals,” Doklady Akademi
Nauk SSSR, 163(4):845-848, 1965(Russian). English
translation in Soviet Physics Doklady, vol. 10, no. 8, 1966,
pp. 707-710.

[7] M. Gogolla, J. Bohling, and M. Richters, “Validation of
UML and OCL Models by Automatic Snapshot Generation,”
6th International Conference on the Unified Modeling
Language (UML), Springer-Verlag LNCS 2863, San
Francisco, CA, October 2003, pp. 265-279.

[8] W. Shen, K. Compton, and J. Huggins, “A Validation
Method for a UML Model Based on Abstract State
Machines,” EUROCAST, Canary Islands, Spain, February
2001, pp. 220-223.

[9] Y. Gurevich, “Evolving Algebras. 1993: Lipari Guide,”
Specification and Validation Methods, Oxford University
Press, 1995, pp. 9-36.

[10] S. Dupuy-Chessa and L. du Bousquet. “Validation of UML
models thanks to Z and Lustre,” International Symposium of
Formal Methods Europe: Formal Methods for Increasing
Software Productivity, LNCS Vol. 2021, Springer-Verlag
LNCS 2021, London, UK, 2001, pp. 242-258.

[11] S. Schach, Object-oriented and Classical Software
Engineering, McGraw-Hill, 2005.

[12] I. Diethelm, L. Geiger, and A. Zündorf, “Systematic Story
Driven Modeling, a case study,” Workshop on Scenarios and
state machines: models, algorithms, and tools; ICSE 2004,
Edinburgh, Scotland, May 24–28, 2004.

[13] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak and A. S.
Peterson, “Feature-Oriented Domain Analysis (FODA)
Feasibility Study,” Technical Report, CMU/SEI-90-TR-21,
ADA 235785, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, 1990.

[14] The Grammar Induction Community Website:
http://eurise.univ-st-etienne.fr/gi/

[15] M. �repinšek, M. Mernik, B. R. Bryant, F. Javed and A.
Sprague, “Inferring Context-Free Grammars for Domain-
Specific Languages,” In Proceedings of Fifth Workshop on
Language Description, Tools and
Applications (LDTA 2005), J. Boyland, G. Hedin (Eds.), pp.
64 - 81, 2005, Edinburgh, Scotland, UK.

[16] D. Muthiaye, “Real-time reactive System Development – a
Formal Approach Based on UML and PVS.”, Ph.D. Thesis,
Department of Computer Science at Concordia University,
Montreal, Canada, 2000.

[17] P. Frohlich and J. Link, “Automated Test Case Generation
from Dynamic Models,” In Proc. 14th European Conf.
Object-Oriented Programming (ECOOP 2000), E. Bertino,
Ed., Springer, Berlin, LNCS 1850, 472-491.

[18] D. Jackson, I. Schechter, and I. Shlyakhter, “Alcoa: The
Alloy Constraint Analyzer”, In Proc. Int. Conf. Software
Engineering (ICSE 2000), ACM, New York, 730-733.

