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ABSTRACT 
The UML has grown in popularity as the standard modeling 
language for describing software applications. However, UML 
lacks the formalism of a rigid semantics, which can lead to 
ambiguities in understanding the specifications. We propose a 
grammar-based approach to validating class diagrams and 
illustrate this technique using a simple case-study. Our technique 
involves converting UML representations into an equivalent 
grammar form, and then using existing language transformation 
and development tools to assist in the validation process. A string 
comparison metric is also used which provides feedback, allowing 
the user to modify the original class diagram according to the 
functionality desired. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification –
Model Checking, Validation.  

General Terms 

Algorithms, Design, Reliability, Languages, Verification. 

1. INTRODUCTION 
The software industry continues to experience rapid growth with a 
side effect of rising costs. A common critique of today’s software 
projects is that developers spend too much time on the coding 
process and begin the implementation phase prematurely. 
Throughout the development lifecycle, the system is tested 
according to the requirements to uncover any anomalies. In the 
event of any deviation from the original specifications, it is more 
costly in terms of time and money if the problem is rectified after 
the coding stage rather than at some point before it [11]. 

The Unified Modeling Language (UML) [1] was created to 
address some of these issues faced in the software design process. 
UML provides the ability to model both the static and dynamic 
aspects of an application. Using UML, classes that model a 
system can be described using class diagrams, and collaborations 

between classes to perform the use cases can be modeled by UML 
dynamic diagrams, such as sequence diagrams or activity 
diagrams.  

Static validation can be used to check whether a model conforms 
to a valid syntax. Techniques supporting static validation can also 
check whether a model includes some related snapshots (i.e., 
system states consisting of objects possessing attribute values and 
links) desired by the end-user, but perhaps missing from the 
current model. We believe that the latter problem can occur as a 
system becomes more intricate; in this situation, it can become 
hard for a developer to detect whether a state envisaged by the 
user is included in the model. As an alternative, dynamic 
validation can be used to check if the dynamic features of the 
model exhibit the behavior required by the end-user. For 
performing static and dynamic validation of UML models, we 
propose a grammar-based approach to validating UML models 
with an initial focus on static validation. 

Grammar-based systems [5] make use of a grammar or sentences 
generated by a grammar to solve problems outside the domain of 
programming languages. The rationale of this approach is that 
tools for working with grammars already exist; the problem-
solving process can be expedited if a suitable representation of the 
problem in the form of a grammar can be found. The approach 
also involves the use of a compiler-generator tool called LISA [2] 
that is used to construct a Domain-Specific Language (DSL), 
which are languages designed specifically for a particular domain. 
The defining properties of DSL’s are that they are small, more 
focused than general-purpose programming languages (e.g., Java), 
and usually declarative [4]. The technique also uses XSLT [3], a 
translation language for XML documents. 

The rest of the paper is organized as follows: Section 2 describes 
the related work in this area. Section 3 gives an overview of the 
technologies used in the overall architecture of the approach. 
Section 4 presents the approach applied to a video store case 
study, while section 5 introduces some novel ideas in the context 
of this work. The paper concludes with summary remarks and a 
mention of future research directions in Section 6. 

2. RELATED WORK 
Various distinctive approaches have been taken to validate UML 
models. In [7], OCL expressions are employed to generate 
complex snapshots representing system states automatically at a 
particular point in time. Another approach makes use of the 
semantic model given by Abstract State Machines [9] to validate 
both the static and dynamic aspects of a UML model [8]. A 
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formal methods based framework has been proposed in [11], 
where the system specification is first described by a graphical 
intuitive model before being made precise and validated by use of 
a formal specification tool. Story Driven Modeling [12] is a 
software development process which converts textual use case 
scenarios into storyboards (i.e., sequences of UML interaction 
diagrams) from which the modeler derives class diagrams and 
UML based behavior specifications and JUnit tests. These are 
then turned into Java implementations by a code generator, and 
the JUnit tests are run to check whether the method behavior 
conforms to the use case scenario. An approach involving 
validation of UML models using theorem proving is discussed in 
[16], while [17] exploits use-cases by transforming them into 
planning problems to derive a sequence of messages. Relational 
logic has also been used to generate system snapshots, as in the 
case of the Alloy constraint analyzer [18]. 
Our work differs from previous approaches in that we represent 
the class diagram as a context-free grammar (CFG), and scenarios 
as a series of object instantiations of the class diagram. If a 
scenario is successfully parsed by the CFG, it indicates that the 
particular scenario can be represented by the class diagram. 

3. THE VALIDATION PROCESS 
Figure 1 gives an overview of the grammar-driven approach to 
UML validation. The remainder of this section will elaborate on 
the various stages of the approach and provide a brief introduction 
to the tools and technologies used at each step. 

3.1 CONVERTING TO A GRAMMAR 
In Stage 1, a UML class diagram for a particular application is 
converted into an equivalent XML representation. Stage 2 uses 
XSLT and LISA to perform transformations on the XML 
representation. XSLT is a language that can transform an XML 
document into any other text-based format [3]. LISA is an 
interactive environment for programming language development 
where users can specify, generate, compile-on-the-fly and execute 
programs in a newly specified language [2]. The XSLT portion of 
the process transforms the XML file to generate an equivalent 
CFG representation of the class diagram. Note that we are not 
dealing explicitly with objects when using the CFG 
representation. The CFG describes the structure of the class 
diagram albeit in a textual form, and does not contain type 
information of the attributes. Thus, this CFG can be viewed as a 
DSL for representing the domain of the original class diagram. A 
LISA specification file is created, which makes use of the 
generated DSL grammar to create a parser for the language. All 
the steps required to convert the class diagram to a DSL are 
automated. 

3.2 CALCULATING VARIABILITY 
After Stage 2, a textual representation of the original class 
diagram in the form of a grammar has been obtained. Stage 3 
shows that all possible instantiations of this CFG correspond to 
valid strings in this language, which in turn correspond to all valid 
object diagram configurations of the UML diagram. Because the 
language that the CFG describes could be infinite, it is not 
feasible to perform static validation at this step by enumerating all 
possible strings of the CFG generated, and then testing if the use 
case string exists in this set. Hence, using this naïve approach of 
generating all possible use cases can be laborious and in some 

cases, impossible to achieve. A key observation here is that to 
generate all possible use cases, all possible combinations of the 
production rules in the CFG need to be generated. If the CFG 
includes recursive rules, then these rules need to be exercised only 
once because multiple runs through the rules will not append any 
new meaning to the use cases. Taking this into account we can 
calculate exactly how many different use cases need to be 
generated. The calculation is similar to the variability calculation 
of feature diagrams [13], with additional rules to handle recursion. 
The number of all possible different use cases is calculated by the 
rules in Table 1, where A stands for non-terminals, a is a terminal 
symbol, B denotes a non-terminal or terminal symbol, and Var 
stands for Variability: 

 
Figure 1. Architecture of the Validation Approach 

Calculating the variability and eliciting all possible use cases is an 
automated process achieved by performing an exhaustive search 
to derive all string instances reachable from the start symbol. A 
concrete example will be detailed in section 4.1.  

 
Var (A ::= B1 … Bn)  = Var(B1) * … * Var(Bn) 

Var (A ::= B1 | … | Bn)  = Var(B1) + … + Var(Bn) 

Var (A ::= a)   = 1      (single non-terminal) 

Var (A ::= eps)   = 1      (empty production) 

Var (A ::= AB)   = Var(B)       (left recursion) 

Var (A ::= BA)   = Var(B)       (right recursion) 

 

Table 1. Rules for Variability Calculation 

3.3 THE FEEDBACK SYSTEM 
In Step 4, the user presents a set of positive strings in the language 
that correspond to scenarios in the use case model. The user may 
also provide a set of negative strings. In UML, use cases capture 
the requirements of the customer and describe the functionality of 



the system. The user-supplied strings are tested against the parser 
generated for the DSL by LISA. Ideally, only all the positive 
strings should be parsed successfully. If a positive string is not 
parsed, it indicates that a use case desired by the user can not be 
represented by the current class diagram. As additional feedback 
(Stage 5), the approach provides a list of strings that are most 
similar to the string provided. This metric is calculated using the 
Levenshtein distance [6]. The Levenshtein distance, also known 
as the Edit Distance, measures the similarity between two strings. 
The distance is the number of deletions, insertions, or 
substitutions required to transform a source string into a target 
string. The greater the Levenshtein distance, the more dissimilar 
the strings are. In the next section, we illustrate the validation 
process using a Video Store case study. 

4. CASE-STUDY: A VIDEO STORE 
This section presents a brief description of a video store case 
study. A video store consists of a video and customer database. 
The video database contains information on all video titles 
currently on file, and the user (customer) database contains 
information on all current members of the video store, as well as 
all videos currently rented by each customer. A customer can walk 
into the video store and either rent a movie, or become a member 
of the store. The customer is served by the owner of the store (or 
an employee). The store owner can also add new titles to the 
video database. Figure 2 gives the use case diagram for this 
example. 

 

 

Figure 2. Use case diagram for the Video Store System 

In UML, the functionality of the system is represented by use 
cases that interact with the system actors. In the video store 
example, the actors are the customer and owner. Each use case 
can be refined to an activity diagram. Activity diagrams focus on 
work performed during the activities in a use case instance or in 
an object. Due to space limitations, we only present the activity 
diagram for the rent movie use case (see Figure 3). The use case 
and activity diagrams are used by the user in forming the input 
test cases for the feedback component of the process. The activity 
diagrams are not used by the automated component of the 
validation process, but they are used by the user when 
constructing appropriate use cases while analyzing the CFG. The 
activity diagram also helps the user better formulate the desired 
functionality of the system. 

4.1 Validating Static Behavior  
In UML, class diagrams model the static structure of a system – 
the classes and their relationships. However, class diagrams do 
not explain how these structures cooperate to manage their tasks 
and provide the functionality of the system. The video store 
system is composed of the classes VideoStore, User and Movies 
(see Figure 4). The association Rentals describes the videos rented 
by a customer. 

 

 

Figure 3. Activity Diagram for the rent movie use case. 

 

Figure 4. Class Diagram for the VideoStore Case Study. 

Initially, the class diagram is converted into an XML 
representation. During Stage 2 of the validation process, the XML 
representation of the class diagram is converted into a CFG 
representation, as shown in Table 2. 
 
1. VideoStore � MOVIES CUSTOMERS | CUSTOMERS              
MOVIES | MOVIES | CUSTOMERS 
2. MOVIES � MOVIES MOVIE | MOVIE 
3. MOVIE � title type 
4. CUSTOMERS  � CUSTOMERS CUSTOMER | eps 
5. CUSTOMER � name days RENTALS 
6. RENTALS � RENTALS RENTAL | RENTAL 
7. RENTAL � MOVIE1 
8. MOVIE1 � title type 

Table 2. Video Store Class Diagram Represented as a CFG  

A CFG consists of a start symbol, a set of production rules, 
terminals, and non-terminals. The CFG in Table 2 contains seven 
productions with the start symbol indicated by VideoStore. 



Terminals are represented in lower-case letters, and upper-case 
letters correspond to non-terminals. This CFG describes a 
particular language, and instantiations of this CFG correspond to 
use cases of the video store system. Note that the relation Rentals 
is translated to a separate non-terminal Movie1, which goes to the 
terminal title type (the terminal set can be any subset of the list of 
attributes of the class Movie), describing the movie title(s) being 
rented by the user. This translation scheme helps prevent cyclical 
relationships to occur in the CFG. An example demonstrating the 
robustness of this approach when confronted with such situations 
is shown in section 4.3.  
The user can provide positive use case scenarios as strings from 
this language to the parser generated by LISA. If a string can be 
parsed, it signifies that the use case scenario represented by that 
string can be generated by the UML class diagram. To obtain all 
possible use cases for the VideoStore class diagram, we compute 
the variability of the VideoStore CFG as given in Table 3: 
 
 
Var(VideoStore ::= MOVIES CUSTOMERS | CUSTOMERS   
vdvcvcvcvcvcvcvcvcvMOVIES | MOVIES | CUSTOMERS)  

      = (Var(MOVIES) * Var(CUSTOMERS) ) * 2 +      
xcxcxcVar(MOVIES) + Var(CUSTOMERS) 

       =  (2 * 3) * 2 + 2  + 3 =  17 
 
Var(MOVIES ::= MOVIES MOVIE | MOVIE)  

     = Var(MOVIES MOVIE) + Var(MOVIE)  
      = Var(MOVIE) + Var(MOVIE)  
      = 1 + 1  =  2 
 
Var(MOVIE ::= title type)  

  = Var(title) * Var(type)  
  = 1 * 1 =  1 

 
Var(CUSTOMERS ::= CUSTOMERS CUSTOMER | eps)  
                            =Var(CUSTOMERS CUSTOMER) + 
dddddddddddddddVar(eps)  
                            = Var(CUSTOMER) + 1 
            = 2 + 1  =  3 
 
Var(CUSTOMER ::= name days RENTALS)  

           = Var(name) * Var(days) * Var(RENTALS) 
            = 1 * 1 *  2   =  2 
 
Var(RENTALS ::= RENTALS RENTAL | RENTAL)  

        = Var(RENTALS RENTAL) + Var(RENTAL) 
         = Var(RENTAL) + Var(RENTAL) 
                        = 1 + 1  = 2 
 
Var(RENTAL ::= MOVIE1) = Var(MOVIE1) =  1 
 
Var(MOVIE1 ::= title type)  

         = Var(title) * Var(type)  
         = 1 * 1 =  1 

 

Table 3. Variability Calculation for the VideoStore CFG 
The variability value obtained from the start rule (rule 1 in Figure 
5) indicates the total number of unique use cases, which are 17 in 
our example. We enumerate 6 of these use cases: 
 

1. Insert one movie in the database: 
    title type    
2. Insert one or more movies in the database:  
    title type title type 
3. Insert customer with a rent transaction:  
    name days title type   
4. Insert movies and a customer without a rent transaction:  
    title type title type name days 
5.  Insert one movie and a customer with a rent transaction: 
     title type name days title type  
6.  Insert multiple movies and a customer with a rent transaction: 
     title type title type name days title type 
 
As an example, a possible use case description for Add Movie is: 
 

1. Request movie title 
2. Request movie type 
3. Insert the movie in movie database 

 
An example scenario for this would be: 
 

Titanic reg 
 
where reg stands for regular, the type of the movie. This would 
also be one of the positive samples, i.e., one of the functionalities 
required by the user. 
 
Similarly, the Rent Movie use case is: 
 

1. Request user name 
2. Request total days for rent 
3. Request movie name 
4. Request movie type. 
5. Update movie database 
6. Update customer database 
 

A scenario for this use case is: 
 

Mike 5 
       TheRing horror  
       Shrek child 

 
The Rent Movie scenario can be parsed by production 4.  Class 
diagrams lack an explicit order for processing or instantiating 
their various entities while CFG’s implicitly define a sequence of 
events beginning from the start symbol.  Thus, in our 
representation of class diagrams as CFG’s, the CFG’s are initiated 
by enumerating all possible permutations of the class non-
terminals, which in the case study are MOVIES and 
CUSTOMERS. This allows a more extensive and definite 
representation of the class diagrams for validation purposes, and 
expedites the testing process by allowing the user to concentrate 
on analyzing strings corresponding to particular use case 
scenarios only, rather than presenting a complete system-wide 
scenario every time..  

4.2 REFACTORING THE CLASS DIAGRAM 
An example of a negative sample would be a string representing a 
Delete Movie use case scenario, which is not one of the desired 
functionalities. If such a string can be parsed by the CFG, it would 
indicate an error in the class diagram; thus, the class diagram 



would need to be revised. Correspondingly, if a positive sample 
fails, then it would mean that a required functionality cannot be 
obtained from the class diagram, and the class diagram needs to 
be reconsidered. As an example, it can be observed that the Add 
Customer use case cannot be satisfied by the class diagram in 
Figure 4. In other words, the derived CFG is not able to generate 
any strings corresponding to the Add Customer scenario. Upon 
noticing this lack of functionality, the UML class diagram can be 
refactored as follows: note that class Customer contains the 
attributes name and daysRented. A new class Rental is added, and 
attribute daysRented is shifted to class Rental. After this 
refactoring, the Add Customer use case is possible. Figure 5 
shows the refactored class diagram. 
 

 
Figure 5. Refactored Class Diagram for the Video Store. 

Step 5 of the process provides feedback to the user in the event 
that a string is not in the language of the CFG. In this case, the 
user is provided a set of strings that are similar (to a certain 
extent) to the string provided by the user in the hope that one of 
the strings in the feedback set would be what the user really 
desires. The total size of the feedback string set and the similarity 
degree of the strings are parameters provided by the user. As an 
example, consider the following string, which is rejected by the 
CFG in Figure 5: 

TheRing  

The closest match for this string is rule 3. Although this string will 
fail to be parsed, the user might be provided with the feedback set 
given in Table 4. 

Similarity: 60% 

Total number of strings: 4 

1) TheRing a 

2) TheRing aa 

3) TheRing aaa 

4) TheRing aaaa 

Table 4.  A Sample Feedback Set Provided by the System 
The similarity measure of 60% requires that the total number of 
strings in the set is at least 60% similar to the original string. As 
an example, compare the following two strings: TheRing, and 
TheRing a. These two strings differ by only 1 character. 
 

 

4.3 CYCLICAL RELATIONS 
Naïve approaches to generating CFG’s from UML diagrams can 
encounter complications like an infinite, non-terminating 
recursive grammar. Our approach is able to derive a correct 
infinite terminating recursive grammar in the presence of such 
relationships, and we demonstrate this by proposing a small 
modification to the VideoStore case study example. 

Assume that in the class diagram of Figure 4, a 1-to-many relation 
Rental2 exists between Movie and Customers. This would make 
sense if multiple copies of a movie exist, and can be rented by 
many customers. An example of a naïve CFG produced from this 
class diagram would be: 

1. VideoStore � MOVIES CUSTOMERS | CUSTOMERS 
MOVIES | MOVIES | CUSTOMERS 
2. MOVIES � MOVIES MOVIE | MOVIE  
3. MOVIE � title type RENTALS2  
4. RENTALS2 � RENTALS2 RENTAL2 | RENTAL2  
5. RENTAL2 � CUSTOMER  
6. CUSTOMERS � CUSTOMERS CUSTOMER | CUSTOMER  
7. CUSTOMER � name days RENTALS  
8. RENTALS � RENTALS RENTAL | RENTAL  
9. RENTAL � MOVIE 

Production sets (3, 4, 5) and (7, 8, 9) indicate a cyclical non-
terminating relationship in the grammar. In this situation, use case 
strings will fail to be parsed because the grammar is non-
terminating and infinite. This problem arises whenever a class, 
modeled by a non-terminal, is referred to by another class via a 
relation, which is also modeled by a non-terminal. We propose 
using a new non-terminal to model the destination class pointed to 
by the source class in a relation. This prevents the problem of 
inheriting the relation non-terminals of the destination class by the 
source class. Using this technique, the CFG for the modified 
VideoStore example changes to the CFG in Table 5. 

 

1. VideoStore � MOVIES CUSTOMERS | CUSTOMERS                                         
dfdfdfdfdffdfdfffMOVIES | MOVIES | CUSTOMERS 
2. MOVIES � MOVIES MOVIE | MOVIE  
3. MOVIE � title type RENTALS2  
4. RENTALS2 � RENTALS2 RENTAL2 | RENTAL2  
5. RENTAL2 � CUSTOMER1 
6. CUSTOMER1 � name days  
7. CUSTOMERS � CUSTOMERS CUSTOMER | CUSTOMER  
8. CUSTOMER � name days RENTALS  
9. RENTALS � RENTALS RENTAL | RENTAL  
10. RENTAL �  MOVIE1 
11. MOVIE1 � title type 

Table 5. VideoStore CFG to Handle Cyclical Relations 
An example of a string in this CFG would be: 
1. theRing horror 
2.    Jack 5 Ann 5 Mike 10 
3. jurassicPark child 
4.    John 1 Jane 5 
5. Bruce 10 
6.    theRingTwo horror 
Sentences 1-4 correspond to two instances of the Rentals2 
relation, and sentences 5 and 6 are an instance of the Rental 
relation. 



4.4 MULTIPLE INHERITANCE 
Figure 6 shows a class diagram example using diamond 
inheritance, a special case of multiple inheritance. Class Person 
has attributes id and name, and classes Student and Assistant are 
subclasses of Person with attributes Grades and Salary 
respectively. Class Student Assistant inherits from both Student 
and Assistant. Thus, class Student Assistant has base class Person 
appearing more than once as an ancestor. Our translation scheme 
generates the CFG given in Table 6 for this example (note that for 
brevity, we have not included the start production which 
enumerates all possible class non-terminals). 

 
Figure 6.  A Diamond Inheritance Example 

 

1. STUDENTASSISTANT � workload SA1 
2. SA1 � STUDENT ASSISTANT 
3. STUDENT � grades PERSON 
4. ASSISTANT � salary PERSON 
5. PERSON � id name 

Table 6. CFG for the Diamond Inheritance Example 
A statement in this language, corresponding to an instance of the 
Student Assistant class, is: 

“workload grades id name salary id name” 

This statement exhibits the same problem found in class structures 
using diamond inheritance in that base class attributes id and 
name are duplicated. Thus, our method is able to cope with class 
diagrams implemented with inheritance hierarchies. 

5. OTHER IDEAS 
The main gist of our work involves obtaining a CFG 
representation of the class diagram, and validating the class 
diagram by using use case scenarios to test whether the current 
class diagram configuration can generate the particular scenario. 
An interesting research direction is to see whether we can obtain a 
class diagram structure just by using positive and negative use 
case scenarios. This process would involve learning a CFG from 
language samples, and then constructing the class diagram from 
the inferred CFG. Learning a CFG from positive and negative 
samples is known as grammar induction [14]. However, the 
largest class of languages that can be efficiently learned by 
provably converging algorithms are regular languages. Learning 

CFG’s has proved to be a harder problem and is still considered a 
real challenge in the grammar induction community. Our work in 
this area [15] makes some contributions towards inferring CFG’s 
for simple DSL’s. For the VideoStore class diagram in Figure 4, 
when provided with the positive and negative use case scenarios, 
our grammar induction engine inferred the CFG in Table 7. 

1. NT15 ::= NT11 NT7 NT15 | eps 
2. NT11 ::= NT10 NT6 
3. NT10 ::= NT5 NT10 | eps 
4. NT7 ::= NT5 NT7 | eps 
5. NT6 ::= name days 
6. NT5 ::= title type 

Table 7. Inferred CFG for the VideoStore Case Study 
From the inferred CFG, the UML class diagram in Figure 7 can be 
constructed by hand, which is very similar to the original 
VideoStore class diagram. The non-terminals NT5 and NT6 
correspond to the classes Movie and Customer, respectively. This 
is a simple example that illustrates some future ideas, and we 
believe that this idea warrants more in-depth research work. 

 

Figure 7. Inferred Class Diagram for the VideoStore CFG 

6. CONCLUSION 
This paper introduced a novel grammar-based approach to the 
UML static validation problem. The approach involves the 
representation of UML class diagrams as a DSL. An XSLT 
transformation is used to convert an XML representation of a 
model to the representative DSL. A parser for the DSL is 
generated by the LISA compiler generator tool. Positive and 
negative use cases are provided to the generated parser in the form 
of strings in the DSL. A string similarity measure is employed in 
order to provide feedback to the user regarding validation 
criterion. It is also shown that the approach can deal with issues 
like cyclical relations and multiple inheritance in class diagrams. 

The future work involves application to more complex examples. 
Because a real application makes use of both dynamic and static 
views of a UML model, we also intend to extend this work to be 
able to validate dynamic aspects of a UML model via the use of 
state diagrams or activity diagrams. Our future work also involves 
validating OCL constraints as well as validating state charts from 
sequence diagrams, with a long term goal of inferring class 
diagrams from use cases and state charts from sequence diagrams. 
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