

GRAMMAR-DRIVEN GENERATION OF DOMAIN-SPECIFIC LANGUAGE

TESTING TOOLS USING ASPECTS

by

HUI WU

JEFF GRAY, COMMITTEE CHAIR

BARRETT R. BRYANT

MARJAN MERNIK

MIKHAIL AUGUSTON

CHENGCUI ZHANG

BRIAN TOONE

A DISSERTATION

Submitted to the graduate faculty of The University of Alabama at Birmingham,

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

BIRMINGHAM, ALABAMA

2007

Copyright by

Hui Wu

2007

iii

GRAMMAR-DRIVEN GENERATION OF DOMAIN-SPECIFIC LANGUAGE

TESTING TOOLS USING ASPECTS

HUI WU

COMPUTER AND INFORMATION SCIENCES

ABSTRACT

Domain-specific languages (DSLs) assist a software developer (or end-user) in

writing a program using idioms that are similar to the abstractions found in a specific

problem domain. Testing tool support for DSLs is lacking when compared to the

capabilities provided for standard general-purpose languages (GPLs), such as Java and

C++. For example, support for debugging and unit testing a program written in a DSL is

often non-existent. The lack of a debugger and unit test engine at the proper abstraction

level limits an end-user‟s ability to discover and locate faults in a DSL program. This

dissertation describes a grammar-driven technique to build a debugging and unit testing

tool generation framework by adaptations to existing DSL grammars. This approach

leverages existing GPL testing tools to indirectly exercise the end-user‟s debug and test

intentions at the DSL level. The adaptations to DSL grammars represent the hooks

needed to interface with a supporting infrastructure constructed for an Integrated

Development Environment (IDE) that assists in debugging and unit testing a program

written in a DSL. The contribution represents a coordinated approach to bring essential

software tools (e.g., debuggers and test engines) to different types of DSLs (e.g.,

imperative, declarative, and hybrid). This approach hides from the end-users the

accidental complexities associated with expanding the focus of a language environment

to include testing tools. During the testing tool generation process, crosscutting concerns

iv

were observed in representations of DSL grammars. To address these particular

crosscutting concerns, an investigation into the principles of aspect-oriented

programming applied to grammars has been conducted. A domain-specific aspect

language, called AspectG, has been designed and implemented, which is focused within

the domain of language specification. This dissertation outlines the challenges and issues

that exist when designing aspect languages that assist in modularizing crosscutting

concerns in grammars. The research described in the dissertation addresses a long-term

goal of empowering end-users with development tools for particular DSL problem

domains at the proper level of abstraction without depending on a specific GPL.

v

DEDICATION

This work is dedicated to my wife, Chenxia – It is your love that keeps me going, and it is

your sacrifice that makes this and all things possible

My grandmother – It is your wish and prayer that made my dream come true

My parents, Wenbin, Farong, and Xiaojiang, and my brother, Bo –

It is your love that has helped me grow

Mei Li and Selby Moody, for their unconditional love and support.

vi

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Dr. Jeff Gray, who

gave me numerous opportunities, profound erudition, inspirational advice, and prepared

me with knowledge, courage, and endurance to fight through one of the most challenging

periods of my life, yet one of my most memorable times as well. I am grateful for the

encouragement and compassion that he offered in leading me along the right track, letting

me experience new frontiers, and allowing me to complete this work. His perspectives on

teaching and research have been inspirational. I thank him for the trust and confidence

that he has had in me.

I would like to genuinely thank Dr. Marjan Mernik, whose collaborations with

UAB were a starting and turning point of this research work. I am thankful for his

expertise, advice, consistency, and support. As one of my committee members, he was

central in directing me to the area of Domain-Specific Languages. His academic research

attitude and relationships with fellow students and researchers are models that I shall

follow.

I also appreciate the contributions of my other committee members. Dr. Barrett

Bryant helped my understanding of programming languages and taught me the skills

needed to complete this work. My discussions with Dr. Mikhail Auguston helped me to

look at the issues of debugger implementation from a totally different angle, which made

vii

it more challenging and interesting. Dr. Chengcui Zhang and Dr. Brian Toone, I

appreciate your great discussions on my work on various occasions.

To my fellow comrades, Fei Cao, Wei Zhao, Song Zhou, Yuehua Lin, Shih-hsi

Liu, Suman Roychoudhury, Faizan Javed, Robert Tairas, Yonghui Chen, Ying Sun,

Francisco Hernandez, Ying Liu, Zhijie Guan, Xin Chen, Haisong Li, Jing Zhang, and

Carl Wu, I cherish our friendship and wonderful time together. Thank you for your help,

encouragement, and support during the past years, especially during the difficult times

when I had doubts about my future!

This dissertation research would not have been completed had it not been for the

support from the Computer and Information Sciences Department. Mrs. Janet Tatum, Mrs.

Kathy Baier, Mr. Fran Fabrizio, Dr. Anthony Skjellum, Dr. Warren Jones, Dr. Kevin

Reilly, Dr. Alan Sprague, and Mr. Bruce Williams, I am grateful for your care and help.

Most importantly I thank God for giving me this opportunity to experience this

wonderful journey.

I acknowledge financial support from IBM. The work presented in this

dissertation was supported in part by the IBM Innovation Grant.

viii

TABLE OF CONTENTS

Page

ABSTRACT ... iii

DEDICATION ...v

ACKNOWLEDGEMENTS ... vi

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

LIST OF ABBREVIATIONS .. xvi

CHAPTER

1 INTRODUCTION ...1

 1.1 The Benefits of Domain-Specific Languages ...2

 1.2 The Challenges of DSL Implementation ..4

 1.3 The Need for End-User DSL Testing Tools ...6

 1.4 Research Objectives and Contributions ..8

 1.5 Overview ...12

2 BACKGROUND ...14

 2.1 Eclipse Plug-In Based Software Development ...14

 2.1.1 Eclipse Debugging Perspective..15

 2.1.2 Eclipse JUnit Test Perspective ...17

 2.2 Program Transformation with the Design Maintenance System19

 2.3 Categories of Domain-Specific Languages ..20

 2.3.1 Imperative Domain-Specific Languages ..20

 2.3.2 Declarative Domain-Specific Languages ..22

 2.3.3 Hybrid Domain-Specific Languages ..25

 2.4 Aspect-Oriented Programming (AOP) ...28

 2.5 Syntax-Directed Translation ...30

3 DSL DEBUGGING FRAMEWORK (DDF)...33

ix

TABLE OF CONTENTS (Continued)

Page

CHAPTER

 3.1 DDF Architecture Overview ...33

 3.2 Source Code Mapping ..37

 3.3 Debugging Methods Mapping ..40

 3.4 Debugging Results Mapping ..44

 3.4.1 Debugging Results Mapping Process ..44

 3.4.2 Debugging Results Mapping Example ..45

 3.4.3 Crosscutting Grammar Concerns ...46

 3.5 Illustrative Examples ..47

 3.5.1 Generation of an Imperative DSL Debugger47

 3.5.2 Generation of a Declarative DSL Debugger ..51

 3.5.3 Generation of a Hybrid DSL Debugger ...59

 3.6 Case Study Evaluation ..62

 3.6.1 Generalization of DDF Usage ..63

 3.7 Related Work in the Area of Domain-Specific Language Debuggers 67

 3.7.1 Khepera ..68

 3.7.2 JSR-045 ..69

 3.7.3 ANTLR Studio ..70

 3.7.4 TIDE ...71

 3.8 Summary ..72

4 DSL UNIT TESTING FRAMEWORK (DUTF) ...75

 4.1 DUTF Architecture Overview ..75

 4.2 Source Code Mapping ..79

 4.3 Test Cases Mapping ..79

 4.4 Testing Results Mapping ..83

 4.5 Illustrative Examples ..85

 4.5.1 Generation of an Imperative DSL Unit Test Engine85

 4.5.2 Generation of a Declarative DSL Unit Test Engine88

 4.5.3 Generation of a Hybrid DSL Unit Test Engine91

 4.6 Case Study Evaluation ..92

 4.6.1 Generalization of DUTF Usage ...92

 4.7 Related Work of Domain-Specific Language Unit Test Engines96

 4.7.1 ASF+SDF ...97

 4.7.2 JST ..97

 4.7.3 LISA ..98

 4.7.4 SmartTools ..99

 4.7.5 Other Related Testing Tools ...100

 4.8 Summary ..100

x

TABLE OF CONTENTS (Continued)

Page

CHAPTER

5 ASPECTG: WEAVING ASPECTS INTO DSL GRAMMARS102

 5.1 AspectG Design Challenges ...102

 5.2 AspectG Overview ..104

 5.3 Weaving at the Generated GPL Code Level ...107

 5.4 Weaving at the DSL Grammar Level ...110

 5.4.1 AspectG Specification ...114

 5.4.2 AspectG Implementation ...118

 5.5 Illustrative Examples ..122

 5.6 Related Work in the Area of Aspect-Oriented Grammars 128

 5.6.1 AspectLISA ...129

 5.6.2 AspectASF ..129

 5.7 Summary ...130

6 FUTURE WORK ...133

 6.1 DSL Profiler Platform ...133

 6.2 Application of Different IDE Platforms and GPLs135

 6.3 Adaptation of DDF and DUTF to Address more Complex DSLs136

 6.4 Debugging Behavior through Event Grammars ...137

 6.5 Extending the Role of Aspects in Grammars ...138

7 CONCLUSIONS..140

LIST OF REFERENCES ...143

APPENDIX

 A DOMAIN-SPECIFIC LANGUAGE GRAMMAR SPECIFICATIONS152

 A.1 Robot DSL Grammar Specification ..153

 A.2 FDL Grammar Specification ..154

 A.3 SWUL Grammar Specification ...156

 A.4 Hybrid Robot DSL Grammar Specification158

 B ASPECTJ CODE FOR POST-ANTLR GRAMMAR WEAVING160

xi

TABLE OF CONTENTS (Continued)

Page

CHAPTER

 C ASPECTG GRAMMAR SPECIFICATION ..163

 D PARLANSE TRANSFORMATION FUNCTIONS FOR ASPECTG 166

 D.1 After Weaving Function ...167

 D.2 Middle Weaving Function ..169

xii

LIST OF TABLES

Table Page

3-1 Generality Analysis of DDF ..64

3-2 JDB, GDB, and Cordbg Basic Debugging Commands Comparison66

3-3 The DDF Adaptation for JDB, GDB, and Cordbg ..67

4-1 Generality Analysis of DUTF ..93

4-2 JUnit and NUnit Basic Unit Test Actions Comparison ...95

5-1 Usage Analysis for AspectG..131

xiii

LIST OF FIGURES

Figure Page

1-1 The Need for DSL Testing Tools ..6

1-2 Matrix of DSL Tools and Language Categories ..8

2-1 Screenshot of the Eclipse Debug Perspective ...17

2-2 Screenshot of the JUnit Eclipse Plug-in ..19

2-3 Robot DSL Sample Code ..22

2-4 Car Features Specified in FDL and List of Possible Car Configurations24

2-5 Robot Language Syntax Specification in BNF Format ...25

2-6 SWUL Sample Code ...27

2-7 Hybrid Robot DSL...28

3-1 DSL Debugging Framework (DDF) ..35

3-2 Debugger Generation Overview ..36

3-3 Robot DSL Source Code Mapping ..38

3-4 Part of Robot DSL Grammar Specification ...39

3-5 Part of SWUL Grammar Specification ..40

3-6 Mapping of Debugging Actions between DSL and GPL ..41

3-7 DSL Debugging Step Over Algorithm ..42

3-8 Debugging Result Mapping for the INIT Production of the Robot Grammar46

3-9 stepinto function in DSLDebugTarget ...49

xiv

3-10 Screenshot of Debugging Session on Robot Language ...51

3-11 Screenshot of Debugging Session on Car Program ...53

3-12 Action and Goto table of Robot Language LR-parsing ...56

3-13 Screenshot of Debugging Session on Robot BNF ...57

3-14 Screenshot of another Version of Debugging Session on Robot BNF58

3-15 Screenshot of Debugging Session on SWUL Program ...60

3-16 Screenshot of Debugging Session on Hybrid Robot Program62

4-1 DSL Unit Testing Framework (DUTF) ...77

4-2 DSL Unit Test Engine Generation Process ...78

4-3 Robot Language Test Cases Mapping ...81

4-4 FDL Test Cases Mapping ..83

4-5 Screenshot of Unit Testing Session on Robot Language ..86

4-6 Correct and Incorrect Knight Methods ..87

4-7 handleDoubleClick Method in TestResultView Class88

4-8 Screenshot of Unit Testing Success Session on Car FDL89

4-9 Screenshot of Unit Testing Failure Session on Car FDL ..90

4-10 Comparison of JUnit and NUnit Assertion Usage...96

5-1 Robot DSL Specification in ANTLR ..105

5-2 Part of Robot DSL Specification with Additional Debug Information106

5-3 Post-ANTLR Processing (AspectJ Approach) ..107

5-4 Fragment of DSL Line Mapping Aspect in AspectJ ...108

5-5 Fragment of DSL Last Line Tracking Aspect in AspectJ109

5-6 Steps to Weave Debugging Aspects into an ANTLR Grammar112

xv

5-7 Pre-ANTLR Processing (DMS Approach) ..113

5-8 AspectG Pointcut Model ...115

5-9 Generalized Algorithm for AspectG Weaving ..119

5-10 Part of after function in PARLANSE ...121

5-11 DSL Line Number Counter Aspect in AspectG ..122

5-12 Low-level Rule Transformation Generated from AspectG124

5-13 Applied Weaving of “After” Transformation Rule on the Robot Grammar125

5-14 GPL Line Number Counter Aspect in AspectG ..126

5-15 Low-level Rule Transformation Generated from AspectG127

5-16 Applied Weaving of “Middle” Transformation Rule on the Robot Grammar128

6-1 DSL Profiler Framework (DPF) ..135

xvi

LIST OF ABBREVIATIONS

ANTLR Another Tool for Language Recognition

AOP Aspect-Oriented Programming

AOSD Aspect-Oriented Software Development

API Application Program Interface

ASF Algebraic Specification Formalism

AST Abstract Syntax Tree

BNF Backus–Naur Form

CUP Constructor of Useful Parsers

DDF DSL Debugging Framework

DMS Design Maintenance System

DOM Document Object Model

DPF DSL Profiling Framework

DSAL Domain-Specific Aspect Language

DSLs Domain-Specific Languages

DTTS DSL Testing Tool Studio

DUTF DSL Unit Testing Framework

EUSES End-Users Shaping Effective Software Consortium

FDL Feature Description Language

GAL Graphics Adaptor Language

xvii

GDB GNU Project Debugger

GPAL General-Purpose Aspect Language

GPLs General-Purpose Languages

IDE Integrated Development Environment

JPDA Java Platform Debugger Architecture

JPM Join Point Model

JTS Jakarta Tool Suite

LISA Language Implementation System based on Attribute Grammars

OOP Object-Oriented Programming

PARLANSE Parallel Language for Symbolic Expression

PDE Plug-in Development Environment

PTE Program Transformation Engine

RSL Rule Specification Language

SDF Syntax Definition Formalism

SDK Software Development Kit

SQL Structured Query Language

SSCLI Shared Source Common Language Infrastructure

SST Surface Syntax Tree

SWUL Swing User Interface Language

TDD Test-Driven Development

TIDE ToolBus Integrated Debugging Environment

VHDL Very High Speed Integrated Circuit Hardware Description

Language

xviii

WYSIWT What You See Is What You Test

XP Extreme Programming

YACC Yet Another Compiler-Compiler

1

CHAPTER 1

INTRODUCTION

The advancement of end-user programming tools has empowered those who are

not traditional programmers with an ability to create their own software solutions

[Sutcliffe and Mehandjiev, 2004]. Those experts, who have a strong understanding of a

problem domain, but no formal computer programming training, can write software

applications to solve a specific need in their daily work tasks. The ability to create a

software solution is no longer the privilege of a computer scientist – in some cases,

training in traditional programming is not necessary (e.g., one of the most widely

available end-user programming environments is the spreadsheet [Burnett et al., 2005],

which can be programmed by scripts that use arithmetic and statistical formulas of a

specific domain instead of using traditional programming language concepts [Burnett et

al., 2003]). It has been estimated that only a small fraction of software developers are

actually professional developers (e.g., in the United States, Scaffidi et al estimate that

there are approximately 2.75 million professional developers out of an estimated 80

million end-user programmers [Scaffidi et al., 2005]), with the vast majority of end-user

developers building applications using tools such as spreadsheets, query systems, or

interactive scripting websites.

2

End-user programmers are more likely to introduce software errors than

professional programmers because they lack software development training and proper

tool support [Harrison, 2005]. As observed in many industry studies, individual examples

of software errors have cost the economy millions of dollars in recent cases [Hilzenrath,

2003; Schmitt, 2005]. According to a 2002 study, it was estimated that software failures

collectively contribute to over $60 billion in unreported losses per year [Tassey, 2002;

Crissey, 2004]. Without the availability of standard software development tools, the final

products of end-user programming can be dangerous [Harrison, 2005]. The proper

programming tools (e.g., editor, compiler, test engine, and debugger) are needed for end-

users to ensure the integrity of the products they develop. With a large pool of end-user

developers, and the rising cost of software failures, it is imperative that end-users are

provided with tools that allow them to detect and find software errors at an abstraction

level that is familiar to them.

1.1 The Benefits of Domain-Specific Languages

To assist end-users in describing solutions to their work tasks, Domain-Specific

Languages (DSLs) [Wile and Ramming, 1999] have been promoted as an approach to

remove the dependence on traditional General-Purpose Languages (GPLs), such as Java

and C++. A DSL is a, “programming language or executable specification language that

offers, through appropriate notations and abstractions, expressive power focused on, and

usually restricted to, a particular problem domain” [van Deursen et al., 2000]. A DSL is a

programming language tailored toward the specific needs of a particular problem domain

to ease the development of software solutions for that domain [van Deursen et al., 2000;

3

Mernik et al., 2005]. DSLs are often described as “little languages” [Bentley, 1986; van

Deursen and Klint, 1998] that are designed to solve problems in particular domains.

DSLs hide the lower level programming language details such as complex data

structures, complicated algorithms, and tedious GPL syntax from DSL programmers.

DSLs have also been shown to assist in software maintenance whereby end-users can

directly use the DSLs to make required routine modifications [Bentley, 1986]. The intent

of DSLs is to assist end-users in writing more concise, descriptive, and platform-

independent programs. This is enabled because the domain knowledge is specified at the

appropriate level of abstraction, which is independent of the implementation platform

[van Deursen and Klint, 1998]. The goal of providing suitable programming abstractions

for end-users is also a key principle of intentional programming [Simonyi et al., 2006].

Modifications to DSL programs are easier to make and can be understood and validated

by domain experts who are not familiar with a GPL, or do not know how to program in a

GPL. The empirical evidence suggests that the use of DSLs increases flexibility,

productivity, reliability, and usability [Kieburtz et al., 1996; Wile, 2004; Mernik et al.,

2005] so that DSLs can shorten the application development time and reduce the

development cost significantly.

DSLs describe problems at a level familiar to domain experts. Without dealing

with generated GPL code, domain experts can concentrate their time and effort on

utilizing their domain knowledge to develop solutions without concern for how to

express, interpret, and solve the problem in an unfamiliar notation. The declarative and

concise nature of some of DSLs makes them easy to understand by eliminating the

4

abstraction leaks common in representing domain concepts using lower level language

abstractions (e.g., GPLs).

Some of the more popular DSLs include the language used in the Unix make

utility [Oram and Talbott, 1991] and the language used to specify grammars in parser

generators like YACC (Yet Another Compiler-Compiler) [Johnson, 1975]. Other

examples include the Very High Speed Integrated Circuit Hardware Description

Language (VHDL) [VASG, 2007], which is a DSL to model a digital hardware system;

Structured Query Language (SQL) is a DSL to access and manipulate databases [Groff

and Weinberg, 2002]; Graphics Adaptor Language (GAL) is a DSL to specify video

device drivers [Thibault et al., 1999]; CSounds is a DSL used to create audio files

[CSounds, 2007], and Mawl is a DSL to specify form-based services in a device-

independent manner [Atkins et al., 1999].

1.2 The Challenge of DSL Implementation

There is a distinction between the end-user programmers that use a DSL and the

language designers who specify the DSL and implement the required tools (e.g., the DSL

compiler). The design and implementation of a DSL can be challenging and expensive.

The development of DSLs requires knowledge of programming language implementation,

as well as domain knowledge. Building a test engine and debugger for each DSL from

scratch can be time consuming, error-prone, and costly. It is difficult to build new testing

tools for each new language of interest and for each supported platform because each

language tool depends heavily on the underlying operating system‟s capabilities and

lower level native code functionality [Rosenberg, 1996]. The goal of this dissertation is to

5

show how the cost of developing DSL tools can be minimized by an automated grammar-

driven tool generation approach that extends a popular Integrated Development

Environment (IDE).

Mernik et al. have categorized various DSL implementation patterns as:

interpreter, compiler/application generator, pre-processor, embedding, extensible

compiler/interpreter, commercial off-the-shelf, and hybrid [Mernik et al., 2005]. The

majority of the DSL implementation patterns translate a single DSL construct into several

constructs in a target GPL. The most popular strategy for implementing a DSL, which is

also adopted in this dissertation, is a pre-processor serving as a compiler and application

generator that performs a source-to-source transformation (i.e., the DSL source code is

translated into the source code of an existing GPL [Mernik et al., 2005]). Translating a

DSL to an existing GPL is a popular implementation approach because the underlying

tools of the converted GPL can be used to obtain an executable application. It is very

convenient to express new DSL constructs in terms of GPL constructs, and the well-

developed GPL tools can be reused (e.g., compiler, debugger, unit test engine, and

profiler). The higher level abstractions of a particular domain are built into the translator

that synthesizes a DSL program into a GPL program. The technique to implement such

DSL translators can vary. In this dissertation, the pre-processor implementation pattern is

chosen where a DSL is translated using a syntax-directed approach by the translators

rather than a complete compiler, which introduces new maintenance issues (e.g., if the

language definition changes, the translator has to be modified accordingly [van Deursen

and Klint, 1998]).

6

1.3 The Need for End-User DSL Testing Tools

Although direct reuse of the existing GPL tools offers several benefits, a specific

GPL tool does not provide the proper abstractions that are needed by end-users who often

lack knowledge about the underlying GPL (i.e., a GPL may be difficult to understand by

those not trained as programmers because the conceptual solution expressed in a GPL is

not close enough to the specific problem domain - please see Figure 1-1). Usually,

domain experts describe a problem at the DSL level where the DSL applications are

translated into GPL code so that the actual computations or tasks can be performed. Even

though some DSL programming tools can be generated (e.g., editor, parser, and

visualizer), the DSL development environments available to domain experts are limited

(e.g., lack of DSL testing tool support). Domain experts prefer to develop their DSL

applications at the DSL level during the different software development phases instead of

being forced to test and debug their applications at the generated GPL level.

Figure 1-1. The Need for DSL Testing Tools

Domain Experts program at

DSL level

Domain Experts deal

with translated GPL

DSL translated into

General Purpose Language (GPL)
Domain Experts deal

with DSL

Integrated Development

Environment (IDE)

Editor

Compiler

Visualizer

Debugger

subselect me
begin

 left

 right

 up

 down

end

Translater

subselect me
public class Robot{

 public static void main(String[]

args) {

 Robot robot =new Robot(0,0,0);

 //move left

 robot.move_left();

 //move down

 robot.move_down();robot.x = 5;

 robot.y = 6;

Test Engine

7

Even if the domain expert has knowledge about the underlying GPL, one line of

DSL code may be translated into dozens of lines of GPL code, which makes it even more

difficult for an end-user to debug and test the translated program at the GPL level [Wu et

al., 2007]. An approach that hides the underlying use of the GPL tools offers a level of

transparency that can remove the accidental complexities that cause the abstraction

mismatch between the DSL and GPL; such an approach is advocated by Van Wyk and

Johnson, who argue for the need to perform analysis at the DSL level, not at the GPL

level [Van Wyk and Johnson, 2007]. Although techniques for constructing DSL tools

(e.g., editor and compiler) have been developed over the years, support for debuggers and

test engines for DSLs have not been investigated deeply. This dissertation describes how

automated tool generation can be used to overcome the lack of testing tool support for

end-user application programmers. As Robert Floyd noted in his Turing Award speech,

there is no need for a shiny new language unless it supports the programming methods

and paradigm used by programmers [Floyd, 1979]. The same comment can apply to DSL

tools; i.e., if sufficient tools needed by an end-user programmer are not available, then the

utility of a new DSL is diminished.

Among the DSL implementation approaches, the lower level GPL can be

considered a base machine and the higher abstraction provided by the DSL represents a

virtual machine for the particular domain. If the virtual machine is completely transparent,

any state or sequence of states obtained by the base machine can be realized also in the

virtual machine. If the virtual machine exhibits loss of transparency, there exists a subset

of states obtained by the base machine that cannot be represented in the virtual machine

[Parnas and Siewiorek, 1975]. In many cases, including pre-processor implementation of

8

DSLs, loss of transparency can be considered a desired property (i.e., it is often not

necessary or desirable for the DSL to have a one-to-one mapping of all of the features

available in a GPL). To realize the objectives of grammar-driven generation of DSL tools,

all of the specified tool behaviors of the virtual machine are made available through a

mapping to the base machine. The mapping transformation from the virtual machine to

the base machine is an essential part of the approach. The program behavior of a specific

tool is dependent on the translation process from the DSL to a GPL, which is modeled as

one line of the DSL code mapped to an interval with a first and last line of the GPL code,

as defined in the DSL grammar specification.

1.4 Research Objectives and Contributions

This dissertation introduces a DSL tool framework that can automatically

generate various testing tools (e.g., debuggers, test engines, and profilers) for different

categories of DSLs (e.g., imperative, declarative, and hybrid). Figure 1-2 illustrates a

research matrix along the vertical direction (representing the various DSL testing tools)

and the horizontal direction (representing the classes of DSL languages to be supported).

The vertical direction of Figure 1-2 corresponds to the vector representing the

various testing tools applied to the same type of DSL. The testing tools that have been

generated from the grammar-driven approach include several DSL debuggers and unit

test engines. As discussed at the end of the dissertation, future work includes generation

of profilers for DSLs.

9

Imperative DSL

Debugger

Declarative DSL

Debugger

Hybrid DSL

Debugger

Imperative DSL

Unit Test Engine

Declarative DSL

Unit Test Engine

Hybrid DSL

Unit Test Engine

Imperative DSL

Profiler

Declarative DSL

Profiler

Hybrid DSL

Profiler

Weaving Aspects into

DSL Grammars

Future Work

By Product

Figure 1-2. Matrix of DSL Tools and Language Categories

A debugger enables programmers to inspect and discover the errors in their

programs during program execution. Zellweger categorizes debuggers into two classes:

expected behavior debugger and truthful behavior debugger [Zellweger, 1984]. An

expected behavior debugger hides the program optimization and transformation from the

programmers and “always responds exactly as it would for an un-optimized version of

the same program” [Zellweger, 1984]. A truthful behavior debugger “displays how

optimizations have changed the program portion under consideration or it admits that it

cannot give a correct response” [Zellweger, 1984]. As categorized by [Auguston, 1995],

the behavioral models of higher level debugging mechanisms can be specified (e.g.,

debugging queries, path expressions, assertion checkers, and event tracers) to generate

new categories of debuggers (e.g., algorithmic debuggers, declarative debuggers, and

event-based debuggers [Auguston, 1998]). The work described in this dissertation

represents expected behavior debuggers that perform typical debugging tasks on DSL

programs (e.g., set a break point, stop at the break point, display variable values, and step

10

through the program), which enables a better understanding of the run-time behavior of a

DSL program.

A unit test engine is a development tool used to determine the correctness of a set

of modules (e.g., classes, methods, or functions) by executing source code against

specified test cases. Each unit test case is tested separately in an automated fashion using

a test engine. The test results help a programmer identify and fix the errors in their

program. To provide tool support consistent with accepted software engineering practice,

a DSL unit test engine provides end-users the ability to discover the existence of software

errors, and DSL debuggers can further help end-users to locate the errors in the DSL code.

A profiler is a meta-program that gathers information about another program‟s

performance measurements by recording and computing over run-time event traces from

hardware (e.g., timer triggers) or software (e.g., function call and OS scheduling)

[Auguston, 1998]. After execution of a program, a profiler displays summary information

of recorded event traces and their corresponding occurrences in the program. A DSL

profiler is helpful to determine performance bottlenecks during the execution of a DSL.

The contributions described in this dissertation can be summarized by the

following two objectives:

 Assist in generation of DSL testing tools using a generative framework

Even though the individual tools can be implemented separately for each

DSL category, the core research contribution concerns the investigation into a

generalized method that enables construction of a matrix of DSL testing tools

as a type of software factory [Greenfield et al., 2005]. The matrix of tools and

languages can be considered as a family of systems that is a domain-specific

11

product-line architecture, where a set of different products with common

characteristics adapt to a set of distinct features [Clements and Northrop,

2002]. The automation provided by generative programming [Czarnecki and

Eisenecker, 2000] offers an extensible mechanism as an alternative to manual

tool construction by transforming higher level specifications to lower level

equivalent program applications. This approach also conforms to the software

development paradigm of step-wise refinement on language tool construction

[Batory et al., 2004]. To realize this generative approach, the DSL Debugger

Framework (DDF) and DSL Unit Test Framework (DUTF) have been

implemented, which reuse the existing testing support in Eclipse and Java.

 Raise Aspect-Oriented (AO) concepts to a higher level of abstraction:

Aspects for language specification and grammar weaving

As a by-product of this research, an aspect language (described in Chapter 5)

can weave crosscutting tool concerns directly into a DSL grammar as an aid

toward the rapid generation of new DSL testing tools. Chapter 5 also

discusses the details of the investigation into aspect-oriented programming

[Kiczales et al., 1997] to assist in modularizing the DSL tool concerns (e.g.,

debugging and testing) from a base grammar. Although there have been other

efforts that explore AO on different software artifacts at various lifecycle

stages (e.g., source code and models), the work described in this dissertation

represents one of the first occurrences in the research literature of an actual

aspect-oriented weaver that is focused on language specification and

12

grammar weaving, rather than topics that are applicable to traditional

programming language source code.

 The research described in this dissertation offers three key contributions. The first

contribution provides an initial step toward empowering end-user developers with

traditional software engineering testing capabilities at the DSL level. To accomplish this

objective, a grammar-driven DSL tool framework has been developed that generates

testing tools (e.g., debugger and testing engine) automatically from DSL grammar

specifications. The base DSL grammars are transformed to generate the hooks needed to

interface with a supporting plug-in infrastructure written for an IDE. The second

contribution is a presentation of techniques for testing and debugging a diverse set of

DSLs. Different types of DSLs have different language characteristics that require

specific features. The third contribution is the exploration of a technique for better

separation of concerns in Grammarware [Klint et al., 2005], which comprises grammars

and all grammar-dependent software (e.g., lexer, parser). A key benefit is the ability to

explore numerous scenarios by considering crosscutting grammar concerns as aspects

that can be used to generate DSL testing tools.

1.5 Overview

The remainder of this dissertation is structured as follows: Chapter 2 introduces

the necessary background information to provide the reader with a better understanding

of other sections of the dissertation. The first part addresses Eclipse plug-in development,

which is used to build the front-end of the framework. A program transformation engine

is used to build the back-end of the framework, which performs the actual transformation

13

on the grammar file. The last part of Chapter 2 introduces categories of DSLs including

examples of different types of DSLs that have been used during this research.

Chapters 3 and 4 begin by describing an overview of the architecture of DDF and

DUTF. These chapters also provide details about the implementation of DDF and DUTF,

including the construction of the different components, the algorithms involved,

experimentation results, and generalized usage of the DDF and DUTF. Other related

software engineering practices are also discussed in these two chapters. Each of these two

chapters provide experimental evaluation of the contribution and offer a discussion of the

importance of considering software engineering factors while developing tools for DSLs.

Chapter 5 introduces an investigation of aspects applied to grammars to enable

better separation of concerns during the testing tool generation process. The chapter

begins by describing an overview of the grammar weaving process. The rest of Chapter 5

details the implementation of AspectG, including the weaving process, the algorithms

involved, and experimentation results. Other related approaches to aspect-oriented

grammar weaving are discussed in this chapter, such as AspectLISA and AspectASF.

Chapter 6 describes several existing limitations that serve as a focus of future

extensions of this work. Chapter 7 offers a concluding summary of the research

contributions. Appendix A provides the specification of the DSLs presented in this

dissertation; Appendix B provides the AspectJ code for the post-ANTLR grammar

weaving approach; Appendix C provides the specification of AspectG in ANTLR

notation; and Appendix D provides the PARLANSE transformation functions for

AspectG implementation.

14

CHAPTER 2

BACKGROUND

This thesis presents research that unites the descriptive power provided by the

Eclipse debugging perspective (Section 2.1.1) and the JUnit testing engine (Section

2.1.2), in conjunction with the invasive modification capabilities of a mature program

transformation system (Section 2.2). To provide the necessary background of the basic

tools and techniques mentioned throughout the dissertation, this background chapter

offers a brief description of these concepts and tools. This chapter also includes the

description of three different types of DSLs in Section 2.3, which are used as case studies

throughout the remaining chapters of the dissertation. A survey of software engineering

techniques and practices used in this research are also outlined (e.g., Aspect-Oriented

Programming (AOP) in Section 2.4 and syntax-directed translation in Section 2.5).

2.1 Eclipse Plug-In Based Software Development

Eclipse is an open-source development platform for constructing customized

Integrated Development Environments (IDEs) that can be used to create diverse

applications [Eclipse, 2007]. A key characteristic of Eclipse is the ability to serve as a

tool integration platform that offers numerous extension points for software feature

customizations through a plug-in architecture. As a tool integration framework, Eclipse

15

has been defined as “a collection of places-to-plug-things-into (extension points) and

things-to-plug-in (extensions)” [Gamma and Beck, 2003]. An Eclipse plug-in has the

ability to integrate with other plug-ins to extend functionality. New functionality and

features are implemented as layered plug-ins. One plug-in can extend the functionality of

another plug-in by implementing the interface defined by the extension point of the other.

Developers can provide new functionality to Eclipse by extending several existing

extension points, and at the same time provide further development opportunities for

others by publicizing new extension points.

Eclipse is capable of integrating new functionality from different developers

while preserving a seamless user interface and consistent user experience. The Eclipse

Plug-in Development Environment (PDE) offers a powerful platform to develop and

integrate different language tools that support DSL development [Eclipse, 2007].

2.1.1 Eclipse Debugging Perspective

To assist in construction of new debugger interfaces, the Eclipse Software

Development Kit (SDK) provides the debugging perspective, which is a framework for

building and integrating debuggers. As shown in Figure 2-1, the debug perspective

defines a set of interfaces that model common debugging artifacts (e.g., threads, variables,

and breakpoints) and debugging navigation actions (e.g., stepping, suspending, resuming,

and terminating) [Wright and Freeman-Benson, 2004]. The debug perspective appears

when programmers select the debugging mode for program execution. Although the

debugging perspective does not provide a specific implementation of a debugger, it does

offer a basic debugger user interface that can be adapted and extended with features

16

specific to a particular language. The debugging perspective consists of a language editor,

a variable view, and a debugger view. The Eclipse debugger perspective consists of a

console view in an initial layout that is designed to perform basic debugging functions on

the source code in the editor.

The language editor is the place where the targeted source code resides. The

breakpoints and program pointer appear on the left frame of the editor. A breakpoint is

the location where a programmer wants the program to stop during the execution. A

program pointer is the current execution point of the running program. The variable view

is in the upper-right corner of the IDE and displays the local variable values. The

debugger view is in the upper-left corner of the IDE and shows the current execution

status of the running program such as threads and function names. The top part of the

debugger view lists different debugging actions that programmers can invoke. Depending

on the current program behavior and logic, some debugging actions may not be

applicable and will appear as disabled in the debugging interface. The editors, views, and

perspectives can be modified, extended, and rearranged according to a user‟s specific

needs. The basic debugger user interface listens to the events from the debug model

interface and updates the contents according to the information from the debug events.

Chapter 3 describes an extension to the Eclipse debugging perspective to integrate

with an interactive debugging framework that assists in debugging a program written in a

DSL.

17

a) Variable Inspector b) Navigation Toolbar

Figure 2-1. Screenshot of the Eclipse Debug Perspective

2.1.2 Eclipse JUnit Test Perspective

Unit testing is a testing approach [Zhu et al., 1997] that isolates the individual

units of program source code and validates the correctness of each unit against its

requirements [Unit Testing, 2007]. JUnit is a popular unit testing tool for constructing

automated Java test cases that are easy to write, composable, and isolated [JUnit, 2007].

JUnit is not only a stand-alone tool but also is adapted to the Eclipse plug-in development

environment. A JUnit plug-in for Eclipse provides a framework for automating functional

unit testing on Java programs with integrated JUnit support. JUnit generates a skeleton of

unit test code according to the tester‟s specification. The software developer needs to

specify the expected value, the tested variable, the tested module of the source code, and

the test method of the test cases. JUnit provides a set of rich testing methods (e.g.,

assertEquals, assertNotNull, assertFalse, and assertSame) and reports

the results (shown in Figure 2-2) as: the total number of passed or failed test cases; the

true expected value and current expected value of the failed test cases; the name and

location of the passed and failed test cases; and the total execution time of all the test

cases. The test results can be traced back to the source code locations of the tested

program. The test cases are displayed in a hierarchical tree structure that defines the

18

relationship among test cases. There are several benefits that JUnit offers in terms of test

automation and reuse that are provided by a common fixture that encapsulates all testing.

As noted in the JUnit documentation, “JUnit also provides a common structure to all tests

that programmers can set up a test fixture, run some code against the fixture, check test

results, and then clean up the fixture. This means that each test will run with a fresh

fixture and the results of one test can‟t influence the result of another. This supports the

goal of maximizing the value of the tests” [JUnit, 2007]. A collection of related test cases

is called a test suite. When one of the test cases fails, the entire test suite is declared a

failure. Template methods are used to separate and parameterize the fixture (e.g., set up

and tear down), which make JUnit test cases easy to write. In each test case, assertion

predicates assess the expected outcome against the actual outcome after executing a

program unit. The results of the tests are reported to programmers in either a graphical

summary or plain text.

In its current form, JUnit is focused solely on Java and is not applicable to general

testing of DSL programs. In Chapter 4, we describe how our mapping framework enables

unit testing of DSL programs using JUnit as the underlying unit test engine.

19

Figure 2-2. Screenshot of the JUnit Eclipse Plug-in

2.2 Program Transformation with the Design Maintenance System

A program transformation engine facilitates the transformation of a source

program into a new program representation. In some cases, the original behavior of the

source program needs to be preserved (e.g., code refactoring and code optimization).

Typically, a program transformation is based on transformation rules that specify pattern

matching on an abstract syntax tree (AST). A transformation rule also defines the rewrite

action needed for those parts of the AST that are matched by the rule‟s pattern.

The Design Maintenance System (DMS) is a transformation and re-engineering

toolkit developed by Semantic Designs [Baxter et al., 2004]. In addition to DMS, there

are many other popular program transformation systems (e.g., ASF+SDF [van den Brand

et al., 2002], Stratego [Visser, 2001], and TXL [Cordy, 2006]). DMS is a commercially

available product and provides lower level transformation functions such as parsing, AST

generation and manipulation, pretty printing, powerful pattern matching, and source

translation capabilities. DMS also provides pre-constructed domains for several dozen

20

GPLs (e.g., Java, C++, and Object Pascal). In DMS, a language domain contains a lexer,

parser, and pretty printer, as well as additional language tools such as type analysis tools.

In addition to the available parsers, the underlying rewriting engine of DMS

offers the machinery needed to perform invasive software transformations on legacy code

[Aßmann, 2003]. DSL language developers (not the actual end-users) can create a new

language domain using the source-to-source transformation functionalities of DMS. For

the purpose of the research presented in this dissertation, DMS is used as the underlying

transformation engine to support the implementation of an aspect language for grammars

(called AspectG) to weave crosscutting testing tool concerns into DSL grammars. In

Chapter 5, we describe aspects applied to grammars in order to generate new DSL testing

tools.

2.3 Categories of Domain-Specific Languages

To demonstrate the generality of the approach described in the dissertation, three

different categories of DSLs were considered. The horizontal direction of Figure 1-2

focuses on facilitating the construction of the same software tool (e.g., debugger and unit

test engine) across these three different categories of DSLs (e.g., imperative DSL,

declarative DSL, and hybrid DSL). This sub-section introduces the definitions and

specific differences among the categories of DSLs described throughout this dissertation.

2.3.1 Imperative Domain-Specific Languages

An imperative programming language is based on the von Neumann concept that

is centered on assignment expressions and control flow statements [Sebesta, 2007], which

21

allows a program to change the content of cells in memory. In an imperative language,

the state change of variable values is a central feature of interest. Therefore, for

imperative languages, testing tools are designed around capabilities to examine the value

of variables at run-time.

For the purpose of this research, a simple imperative language for representing

robot control was adopted from previous case studies [Wu et al., 2004; Mernik and

Žumer, 2005]. A simple language like the Robot DSL is used so that the discussion is not

hindered by the complexities of the DSL itself. In this dissertation, the Robot language

has been extended by adding user-defined function definitions and function calls. This

extension is useful to demonstrate the Step Into functionality of the DSL Debugging

Framework (DDF). The Robot DSL consists of four primitive moves that control robot

movement: up, down, right, and left. Users can define other moves (e.g., knight). Every

move increases or decreases the position of the robot along the x or y coordinate.

Additional Robot DSL statements are: initial statement, set statement, and print statement.

Figure 2-3 represents sample code written in the Robot DSL – lines 15 to 19 define

knight; line 21 sets the robot‟s initial position to <0, 0>; line 24 invokes knight; line 25

forces <5, 6> as the robot‟s new current position; and line 28 prints the robot‟s current

position. The complete Robot language grammar written in ANTLR is contained in

Appendix A.1.

22

…

15 knight:

16 position(+0,+1);

17 position(+0,+1);

18 position(+1,+0);

19 knight:

20 …

21 Init position(0,0);

22 left;

23 down;

24 knight;

25 Set position(5,6);

26 up;

27 right;

28 Print position;

…

Figure 2-3. Robot DSL Sample Code

2.3.2 Declarative Domain-Specific Languages

A declarative programming language is based on declarations that state the

relationship between inputs and outputs. Declarative programs consist of declarations

rather than assignment or control flow statements. The declarative semantics have a

precise interpretation that is closer to the problem domain. Such programs do not state

how to solve a problem, but rather describe the essence of a problem and let the language

environment determine how to obtain a result [Sebesta, 2007]. Instead of assessing the

value of individual variables, a declarative DSL testing tool needs to evaluate the

relationships between each declaration, which are represented as data structures with

symbolic logic.

As an example of a declarative DSL, the Feature Description Language (FDL) is

used in this dissertation to specify the legal configuration of an automobile product line

[van Deursen and Klint, 2002]. The FDL is a textual language that describes a feature

diagram [Czarnecki and Eisenecker, 2000], which represents a hierarchical

decomposition of domain features arranged by composition rules (e.g., mandatory,

23

alternative, or optional). FDL can be used to analyze all possible features in the

development of families of related systems.

The upper part of Figure 2-4 is an example specification written in FDL to

describe a simple car. According to the first feature, a Car consists of four mandatory

features: carbody, Transmission, Engine, and Horsepower. As shown at the

end of feature 1, feature pullsTrailer is an optional feature (i.e., a car can either

have a pullsTrailer or not). If the first character of a feature is a lowercase character,

the feature represents a primitive that is atomic and cannot be expanded further (e.g., the

carbody feature). If the first character of a feature is an uppercase character, the feature

is composite, which may consist of other composite or primitive features (e.g., the

Transmission feature consists of two primitive features, automatic and manual).

In feature 2 of Figure 2-4, the oneof composition logic operator states that

Transmission can be either automatic or manual, but not both. In feature 3, the

moreof composition logic operator specifies that the Engine can be either electric

or gasoline, or both. In constraint 1, all cars are required to have a pullsTrailer.

In constraint 2, only highPower cars are associated with the pullsTrailer feature.

The combination of constraints 1 and 2 imply that all cars in this product line must be

highPower. The lower part of Figure 2-4 enumerates all of the possible legal

configurations that result from the features defined on the upper part of the figure. The

complete FDL grammar written in ANTLR is contained in Appendix A.2.

24

Car features in FDL

feature 1: Car: all (carbody, Transmission, Engine,

 Horsepower, opt(pullsTrailer))

feature 2: Transmission: oneof (automatic, manual)

feature 3: Engine: moreof (electric, gasoline)

feature 4: Horsepower: oneof (lowPower, mediumPower, highPower)

constraint 1: include pullsTrailer

constraint 2: pullsTrailer requires highPower

All possible car configurations

1:(carbody, pullsTrailer, manual, highPower, gasoline, electric)

2:(carbody, pullsTrailer, manual, highPower, electric)

3:(carbody, pullsTrailer, manual, highPower, gasoline)

4:(carbody, pullsTrailer, automatic, highPower, gasoline, electric)

5:(carbody, pullsTrailer, automatic, highPower, electric)

6:(carbody, pullsTrailer, automatic, highPower, gasoline)

Figure 2-4. Car Features Specified in FDL and List of Possible Car Configurations

(adapted from [van Deursen and Klint, 2002])

As another example, Backus–Naur Form (BNF) is a declarative DSL for formally

describing the syntax of a language using a context-free grammar [Aho et al., 2007].

BNF is a widely used grammar notation to verify the instances of a language, to analyze

the language features, and to generate the lexer and parser, or other language tools. The

syntax specification of the Robot language in BNF notation is shown in Figure 2-5,

where the uppercase symbols represent non-terminals and the lowercase symbols

represent terminals. Context-free productions are specified using terminals and non-

terminals in this Robot BNF (e.g., START ::= begin COMMANDS end). This

grammar is a slight simplification of the Robot language described in Section 2.3.1.

25

1 START ::=

2 begin

3 COMMANDS

4 end

5 ;

6 COMMANDS :: =

7 COMMAND

8 COMMANDS

9 | epsilon

10 ;

11 COMMAND :: =

12 left

13 |right

14 |up

15 |down

16 ;

Figure 2-5. Robot Language Syntax Specification in BNF Format

2.3.3 Hybrid Domain-Specific Languages

Bravenboer and Visser have investigated the concrete syntax for languages that

assimilate embedded DSL code into the surrounding GPL code to provide the appropriate

notation for expressing domain composition [Bravenboer and Visser, 2004]. Conversely,

some DSLs embed GPL code within the DSL program. We call such examples hybrid

DSLs. The linguistic extension provided by the GPL is used frequently in many DSLs

and is named the piggyback DSL design pattern [Spinellis, 2001; Mernik et al., 2005].

The piggyback pattern is widely adopted in DSLs for tools like parser generators, such as

Yet Another Compiler-Compiler (YACC) [Johnson, 1975], Bison [Bison, 2007],

ANother Tool for Language Recognition (ANTLR) [ANTLR, 2007] or the Constructor of

Useful Parsers (CUP) [CUP, 2007].

The semantic actions in the grammar specification used by a parser generator are

described in GPL code (e.g., Java and C++), which are surrounded by DSL constructs

corresponding to the grammar of the language. For the hybrid DSL case studies described

in this paper, we apply our framework to two different types of hybrid DSLs. One case is

when the GPL notation is considered the host language and the DSL is embedded in the

26

surrounding GPL code; the opposite case is when the DSL is the host language and the

GPL is embedded in the surrounding DSL code. To support end-user programming, DSL

debuggers should be able to debug hybrid DSLs by switching language modes between

two different language domains.

When developing graphical user interfaces for Java, traditional Swing [Loy et al.,

2002] user interface code is intertwined together so that it is hard to determine the actual

structure of the end result of the visual representation. Figure 2-6 is an example of a

hybrid DSL called the Swing User-interface Language (SWUL), which was first

introduced as an example DSL by Bravenboer and Visser [Bravenboer and Visser, 2004].

SWUL is a hybrid DSL that assists in constructing a Java Swing user interface in a more

comprehensive and structured way. The SWUL program is embedded into a Java

program and assimilated into the surrounding Java code through translation into pure

Java Swing code. Ideally, programmers should be able to debug through the SWUL code

between two different language notations (e.g., Java and SWUL) rather than the

generated Java code. SWUL provides syntax for a block module that can describe the

user interface and add concrete syntax into the whole DSL program. As an example, lines

6 to 18 of Figure 2-6 show SWUL code surrounded by Java code. In this specific case,

the SWUL code specifies a JFrame layout containing one JLabel in the middle (line 9)

and two JButtons (line 11 to 14). As this example illustrates, a GPL that has an embedded

DSL provides an ability to remove the accidental complexities of library usage. The

complete SWUL grammar written in ANTLR is contained in Appendix A.3.

27

1 import javax.swing.*;

2 import java.awt.*;

3

4 public class WelcomeSwing {

5 public static void main(String[] ps) {

6 JFrame frame = frame {

7 title = "Welcome!"

8 content = panel of border layout {

9 center = label { text = "Hello World" }

10 south = panel of grid layout {

11 row = { button {

12 text = "cancel" }

13 button {

14 text = "ok" }

15 }

16 }

17 }

18 };

19 frame.pack();

20 frame.setVisible(true);

21 }

22 }

Figure 2-6. SWUL Sample Code (SWUL code in italics)

Figure 2-7 is another example of a hybrid DSL that represents an extension of the

Robot DSL from Section 2.3.1. The original Robot DSL does not provide native

constructs to handle I/O operation, user-interface, and random number generation. A

hybrid version of the Robot DSL provides syntax for a block module that can add Java

code fragments into the DSL program, which can be used to implement the functionality

not provided in the original language. As an example, line 13 of Figure 2-7 introduces a

new random move that requests from the user the boundaries for a random number

generator that produces random coordinates. Lines 13 to 27 represent the method

definition of the random move (lines 14 to 26 specify the semantics of random as

written in Java). Line 35 is the code in the main part of the DSL that calls random. A

hybrid DSL‟s ability to escape to a GPL provides a simple language extension

mechanism. DSL design is often an iterative process guided by user feedback. Frequent

escape to a GPL may suggest that a new construct should be added in the next version of

28

the DSL to support a commonly needed feature. The complete Hybrid Robot DSL

grammar written in ANTLR is contained in Appendix A.4.

…

13 random:

14 {

15 String answer;

16 int max;

17 JOptionPane myGUI = new JOptionPane();

18 Random rand = new Random();

19 answer = myGUI.showInputDialog("Please enter the upper bound of the …

20 max = Integer.parseInt(answer);

21 x = rand.nextInt(max);

22 answer = myGUI.showInputDialog("Please enter the upper bound of the …

23 max = Integer.parseInt(answer);

24 y = rand.nextInt(max);

25 myGUI.showMessageDialog(null, "Generated Position(" + x + "," + y+ ")");

26 }

27 random:

28 …

29 Init position(0,0);

30 left;

31 down;

32 knight;

33 Set position(5,6);

34 up;

35 random;

…

Figure 2-7. Hybrid Robot DSL (Java code in italics)

2.4 Aspect-Oriented Programming (AOP)

Programmers often encounter a situation where identical or similar functionality

is spread over an application‟s code base and is difficult to modularize. The nature of

certain business processes and real-world problems may force some concern dimensions

to be scattered across different modules and tangled within a single module, hampering

the proper separation of concerns [Dijkstra, 1976]. Even though the Object-Oriented

Programming (OOP) paradigm supports modularization and reusability through

encapsulation, inheritance, and polymorphism, a new language construct is needed for

identifying, encapsulating, and manipulating the separation of concerns to complement

traditional programming languages. Capturing scattered and tangled code is modularized

as aspects, which are concerns of interest that are specified in a single location that is

29

modularized. Aspect-Oriented Programming (AOP) assists software engineers in

modularizing and decomposing crosscutting concerns into a more manageable fashion,

which has been shown to improve the comprehensibility, changeability, and

maintainability of the whole software system.

AOP techniques for general-purpose programming languages have been

developed (e.g., AspectJ [Kiczales et al., 2001], [AspectC#, 2007], and [AspectC, 2007]).

These languages represent general-purpose aspect languages (GPALs) applied to GPL

domains (e.g., Java, C#, and C). A GPAL is an aspect language that provides general

constructs that improve modularization of a broad range of crosscutting concerns

bounded within a specific GPL. Crosscutting concerns emerge not only in GPL source

code, but also in various representations of software artifacts (e.g., models [Gray et al.,

2001], non-functional software requirements [Duclos et al., 2002], and programming

language grammars [Wu et al., 2004]). However, most research and development efforts

have been devoted toward bringing AOP support to programming languages, rather than

artifacts from other phases of software development. Just recently, the research trend has

shifted towards describing specific crosscutting concerns (e.g., model evolution, language

extension, and tool generation) that provide language constructs tailored to the particular

representation of such concerns; such languages are called domain-specific aspect

languages (DSALs). A DSAL that addresses tool generation concerns observed in

language grammars is described in Chapter 5.

There are three main language components of a typical aspect-oriented language:

join points, pointcuts, and advice. A join point indicates the location in the program

where a specific crosscutting concerns appears. This location can be either a static

30

location of a particular segment of source code, or it can be a dynamic program execution

point. A pointcut is a set of join points and is specified by designators that are declarative

keywords indicating characteristics that identify the essence of a set of common join

points. Advice is a set of behavior that is attached to specific join points. Advice can be

attached to pointcuts with specific behavior that represent methods or operations written

in a GPL notation.

2.5 Syntax-Directed Translation

Popular parser and lexer generators (e.g., ANTLR, CUP, and YACC) aid

programming language designers in constructing new programming languages by

translating a language specification into a lexer and parser [Parr, 2007]. These tools

provide an extensible framework and allow walking and manipulating ASTs for building

language compilers based on various technologies (e.g., Visitor Pattern [Gamma et al.,

1995] and program transformation). Syntax-directed translation is a grammar-oriented

compiling technique where an input-output mapping is based on a context-free grammar

that specifies the syntactic structure of the input [Aho et al., 2007]. Embedded within the

right-side of each grammar production is a set of semantic rules for computation

associated with the grammar symbols appearing in that production.

A DSL grammar is often defined using a standard language specification notation,

such as BNF. Based on the DSL grammar written in BNF, language design tools can

generate the language lexer and parser for a DSL. Also, by modifying the semantic

specification of a DSL‟s BNF definition, the additional mapping information of the

31

translation from the DSL code to the generated GPL code can be generated by the syntax-

directed translation process of the modified parser.

Throughout this dissertation, ANTLR [ANTLR, 2007] is used as the language

construction tool to define the various DSLs that are discussed. ANTLR is a parser

generator that provides a framework for constructing various programming language

related tools (e.g., recognizers, compilers, and translators) from grammatical

specifications. The ANTLR specification language is based on EBNF notation and

enables syntax-directed generation of a lexer and parser. The tokens comprising the

lexical part of the grammar for the new language are defined using named regular

expressions. The parser representing the syntax and semantic parts of the language

specification is defined as a subclass of the grammar specification and encapsulates

semantic rules within each grammar production. The semantic actions within each

production rule are written in a GPL (e.g., Java, C#, C++, or Python).

The Eclipse PDE provides a platform for creating a new domain-specific

language environment, which allows the developer to extend the basic features that are

suitable for a particular DSL through Eclipse‟s plug-in extension mechanism. Within the

Eclipse platform, crosscutting concerns emerged from the DSL testing tool generation

process. A program transformation approach to implement an aspect-oriented weaver

assists in modularizing crosscutting concerns at the language grammar level. The

framework developed to support the research has been implemented as Eclipse plug-ins

(i.e., the DSL debugging framework discussed in Chapter 3 and the DSL unit testing

framework discussed in Chapter 4). All of the DSL debuggers and unit test engines

32

presented in this dissertation were developed in Eclipse. The aspect language discussed in

Chapter 5 is developed using a program transformation engine (i.e., DMS).

33

CHAPTER 3

DSL DEBUGGING FRAMEWORK (DDF)

This chapter presents a technique to build a debugging tool generation framework

from existing DSL grammars. It utilizes existing GPL debuggers and a plug-in software

development environment to simulate the end-user‟s debugging intention. By

augmentation of original DSL grammars, hooks are generated to interface with the IDE.

Five case studies presented in this chapter illustrate how the DSL debuggers are

generated by DDF. This chapter introduces an approach that can provide debugging tool

support for DSLs at a higher abstraction level. In addition, to demonstrate the benefits of

this approach, experimental evaluation is discussed, including generality analysis and

experimental results. At the end of this chapter, related work and a concluding discussion

are also presented.

3.1 DDF Architecture Overview

The DSL Debugging Framework (DDF) provides a grammar-driven technique for

reusing an existing GPL debugger in conjunction with the debugging interface available

in Eclipse. An illustrative overview of the DDF is shown in Figure 3-1. A key technique

of the DDF is a mapping process that records the correspondence between the DSL and

the generated GPL. The ANTLR translator generates GPL code and mapping information

34

from the DSL source. The DDF requires mapping information that depends on both the

source language (DSL) and the target language (GPL). The mapping components

comprise the source code mapping, debugging methods mapping, and debugging results

mapping components (middle of Figure 3-1). The results from these first two mapping

processes are re-interpreted into the GPL debugger server as debugging commands, along

with parameters provided to the translated GPL code. Important information that is

captured in the mapping are: (1) the representation of the source-level language; (2) a

function that defines how values in the DSL are represented on the target GPL, and (3) a

specification that states how such values should be displayed to the end-user in the de-

bugging perspective [Ryu and Ramsey, 2005]. The source code mapping component uses

the generated mapping information to determine which line of the DSL code is mapped to

the corresponding segment of GPL code. Source code mapping indicates the location of

the GPL code segment corresponding to a single line of code in the DSL. The debugging

methods mapping component receives the end-user‟s debugging commands from the de-

bugger perspective at the DSL level to determine what type of debugging commands

need to be issued to a command-line debugger at the GPL level. The semantic actions

associated with the debugger use syntax-directed translation and additional semantic

functions in the grammar specification to generate the mapping information.

35

Re-interpreter GPL Debugging Sever

Source Code

Mapping

Debugging

Results Mapping

Debugging

Methods Mapping

ANTLR

Translator

GPL

Debugging Actions

DSL Debugging Variable View

DSL Level

GPL Level

End-User

GPL Debugging

Commands

DSL

Figure 3-1. DSL Debugging Framework (DDF)

The GPL debugging server responds to the debugging commands sent from the

re-interpreter component. The debug result at the GPL level is sent back to the Eclipse

debugging perspective by the debugging results mapping component, which is a wrapper

interface to convert the GPL debugging result messages back into a form to be displayed

at the DSL level. Because the messages from the GPL debugger are command-line

outputs, which know nothing of the DSL or the Eclipse debug perspective, it is necessary

to remap the results to the end-user perspective. As a result, the DDF enables the end-

user to interact directly with the debugging perspective at the DSL level.

Figure 3-2 illustrates the Robot DSL debugger generation process. In Figure 3-2,

with the mapping generator embedded inside the grammar, the lexer and parser generated

by ANTLR (step 1) takes the Robot DSL as input (step 2). ANTLR not only translates

the Robot DSL program into the corresponding Robot.java, but also generates the

36

Mapping.java file (step 3). The mapping file represents a data structure that records all of

the mapping information about which line of the Robot DSL code is mapped to the

corresponding segment of Robot.java code. It indicates the location of the Robot.java

code segment. Interestingly, the mapping information crosscuts the grammar in such a

way that an aspect emerges within the grammar definition (please see Chapter 5) [Wu et

al., 2005].

1

2

6

1 begin

2 left

3 down

4 up

5 right

6 end

4

Lexer,

Parser

public class Robot

{

 public static void main(String[] args) {

 ……
 //move left

 x=x-1;

 time=time+1;

 //move down

 y=y-1;

 time=time+1;

 ……

 }

}
3

import java.util.ArrayList;

public class Mapping {

 ArrayList mapping;

 public Mapping(){

 mapping=new ArrayList();

 mapping.add(new Map(1, "Robot.java",2,8));

 mapping.add(new Map(2, "Robot.java",10,14));

 ……

 }

}

Mapping

 Component

5

Robot DSL Grammar In ANTLR Notation

Robot DSL

Generated Lexer, and Parser

by ANTLR

Robot.java and Mapping.java

Java Command Line Debugger

Robot DSL Debugging Perspective in Eclipse

 Variables

ViewDebugging

View

DSL

Editor

Figure 3-2. Debugger Generation Overview

The mapping component interacts and bridges the differences between the Eclipse

debugger platform and the JDB (Java Debugger) (step 4). There are two round-trip

mapping processes involved (step 5 and step 6) between the Robot DSL debugging

perspective in Eclipse and JDB. A user issues debugging commands from Eclipse that are

interpreted into a series of JDB commands against the Robot.java code. Based on the pre-

37

defined debugging mapping knowledge, the mapping component determines the

sequence of debugging commands that need to be issued to the JDB at the GPL level.

3.2 Source Code Mapping

As a side-effect of the source-to-source translation process of the DSL pre-

processor, the source code mapping information is generated when a DSL source file is

translated into an equivalent GPL representation. The translation rules are defined in the

DSL grammar. During the translation process, the base grammar of the DSL is

augmented with additional semantic actions that generate the source code mapping

needed to create the DSL debugger. The mapping contains the following information,

which is stored in a vector: (1) the DSL line number; (2) the translated GPL file name;

(3) the line number of the first line of the corresponding code segment in GPL; (4) the

line number of the last line of the corresponding code segment in GPL; (5) the function

name of the current DSL line location, and (6) the statement type at the current DSL line

location. The statement types can be functiondefinition, functioncall, or

none.

A functiondefinition consists of functionhead, functionbody,

and functionend, where: functionhead is the beginning of a function (line 3 on

the left side of Figure 3-3 is the functionhead of knight); functionbody is the

actual definition of a function (lines 4 to 6 on the left side of Figure 3-3 represent the

functionbody of knight); functionend is the end of a function (line 7 on the left

side of Figure 3-3 is the functionend of knight). A functioncall is the name of

the function being called from another location of a program. The statement type for a

38

built-in method of a Robot program is set to none. For example, the mapping

information at Robot DSL line 13 in Figure 3-3 is {13, "Robot.java", 20, 21, "main",

"none"}. This vector indicates that line 13 of the Robot DSL is translated into lines 20 to

21 in Robot.java, designating the “Set position()” method call inside of the main function.

For each line of the Robot DSL code, there is corresponding mapping information

specified in the same format. Although the examples presented in this section are tied to

Java and the simple Robot DSL, the source code mapping and interaction with the GPL

debugger and debug platform can be separated from any specific DSL and GPL. The

Eclipse debugger perspective is independent of any GPL. Thus, the DDF can be used

with any GPL that has an existing debugger.

…

3 knight:

4 position(+0,+1);

5 position(+0,+1);

6 position(+1,+0);

7 knight:

8 …

9 Init position(0,0);

10 left;

11 down;

12 knight;

13 Set position(5,6);

14 up;

15 right;

16 Print position;

…

…

6 public static void move_knight(){

7 x=x+0;

8 y=y+1;

9 x=x+0;

10 y=y+1;

11 x=x+1;

12 y=y+0;}

13 public static void main(String[] args) {

14 x=0;

15 y=0;

…

18 move_knight();

…

20 x = 5;

21 y = 6;

…

26 System.out.println("x coordinate="+x+""+

27 "y coordinate= " + y);}

…

a) Robot DSL b) Generated Java

Figure 3-3. Robot DSL Source Code Mapping

Variable mapping implicitly exists within the DSL compiler specified during the

syntax-direct translation in the semantics specification. Figure 3-4 is part of the Robot

DSL grammar specification that specifies the semantic actions taken on the implicit

39

position variable. This part of the grammar translates line 4 of the Robot DSL in

Figure 3-3a into lines 7 and 8 of generated Robot.java in Figure 3-3b. The Robot DSL

variable position is mapped to x and y variables in Robot.java. The translation of the

position variable represents a one-to-many variable mapping, where one DSL

variable is mapped to two or more GPL variables. These forward (i.e., from DSL to GPL)

variable mappings are used implicitly by the DDF for generating the DSL debuggers.

Functionbody

:(VARIABLES LPAREN op1:OP func_num1 :NUMBER COMMA op2:OP func_num2:NUMBER RPAREN

 { funcall="functionbody";

 dsllinenumber=dsllinenumber+1;

 fileio.print(" x=x"+op1.getText()+func_num1.getText()+";");

 gplbeginline=fileio.getLinenumber();

 fileio.print(" y=y"+op2.getText()+func_num2.getText()+";");

 fileio.print(" time=time+1;");

 gplendline=fileio.getLinenumber();

 filemap.print("mapping.add(new

Map("+dsllinenumber+",\"Robot.java\","+gplbeginline+","+gplendline+","+

 "\""+funcname+"\""+","+"\""+funcall+"\""+"));");

 }

)

;

Figure 3-4. Part of Robot DSL Grammar Specification

Figure 3-5 is part of the SWUL grammar specification that specifies the semantic

actions taken on JFrame variable assignments. This grammar fragment translates one

SWUL statement (i.e., “JFrame frame = frame;”) into 4 lines of the generated

WelcomeSwing.java statements (e.g., lines 7, 9, 10, and 11) as indicated in Figure 3-5.

The SWUL variable frame is mapped to the frame variables in WelcomeSwing.java.

The complete DSL grammar specifications are available at Appendix A.3.

40

5 JFRAME IDENTIFIER ASSIGN IDENTIFIER LCURLY

6 {

7 fileio.print("jFrame_0 = new JFrame();");

8 jframename="jFrame_0";

9 fileio.print("JFrame frame="+jframename+";");

10 fileio.print(" frame.setSize(200,150);");

11 fileio.print(" frame.setVisible(true);");

12 }

13 frame RCURLY SEMI

14)

15 ;

Figure 3-5. Part of SWUL Grammar Specification

3.3 Debugging Methods Mapping

The traditional debugging activities of a GPL include setting or clearing a break-

point, stepping over, stepping into, terminating a debug session, and resuming execution

[Rosenberg, 1996]. These debug actions are also suitable for end-users debugging a DSL

program. All of the debugging mapping knowledge is pre-defined within the algorithms

in the DDF. These algorithms are designed in a general manner to work with most cases

of the different types of DSLs defined in Chapter 2 (i.e., imperative, declarative, and

hybrid). However, several minor adjustments to the algorithms may be needed in some

cases, such as particular features within declarative DSLs. The quantitative measurement

of such adaptation is presented in Section 3.6. The specifics of the debugging methods

mapping are illustrated in Figure 3-6, with the type of mappings named in the first

column, the DSL debugging actions specified in column two, and the respective GPL

debugging actions in column three.

In Figure 3-6, the second row indicates that DSL line number n_i is mapped to a

segment of GPL code from line number m_i to m_j, as shown in column 3. Among the

debugging actions, step is the most useful and complicated action. Except for the Step

41

Over and Step Into actions, the remaining GPL debugging actions have

straightforward mappings (i.e., the same debugging action requested on line n_i of the

DSL is mapped to the same action on line m_i of the generated GPL).

Mapping DSL GPL

Source Code

n_i maps to

m_i to m_j

Line Number:

n_1

n_2

n_...

n_i

n_i+1

n_...

n_j

n_j+1

n_...

Line Number:

m_1

m_2

m_...

m_i

m_i+1

m_...

m_j

m_j+1

m_...

Breakpoint Set breakpoint at n_i Set breakpoint at m_i

Step Over Step over line at n_i Step Over algorithm

Step Into Step into line at n_i Step Into algorithm

Terminate Terminate at line n_i Terminate at line m_i

Resume Resume at line n_i Resume at line m_i

Figure 3-6. Mapping of Debugging Actions between DSL and GPL

Because there is an abstraction mismatch between the DSL and the generated

GPL code, the step debugging actions cannot be mapped directly. When an end-user

steps through the DSL code to examine the values of DSL variables, the underlying GPL

debugger acts differently to simulate the step through debugging action at the DSL level.

During a stepping action within the DDF, the DSL debugging Step Over algorithm is

invoked (see Figure 3-7). This algorithm requires information about the function types

and function names that were generated from the DSL grammar. This algorithm is

responsible for matching the language abstraction gap between the DSL and GPL at the

42

source code level. End-users can perform a Step Over action at either the main

function level or within individual function definitions. A Step Into action may also

be performed at the function call level if a corresponding function definition exists. The

Step Into action is disabled if the current function call has no function definition.

1 if (function name equals “main”) {

2 if (dsl_line_number < last line number of DSL code) {

3 set breakpoint at gpl_line_number corresponding to dsl_line_number+1

4 call cont()

5 }

6 else {

7 call cont()

8 step over last line of DSL code, debugging session terminated

9 }

10 current dsl_line_number increased by one;

11 }

12 else {

13 get function_type from mapping information base

14 if (function_type equals "functionbody") {

15 current dsl_line_number increased by one

16 for all the statements corresponding to this one line of DSL code {

17 call step()

18 }

19 } else if (function_type equals "functionend") {

20 call step()

21 assign current dsl_line_number as previous_dsl_line_number + 1

22 }

23 }

Figure 3-7. DSL Debugging Step Over Algorithm

In Figure 3-7, according to the function name of the current line of the DSL

source code, the first condition (see line 1) is used to determine where the Step Over

action is taking place (e.g., at the main function level or at the user-defined function

definition level). The dsl_line_number is the current execution position at the DSL

code level. The gpl_line_number is the current execution position at the GPL level.

If the current program pointer is within the main function level, the DDF sets up a

breakpoint at the GPL level at location gpl_line_number, which is the beginning

GPL line of the corresponding DSL line. The cont method is a sub-routine that

43

continues execution of the debugged application until the debug session is stopped at

another breakpoint or terminated. Line 10 increases the current DSL line number after the

Step Over action is completed.

When the current program pointer is at the function definition level, the step over

action performs differently. If the current DSL statement‟s function type is

functionbody, unlike the situation in the main program, the function definition may

cast another function definition where the source code mapping information is not

sufficient to determine the line number of the intended program execution location.

Therefore, a different strategy is used in this case. Stepping over one line of DSL is

equivalent to performing an iteration of steps through many lines of GPL code, because

one line of DSL code corresponds to a sequence of GPL code. The number of iterations

(line 16) can be computed by subtracting the beginning_line_number+1 from the

ending_line_number. Each iteration performs the GPL step() sub-routine on the

GPL code, which only advances execution to the next line. When the user steps through

the last line of a function (indicated by function type functionend in line 19), the

algorithm invokes the GPL step() method only once, which moves the program

pointer out of the function definition and back to the next line of the GPL code before the

DSL Step Over action. To synchronize the line number at the DSL code level, the

current program pointer is moved to line previous_dsl_line_number+1, which is

the next line before the DSL Step Over at the function definition in the DSL. The

variable called previous_dsl_line_number is a temporary counter that stores the

line number before the user executes the DSL Step Over action on a function

definition. All of the corresponding GPL line numbers, function name, and types come

44

from the source code mapping information (e.g., line 13). Although this Step Over

algorithm is generalized to be used in most case studies described in this dissertation, the

different meanings of Step Into and Step Over for a declarative DSL require

minor adjustments in this algorithm to handle new requirements, which are described in

Section 3.5.2.

3.4 Debugging Results Mapping

The debugging results from the GPL debugger are returned in the GPL context

(i.e., GPL variable names and results), which is not at the correct level of abstraction for

end-users. Thus, the debugging results from the GPL debugger must be mapped back to

the DSL debugging perspective so that end-users can understand the meaning of the

results. The one-to-many mapping between the DSL and GPL can be captured by

augmenting the base DSL grammar with additional code that describes the mapping in

specific grammar productions.

3.4.1 Debugging Results Mapping Process

The DDF captures the debugging results by reading the output of the GPL

debugging server‟s response to the sequence of GPL debugging commands. These

debugging results sometimes are meaningless for DSL programmers unless they can be

understood properly. Also, the debugging results from the GPL debugging server may

contain many symbols that are not needed in the DSL context (e.g., command prompt

symbols, spaces, tabs, and newlines). The first step towards debugging results mapping is

to sanitize the raw GPL debugging results. A clean-up method handles the first step of the

45

reverse mapping. The second step is to retrieve the necessary information from the

sanitized results and compose them into the format that the IDE debugging perspective

can display properly. The objective is to allow the results of the GPL debugging server to

be displayed to the end-user in the proper context of the DSL. In some cases, the

debugging results mapping may exist within the DSL compiler such that the DDF can

directly use the interface functions that the compiler provides to reveal variable values.

3.4.2 Debugging Results Mapping Example

Figure 3-8 shows the specification of the INIT production from the Robot DSL

grammar. Line 13 is an addition to the base grammar that adds the results mapping in-

formation. This specific mapping is added into the DSL grammar to enable re-

interpreting of the raw GPL data returned from JDB. This mapping assists in

reconstituting the DSL variable value (i.e., this specific line number indicates that the

variable in the DSL is composed of two variables named x_coordinate and

y_coordinate). The left side of the assignment is the DSL variable name and the

right side of the assignment corresponds to the presentation format of variables at the

DSL level. In order to obtain the variable value, lines 5 and 8 indicate the commands to

query the values of GPL variables x and y, and assign them to x_coordinate and

y_coordinate, which are used to construct the value of the DSL variable. For

example, the command to retrieve the value of the x_coordinate from JDB is

“print x.” The debugger variable view retrieves the result mapping from JDB and

displays the position values at the Robot DSL level.

46

1 | INIT var:VARIABLES LPAREN init_num1:NUMBER COMMA init_num2:NUMBER RPAREN

2 {

3 dsllinenumber=dsllinenumber+1;

4 fileio.print("x="+init_num1.getText()+";");

5 fileresult.print("x_coordinate=print x");

6 gplbeginline=fileio.getLinenumber();

7 fileio.print("y="+init_num2.getText()+";");

8 fileresult.print("y_coordinate=print y");

9 fileio.print("time=0"+";");

10 gplendline=fileio.getLinenumber();

11 filemap.print("mapping.add(new

Map("+dsllinenumber+",\"Robot.java\","+gplbeginline +

12 ","+gplendline+","+"\""+funcname+"\""+","+"\""+funcall+"\""+"));");

13 fileresult.print(var=var.getText()+"(x_coordinate,y_coordinate)");

14 }

Figure 3-8. Debugging Result Mapping for the INIT Production of the Robot Grammar

The debugging results mapping is stored in one central location (called

fileresult) where the DDF framework can access this information while

automatically generating a DSL debugger for a specific DSL (e.g., Robot language, FDL,

BNF, and SWUL).

3.4.3 Crosscutting Grammar Concerns

A crosscutting concern emerges from the addition of the explicit mapping in each

of the grammar productions. For example, in Figure 3-8 there are many lines that are not

part of the original grammar and are concerned solely with the debug mapping (lines 3, 5,

6, 8, 10, 11, 12, 13). Similar debug mapping statements in the semantic actions are

repeated in every terminal production. The manual addition of the same mapping code in

each grammar production results in much redundancy. Although the Robot DSL is

simple, it is not uncommon to have grammars with hundreds of production rules. In such

cases, much redundancy will exist because the debug mapping code is replicated across

47

each production. Of course, because the debug mapping concern is not properly

modularized, changing any part of the debug mapping has a rippling effect across the

entire grammar. A contribution of this dissertation research is described in Chapter 5,

which demonstrates how an aspect language for grammars can assist in separating the

various testing tool concerns for a specific grammar [Wu et al., 2005]. Using a program

transformation technique, an aspect-oriented language was developed called AspectG that

can weave aspects into DSL grammars. The detailed description of AspectG is provided

in Chapter 5.

3.5 Illustrative Examples

This section illustrates the application of the DDF on three different types of

DSLs through five examples (i.e., the Robot language, FDL, BNF, SWUL, and the hybrid

Robot language).

3.5.1 Generation of an Imperative DSL Debugger

This sub-section describes an imperative debugger for the Robot DSL introduced

in Section 2.3.1 that is generated by DDF from automated additions made to the base

Robot grammar. The front-end of the process begins with the ANTLR generation of a

lexer and parser for the Robot language. In addition to the lexer and parser, a mapping is

needed to link the Robot language to the generated Java code. The mapping is specified

as additional semantic actions in the Robot grammar definition. The lexer, parser, and

mapping generator form the building blocks for the front-end of the DDF.

48

The back-end of the DDF consists of the stand-alone Java command-line

debugger [JDB, 2007] and the Eclipse debugger perspective. While adapting the

architecture of the Eclipse debug platform, DDF generates an implementation of the

debug model interfaces (e.g., ILaunch, IDebugElement, IDebugTarget, and

IBreakPoint) to establish an Eclipse debugging perspective for the Robot DSL. The

Eclipse debug model is an event-driven design that intercepts all debugging events. Most

of the debugger event listeners are implemented as interfaces without an implementation

– it is the responsibility of a plug-in to extend and adapt the interfaces to correspond to a

specific behavior for each debugger. The Eclipse debugging perspective listens for events

and uses the event information to update the user interface to show the current state of the

debugged program [Wright and Freeman-Benson, 2004].

The DDF has a debugger re-interpreter that marshals requests between the

specific debug model interfaces and JDB. The debugger re-interpreter obtains a sequence

of debugging commands from the DSLDebugTarget and queries the underlying

command-line debugger (i.e., in this case, the JDB). The DSLDebugTarget class

represents the debugging process and virtual machine, and communicates with the

debugger re-interpreter. The DSLDebugElement interface generalizes different

artifacts in a program (e.g., debug target statement, variable values, and process threads).

When an end-user launches a debugging session, the user‟s activity is re-interpreted and

sent as a command to the debugger interpreter. The result returned from the JDB is stored

in a variable called resultReader, which is then re-mapped back into the debugging

perspective at the DSL level. If a GPL other than Java is used (e.g., C++), the underlying

GPL debugger can be changed easily to GDB (GNU Project Debugger). In such a case,

49

the only adaptation needed to the DDF is a modification to the commands issued by the

debugger re-interpreter. The front-end of the DDF, including the implementation of

DSLDebugTarget, stays the same. The back-end of the DDF is modularized so that the

concern of the debugging user interface is separated from the back-end specifics of the

underlying GPL debugger.

Figure 3-9 shows the stepinto method defined in the DSLDebugTarget

class. When a debugging event (e.g., stepinto) is triggered by an end-user, the

DSLDebugTarget sends a step command to the debugging re-interpreter through the

source code mapping generated from the DSL grammar addition (line 8). The current

position of the DSL line number (lines 10 and 14) and DSL function definition (line 6)

are updated after the stepinto action is performed.

1 protected void stepinto() throws DebugException {

2 Map map;

3 dslrember = dsllinenumber;

4 map = (Map) mapping.mapping.get(dsllinenumber - 1);

5 sendRequest("step");

6 String functioncall = map.getFunctioncall();

7 for (int i = 1; i < mapping.size(); i++) {

8 map = (Map) mapping.mapping.get(i);

9 if (functioncall.equals(map.getFunctionname())) {

10 dsllinenumber = i + 1;

11 break;

12 }

13 }

14 dsllinenumber = dsllinenumber + 1;

15 }

Figure 3-9. stepinto function in DSLDebugTarget

The result returned from the JDB is in terms of the generated Java code, which is

at the wrong abstraction level for most end-users. The variables view in the debug

perspective of Eclipse provides a suitable place to display the variable values during the

debug session. In order to display the variable values in terms of the Robot language, the

50

variables view must map values from the Java state as returned from the JDB to the

equivalent DSL variables in the debug perspective. In JDB, a variable value is obtained

using the print command. For variables or fields of primitive types, the actual value is

retrieved directly. In this Robot language example, only two variables were used in the

generated code (i.e., integers x and y). Within the debugging results mapping, the

DSLDebugTarget obtains the result from the JDB by issuing “print x” and

“print y” commands to query the state of these two variables. However, the Robot

DSL represents these two Java variables as a single position variable, which is a

composition of the x and y variables in the generated Java. The DSLDebugTarget

class re-interprets the raw data returned from JDB and reconstitutes the position value

as the format obtained from the debug result mapping. The position value is then

passed to the variables view of the debug perspective at the DSL level.

Figure 3-10 represents a screenshot of the debugging session on a Robot program.

The lower-half of the figure is the Robot DSL editor, which indicates the location of the

current program execution point (i.e., the highlight over the position <+0, +1> statement

in the knight method) and the breakpoint (i.e., the bullet on the left side of the editor over

the call to down). On the upper-right corner of the figure, the variable view for the Robot

DSL indicates that the current robot position at this point in the execution is <-1, 0>.

The upper-left corner of the figure shows the debugging view of the Robot DSL, which

includes the available debugging actions (e.g., resume, stop, step over, and step into). The

debugging view also displays several properties of this debugging session (e.g., the name

of this session, the current debugging function name, and the current debugging target

program name).

51

Figure 3-10. Screenshot of Debugging Session on Robot Language

3.5.2 Generation of a Declarative DSL Debugger

This section demonstrates the application of DDF to two separate declarative

DSLs – FDL and BNF.

A Debugger for FDL

In addition to generating a debugger for an imperative DSL like the Robot

language, the DDF can also generate a declarative DSL debugger for FDL (described in

Section 2.3.2). The only modification to DDF is isolated in the component that maps the

variable results back into the Eclipse debugging perspective. In the declarative DSL case,

the variable mapping from the GPL to DSL is different from the imperative DSL case. In

52

this particular instance of the FDL debugger, the variables view in the debug perspective

must represent all of the features at any point in time within the execution state.

Considering as an example the Car specification from Figure 2-4, stepping over each

feature causes the resulting configuration to expand or contract (see the expanded

variable view of the configuration in Figure 3-11).

The Eclipse debugging variable view is not able to display a Java object directly.

A function in the DDF is used to retrieve the attributes from the object and translate the

object into a primitive String type that can be displayed in the DSL variables view. The

source code mapping information is passed to the retrieve method so that the GPL

variables are matched to variables in an FDL feature list. In the Car example, the car and

feature variables are objects in the generated code. The DSLDebugTarget queries the

state of the car value and the state of the feature values from the JDB. The state of the

GPL variables is re-interpreted into a String representation so that the Eclipse variable

view is able to display the current structure and contents of the Car feature diagram. This

specific variable remapping (i.e., “variable = var.getText() +

remap(feature);”) is added into the DSL grammar to enable the re-interpretation of

the raw GPL data returned from JDB. This mapping assists in reconstituting the DSL

variable value. The function remap() is used to clear up the raw debugging results from

JDB so that the well-formatted string can be displayed in the Eclipse debugging variable

view. The left side of the assignment is the DSL variable name (i.e., carbody,

Transmission, Engine, and Horsepower) and the right side of the assignment

corresponds to the presentation format of variables at the DSL level. In order to obtain

the value of a variable (i.e., feature), (feature = "print var_name" +

53

listnumber + ".toString()";) is needed to query the values of Java variable

feature, and assigned to variable, which are used to construct the value of the DSL

variable.

Figure 3-11. Screenshot of Debugging Session on Car Program

Figure 3-11 is a screenshot of a debugging session on the car specification

introduced in Figure 2-4. The lower-half of the figure contains the FDL editor, which

indicates the breakpoints and current feature rule under evaluation. The upper-right of the

figure contains the variable view for the Car program, which shows the current state of

the feature configuration at the point of evaluating the Horsepower feature. Figure 3-

11 captures the instance of the Car feature diagram after evaluating three feature rules

(e.g., Car, Transmission, and Engine). In this example, the program execution

point has stopped at the fourth feature definition (Horsepower). An end-user can click

a feature in the variable view and a detailed expansion view is provided (e.g., the

54

enumerated list of possible configurations in the middle of the figure). The detailed view

enables an end-user to see all of the rule combinations that contribute to the current state

of a particular configuration. The detailed view shows all feature rule combinations that

have been evaluated by the composition logic rules (e.g., one-of, more-of, and all).

Notice that in the detailed view there are no Car, Transmission, and Engine

composite features – they have all been expanded to their atomic parts from the

evaluation of the first three feature definitions. The rest of the debugging perspective

(e.g., stepping over rules) is similar to the Robot DSL debugger in Section 3.6.1.

A Debugger for BNF

In addition to generating a debugger for a declarative DSL like the FDL, the DDF

can also generate a declarative DSL debugger for the Robot BNF (described in Section

2.3.2). The specific application of this debugger represents a tool integration

demonstration with the Language Implementation System based on Attribute Grammars

(LISA) [Mernik et al., 2002] (see Section 4.7.3), which is a system to generate a parser,

compiler, interpreter, and other language-based tools (e.g., finite state automata and

visualization editor) from a language specification. LISA is used to generate the parser

for the Robot BNF. LISA follows the standard BNF notation for defining the syntax of

the Robot language. Considering the simple Robot BNF as an example, stepping over a

non-terminal causes the generated Robot language parser to iterate through the input

tokens by looking up the parsing control table and taking appropriate actions (e.g., shift,

reduce, accept, and signal an error). This generated parser code is implemented using the

classic table-driven LR(1) parsing algorithm described in [Aho et al., 2007]. Compared to

55

the previous case studies in this dissertation, the more complex table-driven data structure

is generated in Java that is equivalent to the syntax specification written in BNF based on

the LR(1) parsing technique. A parsing control table is pre-constructed based on the

grammar specification of the Robot language. LISA generates Java code from this

description. The grammar in BNF is mapped to the Action and Goto functions of an LR-

parsing table. The complete table contents and video demos are available at [DSL Testing

Studio, 2007].

In order to generate a debugger for BNF, the modifications to DDF were isolated

in the component that mapped the variable results back into the Eclipse debugging

perspective and Step Over debugging action, which are different from the FDL case.

For different problem domains, the end-users have varying interests while debugging the

different DSLs. The language design experts are interested in the snapshot of each

parsing step based on the parsing control table. In the grammar debugger, the variables

view in the debug perspective must represent the current parsing state, current input

token, current parsing action, current stack, and current input token position. Considering

as an example the Robot language specification from Figure 2-5, stepping over

COMMANDS causes the current status of the parsing process to execute the COMMANDS

definition. Figure 3-12 shows the Action and Goto functions of the Robot language

parsing table for the Robot language. The action sub-table represents action functions of

all the terminals of the Robot language and the special symbol “$” that is stored in the

bottom of the stack. The Goto sub-table represents goto functions of all the non-terminals

of the Robot language. The Eclipse debugging variable view is able to display the current

parsing state, current input token, current action, current stack, and current input token

56

position. All of this information is retrieved from the JDB by the generated parser. A

function in DDF is used to retrieve the information from the parsing control table object

(in Java) and translate is attributes into a primitive String type that can be displayed and

understood by end-users through the DSL variables view.

 ACTION GOTO

State begin End left right up down $ START COMMANDS COMMAND

0 s2 1

1 accept

2 r2 s6 s7 s8 s5 4 3

3 r2 s6 s7 s8 s5 9 3

4 s10

5 r6 r6 r6 r6 r6

6 r3 r3 r3 r3 r3

7 r4 r4 r4 r4 r4

8 r5 r5 r5 r5 r5

9 r1

10 r0

Figure 3-12. Action and Goto table of Robot Language LR-parsing

Figure 3-13 is a screenshot of a debugging session of the Robot BNF. The lower-

left of the figure contains the grammar editor, which also indicates the breakpoints and

current program pointer. The lower-right of the figure contains the input language editor

that contains a sample Robot language program. The upper-right of the figure contains

the variable view of the BNF debugger, which shows the current status of parsing. In

Figure 3-13, the grammar program execution point has stopped at line 3 where the

breakpoint is set. After the Step Over debugging action, the current program pointer

moves to line 4 from line 3, which indicates that the COMMANDS non-terminal has been

executed. An end-user can click a CurrentOperation variable in the variable view

and a detailed expansion view is provided (e.g., the current parse action is shift10,

57

which means the parser will shift to the number 10 state into the current parsing stack). In

this case, according to the action in row 4 and column end of the action field of Figure 3-

12, the current operation is Shift10, meaning shift by pushing state 10 on to the stack,

and remove end from the input. At this point, the current parsing state is 4; current token

is end located at row 4 and column 1 in the input editor; current parsing state stack

contains [0, 2, and 4]. The detailed view shows all variable values of interest that can

help language designers to assess the parsing process according to the language syntax

specification in BNF. The rest of the debugging perspective (e.g., Step Into rule)

allows language designers to obtain the parsing status of the non-terminal definition that

was stepped into.

Figure 3-13. Screenshot of Debugging Session on Robot BNF

58

 Another version of a BNF debugger can hide the bottom-up parser

implementation details (e.g., current state, current operation, and current state stack) from

end-users who are not familiar with this parsing technique. In such case, the debugging

perspective only shows the current token, current token location, trace of consumed

tokens, and a trace of productions. Figure 3-14 is a screenshot of this second version of

the BNF debugger. In this figure, the current program execution point stopped at line 4

after the Step Over debugging action from line 3, which indicates that the COMMANDS

non-terminal has been executed. A ProductionTrace variable in the variable view

provides a detailed expansion view of the value of such tracing (e.g., a trace of the

production flow history, which indicates all the grammar productions executed up to this

execution point). The ConsumedTokensTrace view shows all input tokens that are

consumed by the grammar productions up to this execution point, which can help

language designers to validate the Robot language BNF syntax specification.

Figure 3-14. Screenshot of another Version of Debugging Session on Robot BNF

59

3.5.3 Generation of a Hybrid DSL Debugger

This section demonstrates the application of DDF to two separate hybrid DSLs –

the SWUL and the hybrid Robot language.

A Debugger for SWUL

This section uses the SWUL hybrid DSL (as described in Section 2.3.3) to

illustrate the generation process of creating a hybrid DSL debugger from a DSL

grammar. An identifier “dsl” is used as a prefix in the function type to distinguish the

embedded SWUL code surrounding the Java statements. For example, the mapping: {9,

"WelcomeSwing.java", 22, 24, "main", "label", ”dslfunctionbody”}, means that line 9 is a

DSL statement that is mapped to one segment of code (e.g., from line 22 to 24) of the

generated Java code in WelcomeSwing.java. The function type is also used to determine

the mode in which the variables will be displayed (i.e., the DDF will switch between a

Java variable view, and a SWUL variable view depending on the function type of the

currently executed line of code). If the function type of a specific line of the SWUL

program is not prefixed with “dsl,” the DDF variable view will show the Java variable

values (i.e., with the “dsl” prefix, the DSL variable values will be shown, but without the

prefix, the Java variable will be displayed). The variable name is also determined by the

sixth field of this mapping information (i.e., label).

Within a hybrid debugger, the debug perspective must be able to display both

DSL variables and Java core variables based on the current mode of the debugger. In

JDB, the locals command is used to retrieve the values of the local Java variables for

the current stack frame. In the debugger interpreter, a method called debug_locals

60

directly sends the locals command to the JDB. The DSLDebugTarget method

within DDF obtains the debug result of the locals command and displays the Java

variables in the debug perspective.

Figure 3-15. Screenshot of Debugging Session on SWUL Program

In order to generate the SWUL debugger, a modification was needed to the Step

Over action (i.e., an addition is made to the step method discussed in Section 4.1). When

debugging the Java part of a hybrid DSL (e.g., the code in Figure 3-15 concerned with

packing the frame, line 19), there is a one-to-one correspondence between the code in the

DSL and the generated GPL. In this mode, there is no mismatch between the DSL code

and the generated GPL code. The step method is modified in the case of a hybrid DSL by

61

setting the debug actions in the DSL (e.g., set a breakpoint, step over/into) to correspond

to the same line of code in the GPL. In summary, when debugging the Java part of a

hybrid DSL, the JDB results are passed back to the debug perspective as a one-to-one

mapping.

Figure 3-15 is a screenshot of the debugging session for a hybrid SWUL program

that uses an escape block (e.g., lines 7 through 18) to obtain a structural description of

user interfaces. As the program counter steps through the embedded DSL code in the

SWUL program, the user interface Swing graphic representation window on the upper-

left corner evolves according to the current program execution state. In the variable view

of the debugging perspective (shown in the upper-right of Figure 3-15), the individual

components (e.g., frame, label, and button) and their associated attributes (e.g., location

and contents) are displayed.

A Debugger for the Hybrid Robot Language

Figure 3-16 is a screenshot of the debugging session for a hybrid Robot DSL pro-

gram that uses an escape block to obtain random coordinates for the robot position. As

the program pointer steps through the embedded Java code in the Robot DSL program,

the input dialog window asks the user to enter the range of values for the random number

generator. After the user enters the upper bound in the text box, the program pointer will

stop at the very next line (i.e., the line that translates the value into the Java max

variable). In the variable view of the debugging perspective (shown in the top-right of

Figure 3-16), there are two sets of views available to the user. The top-most view shows

the variable value of the position variable at the DSL level. The bottom-most variable

62

view displays the local variables of the embedded Java code, including all primitive

variables (e.g., String answer and int max) and object variables (e.g.,

JOptionPane myGUI and Random rand). At this point in the debugging session,

the two abstraction levels complement each other to provide the user with more precise

information about the execution behavior of the hybrid DSL program.

Figure 3-16. Screenshot of Debugging Session on Hybrid Robot Program

3.6 Case Study Evaluation

During the experimental evaluation phase of the DDF, it was observed that there

are generic and specific parts in the debugger generation process [Wu, 2006]. The

architecture of the DDF framework and the debugger generation processes are generic

parts of the automated tool generation procedure that can be reused across different

debuggers for these three categories of DSLs. The debugging action algorithms (e.g.,

Step Into and Step Over) are suited for most of the DSL cases in this research.

These algorithms require minor modifications for the BNF debugger case. For different

63

types of DSLs, the two specific parts of the DDF are the source code mapping component

and the debugging results mapping component, which are represented as several

customized components in the DDF.

3.6.1 Generalization of DDF Usage

Various styles of DSLs served as test cases to determine the generality of our

grammar-driven approach by comparing the generation of different DSL debuggers. A

total of five different debuggers for three types of DSLs were generated using DDF.

Several quantitative measurements were observed to analyze the amount of effort

required to generate new debuggers. In particular, this section addresses the question,

“How many of the generic software components from DDF can be reused without

modification or small changes, as compared between different types of DSLs?” To

address the level of effort required to adapt a debugger, an important measurement is to

assess the amount of code that is written for each new debugger. Within DDF there are

19 software components. Among these components, there are 3,429 lines of code that are

generalized and reused in all of the debuggers. On average, it has been observed that less

than 150 lines of code are needed for each new debugger generation. The comparison

presented in Table 3-1 indicates that the amount of code needed to generate a DSL

debugger is relatively small when using DDF.

64

DSL Category

DSL Name

Number of Specific

Functions or Classes

Customized

Lines of Code

Imperative DSL Robot Language 2 69

Declarative DSL

FDL 3 89

BNF 5 261

Hybrid DSL

Hybrid Robot Language 4 117

SWUL 5 152

Table 3-1. Generality Analysis of DDF

In Table 3-1, column 3 shows the number of specific software components (e.g.,

functions or classes) needed to generate each DSL debugger. Across the five example

case studies, among the 19 reusable software components there are two components (e.g.,

source code mapping component and debugging results mapping component) that need

modification to adapt the specificity of different DSLs. Another component that cleans up

the debugging results is needed for generating FDL, BNF, and SWUL debuggers. To

generate the BNF debugger, DDF also needs to add two additional functions to handle its

complicated Step Over and Step Into debugging actions. The two extra software

components needed to generate Hybrid DSLs (e.g., Hybrid Robot language and SWUL)

deal with the display of the local and global variables in the variables view.

The choice of the GPL debugger depends on the kind of GPL code generated

from the DSL implementation. The GPL debugger performs the debugging actions on the

generated GPL code. If DSLs are implemented through translation to different types of

targeted GPLs other than Java, DDF has to change its underlying GPL debugger.

Different GPL debuggers have their own supported GPLs and different interfaces with

users. The re-interpreter is the one component that plays a specific role to adjust the

65

variability in this framework. If the underlying GPL debugger changes, the wrapper

interface of the re-interpreter must be modified to adapt the differences among the

specific GPL debuggers. This specificity only depends on the language types that the

DSL program is translated to.

Currently, all the DSL examples used in this research are translated to Java, so the

underlying GPL debugger is JDB. If the DSL programs are translated into C, C++,

Objective-C, or Pascal, the GDB be can used, which provides general debugging support

for various GPLs. The GDB “allows you to see what is going on „inside‟ a program while

it executes or what a program was doing at the moment it crashed” [GDB, 2007]. If the

DSL programs are translated into C#, VB.Net, managed C++ and J# in .Net, then the

Cordbg debugger can be used. This .Net debugger “helps tool vendors and application

developers find and fix bugs in programs that target the .NET framework common

language runtime. This tool uses the runtime Debug API to provide debugging services.

Developers can examine the code to learn how to use the debugging services” [Cordbg,

2007].

The DDF provides software developers the freedom of choosing the underlying

GPL debugger according to the generated GPL program. Table 3-2 shows the comparison

of the three GPL debuggers (i.e., JDB, GDB, and Cordbg). The table lists only five of the

basic commonly used debugging commands (e.g., set a breakpoint, step over, display

value, terminate, and resume) which were used in the DDF. According to the comparison

table in Table 3-2, there are several similarities among the syntax and semantics among

these debuggers. The JDB is the simplest debugger among the three. Compared to JDB

and GDB, Cordbg offers more sophisticated debugging functions and features (e.g.,

66

setting watchpoints, examining the complex data structures and native machine memory

storage locations, and debugging programs with multiple processes).

Debugging Actions JDB (Java) GDB (C++) Cordbg (C#)

Set a Breakpoint stop at class: line number break filename:linenumber b[reak] [[file:] line number] |

[[class::] function [:offset]]

Step Over Step step [count] n[ext] [count]

Display Value print class.staticfield print expr p[rint] [variable name]

Terminate Exit quit exit

Resume Cont continue [ignore-count] cont [count]

Table 3-2. JDB, GDB, and Cordbg Basic Debugging Commands Comparison

The manner in which DDF uses the underlying GPL debuggers is to call the

sendRequest method and pass the actual GPL debugging commands as parameters. In

order to make the DDF work with these three different GPL debuggers, the developers

must change the parameters (i.e., different debugging command syntax) for

sendRequest methods in the DDF as shown in Table 3-3. The breakpoint line number

from the source code level debugging comes from a method called getGplbegin,

which returns the correct result from a data structure that stores all of the mapping

information. This approach decreases the cohesion with GPL debuggers and provides the

developers with further extension opportunities to make the DDF more powerful and

useful by utilizing the functionalities of the full-fledged GPL debuggers. Because the

various GPL debuggers have different output formats, the remap sanitization method

requires minor adjustments to handle the debugging results format differences.

67

JDB (Java) sendRequest("stop at Robot: " + map.getGplbegin());

GDB (C++) sendRequest("break Robot.cpp: " + map.getGplbegin());

Cordbg (C#) sendRequest("break Robot.cs: " + map.getGplbegin());

Table 3-3. The DDF Adaptation for JDB, GDB, and Cordbg

For different types of IDEs (e.g., Eclipse or .Net), DDF has to change the way its

components interact within different plug-in architectures in the IDE. The current focus

has considered Eclipse as the target IDE, with the DDF plug-ins implemented in Java. A

switch to Microsoft‟s Visual Studio .Net IDE would require changing the language to

implement the plug-ins (e.g., C#, VB.Net, C++ and J#). The way plug-ins are

implemented is different between IDEs. Furthermore, GPLs have different features for

constructing plug-ins. These limitations to the generality of DDF are considered in

Chapter 6, which addresses future work.

3.7 Related Work in the Area of Domain-Specific Language Debuggers

The End-Users Shaping Effective Software (EUSES) Consortium represents

collaboration among several dozen researchers who aim to improve the software

development capabilities provided to end-users [EUSES, 2007]. A contribution of

EUSES is an investigation into the idea of “What You See Is What You Test”

(WYSIWT) to help isolate faults in spreadsheets created by end-users [Ruthruff et al.,

2006]. More specific to the focus of this research, this section provides an overview of

related work in the area of DSL debuggers (e.g., Khepera, JSR-045, ANTLR Studio, and

TIDE).

68

3.7.1 Khepera

Khepera is a toolkit for the rapid implementation and long-term maintenance of

DSLs [Faith et al., 1997]. The Khepera system provides program transformation

functions that can translate from one high-level language to another. Khepera provides

debug tracking information transparently and supports transformation replay and

navigation, as well as debugger queries. The research application of Khepera emphasizes

debugging support to optimize translated code (i.e., one-to-many, many-to-one, and

many-to-many source-to-source transformation), which focuses on the optimized target

code. This is different from the assumption in this dissertation because the source-to-

source translation is restricted to one-to-many transformation between a DSL and a

corresponding GPL. When dealing with composed transformations, Khepera stores every

step of the transformation information (including translation and optimization) into a

database. Faith also developed several algorithms (e.g., a tuple logging algorithm) to

track changes to the AST throughout the transformation process [Faith, 1998]. With the

assistance of the rich transformation information provided in the database, the

transformation can be replayed. However, the execution time is dramatically hampered,

which increases the overall cost of building a DSL debugger using Khepera. Because the

approach adopted by Khepera provides a rich database of transformation information, it

may not scale to larger programs due to performance issues. Optimization in a DSL

implementation is not considered a necessary step in many cases because the

optimization is a complicated and time-consuming task compared to the other parts of

language implementation. The DDF provides DSL developers a framework to construct a

debugger for a DSL without going through the type of transformation algorithms and

69

database used by Khepera. Because a pre-processor piggyback approach is adopted in

DDF, much of the optimization in our framework is passed on to the compiler for the

targeted GPL.

3.7.2 JSR-045

JSR-045 represents the “Java Specification Request for Debugging Support for

Other Languages,” which establishes standardized debugging tools for correlating Java

bytecode to the source code of languages other than Java [JSR 45, 2007]. Although JSR-

045 has a source code line number mapping mechanism similar to DDF, JSR-045 does

not have a test result mapping process that maps the variables in Java back to DSL

variables. When using an implementation of the JSR-045, the variables are all in the

context of Java, rather than in the domain of the end-user perspective represented by the

DSL. Furthermore, the JSR-045 mapping is not rich enough to capture the special

attributes of each DSL line statement (e.g., function name and function type). Another

limitation of the JSR-045 is that it only handles Java Virtual Machine byte code as its

target language. JSR-045 expresses the debugging support to DSLs (e.g., JSP and SQLJ)

which have to be translated into Java Virtual Machine byte code. Therefore, JSR-045 is

tied to the Java Platform Debugger Architecture (JPDA) [JPDA, 2007]. Because JSR-045

is Java bytecode-specific, it cannot be adapted to other GPLs (e.g., C++ and Fortran). Our

approach simply uses the available GPL command-line debuggers (e.g., [JDB, 2007]),

which can be replaced easily by other command-line debuggers (e.g., [GDB, 2007]) if the

target GPL changes.

70

3.7.3 ANTLR Studio

ANTLR Studio is an Eclipse plug-in for ANTLR [ANTLR-Studio, 2007]. It

provides ANTLR language developers a grammar editor with syntax highlighting, auto

indenting, and syntax auto completion functions. ANTLR Studio uses JSR-045 to

implement its debugger functionality. As the execution pointer moves through each

production rule, the “Text Consumed View” displays the recently parsed text, and the

“AST View” displays the AST tree of the recently parsed text characters. The user can

step into the semantic action of the grammar, which is written in Java. As such, ANTLR

Studio is an example of a hybrid debugger. While stepping through a semantic action, the

variable view displays the current state of all Java variables in the semantic code. A

debugging action called “Step to Next Rule” is created for the specific syntax and

semantic meaning of an ANTLR grammar so that users can step to the next token in

situations when a single grammar rule consists of several tokens.

The variables displayed in the variable view of ANTLR Studio are in the Java

context. In comparison, debuggers created with the DDF are able to display the variables

in the context of the end-user‟s domain. ANTLR Studio appears to be Java bytecode-

specific because of its dependence on JSR-045. It also is tied to ANTLR and does not

offer a capability to debug grammars in other notations (e.g., YACC). ANTLR Studio has

many rich debugging features that solely target ANTLR grammar specifications; as such,

it offers richer functionality than could be offered by a DDF-generated debugger.

However, the DDF is more generic and adaptable to different DSLs as its target language.

The tradeoff is richer functionality for a specific debugging context, versus opportunities

for retargeting a debugger to a different context.

71

3.7.4 TIDE

Olivier designed the ToolBus Integrated Debugging Environment (TIDE)

[Olivier, 2000], which is implemented within the ASF+SDF Meta-Environment [van den

Brand et al., 2002; van den Brand et al., 2005]. Using TIDE, an additional framework has

to be constructed to provide an interactive debugger for the user. ToolBus represents

middleware written in C to enable component-based communication among tool

environments [Cornelissen, 2004]. TIDE provides an interface during the execution of a

program defined in ASF+SDF. Although TIDE claims to reduce the lines of code for

implementing a full-fledged debugger, knowledge of the rewrite rules in the built-in

library are required to construct a debugger for a new language. The DDF adopts

standard compiler implementation methods (e.g., lexer and parser) as the front-end of the

framework. Although TIDE uses GDB, in order to use TIDE it is required to understand a

precise language specification in ASF+SDF. For example, debugging events can happen

at certain program locations, which have to be considered very thoroughly before such

events are inserted into the ASF+SDF specification. DDF handles this issue differently

by providing debugging knowledge through the property of each mapping location (i.e., it

dynamically decides the appropriate debugging actions that can happen at each program

location based on the user debugging actions).

72

3.8 Summary

As the number of end-user programmers rises substantially each year, the need for

a full suite of development tools appropriate for the end-user‟s domain is increasingly

justified. One of the limitations of end-user programming is the lack of debuggers to

assist in the identification of errors. As computer software applications increase in

number, cost, size, and complexity, the capabilities offered by debugging tools assume

more significance because of greater economic risk [Gelperin and Hetzel, 1988].

DSLs are becoming more prevalent in general development and assist end-users

in describing the essence of a problem in their domain. Although research on debugging

GPLs has been investigated in depth over the past decades, the topic of debugging DSLs

has been neglected. The goal of DDF is to provide a framework for debugger generation

that will assist domain experts and end-users in debugging DSL programs at an

abstraction level that is familiar to them. The lack of debugging support for DSLs forces

domain experts to debug their DSL applications at the GPL level, which provides a

semantic gap between the notations they expect and the tools that are provided. This may

reduce the productivity and accuracy of the debugging process for end-users. To help

address this problem, this dissertation introduced a grammar-driven framework that

automates the generation of debugging tools for DSLs. This chapter presented five

different examples of debuggers for three different DSL categories. With the proper

training and availability of DSL debuggers, domain experts can solve their problems

much more effectively [Wile, 2004]. More details about the research described in this

chapter, including video demonstrations and complete examples, can be found at the

project website [DSL Testing Studio, 2007]. As shown in Figure 1-2, the tool architecture

73

used in DDF has been applied to a similar framework to assist in the generation of DSL

unit test engines, which is described in Chapter 4 of this dissertation.

Developing DSL debuggers from scratch is a very expensive and demanding task.

The DDF offers a generalized approach where DSL debuggers can be generated

automatically with minimal additional effort by reusing existing GPL debuggers and

IDEs. Our approach can be applied if DSL programs are translated to GPL programs

(e.g., using compiler, extensible compiler, or pre-processor DSL implementation

patterns), which provides an opportunity to reuse existing GPL debuggers and IDEs in

order to debug DSL programs. The idea is to use GPL debugger commands and re-

interpret them in the context of a DSL. The initial step of creating a debugger using the

DDF involves a description of how the DSL source code is mapped to GPL code. This

requires an existing DSL compiler or interpreter that is specified in a language

specification such as ANTLR. Section 3.1 presented the details of the DDF source code

mapping, which is DSL-independent.

Re-interpretation of GPL debugging commands requires that each command (e.g.,

set a breakpoint, step into, and step over) be re-implemented for each specific DSL. In

most cases, the algorithms presented in this chapter are generalized sufficiently to be used

with several particular patterns of different DSL categories. However, for each new DSL

this step needs to be examined in consideration of specific intentions provided by the

DSL. The implementation of a new DSL debugger requires several issues to be

considered, such as, “what does it mean to set a breakpoint in this DSL, or to step over a

line of DSL code?” Examples of the type of mapping needed to address such questions

were offered in Section 3.3. A final step in the construction of a new DSL debugger is

74

concerned with the description of a reverse mapping of the GPL debugging server results

back into the DSL variable context. This step, called debugging results mapping, is

described in Section 3.4. In many cases, it is possible to reuse an existing DSL compiler

implementation to realize this mapping.

This dissertation makes a contribution in the area of Grammarware [Klint et al.,

2005] by impacting the status of grammars, grammar transformations, and their

relationship to tool plug-ins. The resulting contribution advances the capabilities of

domain experts and end-user programmers by providing an adequate tool base for a

software development lifecycle based on DSLs. This chapter also demonstrated the

potential for reusing existing GPL language tools through grammar-driven automation.

Automated software engineering applied to the adaptation of existing IDE interfaces will

become a future trend of tool construction. A key enabler of such automation will be the

application of aspect-oriented concepts to support a new generative approach for

language tool construction [Wu et al., 2005], as discussed in Chapter 5.

75

CHAPTER 4

DSL UNIT TESTING FRAMEWORK (DUTF)

This chapter represents a grammar-driven approach that leverages an existing unit

testing tool to generate unit test cases. These test cases directly exercise the end-user‟s

test intention. This technique has been developed to build a unit test engine generation

framework from existing DSL grammars, and applied on different DSLs taken from a

variety of sources. Two case studies are presented to illustrate how unit test engines are

generated by the DSL Unit Testing Framework (DUTF). It will be shown that this

approach can provide unit testing tool support for DSLs at the proper abstraction level.

To demonstrate the benefits of this approach, experimental evaluation is discussed,

including generality analysis to assess how the framework can be used to generate test

engines for diverse categories of DSLs. Related work and a concluding discussion are

also presented at the end of this chapter.

4.1 DUTF Architecture Overview

As observed from traditional software development, unit testing supports early

detection of program errors, and the complementary process of debugging helps to

identify the specific location of the program fault to reduce the cost of software failures

[Olan, 2003]. To complement the DDF, the DUTF assists in the construction of unit test

76

cases for DSL programs, much in the sense that JUnit is used in automated unit testing of

Java programs. After identifying the existence of an error using DUTF, the DDF can then

be used to identify the fault location within the DSL program. The DUTF framework

invokes the underlying GPL unit test engine (e.g., JUnit [JUnit, 2007] or NUnit [NUnit,

2007]) to obtain unit test results that are remapped onto the abstractions of the domain

represented by the DSL. The key mapping activities in DUTF are the translation of the

DSL unit test script into GPL unit test cases and interpretation of the GPL unit test results

into DSL unit test notations. In the DUTF, the reports of passed and failed test cases

appear at the DSL level instead of the underlying GPL level. A failed test case reported

within the DUTF reveals the presence of potential errors in the DSL program.

An illustrative overview of the DUTF is shown in Figure 4-1, which has a similar

architecture to the DDF. The ANTLR translator generates GPL code from DSL source

code, generates GPL unit test cases from DSL test cases, and generates the source code

mapping information for both GPL and unit test generation components. The results from

the mapping components are re-interpreted into the GPL unit test engine as unit test cases

that are executed against the translated GPL code. The test cases mapping component

uses the generated mapping information to determine which DSL test case is mapped to

the corresponding GPL unit test case. The mapping indicates the location of the GPL test

case corresponding to a single test case defined in a test script at the DSL level. The test

cases mapping component considers the user‟s test cases at the DSL level to determine

what test cases need to be created and executed by the underlying GPL unit test engine.

The GPL unit test engine executes the test cases generated from DSL test scripts.

Because the messages from the GPL unit test engine are expressed in a GPL, the test

77

result at the GPL level is sent back to the DSL test result view by the test results mapping

component, which is a wrapper interface to remap the test results back into the DSL

perspective. The domain experts only see the DSL unit test result view at the DSL level.

Re-interpreter GPL Unit Test Engine

Source Code

Mapping

Test Results

Mapping

DSL

 Test Cases

Mapping

ANTLR

Translator

DSL Test Cases

DSL Eclipse Test Result View

DSL Level

GPL Level

End-User

GPL Unit

Test Cases

GPL

Figure 4-1. DSL Unit Testing Framework (DUTF)

An example of the Robot DSL unit test engine generation process is shown in

Figure 4-2. The semantic actions associated with the source code generation use syntax-

directed translation and additional semantic functions in the grammar specification to

generate the mapping information. In Figure 4-2, with the mapping generator embedded

inside the grammar, the lexer and parser generated by ANTLR (step 1) takes the Robot

DSL as input. ANTLR not only translates the Robot DSL into the corresponding

Robot.java, but also generates the Mapping.java file (step 2). At the same time, another

translator generates the JUnit test case (e.g., TestRobot.java) from the Robot DSL unit

78

test script and another mapping file. The mapping file represents a data structure that

records all of the mapping information about which line of the Robot DSL unit test cases

is mapped to the corresponding JUnit test cases in the generated TestRobot.java code. A

DSL unit test case is interpreted into a JUnit test case against the generated Robot.java

code. At the GPL level, the generated JUnit test cases represent the unit testing intension

of Robot unit test cases.

The mapping component interacts and bridges the differences between the Eclipse

DSL unit test perspective and the JUnit test engine (step 3). There are two round-trip

mapping processes involved (step 4 and step 5) between the Robot DSL unit test

perspective in Eclipse and JUnit.

5

...

21 Init position(0,0);

22 down;

23 knight;

24 Set position(5,6);

25 right;

26 Print position;

 ...

public class Robot

{

 public static void main(String[] args) {

 ……
 //move left

 x=x-1;

 time=time+1;

 //move down

 y=y-1;

 time=time+1;

 ……

 }

}

import java.util.ArrayList;

public class Mapping {

 ArrayList mapping;

 public Mapping(){

 mapping=new ArrayList();

 mapping.add(new Map(1, "Robot.java",2,8));

 mapping.add(new Map(2, "Robot.java",10,14));

 ……

 }

}

Test Results

Mapping

Robot DSL Grammar

Source Code Mapping

Robot DSL

Generated Lexer, and Parser

by ANTLR

Robot.java and Mapping.java

Robot DSL Unit Test Perspective in Eclipse

Robot DSL Unit Test Script Grammar

Test Case Mapping

...

2 Init position(0,0);

3 Expectedposition (1,2);

4 knight;

5 AssertEqual(Expectedposition,

 position);

...

Robot DSL Unit Test Script

public class TestRobot extends

TestCase

{ ...

 public void testknight()

 {

 i=1; j=2;

 robot.knight();

 assertEquals(i, robot.x);

 assertEquals(j, robot.y);

 }

 ...

}

TestRobot.java

Test Results

View

Unit Test

Script Editor

1 2

3

4

Figure 4-2. DSL Unit Test Engine Generation Process

79

4.2 Source Code Mapping

Along with the basic functionalities translated from a DSL to its equivalent GPL

representation, the syntax-directed translation process also can produce the mapping

information augmented with additional semantic actions embedded in the DSL base

grammar. ANTLR is used to translate the Robot language to a GPL (e.g., Java) using a

process that is similar to the DDF described in Section 3.2. The DUTF also generates

GPL unit test cases and the test case mapping hooks that interface with the DUTF

infrastructure. This mapping information is provided as additional semantic actions in the

Robot language grammar specification and is used for generating unit test cases. The

mapping usually contains the DSL unit test case line number, the translated GPL unit test

file name, and the line number of the corresponding unit test case in the GPL.

4.3 Test Cases Mapping

The abstraction mismatch between DSLs and GPLs also contributes to the

mismatch in construction of unit test cases. When translating DSL unit test cases, a

variable in a unit test case at the DSL level may not have an equivalent mapping to a

single variable in a GPL (i.e., a DSL variable may be translated into several variables,

even objects, in the generated GPL). The presentation format of the DSL variable may

also differ from the GPL representation. In the case of DUTF, the DSL unit test script is

mapped to the corresponding GPL unit test cases by a test case translator that was also

written in ANTLR. In the DUTF, the generated GPL test cases are exercised by the

underlying GPL unit test engine (e.g., JUnit or NUnit). The main task of a unit test is to

assert an expected variable value against the actual variable value when the program units

80

are executed. The test case mapping from a DSL program to the corresponding GPL is

used to construct the translation of test cases at the GPL source code level. The base

grammar of the unit test script is augmented with additional semantic actions that

generate the test case line number mapping.

In the following discussion, the Robot imperative DSL (described in Section 2.3.1)

is used as the target DSL. Figure 4-3 shows the mapping from a Robot DSL unit test case

(called testknight) to a corresponding JUnit test case of the same name. In the Robot

DSL unit test script, line 2 on the left side is mapped to lines 2 and 3 on the right side

(initialize the position as <0, 0>); line 3 on the left side is mapped to lines 4 and 5 on the

right side (sets the expected position as <1, 2>). One assertion statement in the Robot

DSL unit test script may be translated into two or more separate assertion statements in

JUnit due to the mismatch of variables between the DSL and GPL. For example, the

variable called position in the Robot DSL is translated into two variables (x and y) in

Robot.java; line 5 (left side of Figure 4-3) is mapped to lines 7 and 8 (right side of Figure

4-3). One assertion of Robot variable position is mapped into two assertions of

Robot.java integer variables x and y. The one-to-many test case results must be

remapped by a corresponding many-to-one mapping back into the DSL view, which is

described in Section 4.4.

81

Robot DSL Unit Test Case

1 testcase testknight {

2 Init position(0,0);

3 Expectedposition(1,2);

4 knight;

5 AssertEqual (Expectedposition, position);

6 }

…

GPL Unit Test Case (JUnit)

1 public void testkinght() {

2 robot.x = 0;

3 robot.y = 0;

4 int x = 1;

5 int y = 2;

6 robot.move_knight();

7 assertEquals(x, robot.x);

8 assertEquals(y, robot.y);

9 }

…

Figure 4-3. Robot Language Test Cases Mapping

The Car declarative FDL (described in Section 2.3.2) is used as another target

DSL case study. Figure 4-4 shows the mapping from a Car FDL unit test case (called

testFeatures) to a corresponding JUnit test case of the same name. In the Car FDL

unit test script, line 2 on the top of Figure 4-4 is mapped to the JUnit test case at the

bottom. In this figure, the expected car features are from lines 12 to 14, where three

specific features (e.g., carbody, manual, highPower) are desired features. Line 3

invokes a unit of the original Car FDL program that executes all four features defined in

the Car FDL program; line 4 invokes a constraint that requires every car feature

combination list to include a pullsTrailer. The parse function used in line 27 of the

JUnit test case is a helper function that stores the output of the car Java program into an

organized data structure, and then converts it to the same class type as the current tested

car‟s feature called testFeatures. The compareFeatures function used in line

27 of the JUnit test case is another helper function that compares the two parameters. The

traditional JUnit built-in assertion functions (e.g., assertEquals) are not applicable

and not capable of handling the particular scenarios in FDL that compare car features.

82

This limitation is due to the fact that the order of the car‟s features written in the FDL test

case script is irrelevant. However, the assertEquals assertion in JUnit will report an

error if two objects are not exactly equal. In other words, the order of the features of the

current car and expected car are not equal. Even if the contents of these two objects are

equal the result is still false. However, at the Car FDL abstraction level, they are equal.

To address this issue, a method called compareFeatures has been built to handle this

situation where only the contents matter and the ordering issue can be ignored.

In Figure 4-4, line 6 of the Car FDL unit test case is mapped to line 28 of the

JUnit test case. This line represents an assertion to assess the number of possible valid

feature combinations. The getFeatureListNumber function retrieves the number of

feature combinations from the parsed data structure. It is not possible to obtain the size of

a feature list because the existing FDL compiler does not provide such a method, so a

helper method was needed. The assertEquals statement is used to compare the

actual feature list size with the expected feature combination number.

In this case, one assertion statement in the Car FDL unit test script is translated

into one assertion statement in JUnit. This one-to-one test case assertion mapping is

simpler than the one described in the Robot unit test engine case but the comparison

function is more complicated than the previous case. JUnit does not support the

sophisticated assertion functionality that is needed for FDL unit testing. Such helper and

comparison functions were needed to realize the unit test intention for FDL programs.

83

Car FDL Unit Test Case

1 TestCase testFeatures {

2 Expectedfeature:(carbody, manual, highPower);

3 use Car.FDL(All);

4 Constraint C1: include pullsTrailer;

5 AssertTrue(contain(Expectedfeature, feature));

6 AssertEqual(6, numberof feature);

}

GPL Unit Test Case (JUnit)

11 public void testFeatures () {

12 testFeatures.add("carbody");

13 testFeatures.add("manual");

14 testFeatures.add("highPower");

…

27 assertTrue(compareFeatures(testFeatures,parse(fc,root,cons)));

28 assertEquals(6,getFeatureListNumber(parse(fc,root,cons)));

…

Figure 4-4. FDL Test Cases Mapping

4.4 Testing Results Mapping

JUnit reports the total number of test cases, total number of failed test cases (i.e.,

those representing the expected values and the current tested values are not equal during

test execution), and total number of error test cases (i.e., those representing run-time

exception errors during test execution). If one test case in a DSL is translated into

multiple test cases at the GPL level, mapping the many-to-one GPL unit test results back

to the DSL intention can be challenging. According to the unit test concept, one test

case‟s failure result should not affect other test cases. In order to get the final test result of

one test case in the DSL, all corresponding GPL test cases have to be tested and analyzed

before sending the results back to the DSL level. An algorithm is needed to process the

test result back to the DSL level. However, a rather simple approach can solve this issue

by imposing one-to-one mapping at the test case level (i.e., each test case specified at the

84

DSL level is translated into one test case at the GPL level) to take advantage of the

relationship between test cases and assertions in the unit test concept and realize the

many-to-one mapping at the assertion level. Due to the abstraction gap between the DSLs

and GPLs, within each test case, instead of translating one test case in the DSL unit test

script into many test cases in the GPL unit test cases, one assertion in a DSL test case

may be translated into one or many assertions in a GPL test case. The one-to-many

mapping that is encapsulated inside the individual test case makes the test result easier to

interpret across the abstraction layers.

One failed assertion at the GPL level should result in an entire test case failure.

Only those GPL test cases that have passed all assertions should result in a successful test

case at the DSL level. Such assertion encapsulation and test case mapping also helps to

determine the location of a failing DSL test case without considering the many-to-one

consequence from the line number mapping. The test result from JUnit indicates the

location of the failed test case in the JUnit code space, which is not helpful for end-users

to locate the position of the specific failed test cases in their DSL unit test script. For

simplicity, the test case names are kept the same during the translation process. By

matching the test case name through the test case mapping information, when a generated

GPL test case fails the corresponding line number of the DSL unit test script can be

obtained from the JUnit test case line number mapping in the test result report to locate

the failed DSL unit test case.

85

4.5 Illustrative Examples

This section illustrates the application of the DUTF on the Robot language and

the FDL.

4.5.1 Generation of an Imperative DSL Unit Test Engine

This sub-section describes the generation of a unit test engine for the imperative

Robot DSL introduced in Section 2.3.1. The DUTF adapts the JUnit Eclipse plug-in

graphical user interface by adding a new view called the DSL Test Result View, which is

similar to the Eclipse JUnit plug-in unit test result view, but representing the DSL

abstraction. Figure 4-5 shows a screenshot of a Robot DSL unit test session. Adapting the

JUnit test case construction concept, a DSL test case is composed of a test case name

(e.g., testknight) and test body. The test body defines the expected value of a certain

variable, the module to be tested, as well as the criteria for asserting a successful pass

(e.g., AssertEqual). The Robot DSL unit test cases are specified in a unit test script,

which itself is a DSL designed for the purposes of this dissertation reseach. The Robot

DSL unit test script translator has been implemented in ANTLR to generate JUnit test

cases from the DSL test script. The source code mapping for the Robot DSL unit test

script is also generated by adding additional semantics to the base DSL grammar.

86

Figure 4-5. Screenshot of Unit Testing Session on Robot Language

The right side of Figure 4-5 is the DSL unit test script editor, which shows an

actual Robot DSL unit test script called TestRobot.trob. The Robot language variable

position is initialized to <0, 0>. The highlighted test case called testknight has

an expected value that is set as position <1, 2>. The function unit to be tested is the

knight move and the assertion criteria determines whether there is a distinction

between the expected position and the actual position after knight is executed. An

incorrect knight method is intentionally implemented as shown in the right side of Figure

4-6 (i.e., line 3 incorrectly updates the robot to position <+1, +1>). When the

testknight test case is executed on the incorrect knight implementation, the

expected position value (i.e., <1, 2>) is not equal to the actual position (i.e., <2, 2>).

Because the position variable in the Robot DSL is represented by two variables

(i.e., x and y) at the GPL level, the testknight test case is translated into two JUnit

test assertions. One assertion tests the value of the x variable, and another tests the y

variable. If either of these two assertions at the GPL level fails, then the single test case at

the DSL level is reported as a failure. In this testknight example, the assertion on the

x coordinate will fail on the incorrect knight implementation, but the assertion to test y

87

will succeed. Consequently, the testknight test case is reported as a failure in the

Test Result View on the left side of Figure 4-5.

The AssertEqual assertion in this DSL unit test script determines whether its

two parameters are equal. The Test Result View also indicates the total number of test

cases (in this case, it was 1), the total number of failures (in this case, there was 1 failure),

and the number of error test cases (in this case, there were 0 errors causing run-time

exceptions). The progress bar that appears in the Test Result View indicates there is at

least one test case that failed (the bar actually appears red in failure or error cases, and

green when all test cases are successful). The list of test cases underneath the progress bar

indicates all the names of the test cases that failed to pass the test case (e.g.,

testknight).

Correct knight method

1 knight:

2 position (+0,+1);

3 position (+0,+1);

4 position (+1,+0);

5 knight:

Incorrect knight method

1 knight:

2 position (+0,+1);

3 position (+1,+1);

4 position (+1,+0);

5 knight:

Figure 4-6. Correct and Incorrect Knight Methods

The DUTF provides a capability that allows the DSL end-user to double-click on

the test cases listed in the Test Result View, which will then highlight the specific test

case in the editor view. Figure 4-7 is an example of the plug-in code that was written to

interact with JUnit to handle the end-users double-clicking on the failed test case. The

method searches through the source code mapping to find the selected test case name

88

(line 8) and then gets the line number (line 9) of the test case. This information is used to

display the test script editor and highlight the clicked test case in the test script (line 13).

1 protected void handleDoubleClick(DoubleClickEvent dce) {

2 IStructuredSelection selection = (IStructuredSelection) dce.getSelection();

3 Object domain = (TestResultElement) selection.getFirstElement();

4 String casename = ((TestResultElement) domain).getFunctionName();

5 int linenumber = 0;

6 for (int i = 0; i < mapping.size(); i++) {

7 Map map = (Map) mapping.get(i);

8 if (map.getTestcasename().equals(casename)) {

9 linenumber = map.getDslnumber();

10 }

11 }

12 OpenDSLTestEditorAction action = null;

13 action = new OpenDSLTestEditorAction(this, "TestRobot.trob", linenumber);

14 action.run();

15 }

Figure 4-7. handleDoubleClick Method in TestResultView Class

4.5.2 Generation of a Declarative DSL Unit Test Engine

In addition to generating a unit test engine for an imperative DSL like the Robot

language, the DUTF was also used to generate a declarative DSL unit test engine for the

FDL (described in Section 2.3.2). The modification to DUTF was isolated in the

component that translates the unit test script into unit test cases in the GPL, which are

specified in the script grammar. Because of the domain-specific syntax of the FDL, the

Robot language unit test script translator needed modification so that it could generate the

correct unit test cases for FDL in Java. Also, another modification in the declarative DSL

case is the test result mapping from the DSL to GPL, which is different from the

imperative DSL case. In the Robot language the variable to be tested is position and

in the Car FDL the variables are various features.

The right side of Figure 4-8 is the FDL unit test script editor, which shows an

actual Car FDL unit test script called TestCar. The test case, called testfeatures,

89

has an expected value, called Expectedfeature that is set as {carbody, manual,

highPower, electric, pullsTrailer}. The target unit to be tested is all the

features (from feature 1 to feature 4 in Figure 2-4) plus one constraint (constraint 1 in

Figure 2-4). Another assertion, called AssertTrue, can assess whether the tested unit

will return true or false. If the tested unit returns true, the AssertTrue assertion will

succeed, otherwise it will fail. An assertion is set to test whether the

Expectedfeature is contained in the set of possible features after executing all the

features and one constraint. The contain method is a helper function that compares the

expected features and current features. In the left side of Figure 4-8, the Test Result View

indicates that this assertion was a success, so Expectedfeature is one of the possible

features after the execution of all test case features. Also, the order of the features in the

Expectedfeature is not important in this case because the features can be either

atomic or composite.

Figure 4-8. Screenshot of Unit Testing Success Session on Car FDL

Figure 4-9 is another test case called testNumberofFeatures, which is

highlighted in the Test Result View. The targeted testing unit consists of three features

90

(from feature 1 to feature 3 in Figure 2-4). The numberof operator returns the size of a

set of features. The meaning of the AssertEqual assertion is the same as described in

previous sections. An AssertEqual assertion tests whether the number of possible

features after expanding all these three composite features (e.g., Car, Transmission,

and Engine) to atomic features, but not expanding others (e.g., Horsepower) is 6. In the

left side of Figure 4-9, the Test Result View indicates this assertion fails. The set of

features executed are Car, Transmission, and Engine. According to the individual

feature definitions, there are two options for Transmission (automatic and

manual), three options for Engine (electric, gasoline, and

electric/gasoline), and two options for pullsTrailer (with or without). The

total number of features is 12 (2*3*2) rather than 6, which causes the test case to fail as

indicated in the DSL unit Test Result View of Figure 4-9.

Figure 4-9. Screenshot of Unit Testing Failure Session on Car FDL

91

4.5.3 Generation of a Hybrid DSL Unit Test Engine

Hybrid DSLs have similar language characteristics as imperative DSLs. From the

unit testing point view, it can be considered an extension of imperative DSLs. For

example, the Hybrid Robot language is an extension of the Robot imperative DSL. For

debugging support, DSL development tools should be able to debug hybrid DSLs by

switching language modes between two different language domains. However, unit

testing a hybrid DSL is no different from unit testing an imperative DSL; therefore, this

section has focused on the generation of unit test engines for the Robot imperative DSL

and FDL declarative DSL.

92

4.6 Case Study Evaluation

While designing DUTF, it has been observed that there are generic and specific

parts of the unit test generation process. The architecture of the framework, the

generation process, and the test result analysis algorithm are generic parts of the DUTF

that can be reused across different unit test engines for the different types of DSLs. The

source code and test cases mapping are the specific parts of this framework that may

require customization for each DSL.

4.6.1 Generalization of DUTF Usage

To generate testing engines for different types of DSLs, or even the same type of

DSLs but different instances of DSLs, one of the specific parts of the DUTF is the test

cases mapping component, which is represented as a test script interpreter. The test script

interpreter also utilizes the mapping information generated by the source code mapping

that is identical to DDF. The description of the test cases mapping component among the

different DSL unit test engines is presented in Section 4.3. Unlike the case studies in the

DDF, the backward mapping from the JUnit test results to the DSL the test results is

handled by the encapsulation of multiple assertions in a single test case, as described in

Section 4.4

Various styles of DSLs served as evaluation artifacts to determine the generality

of this grammar-driven approach by comparing the generation of different DSL unit test

engines. A total of two different unit test engines for two types of DSLs were generated

using DUTF. Several quantitative measurements were observed to analyze the amount of

effort required to generate new unit test engines. In particular, this section addresses the

93

question, “How many of the generic software components from DUTF can be reused

without modification or small changes, as compared between different types of DSLs?”

The amount of code that was written for each new unit test engine is used to quantify the

level of effort required to adapt a unit test engine. Among 22 software components in

DUTF, there are 3,001 lines of code that are generalized and reused to generate the

different DSL unit test engines. On average, through our use of AspectG (please see

Chapter 5) in modifying grammars to hook into the DUTF, less than 360 lines of code are

needed for each new unit test engine. The majority of the customized code is focused on

the test script language used by each new DSL. Among the 239 lines of code in the Robot

unit test engine case, there are 231 lines of code for building the Robot DSL test script

interpreter; among the 482 lines of code in the FDL unit test engine case, there are 429

lines of code for building the FDL test script interpreter.

In the FDL unit test engine case, there were two extra helper functions needed

that deal with storing the current objects in a managed data structure and comparing the

expected results regardless of the ordering of attributes stored in the data structure object.

The comparison presented in Table 4-1 indicates that the amount of code and overall

effort needed to adapt the specifics of a particular DSL unit test engine is relatively small

when using DUTF.

DSL Category

DSL Name

Number of Specific

Functions or Classes

Customized

Lines of Code

Imperative DSL Robot Language 2 239

Declarative DSL FDL 4 482

Table 4-1. Generality Analysis of DUTF

94

Different GPL unit test engines support different GPLs and have different

interfaces with users, especially the syntax and the test result output format. The re-

interpreter is the one component that plays a specific role to adjust the variability in this

framework. Once the underlying GPL unit test engine changes, the wrapper interface of

the re-interpreter must be modified to adapt to the differences among the specific GPL

unit test engines. This specificity depends on the kind of programming language that the

DSL program is translated into. In this dissertation research, all the DSL examples were

translated to Java, so the choice of the underlying GPL unit test engine was JUnit.

If the DSL programs are translated into C#, managed C++, or Visual Basic .Net,

an alternative for a different GPL unit test engine can be NUnit [NUnit, 2007], which is a

unit testing engine that provides general unit testing functionality for all languages

support by .Net. NUnit is implemented using C# and has many .NET language features

(e.g., custom attributes and other reflection related capabilities).

The DUTF provides developers the freedom of choosing the underlying GPL unit

test engine according to the generated GPL program. Table 4-2 is a comparison of the

two types of GPL unit test engines (e.g., JUnit and NUnit). It lists four commonly used

types of the basic unit test assertion actions (e.g., equality assert, condition test, utility

method, identity assert) that are implemented and used in the DUTF. According to the

comparison table in Table 4-2, there is much similarity among the unit testing assertion

semantics between JUnit and NUnit, which are almost identical with exception of small

syntactical differences. For example, the equality assertion is called assertEquals

(expected, actual) in JUnit and Assert.AreEqual (expected, actual) in NUnit. The

actual meaning of these two equality assertions is also the same (i.e., to assess whether

95

the expected value is equal to the actual value, with slight differences in the assertion

naming and invocation). The assertion return type and the parameters are also the same

between these two assertion functions. A similar pattern can be observed in other

assertions listed in Table 4-2.

Unit Test Actions JUnit (Java) NUnit (.Net languages)

Equality Assertion assertEquals

(expected, actual)

Assert.AreEqual

(expected, actual);

Condition Test assertTrue(actual) Assert.IsTrue(actual)

assertFalse(actual) Assert.IsFalse(actual)

assertNull(actual) Assert.IsNull(actual)

Utility Method fail() Assert.Fail()

Identity Assert assertSame

(expected, actual)

Assert.AreSame

(expected, actual)

Table 4-2. JUnit and NUnit Basic Unit Test Actions Comparison

The manner in which DUTF uses the underlying GPL unit test engines is to

translate the DSL unit test script into GPL unit test cases that are invoked by the GPL

unit test engines. The DUTF then translates the unit test results back to the DSL unit test

level. In order to make the DUTF work with these two different GPL unit test engines,

the developers can change the test script interpretation (e.g., the different unit testing

assertion syntax) in the DSL unit test script grammar shown in Figure 4-10. Also, the

output format of JUnit and NUnit is different, which requires modification of the sanitize

function to handle different raw testing results. The sanitized results are then displayed in

a uniform format that end-users can understand.

96

JUnit (Java)

Assertequal

: (

AE LPAREN EXPECT VARIABLES COMMA VARIABLES RPAREN

{

 fileio.print(" assertEquals(i, robot.x);");

 fileio.print(" assertEquals(j, robot.y);");

 fileio.print(" }");

}

)

;

NUnit (C#)

Assertequal

: (

AE LPAREN EXPECT VARIABLES COMMA VARIABLES RPAREN

{

 fileio.print(" Assert.AreEqual(i, robot.x);");

 fileio.print(" Assert.AreEqual(j, robot.y);");

 fileio.print(" }");

}

)

;

Figure 4-10. Comparison of JUnit and NUnit Assertion Usage

For different types of IDEs (e.g., Eclipse or .Net), the specific part of DUTF has the

same issue as DDF, which is the way to plug the different components into the IDE. In

this dissertation research, the targeted IDE is Eclipse along with its Java plug-ins, which

influenced the choice of JUnit as the underlying unit test engine. Implementing DUTF in

Visual Studio .Net would require changing the plug-in implementations to C# to hook

into the new APIs provided by VS .Net. The plug-in implementation is different from one

IDE to another IDE and depends on what features an IDE provides and how they can be

extended to assist in DSL unit testing.

4.7 Related Work of Domain-Specific Language Unit Test Engines

There is no current evidence in the research literature of previous work that has

investigated unit testing concerns at the DSL level. However, there are a large number of

approaches that provide general language tools (e.g., lexer, parser, editor, and compiler).

97

There also are many language definition framework tools available (e.g., ASF+SDF, JTS,

LISA, and SmartTools). These tools are surveyed in this section with a forward-looking

view on how the ideas of DDF and DUTF might be integrated with each tool.

4.7.1 ASF+SDF

As related work in program transformation, ASF+SDF is the meta-language of

the ASF+SDF Meta-Environment [van den Brand et al., 2002], which is an interactive

language environment to define and implement DSLs, generate program analysis and

transformation tools, and produce software renovation tools. ASF+SDF is a modular

specification formalism based on the Algebraic Specification Formalism (ASF) and the

Syntax Definition Formalism (SDF). ASF uses simplified algebraic expressions that are

based on conditional rewrite rules to define semantics. SDF is a BNF-like formalism for

defining the lexical, context-free, and abstract syntax of languages using scannerless

generalized LR parsing. Each ASF+SDF module defines the syntax and semantics of a

language or language fragment. ASF+SDF supports language specification importing,

renaming, and parameterization. The ASF+SDF compiler generates C code as its target,

but there is a provision that the target code can be other GPLs (e.g., Java or C++), or even

native machine code. ASF+SDF claims to have produced many language tools including

a debugger, but unit testing tool support has not been reported.

4.7.2 JTS

The Jakarta Tool Suite (JTS) [Batory et al., 1998] is a set of tools for extending a

programming language with domain-specific constructs. The focus of JTS is DSL

98

construction using language extensions that realize a product line of DSLs. JTS consists

of Jak (a meta-programming language that extends a Java superset) and Bali (a tool to

compose grammars). Internally, JTS represents programs as an AST and a surface syntax

tree (SST), where the AST semantically checks an SST that is annotated with type

declaration and references to the symbol table. JTS does not provide rich transformation

functionalities like those provided in DMS. JTS requires a separate client to support

program generation. An important comparative difference between JTS and the research

described in this dissertation is that the DSL testing framework does not need a

complicated mechanism (e.g., language extension) to implement a DSL and the

associated tools.

4.7.3 LISA

The Language Implementation System based on Attribute Grammars (LISA)

[Mernik et al., 2002] tool is a grammar-based system to generate a compiler, interpreter,

and other language-based tools (e.g., finite state automata, visualization editor). To

specify the semantic definition of a language, LISA uses an attribute grammar, which is a

generalization of context-free grammars where each symbol has an associated set of

attributes that carry semantic information. With each grammar production, a set of

semantic rules is associated with an attribute computation [Mernik and Žumer, 2005].

LISA is platform-independent and offers the possibility to work in a textual or visual

environment. It provides an opportunity to perform incremental language development of

an IDE such that users can specify, generate, compile-on-the-fly, and execute programs

in a newly specified language. LISA‟s lexical, syntax, and semantic analyzers can be

99

applied to different types and can operate in a stand-alone manner. Using templates,

LISA is able to describe the semantic rules that are independent of grammar production

rules. LISA achieves better modularization than ANTLR through templates and

inheritance formalism.

The debugger, test engine, and profiler are not in the list of LISA generated

language tools. From initial experience with LISA [Henriques et al., 2005], it offers all of

the necessary features to interact with the framework to also generate the test engines.

The reason for choosing ANTLR over LISA is primarily a choice of convenience -

ANTLR has pre-existing support as an Eclipse plug-in.

4.7.4 SmartTools

SmartTools [Attali et al., 2001] is a language environment generator based on

Java and XML. Internally, SmartTools uses the AST definition of a language to perform

transformation. It uses a well-known visitor design pattern technique to specify semantic

analysis on XML Document Object Model (DOM) tree structures. The principal goal of

SmartTools is to produce open and adaptable applications more quickly than existing

classical development methods. The implementation is based on the concept of a

software factory [Parigot, 2004; Greenfield et al., 2005] and is adapted to the design and

implementation of applications that rely on a specific data model. SmartTools can

generate a structured editor, UML model, pretty-printer, and parser specification, but a

debugger, test engine, and profiler are not generated by SmartTools.

100

4.7.5 Other Related Testing Tools

Language definition tools help domain experts to develop their own programming

languages and also generate useful language tools for the new languages (e.g., editor,

compiler, and debugger). Most testing research in this area has been focused on testing

methods and the efficient way to generate the unit test cases such as parameterized unit

testing [Tillmann and Schulte, 2005], testing grammar-driven functionality [Lämmel and

Schulte, 2006], generating unit tests using symbolic execution [Xie et al., 2005], and

generating test inputs of AspectJ programs [Xie and Zhao, 2006]. However, there does

not appear to be any literature or relevant discussion related to unit testing of DSL

programs.

4.8 Summary

As the cost of software failures rise substantially each year and the number of

end-user programmers involved in the software development process increases, there is

an urgent need for a full suite of development tools appropriate for the end-user‟s domain.

Software failures pose an increasing economic risk [Gelperin and Hetzel, 1988] as end-

user programmers become more deeply involved in software development without the

proper unit testing capabilities for their DSL applications. Unit test cases are constructed

in such a way that expresses the software module‟s design intent. A test script serves as a

“living document” and can be easily understood by clients and other developers [Unit

Testing, 2007]. A recent software development method called test-driven development

(TDD) has become popularized through adoption as a practice of Extreme Programming

(XP) [XP, 2007]. TDD is a software development practice that requires software

101

developers to write a test case first, implementation second, and constantly giving the

feedback on the correctness of the application behavior as the code evolves and is

refactored [TDD, 2007].

Although unit testing has many advantages that influence software engineering

practices, unit testing at the GPL level has been the topic of research for several decades.

Due to the lack of unit test engine support on DSL programs, end-users have not been

able to take advantage of these software development methods. The DUTF provides end

users a framework that can integrate traditional unit testing methods into DSLs. The

DUTF allows end users to take full advantage of unit testing to experience the latest

software development and maintenance methods (e.g., TDD and XP). DUTF is a novel

framework for automatically generating unit test engines for DSLs by augmentation of

DSL grammars.

102

CHAPTER 5

ASPECTG: WEAVING ASPECTS INTO DSL GRAMMARS

 To address the crosscutting concerns observed in DSL grammars during the

generation of DSL debuggers and unit test engines, an aspect-oriented language, AspectG,

has been developed to weave aspects into DSL grammars. This chapter concentrates on

the role of AspectG in assisting in the modularization of tool generation concerns through

grammar augmentation. A discussion is provided on the issues and challenges involved in

the design and implementation of AspectG that are focused within the domain of

language grammars. Implementation details are also described from lessons learned in

developing AspectG using a program transformation engine. The chapter concludes with

an overview of related work and a summary.

5.1 AspectG Design Challenges

There is an urgent need for Domain-Specific Aspect Languages (DSALs) that can

address particular crosscutting concerns appearing in language grammars [Rebernak et al.,

2006-b]. This chapter contributes to the design, implementation, and application of a

DSAL, called AspectG, which is focused within the domain of language specification

rather than traditional programming languages.

103

When designing a new DSAL, such as AspectG, a join point model (JPM) can be

adopted as an alternative to the JPM used by a General-Purpose Aspect Language (GPAL)

like AspectJ. The main issues in designing a JPM for AspectG were:

 What are the join points that will be captured in AspectG?

 Are AspectG join points static or dynamic?

 What is an appropriate pointcut language syntax to describe these join points?

 What are advice in this domain?

 Does the ordering of the advice matter? If so, how is the weaving order

prioritized?

 How to deal with weaving conflicts and avoid infinite weaving?

The syntax specification formalism BNF is an example of a DSL with a purely

declarative character. BNF is not primarily meant to be executable but nevertheless

useful for application generation. AspectG uses static join points because a language

specification is static. Advice in AspectG represents additional semantic rules that have

to be attached to particular productions in the grammar. Hence, join points are syntactic

production rules and the designed pointcut language must match arbitrary syntax

productions. AspectG weaves into an ANTLR grammar, which is a syntax-directed

translator where the order of semantic rules is important. This has the consequence that

new semantic rules specified in advice have to be weaved at join points that are between

semantic rules of a particular syntax production. Hence, the pointcut language in AspectG

consists of predicates that match the location of an appropriate point in the language

specification. Moreover, in AspectG it must be specified whether new semantic rules are

weaved before or after the matched location.

104

5.2 AspectG Overview

It has been observed in practice that crosscutting concerns emerge in grammars

used in language specification [Wu et al., 2005]. In particular, from our own experience,

the implementation hooks for various language tools (e.g., debugger and unit testing

engine) require modifications to be made to many of the productions throughout a

grammar. Manually changing the grammar through invasive modifications proved to be a

very time consuming and error prone task. Because of challenges in manually adapting a

language specification, it is difficult to build new testing tools for each new DSL of

interest and for each supported platform.

The simpler version of the Robot language described in Chapter 2 has been

written in ANTLR and partially provided in Figure 5-1. This example illustrates the

ANTLR specification language with semantic rules defined in Java. From this language

specification, ANTLR generates Java source code representing the scanner and parser for

the Robot language.

Using the DDF and DUTF, a DSL debugger and unit test engine can be generated

automatically from the DSL grammar provided that an explicit mapping is specified

between the DSL and the translated GPL. To specify this mapping, additional semantic

actions inside each grammar production are defined. A crosscutting concern emerges

from the addition of the explicit mapping in each of the grammar productions. The

manual addition of the same mapping code in each grammar production results in much

redundancy that can be better modularized using an aspect-oriented approach applied to

grammars. In the case of generating a debugger for the Robot language, the debug

mapping for the Robot DSL debugger was originally specified manually at the Robot

105

DSL grammar level (see Figure 5-2). For example, lines 12 to 18 represent the semantic

rule of the RIGHT command. Line 12 keeps track of the Robot DSL line number; line 14

records the first line of the translated GPL code segment; line 16 marks the last line of the

translated GPL code segment; lines 17 and 18 generate the mapping code statement used

by the DDF.

class P extends Parser; // The Robot parser class in ANTLR

root:(

BEGIN

 {

 fileio.print("public class Robot {");

 fileio.print("public static void main(String[] args) {");

 fileio.print("int x = 0; int y = 0;");

 }

commands END EOF!

 {

 fileio.print("System.out.println(\"x coord= \" + x +

 \" \" + \"y coordinator= \" + y); } }");

 fileio.end();

 }

);

commands:(command commands |);

command :(

LEFT {

 fileio.print("x=x-1;");

 fileio.print("time=time+1;");

 }

|RIGHT {

 fileio.print("x=x+1;");

 fileio.print("time=time+1;");

 }

|UP {

 fileio.print("y=y+1;");

 fileio.print("time=time+1;");

 }

|DOWN {

 fileio.print("y=y-1;");

 fileio.print("time=time+1;");

 }

);

class L extends Lexer; // The Robot lexer class in ANTLR

BEGIN : "begin";

END : "end";

LEFT : "left";

RIGHT : "right";

UP : "up";

DOWN : "down";

WS : (’ ’ // whitespace

 | ’\t’

 | ’\r’ ’\n’ f

 | ’\n’ { newline(); }

) {$setType(Token.SKIP);} ;

Figure 5-1. Robot DSL Specification in ANTLR

106

These semantic actions are repeated in many terminal productions. The same

mapping statements for the LEFT command appear in lines 20, 22, and 24 to 26.

Although the Robot DSL is simple, it is not uncommon to have grammars with hundreds

of production rules. In such cases, much redundancy will exist because the debug

mapping code is replicated across each production. Of course, because the debug

mapping concern is not properly modularized, changing any part of the debug mapping

has a rippling effect across the entire grammar. An aspect-oriented approach can offer

much benefit in such a case.

This chapter considers the DDF as a case study to outline two different

approaches for weaving a debugging concern into a DSL grammar. A similar approach

also applies to DUTF. Each approach assumes that an ANTLR grammar is used to

specify the syntax and semantics of a DSL. ANTLR permits semantic action code written

in a GPL to be attached to each grammar production.

…

10 command

11 :(RIGHT {

12 dsllinenumber=dsllinenumber+1;

13 fileio.print(" x=x+1;// move right");

14 gplbeginline=fileio.getLinenumber();

15 fileio.print(" time=time+1;");

16 gplendline=fileio.getLinenumber();

17 filemap.print("mapping.add(newMap(" + dsllinenumber + ",\"Robot.java\"," +

18 gplbeginline + "," + gplendline + "));");}

19 |LEFT {

20 dsllinenumber=dsllinenumber+1;

21 fileio.print(" x=x-1;// move left");

22 gplbeginline=fileio.getLinenumber();

23 fileio.print(" time=time+1;");

24 gplendline=fileio.getLinenumber();

25 filemap.print("mapping.add(newMap(" + dsllinenumber + ",\"Robot.java\"," +

26 gplbeginline + "," + gplendline + "));");}

…

Figure 5-2. Part of the Robot DSL Specification with Additional Debug Information

107

5.3 Weaving at the Generated GPL Code Level

There are two approaches that were explored in this research to determine the best

mechanism for augmenting the existing DSL grammars with aspects for testing tools. The

first approach to modularizing a debugging concern in a DSL assumes the existence of an

aspect weaver for the generated GPL. For example, AspectJ is an aspect-oriented

extension to Java that assists in modular implementation of numerous crosscutting

concerns [Kiczales et al., 1997; AspectJ, 2007]. In Figure 5-3, ANTLR automatically

generates the Lexer and Parser from the DSL grammar. Assuming the generated parser is

written in Java, AspectJ can be used to define a debugging aspect that weaves the debug

mapping code to generate a new lexer and parser (Lexer’ and Parser’). After the debug

concern is weaved into the lexer and parser, DDF uses the transformed GPL and mapping

code to generate the DSL debugger.

Lexer and Parser

In Java

DSL

Grammar

AspectJ Compiler

ANTLR

Debugging Aspect

Specification

(AspectJ)

Lexer’ and Parser’

With Debugging Aspects Weaved in
DSL Code

GPL

In Java

Debugging

Mapping Code

In Java

Figure 5-3. Post-ANTLR Processing (AspectJ Approach)

A fragment of an aspect for capturing the debug mapping using AspectJ is

specified in Figure 5-4, with complete details in Appendix B. The after advice

108

specified in line 6 is associated with a call pointcut that captures all command method

calls made by class P, which is the name of the parser class that is automatically

generated by ANTLR. This aspect states that the DSL line number should be incremented

(i.e., dsllinenumber=dsllinenumber+1;) after all calls to P.command,

regardless of the specific command method (i.e., this aspect keeps track of the DSL line

number across all command grammar productions). Within the parser generated by

ANTLR, there is a long switch statement that is used to match the productions to the

current token during parsing. In line 8 of Figure 5-4, the pointcut after(int

statementname) is passed an integer parameter that matches a specific production in

the grammar from this switch statement. In this case, match(int) represents the

method call for each production that is modified to address the debugging concern within

the generated parser. In line 9 of Figure 5-4, the advice handle(statementname)

increments the DSL line number (i.e., dsllinenumber=dsllinenumber+1;).

…

6 after(): call (void P.command())

7 { dsllinenumber=dsllinenumber+1; }

8 after(int statementname): call(void antlr.Parser.match(int)) && args(statementname)

9 { handle(statementname); }

…

Figure 5-4. Fragment of DSL Line Mapping Aspect in AspectJ

The advice of Figure 5-4 handles the increment of the DSL line number that is

weaved at the beginning of each production. Several other aspects are needed to specify

the complete debug mapping. Another aspect was needed to keep track of the first and

last line number of the translated segment of GPL code. After the weaving process is

accomplished by AspectJ, the Parser of Figure 5-3 becomes Parser‟, which not only

109

translates the DSL to the GPL, but also generates the necessary mapping needed by DDF

to generate the DSL debugger. The debugger generation process is described in Chapter 3.

The aspect of Figure 5-5 tracks the last line number of the translated segment of

GPL code that is weaved after the statement (e.g., time=time+1;) within each

production. Line 16 indicates the location of the weaving after the statement (i.e., the

String represented by st). The file_io object is the handle to which the generated

code is written. Line 20 is the line number tracking statement, which assigns the current

GPL line number to the variable gplendline by calling the getLinenumber

method.

In order to write the correct AspectJ code on the generated parser, a deep

understanding of the generated parser code is required to identify the type and the correct

function call for a matched production. The complete AspectJ source code is in Appendix

B, which serves as an example of the Robot example in DDF.

…

16 after(FileIO file_io,String st):

17 target(file_io)&&call (void FileIO.print(String))&&args(st)

18 {

19 if((st=="time=time+1;")){

20 gplendline=file_io.getLinenumber();

21 }

22 }

…

Figure 5-5. Fragment of DSL Last Line Tracking Aspect in AspectJ

The lack of mature aspect weavers for many languages (e.g., Object Pascal, C, or

Ada) is a serious disadvantage of this first approach, which requires an aspect weaver for

the generated GPL as the mechanism for modularizing the debug concern. Another

disadvantage of this first approach is that it requires the developer of the DSL to have

detailed knowledge of the code generator within ANTLR in order to construct the

110

appropriate pointcuts. In some cases, the translation is done by a legacy parser, which

creates a challenge because the generated parser code can be messy and generally

unreadable by a human.

5.4 Weaving at the DSL Grammar Level

Although the previous section‟s post-ANTLR processing approach using AspectJ

can solve the crosscutting problems in augmenting a DSL grammar, this method is

infeasible when an aspect weaver does not exist for the generated GPL. The results of the

previous section were favorable because the generated code was Java, which allowed

AspectJ to be used for post-ANTLR weaving. A different technique is needed when the

parser generation targets a GPL that does not have an aspect weaver. A program

transformation system (e.g., DMS, as presented in Section 2.2) can be used to weave

crosscutting concerns into the actual grammar definition. After weaving the aspects into

the grammar using DMS, the change in terms of the aspects that were added will

propagate automatically into the generated parser through the grammar productions.

Unlike the first approach described in Section 5.3, it is not necessary to weave into the

generated parser because the debugging concern is weaved at an earlier stage in the

grammar itself.

In order to weave the aspects into DSL grammars, the first step was to construct

an ANTLR parser using DMS. In Figure 5-2, the Robot DSL grammar contains an

ANTLR specification of BNF syntax (e.g., lines 10, 11, and 19). The semantic action is

specified using Java by separating the action code with a pair of curly braces. Note that

the Java domain is embedded within ANTLR, which makes it difficult to parse two

111

different syntactic constructs (i.e., ANTLR and Java) using any one particular parser. A

naïve solution would be to include all the tokens and productions from both domains to

form a combined grammar and then generate the parser using the DMS parser generator.

However, this approach does not make use of the existing DMS Java parser. A better

approach reuses the existing DMS Java tools and separates the ANTLR grammar

productions from the Java grammar productions, but still parses the input source

containing tokens from both languages. This requires a minor extension of the DMS

ANTLR grammar. To parse the embedded semantic action (i.e., essentially Java code)

within the ANTLR domain, a special DMS string token called ANTLR_ACTION is used.

The regular expression associated with this token is as follows:

#token ANTLR_ACTION [STRING] “\{ (\\[{}\]|[\{}])* \}”

ANTLR_ACTION is a token that describes a string pattern beginning with a left

curly brace, ending with a right curly brace, and containing any characters in between.

Having specified each grammar production‟s semantic action as a single

ANTLR_ACTION node, DMS can parse the ANTLR grammar specification (combined

with Java semantic actions) to construct an AST for that grammar instance. Note that the

semantic actions are stored as string expressions at the ANTLR_ACTION nodes of the

syntax tree.

The next step involves retrieving the associated string expressions from the

specific ANTLR_ACTION nodes and parsing them with the pre-existing DMS Java

parser. However, an inherent difficulty in using a regular Java parser is that the string

112

expressions linked to an ANTLR_ACTION node are not complete Java programs, only

fragments (i.e., statement blocks). Therefore, to avoid exceptions thrown by the DMS

Java parser, minor modifications are made to the AST root node (i.e., starting production

in the Java grammar specification file) and the parser is regenerated to allow partial

parsing. Because the approach specifically targets the translation from a DSL to a GPL,

the semantic actions in an ANTLR grammar specification are primarily method call

statements (with one string parameter, see Figure 5-2, lines 13, 15, 21, and 23).

After the parse tree for the ANTLR_ACTION nodes are retrieved using the

modified Java parser, new debugging aspects are weaved using the ASTInterface

API provided by DMS, which provides methods for modifying a given syntax tree to

regenerate a new tree structure. The steps describing the process for building an ANTLR

weaver are shown in Figure 5-6.

1. Specify ANTLR grammar specification

2. Specify Java semantic actions using DMS regular expression

3. Generate ANTLR Parser

4. Generate abstract syntax tree with ANTLR_ACTION nodes

5. Search ANTLR_ACTION nodes from the generated AST

6. Retrieve ANTLR_ACTION nodes and store them in a hash map

7. Retrieve associated string expression from each ANTLR_ACTION node

8. Modify the regular Java parser by changing the starting production

9. Parse the associated string expressions as regular Java statement lists

10.Transform the statement lists using the ASTInterface API

11.Regenerate the ANTLR_ACTION nodes with debugging aspects weaved in

12.Output the complete ANTLR AST (with modified action nodes)

Figure 5-6. Steps to Weave Debugging Aspects into an ANTLR Grammar

113

DSL

Grammar

ANTLR

Debugging Aspect

Specification

(AspectG)
GPL

In Java

Debugging

Mapping Code

In Java

PARLANSE

Functions

DMS DSL Grammar’

with Debugging

Aspect Weaved in

Lexer’ and Parser’

With Debugging Aspects Weaved in
DSL Code

Figure 5-7. Pre-ANTLR Processing (DMS Approach)

In this approach toward modularizing concerns in a grammar, DMS is used to

weave the debugging concern directly into the grammar itself, rather than the ANTLR

generated GPL source code. Although the initial approach of pre-ANTLR processing

using DMS can solve the crosscutting problems emerging in the DSL grammar, this

method can be challenging to use because of the need to write low-level transformation

rules. In DMS, low-level transformation functions are written in a language called

PARLANSE (Parallel Language for Symbolic Expression) [Baxter et al., 2004]. From

practical experience, transformation rules and PARLANSE functions are hard to specify

and understand. Thus, program transformation tools are beyond the grasp of many

developers. To resolve the problems of direct transformation of a grammar, an aspect

language for grammars has been implemented, called AspectG (see example in Figure 5-

8). This approach to weaving directly into grammars has the side benefit of language

independence. It does not matter which GPL serves as the generated target. The DMS

ANTLR domain is capable of parsing the grammar and adding the needed debug

114

transformations for a large set of programming languages that are pre-defined in DMS

(e.g., Ada, C, C++, C#, COBOL, FORTRAN, HTML, Java, PHP, SQL, and XML).

In Figure 5-7, a debugging aspect is specified in AspectG, which generates DMS

program transformation rules written in the Rule Specification Language (RSL) [Baxter

et al., 2004] that provides transformation functionality using pattern matching and rewrite

specifications on the AST of a source program (in this case, the source is actually a

grammar file). In Figure 5-7, before the grammar is even processed by ANTLR, it is first

pre-processed by DMS in order to weave the debugging aspect into the original grammar

productions. The transformed grammar is then submitted to ANTLR in order to generate

the parser and lexer for a specific GPL. The underlying infrastructure of this grammar-

focused aspect language is based on program transformation, which is a key to

automating software maintenance and reengineering [Burson et al., 1990]. The

contribution of this second approach is the transformation of the grammar itself, rather

than the generated parser code. The specification of the debug mapping is modularized in

a single place – the AspectG specification.

5.4.1 AspectG Specification

An aspect language for a GPL, such as AspectJ, typically has three critical

elements: a join point model, a pointcut specification language for specifying join points

(which provide a type of quantification across a base artifact [Filman and Friedman,

2004]), and advice to be applied to each join point [AspectJ, 2007]. AspectG adopts the

same concepts from AspectJ and targets a different software artifact (i.e., a language

grammar). A contribution of this work is an investigation into aspects as they apply to

115

grammars (e.g., determining the meaning of a join point model within the context of a

grammar). By hiding the complicated transformation rules and functions as a back-end,

the DSL tool developer only needs to interact with the AspectG language rather than

direct interaction with DMS. The use of AspectG provides a clean and modular

implementation of crosscutting concerns in grammars (e.g., debugging and testing

concerns added to a base grammar). The complete AspectG language specification

written in ANTLR is provided in Appendix C. Because the crosscutting concerns are

addressed at the grammar level (i.e., meta-language level), language-independent aspect-

oriented programming [Lafferty and Cahill, 2003] can be realized.

Robot DSL Base Grammar
…

command

 :(RIGHT

 {

 dsllinenumber=dsllinenumber+1;

 fileio.print("//move right");

 fileio.print("x=x+1;");

 fileio.print("time=time+1;");

 gplbeginline=fileio.getLinenumber();

 gplendline=fileio.getLinenumber();

 fileio.print(" ");

 filemap.print(" mapping.add(new Map("+

 dsllinenumber+",\"Robot.java\","+

 gplbeginline+","+gplendline+"));");

 }

…

AspectG

pointcut productions():

 within(command.*);

pointcut count_gpllinenumber():

 within(command.*) &&

 match (fileio.print("time=time+1;"));

 before(): productions()

 {dsllinenumber=dsllinenumber+1;}

 after(): count_gpllinenumber()

 {gplbeginline=fileio.getLinenumber();

 gplendline=fileio.getLinenumber();}

 after(): productions()

 {filemap.print(" mapping.add(new Map("+

 dsllinenumber+",\"Robot.java\","+

 gplbeginline+","+gplendline+"));"); }

Figure 5-8. AspectG Pointcut Model

The AspectG join point model can match on both the syntax of the grammar and

the syntax of the semantic action code within each production that is written in Java. Join

points in ANTLR are static points in the language specifications where additional

semantic rules can be attached. A set of join points in AspectG is described with

pointcuts that define the location where the advice is to apply. A wildcard can be used

116

within the signature of a pointcut. The wildcard „*‟ matches zero or more terminal or

non-terminal symbols to represent a set of qualified join points. Some examples of

pointcut specifications are shown below:

.;

matches any production in the entire Robot language

command.*;

matches any production in a command production in the Robot language

Pointcuts in AspectG are defined using the reserved word pointcut and two

keywords representing pointcut predicates (i.e., within and match). The within

predicate is used to locate grammar productions at the syntax level and match is used to

define the location of a GPL statement within a semantic rule. Each pointcut has a unique

name, a list of actual patterns (i.e., composed by terminals, non-terminals, and wild

cards), and semantic rules. The patterns are used to identify the location of join points.

They are passed into weaving functions to weave the semantic rules into the language

grammar. Consider the following pointcut:

pointcut productions(): within (command.*);

The pointcut called productions is defined with the wildcard command.*

and matches command productions in the Robot grammar (e.g., RIGHT and LEFT). As

an example of a pointcut that combines both predicate types (i.e., within and match),

consider the following:

117

pointcut count_gpllinenumber(): within (command.*)

&& match (fileio.print("time=time+1;"));

The pointcut count_gpllinenumber is a pattern specification corresponding

to command productions having a semantic action with a statement matching the

signature fileio.print("time=time+1;"). The advice in AspectG is defined in

a similar manner to AspectJ, which brings together a pointcut that selects join points and

a body of code representing the effect of the advice [AspectJ, 2007]. The advice are

semantic rules written as native Java statements that can be applied at join points

specified by pointcuts. In ANTLR, the order of GPL statements in semantic rules is very

important. Therefore, in AspectG the ability to apply advice before or after a join

point is necessary, as shown in the following example:

before(): productions() {dsllinenumber=dsllinenumber+1;}

after(): count_gpllinenumber()

 {gplbeginline=fileio.getLinenumber();}

The before advice defined on the productions pointcut means that before

the parser proceeds with execution of each command production, the DSL line number is

incremented (i.e., dsllinumber=dsllinenumber+1;). The after advice

associated with the count_gpllinenumber means that line numbers for the GPL are

updated (i.e., gplbeginline=fileio.getLinenumber();) after the parser

matches a timer increment (i.e., fileio.print ("time=time+1;");).

118

After weaving a grammar aspect and parsing the Robot DSL code, the new

ANTLR grammar can generate the mapping information that contains the information

needed by DDF and DUTF (i.e., each Robot DSL code statement line number along with

its corresponding generated Java statement line numbers are recorded in the mapping).

5.4.2 AspectG Implementation

AspectG uses the DMS program transformation system to perform the underlying

weaving on the language specification. The AspectG abstraction hides the details of the

accidental complexities of using the transformation system from the users; i.e., a user of

AspectG focuses on describing the crosscutting grammar concerns at a higher level of

abstraction using an aspect language, rather than writing lower level program

transformation rules [Wu et al., 2005]. In AspectG, each of the crosscutting concerns is

modularized as an aspect that is weaved into an ANTLR grammar using parameterized

low-level transformation function calls. Four weaving functions have been developed to

handle four different types of join points that may occur within a grammar.

The four possible join points provided by AspectG are: before a semantic action

(i.e., before the first statement of a semantic action code segment); after a semantic action

(i.e., after the last statement of a semantic action code segment); before a specific

statement that is inside a semantic action; and, after a specific statement that is inside a

semantic action. These join points are represented in AspectG by before and after

keywords within the context of a semantic action or specific statement. Weaving takes

place after the initial phase of AspectG‟s compiler, which is responsible for parsing the

AspectG specification and generating the program transformation rules. The generated

119

program transformation rules provide bindings to the appropriate weaving function

parameters corresponding to the pointcut and advice defined in the aspect language.

The weaving algorithm (see Figure 5-9) describes the weaving procedure for

AspectG. Note that the algorithm requires two parameters (i.e., advice and join point) and

weaves the advice parameter into the join points designated by the pointcut predicate.

The two nested loops ensure that any legitimate pair of pointcut and advice will make a

weaving call. One of the DMS transformation tools, called RuleApplier, is the main

driver application to do the program transformation on the input DSL grammar

specification according to the transformation rules generated from the AspectG

specification. RuleApplier is a generated DMS transformation tool that can

manipulate the AST tree of the input source by the domain parser and then reconstruct

the valid AST tree within the same language domain based on the customized

transformation rules. The actual weaving of the language specification invoked by the

weave function in the AspectG weaving algorithm (see Figure 5-9) is done by the DMS

program transformation engine according to the different transformation rules generated

by the AspectG compiler.

for all jp in pointcutslist do

 for all a in advicelist do

 if jp’s name equals a’s pointcut name then

 weave(jp, a)

 end if

 end for

end for

Figure 5-9. Generalized Algorithm for AspectG Weaving

120

The weave function first looks for all potential pointcut positions in the semantic

sections of a grammar. The weaver then backtracks to the pointcut‟s ancestor node type

and value at the syntax level to filter out the unqualified pointcut positions. Finally, the

advice is inserted in the correct position of the grammar specification using the

ASTInterface API provided by DMS, which specifies methods for modifying a given

syntax tree to regenerate a new tree structure. Part of the “weaving after semantic action”

function is shown in Figure 5-10. Lines 11 to 26 represent the PARLANSE function that

finds all nodes that end with a left curly bracket in the input AST and stores them in a

variable called exec_node. Line 11 uses an ASTInterface API function, called

FindChildWithProperty, to retrieve all the child nodes from the node that is

passed the third argument from the transformation rule. Line 16 is the conditional

statement to filter the qualified nodes. Lines 28 to 43 represent the function that gets the

nodes that are of type _definition_1, which is used to specify a particular non-

terminal in the ANTLR grammar‟s specification. Line 28 uses an ASTInterface API

function, called FindParentWithProperty, to retrieve all the parent nodes of

exec_node whose node type is _definition_1. After these two search and pattern

match procedures, the exact locations of the nodes defined as the pointcut are stored in

mid_node, which is later used as an input parameter for AST manipulation processes

that generate the new AST with woven aspects. Lines 45 to 68 represent the function to

manipulate the AST tree. ConnectNthChild is an ASTInterface API to connect a

sub-tree to a node‟s Nth child. DisconnectNthChild is an ASTInterface API to

disconnect a node‟s Nth child. Bounded by the structure of ANTLR, a new AST tree is

reconstructed by trimming off the pointcut branches and transplanting the new sub-tree

121

with the aspect constructed from the original input AST. The complete PARLANSE code

of the after function is available in Appendix D.1 and the weaving algorithm of the

middle function is available in Appendix D.2.

…

11 ((= exec_node (AST:FindChildWithProperty arguments:3

12 (lambda (function boolean AST:Node

13)function

14 (value (local (;;);;

15 (;;

16 (ifthen (== (AST:GetNodeType ?) GrammarConstants:NodeTypes:_~’~)~’)

17 (return ~t)

18)ifthen

19 (return ~f)

20);;

21)local

22 ~f

23)value

24)lambda

25)

26)

27

28 (= mid_node (AST:FindParentWithProperty exec_node

29 (lambda (function boolean AST:Node

30)function

31 (value (local (;;);;

32 (;;

33 (ifthen (== (AST:GetNodeType ?) GrammarConstants:NodeTypes:_definition_1)

34 (return ~t)

35)ifthen

36 (return ~f)

37);;

38)local

39 ~f

40)value

41)lambda

42)

43)

44

45 (ifthen (~= mid_node (void AST:Node))

46 (;;

47 (= mid_node (AST:GetNthChild mid_node 1))

48 (ifthen (==(@ (AST:GetString mid_node)) (@ (AST:GetString arguments:2)))

49 (;;

50 (ifthen (~= exec_node (void AST:Node))

51 (;;

52 (= parent (AST:GetParent exec_node))

53 (= search_node (AST:GetNthChild parent 2))

54 (= representation_instance (AST:GetForestRepresentationInstance

55 (AST:GetForest arguments:1) (AST:GetRepresentation arguments:1)))

56 (=new_node(AST:CreateNode representation_instance

 GrammarCostants:NodeTypes:_semantic_strings_2))

57 (= semi_node (AST:GetNthChild search_node 3))

58 (AST:ConnectNthChild new_node 2 arguments:1)

59 (AST:ConnectNthChild new_node 3 semi_node)

60 (AST:DisconnectNthChild parent 2 search_node)

61 (AST:ConnectNthChild new_node 1 search_node)

62 (AST:ConnectNthChild parent 2 new_node)

63);;

64)ifthen

65);;

66)ifthen

67);;

68)ifthen

69 (return arguments:3)

70);;

…

Figure 5-10. Part of after function in PARLANSE

122

5.5 Illustrative Examples

This sub-section illustrates the process of using AspectG to weave a DDF

debugging aspect into the Robot language grammar. The mapping between the DSL (in

this case, ANTLR) and the generated GPL (in this case, Java) is represented by a line

number counter that keeps track of which DSL line number corresponds to the current

line of GPL code being debugged. Figure 5-11 shows an aspect that counts the DSL line

numbers. The DSL line number counter update statement (i.e.,

dsllinenumber=dsllinenumber+1;) must be inserted after each Robot language

statement. The pointcut called productions (shown earlier) matches the production

rules of the Robot language grammar within any instance production whose name begins

with command. The aspect specifies code (i.e., dsllinenumber =

dsllinenumber+1;) to run at a join point matched by the pointcut productions

to update the DSL line number counter every time there is a DSL statement defined in the

command production rule set.

aspect dsllinenumber (

 pointcut productions(): within (command.*);

 after(): productions()

 {dsllinenumber=dsllinenumber+1;}

}

Figure 5-11. DSL Line Number Counter Aspect in AspectG

From the high-level aspects specified in AspectG, a series of low-level

transformation rules are generated that are executed on the DMS transformation engine in

order to weave changes into an ANTLR grammar. Specifically, rules are generated in the

123

Rule Specification Language (RSL) of DMS. A series of template RSL rules have been

designed as part of this research that correspond to the four types of weaving that may

occur within AspectG (i.e., weaving before or after a production, and weaving

before or after a semantic action). Figure 5-12 shows the low-level RSL

specification generated from the dsllinenumber aspect shown in Figure 5-11, which

is used to weave a debugging DSL line number into the Robot grammar specified in

ANTLR. The weaving process will insert the statements that map the DSL line number

statement into the appropriate places of the Robot grammar. The first line of the rule

establishes the default base language domain to which the transformations are applied (in

this case, ANTLR). In this example, the pattern after_advice (line 3) is an external

library function that was written to perform the actual process of sub-typing, naming, and

weaving. The rule print_after_tree on line 8 triggers the transformation on the

Robot grammar by invoking the specified external pattern. Notice that there is a condition

associated with this rule (line 10), which describes a constraint stating that the rule should

be applied only to those join points where a transformation has not occurred already. This

is because the DMS re-write engine will continue to apply all sets of rules until no rules

can be fired. It is possible to have an infinite set of rewrites if the transformation results

are not conditionally halted (i.e., when one stage of transformation continuously

introduces new trees that can also be the source of further pattern matches). After

applying this rule to the Robot language grammar, a new semantic segment will be

generated with the line number update statement inserted at the end of every production

in the command set (i.e., RIGHT, LEFT, DOWN, and UP). The essence of the

124

transformation can be seen in line 9 of the transformation, which states that a java_seq

is rewritten ("->") with a parameterized call to the after_advice external function.

After the DSL line number counter aspect is weaved into the Robot language

grammar, during the parsing phase of this modified grammar the inserted line number

counter of the advice executes throughout the command production propagation. This

line number information helps to track each Robot statement and is also passed to the

source code mapping component for Robot language debugger generation.

1 default base domain Antlr.

2

3 external pattern after_advice(af_adv:statement_string,

4 lefthandside: IDENTIFIER,

5 orig_stmt:semantic):

6 semantic = 'after_advice' in domain Antlr.

7

8 rule print_after_tree(java_seq: semantic): semantic -> semantic

9 =" \java_seq " -> "\after_advice\(\aft_advice\(\) \, \lhs\(\)\, \java_seq\)"

10 if java_seq~="\:semantic \after_advice\(\aft_advice\(\)\,\lhs\(\)\,\java_seq\)".

11 pattern aft_advice(): statement_string = "dsllinenumber=dsllinenumber+1".

12

13 pattern lhs(): IDENTIFIER ="command".

14

15 public ruleset a = { print_after_tree }.

Figure 5-12. Low-level Rule Transformation Generated from AspectG

Figure 5-13 is a screenshot of the generated RSL transformation rule applied on

the original Robot language grammar. This screenshot shows the newly constructed AST

with the DSL line number counter inserted as the last statement in each production rule‟s

semantic section within the command production rule set (please note that the DOWN rule

has been removed for space consideration, but is transformed similarly).

125

Figure 5-13. Applied Weaving of “After” Transformation Rule on the Robot Grammar

AspectG is also able to weave debugging aspects into various locations in the

middle of any Robot grammar segment. As an example, the mapping between the DSL

and the generated GPL needs another line number counter that keeps track of which GPL

line number corresponds to the current line of DSL code being debugged. Figure 5-14

shows the GPL line number counter aspect in AspectG. The pointcut called

126

count_gpllinenumber matches the production rules of the Robot language

grammar within any instance production whose name begins with command. It specifies

code (i.e., gplbeginline=fileio.getLinenumber();) to run at a join point

matched by the pointcut count_gpllinenumber. The intent of this aspect is to

update the GPL line number counter every time there is a DSL statement defined with a

semantic statement (i.e., fileio.print("time=time+1;")) in the command

production rule set.

aspect gplbeginlinenumber (

pointcut count_gpllinenumber():

 within (command.*) && match (fileio.print("time=time+1;"));

 after(): count_gpllinenumber()

 {gplbeginline=fileio.getLinenumber();}

)

Figure 5-14. GPL Line Number Counter Aspect in AspectG

Figure 5-15 shows the low-level RSL specification generated by AspectG based

on the gplbeginlinenumber aspect specification, which defines weaving a GPL

line number counter into the Robot grammar. The weaving process will insert the

statements that get the GPL line number from the Robot grammar propagation process. In

this example, an external library pattern, a pre-defined PARLANSE transformation

function called mid_advice (line 5), performs the actual weaving. The transformation

rule print_mid_tree on line 10 performs the transformation process on the Robot

grammar by invoking this external pattern mid_advice. After applying this rule to the

Robot language grammar, a new semantic segment will be generated with the GPL line

127

number counter statement inserted at the end of every production in the command set

(i.e., RIGHT, LEFT, DOWN, and UP) and after the statement

(fileio.print("time=time+1;")).

After the GPL line number counter aspect is weaved into the Robot language

grammar, during the parsing phase of this modified grammar the inserted line number

counter of the advice executes throughout the command production propagation. This

line number information helps track the beginning GPL line number corresponding to

each Robot statement. The line number is also passed to the source code mapping

component for Robot language debugger generation.

1 default base domain Antlr.

2

3 pattern semi(): QUOTED_STRING ="\"time=time+1;\"".

4

5 external pattern mid_advice(bef_adv:semantic_strings,

6 semico: QUOTED_STRING,

7 orig_stmt:semantic):

8 semantic = 'mid_advice' in domain Antlr.

9

10 rule print_mid_tree(java_seq: semantic): semantic -> semantic

11 = " \java_seq " -> "\mid_advice\(\mi_advice\(\) \, \semi\(\)\, \java_seq\)"

12 if java_seq~="\:semantic\mid_advice\(\mi_advice\(\) \, \semi\(\)\, \java_seq\)".

13

14 pattern m_advice():semantic_strings="command;gplbeginline=fileio.getLinenumber();".

15

16 public ruleset a = { print_mid_tree }.

Figure 5-15. Low-level Rule Transformation Generated from AspectG

Figure 5-16 is a screenshot of the weaving process that shows the DMS

RuleApplier applying the program transformation rule from Figure 5-15 to transform

the original Robot language grammar into the new Robot language grammar. In this

example, the GPL line number counter statement is inserted after the statement

128

(fileio.print("time=time+1;");) in the middle of semantic sections within

the command production rule set.

Figure 5-16. Applied Weaving of “Middle” Transformation Rule on the Robot Grammar

5.6 Related Work in the Area of Aspect-Oriented Grammars

This section provides an overview of related work in the area of aspect-oriented

languages for weaving crosscutting concerns into grammars.

129

5.6.1 AspectLISA

AspectLISA [Rebernak et al., 2006-a] uses an explicit join point model, such that

join points are static points in a language specification where additional semantic rules

can be attached. These join points can be syntactic production rules or generalized LISA

rules. One pointcut can match productions in different languages over the entire hierarchy

of languages. For each pointcut, several advice can be defined, which represent

parameterized semantic rules written as native Java assignment statements. In

AspectLISA, there is only one way to apply advice on a specific pointcut, because

attribute grammars are declarative and the order of equations in semantic rules is not

important (i.e., applying advice before or after a join point is not applicable).

Distinguishing features of AspectLISA are inheritance of advice and pointcuts. Moreover,

advice in AspectLISA is reusable because it can be parameterized on grammar symbols.

5.6.2 AspectASF

AspectASF [Klint et al., 2004] is an aspect language that can weave crosscutting

properties into an ASF+SDF specification. Because of its pointcut pattern language,

which is based on matching patterns over the structure of equations, there are two types

of available pointcuts: entering an equation (i.e., after a successful match of the left side),

and exiting an equation (i.e., just before returning the right side). Two types of advice are

also available: after entering (i.e., prepending the advice conditions to the list of

conditions of the equation that is matched by the pointcut), and before exiting (i.e.,

appending the advice conditions to the list of conditions of the subject equation) [Klint et

al., 2004]. To apply AspectASF toward the creation of a debugger would require that the

130

debugger developer carefully identify all of the potential actions (e.g., step into, step out,

and step over) across all possible program locations, which would make the final

grammar complicated, cumbersome, and difficult to reason about. In comparison, the

DDF dynamically adapts the debugging actions from the debugging events as an end-user

debugs a DSL program through the Eclipse debug perspective. Because the DDF is

attached to the host IDE, the DSL grammar only needs to have source code mapping and

test result mapping information weaved into the base language definition.

5.7 Summary

A DSL offers end-users a notation for specifying the intent of a software system

using idioms appropriate to the domain of interest. This chapter presented an approach

that generates the tools needed (e.g., editor, compiler, and debugger) to use a DSL from a

language specification captured in a grammar by weaving the tool generation concerns

into the grammar. The difficulty of manual implementation of a DSL debugger as part of

an IDE led to the idea of generating the debugger from a language specification. Yet, the

decomposition of a language specification along the dimension of grammar productions

forces some concerns to be scattered and tangled within the grammar. Table 5-1 indicates

that on average 67 lines of additional statements need to be weaved into the grammars for

each of the five different case studies. The specific contribution of the research described

in this chapter is the ability to modularize the debugging concern within the DSL

grammar using AOP principles. The chapter presented two approaches for weaving the

debugger concern in conjunction with the DDF plug-in, with arguments as to why the

grammar-level weaving is preferred.

131

DSL Category

DSL Name

Additional Statements in

Modified Grammars

Imperative DSL Robot Language 97

Declarative DSL

FDL 22

BNF 31

Hybrid DSL

Hybrid Robot Language 117

SWUL 66

Table 5-1. Usage Analysis for AspectG

The first approach (i.e., using AspectJ to weave into the generated parser code)

may be applicable in those cases when an aspect weaver is available for the generated

GPL. However, weaving into the generated GPL requires detailed knowledge of the

parser generator such that appropriate pointcuts can be identified in the generated source.

In those situations where an aspect weaver is not readily available for the generated GPL,

the DMS approach for transforming the representative grammar is more suitable. The

DMS transformation has more accidental complexities in terms of implementation, but

does not require detailed knowledge of the GPL code generator. Furthermore, the

complexity of transforming aspects with DMS is transparent to the end-user because

AspectG is built on top of DMS (i.e., the AspectG compiler generates the transformations

to be performed in DMS). The effort required to adopt the DMS approach can be reduced

when the transformation library of debugging aspects is further refined. The debugging

aspect semantics is tied to a specific underlying GPL, but the weaving mechanism can be

reused.

AspectG represents a focused approach toward providing a language that allows a

tool builder (i.e., a programmer who is developing a testing tool for a DSL) to define a

132

specific type of concern in a programming language specification. AspectG can be

contrasted with GPALs (e.g., AspectC++ and AspectJ) that provide a more general

language for capturing a broader range of crosscutting concerns. Within the research on

DSALs, much of the application is centered on specific concerns for a language like Java

or C++. This chapter differs from the scope of general AOP research by describing the

investigation into DSALs for DSLs such as language specification.

The chapter also summarized the challenges of DSAL development and presented

separate case studies of AspectG applied to different scenarios. An objective of the

research described in this chapter concerns the topic of weaving aspects into grammars

during the tool generation process. The work makes a contribution in the area of

Grammarware [Klint et al., 2005] by impacting the status of grammars, grammar

transformations, and their relationship to tool plug-ins. A key enabler of this research is

the application of aspect-oriented concepts to support a new generative approach for

language tool construction.

133

CHAPTER 6

FUTURE WORK

 This chapter describes several ideas for extending the contributions that were

presented in the previous three chapters. Specifically, the future extensions include the

following: 1) an extension of the current framework that enables DSL profiling; 2)

investigation into the scalable, reliable, and extensible DSL testing framework that

enables DSL end-users to develop their DSL application with full software engineering

testing support; 3) addressing additional opportunities to generalize the framework in the

areas of tool-independence and language-independence; and 4) exploiting further areas of

aspect-oriented features within the language grammar. These topics are outlined in the

following sub-sections.

6.1 DSL Profiler Platform

The framework described in Chapters 3 and 4 is used to automatically generate

debuggers and unit test engines for DSLs. End-users may also be interested in the

performance of their DSL applications during the execution of their program (e.g., CPU

performance profiling, memory profiling, thread profiling). A DSL profiler would be

helpful to determine performance bottlenecks and hotspots during execution.

134

As noted in Figure 1-2, the future research will investigate a DSL profiler

framework (DPF) that generates DSL profilers by modifying the DSL grammar. The

same approach and architecture depicted in Figure 3-1 applies to the DSL profiler

structure (i.e., the DDF‟s GPL debugging server will be replaced by the GPL profiler,

which monitors the run-time execution environment). The future research will use the

NetBeans Profiler as the underlying GPL profile server. As the active successor of JFluid

[Dmitriev, 2004], the NetBeans Profiler, “provides a full-featured profiling functionality

for the NetBeans IDE. The profiling functions include CPU, memory and threads

profiling as well as basic JVM monitoring, allowing developers to be more productive in

solving memory or performance-related issues” [NetBeans Profiler, 2007].

Figure 6-1 provides a tentative architecture for the tool integration of a profiler.

The ANTLR translator will generate GPL code from DSL source code, which includes

the source code mapping information. The profiling methods mapping component

receives the end-user‟s profiling commands from the profiling perspective at the DSL

level to determine what type of profiling commands need to be issued to a command-line

profiler at the GPL level. The profiling actions will be mapped by the profiling methods

mapping component as one of the input parameters of the re-interpreter. The results from

the two mapping components will be re-interpreted into the GPL profile server as a series

of GPL profiling commands against the generated GPL code.

The GPL profile engine will execute the profiling commands generated from the

re-interpreter. Because the profiling results from the GPL profile engine will be tied to a

particular GPL, the result message at the GPL level is sent back to the DSL profile result

view by the profiling results mapping component, which is a wrapper interface to remap

135

the profiling results back into the DSL perspective. The domain experts will only see the

DSL profiling result view and interact at the DSL level.

Re-interpreter GPL Profile Sever

Source Code

Mapping

Profiling Results

Mapping

Profiling Methods

Mapping

ANTLR

Translator

GPL

Profiling Actions

DSL Profile Perspective

DSL Level

GPL Level

End-User

GPL Profiling

Commands

DSL

Figure 6-1. DSL Profiler Framework (DPF)

6.2 Application of Different IDE Platforms and GPLs

The generalization of this research summarized at the end of Chapters 3 and 4 can

be further applied by factoring out the specific parts of the IDE to which the DSL tools

are hosted. For example, a future work will explore the requirements for providing the

same set of DSL tools in Microsoft Visual Studio [Parsons and Randolph, 2006], rather

than Eclipse. The exploration of the Microsoft .Net plug-in architecture and its own

debugging framework will help to adapt the current framework‟s interfaces. The

Microsoft Shared Source Common Language Infrastructure (SSCLI) [Stutz et al., 2003]

provides many low-level code manipulation functions and programming language

technologies that target the internal structure of the Microsoft .Net Framework, which can

also provide an alternative solution.

136

The framework presented in this dissertation considers only the situation where

the generated GPL is Java. However, the methodology described in this dissertation is

language-independent. Another future work will be an investigation into a framework

that supports different GPLs other than Java. Chapters 3 and 4 summarized how the

different GPL debuggers (e.g., JDB, GDB, and Cordbg) and unit test engines (e.g., JUnit

and NUnit) can be used to extend the framework to handle the situation that DSLs are

generated into different GPLs.

Adaptation of the DDF and DUTF to different IDEs other than Eclipse and

different generated GPLs other than Java will abstract both the tool-dependent and

language-dependent nature of the framework. This new exploration would broaden the

applicability of the current approach and framework. Factoring out the commonality

among these extensions may identify additional limitations to help improve and refine the

algorithms and architecture design.

6.3 Adaptation of DDF and DUTF to Address more Complex DSLs

Although the BNF debugger offered an initial investigation into a more complex

source-to-source mapping, other mapping cases still need to been taken into consideration,

such as the non-consecutive mapping case. The focus of this dissertation concerned the

situation when one line of DSL code is generated into a set of consecutive lines of code

in a GPL. Chapter 3 also presented an initial investigation on a DSL (e.g., BNF) that is

translated into a non-trivial mapping between the DSL and the GPL. Such a non-trivial

mapping occurs when the non-consecutive code translation and complex data structures

are involved. There is a corresponding problem that occurs when one line of DSL code is

137

generated into non-consecutive lines of code to various locations in a GPL. This may

occur if a DSL is implemented using a rewrite rule transformation system, where local-

to-global transformation tangles the implementation [Cleenewerck and D' Hondt, 2005].

An extension to the approach can also address the generation of non-consecutive GPL

code by keeping track of all GPL non-consecutive line numbers at various locations and

mapping the last line of the generated non-consecutive GPL code as the last line of the

generated GPL code in a consecutive situation. The soundness of this potential solution

needs further investigation.

As presented in Chapter 3, an initial investigation was conducted on the feasibility

of the generation of a BNF debugger, where the language syntax is implemented as a

table-driven parser. The framework managed to generate the basic BNF debugger by

modifying the debugging algorithms. However, the ongoing research is still working

towards discovering more generic ways to generate such debuggers. There are still

several unanswered issues involving the BNF debugger (e.g., what does it mean to step

over or step into one symbol in the left-hand side of a production?). Such questions will

be addressed in the future research.

Other additional debugging features (e.g., set a watch point, roll back the program

pointer, and trace a variable value history) can give the framework more options to help

end-users to debug DSLs in more complicated situations.

6.4 Debugging Behavior through Event Grammars

 Event grammars are defined to describe the structure of an event trace of the

precise program behavior [Auguston, 1998]. With an event grammar, the semantics of a

138

programming language can be monitored during run-time or through post-mortem

analysis. Event grammars represent a formal approach to the development of a wide

range of software testing tools (e.g., debuggers, test engines, and profilers) based on a

precise model of static and dynamic program behavior. A set of events (i.e., event trace)

represents the program behavior and the computation over these event trace provides

basic information for testing programs (e.g., assertion checking, debugging queries,

execution profiles, and performance measurements) in a non-destructive way. This can be

very useful in building query-based declarative debuggers and profilers for a new DSL. A

traditional inspective debugger can step through the program statements and display the

current variable values and unit test engines that can compare the expected values and

program variable values. The event grammar approach will enrich the support of testing

features of the current research and eliminate the limitation of traditional inspective

debuggers (i.e., lack of software error analysis). Another intriguing application of the

event grammar approach using this framework is attacking the challenges of debugging

parallel programs. DDF uses a socket connection to communicate between JDB and the

Eclipse debugging perspective. Different threads can be used to keep track of different

branches of computation events.

Future work may also consider opportunities to apply the grammar weaving

technique on event grammars.

6.5 Extending the Role of Aspects in Grammars

During the grammar weaving process, there are still several unanswered questions,

such as the order of advice weaving. Different language grammar types (e.g., attribute

139

grammar) have different features. It is unclear at this point how to specify the AOP

notation on various grammar types. Using Model Engineering [Bézivin et al., 2007], the

three core components (e.g., joinpoint, pointcut, and advice) of AOP can be abstracted to

describe AOP at a higher abstraction level so that it is easy to extend the AOP concept to

different target languages.

AspectG is able to weave the advice into only the semantic specification section

of the language grammar. It would be interesting to explore the option of weaving into

the syntax specification segment of the grammar. Furthermore, the weaving process

presented in this dissertation is a static weaving based on the program source-to-source

transformation. The task of static vs. dynamic weaving on a program grammar is another

question for future research. Also, control flow is not yet provided in AspectG. Future

work may include a new pointcut predicate that assists in specifying the control flow

within a grammar. Such a predicate would allow aspects associated with various forms of

run-time analysis to be specified and captured.

In the aspect weaving process of the current framework, as shown by Figure 5-7,

the target language is a text-based language. An investigation into applying aspect

weaving to numerous visual programming languages is also desirable. Using the

experience gained from AspectG, a future work will investigate the graphical expression

of aspects within the weaving process.

140

CHAPTER 7

CONCLUSIONS

As the number of software applications developed by end-user programmers rises

significantly, the lack of testing tools appropriate for end-users increases the cost of

software maintenance and heightens the chances of software system failures caused by

software errors. Recent software development trends suggest that DSLs are becoming

more popular in general usage because of their ability to assist end-users in developing

applications expressed in problem domains that leverage their domain expertise. Without

proper end-user DSL testing tools to assist in the detection of such errors, it is difficult,

costly, and sometimes impossible to test and maintain a DSL program. Usually, while

debugging and testing DSL applications, end-user programmers are forced to contend

with the generated code from the existing GPL testing tools.

To solve these problems, the research in this dissertation presented a grammar-

driven framework with a grammar-weaving technique that generates testing tools for

DSLs. This enables DSL end-users to debug and unit test their application at the DSL

level instead of being strained to test their applications at the unfamiliar GPL level. To

illustrate such an approach, this dissertation presented two types of testing tools (e.g.,

debugger and unit test engine) that included seven different use cases of testing tools for

three different DSL categories (e.g., imperative, declarative, and hybrid). The case

141

studies in the research include simple DSLs (e.g., Robot language), complicated DSLs

used in other research efforts (e.g., FDL and SWUL), and a widely used DSL (e.g., BNF

syntax specification language). The DSL testing framework and approaches described in

this dissertation provide DSL programmers with the proper testing tools to debug and

unit test their DSL programs at the correct abstraction level. The complete details about

the research described in this dissertation, including video demonstrations and complete

examples, can be found at the project website [DSL Testing Studio, 2007].

During the experimental validation phase of this research, the generic and specific

parts of the testing tool generation process were observed. For different types of DSLs,

the specific parts of the DDF that may need to be customized for each DSL are the

debugging action algorithms and the debugging result mapping. The debugging result

mapping is represented as additional semantics in the DSL grammar. For different types

of DSLs, the specific parts of the DUTF are the test case mapping, scripting languages

used by the end-user, and additional testing assertion functions that the GPL unit test

engine does not provide. For different types of targeted GPLs, the specific part of DDF

and DUTF is the underlying GPL debugger and unit test engine. The re-interpreter is the

one component that plays a specific role to adjust the variability in this framework.

Different GPL debuggers and test engines have different user interfaces. When the

underlying GPL testing tools change, the wrapper interface of the re-interpreter must be

modified to adapt the output format differences among the specific GPL testing tools.

The architecture of the framework, the grammar-driven approach, and the mapping

knowledge base are generic parts of the automated tool generation procedure that can be

reused across different DSL testing tools.

142

A by-product of this research evolved from the initial manual approach of

manipulating the DSL grammar in order to insert the debugging mapping information to

construct the DSL debugger. To address the challenges of manual adaptation of

grammars, a contribution was made in the area of grammar-driven software by analysis

and transformation of the grammars applied to DSL tool generation. Specifically, the

dissertation provides a description of the benefits of aspects that are applied to the

construction of language testing tools. Such grammar adaptation enables end-user

programmers the ability to debug and unit test their DSL application using the

abstractions contained in the DSL. This dissertation also demonstrated the potential for

reusing existing GPL language tools through grammar-driven automation. Initial

evidence suggests that automated software engineering applied to the adaptation of

existing IDE interfaces will become a future trend of tool construction.

143

LIST OF REFERENCES

[Aho et al., 2007] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers

Principles, Techniques, and Tools, 2nd ed, Pearson/Addison-Wesley, 2007.

[ANTLR-Studio, 2007] Antlr Studio for Eclipse, 2007, http://www.antlrstudio.com.

[ANTLR, 2007] ANother Tool for Language Recognition, 2007, http://www.antlr.org/.

[AspectC, 2007] The Home of AspectC++, 2007, http://www.aspectc.org/.

[AspectC#, 2007] AspectSharp, 2007,

http://wiki.castleproject.org/index.php/AspectSharp.

[AspectJ, 2007] The AspectJ Project, 2007, http://eclipse.org/aspectj/.

[Aßmann, 2003] U. Aßmann, Invasive Software Composition, Springer Verlag, 2003.

[Atkins et al., 1999] D. Atkins, T. Ball, G. Bruns, and K. Cox, “Mawl: A Domain-

Specific Language for Form-Based Services,” IEEE Transactions on Software

Engineering, vol. 25, no. 3, pp. 334-346, May/June 1999.

[Attali et al., 2001] I. Attali, C. Courbis, P. Degenne, A. Fau, J. Fillon, D. Parigot, C.

Pasquier, and C. S. Coen, “SmartTools: a Development Environment Generator based on

XML Technologies,” Workshop on XML Technologies and Software Engineering,

Toronto, Canada, May 2001.

[Auguston, 1995] M. Auguston, “Program Behavior Model Based on Event Grammar

and its Application for Debugging Automation,” Workshop on Automated and

Algorithmic Debugging, Saint-Malo, France, pp. 277-291, May 1995.

[Auguston, 1998] M. Auguston, “Building Program Behavior Models,” Workshop on

Spatial and Temporal Reasoning, Brighton, England, pp. 19-26, August 1998.

[Batory et al., 1998] D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools for

Implementing Domain-Specific Languages,” International Conference on Software

Reuse, Victoria, Canada, pp. 143-153, June 1998.

[Batory et al., 2004] D. Batory, J. Sarvela, and A. Rauschmayer, “Scaling Step-Wise

Refinement,” IEEE Transactions on Software Engineering, vol. 30, no. 6, pp. 355-371,

June 2004.

144

[Baxter et al., 2004] I. Baxter, C. Pidgeon, and M. Mehlich, “DMS: Program

Transformation for Practical Scalable Software Evolution,” International Conference on

Software Engineering, Edinburgh, Scotland, pp. 625-634, May 2004.

[Bentley, 1986] J. Bentley, “Little Languages,” Communications of the ACM, vol. 29, no.

8, pp. 711-721, August 1986.

[Bézivin et al., 2007] J. Bézivin, M. Barbero, and F. Jouault, “On the Applicability Scope

of Model Driven Engineering,” International Workshop on Model-based Methodologies

for Pervasive and Embedded Software, Braga, Portugal, 2007.

[Bravenboer and Visser, 2004] M. Bravenboer and E. Visser, “Concrete Syntax for

Objects: Domain-Specific Language Embedding and Assimilation without Restrictions,”

Object-Oriented Programming, Systems, Languages, and Applications, Vancouver,

Canada, pp. 365-383, October 2004.

[Burnett et al., 2003] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, and C.

Wallace, “End-User Software Engineering with Assertions in the Spreadsheet Paradigm,”

International Conference on Software Engineering, Portland, OR, pp. 93-105, May 2003.

[Burnett et al., 2005] M. Burnett, C. Cook, and G. Rothermel, “End-User Software

Engineering,” Communications of the ACM, vol. 48, no. 9, pp. 53-58, September 2005.

[Burson et al., 1990] S. Burson, G. B. Kotik, and L. Z. Markosian, “A Program

Transformation Approach to Automating Software Re-engineering,” International

Computer Software and Applications Conference, Chicago, IL, pp. 314-322, October

1990.

[Cleenewerck and D' Hondt, 2005] T. Cleenewerck and T. D' Hondt, “Disentangling the

Implementation of Local-to-Global Transformations in a Rewrite Rule Transformation

System,” Symposium for Applied Computing - Programming Language Track, Santa Fe,

NM, pp. 1398-1403, March 2005.

[Clements and Northrop, 2002] P. Clements and L. Northrop, Software Product Lines:

Practices and Patterns, Addison-Wesley, 2002.

[Cordbg, 2007] Runtime Debugger (Cordbg.exe), 2007, http://msdn2.microsoft.com/en-

us/library/a6zb7c8d(vs.80).aspx.

[Cordy, 2006] J. Cordy, “The TXL Source Transformation Language,” Science of

Computer Programming, vol. 61, no. 3, pp. 190-210, August 2006.

[Cornelissen, 2004] B. Cornelissen, Using TIDE to Debug ASF+SDF on Multiple Levels,

Universiteit van Amsterdam, December, 2004.

[Crissey, 2004] M. Crissey, “Researchers Aim to Make Debugging Simpler,” USA Today

from Associated Press, 2004.

145

[CSounds, 2007] A sound and music synthesis system, 2007, http://csounds.com.

[CUP, 2007] CUP User Manual, 2007,

http://www.cs.princeton.edu/~appel/modern/java/CUP/manual.html.

[Czarnecki and Eisenecker, 2000] K. Czarnecki and U. W. Eisenecker, Generative

Programming: Methods, Techniques, and Applications, Addison-Wesley, 2000.

[Dijkstra, 1976] E. W. Dijkstra, A Discipline of Programming, Prentice Hall, 1976.

[Dmitriev, 2004] M. Dmitriev, “Design of JFluid: A Profiling Technology and Tool

Based on Dynamic Bytecode Instrumentation,” 2004, http://research.sun.com.

[Bison, 2007] The YACC-compatible Parser Generator, 2007

http://dinosaur.compilertools.net/#bison.

[DSL Testing Studio, 2007] DTS, 2007, http://www.cis.uab.edu/wuh/ddf.

[Duclos et al., 2002] F. Duclos, J. Estublier, and P. Morat, “Describing and Using Non-

functional Aspects in Component Based Applications,” International Conference on

Aspect-Oriented Software Development, Enschede, Netherlands, pp. 65-75, April 2002.

[Eclipse, 2007] Eclipse, 2007, http://www.eclipse.org.

[EUSES, 2007] End-Users Shaping Effective Software Consortium, 2007,

http://eusesconsortium.org/.

[Faith, 1998] R. Faith, Debugging Programs after Structure-Changing Transformation,

Ph.D. Dissertation, Department of Computer Science, University of North Carolina at

Chapel Hill, 1998.

[Faith et al., 1997] R. Faith, L. S. Nyland, and J. F. Prins, “Khepera: A System for Rapid

Implementation of Domain-specific Languages,” USENIX Conference on Domain-

Specific Languages, Berkeley, CA, pp. 243-255, October 1997.

[Filman and Friedman, 2004] R. Filman and D. Friedman, Aspect-Oriented Software

Development, Addison-Wesley, 2004.

[Floyd, 1979] R. Floyd, “The Paradigms of Programming,” Communications of the ACM,

vol. 22, no. 8, pp. 455-460, August 1979.

[Gamma and Beck, 2003] E. Gamma and K. Beck, Contributing to Eclipse: Principles,

Patterns, and Plug-Ins, Addison-Wesley, 2003.

[Gamma et al., 1995] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[GDB, 2007] The GNU Project Debugger, 2007, http://sourceware.org/gdb/.

146

[Gelperin and Hetzel, 1988] D. Gelperin, and B. Hetzel, “The Growth of Software

Testing,” Communications of the ACM, vol. 31, no. 6, pp. 687-695, June 1988.

[Gray et al., 2001] J. Gray, T. Bapty, S. Neema, and J. Tuck, “Handling Crosscutting

Constraints in Domain-Specific Modeling,” Communications of the ACM (Special Issue

on Aspect-Oriented Programming), vol. 44, no. 10, pp. 87-93, October 2001.

[Greenfield et al., 2005] J. Greenfield, K. Short, S. Cook, and S. Kent, Software

Factories: Assembling Applications with Patterns, Models, Frameworks, and Tools, John

Wiley and Sons, 2005.

[Groff and Weinberg, 2002] J. Groff and P. Weinberg, SQL: The Complete Reference,

McGraw-Hill, 2002.

[Harrison, 2005] W. Harrison, “The Dangers of End-User Programming,” IEEE Software,

vol. 21, no. 4, pp. 5-7, July/August 2005.

[Henriques et al., 2005] P. Henriques, M. Pereira, M. Mernik, M. Lenič, J. Gray, and H.

Wu, “Automatic Generation of Language-based Tools using LISA,” IEE Proceedings -

Software, vol. 152, no. 2, pp. 54-69, 2005.

[Hilzenrath, 2003] D. Hilzenrath, “Finding Errors a Plus, Fannie says: Mortgage Giant

Tries to Soften Effect of $1 Billion in Mistakes,” The Washington Post, October 31, 2003.

[JDB, 2007] The Java Debugger, 2007,

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/jdb.html.

[Johnson, 1975] S. C. Johnson, “Yacc -- Yet Another Compiler Compiler,” Technical

report, AT&T Bell Laboratories, Murray Hill, N. J, 1975.

[JPDA, 2007], The Java Platform Debugger Architecture, 2007,

http://java.sun.com/products/jpda/index.jsp.

[JSR 45, 2007] Debugging Support for Other Languages, 2007,

http://www.jcp.org/en/jsr/detail?id=045.

[JUnit, 2007] JUnit, 2007, http://www.junit.org.

[Kiczales et al., 1997] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.

Loingtier, and J. Irwin, “Aspect-Oriented Programming,” European Conference on

Object-Oriented Programming, Jyväskylä, Finland, pp. 220-242, June 1997.

[Kiczales et al., 2001] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.

G. Griswold, “An Overview of AspectJ,” European Conference on Object-Oriented

Programming, Budapest, Hungary, pp. 327-353, June 2001.

147

[Kieburtz et al., 1996] B. R. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kotov, J.

Lewis, D. Oliva, T. Sheard, I. Smith, and L. Walton, “A Software Engineering

Experiment in Software Component Generation,” International Conference on Software

Engineering, Berlin, Germany, pp. 542-552, March 1996.

[Klint et al., 2004] P. Klint, van. Der Storm, and J. J. Vinju, “Term Rewriting Meets

Aspect-Oriented Programming,” CWI Technical Report, SEN-E0421, December, 2004,

http://db.cwi.nl/rapporten/index.php?persnr=331.

[Klint et al., 2005] P. Klint, R. Lämmel, and C. Verhoef, “Towards an Engineering

Discipline for Grammarware,” ACM Transactions on Software Engineering and

Methodology, vol. 14, no. 3, pp. 331-380, July 2005.

[Lafferty and Cahill, 2003] D. Lafferty and V. Cahill, “Language-independent Aspect-

Oriented Programming,” Object-Oriented Programming, Systems, Languages, and

Applications Companion, Anaheim, CA, pp. 1-12, October 2003.

[Lämmel and Schulte, 2006] R. Lämmel and W. Schulte, “Controllable Combinatorial

Coverage in Grammar-Based Testing,” IFIP International Conference on Testing

Communicating Systems, pp. 19-38, 2006.

[Loy et al., 2002] M. Loy, R. Eckstein, D. Wood, J. Elliott, and B. Cole, Java Swing,

O'Reilly, 2002.

[Mernik et al., 2002] M. Mernik, M. Lenič, E. Avdičaušević, and V. Žumer, “LISA: An

Interactive Environment for Programming Language Development,” International

Conference on Compiler Construction, Grenoble, France, pp. 1-4, April 2002.

[Mernik et al., 2005] M. Mernik, J. Heering, and A. Sloane, “When and How to Develop

Domain-Specific Languages,” Computing Surveys, vol. 37, no. 4, pp. 316-344, December

2005.

[Mernik and Žumer, 2005] M. Mernik and V. Žumer, “Incremental Programming

Language Development,” Computer Languages, Systems and Structures, vol. 1, no. 31,

pp. 1-16, 2005.

[NetBeans Profiler, 2007] The NetBeans Profiler Project, 2007,

http://profiler.netbeans.org/index.html.

[NUnit, 2007] NUnit Project Page, 2007, http://www.nunit.org/.

[Olan, 2003] M. Olan, “Unit Testing: Test Early, Test Often,” Journal of Computing

Sciences in Colleges, vol. 19, no. 2, pp. 319-328, December 2003.

[Olivier, 2000] P. Olivier, A Framework for Debugging Heterogeneous Applications,

Ph.D. Dissertation, Universiteit van Amsterdam, 2000.

148

[Oram and Talbott, 1991] A. Oram and S. Talbott, Managing Projects with make, O'

Reilly, 1991.

[Parigot, 2004] D. Parigot, “Towards Domain-Driven Development: The SmartTools

Software Factory,” Object-Oriented Programming, Systems, Languages, and

Applications Companion, Vancouver, Canada, pp. 37-38, October 2004.

[Parnas and Siewiorek, 1975] D. Parnas and D. P. Siewiorek, “Use of the Concept of

Transparency in the Design of Hierarchically Structured Systems,” Communications of

the ACM, vol. 18, no. 7, pp. 401-408, July 1975.

[Parr, 2007] T. Parr, The Definitive ANTLR Reference Building Domain-Specific

Languages, Pragmatic Bookshelf, 2007.

[Parsons and Randolph, 2006] A. Parsons and N. Randolph, Professional Visual Studio

2005, Wiley Publishing, Inc, 2006.

[Rebernak et al., 2006-a] D. Rebernak, M. Mernik, P. R. Henriques, and M. Pereira,

“AspectLISA: An Aspect-Oriented Compiler Construction System Based on Attribute

Grammars,” Workshop on Language Descriptions, Tools and Applications, Vienna,

Austria, pp. 44-61, April 2006.

[Rebernak et al., 2006-b] D. Rebernak, M. Mernik, H. Wu, and J. Gray, “Domain-

Specific Aspect Languages for Modularizing Crosscutting Concerns in Grammars,”

Workshop on Domain-Specific Aspect Languages, Portland, OR, October 2006.

[Robbins, 2003] J. Robbins, Debugging Applications for Microsoft.Net and Microsoft

Windows, Microsoft Press, 2003.

[Rosenberg, 1996] J. B. Rosenberg, How Debuggers Work: Algorithms, Data Structures,

and Architecture, John Wiley and Sons, 1996.

[Ruthruff et al., 2006] J. R. Ruthruff, M. Burnett, and G. Rothermel, “Interactive Fault

Localization in a Spreadsheet Environment,” IEEE Transactions on Software

Engineering, vol. 32, no. 4, pp. 213-239, April 2006.

[Ryu and Ramsey, 2005] S. Ryu and N. Ramsey, “Source-level Debugging for Multiple

Languages with Modest Programming Effort,” International Conference on Compiler

Construction, Edinburgh, Scotland, pp. 10-26, April 2005.

[Scaffidi et al., 2005] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the Numbers of

End Users and End User Programmers,” Symposium on Visual Languages and Human-

Centric Computing, Dallas, TX, pp. 207-214, September 2005.

[Schmitt, 2005] R. B. Schmitt, “New FBI Software May Be Unusable,” Los Angeles

Times, January 13, 2005.

149

[Sebesta, 2007] R. W. Sebesta, Concepts of Programming Languages, 8th ed, Addison-

Wesley, 2007.

[Simonyi et al., 2006] C. Simonyi, M. Christerson, and S. Clifford, “Intentional

Software,” Object-Oriented Programming, Systems, Languages, and Applications

(Onward Track), Portland, OR, October 2006.

[Spinellis, 2001] D. Spinellis, “Notable Design Patterns for Domain-Specific

Languages,” Journal of Systems and Software, vol. 56, no. 1, pp. 91-99, February 2001.

[Stutz et al., 2003] D. Stutz, T. Neward, and G. Sbilling, Shared Source CLI Essentials,

O' Reilly and Associates, 2003.

[Sutcliffe and Mehandjiev, 2004] A. Sutcliffe and N. Mehandjiev, “End-User

Development: Tools that Empower Users to Create their Own Software Solutions,”

Communications of the ACM, vol. 47, no. 9, pp. 31-32, September 2004.

[Tassey, 2002] G. Tassey, “The Economic Impacts of Inadequate Infrastructure for

Software Testing,” NIST Planning Report 02-3, May, 2002,

http://www.nist.gov/director/prog-ofc/report02-3.pdf.

[Thibault et al., 1999] S. A. Thibault, R. Marlet, and C. Consel, “Domain-Specific

Languages: From Design to Implementation Application to Video Device Drivers

Generation,” IEEE Transactions on Software Engineering, vol. 25, no. 3, pp. 363-377,

May/June 1999.

[Tillmann and Schulte, 2005] N. Tillmann and W. Schulte, “Parameterized Unit Tests

with Unit Meister,” The European Software Engineering Conference/The SIGSOFT

Symposium on the Foundations of Software Engineering, Lisbon, Portugal, pp. 241-244,

2005.

[TDD, 2007] Test-Driven Development, 2007, http://en.wikipedia.org/wiki/Test-

driven_development.

[Unit Testing, 2007] Unit Test, 2007, http://en.wikipedia.org/wiki/Unit_test.

[van den Brand et al., 2002] M. van den Brand, J. Heering, P. Klint, and P. Olivier,

“Compiling Language Definitions: The ASF+SDF Compiler,” ACM Transactions on

Programming Languages and Systems, vol. 24, no. 4, pp. 334-368, July 2002.

[van den Brand et al., 2005] M. van den Brand, B. Cornelissen, P. Olivier, and J. Vinju,

“TIDE: A Generic Debugging Framework,” Workshop on Language Descriptions, Tools,

and Applications Tool Demonstration, Edinburgh, Scotland, June 2005.

[van Deursen and Klint, 1998] A. van Deursen and P. Klint, “Little Languages: Little

Maintenance?,” Journal of Software Maintenance, vol. 10, no. 2, pp. 75-92, March 1998.

150

[van Deursen and Klint, 2002] A. van Deursen and P. Klint, “Domain-Specific Language

Design Requires Feature Descriptions,” Journal of Computing and Information

Technology, vol. 10, no. 1, pp. 1-17, 2002.

[van Deursen et al., 2000] A. van Deursen, P. Klint, and J. Visser, “Domain-Specific

Languages: An Annotated Bibliography,” SIGPLAN Notices, vol. 35, no. 6, pp. 26-36,

June 2000.

[Van Wyk and Johnson, 2007] E. Van Wyk and E. Johnson, “Extensible Compilers and

Modular Language Extensions for Computational Geometry,” Hawaii International

Conference on Systems Science, Big Island, HI, January 2007.

[VASG, 2007] VHDL Analysis and Standardization Group, 2007,

http://www.eda.org/vhdl-200x/.

[Visser, 2001] E. Visser, “Stratego: A Language for Program Transformation Based on

Rewriting Strategies. System Description of Stratego 0.5,” International Conference on

Rewriting Techniques and Applications, Utrecht, The Netherlands, pp. 357-361, May

2001.

[Wile, 2004] D. S. Wile, “Lessons Learned from Real DSL Experiments,” Science of

Computer Programming, vol. 51, no. 3, pp. 265-290, June 2004.

[Wile and Ramming, 1999] D. S. Wile and J. C. Ramming, “Guest Editorial: Introduction

to the Special Section 'Domain-Specific Languages (DSLs)',” IEEE Transactions on

Software Engineering, vol. 25, no. 3, pp. 289-290, May/June 1999.

[Wright and Freeman-Benson, 2004] How to Write an Eclipse Debugger, 2007,

http://www.eclipse.org/articles/Article-Debugger/how-to.html.

[Wu et al., 2004] H. Wu, J. Gray, and M. Mernik, “Debugging Domain-Specific

Languages in Eclipse,” Eclipse Technology Exchange Poster Session, Vancouver,

Canada, October 2004.

[Wu et al., 2005] H. Wu, J. Gray, S. Roychoudhury, and M. Mernik, “Weaving a

Debugging Aspect into Domain-Specific Language Grammars,” ACM Symposium on

Applied Computing – Programming for Separation of Concerns Track, Santa Fe, NM, pp.

1307-1374, March 2005.

[Wu, 2006] H. Wu, “Grammar-Driven Generation of Domain-Specific Language Testing

Tools,” Object-Oriented Programming, Systems, Languages & Applications Doctoral

Symposium, Portland, OR, October 2006.

[Wu et al., 2007] H. Wu, J. Gray, and M. Mernik, “Grammar-Driven Generation of

Domain-Specific Language Debuggers,” accepted for publication, Software Practice and

Experience, 2007.

151

[Xie et al., 2005] T. Xie, D. Marinov, W. Schulte, and D. Noktin, “Symstra: A

Framework for Generating Object-Oriented Unit Tests Using Symbolic Execution,”

International Conference on Tools and Algorithms for the Construction and Analysis of

Systems, Edinburgh, Scotland, pp. 365-381, April 2005.

[Xie and Zhao, 2006] T. Xie and J. Zhao, “A Framework and Tool Supports for

Generating Test Inputs of AspectJ Programs,” International Conference on Aspect-

Oriented Software Development, Bonn, Germany, pp. 190-201, March 2006.

[XP, 2007] Extreme Programming, 2007,

http://en.wikipedia.org/wiki/Extreme_Programming.

[Zellweger, 1984] P. T. Zellweger, Interactive Source-Level Debugging of Optimized

Programs, Ph.D. Dissertation, Department of Computer Science, University of California

at Berkeley, May 1984.

[Zhu et al., 1997] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software Unit Test Coverage

and Adequacy,” ACM Computing Surveys, vol. 29, no. 4, pp. 366-427, December 1997.

152

APPENDIX A

DOMAIN-SPECIFIC LANGUAGE GRAMMAR SPECIFICATIONS

153

The individual sections within this Appendix represent the sample grammars that

were created for each case study discussed throughout the dissertation.

A.1 Robot DSL Grammar Specification

The following represents the complete Robot DSL grammar as specified in

ANTLR.

class P extends Parser;

root

:

(

BEGIN functions ENDM commands END EOF!

)

;

function_names

:

(

function_name function_names

 |

)

;

functionbodys

 :

(

functionbody functionbodys

 |

)

 ;

functionbody

 :

(

VARIABLES LPAREN OP NUMBER COMMA OP NUMBER RPAREN

)

 ;

functions

 :

(

function functions

 |

)

 ;

154

function

 :

(

 FUNCTION_HEADS functionbodys FUNCTION_HEADS ENDF

)

 ;

op

 :

(

 PLUS|MINUS

)

 ;

commands

 :

(

command commands

 |

)

 ;

command

 :

(

 CALL function_name

 | INIT VARIABLES LPAREN NUMBER COMMA NUMBER RPAREN

 | SET VARIABLES LPAREN NUMBER COMMA NUMBER RPAREN

 | PRINT VARIABLES

)

 ;

function_name

 :

(

 RIGHT

 |LEFT

 |UP

 |DOWN

 |KNIGHT

)

 ;

A.2 FDL Grammar Specification

The following represents the complete FDL grammar as specified in ANTLR.

class P extends Parser;

root

 : (

 feature_definitions feature_constraints

 EOF!

)

 ;

155

feature_definitions

 : (

 feature_definition feature_definitions

 |

)

 ;

feature_definition

 : (

 FEATURENAME ASSIGN feature_expression

)

 ;

feature_expression

 : (

 ATOMICFEATURE

 |FEATURENAME

 |"opt" LPAREN feature_expression RPAREN

 |"all" LPAREN features RPAREN

 |"moreof" LPAREN features RPAREN

 |"oneof" LPAREN features RPAREN

)

 ;

features

 :

 (

 feature_expression temp

)

 ;

temp

 :

 (

 COMMA features

 |

)

 ;

feature_constraints

 :

 (

 feature_constraint feature_constraints

 |

)

 ;

feature_constraint

 :

 (

 ATOMICFEATURE feature_contraint_content

 |"include" ATOMICFEATURE

 |"exclude" ATOMICFEATURE

)

 ;

feature_contraint_content

 :

 (

 "requires" ATOMICFEATURE

 |"excludes" ATOMICFEATURE

)

 ;

156

A.3 SWUL Grammar Specification

The following represents the complete SWUL grammar as specified in ANTLR.

class P extends Parser;

root

 :

(

 imports PUBLIC CLASS IDENTIFIER LCURLY main RCURLY EOF!

)

 ;

imports

:

(

 theimport imports

 |

)

;

theimport

 :

(

 IMPORT library:IDENTIFIER SEMI

)

 ;

main

:

(

 PUBLIC STATIC VOID MAIN LPAREN THESTRING

IDENTIFIER RPAREN LCURLY swul statements RCURLY

)

;

statements

:

(

 statement statements

 |

)

;

statement

:

(

IDENTIFIER LPAREN signature RPAREN SEMI

)

;

157

signature

:

(

 IDENTIFIER

 |

)

;

swul

:

(

 JFRAME IDENTIFIER ASSIGN IDENTIFIER LCURLY frame RCURLY SEMI

)

;

frame

:

(

 title content

)

;

title

:

(

 TITLE ASSIGN IDENTIFIER

)

;

content

:

(

 IDENTIFIER ASSIGN PANEL IDENTIFIER BORDER

LAYOUT LCURLY center position RCURLY

)

;

center

:

(

 IDENTIFIER ASSIGN IDENTIFIER LCURLY IDENTIFIER

 ASSIGN IDENTIFIER IDENTIFIER RCURLY

)

;

position

:

(

 IDENTIFIER ASSIGN PANEL IDENTIFIER GRID LAYOUT LCURLY row RCURLY

)

;

row

:

(

 IDENTIFIER ASSIGN LCURLY buttons RCURLY

)

;

158

buttons

:

(

 button buttons

 |

)

;

button

:

(

 BUTTON LCURLY IDENTIFIER ASSIGN IDENTIFIER RCURLY

)

;

A.4 Hybrid Robot Grammar Specification

The following represents the complete Hybrid Robot language grammar as

specified in ANTLR.

class P extends Parser;

root

:

(

 BEGIN functions ENDM commands END EOF!

)

;

function_names

:

(

 function_name function_names

 |

)

;

functionbodys

:

(

functionbody functionbodys

 |

)

;

functionbody

:

(

 VARIABLES LPAREN OP NUMBER COMMA OP NUMBER RPAREN

| STRING

)

;

159

functions

:

(

 function functions

 |

)

;

function

:

(

 FUNCTION_HEADS functionbodys FUNCTION_HEADS ENDF

)

;

op

:

(

 PLUS

 |MINUS

)

;

commands

:

(

 command commands

 |

)

;

command

:

(

 CALL function_name

 | INIT VARIABLES LPAREN NUMBER COMMA NUMBER RPAREN

 | SET VARIABLES LPAREN NUMBER COMMA NUMBER RPAREN

 | PRINT VARIABLES

)

;

function_name

:

(

 RIGHT

 |LEFT

 |UP

 |DOWN

 |KNIGHT

 |RANDOM

)

;

160

APPENDIX B

ASPECTJ CODE FOR POST-ANTLR GRAMMAR WEAVING

161

This Appendix provides the AspectJ code that weaves language extensions into

the ANTLR-generated Java code. The example aspects modularize the extension that is

needed to support debugging of the Robot language within the DDF. The approach

typified by this code is discussed in Chapter 5, where aspects that support the DDF and

DUTF are weaved into generated code.

public aspect SpecificationWeaver {

 int dsllinenumber = 0;

 int gplbeginline = 0;

 int gplendline = 0;

 int b1 = 0, b2 = 0, e1 = 0, e2 = 0;

 boolean status1 = true, status2 = true, status3 = true, status4 = true;

 FileIO filemap = new FileIO();

 after(int commandname):

 call (void antlr.Parser.match(int))&&args(commandname)

 {

 match(commandname);

 }

 pointcut count_dsllinenumber():

 call (void P.command());

 after(): count_dsllinenumber(){

 dsllinenumber=dsllinenumber+1;

 filemap.print(" mapping.add(new Map("+dsllinenumber+",

 \"Robot.java\","+gplbeginline+","+gplendline+"));");

 }

 before(FileIO file_io, String st):

 target(file_io)&&call (void FileIO.print(String))&&args(st)

 {

 if ((st == "time=time+1;")) {

 gplbeginline = file_io.getLinenumber();

 }

 }

 after(FileIO file_io, String st):

 target(file_io)&&call (void FileIO.print(String))&&args(st)

 {

 if((st.startsWith(" x = "))||(st.startsWith("int x =

))||(st=="int time = 0;")||(st=="System.out.println

 (\"time is \"+time);")||(st=="System.out.println

 (\"x coordiator= \" + x + \" \" + \"y coordinator= \" + y);")){

 gplbeginline=file_io.getLinenumber();

 if(dsllinenumber==1&&status1==true){

 b1=gplbeginline;

 status1=false;

 }

162

 if(dsllinenumber==9&&status2==true){

 b2=file_io.getLinenumber();

 status2=false;

 }

 }

 }

 after(FileIO file_io, String st):

 target(file_io)&&call (void FileIO.print(String))&&args(st)

 {

 if ((st.startsWith("y = "))

 || (st == "}")

 || (st == "int time = 0;")

 || (st == "time=time+1;")

 || (st.startsWith("int y = "))

 || (st == "System.out.println(\"x coordiator= \" + x + \"

 \" + \"y coordinator= \" + y);")) {

 gplendline = file_io.getLinenumber();

 if (dsllinenumber == 1 && status3 == true) {

 status3 = false;

 e1 = gplendline;

 filemap.print(" mapping.add(new Map(" + dsllinenumber

 +",\"Robot.java\","+b1+","+e1+"));");

 } else if (dsllinenumber == 9 && status4 == true) {

 status4 = false;

 e2 = file_io.getLinenumber();

 filemap.print(" mapping.add(new Map(" + dsllinenumber

 +", \"Robot.java\","+b2+","+e2+"));");

 filemap.print("mapping.add(new Map("+(dsllinenumber

+ 1)+ ",\"Robot.java\"," + e2 + "," +e2

+ "));");

 filemap.print("dsllinenumber=" + dsllinenumber);

 filemap.end();

 }

 }

 }

 private void match(int name){

 switch(name){

 case PTokenTypes.BEGIN:

 filemap.begin("Mapping.txt");

 dsllinenumber=dsllinenumber+1;

 break;

 case antlr.Token.EOF_TYPE:

 dsllinenumber=dsllinenumber+1;

 break;

 default:

 break;

 }

 }

}

163

APPENDIX C

ASPECTG GRAMMAR SPECIFICATION

164

This Appendix provides the AspectG grammar specification. The following

represents the complete AspectG grammar as specified in ANTLR.

class AspectG extends Parser;

root

:

(

 ASPECT IDENTIFIER LPAREN pointcuts advices RPAREN EOF!

)

 ;

pointcuts

:

(

pointcut sp pointcuts

 |

)

;

sp

:

(

 SEMICOLON

 |AND

)

;

pointcut

:

(

 WITHIN STRING

 |MATCH STRING

 |POINTCUT IDENTIFIER COLON pointcut

)

;

advices

:

(

 advice advices

 |

)

;

advice

:

(

 BEGIN IDENTIFIER STRING

 |AFTER IDENTIFIER STRING

 |END IDENTIFIER STRING

 |BEFORE IDENTIFIER STRING

)

;

165

signature

:

(

 type_pattern type_pattern

)

;

type_pattern

:

(

 type_name_pattern type_pattern

 |

)

;

type_name_pattern

:

(

 STAR

 | PERIOD

 | IDENTIFIER

)

;

166

APPENDIX D

PARLANSE TRANSFORMATION FUNCTIONS FOR ASPECTG

167

This Appendix provides the PARLANSE functions that assist in weaving

language extensions into the ANTLR grammar prior to code generation of the parser and

lexer. These rules help to weave the debugging aspects into the Robot language grammar.

These transformation functions are discussed in Chapter 5 of the dissertation, where

aspects are weaved directly into grammars to support the DDF and DUTF.

D.1 After Weaving Function

The following represents the complete after weaving function written in

PARLANSE.

(define after_advice

 (lambda Registry:CreatingPattern

 (value

 (local (;;

 [exec_node AST:Node]

 [search_node AST:Node]

 [new_node AST:Node]

 [empty_node AST:Node]

 [parent AST:Node]

 [mid_node AST:Node]

 [semi_node AST:Node]

 [representation_instance AST:RepresentationInstance]);;

 (;;

 (= exec_node (AST:FindChildWithProperty arguments:3

 (lambda (function boolean AST:Node)function

 (value (local (;;);;

 (;;

 (ifthen (== (AST:GetNodeType ?)GrammarConstants:NodeTypes:_~'~}~')

 (;;

 (Console:PutString ` f__after ')

 (return ~t)

);;

)ifthen

 (return ~f)

);;)local

 ~f)

)value

)lambda

)

)

168

 (= mid_node (AST:FindParentWithProperty exec_node

 (lambda (function boolean AST:Node)function

 (value (local (;;);;

 (;;

 (ifthen (== (AST:GetNodeType ?) GrammarConstants:NodeTypes:_definition_1)

 (return ~t)

)ifthen

 (return ~f)

);;

)local

 ~f

)value

)lambda

)

)

 (ifthen (~= mid_node (void AST:Node))

 (;;

 (= mid_node (AST:GetNthChild mid_node 1))

 (Console:PutString (@(AST:GetString arguments:2)))

 (ifthen (==(@ (AST:GetString mid_node))(@ (AST:GetString arguments:2)))

 (;;

 (Console:PutString ` mid_node3 ')

 (ifthen (~= exec_node (void AST:Node))

 (;;

 (Console:PutString ` mid_node4 ')

 (= parent (AST:GetParent exec_node))

 (= search_node (AST:GetNthChild parent 2))

 (= representation_instance (AST:GetForestRepresentationInstance

 (AST:GetForest arguments:1) (AST:GetRepresentation arguments:1)))

 (= new_node (AST:CreateNode representation_instance

GrammarConstants:NodeTypes:_semantic_strings_2))

 (= semi_node (AST:GetNthChild search_node 3))

 (AST:ConnectNthChild new_node 2 arguments:1)

 (AST:ConnectNthChild new_node 3 semi_node)

 (AST:DisconnectNthChild parent 2 search_node)

 (AST:ConnectNthChild new_node 1 search_node)

 (AST:ConnectNthChild parent 2 new_node)

);;

)ifthen

);;

)ifthen

);;

)ifthen

 (return arguments:3)

);;

)local

 (void AST:Node)

)value

)lambda

)define

169

D.2 Middle Weaving Function

The following represents the complete middle weaving function written in

PARLANSE. It weaves aspects into the middle of a semantic action segment of a DSL

grammar.

(define mid_advice

 (lambda Registry:CreatingPattern

 (value

 (local

 (;;

 [exec_node AST:Node]

 [search_node AST:Node]

 [search_string (reference string)]

 [node_string (reference string)]

 [new_node AST:Node]

 [empty_node AST:Node]

 [semi_node AST:Node]

 [parent AST:Node]

 [mid_node AST:Node]

 [temp_node AST:Node]

 [advice_node AST:Node]

 [where_to_apply_transform AST:Node]

 [representation_instance AST:RepresentationInstance]

);;

 (;;

 (= exec_node (AST:FindChildWithProperty arguments:3

 (lambda (function boolean AST:Node)function

 (value (local (;;);;

 (;;

 (ifthen(== ~t (AST:ContainsString ?))

 (;;

 (= search_string (AST:GetString ?))

 (ifthen (== (@ search_string) (@ (AST:GetString arguments:2)))

 (;;

 (Console:PutString ` time ')

 (return ~t)

);;

)ifthen

);;

)ifthen

 (return ~f)

);;)local

 ~f

)value

)lambda

)

)

 (ifthen (~= exec_node (void AST:Node))

 (;;

 (= mid_node (AST:FindParentWithProperty exec_node

 (lambda (function boolean AST:Node)function

 (value (local (;;);;

170

 (;; (ifthen (== (AST:GetNodeType ?)

 GrammarConstants:NodeTypes:_definition_1)

 (return ~t)

)ifthen

 (return ~f)

);;

)local

 ~f

)value

)lambda

)

)

 (ifthen (~= mid_node (void AST:Node))

 (;;

 (= temp_node (AST:GetNthChild arguments:1 1))

 (= temp_node (AST:GetNthChild temp_node 2))

 (= temp_node (AST:GetNthChild temp_node 2))

 (= temp_node (AST:GetNthChild temp_node 1))

 (= temp_node (AST:GetNthChild temp_node 1))

 (= advice_node (AST:GetNthChild arguments:1 2))

 (= mid_node (AST:GetNthChild mid_node 1))

 (ifthen (==(@ (AST:GetString mid_node)) (@ (AST:GetString temp_node)))

 (;;

 (ifthen (~= exec_node (void AST:Node))

 (;;

 (Console:PutNatural (AST:NumberOfParents exec_node))

 (=where_to_apply_transform (AST:FindParentWithProperty

 exec_node

 (lambda (function boolean AST:Node)function

 (value (local (;;);;

 (;;

 (ifthen (== (AST:GetNodeType ?)

 GrammarConstants:NodeTypes:_semantic_strings_2)

 (return ~t)

)ifthen

 (return ~f)

);;

)local

 ~f

)value

)lambda

)

)

 (=where_to_apply_transform (AST:GetParent where_to_apply_transform))

 (= search_node (AST:GetNthChild where_to_apply_transform 1))

 (= representation_instance (AST:GetForestRepresentationInstance

 (AST:GetForest arguments:1) (AST:GetRepresentation arguments:1)))

 (= new_node (AST:CreateNode representation_instance

 GrammarConstants:NodeTypes:_semantic_strings_2))

 (= semi_node (AST:GetNthChild where_to_apply_transform 3))

 (AST:ConnectNthChild new_node 2 advice_node)

 (AST:ConnectNthChild new_node 3 semi_node)

 (AST:DisconnectNthChild where_to_apply_transform 1 search_node)

 (AST:ConnectNthChild where_to_apply_transform 1 new_node)

 (AST:ConnectNthChild new_node 1 search_node)

);;

)ifthen

);;

)ifthen

);;

)ifthen

);;

171

)ifthen

 (return arguments:3)

);;

)local

 (void AST:Node)

)value

)lambda

)define

