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Abstract

A key enabler of the recently adopted, assembly-
centric development approach for distributed real-time soft-
ware systems is QoS-enabled middleware, which provides
reusable building blocks in the form of design patterns that
codify solutions to commonly recurring problems. These
patterns can be customized by choosing an appropriate set
of configuration parameters. The configuration options of
a pattern exert a strong influence on system performance,
which especially for real-time systems is of paramount im-
portance. Despite this significant influence, currently there
are no techniques available to analyze performance at de-
sign time, prior to the use of a pattern in a system.

Many software systems are based on an event-driven
paradigm, primarily because it fosters evolvability and
composability. The event demultiplexing and dispatching
capabilities that are uniform across such systems are encap-
sulated in the Reactor pattern, which can be used to facil-
itate their development. Design-time performance analysis
of these event-driven systems thus requires a model of the
Reactor pattern. In this paper, we present a performance
model of the Reactor pattern based on the Stochastic Re-
ward Net (SRN) modeling paradigm. We discuss how the
model can be used to obtain performance metrics such as
throughput, loss probability and upper and lower bounds
on the response time. We illustrate the use of the model to
guide the selection of configuration options and for sensitiv-
ity analysis using a case study of a handheld mobile device.
We also validate the performance estimates obtained from
the model using simulation.

1 Introduction

Society today is increasingly reliant on the services pro-
vided by distributed real-time software systems. These ser-
vices have permeated our lives and have become prevalent

in many domains including health care, finance, telecom-
munications and avionics. In many of these domains, the
performance of a service is just as important as the func-
tionality provided by the service.

To counter the dual pressures of developing systems
which offer a rich menu of services with superior perfor-
mance, while simultaneously reducing their time to market,
service providers are increasingly favoring the assembly-
centric approach over the traditional development-centric
approach. A key facilitator of this assembly-centric ap-
proach has beenQoS-enabled middleware[1]. Middle-
ware consists of software layers that provide platform-
independent execution semantics and reusable services that
coordinate how system components are composed and in-
teroperate. Middleware offers a large number of reusable
building blocks in the form of design patterns [2, 3], which
codify solutions to commonly recurring problems. These
patterns can be customized with an appropriate set of con-
figuration parameters as per system requirements.

The choice of configuration parameters have a profound
influence on the performance of a pattern and hence a sys-
tem implemented using the pattern. Despite the influence on
system performance, which is crucial for real-time systems,
current methods of selecting the patterns and their config-
uration options are manual,ad-hocand hence error-prone.
The problem is further compounded, because there are no
techniques available to analyze the impact of different con-
figuration parameters on the performance of a pattern prior
to building a system. Performance analysis is thus invari-
ably conducted after a system is assembled, and it is of-
ten too late and too expensive to take corrective action if a
particular selection of patterns and their configuration para-
meters cannot satisfy the desired performance expectations.
The capability to conduct design-time performance analy-
sis of middleware patterns and the composition of these pat-
terns is thus necessary, especially for systems with stringent
performance requirements.

A growing number of software systems are being based
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on an event-driven paradigm [4], which constitutes a
provider/listener model [5]. In this paradigm, the system
listens for service requests or “events” and provides the nec-
essary services in response to these requests. These ser-
vice requests may be issued by end-users or by other sys-
tems. In the latter case, an event-driven system may be
viewed as a component of a larger composition of systems,
or systems-of-systems. Event-driven systems provide many
advantages, the most prominent ones being evolvability and
composability. Evolvability is enabled by the separation of
event demultiplexing and dispatching from event handling.
Composability is enabled by the ability to invoke a service
transparently without any knowledge of its underlying im-
plementation. Although event handling is specific to a sys-
tem, the event demultiplexing and dispatching functional-
ity is uniform across all the systems that follow the event-
driven style. The event demultiplexing and dispatching ca-
pability is codified into a middleware pattern called theRe-
actorpattern [3]. This pattern can be reused to facilitate the
development of event-driven systems.

To enable design-time performance analysis of Reactor-
based, event-driven systems, a model which captures the
demultiplexing and dispatching functionality encapsulated
by the Reactor pattern is essential. This paper describes a
performance model of a Reactor-based system based on the
Stochastic Reward Net (SRN) modeling paradigm [6]. We
discuss how the model can be used to obtain performance
metrics such as throughput, loss probability, and upper and
lower bounds on the response time. We illustrate the use
of the model to guide the selection of configuration options
and for sensitivity analysis using a case study of a hand-
held mobile device. We validate the performance estimates
obtained from the model using simulation.

The organization of the paper is as follows: Section 2
provides an overview of the Reactor pattern and Section 3
briefly reviews the SRN modeling paradigm. Section 4 dis-
cusses the performance analysis methodology. Section 5
illustrates the use of the methodology using a case study.
Section 6 summarizes the related research. Section 7 offers
concluding remarks and future research directions.

2 Overview of the Reactor pattern

Figure 1 depicts a typical event demultiplexing and dis-
patching mechanism documented in the Reactor pattern [3].
The system registers an event handler with the event demul-
tiplexer and delegates to it the responsibility of listening to
incoming events. On the occurrence of an event, the demul-
tiplexer dispatches the event by making a callback to the
correct system-supplied event handler. This is the idea be-
hind the Reactor pattern, which provides synchronous event
demultiplexing and dispatching capabilities.

The dynamics of the Reactor pattern can be categorized

Figure 1. Event demultiplexing pattern

into two phases [3]:

1. Registration phase: In this phase all the event han-
dlers register with the Reactor associating themselves
with a particular event type they are interested in.
Event types usually supported by a Reactor are in-
put, output, timeout and exceptions. The Reactor will
maintain a set of handles corresponding to each han-
dler registered with it.

2. Snapshot phase: After the event handlers have com-
pleted their registration, the main thread of control is
passed to the Reactor, which in turn listens for events
to occur. A snapshot represents an instance in time
wherein a Reactor determines all the event handles
that are enabled at that instant. For all the event han-
dles that are enabled in a given snapshot, the Reactor
proceeds to service each event by invoking the asso-
ciated event handler. There could be different strate-
gies to handle these events. For example, a Reactor
could handle all the enabled events sequentially in a
single thread or could hand it over to worker threads
in a thread pool. After all the events are processed, the
Reactor proceeds to take the next snapshot.

3 Stochastic Reward Nets (SRNs)

In this section we provide an overview SRNs, which is
the modeling paradigm used in the analysis methodology.
The details of SRNs can be obtained from elsewhere [6].

A SRN is a directed graph, which contains two types
of nodes:placesand transitions. A directed arc connect-
ing a place (transition) to a transition (place) is called an
input (output) arc. Arcs are associated with a positive in-
teger called themultiplicity. Places can containtokensthat
move from one place to another through transitions. A tran-
sition is enabled when each of the places connected to it
by its input arc have at least the number of tokens equal to
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the multiplicity of those arcs. When an enabled transition
fires, a number of tokens equal to the input arc multiplic-
ity is removed from each of the corresponding input places,
and a number of tokens equal to the output arc multiplic-
ity is deposited in each of the corresponding output places.
A SRN may also include aninhibitor arc, which can also
have a multiplicity associated with it. An inhibitor arc in-
hibits the transition it is connected to if the place it is con-
nected to at its other end has a number of tokens equal to at
least its multiplicity. The state of a SRN withP places is
represented by a vector(m1, m2, · · · , mp) called themark-
ing of the SRN, wheremi is the number of tokens in place
i. A SRN marking with at least one immediate transition
enabled is called avanishing marking, and a marking with
no immediate transitions enabled is called atangible mark-
ing. A reward function may be associated with each tan-
gible marking of a SRN. A reward function is a function
of a SRN marking that accepts the number of tokens in
one or more places of a SRN as input and evaluates to a
real number. This function is usually designed to quantify
the “value” that the system provides in a state. The tangi-
ble markings of a SRN and the rates of transition among
them are equivalent to the corresponding states and state
transitions of an underlying continuous time Markov chain
(CTMC) [7]. Hence, a SRN can be mapped into an equiv-
alent Markov reward model (MRM) [6], automatically us-
ing software tools such as the Stochastic Petri Net Package
(SPNP) [8]. SRN models allow a concise specification of
various reward functions. To extend the power of specifica-
tion, a SRN may also include the specification ofenabling
(or guard) functionsfor each transition. The transition is
enabled only if the enabling function returns one.

SRNs substantially extend the modeling power of Gener-
alized Stochastic Petri Nets (GSPNs) [9], which are an ex-
tension of Petri nets [10]. SRNs represent a powerful mod-
eling technique with concise specification and form closer
to a designer’s intuition. As a result, it is also easier to trans-
fer the results obtained from solving the models and inter-
pret them in terms of the entities in the modeled system.
SRNs have been extensively used for performance and re-
liability analysis of a variety of systems including cluster
systems, polling systems, and wireless networks [7].

4 Performance analysis methodology

In this section we describe the performance analysis
methodology for a Reactor-based system.

4.1 System characteristics

We consider an event-driven system which uses a single-
threaded, select-based Reactor with the following charac-
teristics, as shown in Figure 2:

Figure 2. Characteristics of the Reactor-
based system

• The system offers two types of services and hence re-
ceives two types of requests; one for each. The Reactor
pattern used to implement the system thus receives two
types of input events1 with one event handler for each
type of event registered with the Reactor.

• In the system, each event type has a separate queue to
hold the incoming events of that type. The buffer ca-
pacities for the queues of type #1 and type #2 events
are denotedN1 and N2, respectively. We note that
event queues are not a part of the Reactor pattern it-
self, but are a part of the overall system.

• Event arrivals for both types of events follow a Poisson
distribution with ratesλ1 andλ2.

• The service times of the events are exponentially dis-
tributed with ratesµ1 andµ2.

• In a given snapshot, if the event handles corresponding
to both the event types are enabled, then they are ser-
viced in no particular order. Thus, the order in which
the events are handled is non-deterministic.

1Due to the one-to-one mapping between a service request and an
event, we use these two terms interchangeably in the rest of the paper.
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4.2 Performance metrics

The following performance metrics are of interest for
each service type provided by the Reactor-based system:

• Throughput – which provides an estimate of the num-
ber of service requests that can be processed by the
system. These estimates are important for many sys-
tems, such as telecommunications call processing.

• Queue length – which provides an estimate of
the queuing for each of the event handler queues.
These estimates are important to develop appropriate
scheduling policies for real-time systems.

• Probability of event loss – which indicates how many
events will have to be discarded due to the lack of
buffer space. These estimates are important particu-
larly for safety-critical systems, which cannot afford
to lose events. These also provide an estimate of the
desired levels of resource provisioning.

• Response time – which indicates the total time taken
by the system to complete the service in response to a
service request. In addition to obtaining an estimate of
the average response time, it is also necessary to esti-
mate the upper and the lower bounds on the response
time. The upper bound estimate can be used to deter-
mine if the deadlines can be met in the worse case for
real-time services.

4.3 Performance model

In this section we introduce the performance model of
a Reactor-based system described in Section 4.1 using the
SRN paradigm. We first describe the structural aspects of
the net, followed by its dynamic evolution and finally a
discussion of the assignment of the reward functions.

Description of the net: The net shown in Figure 3 is com-
prised of two parts. Part (a) models the arrival, queuing,
and service of the two types of events. TransitionsA1 and
A2 represent the arrivals of the events of type #1 and #2,
respectively. PlacesB1 andB2 represent the queues for the
two types of events. TransitionsSn1 andSn2 are imme-
diate transitions that are enabled when a snapshot is taken.
PlacesS1 andS2 represent the enabled handles of the two
types of events, whereas transitionsSr1 andSr2 represent
the execution of the enabled event handlers of the two types
of events. An inhibitor arc from placeB1 to transitionA1
with multiplicity N1 prevents the firing of transitionA1
when there areN1 tokens in placeB1. The presence of
N1 tokens in placeB1 indicates that the buffer to hold the
input events of type #1 is full, and no additional events can

be accepted. The inhibitor arc from placeB2 to transition
A2 achieves the same purpose for type #2 events.

Part (b) models the process of taking successive snap-
shots and non-deterministic service of event handles in
each snapshot as follows. TransitionSn1 is enabled when
there are one or more tokens in placeB1, a token in place
StSnpSht, and no token in placeS1. Similarly, transition
Sn2 is enabled when there are one or more tokens in place
B2, a token in placeStSnpSht and no token in placeS2.
Transition T StSnp1 and T StSnp2 are enabled when
there is a token in either placeS1 or S2 or both. Transitions
T EnSnp1 andT EnSnp2 are enabled when there are no
tokens in both placesS1 andS2. TransitionT ProcSnp2
is enabled when there is no token in placeS1, and a token
in placeS2. Similarly, transitionT ProcSnp2 is enabled
when there is no token in placeS2 and a token in placeS1.
TransitionSr1 (Sr2) is enabled when there is a token in
placeSnpInProg1 (SnpInProg2). Table 1 summarizes
the enabling functions for the transitions in the net.

Dynamic evolution of the net: We explain the process of
taking a snapshot and servicing the enabled event handles
in the snapshot, with a scenario where there is one token
each in placesB1 and B2. Because there are tokens in
placesB1, B2 andStSnpSht, transitionsSn1 and Sn2
are enabled. Both of these transitions are assigned the same
priority, and hence either one of them can fire. Without
loss of generality, we assume that transitionSn1 fires first,
which deposits a token in placeS1. The presence of a
token in placeS1 and placeStSnpSht enables transition
T StSnp1. Also, transitionSn2 is already enabled. If
transitionT StSnp1 were to fire before transitionSn2, the
firing of transitionSn2 would be precluded. In order to
prevent this from happening, transitionSn2 is assigned a
higher priority than transitionT StSnp1, so that transition
Sn2 fires beforeT StSnp1 when both are enabled. Firing
of transition Sn2 deposits a token in placeS2 which
enables transitionT StSnp2. TransitionsT StSnp1 and
T StSnp2 are both enabled, corresponding to the event
handles of both types of events. If transitionT StSnp1
fires beforeT StSnp2, then the event handle for type
#1 event will be executed prior to the event handle for
a type #2 event. However, ifT StSnp2 fires before
T StSnp1, then the event handle for a type #2 event will
be executed prior to event handle for a type #1 event. Both
the transitionsT StSnp1 and T StSnp2 have an equal
chance of firing, and this represents the non-determinism in
the execution of the enabled event handles. Without loss of
generality, we assume transitionT StSnp1 fires depositing
a token in placeSnpInProg1, which enables transition
Sr1. Additionally, firing of transitionT StSnp1 precludes
the firing of transitionT StSnp2 and vice versa. Once
transitionSr1 fires, a token is removed from placeS1, after
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Figure 3. SRN model of the Reactor pattern

Table 1. Guard functions
Transition Guard function

Sn1 ((#StSnpShot == 1)&&(#B1 >= 1)&&(#S1 == 0))?1 : 0
Sn2 ((#StSnpShot == 1)&&(#B2 >= 1)&&(#S2 == 0))?1 : 0

T StSnp1 ((#S1 == 1)||(#S2 == 1))?1 : 0
T StSnp2 ((#S1 == 1)||(#S2 == 1))?1 : 0

T ESnpSht1 ((#S1 == 0&&(#S2 == 0))?1 : 0
T ESnpSht2 ((#S1 == 0&&(#S2 == 0))?1 : 0
T ProcSnp1 ((#S1 == 1&&(#S2 == 0))?1 : 0
T ProcSnp2 ((#S1 == 0&&(#S2 == 1))?1 : 0

Sr1 (#SnpInProg1 == 1)?1 : 0
Sr2 (#SnpInProg2 == 1)?1 : 0

which transitionT ProcSnp2 fires and deposits a token
in placeSnpInProg2. A token in placeSnpInProg2
enables transitionSr2, the firing of which removes the
token from placeS2. OnceSr2 fires, there are no tokens
in placesSnpInProg1 andSnpInProg2, which enables
transitionT EnSnp2. The firing ofT EnSnp2 marks the
completion of the present snapshot, and the beginning of
the next one.

Assignment of reward functions: The performance mea-
sures for event type #1 can be obtained by assigning the
reward functions summarized in Table 2. These rates are
obtained using the following reasoning. The throughputT1

is given by the rate at which transitionSr1 fires. The queue
lengthQ1 is given by the number of tokens in placeB1.
The loss probabilityL1 is given by the probability ofN1 to-
kens in placeB1. The reward functions to obtain the lower
and the upper bounds of the response time are determined
using the tagged customer approach [11], in which the tra-
jectory of an arriving event is followed until its exit. The
response time of the tagged event is determined for each
possible system state when the event arrives. The expected

response time is given by the weighted sum of the response
times in each system state, with the weights given by the
occurrence probabilities of each state.

To determine the response time of a tagged type #1 event,
we define the system state as the number of tokens or mark-
ings of placesS1, S2, B1 andB2. The markings of places
S1 andS2 determine the progress of the ongoing snapshot
when the tagged event arrives. Even if the queues are empty,
this ongoing snapshot must be completed before the tagged
event can be serviced. The time taken to complete the ongo-
ing snapshot isS1 × 1

µ1

+ S2 × 1

µ2

. To determine the con-
tribution of the events in the queues to the response time,
we let n1 andn2 denote the number of events of type #1
and #2 in the queues, when the tagged type #1 event ar-
rives. Because there aren1 events in the queue of type #1
events, the tagged event will be serviced aftern1 snapshots.
If n1 ≤ n2, the service time of the firstn1 snapshots will be
n1 × (1/µ1 + 1/µ2). In the snapshot in which the tagged
event is serviced, there is a50% chance that an event of
type #2 will be serviced before the tagged event. Thus, the
service time of the snapshot in which the tagged event is
serviced is given by1/µ1 +0.5/µ2. If n1 > n2, the service
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Table 2. Reward functions for performance measures
Performance metric Reward function

T1 return rate(Sr1)
T2 return rate(Sr2)
Q1 return (#B1)
Q2 return (#B2)
L1 return (#B1 == N1?1 : 0)
L2 return (#B2 == N2?1 : 0)
R1,l if (#B1 < N1) {

if (#B1 < #B2)
return((1/µ1 ∗ (#S1 + #B1 + 1) + 1/µ2 ∗ (#S2 + #B1)))
else
return((1/µ1 ∗ (#S1 + #B1 + 1) + 1/µ2 ∗ (#S2 + #B2))) }

else return(0.0)
R1,u if (#B1 < N1)

return((1/µ1 ∗ (#S1 + #B1 + 1) + 1/µ2 ∗ (#S2 + #B1 + 0.5)))
else
return(0.0)

R2,l if (#B2 < N2) {
if (#B2 < #B1)
return((1/µ2 ∗ (#S2 + #B2 + 1) + 1/µ1 ∗ (#S1 + #B2)))
else
return((1/µ2 ∗ (#S2 + #B2 + 1) + 1/µ1 ∗ (#S1 + #B1))) }

else return(0.0)
R2,u if (#B2 < N2)

return((1/µ2 ∗ (#S2 + #B2 + 1) + 1/µ1 ∗ (#S1 + #B2 + 0.5)))
else
return(0.0)

time of the firstn2 snapshots will ben2 × (1/µ1 + 1/µ2).
During the firstn2 snapshots, in the best situation, no addi-
tional type #2 events will arrive. Then the service time of
the(n2+1)st throughn1

st snapshot is(n1−n2)×1/µ1, and
the service time of the snapshot in which the tagged event is
serviced is1/µ1. In the worse case, however, an additional
n1 − n2 + 1 events of type #2 will arrive in the firstn2

snapshots, in which case, the service time of the(n2 + 1)st

throughn1
st snapshots will be(n1 −n2)× (1/µ1 +1/µ2).

The service time of the snapshot in which the tagged event
is serviced is the same as in the case whenn1 ≤ n2. Based
on this reasoning, the upper and the lower bounds of the re-
sponse time of type #1 events, denotedR1,u andR1,l, can
be obtained using the reward functions in Table 2.

4.4 Model variations

In the SRN model of the Reactor-based system, the ar-
rival and the service time distributions are assumed expo-
nential to facilitate a discussion of the process of building a
SRN-based model. This assumption may not hold in certain
types of systems. For example, in safety-critical systems,

events may occur periodically, hence the arrival process is
deterministic. The arrival and service times may also follow
any other non-exponential or general distributions, which
can be considered in the SRN model using two methods. In
the first method, a non-exponential distribution can be ap-
proximated using a phase-type approximation [6], and the
resulting SRN model can then be solved using SPNP [8]. In
the second method, the model can be simulated using the
discrete-event simulation in SPNP [8].

5 Case study

In this section we illustrate the use of the performance
analysis methodology described in Section 4 with a case
study of a handheld mobile device. Figure 4 illustrates a
typical software architecture for event demultiplexing and
dispatching in mobile handhelds. Handhelds, such as PDAs,
have been at the forefront of ubiquitous computing and are
becoming increasingly complex due to the need to support
multiple applications, such as email, web browsing, calen-
dar management, multimedia support, and games. Because

6



these handhelds are used in many critical domains (e.g., pa-
tient health care monitoring and emergency response sys-
tems), they must provide exceptional performance.

Figure 4. Event demultiplexing in handhelds

The application mix available in the handhelds is aptly
suited for event-driven systems, which require demultiplex-
ing and dispatching events to the correct event handlers in
the handheld. For example, a user of the handheld could
have set appointments in his/her calendar, which might raise
an event while the user may be in the midst of web brows-
ing. Similarly, it is conceivable that email notification ar-
rives while the user is in the midst of web browsing or lis-
tening to an MP3 song. In the context of handhelds that are
tailored to provide service to emergency response person-
nel, one could conceive of scenarios where sensor data from
a phenomenon of interest is received by the handheld with
other notifications, such as Short Message Service (SMS)
notifications from command and control.

For the sake of illustration, we consider a handheld sys-
tem which provides two services; namely, the SMS and
email service. To implement this service mix, the Reac-
tor pattern with the characteristics described in Section 4.1
can be used for demultiplexing the requests. Because of the
real-time nature of SMS notifications, it is necessary to keep
the response time of these notifications below an acceptable
threshold. In addition, the probability of rejecting email
messages and SMS notifications must be negligible. The
SRN model of the Reactor-based system can guide the se-
lection of configuration and provisioning options to achieve
the performance objectives outlined above. To use the SRN
model, we designate the SMS notification and email mes-
sage requests as events of type #1 and #2, respectively.

We designed two experiments to demonstrate the use of
the SRN model. In each experiment, performance estimates
were obtained by solving the SRN model using SPNP [8].
The estimates obtained from the SRN model were also
validated using simulation implemented using CSIM [12],

a general purpose language used to build simulation models.

Experiment I: Impact of buffer capacity
The first experiment assesses the influence of a system con-
figuration parameter, namely, the buffer capacity on the ser-
vice performance. The allocation of buffer capacity will
have a direct impact on the performance metrics, most no-
tably on the loss probabilities of service requests.

We analyze the impact of two settings of the buffer ca-
pacities,N1 = N2 = 1 andN1 = N2 = 5 on the perfor-
mance measures. The arrival ratesλ1 andλ2 were set to
0.4/s and the service ratesµ1 andµ2 were set to2.0/s. The
performance metrics for both of these cases are summarized
in Table 3. Because the parameters for SMS service (λ1, µ1

andN1) are the same as the parameters of email service (λ2,
µ2, andN2), the performance estimates are nearly similar
for both types of services. Thus, performance estimates for
only one service type are reported in Table 3.

It can be observed that the loss probability is significant
when the buffer capacity is1 and is negligible when the
buffer capacity is5. Also, due to the higher loss probability,
the throughput is slightly lower when the buffer capacity is
1 and is almost identical to the arrival rate when the buffer
capacity is5. Thus, for the arrival and service rates consid-
ered, the buffer capacity must be at least5 to ensure very
low likelihood of losing service requests.

Table 3. Buffer capacity vs. performance

Measure Buffer space
N1 = N2 = 1 N1 = N2 = 5

SRN CSIM SRN CSIM
T1 0.37/sec. 0.37/sec. 0.40/sec. 0.40
Q1 0.064 0.0596 0.12 0.115
L1 0.064 0.00024
R1,l 0.63 sec. 0.676 sec. 0.79 sec. 0.830 sec.

(average) (average)
R1,u 0.86 sec. 1.08 sec.

The results in Table 3 indicate that the throughput, loss
probability and queue length obtained from the SRN model
are very close to the estimates obtained from simulation.
Further, the average response time estimated from simula-
tion lies within the upper and lower bounds of the response
times obtained from the SRN model. The SRN model can
thus be used to determine an appropriate level of buffer
provisioning for specific arrival and service rates, thereby
eliminating the need to conduct lengthy simulations.

Experiment II: Impact of request arrival rates
In the early stages of the life cycle, it is rarely the case that
the values of the input parameters can be estimated with cer-
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tainty, which makes it imperative to analyze the sensitivity
of the performance measures to the variations in the input
parameters for a given choice of configuration options.

In the second experiment, we analyzed the sensitivity of
the performance measures to the input parameters; namely,
the arrival rates of the service requests. The parameters
λ1 andλ2 were varied one at a time in the range0.5/s to
1.8/s, roughly in steps of0.025 and the expected perfor-
mance measures were obtained using the SRN model and
simulation. The buffer capacities were set to5, since the
results of the previous experiment indicated that the loss
probabilities were negligible for this buffer capacity. The
service rates were set to2.0/s.

Figure 5 shows the performance measures as a function
of λ1. The plots in the first and second column show the
measures for SMS and email services respectively. The
plots in the first, second, third and fourth rows respectively
show throughput, queue length, loss probability, and re-
sponse time. The top-left plot indicates that the throughput
of SMS notifications increases and keeps pace with the ar-
rival rate till it is below1.1/s. When the arrival rate exceeds
1.1/s, the throughput starts lagging the arrival rate, indicat-
ing that the system cannot service the incoming SMS notifi-
cations at the rate at which they arrive. The loss probability
and the queue length increase afterλ1 = 1.1/s, indicating
that the queue operates near capacity and results in a re-
jection of SMS notifications leading to reduced throughput.
Thus, if the arrival rate of SMS notifications exceeds1.1/s.,
the buffer capacity of five is not sufficient to prevent loss
of requests. The loss probability increases substantiallyif
λ1 exceeds1.9/s, indicating that the system cannot sustain
the inflow of SMS notifications with its current event han-
dling/service rate. Finally, referring to the last plot in the
first column, the average response time of SMS notifications
is closer to the lower bound for low values ofλ1 and moves
closer to the upper bound as the value ofλ1 increases. The
response time of SMS notifications may thus become unac-
ceptable for the entire range of variation ofλ1 for a given
service rate of2.0/s.

The throughput and the loss probability of email mes-
sages is unaffected by an increase inλ1. The queue length
and the response time of email messages shows only a slight
increase withλ1. This slight increase occurs because the
probability that a SMS notification will have to be serviced
in each snapshot increases with increasingλ1. As a result,
the effective service time of email messages increases caus-
ing a rise in the queue length and the response time. The
trend in the response time for email messages is similar to
the response time trend for SMS notifications; i.e., closer
to the lower bound for lower values ofλ1 and to the upper
bound for higher values. However, the difference between
the highest and the lowest response times for email mes-
sages is smaller than the difference for SMS notifications.

Similar trends, with the roles of SMS notifications and
email messages reversed were observed whenλ2 was var-
ied. Although the trends are similar, the implications are
significantly different. As shown in Figure 5, when the ar-
rival rate of SMS notifications increases, the response time
provided by the system for these notifications increases and
approaches the pessimistic or upper bound. As indicated
earlier, the response time of SMS notifications may become
unacceptable beyond a certain threshold, after which it may
become necessary to improve the service rate of the event
handler. When the arrival rate of email messages (λ2) in-
creases, the response time of SMS notifications also in-
creases, however, the increase is much smaller compared
to the increase whenλ1 increases. Thus, an increase in the
response time of SMS notifications occurring due to an in-
crease inλ2 may be tolerated, whereas, an increase due to
an increase inλ1 may be unacceptable.

6 Related research

Performance and dependability analysis of some mid-
dleware services and patterns has been addressed by a few
researchers. Aldredet al. [13] develop Colored Petri Net
(CPN) models for different types of coupling between the
application components and with the underlying middle-
ware. They also define the composition rules for composing
the CPN models if multiple types of coupling is used si-
multaneously in an application. A dominant aspect of these
works are related to application-specific performance mod-
eling. In contrast, we are concerned with determining how
the underlying middleware that is composed for the systems
they host will perform. Kahkipuro [14] propose a multi-
layer performance modeling framework based on UML and
queuing networks for CORBA-based systems. The research
reported in this paper is concerned with performance analy-
sis of a specific design pattern used in the development of
event-driven systems. The work closest to the research pre-
sented in this paper is by Ramaniet al. [15], where a per-
formance model of the CORBA event service (a pattern for
publish/subscribe service) is developed.

To predict the quality attributes of an assembled com-
plex system, it is necessary to compose the attributes of the
components comprising the system [16]. Along these lines,
our future research is focused on developing techniques to
compose models of a collection of patterns to obtain the
end-to-end performance of a system.

7 Conclusions and future research

In this paper we presented a performance model of the
Reactor-based system, which embodies the event demulti-
plexing and dispatching capabilities that lie at the heart of
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event-driven systems. The model is based on the Stochastic
Reward Net (SRN) modeling paradigm and can be used for
design-time performance analysis of Reactor-based, event-
driven systems. We illustrated the model to guide the selec-
tion of configuration parameters and for sensitivity analysis
with a case study of a handheld mobile device. We vali-
dated the performance estimates obtained from the model
using simulation.

State-space explosion, while solving the SRN model
may be an issue as the queue sizes increase. Developing
model decomposition strategies, which will alleviate this
problem, preferably by providing an approximate analyt-
ical solution is the topic of future research. Developing
performance models of other commonly used middleware
patterns, such as the Proactor and Active Object [3] and
schemes for the composition of performance models
corresponding to the composition of patterns is also a
concern of the future.
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Figure 5. Sensitivity of performance measures to arrival ra te λ1
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