
361

G. Karsai and E. Visser (Eds.): GPCE 2004, LNCS 3286, pp. 361–378, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Model-Driven Program Transformation
of a Large Avionics Framework

Jeff Gray1, Jing Zhang1, Yuehua Lin1, Suman Roychoudhury1, Hui Wu1,
Rajesh Sudarsan1, Aniruddha Gokhale2, Sandeep Neema2, Feng Shi2, and Ted Bapty2

1 Dept. of Computer and Information Sciences, University of Alabama at Birmingham
Birmingham, AL 35294-1170

{gray,zhangj,liny,roychous,wuh,sudarsar}@cis.uab.edu
http://www.gray-area.org

2 Institute for Software Integrated Systems, Vanderbilt University
Nashville, TN 37235

{gokhale,sandeep,fengshi,bapty}@isis.vanderbilt.edu
http://www.isis.vanderbilt.edu

Abstract. Model-driven approaches to software development, when coupled
with a domain-specific visual language, assist in capturing the essence of a
large system in a notation that is familiar to a domain expert. From a high-level
domain-specific model, it is possible to describe concisely the configuration
features that a system must possess, in addition to checking that the model pre-
serves semantic properties of the domain. With respect to large legacy applica-
tions written in disparate programming languages, the primary problem of
transformation is the difficulty of adapting the legacy source to match the
evolving features specified in the corresponding model. This paper presents an
approach for uniting model-driven development with a mature program trans-
formation engine. The paper describes a technique for performing widespread
adaptation of source code from transformation rules that are generated from a
domain-specific modeling environment for a large avionics framework.

1 Introduction

A longstanding goal of software engineering is to construct software that is easily
modified and extended. A desired result is to achieve modularization such that a
change in a design decision is isolated to one location [24]. The proliferation of soft-
ware in everyday life (e.g., embedded systems found in avionics, automobiles, and
even mobile phones) has increased the level of responsibility placed on software ap-
plications [9, 29]. As demands for such software increase, future requirements will
necessitate new strategies to support the requisite adaptations across different soft-
ware artifacts (e.g., models, source code, test cases, documentation) [2].

Research into software restructuring techniques, and the resulting tools supporting
the underlying science, has enhanced the ability to modify the structure and function
of a software representation in order to address changing stakeholder requirements
[16]. As shown in Figure 1, software restructuring techniques can be categorized as
either horizontal or vertical. The research into horizontal transformation concerns
modification of a software artifact at the same abstraction level. This is the typical
connotation when one thinks of the term transformation [33], with examples being

362 Jeff Gray et al.

code refactoring [10] at the implementation level, and model transformation [4] and
aspect weaving at a higher design level [13]. Horizontal transformation systems often
lead to invasive composition of the software artifact [1]. In contrast, vertical trans-
formation is typically more appropriately called translation (or synthesis) [33] be-
cause a new artifact is being synthesized from a description at a different abstraction
level (e.g., model-driven software synthesis [12], [23], and reverse engineering). Ver-
tical translations often are more generative in nature [8].

Fig. 1. Two directions of software transformation and translation

The most popular model-driven approach is the Object Management Group’s
(OMGs) Model-Driven Architecture (MDA), which separates application domain
logic from the underlying execution platform [5, 11]. The overwhelming majority of
early MDA efforts are of the translational, or synthesis style. That is, new software
artifacts are generated whole-scale from properties that are refined from platform-
independent models, down to platform-specific models, eventually leading to code.
The challenge arises when MDA is to be applied to literally several hundred billion
lines of legacy code in production use today [30]. To apply model-based techniques to
such systems, it is beneficial to have an approach that is also transformational (i.e.,
one that actually modifies the source code representation) in order to add features to
an existing code base. There are two primary factors that make it difficult to achieve
true transformation of legacy source code from models:

• If pre-existing code is to be transformed from models, the model interpreters (ex-
isting within the modeling environment) must possess the ability to parse the un-
derlying source. Thus, complex parsers must be built into the model interpreter. If
a goal of the modeling environment is to achieve language-independence, then a
new parser must be integrated into the model interpreter for each programming

Model-Driven Program Transformation of a Large Avionics Framework 363

language that is to be supported. This is very time consuming, if not unfeasible
[20].

• Even if a mature parser is constructed for the underlying source, it is then neces-
sary to provide a transformation engine to perform the adaptations to the source
that are specified in the model. This is also a laborious task and was not needed by
previous translators that only generated new artifacts from models. Yet, the need
to synchronize model properties with pre-existing code requires the invasive capa-
bility for altering the code base.

We observe that the two difficulties enumerated above can be ameliorated by inte-
grating the power of a program transformation system, which provides the required
parsers and transformation engine, within a modeling tool chain. This paper describes
our investigation into a synergistic technique that unites model-driven development
(MDD) with a commercially available program transformation engine. Our approach
enables adaptation of a large legacy system from properties described in a high-level
model. A model interpreter generates the low-level transformation rules that are
needed to provide a causal connection between the model description and the repre-
sentative legacy source code. A video demonstration of the approach is available
(please see Section 4 for details).

The rest of the paper is organized as follows: Section 2 provides an overview of the
case study and the two technologies that are integrated to provide the realization of
Model-Driven Program Transformation (MDPT). A domain-specific visual modeling
environment for embedded systems is introduced in Section 3. The heart of the ap-
proach is contained in Section 4. The fourth section also presents two illustrative
examples of the approach applied to concurrency control and a black-box flight data
recorder. The conclusion offers summary remarks, as well as related and future work.

2 Background: Supporting Technologies and Case Study

This paper unites the descriptive power provided by MDD (Section 2.1) with the
invasive modification capabilities of a mature program transformation system (Sec-
tion 2.2). Specifically, representative approaches from MDD and program transforma-
tion are described in this section to provide the necessary background to understand
other parts of the paper. The mission computing framework that will be used as a case
study is also introduced in Section 2.3.

2.1 Model-Integrated Computing

A specific form of MDD, called Model-Integrated Computing (MIC) [28], has been
refined at Vanderbilt University over the past decade to assist the creation and synthe-
sis of computer-based systems. A key application area for MIC is those domains
(such as embedded systems areas typified by automotive and avionics systems [29])
that tightly integrate the computational structure of a system and its physical configu-
ration. In such systems, MIC has been shown to be a powerful tool for providing
adaptability in frequently changing environments. The Generic Modeling Environ-
ment (GME) [21] is a meta-modeling tool based on MIC that can be configured and
adapted from meta-level specifications (called the modeling paradigm) that describe

364 Jeff Gray et al.

the domain [18]. When using the GME, a modeling paradigm is loaded into the tool to
define an environment containing all the modeling elements and valid relationships
that can be constructed in a specific domain. Thus, the approach provides a meta-
environment for constructing system and software models using notations that are
familiar to the modeler. The mission-computing avionics modeling environment de-
scribed in Section 3 is implemented within the GME.

2.2 The Design Maintenance System

The Design Maintenance System (DMS) is a program transformation system and re-
engineering toolkit developed by Semantic Designs (www.semdesigns.com). The core
component of DMS is a term rewriting engine that provides powerful pattern match-
ing and source translation capabilities [3]. In DMS parlance, a language domain
represents all of the tools (e.g., lexer, parser, pretty printer) for performing translation
within a specific programming language. DMS provides pre-constructed domains for
several dozen languages. Moreover, these domains are very mature and have been
used to parse several million lines of code, including the millions of lines of the tar-
geted system explored in our research (i.e., Boeing’s Bold Stroke [26], which is intro-
duced in Section 2.3). Utilization of mature parsers that have been tested on industrial
projects offers a solution to the two difficulties mentioned earlier; i.e., in addition to
the available parsers, the underlying rewriting engine of DMS provides the machinery
needed to perform invasive software transformations on legacy code [1]. Examples of
DMS transformation rules will be given in Section 4.3.

2.3 The Bold Stroke Mission Computing Avionics Framework

Bold Stroke is a product-line architecture written in several million lines of C++ that
was developed by Boeing in 1995 to support families of mission computing avionics
applications for a variety of military aircraft [26]. As participant researchers in
DARPA’s Program Composition for Embedded Systems (PCES), we have access to
the Bold Stroke source code as an experimental platform on which to conduct our
research on MDPT. The following section describes the Bold Stroke concurrency
mechanism that will be used later as an example to demonstrate the possibilities of
our approach.

Bold Stroke Concurrency Mechanisms. To set the context for Sections 3 and 4, the
Bold Stroke concurrency mechanism is presented to provide an example for the type
of transformations that can be performed in order to improve better separation of
concerns within components that have been specified in a domain-specific modeling
language.

There are three kinds of locking strategies available in Bold Stroke: Internal Lock-
ing, External Locking and Synchronous Proxy. The Internal Locking strategy requires
the component to lock itself when its data are modified. External Locking requires the
user to acquire the component’s lock prior to any access of the component. The Syn-
chronous Proxy locking strategy involves the use of cached states to maintain state
coherency through a chain of processing threads.

Model-Driven Program Transformation of a Large Avionics Framework 365

Figure 2 shows the code fragment in the “Update” method of the “BM_PushPull-
Component” in Bold Stroke. This method participates in the implementation of a real-
time event channel [17]. In this component, a macro statement (Line 3) is used to
implement the External Locking strategy. When system control enters the Update
method, a preprocessed guard class is instantiated and all external components that
are trying to access the BM_PushPullComponent will be locked.

Fig. 2. Update method in Bold Stroke BM_PushPullComponentImpl.cpp

After performing its internal processing, the component eventually comes to up-
date its own data. At this point, another macro (Line 11) is used to implement the
Internal Locking strategy, which forces the component to lock itself. Internal Locking
is implemented by the Scoped Locking C++ idiom [25], which ensures that a lock is
acquired when control enters a scope and released automatically when control leaves
the scope. Specifically, a guard class is defined to acquire and release a particular type
of lock in its constructor and destructor. There are three types of locks: Null Lock,
Thread Mutex, and Recursive Thread Mutex. The constructor of the guard class stores
a reference to the lock and then acquires the lock. The corresponding destructor uses
the pointer stored by the constructor to release the lock.

The Problem with Macro-customization. The existence of locking macros, as
shown in Figure 2, is representative of the original code base for Bold Stroke. During
the development of that implementation, the concurrency control mechanisms imple-
mented as locking macros occur in many different places in a majority of the compo-
nents comprising Bold Stroke. In numerous configuration scenarios, the locking mac-
ros may evaluate to null locks, essentially making their existence in the code of no
consequence. The presence of these locks (in lines 3 and 11 of Figure 2), and the
initial effort needed to place them in the proper location, represents a point of concern
regarding the manual effort needed for their initial insertion, and the future mainte-
nance regarding this concern as new requirements for concurrency are added. The
macro mechanism also represents a potential source of error for the implementation of
new components – it is an additional design concern that must be remembered and
added manually in the proper place for each component requiring concurrency con-
trol.

In Section 4, we advocate an approach that permits the removal of the locking
macros (as well as other crosscutting properties) and offers automated assistance in
adding them back into the code only in those places that are implied by properties

366 Jeff Gray et al.

described in a model. Before describing that approach, however, it is essential to in-
troduce the modeling language that is used to specify embedded systems like Bold
Stroke.

3 Embedded Systems Modeling Language

In this section, the Embedded Systems Modeling Language (ESML) is described as a
domain-specific graphical modeling language for modeling real-time mission comput-
ing embedded avionics applications. Its goal is to address the issues arising in system
integration, validation, verification, and testing of embedded systems. ESML has been�
defined within the GME and is being used on several US-government funded research
projects sponsored from DARPA. The ESML was primarily designed by the Vander-
bilt DARPA MoBIES team, and can be downloaded from the project website at
http://www.isis.vanderbilt.edu/Projects/mobies/. There are representative ESML
models for all of the Bold Stroke usage scenarios that have been defined by Boeing.

3.1 ESML Modeling Capabilities

From the ESML meta-model (please see [21] for details of meta-model creation), the
GME provides an instantiation of a new graphical modeling environment supporting
the visual specification and editing of ESML models (see Figures 3 and 4).�The model
of computation used for ESML leverages elements from the CORBA Component
Model [12] and the Bold Stroke architecture, which also uses a real-time event chan-
nel [17].

Fig. 3. Bold Stroke multi-threaded component interaction in ESML

Model-Driven Program Transformation of a Large Avionics Framework 367

The ESML provides the following modeling categories to allow representation of
an embedded system: a) Components, b) Component Interactions, and c) Component
Configurations. Figure 3 illustrates the components and interactions for a specific
scenario within Bold Stroke (i.e., the MC_ConcurrencyMP scenario, which has com-
ponents operating in a multi-processor avionics backplane). This higher-level diagram
captures the interactions among components via an event channel. System timers and
their frequencies are also specified in this diagram.

Figure 4 illustrates the ESML modeling capabilities for specifying the internal con-
figuration of a component. The BM_PushPullComponent is shown in this figure. For
this component, the concurrency control mechanism is specified, as well as facet
descriptors, internal data elements, and a logging policy.

Fig. 4. Internal representation of the BM_PushPullComponent in ESML

3.2 ESML Model Interpreters

The result of modeling in ESML is a set of diagrams that visually depict components,
interactions, and configurations, as shown in Figures 3 and 4. The objective of the
design is to create, analyze, and integrate real systems; thus, we had to define a num-
ber of interfaces to support these activities.

A very important part of domain modeling within the GME is the capability of cre-
ating model interpreters. The modeling environment stores the model as objects in a
database repository, and it provides an API for model traversal using a standard inte-
gration mechanism (i.e., COM) provided by the GME. Using the API, it is possible to
create interpreters that traverse the internal representation of the model and generate
new artifacts (e.g., XML configuration files, source code, or even hardware logic)
based on the model properties. It is possible to associate multiple interpreters to the
same domain.

Three model interpreters have been created for the ESML. The Configuration In-
terface interpreter is responsible for generating an XML file that is used during load-
time configuration of Bold Stroke. The locking macros of Figure 2 are configured

368 Jeff Gray et al.

from this generated file. The Configuration Interface provides an example of vertical
translation that is more aligned with the synthesis idea for generating new artifacts,
rather than a pure transformation approach that invasively modifies one artifact from
descriptions in a model (as in Section 4). A second interpreter for ESML is the Analy-
sis Interface, which assists in integrating third-party analysis tools. A third ESML
interpreter has been created to invasively modify a very large code base from proper-
ties specified in an ESML model. This third interpreter enables the ideas of model-
driven program transformation.

4 Model-Driven Program Transformation

The goal of model-driven program transformation (MDPT) is adaptation of the source
code of a legacy system from properties described in high-level models. A key feature
of the approach is the ability to accommodate unanticipated changes in a manner that
does not require manual instrumentation of the actual source. An essential characteris-
tic of the model-driven process is the existence of a causal connection between the
models and the underlying source representation. That is, as model changes are made
to certain properties of a system, those changes must have a corresponding effect at
the implementation level. A common way to achieve this correspondence is through
load time configuration of property files that are generated from the models (e.g., the
XML configuration file deployed by the Configuration Interface described in Section
3.2). There are two key problems with the load-time configuration file technique,
however:

• The load time configuration mechanism must be built into the existing implemen-
tation. The source implementation must know how to interpret the configuration
file and make the necessary adaptations at all of the potential extension points. For
example, in Bold Stroke the locking strategy used for each component is specified
in an XML configuration file, which is loaded at run-time during initial startup.
The component developer must know about the extension points and how they in-
teract with the configuration file at load time.

• A typical approach to support this load-time extension is macro tailorability, as
seen in Figure 2. At each location in the source where variation may occur, a
macro is added that can be configured from the properties specified in the XML
configuration file. However, this forces the introduction of macro tags in multiple
locations of the source that may not be affected under many configurations. The
instrumentation of the source to include such tailoring is often performed by man-
ual adaptation of the source (see lines 3 and 13 of Figure 2). This approach also
requires the ability to anticipate future points of extension, which is not always
possible for a system with millions of lines of code and changing requirements.

These problems provide a major hurdle to the transfer of model-based and load-
time configuration approaches into large legacy systems. As an example, consider the
two hundred billion lines of COBOL code that are estimated to exist in production
systems [30]. To adopt the load-time configuration file approach to such systems will
require large manual modifications to adjust to the new type of configuration. We
advocate a different approach, based upon the unification of a program transformation
system (DMS) with a modeling tool (GME).

Model-Driven Program Transformation of a Large Avionics Framework 369

Fig. 5. Overview of Model-Driven Program Transformation

Figure 5 presents an overview of the idea of model-driven program transformation.
The key to the approach is the construction of model interpreters that generate trans-
formation rules from the model specifications. The rules are then fed into a program
transformation system (represented in the top-left of Figure 5 that shows the path of
generation from the models to the DMS transformation rules), along with the base
implementation of a large application (e.g., Bold Stroke, as depicted in the bottom-left
of the figure). The overall benefit of the approach is large-scale adaptation across
multiple source files. The adaptation is accomplished through minimal changes to the
models. Such super-linearity is at the heart of the abstraction power provided by
model-driven techniques [14], [29].

In summary of Figure 5, the modeler simply makes changes to models using a
higher-level modeling language, like the ESML. Those models are then interpreted to
generate transformation rules that will invasively modify a large cross-section of an
application. It should be noted that the modeler does not need to understand the acci-
dental complexities of the transformation rule language. That process is transparent
and is generated by the model interpreter. The following two sub-sections provide a
description of crosscutting properties that have been weaved into the Bold Stroke C++
code from the model descriptions. The two examples represent crosscutting concerns
related to concurrency control and recording of flight data information. A final sub-
section introduces the idea of two-level weaving, which allows aspects at the model-
ing level to drive widespread adaptations of the representative source code.

4.1 Weaving Concurrency into Bold Stroke

Recall the concurrency mechanism supported within Bold Stroke, as described in
Section 2.3. In particular, consider the code fragment in Figure 2. There are a few
problems with the macro tailorability approach, as used in this example code frag-
ment:

370 Jeff Gray et al.

• Whenever a new component is created, the developer must remember to explicitly
add the macros in the correct place for all future components (a large source of er-
ror).

• Because a component may be used in several contexts, it is typical that different
locking strategies are used in various usage scenarios. For example, the very exis-
tence of a Null Lock type is a direct consequence of the fact that a component is
forced to process the macro even in those cases when locking may not be needed
for a particular instantiation of the component. The result is that additional com-
pile-time (or, even run-time overhead, if the chosen C++ compiler does not pro-
vide intelligent optimizations) is incurred to process the macro in unnecessary
cases.

As an alternative, this paper presents a solution that does not require the locking to
be explicitly added by the developer to all components. The approach only adds lock-
ing to those components that specify the need in a higher-level model, which is based
on the requirements of the specific application scenario that is being modeled. This
can be seen in the bottom-right of Figure 4, where the type of concurrency is specified
for the selected “Concurrency” modeling atom (an internal null-lock is specified in
this particular case). Suppose that all of the locking strategies did not exist in the
component code (i.e., that lines 3 and 13 were removed from Figure 2 in ALL Bold
Stroke components), and the component developers want to add the External Locking
strategy to all of the hundreds of components that also require concurrency control.
Completing such a task by hand is time-consuming and error-prone.

The DMS reengineering toolkit provides a powerful mechanism to transform code
written in C++ and many other languages. In our investigation into the model driven
program transformation approach, we initially removed the concurrency macros from
a large set of components. We were able to insert different kinds of lock statements
back into all of the Bold Stroke components that needed concurrency, as specified in
the ESML models. This was accomplished by applying DMS transformation rules
that were generated by a new ESML interpreter (see Section 4.3 for details).

4.2 Supporting a Black Box Data Recorder

In avionics systems, an essential diagnostic tool for failure analysis is a “black box”
that records important flight information. This device can be recovered during a fail-
ure, and can reveal valuable information even in the event of a total system loss.
There are several factors that make development of such a data recording device diffi-
cult:
• During ground testing and simulation of the complete aircraft system, it is often

useful to have a liberal strategy for collecting data points. The information that is
collected may come from a large group of events and invocations generated during
testing of a specific configuration of Bold Stroke.

• However, an actual deployed system has very limited storage space to record data.
In a deployed system, data may be collected from a small subset of the points that
were logged during simulation. For example, only a few components may be of
interest during specific phases of a mission. Also, only a subset of events may be
recorded in an operational fighter jet.

Model-Driven Program Transformation of a Large Avionics Framework 371

It is a desirable feature to support the various types of recording policies that may
be observed throughout development, testing, and deployment. Currently, the devel-
opment tools associated with Bold Stroke do not support a capability to plug re-
cording policies easily into the code base. The manual effort that would be required to
plug/unplug different data recording policies throughout all components would be
unfeasible in general practice. It is possible to transform existing Bold Stroke code by
adding the black box flight recorder concern. The recorder information is specified by
a logging policy (as can be seen in the “Log” modeling element of Figure 4). Within
the logging policy, a modeler can specify policies such as “Record the values upon
<entry/exit> of <a set of named methods>” or “Record the value upon every update to
the <data variable>.”

4.3 An Example of the Generated Transformation

The DMS Rule Specification Language (RSL) provides basic primitives for describ-
ing numerous transformations that are to be performed across the entire code base of
an application. The RSL consists of declarations of patterns, rules, conditions, and
rule sets using the external form (concrete syntax) defined by a language domain.
Typically, a large collection of RSL files, like those represented in Figure 6 and Fig-
ure 7, are needed to describe the full set of transformations (we provide these two
specifications as an illustration of the style of RSL that is generated from the ESML
models). The patterns and rules can have associated conditions that describe restric-
tions on when a pattern legally matches a syntax tree, or when a rule is applicable on
a syntax tree.

Figure 6 shows the RSL specification for performing two kinds of transformations:
insertion of an External Locking Statement and an Internal Locking Statement. This
RSL file was generated from the MDPT interpreter that we created, which extends the
capabilities of ESML. The first line of the figure establishes the default language
domain to which the DMS rules are applied (in this case, it is the implementation
environment for Bold Stroke – Visual Studio C++ 6.0). Eight patterns are defined
from line 3 to line 26, followed by two transformation rules. The patterns on lines 3,
6, 9, 13, 26 – along with the rule on line 28 – define the external locking transforma-
tion. Likewise, the patterns on lines 16, 19, 22 – and the rule on line 36 – specify the
internal locking transformation.

Patterns describe the form of a syntax tree. They are used for matching purposes to
find a syntax tree having a specified structure. Patterns are often used on the right-
hand side (target) of a rule to describe the resulting syntax tree after the rule is ap-
plied. In the first pattern (line 3, Figure 6), a very simple pattern is described. This
pattern matches the inserted macro (named UM__GUARD_EXTERNAL_RE-
GION) to the syntax tree expression that is defined as identifier_or_template_id in
the grammar definition of the DMS VC++6.0 domain. The third pattern (line 9) is
used to combine the first and second pattern into a larger one, in order to represent the
full macro statement along with its parameters. The target rule that describes the form
of the resulting syntax tree is specified in the fourth pattern (line 13). This fourth
pattern scopes the protected region and places the external locking statement as the
first statement within the scope. Similarly, the pattern on line 22 describes the form of
the resulting syntax tree after inserting an internal locking statement in front of any

372 Jeff Gray et al.

update of data1_. The last pattern (line 26) provides the context in which the trans-
formation rules will be applied. Here, the rules will be applied to all of the compo-
nents containing an Update method. This pattern is similar to a Join Point in AspectJ
[19]. Although this last pattern is very simple, it quantifies over the entire code base
and selects all of those syntax trees matching the pattern.

The RSL rules describe a directed pair of corresponding syntax trees. A rule is
typically used as a rewrite specification that maps from a left-hand side (source) syn-
tax tree expression to a right-hand side (target) syntax tree expression. As an example,
the rule specified on line 28 of Figure 6 represents a transformation on all Update
methods (specified by the JoinPoint pattern). The effect of this rule is to add an exter-
nal locking statement to all Updates, regardless of the various parameters of each
Update method. Notice that there is a condition associated with this rule (line 33).
This condition describes a constraint that this rule should be applied only when there

Fig. 6. A set of generated locking transformation patterns and rules in the DMS Rule Specifica-
tion Language

Model-Driven Program Transformation of a Large Avionics Framework 373

already does not exist an external locking statement. That is, the transformation rule
will be applied only once. Without this condition, the rules would be applied itera-
tively and fall into an infinite loop. The rule on line 36 applies the transformations
associated with inserting an internal locking statement just before modification of the
internal field named data1_. Rules can be combined into sets of rules that together
form a transformation strategy by defining a collection of transformations that can be
applied to a syntax tree. In the ruleset defined on line 42, the two locking rules are
aggregated to perform a sequence of transformations (i.e., External/Internal Locking).

The logging transformation is much simpler and can be found in Figure 7. For this
example, the “Log on Method Exit” logging policy is illustrated (this is specified as
an attribute in the “Log” modeling element of Figure 4). The patterns on lines 3, 5, 8
– with the rule on line 10 – denote the update logging transformation. The pattern on
line 5 shows the resulting form after inserting a log statement on all exits of the Up-
date method. The corresponding rule on line 10 inserts the logging statement upon the
exit of every Update method of every component.

It is important to reiterate that the modeler/developer does not create (or even see)
the transformation rules. These are created by the ESML interpreter and directly ap-
plied toward the transformation of Bold Stroke code using DMS, as shown in Fig-
ure 5.

Fig. 7. A set of generated logging transformation patterns and rules in the DMS Rule Specifica-
tion Language

With respect to the generalization of the process for supporting new concerns
(other than concurrency and logging strategies as indicated above) in the Bold Stroke
application through the MDPT technique, the following two steps are involved:

• If the current ESML metamodel does not provide the paradigm to specify the new
concern of interest, it has to be extended to include the new model concepts in or-
der to support the new requirements.

• The MDPT interpreter itself also has to be updated to generate the corresponding
DMS transformation rules for the new concerns.

374 Jeff Gray et al.

4.4 Transformation at the Modeling Level

It is interesting to note that the specification of modeling concerns can also cut across
a domain model [13], in the same way that aspects cut across code [19]. That is, the
specification of concurrency and logging concerns in a model may require the mod-
eler to visit multiple places in the model. This is undesirable because it forces the
modeler to spend much time adapting model properties. We have previously worked
on a model transformation engine called the Constraint-Specification Aspect Weaver
(C-SAW), which allows high-level requirements to be weaved into the model before
the model interpreter is invoked [14].

The C-SAW transformation engine unites the ideas of aspect-oriented software de-
velopment (AOSD) [19] with MIC to provide better modularization of model proper-
ties that are crosscutting throughout multiple layers of a model. Within the C-SAW
infrastructure, the language used to specify model transformation rules and strategies
is the Embedded Constraint Language (ECL), which is an extension of Object Con-
straint Language (OCL). ECL provides many common features of the OCL, such as
arithmetic operators, logical operators, and numerous operators on collections. It also
provides special operators to support model aggregates, connections and transforma-
tions that provide access to modeling concepts within the GME. There are two kinds
of ECL specifications: an aspect, which is a starting point in a transformation process,
describes the binding and parameterization of strategies to specific entities in a model;
and a strategy is used to specify elements of computation and the application of spe-
cific properties to the model entities.

Utilizing C-SAW, a modeler can specify a property (e.g., “Record All updates to
All variables in All components matching condition X”) from a single specification
and have it weaved into hundreds of locations in a model. This permits plug-
ging/unplugging of specific properties into the model, enabling the generation of
DMS rules resulting in code transformations. We call this process two-level weaving
[14].

As an example, Figure 8 contains the ECL specification to connect “Log” atoms
(of type “On Method Exit”) to “Data” atoms in ESML models (see Figure 4). The
transformation specification finds all of the “Data” atoms (line 3 to line 6) in every
component whose name ends with “Impl” (line 21 to line 25). For each “Data” atom,
a new “Log” atom is created, which has its “MethodList” attribute as “Update” (line
17). Finally, it connects this new “Log” atom to its corresponding “Data” atom (line
18). As a result, after using C-SAW to apply this ECL specification, “LogOnMetho-
dExit” atoms will be inserted into each component that has a “Data” atom. As a front-
end design capability, model weaving drives the automatic generation of the DMS
rules in Figure 7 to transform the underlying Bold Stroke C++ source program.

Video Demonstration. The web site for this research project provides the software
download for the model transformation engine described in Section 4.4 Additionally,
several video demonstrations are available in various formats of the Bold Stroke
transformation case study presented in this paper. The software and video demonstra-
tions can be obtained at http://www.gray-area.org/Research/C-SAW.

Model-Driven Program Transformation of a Large Avionics Framework 375

Fig. 8. ECL code for adding “LogOnMethodExit” to “Data” in ESML models

5 Conclusion

A distinction is made in this paper between translational approaches that generate
new software artifacts, and transformational techniques that modify existing legacy
artifacts. The model-driven program transformation technique introduced in Section 4
offers a capability for performing wide-scale source transformation of large legacy
systems from system properties described in high-level models.

The major difficulty encountered in this project centered on the initial learning
curve for DMS. Much time was spent in understanding the capabilities that DMS
provides. After passing the initial learning curve, we believe that DMS offers a pow-
erful engine for providing the type of language-independent transformation that is
required for large-scale adaptation using model-driven techniques.

Related Work – There are related investigations by other researchers that comple-
ment the model-driven program transformation (MDPT) approach described in this
paper. The general goals of MDA [5, 11], and the specific implementation of MIC
with GME [21, 28], are inline with the theme of our paper. The main difference is that
most model-driven approaches synthesize new artifacts, but the approach advocated
in this paper provides an invasive modification of legacy source code that was de-
signed without anticipation of the new concerns defined in the models.

The properties described in the models are scattered across numerous locations in
the underlying source. Hence, there is also a relation to the work on aspect-orientation
[19], adaptive programming [22], and compile-time meta-object protocols [6]. The
manner in which the MDPT approach transforms the legacy code has the same intent
as an aspect weaver. Our early experimentation with OpenC++ [6] and AspectC++

376 Jeff Gray et al.

[27], however, suggest that the parsers in these tools are not adequate to handle the
complexities that exist in the million lines of C++ code in Bold Stroke. However,
DMS was able to parse the Bold Stroke component source without any difficulty. As
an aside, we have also used DMS to define an initial approach for constructing aspect
weavers for legacy languages [15]. With respect to aspects and distributed computing,
the DADO project has similar goals [34], but does not focus on modeling issues.

As an alternative to DMS, there are several other transformation systems that are
available, such as ASF+SDF [31], TXL [7], and Stratego [32]. We chose DMS for
this project due to our ongoing research collaboration with the vendor of DMS (Se-
mantic Designs). From this collaboration, we were assured that DMS was capable of
parsing the millions of lines of Bold Stroke code. We have not verified if this is pos-
sible with other transformation systems.

Future Work – With respect to future work, there are several other concerns that
have been identified as targets for Bold Stroke transformation (e.g., exception han-
dling, fault tolerance, and security). We will also explore the transformation of Bold
Stroke to provide the provisioning to support adaptation based on Quality of Service
policies. Our future work will focus on adding support to the ESML and the associ-
ated interpreter in order to address such concerns. In addition, the generalization of a
process for supporting legacy system evolution through MDPT will be explored.

Acknowledgements

This project is supported by the DARPA Program Composition for Embedded Sys-
tems (PCES) program. We thank David Sharp, Wendy Roll, Dennis Noll, and Mark
Schulte (all of Boeing) for their assistance in helping us with specific questions re-
garding Bold Stroke. Our gratitude also is extended to Ira Baxter for his help during
our group’s initiation to the capabilities of DMS.

References
1. Uwe Aßmann, Invasive Software Composition, Springer-Verlag, 2003.
2. Don Batory, Jacob Neal Sarvela, and Axel Rauschmeyer, “Scaling Step-Wise Refinement,”

IEEE Transactions on Software Engineering, June 2004, pp. 355-371.
3. Ira Baxter, Christopher Pidgeon, and Michael Mehlich, “DMS: Program Transformation

for Practical Scalable Software Evolution,” International Conference on Software Engi-
neering (ICSE), Edinburgh, Scotland, May 2004, pp. 625-634.

4. Jean Bézivin, “From Object Composition to Model Transformation with the MDA,”
Technology of Object-Oriented Languages and Systems (TOOLS), Santa Barbara,
California, August 2001, pp. 350-354.

5. Jean Bézivin, “MDA: From Hype to Hope, and Reality,” The 6th International Conference
on the Unified Modeling Language, San Francisco, California, Keynote talk, October 22,
2003. (http://www.sciences.univ-nantes.fr/info/perso/permanents/bezivin/UML.2003/
UML.SF.JB.GT.ppt)

6. Shigeru Chiba, “A Metaobject Protocol for C++,” Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Austin, Texas, October 1995, pp. 285-299.

7. James Cordy, Thomas Dean, Andrew Malton, and Kevin Schneider, “Source Transforma-
tion in Software Engineering using the TXL Transformation System,” Special Issue on
Source Code Analysis and Manipulation, Journal of Information and Software Technology
(44, 13) October 2002, pp. 827-837.

Model-Driven Program Transformation of a Large Avionics Framework 377

8. Krzysztof Czarnecki and Ulrich Eisenecker, Generative Programming: Methods, Tools,
and Applications, Addison-Wesley, 2000.

9. Eric Evans, Domain-Driven Design: Tackling Complexity at the Heart of Software, Addi-
son-Wesley, 2003.

10. Martin Fowler, Refactoring: Improving the Design of Existing Programs, Addison-Wesley,
1999.

11. David Frankel, Model Driven Architecture: Applying MDA to Enterprise Computing, John
Wiley and Sons, 2003.

12. Aniruddha Gokhale, Douglas Schmidt, Balachandran Natarajan, Jeff Gray, and Nanbor
Wang, “Model-Driven Middleware,” in Middleware for Communications, (Qusay Mah-
moud, editor), John Wiley and Sons, 2004.

13. Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck, “Handling Crosscutting Con-
straints in Domain-Specific Modeling,” Communications of the ACM, Oct. 2001, pp. 87-93.

14. Jeff Gray, Janos Sztipanovits, Douglas C. Schmidt, Ted Bapty, Sandeep Neema, and
Aniruddha Gokhale, “Two-level Aspect Weaving to Support Evolution of Model-Driven
Synthesis,” in Aspect-Oriented Software Development, (Robert Filman, Tzilla Elrad, Meh-
met Aksit, and Siobhán Clarke, eds.), Addison-Wesley, 2004.

15. Jeff Gray and Suman Roychoudhury, “A Technique for Constructing Aspect Weavers Us-
ing a Program Transformation System,” International Conference on Aspect-Oriented
Software Development (AOSD), Lancaster, UK, March 22-27, 2004, pp. 36-45.

16. William G. Griswold and David Notkin, “Automated Assistance for Program Restructur-
ing,” Trans. on Software Engineering and Methodology, July 1993, pp. 228-269.

17. Tim Harrison, David Levine, and Douglas C. Schmidt, “The Design and Performance of a
Hard Real-Time Object Event Service,” Conference on Object-Oriented Programming Sys-
tems, Languages & Applications (OOPSLA), Atlanta, Georgia, October 1997, pp. 184-200.

18. Gábor Karsai, Miklos Maroti, Ákos Lédeczi, Jeff Gray, and Janos Sztipanovits, “Type Hi-
erarchies and Composition in Modeling and Meta-Modeling Languages,” IEEE Trans. on
Control System Technology (special issue on Computer Automated Multi-Paradigm Model-
ing), March 2004, pp. 263-278.

19. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin, “Aspect-Oriented Programming,” European Confer-
ence on Object-Oriented Programming (ECOOP), LNCS 1241, Springer-Verlag, Jy-
väskylä, Finland, June 1997, pp. 220-242.

20. Ralf Lämmel and Chris Verhoef, “Cracking the 500 Language Problem,” IEEE Software,
November/December 2001, pp. 78-88.

21. Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Peter Volgyesi, Greg Nordstrom, Jonathan
Sprinkle, and Gábor Karsai, “Composing Domain-Specific Design Environments,” IEEE
Computer, November 2001, pp. 44-51.

22. Karl Lieberherr, Doug Orleans, and Johan Ovlinger, “Aspect-Oriented Programming with
Adaptive Methods,” Communications of the ACM, October 2001, pp. 39-41.

23. Sandeep Neema, Ted Bapty, Jeff Gray, and Aniruddha Gokhale, “Generators for Synthesis
of QoS Adaptation in Distributed Real-Time Embedded Systems,” Generative Program-
ming and Component Engineering (GPCE), LNCS 2487, Pittsburgh, Pennsylvania, Octo-
ber 2002, pp. 236-251.

24. David Parnas, “On the Criteria To Be Used in Decomposing Systems into Modules,”
Communications of the ACM, December 1972, pp. 1053-1058.

25. Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann, Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects, John Wiley and
Sons, 2000.

26. David Sharp, “Component-Based Product Line Development of Avionics Software,” First
Software Product Lines Conference (SPLC-1), Denver, Colorado, August 2000, pp. 353-
369.

378 Jeff Gray et al.

27. Olaf Spinczyk, Andreas Gal, Wolfgang Schröder-Preikschat, “AspectC++: An Aspect-
Oriented Extension to C++,” International Conference on Technology of Object-Oriented
Languages and Systems (TOOLS Pacific 2002), Sydney, Australia, February 2002, pp. 53-
60.

28. Janos Sztipanovits and Gábor Karsai, “Model-Integrated Computing,” IEEE Computer,
April 1997, pp. 10-12.

29. Janos Sztipanovits, “Generative Programming for Embedded Systems,” Keynote Address:
Generative Programming and Component Engineering (GPCE), LNCS 2487, Pittsburgh,
Pennsylvania, October 2002, pp. 32-49.

30. William Ulrich, Legacy Systems: Transformation Strategies, Prentice-Hall, 2002.
31. Mark van den Brand, Jan Heering, Paul Klint, and Pieter Olivier, “Compiling Rewrite Sys-

tems: The ASF+SDF Compiler,” ACM Transactions on Programming Languages and Sys-
tems, July 2002, pp. 334-368.

32. Eelco Visser, “Stratego: A Language for Program Transformation Based on Rewriting
Strategies. System Description of Stratego 0.5,” 12th International Conference on Rewrit-
ing Techniques and Applications (RTA), Springer-Verlag LNCS 2051, Utrecht, The Nether-
lands, May 2001, pp. 357-361.

33. Eelco Visser, “A Survey of Rewriting Strategies in Program Transformation Systems,”
Workshop on Reduction Strategies in Rewriting and Programming (WRS’01) - Electronic
Notes in Theoretical Computer Science, vol. 57, Utrecht, The Netherlands, May 2001.
(http://www1.elsevier.com/gej-ng/31/29/23/93/27/33/57007.pdf)

34. Eric Wohlstadter, Stoney Jackson, and Premkumar T. Devanbu, “DADO: Enhancing Mid-
dleware to Support Crosscutting Features in Distributed, Heterogeneous Systems,” Interna-
tional Conference on Software Engineering, Portland, Oregon, pp. 174-186.

