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Abstract. Model-driven approaches to software development, when coupled 
with a domain-specific visual language, assist in capturing the essence of a 
large system in a notation that is familiar to a domain expert. From a high-level 
domain-specific model, it is possible to describe concisely the configuration 
features that a system must possess, in addition to checking that the model pre-
serves semantic properties of the domain. With respect to large legacy applica-
tions written in disparate programming languages, the primary problem of 
transformation is the difficulty of adapting the legacy source to match the 
evolving features specified in the corresponding model. This paper presents an 
approach for uniting model-driven development with a mature program trans-
formation engine. The paper describes a technique for performing widespread 
adaptation of source code from transformation rules that are generated from a 
domain-specific modeling environment for a large avionics framework. 

1   Introduction 

A longstanding goal of software engineering is to construct software that is easily 
modified and extended. A desired result is to achieve modularization such that a 
change in a design decision is isolated to one location [24]. The proliferation of soft-
ware in everyday life (e.g., embedded systems found in avionics, automobiles, and 
even mobile phones) has increased the level of responsibility placed on software ap-
plications [9, 29]. As demands for such software increase, future requirements will 
necessitate new strategies to support the requisite adaptations across different soft-
ware artifacts (e.g., models, source code, test cases, documentation) [2]. 

Research into software restructuring techniques, and the resulting tools supporting 
the underlying science, has enhanced the ability to modify the structure and function 
of a software representation in order to address changing stakeholder requirements 
[16]. As shown in Figure 1, software restructuring techniques can be categorized as 
either horizontal or vertical. The research into horizontal transformation concerns 
modification of a software artifact at the same abstraction level. This is the typical 
connotation when one thinks of the term transformation [33], with examples being 
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code refactoring [10] at the implementation level, and model transformation [4] and 
aspect weaving at a higher design level [13]. Horizontal transformation systems often 
lead to invasive composition of the software artifact [1]. In contrast, vertical trans-
formation is typically more appropriately called translation (or synthesis) [33] be-
cause a new artifact is being synthesized from a description at a different abstraction 
level (e.g., model-driven software synthesis [12], [23], and reverse engineering). Ver-
tical translations often are more generative in nature [8]. 

 
Fig. 1. Two directions of software transformation and translation 

The most popular model-driven approach is the Object Management Group’s 
(OMGs) Model-Driven Architecture (MDA), which separates application domain 
logic from the underlying execution platform [5, 11]. The overwhelming majority of 
early MDA efforts are of the translational, or synthesis style. That is, new software 
artifacts are generated whole-scale from properties that are refined from platform-
independent models, down to platform-specific models, eventually leading to code. 
The challenge arises when MDA is to be applied to literally several hundred billion 
lines of legacy code in production use today [30]. To apply model-based techniques to 
such systems, it is beneficial to have an approach that is also transformational (i.e., 
one that actually modifies the source code representation) in order to add features to 
an existing code base. There are two primary factors that make it difficult to achieve 
true transformation of legacy source code from models: 

• If pre-existing code is to be transformed from models, the model interpreters (ex-
isting within the modeling environment) must possess the ability to parse the un-
derlying source. Thus, complex parsers must be built into the model interpreter. If 
a goal of the modeling environment is to achieve language-independence, then a 
new parser must be integrated into the model interpreter for each programming 
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language that is to be supported. This is very time consuming, if not unfeasible 
[20]. 

• Even if a mature parser is constructed for the underlying source, it is then neces-
sary to provide a transformation engine to perform the adaptations to the source 
that are specified in the model. This is also a laborious task and was not needed by 
previous translators that only generated new artifacts from models. Yet, the need 
to synchronize model properties with pre-existing code requires the invasive capa-
bility for altering the code base. 

We observe that the two difficulties enumerated above can be ameliorated by inte-
grating the power of a program transformation system, which provides the required 
parsers and transformation engine, within a modeling tool chain. This paper describes 
our investigation into a synergistic technique that unites model-driven development 
(MDD) with a commercially available program transformation engine. Our approach 
enables adaptation of a large legacy system from properties described in a high-level 
model. A model interpreter generates the low-level transformation rules that are 
needed to provide a causal connection between the model description and the repre-
sentative legacy source code. A video demonstration of the approach is available 
(please see Section 4 for details). 

The rest of the paper is organized as follows: Section 2 provides an overview of the 
case study and the two technologies that are integrated to provide the realization of 
Model-Driven Program Transformation (MDPT). A domain-specific visual modeling 
environment for embedded systems is introduced in Section 3. The heart of the ap-
proach is contained in Section 4. The fourth section also presents two illustrative 
examples of the approach applied to concurrency control and a black-box flight data 
recorder. The conclusion offers summary remarks, as well as related and future work. 

2   Background: Supporting Technologies and Case Study 

This paper unites the descriptive power provided by MDD (Section 2.1) with the 
invasive modification capabilities of a mature program transformation system (Sec-
tion 2.2). Specifically, representative approaches from MDD and program transforma-
tion are described in this section to provide the necessary background to understand 
other parts of the paper. The mission computing framework that will be used as a case 
study is also introduced in Section 2.3. 

2.1   Model-Integrated Computing 

A specific form of MDD, called Model-Integrated Computing (MIC) [28], has been 
refined at Vanderbilt University over the past decade to assist the creation and synthe-
sis of computer-based systems. A key application area for MIC is those domains 
(such as embedded systems areas typified by automotive and avionics systems [29]) 
that tightly integrate the computational structure of a system and its physical configu-
ration. In such systems, MIC has been shown to be a powerful tool for providing 
adaptability in frequently changing environments. The Generic Modeling Environ-
ment (GME) [21] is a meta-modeling tool based on MIC that can be configured and 
adapted from meta-level specifications (called the modeling paradigm) that describe 
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the domain [18]. When using the GME, a modeling paradigm is loaded into the tool to 
define an environment containing all the modeling elements and valid relationships 
that can be constructed in a specific domain. Thus, the approach provides a meta-
environment for constructing system and software models using notations that are 
familiar to the modeler. The mission-computing avionics modeling environment de-
scribed in Section 3 is implemented within the GME. 

2.2   The Design Maintenance System 

The Design Maintenance System (DMS) is a program transformation system and re-
engineering toolkit developed by Semantic Designs (www.semdesigns.com). The core 
component of DMS is a term rewriting engine that provides powerful pattern match-
ing and source translation capabilities [3]. In DMS parlance, a language domain 
represents all of the tools (e.g., lexer, parser, pretty printer) for performing translation 
within a specific programming language. DMS provides pre-constructed domains for 
several dozen languages. Moreover, these domains are very mature and have been 
used to parse several million lines of code, including the millions of lines of the tar-
geted system explored in our research (i.e., Boeing’s Bold Stroke [26], which is intro-
duced in Section 2.3). Utilization of mature parsers that have been tested on industrial 
projects offers a solution to the two difficulties mentioned earlier; i.e., in addition to 
the available parsers, the underlying rewriting engine of DMS provides the machinery 
needed to perform invasive software transformations on legacy code [1]. Examples of 
DMS transformation rules will be given in Section 4.3. 

2.3   The Bold Stroke Mission Computing Avionics Framework 

Bold Stroke is a product-line architecture written in several million lines of C++ that 
was developed by Boeing in 1995 to support families of mission computing avionics 
applications for a variety of military aircraft [26]. As participant researchers in 
DARPA’s Program Composition for Embedded Systems (PCES), we have access to 
the Bold Stroke source code as an experimental platform on which to conduct our 
research on MDPT. The following section describes the Bold Stroke concurrency 
mechanism that will be used later as an example to demonstrate the possibilities of 
our approach. 

Bold Stroke Concurrency Mechanisms. To set the context for Sections 3 and 4, the 
Bold Stroke concurrency mechanism is presented to provide an example for the type 
of transformations that can be performed in order to improve better separation of 
concerns within components that have been specified in a domain-specific modeling 
language. 

There are three kinds of locking strategies available in Bold Stroke: Internal Lock-
ing, External Locking and Synchronous Proxy. The Internal Locking strategy requires 
the component to lock itself when its data are modified. External Locking requires the 
user to acquire the component’s lock prior to any access of the component. The Syn-
chronous Proxy locking strategy involves the use of cached states to maintain state 
coherency through a chain of processing threads. 
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Figure 2 shows the code fragment in the “Update” method of the “BM_PushPull-
Component” in Bold Stroke. This method participates in the implementation of a real-
time event channel [17]. In this component, a macro statement (Line 3) is used to 
implement the External Locking strategy. When system control enters the Update 
method, a preprocessed guard class is instantiated and all external components that 
are trying to access the BM_PushPullComponent will be locked. 

 

 

Fig. 2. Update method in Bold Stroke BM_PushPullComponentImpl.cpp 

After performing its internal processing, the component eventually comes to up-
date its own data. At this point, another macro (Line 11) is used to implement the 
Internal Locking strategy, which forces the component to lock itself. Internal Locking 
is implemented by the Scoped Locking C++ idiom [25], which ensures that a lock is 
acquired when control enters a scope and released automatically when control leaves 
the scope. Specifically, a guard class is defined to acquire and release a particular type 
of lock in its constructor and destructor. There are three types of locks: Null Lock, 
Thread Mutex, and Recursive Thread Mutex. The constructor of the guard class stores 
a reference to the lock and then acquires the lock. The corresponding destructor uses 
the pointer stored by the constructor to release the lock. 

The Problem with Macro-customization. The existence of locking macros, as 
shown in Figure 2, is representative of the original code base for Bold Stroke. During 
the development of that implementation, the concurrency control mechanisms imple-
mented as locking macros occur in many different places in a majority of the compo-
nents comprising Bold Stroke. In numerous configuration scenarios, the locking mac-
ros may evaluate to null locks, essentially making their existence in the code of no 
consequence. The presence of these locks (in lines 3 and 11 of Figure 2), and the 
initial effort needed to place them in the proper location, represents a point of concern 
regarding the manual effort needed for their initial insertion, and the future mainte-
nance regarding this concern as new requirements for concurrency are added. The 
macro mechanism also represents a potential source of error for the implementation of 
new components – it is an additional design concern that must be remembered and 
added manually in the proper place for each component requiring concurrency con-
trol. 

In Section 4, we advocate an approach that permits the removal of the locking 
macros (as well as other crosscutting properties) and offers automated assistance in 
adding them back into the code only in those places that are implied by properties 
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described in a model. Before describing that approach, however, it is essential to in-
troduce the modeling language that is used to specify embedded systems like Bold 
Stroke. 

3   Embedded Systems Modeling Language 

In this section, the Embedded Systems Modeling Language (ESML) is described as a 
domain-specific graphical modeling language for modeling real-time mission comput-
ing embedded avionics applications. Its goal is to address the issues arising in system 
integration, validation, verification, and testing of embedded systems. ESML has been�
defined within the GME and is being used on several US-government funded research 
projects sponsored from DARPA. The ESML was primarily designed by the Vander-
bilt DARPA MoBIES team, and can be downloaded from the project website at 
http://www.isis.vanderbilt.edu/Projects/mobies/. There are representative ESML 
models for all of the Bold Stroke usage scenarios that have been defined by Boeing. 

3.1   ESML Modeling Capabilities 

From the ESML meta-model (please see [21] for details of meta-model creation), the 
GME provides an instantiation of a new graphical modeling environment supporting 
the visual specification and editing of ESML models (see Figures 3 and 4).�The model 
of computation used for ESML leverages elements from the CORBA Component 
Model [12] and the Bold Stroke architecture, which also uses a real-time event chan-
nel [17]. 

 

 

Fig. 3. Bold Stroke multi-threaded component interaction in ESML 
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The ESML provides the following modeling categories to allow representation of 
an embedded system: a) Components, b) Component Interactions, and c) Component 
Configurations. Figure 3 illustrates the components and interactions for a specific 
scenario within Bold Stroke (i.e., the MC_ConcurrencyMP scenario, which has com-
ponents operating in a multi-processor avionics backplane). This higher-level diagram 
captures the interactions among components via an event channel. System timers and 
their frequencies are also specified in this diagram.  

Figure 4 illustrates the ESML modeling capabilities for specifying the internal con-
figuration of a component. The BM_PushPullComponent is shown in this figure. For 
this component, the concurrency control mechanism is specified, as well as facet 
descriptors, internal data elements, and a logging policy. 

 

 

Fig. 4. Internal representation of the BM_PushPullComponent in ESML 

3.2   ESML Model Interpreters 

The result of modeling in ESML is a set of diagrams that visually depict components, 
interactions, and configurations, as shown in Figures 3 and 4. The objective of the 
design is to create, analyze, and integrate real systems; thus, we had to define a num-
ber of interfaces to support these activities. 

A very important part of domain modeling within the GME is the capability of cre-
ating model interpreters. The modeling environment stores the model as objects in a 
database repository, and it provides an API for model traversal using a standard inte-
gration mechanism (i.e., COM) provided by the GME. Using the API, it is possible to 
create interpreters that traverse the internal representation of the model and generate 
new artifacts (e.g., XML configuration files, source code, or even hardware logic) 
based on the model properties. It is possible to associate multiple interpreters to the 
same domain. 

Three model interpreters have been created for the ESML. The Configuration In-
terface interpreter is responsible for generating an XML file that is used during load-
time configuration of Bold Stroke. The locking macros of Figure 2 are configured 
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from this generated file. The Configuration Interface provides an example of vertical 
translation that is more aligned with the synthesis idea for generating new artifacts, 
rather than a pure transformation approach that invasively modifies one artifact from 
descriptions in a model (as in Section 4). A second interpreter for ESML is the Analy-
sis Interface, which assists in integrating third-party analysis tools. A third ESML 
interpreter has been created to invasively modify a very large code base from proper-
ties specified in an ESML model. This third interpreter enables the ideas of model-
driven program transformation. 

4   Model-Driven Program Transformation 

The goal of model-driven program transformation (MDPT) is adaptation of the source 
code of a legacy system from properties described in high-level models. A key feature 
of the approach is the ability to accommodate unanticipated changes in a manner that 
does not require manual instrumentation of the actual source. An essential characteris-
tic of the model-driven process is the existence of a causal connection between the 
models and the underlying source representation. That is, as model changes are made 
to certain properties of a system, those changes must have a corresponding effect at 
the implementation level. A common way to achieve this correspondence is through 
load time configuration of property files that are generated from the models (e.g., the 
XML configuration file deployed by the Configuration Interface described in Section 
3.2). There are two key problems with the load-time configuration file technique, 
however: 

• The load time configuration mechanism must be built into the existing implemen-
tation. The source implementation must know how to interpret the configuration 
file and make the necessary adaptations at all of the potential extension points. For 
example, in Bold Stroke the locking strategy used for each component is specified 
in an XML configuration file, which is loaded at run-time during initial startup. 
The component developer must know about the extension points and how they in-
teract with the configuration file at load time. 

• A typical approach to support this load-time extension is macro tailorability, as 
seen in Figure 2. At each location in the source where variation may occur, a 
macro is added that can be configured from the properties specified in the XML 
configuration file. However, this forces the introduction of macro tags in multiple 
locations of the source that may not be affected under many configurations. The 
instrumentation of the source to include such tailoring is often performed by man-
ual adaptation of the source (see lines 3 and 13 of Figure 2). This approach also 
requires the ability to anticipate future points of extension, which is not always 
possible for a system with millions of lines of code and changing requirements. 

These problems provide a major hurdle to the transfer of model-based and load-
time configuration approaches into large legacy systems. As an example, consider the 
two hundred billion lines of COBOL code that are estimated to exist in production 
systems [30]. To adopt the load-time configuration file approach to such systems will 
require large manual modifications to adjust to the new type of configuration. We 
advocate a different approach, based upon the unification of a program transformation 
system (DMS) with a modeling tool (GME). 
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Fig. 5. Overview of Model-Driven Program Transformation 

Figure 5 presents an overview of the idea of model-driven program transformation. 
The key to the approach is the construction of model interpreters that generate trans-
formation rules from the model specifications. The rules are then fed into a program 
transformation system (represented in the top-left of Figure 5 that shows the path of 
generation from the models to the DMS transformation rules), along with the base 
implementation of a large application (e.g., Bold Stroke, as depicted in the bottom-left 
of the figure). The overall benefit of the approach is large-scale adaptation across 
multiple source files. The adaptation is accomplished through minimal changes to the 
models. Such super-linearity is at the heart of the abstraction power provided by 
model-driven techniques [14], [29]. 

In summary of Figure 5, the modeler simply makes changes to models using a 
higher-level modeling language, like the ESML. Those models are then interpreted to 
generate transformation rules that will invasively modify a large cross-section of an 
application. It should be noted that the modeler does not need to understand the acci-
dental complexities of the transformation rule language. That process is transparent 
and is generated by the model interpreter. The following two sub-sections provide a 
description of crosscutting properties that have been weaved into the Bold Stroke C++ 
code from the model descriptions. The two examples represent crosscutting concerns 
related to concurrency control and recording of flight data information. A final sub-
section introduces the idea of two-level weaving, which allows aspects at the model-
ing level to drive widespread adaptations of the representative source code. 

4.1   Weaving Concurrency into Bold Stroke 

Recall the concurrency mechanism supported within Bold Stroke, as described in 
Section 2.3. In particular, consider the code fragment in Figure 2. There are a few 
problems with the macro tailorability approach, as used in this example code frag-
ment: 
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• Whenever a new component is created, the developer must remember to explicitly 
add the macros in the correct place for all future components (a large source of er-
ror). 

• Because a component may be used in several contexts, it is typical that different 
locking strategies are used in various usage scenarios. For example, the very exis-
tence of a Null Lock type is a direct consequence of the fact that a component is 
forced to process the macro even in those cases when locking may not be needed 
for a particular instantiation of the component. The result is that additional com-
pile-time (or, even run-time overhead, if the chosen C++ compiler does not pro-
vide intelligent optimizations) is incurred to process the macro in unnecessary 
cases. 

As an alternative, this paper presents a solution that does not require the locking to 
be explicitly added by the developer to all components. The approach only adds lock-
ing to those components that specify the need in a higher-level model, which is based 
on the requirements of the specific application scenario that is being modeled. This 
can be seen in the bottom-right of Figure 4, where the type of concurrency is specified 
for the selected “Concurrency” modeling atom (an internal null-lock is specified in 
this particular case). Suppose that all of the locking strategies did not exist in the 
component code (i.e., that lines 3 and 13 were removed from Figure 2 in ALL Bold 
Stroke components), and the component developers want to add the External Locking 
strategy to all of the hundreds of components that also require concurrency control. 
Completing such a task by hand is time-consuming and error-prone. 

The DMS reengineering toolkit provides a powerful mechanism to transform code 
written in C++ and many other languages. In our investigation into the model driven 
program transformation approach, we initially removed the concurrency macros from 
a large set of components. We were able to insert different kinds of lock statements 
back into all of the Bold Stroke components that needed concurrency, as specified in 
the ESML models. This was accomplished by applying DMS transformation rules 
that were generated by a new ESML interpreter (see Section 4.3 for details). 

4.2   Supporting a Black Box Data Recorder 

In avionics systems, an essential diagnostic tool for failure analysis is a “black box” 
that records important flight information. This device can be recovered during a fail-
ure, and can reveal valuable information even in the event of a total system loss. 
There are several factors that make development of such a data recording device diffi-
cult: 
• During ground testing and simulation of the complete aircraft system, it is often 

useful to have a liberal strategy for collecting data points. The information that is 
collected may come from a large group of events and invocations generated during 
testing of a specific configuration of Bold Stroke. 

• However, an actual deployed system has very limited storage space to record data. 
In a deployed system, data may be collected from a small subset of the points that 
were logged during simulation. For example, only a few components may be of 
interest during specific phases of a mission. Also, only a subset of events may be 
recorded in an operational fighter jet. 
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It is a desirable feature to support the various types of recording policies that may 
be observed throughout development, testing, and deployment. Currently, the devel-
opment tools associated with Bold Stroke do not support a capability to plug re-
cording policies easily into the code base. The manual effort that would be required to 
plug/unplug different data recording policies throughout all components would be 
unfeasible in general practice. It is possible to transform existing Bold Stroke code by 
adding the black box flight recorder concern. The recorder information is specified by 
a logging policy (as can be seen in the “Log” modeling element of Figure 4). Within 
the logging policy, a modeler can specify policies such as “Record the values upon 
<entry/exit> of <a set of named methods>” or “Record the value upon every update to 
the <data variable>.” 

4.3   An Example of the Generated Transformation 

The DMS Rule Specification Language (RSL) provides basic primitives for describ-
ing numerous transformations that are to be performed across the entire code base of 
an application. The RSL consists of declarations of patterns, rules, conditions, and 
rule sets using the external form (concrete syntax) defined by a language domain. 
Typically, a large collection of RSL files, like those represented in Figure 6 and Fig-
ure 7, are needed to describe the full set of transformations (we provide these two 
specifications as an illustration of the style of RSL that is generated from the ESML 
models). The patterns and rules can have associated conditions that describe restric-
tions on when a pattern legally matches a syntax tree, or when a rule is applicable on 
a syntax tree. 

Figure 6 shows the RSL specification for performing two kinds of transformations: 
insertion of an External Locking Statement and an Internal Locking Statement. This 
RSL file was generated from the MDPT interpreter that we created, which extends the 
capabilities of ESML. The first line of the figure establishes the default language 
domain to which the DMS rules are applied (in this case, it is the implementation 
environment for Bold Stroke – Visual Studio C++ 6.0). Eight patterns are defined 
from line 3 to line 26, followed by two transformation rules. The patterns on lines 3, 
6, 9, 13, 26 – along with the rule on line 28 – define the external locking transforma-
tion. Likewise, the patterns on lines 16, 19, 22 – and the rule on line 36 – specify the 
internal locking transformation. 

Patterns describe the form of a syntax tree. They are used for matching purposes to 
find a syntax tree having a specified structure. Patterns are often used on the right-
hand side (target) of a rule to describe the resulting syntax tree after the rule is ap-
plied. In the first pattern (line 3, Figure 6), a very simple pattern is described. This 
pattern matches the inserted macro (named UM__GUARD_EXTERNAL_RE-
GION) to the syntax tree expression that is defined as identifier_or_template_id in 
the grammar definition of the DMS VC++6.0 domain. The third pattern (line 9) is 
used to combine the first and second pattern into a larger one, in order to represent the 
full macro statement along with its parameters. The target rule that describes the form 
of the resulting syntax tree is specified in the fourth pattern (line 13). This fourth 
pattern scopes the protected region and places the external locking statement as the 
first statement within the scope. Similarly, the pattern on line 22 describes the form of 
the resulting syntax tree after inserting an internal locking statement in front of any 
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update of data1_. The last pattern (line 26) provides the context in which the trans-
formation rules will be applied. Here, the rules will be applied to all of the compo-
nents containing an Update method. This pattern is similar to a Join Point in AspectJ 
[19]. Although this last pattern is very simple, it quantifies over the entire code base 
and selects all of those syntax trees matching the pattern. 

The RSL rules describe a directed pair of corresponding syntax trees. A rule is 
typically used as a rewrite specification that maps from a left-hand side (source) syn-
tax tree expression to a right-hand side (target) syntax tree expression. As an example, 
the rule specified on line 28 of Figure 6 represents a transformation on all Update 
methods (specified by the JoinPoint pattern). The effect of this rule is to add an exter-
nal locking statement to all Updates, regardless of the various parameters of each 
Update method. Notice that there is a condition associated with this rule (line 33). 
This condition describes a constraint that this rule should be applied only when there 

 

Fig. 6. A set of generated locking transformation patterns and rules in the DMS Rule Specifica-
tion Language 
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already does not exist an external locking statement. That is, the transformation rule 
will be applied only once. Without this condition, the rules would be applied itera-
tively and fall into an infinite loop. The rule on line 36 applies the transformations 
associated with inserting an internal locking statement just before modification of the 
internal field named data1_. Rules can be combined into sets of rules that together 
form a transformation strategy by defining a collection of transformations that can be 
applied to a syntax tree. In the ruleset defined on line 42, the two locking rules are 
aggregated to perform a sequence of transformations (i.e., External/Internal Locking). 

The logging transformation is much simpler and can be found in Figure 7. For this 
example, the “Log on Method Exit” logging policy is illustrated (this is specified as 
an attribute in the “Log” modeling element of Figure 4). The patterns on lines 3, 5, 8 
– with the rule on line 10 – denote the update logging transformation. The pattern on 
line 5 shows the resulting form after inserting a log statement on all exits of the Up-
date method. The corresponding rule on line 10 inserts the logging statement upon the 
exit of every Update method of every component. 

It is important to reiterate that the modeler/developer does not create (or even see) 
the transformation rules. These are created by the ESML interpreter and directly ap-
plied toward the transformation of Bold Stroke code using DMS, as shown in Fig-
ure 5. 

 

 

Fig. 7. A set of generated logging transformation patterns and rules in the DMS Rule Specifica-
tion Language 

With respect to the generalization of the process for supporting new concerns 
(other than concurrency and logging strategies as indicated above) in the Bold Stroke 
application through the MDPT technique, the following two steps are involved: 

• If the current ESML metamodel does not provide the paradigm to specify the new 
concern of interest, it has to be extended to include the new model concepts in or-
der to support the new requirements. 

• The MDPT interpreter itself also has to be updated to generate the corresponding 
DMS transformation rules for the new concerns. 
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4.4   Transformation at the Modeling Level 

It is interesting to note that the specification of modeling concerns can also cut across 
a domain model [13], in the same way that aspects cut across code [19]. That is, the 
specification of concurrency and logging concerns in a model may require the mod-
eler to visit multiple places in the model. This is undesirable because it forces the 
modeler to spend much time adapting model properties. We have previously worked 
on a model transformation engine called the Constraint-Specification Aspect Weaver 
(C-SAW), which allows high-level requirements to be weaved into the model before 
the model interpreter is invoked [14].  

The C-SAW transformation engine unites the ideas of aspect-oriented software de-
velopment (AOSD) [19] with MIC to provide better modularization of model proper-
ties that are crosscutting throughout multiple layers of a model. Within the C-SAW 
infrastructure, the language used to specify model transformation rules and strategies 
is the Embedded Constraint Language (ECL), which is an extension of Object Con-
straint Language (OCL). ECL provides many common features of the OCL, such as 
arithmetic operators, logical operators, and numerous operators on collections. It also 
provides special operators to support model aggregates, connections and transforma-
tions that provide access to modeling concepts within the GME. There are two kinds 
of ECL specifications: an aspect, which is a starting point in a transformation process, 
describes the binding and parameterization of strategies to specific entities in a model; 
and a strategy is used to specify elements of computation and the application of spe-
cific properties to the model entities.  

Utilizing C-SAW, a modeler can specify a property (e.g., “Record All updates to 
All variables in All components matching condition X”) from a single specification 
and have it weaved into hundreds of locations in a model. This permits plug-
ging/unplugging of specific properties into the model, enabling the generation of 
DMS rules resulting in code transformations. We call this process two-level weaving 
[14]. 

As an example, Figure 8 contains the ECL specification to connect “Log” atoms 
(of type “On Method Exit”) to “Data” atoms in ESML models (see Figure 4). The 
transformation specification finds all of the “Data” atoms (line 3 to line 6) in every 
component whose name ends with “Impl” (line 21 to line 25). For each “Data” atom, 
a new “Log” atom is created, which has its “MethodList” attribute as “Update” (line 
17). Finally, it connects this new “Log” atom to its corresponding “Data” atom (line 
18). As a result, after using C-SAW to apply this ECL specification, “LogOnMetho-
dExit” atoms will be inserted into each component that has a “Data” atom. As a front-
end design capability, model weaving drives the automatic generation of the DMS 
rules in Figure 7 to transform the underlying Bold Stroke C++ source program. 

Video Demonstration. The web site for this research project provides the software 
download for the model transformation engine described in Section 4.4 Additionally, 
several video demonstrations are available in various formats of the Bold Stroke 
transformation case study presented in this paper. The software and video demonstra-
tions can be obtained at http://www.gray-area.org/Research/C-SAW. 
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Fig. 8. ECL code for adding “LogOnMethodExit” to “Data” in ESML models 

5   Conclusion 

A distinction is made in this paper between translational approaches that generate 
new software artifacts, and transformational techniques that modify existing legacy 
artifacts. The model-driven program transformation technique introduced in Section 4 
offers a capability for performing wide-scale source transformation of large legacy 
systems from system properties described in high-level models. 

The major difficulty encountered in this project centered on the initial learning 
curve for DMS. Much time was spent in understanding the capabilities that DMS 
provides. After passing the initial learning curve, we believe that DMS offers a pow-
erful engine for providing the type of language-independent transformation that is 
required for large-scale adaptation using model-driven techniques. 

Related Work – There are related investigations by other researchers that comple-
ment the model-driven program transformation (MDPT) approach described in this 
paper. The general goals of MDA [5, 11], and the specific implementation of MIC 
with GME [21, 28], are inline with the theme of our paper. The main difference is that 
most model-driven approaches synthesize new artifacts, but the approach advocated 
in this paper provides an invasive modification of legacy source code that was de-
signed without anticipation of the new concerns defined in the models. 

The properties described in the models are scattered across numerous locations in 
the underlying source. Hence, there is also a relation to the work on aspect-orientation 
[19], adaptive programming [22], and compile-time meta-object protocols [6]. The 
manner in which the MDPT approach transforms the legacy code has the same intent 
as an aspect weaver. Our early experimentation with OpenC++ [6] and AspectC++ 
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[27], however, suggest that the parsers in these tools are not adequate to handle the 
complexities that exist in the million lines of C++ code in Bold Stroke. However, 
DMS was able to parse the Bold Stroke component source without any difficulty. As 
an aside, we have also used DMS to define an initial approach for constructing aspect 
weavers for legacy languages [15]. With respect to aspects and distributed computing, 
the DADO project has similar goals [34], but does not focus on modeling issues. 

As an alternative to DMS, there are several other transformation systems that are 
available, such as ASF+SDF [31], TXL [7], and Stratego [32]. We chose DMS for 
this project due to our ongoing research collaboration with the vendor of DMS (Se-
mantic Designs). From this collaboration, we were assured that DMS was capable of 
parsing the millions of lines of Bold Stroke code. We have not verified if this is pos-
sible with other transformation systems. 

Future Work – With respect to future work, there are several other concerns that 
have been identified as targets for Bold Stroke transformation (e.g., exception han-
dling, fault tolerance, and security). We will also explore the transformation of Bold 
Stroke to provide the provisioning to support adaptation based on Quality of Service 
policies. Our future work will focus on adding support to the ESML and the associ-
ated interpreter in order to address such concerns. In addition, the generalization of a 
process for supporting legacy system evolution through MDPT will be explored. 
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