
Response Time Analysis of a Middleware EventDemultiplexing Pattern for Network ServiesSwapna S. GokhaleDept. of CSEUniversity of ConnetiutStorrs, CT 06269Email: ssg�engr.uonn.edu Aniruddha S. GokhaleDept. of EECSVanderbilt UniversityNashville, TNEmail: a.gokhale�vanderbilt.edu Jeff GrayDept. of CISU. of Alabama at BirminghamBirmingham, AL 35294Email: gray�is.uab.eduAbstrat�Soiety is beoming inreasingly reliant on theservies provided by distributed, performane sensitive softwaresystems. These systems demand multiple simultaneous quality ofservie (QoS) properties. A key enabler in reent suesses inthe development of suh systems has been middleware, whihomprises reusable building bloks. Typially, a large numberof on�guration options are available for eah building blokwhen omposing a system end-to-end. The hoie of the buildingbloks and their on�guration options have an impat on theperformane of the servies provided by the systems. Currently,the effet of these hoies an be determined only very late inthe lifeyle, whih an be detrimental to system developmentosts and shedules. In order to enable the right design hoies,a systemati methodology to analyze the performane of thesesystems at design time is neessary. Suh a methodology mayonsist of models to analyze the performane of individualbuilding bloks omprising the middleware and the ompositionof these building bloks. As a �rst step towards building thismethodology, this paper introdues a model of the Reatorpattern, whih provides important synhronous demultiplexingand dispathing apabilities to network servies and appliations.The model is based on the Stohasti Reward Net (SRN) modelingparadigm. We illustrate how the model ould be used to obtainthe response time of a Virtual Private Network (VPN) servieprovided by a Virtual Router (VR).I. INTRODUCTIONSoiety is inreasingly reliant on the servies providedby distributed, performane-sensitive software systems. Thesesystems demand multiple simultaneous quality of servie(QoS) properties inluding preditability, ontrollability, andadaptability of operating harateristis for appliations withrespet to suh features as time, throughput, auray, on-�dene, seurity and synhronization. A key enabler in re-ent suesses in the development of suh systems is QoS-enabled middleware [1℄. Middleware omprises software lay-ers that provide platform-independent exeution semantis andreusable servies that oordinate how appliation omponentsare omposed and interoperate. The �exibility and on�g-urability offered by middleware is manifested in the largenumber of reusable software building bloks and on�gurationoptions, whih an be used to ompose and build large sys-tems end-to-end. These building bloks embody good designpraties alled patterns [2℄, [3℄. The hoie of the patternsand their on�guration options is driven by the ontext of

the appliation. These hoies have a profound impat on theperformane of the provided servie.Current ad ho tehniques based on manually hoosing theright set of building bloks and their on�guration options areerror-prone and may adversely impat performane, systemosts and shedules, sine most errors are aught very late inthe lifeyle of the system development. It is desirable to havethe ability to analyze the performane of individual buildingbloks and the omposed system muh earlier in the systemlifeyle, thereby signi�antly lowering system testing ostsas well as improving the orretness of the �nal developedsystem.To address the hallenge of system performane evalua-tion in the design phase, a systemati performane analysismethodology is neessary. This methodology would omprisedeveloping performane models of the individual buildingbloks and their omposition. The performane models arebased upon well-known analytial/numerial modeling par-adigms [4℄, [5℄, [6℄ and simulation tehniques [7℄. As a�rst step towards the development of suh a methodology,this paper presents a model of the Reator pattern [2℄, [3℄,whih provides important synhronous demultiplexing anddispathing apabilities to network servies and appliations.The model is based on the Stohasti Reward Net (SRN)modeling paradigm [4℄. We illustrate how the model an beused to obtain an estimate of the response time of a VirtualPrivate Network (VPN) servie provided by a Virtual Router(VR) [8℄.Paper organization: The paper is organized as follows:Setion II presents the performane model of the Reatorpattern. Setion III illustrates how the performane model ofthe Reator pattern an be used to obtain the response time ofa VPN servie provided by a VR. Setion IV offers onludingremarks and diretions for future researh.II. PERFORMANCE MODEL OF THE REACTOR PATTERNIn this setion, we �rst provide an overview of the Reatorpattern followed by the SRN model of the Reator pattern. Thesetion also desribes how the response time an be obtainedfrom the SRN model.

A. Reator Pattern in Middleware ImplementationsFigure 1 depits a typial event demultiplexing and dis-pathing mehanism doumented in the Reator pattern. Theappliation registers an event handler with the event demul-tiplexer and delegates to it the responsibility of listeningfor inoming events. On the ourrene of an event, thedemultiplexer dispathes the event by making a allbak toits assoiated appliation-supplied event handler. This is theidea behind the Reator pattern, whih provides synhronousevent demultiplexing and dispathing apabilities.

Fig. 1. Event Demultiplexers in MiddlewareThe Reator pattern an be implemented in many dif-ferent ways depending on the event demultiplexing a-pabilities provided by the underlying operating systemand the onurreny requirements of the appliations.For example, the demultiplexing apabilities of a Reatorould be based on the selet () or poll () systemalls provided by POSIX-ompliant operating systems, orWaitForMultipleObjet () as found in the different�avors of Win32 operating systems. Moreover, the handlingof the event in the event handler ould be managed by thesame thread of ontrol that was listening for events leading toa single-threaded Reator implementation. Alternatively, theevent ould be delegated to a pool of threads to handle theevents leading to a thread-pool Reator.B. Charateristis of the Reator PatternWe onsider a single-threaded, selet-based implementationof the Reator pattern with the following harateristis:
• The Reator reeives two types of input events with oneevent handler for eah type of event registered with theReator.
• Eah event type has a separate queue, whih holds theinoming events of that type. The buffer apaity for thequeue of type #1 events is denoted N1 and of type #2events is denoted N2.
• Event arrivals for both types of events follow a Poissonproess with rates λ1 and λ2, while the servie times ofthe events are exponentially distributed with rates µ1 and

µ2.
• In a snapshot, an event of type #1 is servied with ahigher priority over an event of type #2. In other words,

when event handles orresponding to both event types areenabled in a snapshot, the event handle orresponding totype #1 is servied with a priority that is higher than theevent handle of type #2.C. SRN ModelIn this setion we present the SRN model of the Reatorpattern. A Stohasti Reward Net (SRN) substantially extendsthe modeling power of Generalized Stohasti Petri Nets(GSPNs) [4℄, whih are an extension of Petri nets [9℄. A SRNis a modeling tehnique that is onise in its spei�ation andloser to a designer's intuition about what a model shouldlook like. SRNs have been extensively used for performane,reliability and performability analysis of a variety of sys-tems [10℄, [11℄, [12℄, [13℄, [14℄, [15℄. The work losest to theproposed researh is reported by Ramani et al. [10℄, whereSRNs are used for the performane analysis of the CORBAevent servie. A detailed overview of SRNs an be obtainedfrom [4℄.Figure 2 shows the SRN model for the Reator patternwith the harateristis desribed in Setion II-B. Table Isummarizes the enabling/guard funtions for the transitionsin the net. The net on the left-hand side models the arrival,queuing and servie of the two types of events. Transitions
A1 and A2 represent the arrival of the events of type #1and #2, respetively. Plaes B1 and B2 represent the queuefor the two types of events. Transitions Sn1 and Sn2 areimmediate transitions that are enabled when a snapshot istaken. Plaes S1 and S2 represent the enabled handles of thetwo types of events, whereas transitions Sr1 and Sr2 representthe exeution of the enabled event handlers of the two types ofevents. An inhibitor ar from plae B1 to transition A1 withmultipliity N1 prevents the �ring of transition A1 when thereare N1 tokens in plae B1. The presene of N1 tokens inplae B1 indiates that the buffer spae to hold the inominginput events of the �rst type is full, and no additional inomingevents an be aepted. The inhibitor ar from plae B2 totransition A2 ahieves the same purpose for type #2 events.The inhibitor ar from plae S1 to transition Sr2 prevents the�ring of transition Sr2 when there is a token in plae S1.This models the prioritized servie for an event of type #1over event of type #2 in a given snapshot.The net on the right of Figure 2 models the proess of takingsuessive snapshots and prioritized servie of the event handleorresponding to type #1 events in eah snapshot. Transition
Sn1 is enabled when there is a token in plae StSnpSht,at least one token in plae B1, and no tokens in plae S1.Similarly, transition Sn2 is enabled when there is a token inplae StSnpSht, at least one token in plae B2, and no tokensin plae S2. Transition T SrvSnpSht is enabled when thereis a token in either one of the plaes S1 and S2, and the �ringof this transition deposits a token in plae SnpShtInProg.The presene of a token in the plae SnpShtInProgindiates that the event handles that were enabled in the urrentsnapshot are being servied. After these event handles om-plete exeution, the urrent snapshot is omplete and it is time

N1 N2
A1 A2

B1 B2

Sn1 Sn2

S2S1

Sr1 Sr2

StSnpSht

SnpShtInProg

T_SrvSnpSht T_EndSnpSht

Fig. 2. SRN model for the Reator patternto take another snapshot. This is aomplished by enablingthe transition T EndSnpSht. Transition T EndSnpSht isenabled when there are no tokens in both plaes S1 and S2.Firing of the transition T EndSnpSht deposits a token inplae StSnpSht, indiating that the servie of the enabledhandles in the present snapshot is omplete, whih marks theinitiation of the next snapshot.We now desribe how the proess of taking a single snap-shot is modeled by the SRN model presented in Figure 2.We onsider a senario where there is one token in eah oneof the plaes B1 and B2, and there is a token in the plae
StSnpSht. Also, there are no tokens in plaes S1 and S2. Inthis senario, transitions Sn1 and Sn2 are enabled. Both ofthese transitions are assigned the same priority, and any one ofthese transitions an �re �rst. Also, sine these transitions areimmediate, their �ring ours instantaneously. Without loss ofgenerality, it an be assumed that transition Sn1 �res before
Sn2, whih deposits a token in plae S1.When a token is deposited in plae S1, transition
T SrvSnpSht is enabled. In addition, transition Sn2 is al-ready enabled. If transition T SrvSnpSht were to �re beforetransition Sn2, it would disable transition Sn2, and preventthe handle orresponding to the seond event type frombeing enabled. In order to prevent transition T SrvSnpShtfrom �ring before transition Sn2, transition T SrvSnpShtis assigned a lower priority than transition Sn2. Beausetransitions Sn1 and Sn2 have the same priority, this alsoimplies that the transition T SrvSnpSht has a lower prioritythan transition Sn1. This ensures that in a given snapshot,event handles orresponding to eah event type are enabledwhen there is at least one event in the queue.After both event handles are enabled, transition
T SrvSnpSht �res and deposits a token in plae
SnpShtInProg. The presene of a token in the plae
SnpShtInProg indiates that the event handles that wereenabled in the urrent snapshot are being servied. Theevent handle orresponding to type #1 event is servied �rst,whih auses transition Sr1 to �re and the removal of thetoken from plae S1. Subsequently, transition Sr2 �res andthe event handle orresponding to the event of type #2 is

servied. This auses the removal of the token from plae
S2. After both events are servied and there are no tokensin plaes S1 and S2, transition T EndSnpSht �res, whihmarks the end of the present snapshot and the beginning ofthe next one.We obtain the response times of the events denoted R1and R2 using the tagged ustomer approah [16℄. In thetagged ustomer approah, an arriving event is tagged andits trajetory through the system is followed from entry toexit. The response time of the tagged event is then determinedonditional to the state in whih the system lies when theevent arrives. The unonditional response time an be obtainedas the weighted sum of the onditional response times, withthe weights given by the steady state probabilities of beingin eah one of the states. Typially, the response time of anevent onsists of two piees; namely, the time taken to serviethe event hereafter referred to as the �servie time,� and thetime that the event must wait in the system before its servieommenes, hereafter referred to as �waiting time.� In ourase, the average servie time of an inoming type #1 andtype #2 event is given by 1/µ1 and 1/µ2, irrespetive of thestate in whih the system lies when the event arrives. Thewaiting time, however, will depend on the system state. Next,we disuss how the onditional waiting time of eah eventtype is determined.The onditional waiting time for a tagged event of type #1will depend on the state of the system, where the state is givenby the number of tokens or markings of plaes S1, S2, B1 and
B2. Of these four plaes, the markings of the plaes S1 and
S2 determine the progress of the urrent snapshot, whereas,the markings of plaes B1 and B2 determine the state of thequeue. The mean time taken to omplete the urrent snapshotis given by the sum of two terms, the �rst term is the produtof the number of tokens in plae S1 and 1/µ1, and the seondterm is the produt of the number of tokens in plae S2 and
1/µ2. Even if there are no additional events in the queues, theurrent snapshot must be ompleted before the servie of aninoming event of type #1 an begin. Hene, the time takento omplete the urrent snapshot ontributes to the waitingtime of the inoming or tagged type #1 event. In order to

TABLE IENABLING/GUARD FUNCTIONSTransition Guard funtion
Sn1 ((#StSnpShot == 1)&&(#B1 >= 1)&&(#S1 == 0))?1 : 0
Sn2 ((#StSnpShot == 1)&&(#B2 >= 1)&&(#S2 == 0))?1 : 0

T SrvSnpSht ((#S1 == 1)||(#S2 == 1))?1 : 0
T EndSnpSht ((#S1 == 0)&&(#S2 == 0))?1 : 0obtain the entire waiting time of a tagged type #1 event, theontribution of the queued events of type #1 and type #2 needsto be determined.Let n1 be the number of events of type #1 in the queue,and n2 be the number of events of type #2 in the queue,when the tagged event of type #1 arrives. This implies thatafter n1 snapshots the tagged event will be servied. Thefollowing three possibilities arise between the relative valuesof n1 and n2. If n1 ≤ n2, then only n1 of the type #2 eventsneed to be servied before the servie of the tagged type #1event an ommene, and hene the waiting time is given by

n1(1/µ1 + 1/µ2). If n1 = n2, then n1 events of type #1 andtype #2 need to be servied before the servie of the inomingtype #1 event an ommene, and hene the waiting time isgiven by n1(1/µ1 + 1/µ2). If n1 > n2, then in the optimistiase, n1 events of type #1 and n2 events of type #2 need to beservied before the servie of the tagged event an ommene.The optimisti ase assumes that no additional events of type#2 arrive in the �rst n1 snapshots. In the pessimisti ase,however, n1 − n2 events of type #2 will arrive while the �rst
n2 events are being servied. Thus, in the optimisti ase, thewaiting time will be n1/µ1 + n2/µ2, and in the pessimistiase, the waiting time will be n1(1/µ1 + 1/µ2). We onsiderthe pessimisti ase sine that provides an upper bound onthe response time. The pessimisti ontribution of the queuedevents to the waiting time is given by the produt of thenumber of tokens in plae B1 and the sum of the reiproalsof µ1 and µ2. Thus, the overall response time of the taggedevent will be given by the sum of two terms, the �rst term is
1/µ1 times the sum of the tokens in plaes S1, B1 and 1, andthe seond term is given by the produt of 1/µ2 and the sumof the number of tokens in plae S2 and B1. The ontributionof the queued events to the waiting time of the tagged eventof type #2 an also be determined using similar reasoning,with an additional onsideration given to the prioritized servieprovided to event of type #1 over an event of type #2 in eahsnapshot. The reward rates to obtain the response time of theevents of type #1 and type #2 are summarized in Table II.In the model of the reator pattern desribed above, thearrival, servie and failure distributions are assumed to beexponential. For ertain types of appliations, this assumptionmay not hold. For example, for safety-ritial appliations,events may our at regular intervals, in whih ase the arrivalproess is deterministi. In addition to the deterministi distrib-ution, the arrival, servie and failure proesses may also followany other non-exponential or general distribution. There aretwo ways to onsider non-exponential distributions in the SRN

model. In the �rst method, a non-exponential distribution anbe approximated using a phase-type approximation [4℄, and theresulting SRN model an then be solved using SPNP [17℄. Inthe seond method, the model an be simulated using disrete-event simulation inorporated in SPNP.III. CASE STUDY: VPN SERVICE USING VIRTUAL ROUTERIn this setion we desribe how the SRN model of theReator pattern presented in Setion II-C an be used toestimate the response time of a Virtual Private Network (VPN)servie provided by a Virtual Router (VR).Figure 3 illustrates the arhiteture of a provider-provisioned virtual private network (PPVPN) [18℄ using a VR.A VR is a software/hardware omponent that is part of aphysial router alled the provider edge (PE) router. A VRontains the mehanisms to provide highly salable, differenti-ated levels of servies in VPN arhitetures. Multiple VRs anreside on a PE devie. VRs an be arranged in a hierarhialfashion within a single PE as shown in Figure 3. Moreover,an entity ating as a servie provider for an end ustomermight itself be a ustomer of a larger servie provider. VRsmay also use different bakbones to improve reliability or toprovide differentiated levels of servie to ustomers.Customer edge (CE) devies wishing to join a VPN onnetto a VR on the PE devie. A VR an multiplex several distintCEs belonging to the same VPN session. A VR may usetunneling mehanisms to use multiple routing protools andlink layer protools, suh as IPSe, GRE, and IP-in-IP, toonnet with the CEs. A totally different set of protoolsand tunneling mehanisms ould be used for inter-VR or VR-bakbone ommuniation. These tunneling mehanisms analso be the basis for differentiated levels of servie as well asto provide improved reliability. A VR also omprises �rewallapabilities.We onsider a senario where a VR is used to provideVPN servies to two organizations, with eah organizationhaving a ustomer edge (CE) router onneted to the VR.The employees of eah organization issue VPN set up andtear down servies to the VR via CEs. Also, the VR offersdifferentiated levels of servie, with organization #1 reeivingprioritized servie over organization #2. It is important thatthese requests be servied in a reasonable amount of time.Additionally, it is also ritial to obtain an estimate of whatthe response time might be at the time the VPN servie isprovisioned.In order to implement the VPN servie, a Reator patternwith the harateristis desribed in Setion II-B an be usedto (de)multiplex the events. The SRN model of the Reator

TABLE IIREWARD ASSIGNMENTS FOR RESPONSE TIMEEvent type Reward rate#1 return(#B1 < N1?1/µ1 ∗ (#S1 + #B1 + 1) + 1/µ2 ∗ (#S2 + #B1) : 0)#2 return(#B2 < N2?1/µ2 ∗ (#S2 + #B2 + 1) + 1/µ1 ∗ (#S1 + #B2 + 1) : 0)

���������	�
��

��	�

���������	�
��

��	�

���������	�
��

��	��

�

�

�

�	

�	

�	

�

�

�

�

�	

�	

�	

�

�

�

�

�	

�	

�	

�	

�	

���������	�
��

��	��

�

�

�

����������������

��������

����������

���������	�
��

��	� �

�

�

�

����������������

���������

���������	�
��

��	� �

��

����������

�

�

�

�	

�	

�	

�	

�	

�	

�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�������������

 ���!���
"����#�������������������$���

��
��������������������

"����#�����������������������

������������������

����������������

���������Fig. 3. VPN Arhiteture using Virtual Routerspattern an be used to obtain an estimate of the response timeof the requests. Towards this end, we designate the requestsoriginating from organization #1 as events of type #1 andrequests originating from organization #2 as events of type#2. We set the buffer apaities for both types of events to�ve, and the servie rates of both types of events to 2.0/se.The arrival rate of both types of events were set to 0.4/se.The expeted response times for type #1 and type #2 eventsobtained by solving the SRN model using SPNP [17℄ are 0.83seonds and 1.33 seonds, respetively. It an be observedthat the response time for set up and tear down requests fororganization #2 is higher than the response time for requestsfrom organization #1 due to the prioritized servie providedto organization #1 in eah snapshot.In this ase study, estimates of the expeted response timeswere obtained for �xed settings of the parameters. At designtime, however, it is rarely the ase that the exat values ofthe parameters are known. As a result, in the design phase itbeomes neessary to analyze the sensitivity of the estimatesto the values of the parameters. Sensitivity analysis an alsobe used to establish bounds on the performane estimatesand for the provisioning of resoures. We now demonstratehow the SRN model ould be used for sensitivity analysiswith relative ease. For the sake of illustration, we analyze thesensitivity of the response time estimates to the arrival rates ofthe events. Towards this end, we vary the arrival rates of theevents from 0.4/se to 2.0/se one at a time, and obtain theexpeted response time estimates for eah value of the arrivalrate. Figures 4 and 5 show the expeted response times as afuntion of event arrival rates.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
es

po
ns

e
tim

e

lambda1

R_1
R_2

Fig. 4. Response Time as a funtion of λ1The plot in Figure 4 shows the expeted response time asa funtion of λ1, and the plot in Figure 5 shows the expetedresponse time as a funtion of λ2. Figure 4 indiates thatas λ1 inreases, the expeted response times for both typesof events inrease. At approximately λ1 = 1.0, the expetedresponse times for both types of events is lose. However, as
λ1 inreases beyond 1.0/se the expeted response time of type#1 events is higher than the expeted response time of type#2 events. Thus, in effet, requests from organization #2 arereeiving better servie than requests from organization #1. Onthe other hand, Figure 5 indiates that the expeted responsetime of both types of events inreases as λ2 inreases, for the

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
es

po
ns

e
tim

e

lambda2

R_1
R_2

Fig. 5. Response Time as a funtion of λ2entire range of λ2. In this ase requests from organization#1 ontinue to reeive better servie than requests fromorganization #2, although the absolute value of the expetedresponse time inreases as λ2 inreases.IV. CONCLUSIONS AND FUTURE RESEARCHIn this paper we presented a performane model of theReator pattern whih offers the important synhronous de-multiplexing and dispathing apabilities in middleware. Themodel was based on the Stohasti Reward Net (SRN) mod-eling paradigm. We illustrated how the performane modelould be used to obtain an estimate of the response time of aVPN servie provided by a Virtual Router (VR). Our futureresearh onsists of empirially validating the response timeestimates obtained from the performane model. Developingand validating the performane models of other middlewarebuilding bloks and the omposition of these building bloksis also a topi of future researh.ACKNOWLEDGMENTSThis researh was supported by the following grants fromthe National Siene Foundation (NSF): Univ. of Connetiut(CNS-0406376 and CNS-SMA-0509271), Vanderbilt Univ.(CNS-SMA-0509296) and Univ. of Alabama at Birmingham(CNS-SMA-0509342). REFERENCES[1℄ R. E. Shantz and D. C. Shmidt, �Middleware for DistributedSystems: Evolving the Common Struture for Network-entriAppliations,� in Enylopedia of Software Engineering, J. Mariniakand G. Teleki, Eds. New York: Wiley & Sons, 2002.[2℄ E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:Elements of Reusable Objet-Oriented Software. Reading, MA:Addison-Wesley, 1995.[3℄ D. C. Shmidt, M. Stal, H. Rohnert, and F. Bushmann,Pattern-Oriented Software Arhiteture: Patterns for Conurrent andNetworked Objets, Volume 2. New York: Wiley & Sons, 2000.[4℄ A. Pulia�to, M. Telek, and K. S. Trivedi, �The evolution of stohastiPetri nets,� in Pro. of World Congress on Systems Simulation,Singapore, September 1997, pp. 3�15.

[5℄ H. Choi, V. Kulkarni, and K. S. Trivedi, �Markov RegenerativeStohasti Petri Net,� Performane Evaluation, vol. 20, no. 1�3, pp.337�357, 1994.[6℄ G. Horton, V. Kulkarni, D. Niol, and K. S. Trivedi, �Fluid stohastiPetri nets: Theory, appliation and solution tehniques,� Journal ofOperations Researh, vol. 405, 1998.[7℄ The VINT Projet, �Network Simulator - NS-2,�http://www.isi.edu/nsnam/ns, 1996.[8℄ P. Knight, H. Ould-Brahim, and B. Gleeson, �Network based VPNArhiteture using Virtual Routers,� IETF Network Working GroupInternet Draft, draft-ietf-l3vpn-vpn-vr-02.txt, pp. 1�21, Apr. 2004.[9℄ J. L. Peterson, Petri Net Theory and the Modeling of Systems.Prentie-Hall, 1981.[10℄ S. Ramani, K. S. Trivedi, and B. Dasarathy, �Performane analysis ofthe CORBA event servie using stohasti reward nets,� in Pro. ofthe 19th IEEE Symposium on Reliable Distributed Systems, Otober2000, pp. 238�247.[11℄ O. Ibe, A. Sathaye, R. Howe, and K. S. Trivedi, �Stohasti Petri netmodeling of VAXCluster availability,� in Pro. of Third InternationalWorkshop on Petri Nets and Performane Models, Kyoto, Japan, 1989,pp. 142�151.[12℄ O. Ibe and K. S. Trivedi, �Stohasti Petri net models of pollingsystems,� IEEE Journal on Seleted Areas in Communiations, vol. 8,no. 9, pp. 1649�1657, Deember 1990.[13℄ H. Sun, X. Zang, and K. S. Trivedi, �A stohasti reward net modelfor performane analysis of prioritized DQDB MAN,� ComputerCommuniations, Elsevier Siene, vol. 22, no. 9, pp. 858�870, June1999.[14℄ O. Ibe and K. S. Trivedi, �Stohasti Petri net analysis of�nite�population queueing systems,� Queueing Systems: Theory andAppliations, vol. 8, no. 2, pp. 111�128, 1991.[15℄ J. Muppala, G. Ciardo, and K. S. Trivedi, �Stohasti reward nets forreliability predition,� Communiations in Reliability, Maintainabilityand Servieability: An International Journal Published by SAEInternationa, vol. 1, no. 2, pp. 9�20, July 1994.[16℄ B. Melamed and M. Yadin, �Randomization proedures in theomputation of umulative-timed distributions over disrete-statemarkov proess,� Operations Researh, vol. 32, no. 4, pp. 926�944,July-August 1984.[17℄ C. Hirel, B. Tuf�n, and K. S. Trivedi, �SPNP: Stohasti Petri Nets.Version 6.0,� Leture Notes in Computer Siene 1786, 2000.[18℄ A. Nagarajan, �Generi Requirements for Provider Provisioned VirtualPrivate Network (PPVPN),� in IETF Network Working Group Requestfor Comments, RFC 3809, A. Nagarajan, Ed. IETF, June 2004, pp.1�25.

