
 68 COMPUTER Published by the IEEE Computer Society 0018-9162/14/$31.00 © 2014 IEEE

COLUMN SECTION TITLESOF T WARE TECHNOLOGIES

Coordinating domain-specific modeling languages provides support for
language heterogeneity in software-intensive systems’ development and
runtime management.

In the software and sys-
tems modeling community,
domain-specific modeling
language (DSML) research

is focused on providing technolo-
gies for developing languages and
tools that allow domain experts to
develop system solutions efficiently.
Unfortunately, it’s very difficult for
software and systems engineers to
reason about information spread
across models describing different
system aspects because of the cur-
rent lack of support for explicitly
relating concepts expressed in dif-
ferent DSMLs. Here, we describe a
research initiative that broadens
the DSML research focus beyond
independent DSML development
to one that supports globalized
DSMLs—that is, DSMLs that facili-
tate coordination of work across

different domains of expertise.

DOMAIN-SPECIFIC
MODELING LANGUAGES
Model-driven engineering (MDE)
aims to reduce the accidental com-
plexity associated with developing
complex software-intensive systems.1
A primary source of this complex-
ity is the wide gap between the
high-level concepts used by domain
experts to express their specific
needs and the low-level abstrac-
tions provided by general-purpose
programming languages.2 Manually
bridging this gap, particularly in the
presence of changing requirements,
is costly in terms of both time and
effort. MDE approaches this problem
through the use of modeling tech-
niques that support separation of
concerns and automated generation

of major system artifacts (for exam-
ple, test cases and implementations)
from models.

In MDE, a model describes an
aspect of a system and is typically
created for specific development
purposes. Separation of concerns
is supported through the use of dif-
ferent modeling languages, each
providing constructs based on ab-
stractions that are specific to an
aspect of a system. For example, gen-
eralized stochastic Petri nets can be
used to create performance models,
whereas the notation provided by the
Simulink tool is adapted to simula-
tion models. MDE technologies also
provide support for manipulating
models, such as for querying, trans-
forming, merging, and analyzing
(including executing) models. Model-
ing languages are thus at MDE’s core.

Globalizing
Modeling
Languages
Benoit Combemale, Inria and Univerity
of Rennes

Julien DeAntoni, University of Nice
Sophia-Antipolis

Benoit Baudry, Inria

Robert B. France, Colorado State University

Jean-Marc Jézéquel, University of Rennes

Jeff Gray, University of Alabama

r6sof.indd 68 5/22/14 10:47 AM

 JUNE 2014 69

Incorporating domain-specific
concepts and high-quality de-
velopment experience into MDE
technologies can significantly im-
prove developer productivity and
system quality. This tactic has led
to work, starting in the late 1990s,
on MDE language workbenches that
enable the development of tool-
supported DSMLs. A DSML bridges
the problem space in which domain
experts work and the implemen-
tation (or programming) space.
Domains in which DSMLs have
been developed and used include
automotive, avionics, and cyber-
physical systems.

John Hutchinson and his col-
leagues provided some indication
that DSMLs can pave the way for
wider industrial adoption of MDE.3
Research on systematic DSML devel-
opment has produced a technology
base robust enough to support the
integration of DSML development
processes into large-scale industrial
system development environments.
Current DSML workbenches sup-
port the development of DSMLs to
create models that play pivotal roles
in different development phases.
Workbenches such as Microsoft’s
DSL tools, MetaCase’s MetaEdit+,
JetBrains’ MPS, the Eclipse Modeling
Framework (EMF), and the Generic
Modeling Environment (GME) sup-
port the specification of the abstract
syntax, concrete syntax, and static
and dynamic semantics of a DSML.
These workbenches address DSML
developers’ needs in a variety of ap-
plication domains.

Today’s complex, software-
intensive systems development often
involves the use of multiple DSMLs
to capture different system as-
pects. In addition, models of system
aspects are seldom manipulated in-
dependently of one another. Systems
engineers are thus faced with the
difficult task of relating information
presented in different models. For
example, a systems engineer might
need to analyze a system property

that requires information scattered
in models expressed using different
DSMLs. Current DSML development
workbenches provide good support
for developing independent DSMLs,
but little or no support for integrated
use of multiple DSMLs. The lack of
support for explicitly relating con-
cepts expressed in different DSMLs
makes it very difficult for developers
to reason about information spread
across different models.

GLOBALIZED
DSML CHALLENGE:
LOOKING AHEAD
Past research on model-
ing languages focused on their
use to bridge wide problem-
implementation gaps. A new
generation of software-intensive

 systems—such as smart health,
smart grid, building energy manage-
ment, and intelligent transportation
systems—presents new oppor-
tunities for leveraging modeling
languages. The development of
these complex systems requires
expertise in a variety of domains.
Consequently, different stake-
holder types (such as scientists,
engineers, and end users) must co-
ordinate on various aspects of the
system across multiple develop-
ment phases. DSMLs can support
the work of domain experts focus-
ing on a specific system aspect, but
they can also provide the means
for coordinating work across teams
specializing in different aspects and
development phases.

Supporting coordinated use of
DSMLs leads to what we call the
globalization of modeling lan-
guages, that is, the use of multiple
modeling languages to support co-
ordinated development of diverse
system aspects. This is analogous

to globalization: relationships are
established between sovereign coun-
tries to regulate interactions (such
as travel- and commerce-related in-
teractions) while preserving each
country’s independent existence.
The term “DSML globalization”
describes the desired goal that in-
dependently developed DSMLs
will meet specific domain experts’
needs and should have an associ-
ated framework that regulates the
interactions needed to support col-
laboration and work coordination
across different system domains.

Globalized DSMLs aim to sup-
port the following critical aspects of
developing complex systems: com-
munication across teams working
on different aspects, coordination
of work across the teams, and con-

trol of the teams to ensure product
quality. The objective is to offer
support for communicating rel-
evant information, coordinating
development activities and associ-
ated technologies within and across
teams, and imposing control over
development artifacts produced by
multiple teams.

Coordination and related separa-
tion of concerns issues have been
software engineering’s focus since
early work on modularized soft-
ware. David Parnas’ use of the term
“work product” to denote a module
that can be the source of indepen-
dent development is also a focus of
team demarcation across design and
implementation tasks. Modularity in
modern software-intensive systems
development leads to well-known
coordination problems, such as
problems associated with coordinat-
ing work over temporal, geographic,
or sociocultural distance.4 This has
also led to the recognition that so-
ciotechnical coordination, including

Supporting coordinated use of DSMLs leads to what
we call the globalization of modeling languages.

r6sof.indd 69 5/22/14 10:47 AM

 70 COMPUTER

SOF T WARE TECHNOLOGIES

coordination of the stakeholders and
the technologies they use to perform
their development work, is a major
systems development challenge.5

DSMLs support sociotechni-
cal coordination by providing the
means for stakeholders to bridge
the gap between how they perceive
a problem and its solution on the
one side, and the programming
technologies used to implement
that solution on the other. When
they’re supported by mechanisms
for specifying and managing their
interactions, DSMLs also support
coordination of work across mul-
tiple teams. In particular, proper
support for coordinated use of
DSMLs leads to language-based
support for social translucence,
where the relationships between
DSMLs are used to extract the
information needed to make a de-
velopment team aware of relevant
work performed by teams working
on other aspects. Such awareness
minimizes the counter productivity
that results from social isolation
when work is distributed across
different teams.

ON MODELING LANGUAGE
GLOBALIZATION
To support globalization, relation-
ships among multiple heterogeneous
modeling languages must be
established to determine how dif-
ferent system aspects influence
one another. We identify three pos-
sible relationships that modeling
languages might use to support in-
teractions across different system
aspects: interoperability, collabora-
tion, and composition.

Interoperable modeling lan-
guages provide support for
information exchange across their
models. Interoperable DSMLs can
be developed in a relatively inde-
pendent manner, but relationships
defined across the different DSMLs
allow information expressed in one
model to be related to information
contained in models expressed in

different DSMLs. These DSML rela-
tionships facilitate the development
of integrated modeling tool chains
in which information from a model
built for a specific purpose (such
as a SysML model, which specifies
the system architecture) is used
to annotate a model that serves a
different purpose (such as a gener-
alized stochastic Petri net used for
performance analysis). Interopera-
ble DSMLs have the lowest coupling
of the three relationships we iden-
tified; the focus is on supporting
coordinated use of modeling tools,
as opposed to tightly coupling
model development.

Collaboration relationships
among modeling languages pro-
vide support for coupled model
development. DSMLs in such a
relationship are referred to as col-
laborative modeling languages.
The model development expressed
in a collaborative modeling lan-
guage can directly influence the
form and the correction of models
created using other collaborative
modeling languages. For example,
developers can use consistency re-
lationships defined across DSMLs
to ensure consistency among
the different models they create.
Model-authoring tools for collab-
orative DSMLs are thus coupled.
Collaborative DSMLs can support a
priori as well as a posteriori global
analysis of properties.

Interoperable and collaborative
DSMLs support DSML interac-
tions without deriving new forms
of information from that which is
spread across different models.
However, some situations call for
creating new forms by combin-
ing information scattered in other
models—for example, to support
system documentation generation
and test cases, or to provide sup-
port for simulating global system
behavior. Model composition (such
as weaving and merging) is thus
the third form of interaction fa-
cilitated by explicit definitions of

relationships across elements in
different DSMLs.

These ideas can be applied at
various phases of the development
life-cycle, ranging from early analy-
sis to system runtime. Models can
also be used to coordinate work
done by different components, sub-
systems, or services. The use of
DSMLs to coordinate work can po-
tentially have a beneficial impact on
the running systems’ management.
Different model kinds are currently
used as runtime abstraction layers
to support reasoning about the
system or even adapting it.6 These
model-based runtime environments
can leverage explicitly defined
relationships across DSMLs to coor-
dinate the manipulation of models
at runtime.

Challenging issues will
need to be addressed to
realize the above forms of

language integration. Relationships
among the languages will need
to be defined explicitly in a form
that corresponding tools can use
to realize the desired interactions.
Requirements for tool manipulation
are thus another topic that will be a
focus for future work in the area of
DSML globalization.

Acknowledgments
This work is supported by the GEMOC

initiative (http://gemoc.org), an open, inter-

national initiative that brings together a

community to develop software language

engineering breakthroughs supporting

DSML globalization.

References
1. D.C. Schmidt, “Guest Editor’s

Introduction: Model-Driven
Engineering,” Computer, vol. 39,
no. 2, 2006, pp. 25–31.

2. R. France and B. Rumpe, “Model-
Driven Development of Complex
Software: A Research Roadmap,”

r6sof.indd 70 5/22/14 10:47 AM

 JUNE 2014 71

Future of Software Eng., IEEE CS,
2007, pp. 37–54.

3. J. Whittle, J. Hutchinson, and
M. Rouncefield, “The State
of Practice in Model-Driven
Engineering,” IEEE Software, vol.
31, no. 3, 2014, pp. 79–85.

4. J.D. Herbsleb and R.E. Grinter,
“Architectures, Coordination,
and Distance: Conway’s Law and
Beyond,” IEEE Software, vol. 16,
no. 5, 1999, pp. 63–70.

5. J.D. Herbsleb, “Global Software
Engineering: The Future of
Socio-Technical Coordination,”
Future of Software Eng., IEEE CS,
2007, pp. 188–198.

6. G. Blair, N. Bencomo, and R.B.
France, “Models@ run.time,”
Computer, vol. 42, no. 10, 2009,
pp. 22–27.

Benoit Combemale is an associ-
ate professor at the University

of Rennes, France, and a research
scientist at Inria. His research inter-
ests include model-driven software
engineering, software language
engineering, domain-specific
languages, and validation and
verification. Contact him at benoit.
combemale@inria.fr.

Julien DeAntoni is an associate
professor in the Department of Com-
puter Science at the University of
Nice Sophia-Antipolis, France. His
research focuses on the connection
between model-driven engineering
and concurrency theory by using the
notion of logical time. Contact him at
julien.deantoni@inria.fr.

Benoit Baudry is a research scientist
at Inria. His research interests in-
clude metamodeling and model-based
software analysis and testing. Con-
tact him at benoit.baudry@inria.fr.

Robert B. France is a professor in
the Department of Computer Sci-
ence at Colorado State University.
His research focuses on model-driven
development, models at runtime,
software product lines, domain-
specific languages, and formal
methods. Contact him at france@
cs.colostate.edu.

Jean-Marc Jézéquel is a professor at
the University of Rennes and direc-
tor of IRISA. His research focuses
on the theory and practice of model-
driven engineering. Contact him at
jezequel@irisa.fr.

Jeff Gray is a professor in the De-
partment of Computer Science at the
University of Alabama. His research
focuses on model transformation,
domain-specific languages, and com-
puter science education. Contact him
at gray@cs.ua.edu.

Expert Online
Courses —
Just $49.00

Topics:
Project Management, Software
Security, Embedded Systems,
and more.

www.computer.org/online-courses

r6sof.indd 71 5/22/14 10:47 AM

