
Domain-Specific Software Engineering
Barrett R. Bryant

University of Alabama at Birmingham
Computer and Information Sciences
Birmingham, AL 35294-1170, USA

bryant@cis.uab.edu

Jeff Gray
University of Alabama

Department of Computer Science
Tuscaloosa, AL 35487-0290, USA

gray@cs.ua.edu

Marjan Mernik
University of Maribor

Smetanova 17
SI-2000 Maribor, Slovenia

marjan.mernik@uni-mb.si

ABSTRACT
This paper projects that an important future direction in software
engineering is domain-specific software engineering (DSE). From
requirements specification to design, and then implementation, a
tighter coupling between the description of a software system with
its application domain has the potential to improve both the
correctness and reliability of the software system, and also lead to
greater opportunities for software automation. In this position
paper, we explore the impact of this emerging paradigm on
requirements specification, design modeling, and implementation,
as well as challenge areas benefiting from the new paradigm.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
languages.
D.3.2 [Programming Languages]: Language Classifications –
very high-level languages.

General Terms
Design, Languages

Keywords
Domain-specific languages, domain-specific modeling,
requirements specification

1. INTRODUCTION
Programming languages and software engineering have
throughout their short history moved from machine-oriented to
human-oriented computing. This has been achieved through
development of higher level abstractions, especially with respect
to models that describe software systems and programmer-defined
abstractions (e.g., object-oriented programming and modeling).
One can argue that UML and Java are popular representations of
modeling and programming languages, respectively. However,
both UML and Java are general-purpose. We argue that the next
level of abstractions will take place via domain-specific modeling
(DSM) and domain-specific languages (DSLs). The move from
general-purpose to domain-specific representation has the
potential to greatly impact the field of software engineering by
allowing domain experts and end-users (who are not software
engineers and do not understand traditional programming
languages) to describe their computational needs in a

representation that is familiar to them (i.e., based on domain
abstractions and notations). Domain experts, end-users and
software engineers are already beginning to use domain-specific
models and languages for describing solutions to their problem
tasks. Our position for this paper is grounded in the belief that this
trend toward domain-specificity will continue, but the current
state-of-the-art has many challenges that must be addressed.

In this paper, we ask the following questions based upon this
premise:

1. Can domain-specific approaches augment formal methods to
improve automated processing of requirements specification,
early validation of requirements, and higher reliability of
completed software products?

2. What is needed to bring meta-configurable domain-specific
modeling environments closer to the maturity level of
traditional integrated development environments (IDEs) of
general-purpose programming languages?

3. If non-software engineers, such as domain experts and end-
users, are able to develop parts of a software system, what
kind of tool support is needed to ensure quality and reliability
of such systems?

4. What specific areas of software engineering might be
impacted by this paradigm?

We explore each of these topics in the following sections.

2. DOMAIN-SPECIFIC
REQUIREMENTS LANGUAGES
It is well-known that requirements engineering cannot be
conducted effectively without domain engineering [1]. However,
Bjørner [1] has also indicated that the detailed engineering of any
significant domain is a “grand challenge” problem that may take
many years to resolve. While expecting the results of such an
undertaking to have significant impact, we propose that the
requirements engineering process may be taken a step further in
the interim (i.e., requirements specification should be carried out
in a domain-specific manner).

Domain-specific requirements specification requires that there be
a framework for expressing domain entities at the specification
level; namely, in the form of domain-specific requirements
languages (DSRLs). Such languages would allow requirements to
be specified in terms of the application domain abstractions. We
believe that such an approach can enhance existing requirements
specification languages by providing appropriate domain-level
abstractions for the systems to be built and their inherent
requirements, such as security (e.g., RedSeeds [11] provides
domain abstractions expressed in natural language, but it is hard
to reason about such abstractions or incorporate them into formal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11...$10.00.

specifications). Providing requirements specification in terms of
domain abstractions will also make such specifications easier for
domain experts who are not software engineers to validate,
because the specification will be expressed in terms of concepts
which they understand. Software engineers may then concentrate
on the formal specifications needed to model the appropriate
domain behavior. This will increase the possibility of automated
tools to produce software artifacts from the specification and
improve the reliability of these artifacts.

The research issues that arise from this approach are:
1. How can domain-specific abstractions be integrated into

existing requirements specifications methods so that such
specifications can still be reasoned about (e.g., model
checking) in the absence of a formal domain model?

2. Can this approach improve research in domain engineering
and help lead toward a solution of Bjørner’s “grand
challenge” problem?

3. What properties are required of domains at this level to allow
procession to other aspects of the software lifecycle?

3. DOMAIN-SPECIFIC
MODELING LANGUAGES
Over the past decade, UML has been the standard notation for
modeling software systems. As a general-purpose modeling
notation, UML provides multiple languages (e.g., object models
and interaction models) that can be used to specify an application
from different perspectives. Although UML is useful for
describing software architecture, it is often not the best for end-
users desiring a more familiar notation. Furthermore, the large
size of the language can also make UML challenging for
traditional software practitioners [12].

The emergence of domain-specific modeling (DSM) [6][12] has
challenged the notion of general-purpose modeling (as done with
the UML). DSM has enabled both end-users and software
developers in describing the key characteristics of a system from
the perspective of the problem space, without getting
overwhelmed by the accidental complexities of the solution space.
By providing a notation that is often visual and graphical in
nature, while also matching the abstractions of the domain, the
essence of the problem can be captured in a way that removes the
coupling with implementation concerns. The idea of model-driven
engineering (MDE) has championed the idea of modeling with
high-level abstractions and then generating other artifacts needed
further down in the software lifecycle [19] (e.g., source code, test
cases, or simulation scripts).

In DSM, a metamodel is used to define the essence of a specific
modeling language, including the syntax and visualization
provided by the language. A metamodeling tool can interpret the
metamodel to provide a domain-specific modeling environment.
Model transformations are used to translate a source model into
some other form (e.g., a more refined model, or generated source
code). Despite a number of successful industrial applications of
DSM [12], there are still many issues that need to be resolved:

1. The maturity level of most metamodeling tools is at a level
that is comparable to programming environments from the
1960s. Capabilities that are common in modern IDEs for
programming languages (e.g., version control, testing,
visualizing differences among different models) are still in
the research stage of DSM. What seems to be a simple
concept - model comparison/differencing - is at the heart of

current research to improve the tool support available in
metamodeling tools. As also mentioned in Section 4, the
ability to generate supporting tools from language
descriptions could be a useful way to improve the general
maturity of modeling tools.

2. Most metamodels only capture the syntax and structural rules
of a modeling language. The semantics and behavioral
description is often delegated to the model transformation or
model compiler. This is similar to defining a programming
language by referring a user to “what the compiler says”
rather than a formal definition of a language. A current
research area in DSM is focused on new techniques for
defining modeling languages based on new translation
techniques that borrow from the experiences of defining
programming languages. The maturity and future success of
DSM depends on the ability to precisely define the meaning
of a modeling language in order to support reasoning and
automated generation of support tools.

3. Like all software artifacts, models also evolve over time.
Within the context of DSM and MDE, evolution has several
challenging issues: a) as the metamodel evolves, those model
instances that depend on the metamodel must also co-evolve
[19], b) as models evolve, the underlying legacy source code
and other artifacts depending on the model must also evolve
in order to maintain the causal connection with the models.

4. DOMAIN-SPECIFIC
PROGRAMMING LANGUAGES
Domain-specific languages (DSLs) are languages tailored to a
specific application domain [13]. They offer substantial gains in
expressiveness and ease of use compared with general-purpose
languages in their domain of application. Due to the narrow
domain, unique possibilities for domain-specific optimization and
verification are indeed feasible. Among other advantages of DSLs
are enhanced reuse, productivity and software quality [4][15]. The
intentions of domain-specific languages are numerous. On one
hand, DSLs are powerful tools for software engineers and
professional programmers for raising software productivity. While
on the other hand, DSLs also enable end-user programming. DSLs
assist programmers and end-users to write more concise,
descriptive, and platform-independent programs [10][15][20].
This is made possible because the domain knowledge is specified
at an appropriate level of abstraction, which is independent of the
implementation platform. The amount of written software
continues to be overwhelming (e.g., maintainers of the Linux
kernel “add 11,000 lines, remove 5500 lines, and modify 2200
lines every single day” [13]) such that software maintenance
remains a prevalent activity in software engineering (e.g., it is
estimated that there are 0.1 to 1 defects per 1,000 lines of code in
open source projects).

It is clear that we need a paradigm shift in software development
to manage the complexity of development and maintenance. The
same system functionality must be achieved with less code, which
is also often easier to validate and maintain. Modifications to
domain-specific programs are easier to create and can be
understood and validated by domain experts who do not know
how to program in a general-purpose language. However, end-
user programmers are more likely to introduce software errors
than professional programmers because they lack software
training and proper support tools [8][21]. Therefore, there is an

urgent need for quality assurance regarding end-user
development. Despite the fact that DSLs have recently attracted
more research interest, many problems still need to be solved
before DSLs become fully integrated into software engineering
practice and adopted by both mainstream developers and end-
users. Some of the challenges of using DSLs are:

1. DSL development is hard, requiring both domain knowledge
and language development expertise. Many current DSLs
have been developed without proper domain analysis and
there is an urgent need to (semi-)automate this process and
make it more feasible for software engineers. Some future
directions are: mining domain concepts from existing
application code written in general-purpose languages, using
other artifacts where domain analysis has been performed
already and presented in different forms (e.g., ontologies),
and grammatical inference (GI) [16]. Moreover, results from
domain analysis must be well-integrated with the DSL design
process. Tools like language design assistants may help.

2. Developing integrated development environments (IDEs) for
DSLs from scratch is too costly. Such DSL IDEs should
include features that are typical of general-purpose language
environments (e.g., syntax-directed editors, debuggers,
profilers, refactoring tools, and test engines). These
indispensible tools for software development may be
automatically built from DSL specifications.

3. What kind of tool support is needed to ensure quality and
reliability of software developed by end-user programmers?

Solving these problems would open new horizons in end-user
development and enable a new paradigm shift in software
engineering. In this respect, DSLs offer much promise and we
anticipate strong impact in the future from DSLs.

5. APPLICATIONS OF DSE
There are a number of areas that have the potential to benefit from
the impact of domain-specific approaches. We examine four
benefits of DSL adoption in this section.

5.1 Component-Based Software Engineering
and Software Product Lines
Despite the existence of web services, service-oriented
architecture and cloud computing, we are still far from able to
build a large distributed software system from a collection of
components. The reason for this is that such components do not
inherently carry enough information in their deployment to
facilitate their composition. Successful composition relies on two
cross-cutting domains: application domain and technology
domain. Application domain knowledge imparts what components
would naturally compose with other components to build the
application system. Technology domain knowledge provides the
technical infrastructure on how the components should be
composed, including generation of glue/wrapper code and Quality
of Service parameters.

The impact of domain-specific software engineering on building
such systems is that domain knowledge is an inherent part of
software systems, including plug-and-play components. This
domain knowledge may be used to facilitate composition as well
as reasoning about the composition with respect to correctness,
reliability and various other quality measures (e.g., security) [2].

Software product lines (SPLs) are focused on abstracting out the
variability and commonality of a set of products in a certain
domain. The importance of domain analysis, and subsequently
domain modeling, is an important part of SPLs. More recently,
domain-specific modeling has been explored as a technique to
improve the alignment of SPLs and their domain abstractions [3].
As an example, Gray et al. [6] present an example based on an
industrial case study that is focused on modeling a mobile phone
product line. It is anticipated that DSM and DSLs will offer
insight into improving the description of software product lines
using specific notations aligned to domain concepts, rather than
general-purpose concepts (as typified by the traditional feature
models). Domain-specific approaches to software architecture are
explored in [22].

5.2 Parallel/High-Performance Computing
The wide availability of parallel computers has not resulted in
available best practices for building parallel software systems.
Such systems tend to require a great deal of hand-coding with
little regard for the types of abstractions that have proven so
valuable in building other software systems. This is due to the
mismatch between high levels of abstraction and the underlying
high performance that is desired for these applications. To date,
there are few high-level languages that are specifically designed
for parallel/high-performance computing. Most languages used in
practice have a “parallel extension” of an existing language,
usually C or Fortran, not renowned for their abstraction. Such
parallel extensions are by necessity low-level and are often very
oriented toward the underlying parallel architecture (e.g., memory
hierarchies, multi-core processors, etc.). At the same time,
algorithms are programmed according to these underlying
architectures and the modular structure to support adaptation and
evolution is often lacking in such approaches.

We believe that domain-specific software engineering could
revolutionize the way parallel/high-performance software systems
are built, by allowing algorithms to be modeled and programmed
in a more architecture-independent way with appropriate
mappings to the underlying architecture. Because “domain” could
be defined from both an application and a platform view, it would
contain knowledge of how applications are tailored to specific
platforms. Preliminary work in this area includes [5][18].

5.3 Security
Security of computer systems and engineering of secure systems
have become of paramount importance. It has been recognized
that security of a system must be engineered from the outset of
requirements specification [14]. However, it remains unclear how
to specify security and how to carry security requirements through
to modeling and implementation. Furthermore, security may be
specific to the application domain and platforms the system is to
be deployed on. We expect that domain-specific software
engineering would greatly improve the prospects for this and there
has been initial experimentation with using DSLs to specify
security [7].

5.4 Ultra-Large-Scale Software Intensive
Systems (ULSSIS)
The characteristics of ULSSIS [17] are represented by thousands
of platforms, continuous evolution, scaled-up validation,
verification, and certification, policy-based modifications, human
interactions, and orchestration and control. As indicated in [9],
[17], DSLs are a promising technique for ULSSIS engineering.

6. CONCLUSIONS
Our position for this workshop is focused on the role that domain-
specific software engineering plays with respect to requirements
specification, modeling and implementation. We have identified
four areas of software engineering that would benefit from this
paradigm and open new directions in software engineering
research. We expect this paradigm to impact development of
software systems in numerous other application areas.

7. ACKNOWLEDGMENTS
We are grateful to the National Science Foundation for supporting
work leading to these ideas through grants CCF-0811630 and
CCF-0643725 (CAREER).

8. REFERENCES
[1] Bjørner, D. 2010. Domain engineering. In Formal Methods;

State of the Art and New Directions, P. Boca, J. P. Bowen,
and J. I. Siddiqi, Eds. Springer-Verlag, London, 1-41.
DOI=http://dx.doi.org/10.1007/978-1-84882-736-3_1.

[2] Cao, F., Gray, J., and Bryant, B. R. 2009. Component-based
software engineering. In Wiley Encyclopedia of Computer
Science and Computer Engineering, B. Wah, Ed. John Wiley
& Sons, Inc., Hoboken, NJ.

[3] Chastik, G. and McGregor, J. 2005. Integrating domain
specific modeling into the production method of a software
product line, In Proceedings of the 5th OOPSLA Workshop
on Domain-Specific Modeling (San Diego, CA, Oct. 16-20,
2005). DSM ’05. http://www.dsmforum.org/events/DSM05.

[4] van Deursen A., Klint P., and Visser J. 2000. Domain-
specific languages: An annotated bibliography. ACM
SIGPLAN Notices 35, 6 (June 2000), 26–36. DOI=
http://doi.acm.org/10.1145/352029.352035.

[5] Di Pietro, D. A., Gratien, J., Häberlein, F., Michel, A., and
Prud'homme, C. 2009. Basic concepts to design a DSL for
parallel finite volume applications: extended abstract. In
Proceedings of the 8th Workshop on Parallel/High-
Performance Object-Oriented Scientific Computing (Genova,
Italy, July 7, 2009). POOSC '09. ACM, New York, NY, 1-
11. DOI= http://doi.acm.org/10.1145/1595655.1595658.

[6] Gray, J., Tolvanen, J.-P., Kelly, S., Gokhale, A., Neema, S.,
Sprinkle, J. 2007. Domain-specific modeling. In CRC
Handbook on Dynamic System Modeling, Paul Fishwick,
Ed. CRC Press, Boca Raton, FL.

[7] Hamdi, H., Mosbah, M., and Bouhoula, A. 2007. A domain-
specific language for securing distributed systems. In
Proceedings of the International Conference on Systems and
Networks Communication (Cap Esterel, France, Aug. 25-31,
2007). ICSNC ’07. IEEE Computer Society, Los Alamitos,
CA, 76. DOI= http://dx.doi.org/10.1109/ICSNC.2007.2.

[8] Harrison W. 2004. The dangers of end-user programming,
IEEE Software 21, 4 (July/Aug. 2004), 5-7. DOI=
http://dx.doi.org/10.1109/MS.2004.13.

[9] Heering, J. and Mernik, M. 2008. Domain-specific languages
as key tools for ULSSIS engineering. In Proceedings of the
2nd International Workshop on Ultra-Large-Scale Software-
Intensive Systems (Leipzig, Germany, May 10-11, 2008).

ULSSIS ’08. 1-2. DOI=
http://doi.acm.org/10.1145/1370700.1370701.

[10] Hudak P. 1996. Building domain-specific embedded
languages. ACM Comput. Surv. 28, 4 (Dec. 1996). DOI=
http://doi.acm.org/10.1145/242224.242477.

[11] Kaindl, H. et al. 2007. Requirements Specification Language
Definition: Defining the ReDSeeDS Languages. Technical
Report. http://www.redseeds.eu.

[12] Kelly, S. and Tolvanen, J.-P. 2008. Domain-Specific
Modeling: Enabling Full-Code Generation. Wiley-IEEE
Computer Society Press, Hoboken, NJ.

[13] Kroah-Hartman, G. 2009. Interview with Greg Kroah-
Hartman. How Software is Built (Blog), November 2009,
http://howsoftwareisbuilt.com/2009/11/18/interview-with-
greg-kroah-hartman-linux-kernel-devmaintainer.

[14] Mead, N.R. 2008. Security Requirements Engineering.
Technical Report, Software Engineering Institute, Carnegie
Mellon University.

[15] Mernik, M., Heering, J., and Sloane, A. M. 2005. When and
how to develop domain-specific languages. ACM Comput.
Surv. 37, 4 (Dec. 2005), 316–344. DOI=
http://doi.acm.org/10.1145/1118890.1118892.

[16] Mernik, M., Hrnčič, D., Bryant, B. R., and Javed, F. 2010.
Applications of GI in software engineering: DSL
development. In Mathematics, Computing, Language, and
Life: Frontiers in Mathematical Linguistics and Language
Theory, C. Martín-Vide, Ed. Imperial College Press, London.

[17] Northrop, L., Feiler, P, Gabriel, R. P., Goodenough, J.,
Linger, R., Longstaff ,T., Kazman, R., Klein, M., Schmidt,
D., Sullivan, K., and Wallnau, K. 2006. Ultra-Large-Scale
Systems: The Software Challenge of the Future. Technical
Report, Software Engineering Institute, Carnegie Mellon
University, http://www.sei.cmu.edu/uls.

[18] de Oliveira Castro, P., Louise, S., and Barthou, S. 2010. A
multidimensional array slicing DSL for stream programming.
In Proceedings of the International Conference on Complex,
Intelligent and Software Intensive Systems (Krakow, Poland,
Feb. 15-18, 2010). CISIS ’10. IEEE Computer Society, Los
Alamitos, CA, 913-918. DOI=
http://doi.ieeecomputersociety.org/10.1109/CISIS.2010.135.

[19] Schmidt, D.C. 2006. Guest editor’s introduction: Model-
driven engineering. IEEE Computer 39, 2 (Feb. 2006), 25–
31. DOI= http://dx.doi.org/10.1109/MC.2006.58.

[20] Sprinkle J., Mernik M., Tolvanen J.-P., and Spinellis D.
2009. What kinds of nails need a domain-specific hammer?
IEEE Software 26, 4 (July/Aug. 2009), 15–18. DOI=
http://dx.doi.org/10.1109/MS.2009.92.

[21] Sutcliffe, A. and Mehandjiev, N. 2004. End-User
Development: Tools that Empower Users to Create their
Own Software Solutions, Commun. ACM 47, 9 (Sept. 2004),
31-32. DOI= http://doi.acm.org/10.1145/1015864.1015883.

[22] Taylor, R. N., Medvidović, N. and Dashofy, E. M. (2008)
Software Architecture: Foundations, Theory, and Practice.
John Wiley & Sons, Inc., Hoboken, NJ.

