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ABSTRACT

In order to harness the power of multicore CPUs and GPUs, HPC (High Performance Com-

puting) programmers and even end-users need new tools and techniques to express their core prob-

lem, divide that core problem into sub problems, allocate computational resources for the sub

problems, execute the resources, and collect results. HPC users focus more on the problem do-

main while HPC programmers are concerned with the code or HPC domain. However, in current

practice, the distinction of programmers and users is not clearly delineated because most of the

end-users (e.g., scientists who have a computational need) must create and write their own HPC

code. Moreover, HPC users also have to maintain the HPC source code to keep abreast with the

latest advances, techniques and platforms introduced by the HPC programming community.

The specific aim of this dissertation is to introduce new software engineering ideas (e.g.,

Model-Driven Engineering (MDE) and Domain-Specific Languages (DSLs)) and supporting tools

to assist in the evolution of parallel programs used by HPC programmers, as well as HPC users. In

this dissertation, we show that tool support can be provided for HPC programs at different levels

of abstraction targeted for a specific set of users. These levels of abstraction are: 1) Code-level,

2) Algorithm-level, 3) Program-level, and 4) Sub-domain-level. We designed, implemented, and

evaluated DSLs at each abstraction level to support heterogeneous computing.

Code-level abstraction is very general and it can be applied to any C/C++ program, while

algorithm-level abstraction is only applicable for programs implementing MapReduce algorithms.

Compared to code-level and algorithm-level abstraction, program-level and sub-domain-level ab-
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stractions are very specific and are only applicable to specific domains and users (e.g., Signature

Discovery Intiative (SDI) project participants and Nbody solution users). We observed that if the

domain is specific, less information is required from the user because the DSLs are domain-aware.

If the domain is very general (e.g., in the code-level and algorithm-level abstractions), there are

more application usage areas for the DSL, but adoption of the DSL at more general levels requires

additional information from the end-users.
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Chapter 1

INTRODUCTION

High Performance Computing (HPC) has emerged in importance over several decades,

which has led to parallel software being widely used in multiple domains. However, HPC ap-

plications are often developed by augmenting existing sequential applications with parallel pro-

gramming constructs for synchronization or message passing [Chandra, Dagum, Kohr, Maydan,

McDonald, and Menon, 2001; Chapman, Jost, and Pas, 2007; Squyres, 2003]. With the popu-

larity of multicores and multiprocessors, the need to understand parallel programming techniques

will continually emerge as a necessary skill needed by future software engineers, not just those

who write HPC programs [Jacob, Whittaker, Thapaliya, Bangalore, Mernik, and Gray, 2010]. A

survey of general-purpose computation on graphics hardware reveals that General-Purpose GPU

(GPGPU) algorithms continue to be developed for a wide range of problems [Owens, Luebke,

Govindaraju, Harris, Krüger, Lefohn, and Purcell, 2007]. To use GPGPUs outside of their in-

tended context, much work is required to make such algorithms accessible to a broader range of

software developers. High performance, scalable parallel software is recognized to be extremely

difficult to design, develop, debug, evolve, and maintain because of accidental complexities of

current practice [Jacob, Gray, Bangalore, and Mernik, 2010; McKenney, 2010]. A lack of tool

support and poor integration of new software engineering ideas has contributed to the challenges

of most HPC software. Abstractions in parallel programming languages and directives or anno-

tations in sequential code have shown initial promise in reducing some of the burdens of parallel
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programming [Chandra et al., 2001; Han and Abdelrahman, 2009]. However, even with all of these

advances, parallel programming still requires skill beyond that possessed by an average program-

mer [Asanovic, Bodik, Catanzaro, Gebis, Husbands, Keutzer, Patterson, Plishker, Shalf, Williams,

and Yelick, 2006].

In this dissertation, HPC programmers refers to programmers whose areas of expertise are

parallelization and optimization of the parallelized code. HPC users represent scientists, math-

emeticians, and other forms of users who have deep computational needs to solve domain-specific

problems. We argue that HPC users should be able to re-use the code written by HPC programmers,

thereby allowing them to focus more on their own area of expertise. Both HPC programmers and

HPC users design parallel programs at different levels of abstraction, but share similar challenges,

as explained in the following sections.

1.1 Which Programming Model to Use?

Parallel programming enables the decomposition of a large computational domain into nu-

merous sub-domains, and employs a large number of processors to compute the solution simultane-

ously in parallel on these sub-domains. The Message Passing Interface (MPI) [Gropp, Lusk, and

Skjellum, 1994] provides a programming model for sending/receiving point-to-point and group

communication messages between parallel computing peer processes. MPI is a common, effec-

tive, and powerful programming model for multi-computers and clusters, but it has been repeatedly

criticized for its low-level abstractions that are challenging to use [Gropp et al., 1994]. Parallel pro-

gramming libraries and platforms like MPI have been adopted widely by application developers

of HPC systems with MPI as the dominant model. In addition to MPI, there are other emerging

parallel libraries, such as Open Multi-Processing (OpenMP) [Chandra et al., 2001] and Compute
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Unified Device Architecture (CUDA1) for Graphical Processing Units (GPUs). Function calls spe-

cific to such parallel API libraries are deeply embedded into HPC code, making it very difficult to

replace them with another API library without major effort. Furthermore, a developer would have

to maintain the same set of code with these flavors of parallel APIs simultaneously, which induces

unnecessary redundant efforts that are also very prone to human errors in maintaining and updating

the core algorithms [Jablonski and Hou, 2007]. Therefore, HPC development is often focused on

a specific parallel library, which is problematic when developing and maintaining several versions

of the same applications that may have ties to different parallel libraries and platforms.

In the current state of practice, in order to write a program that will execute a block of code

in parallel, a programmer must learn a parallel programming language and supporting libraries to

describe the computation. After the program is executed, the programmer must compare the results

with some other baseline representation of the computation in order to optimize performance. An

execution time comparison plot of MPI and OpenMP versions is explained in Section 3.1.1. As

shown in that Section, there is no consistent behavior; hence, a programmer must execute the

application to find out which programming paradigm to use or platform to execute for a given

size of input. This highlights the need for creating and maintaining multiple versions of the same

program for different problem sizes, which in turns leads to code maintenance issues.

A shared memory (OpenMP) solution may perform better for small problem sizes com-

pared to using a GPU (CUDA), which has a high threshold because of the expensive data transfer

operations. As the problem size increases, the GPU programs may become faster than shared

memory programs. The problem size for which a GPU performs better than a Central Processing

Unit (CPU) differs with each application.

1 NVIDIA’s CUDA, https://developer.nvidia.com/what-cuda
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In the current practice, programmers must manually create the new version, which may

share a substantial amount of code with the original version. Usually the programming models

require some additional code to setup the execution in addition to specifying the execution. In

the case of OpenMP programs, additional code is required for the library declarations; for MPI,

it also includes initialization and finalization code for process instance and process size variables;

for CUDA, it further includes code for data transfer operations.

1.2 Why are Parallel Programs Long?

The existing programming styles involve creating programs that have parallel and sequen-

tial sections. The parallel sections are either platform-specific or architecture-specific; these details

often make parallel programming challenging for average programmers. Often, the parallel section

is deeply tangled with the sequential section, which can affect the productivity of the programmer

as they are required to unravel the coupling the emerges across different modules [Dijkstra, 1976].

Creating a new version for an existing program targeted to a new platform requires copying the

sequential section, rewriting the parallel section, and making necessary modifications to bridge

the new parallel code with the existing sequential code. A parallel programming style that is void

of any machine-specific details, yet can aid programmers in bridging the parallel and sequential

sections of code, has the potential to offer much benefit to future software engineers and those

who write HPC software. Currently, many long parallel programs have short parallel sections and

long sequential sections as revealed by our analysis [Jacob et al., 2010]. By separating the short

parallel sections from the long sequential sections, programmers are freed from the additional task

of understanding the complete code, and allowed to focus on the core parallel computation.

An analysis was conducted on ten OpenMP programs collected from various domains. In

an OpenMP program, a parallel block is defined by a compiler directive starting with #pragma
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No Program Name Total LOC Parallel LOC No: of blocks
1 2D Integral with Quadrature rule 601 11 (2%) 1
2 Linear algebra routine 557 28 (5%) 4
3 Random number generator 80 9 (11%) 1
4 Logical circuit satisfiability 157 37 (18%) 1
5 Dijkstra’s shortest path 201 37 (18%) 1
6 Fast Fourier Transform 278 51 (18%) 3
7 Integral with Quadrature rule 41 8 (19%) 1
8 Molecular dynamics 215 48 (22%) 4
9 Prime numbers 65 17 (26%) 1

10 Steady state heat equation 98 56 (57%) 3

Table 1.1: Parallel sections in OpenMP programs

omp parallel. The details of the analysis are shown in Table 1.1. The second column of the

table presents the name of the program, the third column shows the total Lines of Code (LOC), the

fourth column shows the total LOC of the parallel block, and the last column shows the number of

parallel blocks in each program. The LOC of the parallel blocks to the total LOC of the program

ranges from 2% to 57%, with an average of 19% for the selected ten OpenMP programs. To

create a different execution environment for any of these programs, more than 50% of the total

LOC would need to be rewritten for most of the programs. Currently, programmers manually

copy/paste or rewrite the sequential section in the parallel program. To the best of our knowledge,

there is no current support for creating or maintaining the sequential section while rewriting the

parallel program for a new platform. This dissertation focuses on new technologies to automate

this process.

Reducing the accidental complexities associated with designing parallel applications has

the potential to decouple the dependence on specific parallel libraries and platforms. A desirable

capability is to maintain a single representation of an HPC application so that the adaptation of

the application over time does not cause a divergence between the essences of the application
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from the specific lower-level implementation dependencies in which it is coded. This is a problem

prevalent in the design of existing explicit parallel programs (e.g., MPI-based legacy applications).

The research described in this dissertation represents a new approach to refactor design concerns

between those explicit to applications, and those implicit to achieving performance-portability-

productivity when mapping to concurrent architectures.

1.3 What are the Execution Parameters?

To optimize performance in parallel programs, proper allocation and utilization of the re-

sources are very important. Two main execution parameters of a CPU are the number of parallel

instances (threads or processes) and memory usage. Program logic decides the number of parallel

instances that can be launched and number, size and type of variables used in the program decide

the memory usage of the program. Executing an embarrassingly parallel program (i.e., no depen-

dency between parallel tasks) written in OpenMP (with two threads) on a dual-core machine can

give a speedup (ratio of execution time of sequential to parallel) that is nearly double the sequential

version, but when the same program is re-run in the same machine with more threads, it cannot

further improve the performance. In these cases, it is assumed that the program uses negligible

memory. In other cases, memory usage is also a key factor in the program execution. Similar

rules apply for MPI programming. In general, a multicore machine can deliver the optimum per-

formance when executed with n1 number of threads allocating m1 KB of memory, n2 number of

processes allocating m2 KB of memory, or n2 number of processes with each process having n2

number of threads and allocating m2 KB of memory for each process. This information is useful in

two ways: 1) It can help the programmer to select resources from the pool of available resources,

2) Running the program with execution parameters that can give optimum execution time.

These factors are relevant in the case of Graphical Processing Units (GPUs) also. As an
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example, CUDA can spawn only 65,536 threads in one dimension and in case of working in an

array of size more than 65,536, a kernel program has to be modified such that threads can work on

more than one element. Similarly, trying to allocate more memory than is available may throw a

memory allocation error. Within a program, the memory usage can be calculated using static code

analysis, from which a GPU can be selected from the resource pool to allocate the memory without

error. In addition to the number of instances and memory usage, there are other factors for a GPU;

such as, memory transfer operations, block size, number of kernel calls. Hence, for the optimum

utilization and allocation of resources, these execution parameters have to be determined. There

are execution parameters of every resource when executed with a given configuration and also for

a program. The execution parameters of the resources can be estimated from the machine or device

files, and a program can be estimated by code analysis. With this information, proper allocation

can be done automatically or with minimum human interaction.

1.4 How Technical Details Hide the Core Computation?

A domain can be modeled by creating abstractions and configurations [Fowler, 2005].

Even though there are only a few configuration parameters for most of the parallel programming

paradigms, their management involves many technical details. An analysis of CUDA and OpenCL2

programs reveals how these technical details hide the core computations in HPC programs.

1.4.1 Analysis

An analysis was done for both CUDA and OpenCL to explore the abstraction possibilities

observed from their common capabilities [Jacob et al., 2010]. In the CUDA analysis, priority was

given to the data flow of a GPU program, while OpenCL was analyzed to identify the templates

used in an OpenCL program. Code for the analysis was collected from the code samples from

2 KHRONOS group’s OpenCL, http://www.khronos.org/opencl/
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1 // Copy vectors from host memory to device memory
2 cudaMemcpy ( d_A , h_A , s i z e , cudaMemcpyHostToDevice ) ;
3 cudaMemcpy ( d_B , h_B , s i z e , cudaMemcpyHostToDevice ) ;
4

5 // Invoke kernel
6 VecAdd<<< b l o c k s P e r G r i d , t h r e a d s P e r B l o c k >>>(d_A , d_B , d_C ,N) ;
7

8 // Copy result from device memory to host memory
9 // h_C contains the result in host memory

10 cudaMemcpy ( h_C , d_C , s i z e , cudaMemcpyDeviceToHost ) ;

Figure 1.1: Level A: Host code to invoke VectorAdd

the NVIDIA CUDA installation package3, assumed to be written by expert CUDA and OpenCL

programmers.

1.4.1.1 Data Flow Analysis using CUDA

Data flow in the current context can be defined as the flow of data from GPU to CPU (or

vice versa), the flow of data between multiple threads, and the flow of data within the GPU (e.g.,

shared to global, or constant). The flow of data within the GPU should be handled inside the kernel

and is left to the programmer’s preference; hence, our analysis was focused on the other forms of

data flow. If thread synchronization is not used in the kernel code, it is assumed that the program

has no data flow between the threads. There is a case where this is untrue: warps of 32 threads are

synchronized at the instruction issue level by the warp scheduler, and some kernels take advantage

of this fact to keep from having to do an expensive barrier while still sharing data within the warp.

The use of local memory is a better indication of data sharing or communication between threads

in that case [NVIDIA, 2007].

An example code segment is shown in Figure 1.1. While executing the program in the

GPU, the variables h_A and h_B are used as input variables and h_C is used as an output variable.

For the analysis, only pointer variables are considered because other variables are available in the

GPU without explicitly copying (N in the Figure 1.1) the variables. The code segment is from the

3 NVIDIA installation package, https://developer.nvidia.com/cuda-downloads
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host program in the code samples of the NVIDIA CUDA installation package. As a general rule,

for a GPU call from a CPU, the input variables should be copied from CPU to GPU before the

GPU execution and output variables should be copied back to the CPU after execution. There can

be exceptions as revealed by the following analysis. Instead of explicit copy operations, memory

can be mapped between device and host variables. Because this is an implementation detail, we

consider variable mapping also as two copy operations.

1 i f ( doMul t iB lock ) {
2

3 MonteCar loKerne l <<< gr idMain , THREAD_N>>>(
4 ( __TOpt ionValue * ) p lan−>d_Buf fe r ,
5 plan−>d_Samples , p lan−>pathN ) ;
6

7 MonteCarloReduce <<< plan−>op t ionCoun t , THREAD_N>>>(
8 ( __TOpt ionValue * ) p lan−>d_Buf fe r , accumN ) ;
9 } e l s e {

10 MonteCar loOneBlockPerOpt ion <<< plan−>op t ionCoun t ,
11 THREAD_N>>>
12 ( p lan−>d_Samples , p lan−>pathN ) ;
13 }

Figure 1.2: Level C: Host code from MonteCarlo program in the NVIDIA CUDA installation
package

Based on the data flow, programs are grouped into three levels. If the kernel code does not

communicate between threads, input variables are copied to the GPU before execution, and output

variables are copied back to main memory after execution of a single kernel. We classify this form

of data flow as level A. Missing thread synchronization or the use of local memory in kernel code

is an explicit sign of level A. As an example, the code segment shown in Figure 1.1 belongs to

level A. Thread synchronization in level A programs are classified as level B. In this form of data

flow, the input variables are copied to the GPU and the output variables are copied back to the CPU

before and after execution, but there is synchronization between multiple threads. The distinction

is made because GPU code for level A programs can be generated directly from the sequential

code. In the case of level C programs, the variables are not copied back and forth. This is mainly
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Table 1.2: CUDA program analysis
Program name Kernel name IOS L
simpleMultiGPU reduceKernel

√√
X A

3DFD stencil_3D_16x16_order8
√√√

B

Marching cubes

classifyVoxel X
√

X C
compactVoxels X

√
X C

generateTriangles
√√√

B
generateTriangles2

√√√
B

AsynchAPI increment_kernel
√√

X A
cudastreams init_array

√√
X A

matrixMulDrv matrixMul
√√

X A

BicubicTexture
d_render

√√
X A

d_renderBicubic
√√

X A
d_renderFastBicubic

√√
X A

simpleTexture transformKernel
√√

X A

MersenneTwister
BoxMullerGPU X

√
X C

RandomGPU X
√

X C
Blackscholes BlackScholesGPU

√√
X A

simpleTextureDrv transform
√√

X A

MonteCarloMultiGPU
MonteCarloKernel

√
XX C

MonteCarloReduce
√√

X A
MonteCarloOneBlockPerOption

√√
X A

clock timedReduction
√√√

B
simpleZeroCopy vectorAddGPU

√√√
B

oceanFFT
calculateSlopeKernel

√√
X A

generateSpectrumKernel
√√

X A

convolutionSeparable
convolutionColumnsKernel

√√√
B

convolutionRowsKernel
√√√

B

SobelFilter
SobelShared

√√√
B

SobelCopyImage
√√√

B
SobelTex

√√√
B

postProcessGL cudaProcess
√√√

B

cppintegration
kernel

√√
X A

kernel2
√√

X A

sortingNetworks
bitonicSortShared

√√√
B

oddEvenMergeGlobal
√√√

B

quasirandomgenerator
quasirandomGeneratorKernel

√√
X A

inverseCNDKernel
√√

X A
template testKernel

√√√
B

recursiveGaussian
d_transpose

√√√
B

d_simpleRecursive_rgba
√√

X A
d_recursiveGaussian_rgba

√√
X A

dwtHaar1D dwtHaar1D
√√√

B
scalarProd scalarProdGPU

√√√
B

done to improve the performance of the GPU programs. In level C, the variables are re-used by

other kernels, thereby creating a dependency between different kernels. Using Figure 1.2 as an

example, if the doMultiBlock is set, it executes the MonteCarloKernel kernel followed by

MonteCarloReduce, without making any memory transfer to GPU or from GPU. In this case,

MonteCarloReduce is clearly level C. In general, for level C programs, all variables inside the

kernel code will not be copied either to the GPU or back to the CPU.

10



For the analysis, 42 kernels were selected from 25 randomly selected programs that are

provided as code samples from the installation package of NVIDIA CUDA. A summary of the

results is shown in Table 1.2. The column IOS shows whether or not the input variables are copied

before the call, the output variables are copied after the call, and thread synchronization appears in

the parallel code, respectively. Conclusions drawn from the analysis are listed below:

• Automatic Code Conversion: There are a significant amount of programs; i.e., 48% (20),

whose code can be automatically generated if the sequential code is available.

• Copy mismatch: There exist programs; i.e., 12% (5), where all the variables in the kernel

are not copied. Even though the variables are not copied, memory should be allocated in the

host code before the first access.

1.4.1.2 Program Analysis of OpenCL

OpenCL supports the execution of programs in heterogeneous platforms (e.g., both GPUs

and CPUs) [Munshi, Gaster, Mattson, Fung, and Ginsburg, 2011]. Every OpenCL program in-

cludes a considerable amount of code that is used to initialize a program. As an example, in a

program oclMatrVecMul from the OpenCL installation package of NVIDIA4, the following

three basic steps are achieved with 34 lines of code: 1) creating the OpenCL context, 2) creating

a command queue for device 0, and 3) setting up the program. This amount of verbose coding

is necessary even though the above steps are common to most OpenCL programs. The situation

is similar to the early stages of GUI programming where several dozens of lines were needed to

simply create a new window [Angel, 1999]. Our analysis was done with the intention of finding

the frequently used steps of an OpenCL GPU program. If the steps for a general OpenCL program

4 OpenCL Installation, https://developer.nvidia.com/opencl
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can be found, templates can be provided that can free the programmer from writing much of the

common code manually. Furthermore, one or more steps can be abstracted to standard functions

to simplify the development process.

As with the data flow analysis, 15 programs were randomly selected from the code sam-

ples that are shipped with the NVIDIA OpenCL installation package. Because this analysis was

intended to extract the possible abstractions from an OpenCL program, other details like data flow

and kernel code were avoided. The steps for the OpenCL programs are shown in Table 1.3. As

can be observed from the table, all of the programs execute steps 1, 4, and 5. Step 2 provides an

option to the user of the program to specify the devices on which he or she intends to execute the

program. Step 3 is for executing the kernel on multiple devices.

The following conclusions were made from the analysis:

• Default template: Every OpenCL program consists of creating a context, setting up the

program, and cleaning up the OpenCL resources.

• Device specification: Each kernel could be specified with a device or multiple devices in

which the kernel is meant to be executed.

1.4.2 Discussion

An abstract representation of the three steps consists of:

1. copyin(in_paramlist),

2. callkernel(original_paramlist), and

3. copyout(out_paramlist).
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Table 1.3: OpenCL program steps
No Step Description
1 create the OpenCL context on available GPU devices

2
if user specified GPU/GPUs
create command queue for each

3

else find how many available GPUs
create command queues for all
create a command queue for device0 or a given device

4

program set up
load program from file
create the program
build the program
create kernel
run calculation on the queues or queue

5 clean OpenCL resources

In the code, in_paramlist refers to the list of variables that have to be copied to the GPU

before execution, out_paramlist refers to the list of variables that have to be copied back to

the CPU, and original_paramlist refers to the list of original parameters required for the

call. From the CUDA examples, any GPU call could be considered as a three-step process: 1) copy

or map the variables before the execution, 2) execute on the GPU, and 3) copy back or unmap the

variables after the execution.

From the OpenCL examples, to make OpenCL programming easier and faster, the steps

identified could be written as functions and included as libraries with the newly written code. If the

user is interested only in single device execution, a single method call initOpenCL(devices,

kernel_name) which returns the commandQueues (used for memory transfer and kernel ex-

ecution) can abstract all the details required for the execution of the kernel. devices is the list of

devices on which the user intends to execute the kernel kernel_name. In the OpenCL programs

analyzed, 33% (5) of the programs used multiple devices while 67% (10) used a single device for

execution.
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1.5 Who can Use HPC Programs?

HPC program users (e.g., chemists, physicists, biologists, and mathematicians) re-use HPC

programs with or without modifications in the programs. Most of the time, the programs and the

tools available to them are not at the proper level of abstraction. Two scenarios for users working

on the improper level of abstractions are explained in the following subsections.

1.5.1 Nbody Problems

Nbody (or more generally, Many-body) problems is a very popular set of problems, which

has applications on molecular dynamics, astrophysics, plasma physics, fluid dynamics, quantum

chemistry, and quantum chromo-dynamics [Carlson, Kogut, and Pandharipande, 1983; Jastrow,

1955; Sasai and Wolynes, 2003; Watson, 1953]. In most of the cases, these problems can be a rep-

resented by a simple equation that can be solved using different algorithms, based on the solutions

required for the context. If context demands an accurate solution, slower direct summation can be

used, else faster but approximate FMM (Fast Multi-pole Method) [Huang, Jia, and Zhang, 2009] or

Treecode [Barnes and Hut, 1986] solutions can be used. For a user who is not an Nbody problem

expert, but wants to solve such a problem, it is often hard to: 1) look for programs based on his or

her available resources and context, 2) make modifications according to his or her context, and 3)

execute the program. More details about the Nbody algorithms and how this can be improved is

provided in Chapter 6.

1.5.2 Signature Discovery Project (SDI)

The goal of the SDI project is to enable scientists to develop and deploy Signature Dis-

covery workflows [Baker, 2012]. Many scientists are not familiar with service-oriented software

technologies, a popular strategy for developing and deploying workflows. In this case, they will be
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forced to seek the help of software developers to make the Web services available in the workflow

workbench. This technology barrier may degrade the efficiency of sharing signature discovery al-

gorithms, because any changes or bug fixes of an algorithm require a dedicated software developer

to navigate through the engineering process. More details about the SDI project and a solution for

scientists can be found in Chapter 5.

1.6 Solution: Applying Domain-Specific Modeling Techniques on HPC Programs

Models are often created as a higher level abstraction of some system design. Our research

has led us to the realization of the benefits of adopting a modeling approach [Gray, Tolvanen, Kelly,

Gokhale, Neema, and Sprinkle, 2007; Schmidt, 2006] to address the challenges of the HPC com-

munity. We identified four different levels of applying modeling techniques to such problems: 1)

code, 2) algorithm, 3) program, and 4) sub-domain levels. In code-level modeling, a programmer

is given flexibility to insert, update, or remove an existing code section; hence, this technique is

independent of any language or execution platform. In algorithm-level modeling, we provide sup-

port for developing and deploying programs based on a base-algorithm. Program-level modeling

is useful for cases when scientists have to create, publish, and distribute a workflow using exist-

ing program executables. For users working on problems with similar behavior, sub-domain-level

modeling can be valuable to specify the problem hiding all the language-specific details, but pro-

viding the optimum solution. Each of the four levels and their research motivations are explained

in the following subsections.

1.6.1 PPModel- Code-level Modeling:

As revealed by our study on benchmark programs [Jacob et al., 2010], sequential code is

often duplicated in parallel versions of a program. This can affect code comprehensibility and

re-usability of the software. In our investigation [Jacob, Gray, Carver, Mernik, and Bangalore,
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2012; Jacob, Sun, Gray, and Bangalore, 2011], we designed a framework named PPModel, which

is designed and implemented to free programmers from duplicating the sequential code. Using

PPModel, a programmer can separate parallel blocks in a program, map these blocks to various

platforms, and re-execute the entire program. PPModel is a graphical modeling tool intended for

Eclipse5 users. A Domain-Specific Language (DSL) called tPPModel is available for non-Eclipse

users to facilitate the separation, the mapping, and the re-execution. We illustrate our approach

with a case study from a benchmark program, which involves re-targeting a parallel block to CUDA

and another parallel block to OpenMP. The modified program gave almost 5x performance gain

compared to the sequential counterpart, and 1.5x gain compared to the existing OpenMP version.

More details about PPModel are presented in Chapter 3.

1.6.2 MapRedoop- Algorithm-level Modeling

A MapReduce implementation can provide faster solutions for a set of HPC programs

[Dean and Ghemawat, 2008]. However, the technical details involved in developing, testing, and

deploying (Cloud and Local) solutions can make these inaccessible for an average programmer.

Our research shows that many such technical details can be hidden from the programmer, which

allows him or her to focus on the core computation. In our investigation [Jacob, Wagner, Bahri,

Vrbsky, and Gray, 2011], we designed and implemented a DSL to help programmers implement

and deploy MapReduce algorithms. The programs written using our DSL can be deployed and

executed in a cloud platform such as Eucalyptus6 or Amazon’s Elastic Compute Cloud7 (EC2). A

detailed explanation of our work on algorithm-level modeling can be found in Chapter 4.

5 Eclipse, http://www.eclipse.org
6 Eucalyptus Cloud platform, http://www.eucalyptus.com/why-eucalyptus
7 Amazon’s EC2, http://aws.amazon.com/ec2/
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1.6.3 SDL & WDL- Program-level Modeling:

Domain-agnostic signature discovery [Baker, 2012] entails investigation across multiple

scientific disciplines. The breadth and cross-disciplinary nature of signature discovery requires that

existing executable applications be integrated with new capabilities into workflows, representing a

wide range of user tasks. An algorithm may be written in multiple programming languages for var-

ious hardware platforms, and so workflow composition requires integrating executables from any

number of remote hosts. This raises an engineering issue on how to generate web service wrappers

for these heterogeneous executables and to compose them into a scientific workflow environment

(e.g., Taverna8 ). In our investigation [Jacob, Wynne, Liu, Baker, and Gray, 2012a], we worked

on two simple DSLs that automate these processes. Our Service Description Language (SDL)

describes key elements of a signature discovery service and automatically generates its implemen-

tation code. The Workflow Description Language (WDL) describes the pipeline of services and

generates deployable artifacts for the Taverna workflow management system. We demonstrated

our approach with two real-world workflows composed of services wrapping remote executables.

This work was performed at Pacific Northwest National Laboratory (PNNL) and is detailed in

Chapter 5.

1.6.4 PNBsolver-Sub-domain-level Modeling:

With the advent of multicore processors, parallel computation has become a necessity for

next generation applications. It is often a tedious task for domain experts to optimize their pro-

grams for a specific platform, algorithm, and problem size. We believe that domain experts should

be freed from this task and they should be equipped with tool support to re-use the optimized solu-

tions written by expert parallel programmers. In another investigation, we introduced a two-stage
8 Taverna Workflow Management System, http://www.taverna.org.uk/
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modeling approach that allows domain experts to express the problem using domain constructs and

re-use the available optimized solutions. This approach has been applied successfully to Nbody

problems using a DSL called PNBsolver, which allows domain experts to specify the computations

in an Nbody problem without any implementation or platform-specific details. Using PNBsolver,

the domain experts are allowed to control the platform and implementation of the generated code.

The accuracy and execution time of the generated code can also be fine-tuned based on the param-

eters provided in PNBsolver. Chapter 6 presents some of the common Nbody interactions and how

they can be implemented using PNBsolver.

1.7 Why Different Levels of Abstraction?

(a) Map of United States (b) Map of Alabama

(c) Map of Tuscaloosa (d) Map of The University of Alabama

Figure 1.3: Maps at different levels of abstraction

The need for different levels of abstraction can be explained using a map analogy. Consider

the four different maps shown in Figure 1.7. All four maps show the relative location of The
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Tool Name Abstraction Level Target Users User Input
PPModel

Code
HPC HPC

(Chapter 3) (programmers) code sections
MapRedoop

Algorithm
MapReduce Mapper/Reducer

(Chapter 4) (programmers) implementations
PPModel

Program
SDI project Script meta-data and

(Chapter 5) (scientists) workflow configuration
PPModel

Sub-domain
Nbody solution

Nbody equation
(Chapter 6) (users)

Table 1.4: An overview of abstraction levels in HPC programs

University of Alabama at different resolutions, with each map focusing on a different context. As

an example, to a question like “What are your neighboring places?” each map gives a different

answer and every answer can be useful based on who is asking the question from a particular

context. In a similar way, abstraction levels in HPC programs are intended for different users

working on different sets of problems, as shown in Table 1.4.

An overview of the abstraction levels in HPC programs is shown in Table 1.4. The first

two columns in the table show the names of the tools we introduce in this dissertation and the

abstraction level they represent. The third column indicates the target users and the fourth column

shows the required user input for each tool. As an example, PPModel is implemented at code-level

abstraction for HPC programmers. At that level, PPModel requires programmers to provide HPC

code sections to replace or insert with another code section in the main program. As shown in the

table, from PPModel to PNBsolver the Target users are more focused, going from more general

HPC users to Nbody solution users. However, the user input required is also reduced from the HPC

code sections to the Nbody equation (no code required). This suggests that as the tool is targeted

to users in a more refined domain area, we can include more domain information in the tool, which
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means that the tool requires less input from users. This observation is further substantiated in

Chapters 3, 4, 5, and 6.

1.8 Levels of Abstraction in the HPC domain

In this dissertation, four different abstraction levels are introduced for HPC programs. Each

abstraction level is explained with a problem scenario, our solution approach, and an evaluation

study of the solution on applying to real world applications. All the abstraction levels can be linked

to one another using one of the strategies shown in Figure 1.4 and is explained in the following

sub-sections.

1.8.1 General to Specific strategy

This dissertation is organized based on this strategy. Code-level abstraction can be applied

to any program written in C/C++, hence a code-level solution is applicable to any platform us-

ing any algorithm. At the algorithm-level, a restriction is introduced at the algorithm-level. Our

solution approach is only applicable to MapReduce algorithms, but it is still general in the sense

that many problems from various domains can be solved in optimum time using the MapReduce

algorithm. At the program-level, another restriction is introduced in the domain such that it is only

applicable to scientists working on a specific project, but this is also general because it is applica-

ble to any executable program within that domain. Finally, at the sub-domain level, the solution

is only applicable to a limited set of users working on a very specific problem. Only at the sub-

domain level, users have the freedom to specify a problem completely and the tool can generate

the optimum solution for the user.

1.8.2 Specific to General strategy

An obvious specific to general strategy to link the four abstraction levels is a bottom up

view of the above general to specific strategy. In this alternative strategy, a slightly different ver-

20



Figure 1.4: Two approaches to link the abstraction levels

sion is introduced. At the sub-domain level, we have used Nbody problems as the case study and it

can generate implementations for two different algorithms. In the case of algorithm-level, we gen-

eralized this to a more general MapReduce algorithm. At the program-level, we further generalized

to any algorithm that is available as an executable program. We provide complete generalization

in HPC programs by introducing the code-level abstraction.

1.9 Dissertation Overview

In this chapter, five challenges faced by the HPC community in designing parallel programs

are introduced, along with an overview of our solution approach. In Chapter 2, the history and

evolution of parallel programs and parallel computers are reviewed. The chapter also includes

some related works in the general area of software engineering applications in HPC. Chapters 3,

4, 5, and 6 describes four different levels of abstraction in HPC programs. The future works are

summarized in Chapter 7 and this dissertation is concluded in Chapter 8.
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Chapter 2

PARALLEL PROGRAMMING: A LITERATURE SURVEY

Multicore processors have gained much popularity recently as semiconductor manufactures

battle the “power wall” by introducing chips with two (dual) to four (quad) processors, as well as

Graphics Processing Units (GPUs) that have numerous processors per chip. The expectations of

increasing clock speed are no longer enough, which is driving the recent trend toward an increase

in the number of cores per chip. For a multicore processor with low clock speed to outperform

a single core processor with higher clock speed, software must be written in a parallel manner to

take advantage of the additional processing capabilities.

In this chapter, Section 2.1 introduces parallel programming by explaining some of the

key terms and a brief history. Section 2.2 reviews different types of parallelism and Section 2.3

describes languages used for parallel programming. This chapter concludes with a glossary of

parallel terms in Section 2.4.

2.1 Introduction to Parallel Programming

Parallel programming can be defined as the creation of code for computations that can be

executed simultaneously. Some of the benefits of parallel programming include improved perfor-

mance, throughput, and redundancy avoidance.

2.1.1 Parallel Programs and Parallel Computers

S. Gill offered one of the earliest definitions of parallel programming as, “the control of

two or more operations which are executed virtually simultaneously, and each of which entails
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following a series of instructions” [Gill, 1958]. A more recent definition is, “a program in which

computations are carried out simultaneously” [Almasi and Gottlieb, 1989]. Parallel programming

provides high performance solutions for problems that can be broken into smaller independent

problems. For a problem expressed in a traditional programming language like ‘C’ or Java, a cor-

responding compiler converts the program to a set of instructions that are executed in the CPU. In

the case of a parallel program, instruction sets are generated for the smaller problems and executed

simultaneously in different execution units9. The execution units can be: 1) a single computer

with multiple processors, 2) an arbitrary number of computers connected by a network, or 3) a

combination of both.

The first documented approach to make use of parallelism dates back to Charles Babbage

[Lovelace, 1843]. The analytical engine designed by Babbage made use of digit-wise parallelism

in numerical operations. S. Gill [Gill, 1958] proposed a parallel computer that can be implemented

in a single computer either by equipping it with more than one control unit, or by allowing time-

sharing of one control unit. Slotnick et. al proposed SOLOMON (Simultaneous Operation Linked

Ordinal Modular Network) [Slotnick, Borck, and McReynolds, 1962], a parallel network computer

involving interconnections and programming under the supervision of a central control unit. The

machine was never built, but the design was used for many later works [Ball, Bollinger, Jeeves,

McReynolds, and Shaffer, 1962]. ILLIAC IV [Barnes, Brown, Kato, Kuck, Slotnick, and Stokes,

1968], an earlier SIMD (Single Instruction Multiple Data) parallel-computer with 256 processors.

2.1.2 Flynn’s Taxonomy

Flynn’s taxonomy is considered one of the earliest classification systems for sequential and

parallel programs. Flynn’s taxonomy is based on the instruction set and the data in which those

9 Parallel program definition, https://computing.llnl.gov/tutorials/parallel_comp
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instructions are executed [Flynn, 1972]. According to this taxonomy, the four classes of programs

are: 1) SISD (Single Instruction Single Data) is the traditional uniprocessor with every instruction

operating on the same data pool without parallelism; 2) SIMD (Single Instruction Multiple Data)

executes the same instruction for a different set of data (e.g., Array processor, Vector computers,

GPU); 3) MISD (Multiple Instruction Single Data), a rare architecture (e.g., Space shuttle control);

and, 4) MIMD (Multiple Instruction Multiple Data), distributed systems are generally recognized

in this category.

SPMD (Single Program Multiple Data or Single Process Multiple Data) [Darema, 2001;

Darema, George, Norton, and Pfister, 1988] is considered a sub category of MIMD, where different

processors execute different parts of the same program. This is the most common style of parallel

programming.

Recent parallel computer memory architectures belong to one of the following categories:

1) Shared Memory [Stenström, Hagersten, Lilja, Martonosi, and Venugopal, 1997] - multiple pro-

cessors share a common memory and all the processors can access the entire memory as global ad-

dress space. The first commercial computer to use SMA (Shared Memory Architecture) was IBM

PCjr10; 2) Distributed Memory (DM) - processors have their own memory and there is no global

address space; 3) Hybrid Distributed-Share Memory (DSM)- employ both shared and distributed

memory architectures, and can be considered as a set of Shared memory computers distributed

over a network. Software DSM systems that extend the underlying virtual memory architecture

can be implemented in an operating system, or as a programming library. JIAJIA [Eskicioglu,

Marsland, Hu, and Shi, 1999], Kerrighed [Margery, Vallee, Lottiaux, Morin, and yves Berthou,

10 PCjr, http://www.adclassix.com/ads/84ibmpcjr.htm
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2003], openMosix11 [Bilbao, Garate, Olozaga, and del Portillo, 2005], openSSl12, Strings [Roy

and Chaudhary, 1998], Tread marks [Amza, Cox, Dwarkadas, Keleher, Lu, Rajamony, Yu, and

Zwaenepoel, 1996] are such software DSM systems. A comparative study can be found in [Lotti-

aux, Gallard, Vallee, Morin, and Boissinot, 2005].

2.2 Types of Parallelism

Parallelism can be exploited in source code at three levels of abstraction: 1) Instruction, 2)

Data, and 3) Thread. Each of these levels of parallelism are explained in the following subsections.

2.2.1 Instruction Level Parallelism (ILP)

In this type of parallelism, the independent instructions are executed simultaneously to keep

the execution unit as busy as possible to obtain the complete advantage. The instructions are re-

ordered, grouped and executed in parallel without affecting the program. Recent processors have

multi-stage instruction pipelines, where each stage in the pipeline performs a different action to

the instruction. A study of ILP compilers can be found in [Schlansker, Conte, Dehnert, Ebcioglu,

Fang, and Thompson, 1997].

2.2.2 Data Level Parallelism (DLP)

DLP exploits parallelism in the data. The most common application is image processing;

for an operation like contrast, an operation on each pixel is the same and independent of every

other pixel. Some operations in a matrix, vector and array can also make use of DLP. There have

been efforts [Allen and Kennedy, 1987; Baumstark Jr and Wills, 2002] to extract a data parallel

program specification from sequential code and retarget it to data parallel execution mechanisms

11 openMosix, http://openmosix.sourceforge.net/
12 OpenSSl, http://openssi.org/index.shtml
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for image processing problems. There have been other efforts to combine the advantages of both

ILP and DLP [Espasa and Valero, 1997].

2.2.3 Thread Level Parallelism (TLP)

TLP involves multiple threads (path of execution) simultaneously. TLP can be useful for an

application that has independent tasks. TLP is receiving attention with the evolution of multicore

and multiprocessor machines that can execute multiple threads in parallel. L. Jack et. al., proposed

simultaneous multithreading [Tullsen, Eggers, and Levy, 1998] to convert thread-level parallelism

to instruction-level parallelism [Lo, Emer, Levy, Stamm, Tullsen, and Eggers, 1997].

2.3 Parallel Programming Languages

With the realization that complete automatic parallelization of code is not possible at the

compiler level [Eigenmann, Hoeflinger, Li, and Padua, 1992], parallel programming languages and

libraries were introduced to express parallel algorithms. We classify the programming languages as

logical (Prolog13), functional (Haskell14), imperative (FORTRAN15) or applicative (Lisp16). This

classification is derived from the classification introduced in [Gellerich and Gutzmann, 1996].

2.3.1 Automatic Translation to Parallel Code

Sequential languages are usually based on the Von-Neumann architecture, which is SISD

(sequential computer). This makes the conversion of sequential code to parallel code challenging.

If the programmer designs and restructures the code to make use of the parallel capabilities of

the machine, the speedup of a program can be improved substantially [Karp and Babb II, 1988].

However, there have been efforts to parallelize code automatically [Allen and Kennedy, 1987;

13 Prolog, http://www.gprolog.org/
14 Haskell, http://www.haskell.org/
15 FORTRAN, http://gcc.gnu.org/fortran/
16 Lisp, http://clisp.cons.org/
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Wolfe, Shanklin, and Ortega, 1995; Zima and Chapman, 1991]. These works suggest that the

involvement of the programmer in the translation can improve the efficiency of the programs.

2.3.2 Computer-Specific Languages

A sequential language can be extended with some constructs to exploit the parallel com-

puter on which it is executed. Some languages provide special syntax to specify arrays that have

to be executed in parallel [Reddaway, 1973] and some others even provide syntax for communica-

tion between threads or processes. These “high-level assembly languages” [Perrott, 1981] are not

portable and can increase the problem complexity [Perrott, 1987].

2.3.3 Architecture-Specific Languages

A more abstract way to define the operational syntax of a language is based on architecture.

These languages can provide explicit parallelism, but are not coupled to a machine. MPI17 [Gropp

et al., 1994; Squyres, 2003] targeted to DMs and OpenMP18 [Chapman et al., 2007] for SMs

are examples of this category. Parallaxis (version 2) [Bräunl, 2000] is a structural programming

language based on Modula-219 for SIMD systems.

2.3.4 Task and Data Parallel Languages

In some cases, a sequential language like ‘C’ or FORTRAN is combined with a library of

communication primitives. As an example, Linda [Gelernter, 1985] uses objects and operations

on those objects within a host language to raise the level of abstraction for parallel programming

[Deshpande and Schultz, 1992]. PVM [Sunderam, 1990] facilitates concurrent, sequential, or con-

ditional execution of application components in a collection of heterogeneous computing elements

connected through a network. Using a data parallel language, a statement sequence can be exe-

17 MPI, http://www.mcs.anl.gov/research/projects/mpi/
18 OpenMP, http://openmp.org/wp/
19 Modula-2, http://www.modula2.org/
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cuted in parallel, but on different data. Parallaxis-III [Bräunl, 2000], C-HELP [Dekeyser, Lazure,

and Marquet, 1994] are examples of data parallel languages.

2.3.5 Template Languages

Template languages provide a skeleton to execute some specific problem that shares a pat-

tern or similarity with some other well-known algorithm. Programs written using these templates

are automatically parallelized and executed. J. Dean proposed a programming model to solve prob-

lems in the MapReduce form [Dean and Ghemawat, 2008]. Another related work provides skeletal

functions [Darlington, Field, Harrison, Kelly, Sharp, and Wu, 1993] and equation languages [Szy-

manski and Mueller-Wichards, 1987] are also classified into this category. As the language can

provide only a finite set of skeletons or templates, these languages can never be generalized.

2.3.6 Parallel Logic Languages

The mathematical models behind logic programming are first-order logic based on the prin-

ciple of resolution that allows inferring new propositions from a set of given propositions [de Ker-

gommeaux and Codognet, 1994]. This is achieved with repeated unification of the goals to be

proven with facts and rules. P-Prolog [Yang and Aiso, 1986] and BRAVE [Reynolds, Beaumont,

Cheng, Delgado-Rannauro, and Spacek, 1988] are two logic languages for parallel computers.

2.3.7 GPU Languages

With the rise in performance, the GPUs originally used for graphics cards have found

an application for hosting general-purpose parallel computations, traditionally executed in CPUs.

The initial GPU programming languages suffer from portability issues and a steep learning curve

[Mark, Glanville, Akeley, and Kilgard, 2003]. CUDA, Microsoft’s Direct Compute20, and OpenCL

are the most commonly used frameworks for General-Purpose GPU (GPGPU) programming.

20 Direct Compute, http://code.msdn.microsoft.com/directcomputehol
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2.4 Parallel Glossary

2.4.1 Von Neumann Architecture

A computer is said to be a Von Neumann architecture if it uses single memory for both

instructions and data [von Neumann, 1993]. It is considered to be one of the initial implementations

of a Universal Turing Machine [Turing, 1936].

2.4.2 Speedup Factor and Efficiency

S =
Ts

Tp
(2.1)

Speedup [Wilkinson and Allen, 1999] is defined as the ratio of execution time of a sequential pro-

gram (Ts) compared to the parallel version (Tp) . The maximum speedup is ‘n’ with ‘n’ computation

units.

E =
Ts

Tp ∗n
=

S
n

(2.2)

Efficiency [Wilkinson and Allen, 1999] gives the speedup introduced by each computation unit to

the total speedup. The maximum value of efficiency is 1.

2.4.3 Moore’s Law

Moore’s law states that the transistors that can be placed inexpensively on an integrated

circuit will double approximately every two years [Moore, 2000]. This has continued for more

than 50 years [Mollick, 2006]. However, the physics underlying the semiconductor industry ex-

pects several possible barriers to this continued density doubling [Palem and Lingamneni, 2012;

Schaller, 1997].
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2.4.4 Amdahl’s Law

In 1967, G. Amdahl proposed [Amdahl, 1967] that the speedup of a program is limited by

the execution time of the sequential fraction in a program. For a program with proportion (p) of the

program that can be parallelized and executed with computation units (n), the maximum speedup

that can be achieved is

S(n)a =
1

(1− p)+ p
n

(2.3)

2.4.5 Gustafson’s Law

Amdahl’s law does not consider the availability of computation power with the increase

of more computation units. It may be possible to solve a larger problem within the same amount

of time if there are more resources. The scaled speedup can be calculated using Gustafson’s law

[Gustafson, 1988]. The scaled speedup, S, is defined as:

S(n)s =
s+n∗ p

s+ p
(2.4)

Where s is the original speedup, p parallel proportion in the program, and n in execution

units.

2.4.6 Karp-Flatt Metric

The Karp-Flatt metric [Karp and Flatt, 1990] gives an indication of the extent to which

a program can be parallelized. Serial factor (s f ), for a program with speedup (s) executed in

execution units (n) is defined as:

s f (n,s) =
1
s −

1
n

1− 1
n

(2.5)
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Chapter 3

PPMODEL: A CODE-LEVEL ABSTRACTION FOR

DEVELOPING AND MAINTAINING HPC PROGRAMS

Parallel programs written in popular parallel programming paradigms have a substantial

amount of sequential code mixed with the parallel code. Several such versions supporting different

platforms are necessary to find the optimum version of the program for the available resources and

problem size. As revealed by our study on benchmark programs [Jacob et al., 2010], sequential

code is often duplicated in these versions. This may have the potential to affect code comprehen-

sibility and re-usability of the software.

In this chapter, we discuss a code-level modeling implemented using a framework named

PPModel, which is designed and implemented to free programmers from these scenarios. Using

PPModel, a programmer can separate parallel sections (hotspots) in a program, map these hotspots

to various platforms, and re-execute the entire program. We provide a graphical modeling tool (PP-

Model) intended for Eclipse users and a Domain-Specific Language (tPPModel) for non-Eclipse

users to facilitate the separation, the mapping, and the re-execution. This is illustrated with a case

study from a benchmark program, which involves re-targeting a hotspot to CUDA and another

hotspot.

3.1 Development and Maintenance of Parallel Programs

Despite the long history of parallel programming, there are no popular editors, tools, or

debuggers targeted specifically for parallel programming. The existing tools and editors are exten-
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sions of the base programming languages like Java or C. This is mainly due to the nature of the

scientific community, the core users of parallel computing.

The unique characteristics of scientific software development places different constraints

on the software development process than are present in the more traditional IT domain. Studies

show that the scientific community is still not making use of the current solutions offered by the

software engineering community [Kelly, 2007]. These constraints affect the applicability of many

of the traditional software engineering practices and partially explain why scientists tend not to use

them [Carver, 2011; Carver, Kendall, Squires, and Post, 2007; Kendall, Carver, Fisher, Henderson,

Mark, Post, Rhoades, and Squires, 2008]. First, the requirements discovery process is difficult

because scientific software is often exploring new science. Therefore, requirements cannot be

known in advance; they change as knowledge changes [Carver, 2011; Segal and Morris, 2008].

Second, verification and validation is difficult because scientific software is often simulating a

phenomenon for which a precise answer is not known, making it difficult or impossible to evaluate

the results of the simulation [Carver et al., 2007; Sanders and Kelly, 2008]. Third, because science

is the main driver for the software, developers often do not take the time or see the benefit from

using best software engineering practices [Carver et al., 2007; Segal, 2007]. Similarly, scientists

tend to dislike practices that are process-heavy, preferring more lightweight processes [Carver

et al., 2007; Kendall et al., 2008]. Scientists’ reluctance to deal with the ever-shifting parallel

programming paradigms and platforms, while remaining oblivious to parallel programming models

and economic factors, can be some of the other reasons that software engineering practices are not

used in the scientific community. These factors also affect traditional software engineers when

they parallelize or transform the programs to completely utilize their desktop computation power.
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To help these software engineers, we need tools and frameworks that can make the transformation

easier.

A survey of general-purpose computation on graphics hardware shows that General-Purpose

GPU (GPGPU) algorithms continue to be developed for a wide range of problems [Owens et al.,

2007; Rakić, Milašinović, Zivanov, Suvajdin, Nikolić, and Hajduković, 2011]. The existence of

abstractions for CUDA, a new GPU programming language, is itself proof that: 1) There exist

programmers who write programs in CUDA and are not scientists (some scientists view C as being

too high-level to use), 2) There is a need for abstractions in a language like CUDA. Abstractions

in parallel programming languages and directives or annotations in sequential code have shown

initial promise in reducing some of the burden of parallel programming [Chandra et al., 2001;

Fritz, Lucas, and Slusallek, 2004; Han and Abdelrahman, 2009; Jacob et al., 2011; Pike, Dorward,

Griesemer, and Quinlan, 2005a]. However, even with all of these advances, parallel programming

still requires skill beyond that possessed by an average programmer [Asanovic et al., 2006]. There

are several challenges that emerge when programmers design High Performance Computing (HPC)

software.

In this chapter, we discuss two aspects of parallel programming that are summarized in the

next two sub-sections, which can be improved by applying software engineering techniques.

3.1.1 Code Maintenance

The execution time of a parallel program depends on the platform, program logic, and

problem size. An execution time comparison plot of MPI and OpenMP programs from NASA

Advanced Supercomputing Parallel Benchmark suite (NPB 3.2) 21 is shown in Figure 3.1. In the

graph, the percentage difference of the execution time of an OpenMP version to that of an MPI

21 NAS Parallel Benchmark (NPB), http://www.nas.nasa.gov/Resources/Software/npb.html
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Figure 3.1: Execution time comparison of MPI and OpenMP programs

version is plotted. The benchmarks used are EP (Embarrassingly Parallel), BT (Block Tridiagonal),

CG (Conjugate Gradient), and FT (Fourier Transform). Each program was executed for S, W,

A, B, C sizes22 with an equal number of threads (OpenMP) and processes (MPI). A bar in the

figure along the positive Y-axis (higher execution time) shows that the MPI version of the program

executes faster than the OpenMP version. As an example, for size B, when executed with two

instances (B2), benchmarks EP and CG executed faster in MPI. However, with four instances

(B4), the version executed faster in OpenMP. Hence, a programmer has to execute the program to

find out which programming paradigm to use for optimal performance. This gives rise to the need

for creating and maintaining multiple versions of the same program for different problem sizes,

which in turn leads to code maintenance issues. For example, to add or update a feature in the

program, the programmer has to edit the feature in all of the different versions. The challenges of

editing duplicate code manually are described in [Jablonski and Hou, 2007].

22 Classes used to define size in NAS Parallel Benchmarks (NPB): 1) S (216), W (220), A (223), B (225), and C (227).
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Popular parallel programming styles involve creating programs that have parallel and se-

quential sections. We define the sequential section as the code executed by the main thread in

shared memory and the master process in a master slave architecture (distributed) as the sequential

section, while the remaining code as parallel blocks. Creating a new version of an existing program

targeted to a new platform, or creating a parallel version for a sequential version, is usually done

in a three-step process: 1) copying the sequential section, 2) rewriting the parallel section, and 3)

making necessary modifications to link the newly added code with the existing sequential code.

As in the case of NAS parallel benchmarks, OpenMP and MPI versions of the same program share

many lines of code. Code duplication is often considered unsafe for the evolution and maintenance

of source code [Antoniol, Villano, Merlo, and Penta, 2002; Kamiya, Kusumoto, and Inoue, 2002].

A detailed analysis of one of these programs is included in the case study of Section 6.

3.1.2 Optimum Performance

With the availability of computationally powerful GPUs in desktops, more time efficient

parallel programs can be written if programmers can identify parallel blocks well-suited for GPU

execution. Because of their highly parallel structure, some parallel blocks on a GPU can deliver a

magnitude difference. For the ‘random’ block explained in the case study in Section 3.6, a Tesla

T10 processor provided a 30x increase on performance compared to its sequential version. This

may not be the case for all parallel blocks. The performance of a program on a GPU can depend

on the type of GPU, implementation, and size of the problem [Pennycook, Hammond, Jarvis,

and Mudalige, 2011]. As an example, in the program explained in a future case study (Section

3.6), there are two parallel blocks: 1) a random function is embarrassingly parallel (i.e., less

communication between threads), and 2) sort which involves communication between threads.

In this case, a programmer may prefer to execute the embarrassingly parallel section on a GPU
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and other sections in OpenMP or MPI. To find the optimum execution time of the program, the

programmer should have the flexibility to execute any or all of the parallel blocks in platforms of

his/her choice.

3.1.2.1 Heterogeneous Computing

In this chapter, heterogeneous computing is discussed in the context of computations in

heterogeneous HPC systems. In this context, multiple nodes are used with each node consisting

of CPUs with multiple cores and accelerators (e.g., GPUs). In such systems, we need to support

not just one programming model, but multiple models simultaneously. As an example, the MPI

programming model is used for computation in different nodes, where each process spawned by the

MPI model interacts with the accelerators (using a GPU programming language) and the multiple

cores (using shared or distributed models).

3.1.3 Solution Approach: Modeling Parallel Programs

We adopted a software modeling and template programming approach to address the chal-

lenges of parallel programming as identified in Chapter 1. The result of our work is a modeling

tool called PPModel, which is designed to achieve three goals: 1) to separate the parallel sections

from the sequential parts of a program, 2) to map and define a new execution strategy for the

existing parallel blocks without changing the flow of the program, and 3) to generate code from

templates to bridge the parallel and sequential sections. Using PPModel, the parallel part of the

program can be separated from the sequential part of the program, re-designed, and then regener-

ated. With our approach, programmers can switch between technical solution spaces (e.g., MPI,

OpenMP, CUDA and OpenCL) without actually changing the base program. We have introduced

both graphical and textual implementations of the tool. The graphical model is called PPModel

and a Domain-Specific Language (DSL) [Mernik, Heering, and Sloane, 2005] named tPPModel
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is developed as the textual implementation. Our approach allows a programmer to concentrate

more on the essence of the parallelization, rather than focusing on the accidental complexities of

language-specific details.

In [Jacob et al., 2011], we first introduced PPModel, which is a graphical modeling tool

for Eclipse users and later extended the work to non-Eclipse users using a textual modeling tool

[Jacob et al., 2012]. Related works are reviewed in Section 3.2, and PPModel is explained using

the Circuit Satisfiability problem in Section 3.3. tPPModel, the DSL for modeling the parallel

sections in a program, is introduced in Section 3.4. The implementation of PPModel and tPPModel

are described in Section 3.5. A case study showing how tPPModel can be used to improve the

execution time of an IS (Integer Sorting) program selected from the NAS parallel benchmarks is

shown in Section 3.6 and the chapter is concluded in Section 3.7

3.2 Related Works in HPC Code Modeling

The following research and development efforts associated with parallel programming are

surveyed briefly with their objectives, approaches and relation to our effort. In addition to a general

survey of related work in parallel programming, this section also summarizes work from software

modeling.

3.2.1 Related Works in Parallel Programming

The related works in parallel programming can be classified into two sections: 1) Language

transformation, and 2) Raising the level of abstraction. A few examples of each classification are

included in the following sub-sections.

3.2.1.1 Language Transformations

There have been various efforts in converting sequential programs to their parallel form

[Allen and Kennedy, 1984; Artigas, Gupta, Midkiff, and Moreira, 2000; Di Martino and Keβ ler,
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2000; Kessler, 1995; Martino and Iannello, 1996]. Developing the parallel version of a program

from its sequential program with programmer interaction is another field of interest [Appelbe,

Smith, and McDowell, 1989; Arora, Bangalore, and Mernik, 2012; Dig, Marrero, and Ernst, 2009;

Jacob, Arora, Bangalore, Mernik, and Gray, 2010; Jacob et al., 2010]. Similarly, there are efforts in

converting parallel code from one platform to another, with and without programmer interactions.

OpenMP to GPGPU [Lee, Min, and Eigenmann, 2009] converts OpenMP programs to CUDA code

and [Basumallik and Eigenmann, 2005] converts OpenMP code to MPI.

3.2.1.2 Raising the Level of Abstraction

With the complexities involved in parallel programming, there has been much effort in pro-

viding abstraction for parallel programming languages [Han and Abdelrahman, 2009; Pike et al.,

2005a; Ueng, Lathara, Baghsorkhi, and Hwu, 2008]. Several approaches [Breitbart, 2009; Fritz

et al., 2004; Han and Abdelrahman, 2009; Ueng et al., 2008] were introduced for the abstrac-

tion of GPU programs. CGis [Fritz et al., 2004], a data-parallel GPU programming language,

allows scientific programmers to specify data-parallel computations at higher level of abstraction.

MapReduce [Dean and Ghemawat, 2008] is effective in solving a class of computation intensive

problems. For problems that can be solved in Sawzall [Pike et al., 2005a] (a query language written

over MapReduce), the resulting code is much simpler and shorter by a factor of ten or more than

the corresponding C++ code in MapReduce. MapRedoop [Jacob et al., 2011] assists programmers

in developing and deploying MapReduce programs.

However, the goal of our work is to express the parallel part of a program in a way that is

separated from the sequential part so as to allow the programmers to focus more on the parallel

problem than the program as a whole. Instead of providing abstraction for a language, or tool
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support for converting from one parallel programming model to another, modeling the parallel

sections of the program makes this work unique.

3.2.2 Related Works in Software Modeling

Another category of related works are successful Domain-Specific Modeling (DSM) [Gray

et al., 2007] applications [Jiménez, Rosique, Sánchez, Álvarez, and Iborra, 2009; Mathe, Martin,

Miller, Ledeczi, Weavind, Nadas, Miller, Maron, and Sztipanovits, 2009], which involve mod-

eling for specific domains and generating low-level software artifacts from the models automat-

ically. Sun et al. presented a tool [Sun, Demirezen, Jouault, Tairas, and Gray, 2008] that uses

model-driven engineering techniques to integrate output from different tools into a uniform for-

mat. Another work in the same direction involves transforming the Session Processing Language

(SPL) code to the Call Processing Language (CPL) using model transformation [Jouault, Bézivin,

Consel, Kurtev, and Latry, 2006]. These works focus on performing reverse engineering on text

to model the collected data. In PPModel, the essence of the domain is captured through reverse

engineering of legacy source code.

There have been a few modeling efforts in the parallel programming domain. The CODE

[Browne, Azam, and Sobek, 1989] programming language is based on a generalized dependency

graph to express the computation in a unified parallel computation model without any implemen-

tation details. GASPARD [Devin, Boulet, Dekeyser, and Marquet, 2002] is another visual parallel

programming environment supporting task and data parallelism. In comparison with PPModel,

CODE and GASPARD are graphical programming environments, but PPModel is a complete mod-

eling tool to create parallel programs for different platforms without rewriting the entire code.
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3.3 Introduction to PPModel

In this section, PPModel is introduced with the Circuit Satisfiability problem example. The

problem determines whether a given logical circuit of AND, OR, and NOT gates having N variables

can be assigned in such a way as to evaluate the circuit to TRUE. The program (‘Satisfy.c’) is

written in OpenMP and has only one parallel block. The goal of the programmer is to rewrite the

OpenMP version such that the program can be executed in a cluster using MPI. It is preferred that

the goal should be achieved with minimum changes in the base code (OpenMP ‘Satisfy.c’). A

brief description showing how this can be achieved using PPModel (an online video is available

at the project website [Jacob, 2012]) and why we need tPPModel are explained in the following

sub-sections.

3.3.1 Circuit Satisfiability Problem in PPModel

The approach used in PPModel is to extract the parallel blocks in a program and re-target

the execution such that the rest of the program can be re-used when running in a different platform.

This is achieved with a three-stage process. In the first stage, an abstract model is created with

only the information about a parallel block; specifications about the platform in which the code

will be executed is collected from the programmer in the second stage; and in the final stage, code

is generated for linking the parallel blocks with the sequential part of the program and the specific

platform. A detailed explanation about each stage for the Circuit Satisfiability problem is provided

in the following sub-sections.

3.3.1.1 Model Creation for Circuit Satisfiability Problem

We illustrate our approach using a popular IDE (Integrated Development Environment)

- Eclipse. However, the general concept can be implemented with other IDEs. For the Circuit
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Figure 3.2: Creating models for circuit satisfiability problem

Figure 3.3: Modelling environment for the circuit satisfiability problem
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Satisfiability problem, this is achieved in a three-step process as shown in Figure 3.2. In the first

step, a model representation of the program is created by right-clicking the program “Satisfy.c” and

then selecting “ModelMe.” After this step, a new file is created named “_satisfy.parallelsystem.”

This file contains textual information about the parallel blocks in the program. In the second

step programmer provides the specification about the platform and the code to be executed in the

generated file. In the final step, the newly created file is selected to use the option “DrawMe.”

At this stage, another file is created named “_satisfy.parallelsystem_diagram.” This file stores the

modeling information of parallel blocks, such as how and where to execute the parallel block.

In the future, if the programmer wants to execute the program in an entirely different platform,

he or she can still re-use the sequential code, provided the parallel code is written in a language

that is a superset of the language in which the sequential code is written. For example, if the

programmer desires to rewrite the Circuit Satisfiability program in CUDA or OpenCL (extension

of C language), he or she can still re-use the sequential code.

3.3.1.2 Modeling the Circuit Satisfiability Problem

In the current implementation of PPModel, the tool can find all the occurrences of OpenMP

parallel blocks. Modeling is designed to assist the programmer in executing the detected parallel

blocks in different platforms. The modeling environment of PPModel is shown in Figure 3.3. The

Eclipse GMF23 environment has a palette that consists of Objects and Connectors. Connectors are

used to connect different objects. As shown in Figure 3.2, the possible objects are ‘MPI_Nodes,’

‘GPUdevice,’ ‘ParallelBlock,’ and ‘Xdevice,’ an unknown device. The ‘ParallelBlock’ objects

represent parallel blocks in the modeling environment and others represent execution devices. The

identifier for the ‘ParallelBlock’ is automatically created from the function name (where the paral-

23 Graphical Modelling Framework (GMF), http://www.eclipse.org/gmf
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lel block resides in the sequential program) and a unique identifier. In the example shown in Figure

3.3, a parallel block is found in the main function, hence it is named ‘main1.’ The only defined

connector is ‘Execute,’ which can connect only between a ‘ParallelBlock’ and an execution device.

On creating a link (‘Execute’) between an execution device and parallel block, a new file is created

in the ‘generated’ folder. The name of the new file is created using the first four letters of the

parallel block name and the first three characters of the execution device. The limitation with this

strategy is that only one implementation is allowed for a given platform.

3.3.1.3 Code Generation for Circuit Satisfiability Problem

After the programmer has added the required ‘Execute’ connectors between parallel blocks

and the execution devices, control is given to the tool to generate the required code for linking

the sequential and parallel files. The programmer right-clicks the ‘satisfy.parallelsystem_diagram’

and selects the option for code generation. This integrates the code written in ‘main_MPI.c’ (MPI

code) with the program in ‘_satisfy.c’ (base program). More details about this linking is explained

in the next sub-section with tPPModel. As an overview, the base program responsible for calling

the parallel region is refactored in such a way that the control returns to the sequential code after

parallel execution, maintaining the external behavior. The function in the base program that calls

the parallel code is unaware of the actual implementation of the parallel section. Hence, parallel

sections can be linked with different implementations. The execution plot of the Circuit Satisfia-

bility program for MPI and OpenMP implementations for various sizes of data is shown in Figure

3.4. Both programs are executed on an Intel Quad-Core i5 CPU with 4.0GHz running on Ubuntu

11.04, with four threads in the case of OpenMP and four processes for MPI.
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Figure 3.4: Comparison of OpenMP/MPI with problem size

3.3.2 Why tPPModel?

We designed tPPModel (textual PPModel) to solve some of the limitations introduced by

PPModel (e.g., PPModel can only work with OpenMP base programs in the Eclipse development

environment). These are elaborated in the following sub-sections.

3.3.2.1 OpenMP Base Program

PPModel was introduced to extract the parallel blocks from a parallel program and re-

target to another platform. PPModel can automatically detect OpenMP regions in a program and

can extract these regions to an abstract function. Hence, PPModel is limited to OpenMP programs

and cannot assist programmers who are trying to rewrite a sequential program to parallel, or from

a parallel programming paradigm other than OpenMP to another. The flexibility can be improved

if programmers can define sections in a program as a parallel section. Because this approach is
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independent of any language or platform, this can be applied to any parallel program that has

parallel and sequential sections.

3.3.2.2 Non-Eclipse Users

Parallel Tools Platform24 (PTP) is a parallel programming plugin for Eclipse that currently

supports only OpenMP and MPI. However, to the best of our knowledge, there is no support

available for writing GPU programs in Eclipse. Moreover, it is believed that scientists prefer text

editors for software development [Wilson, 2006]. The usability of modeling for some classes of

users can be further enhanced if dependency with Eclipse can be removed.

3.4 Using tPPModel

tPPModel is designed to redefine user-specified code sections in a program, such that new

code sections can be executed in a different platform. Non-terminal production rules specified as

an EBNF grammar for the tPPModel DSL are shown in Figure 3.5 (A simplified version of the

grammar showing the core features). tPPModel has three sections: 1) declare, 2) map, and 3)

execute. Abstract models are listed in the declare section with their concrete implementa-

tions specified in the map section. Based on the size of the problem or the platform in which the

program will be executed, a programmer can specify which implementation to use in the execute

section.

Refactoring and code generation, performed by tPPModel on each section, is explained

using a simple vector addition example. As an overview, the declare section refactors the source

code, the map section generates the templates for different platforms, and the execute section

generates a ‘Makefile’ for the current configuration. declare and map section actions are only

executed once for a given configuration. Specifically, the declare section refactors the parallel

24 Parallel Tools Platform (PTP), http://www.eclipse.org/ptp
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1 grammar tPPModel ;
2

3 c o n t e n t : d e c l a r a t i o n s mappings e x e c u t e '.' EOF ;
4

5 d e c l a r a t i o n s : 'declare' n a m e f i l e '{' 'in' v a r s 'out' v a r s '}' ;
6

7 mappings : 'map' ID INTO n a m e f i l e s ;
8

9 e x e c u t e : 'execute' ID v a r s ;
10

11 n a m e f i l e s : p l a t f o r m n a m e f i l e (',' p l a t f o r m n a m e f i l e ) * ;
12

13 p l a t f o r m : 'CUDA' | 'OMP' | 'MPI' ;
14

15 v a r s : ID (',' ID ) * ;
16

17 n a m e f i l e : ID f i l e ;
18

19 f i l e : '[' ID '.' ID']' ;
20

21 ID : LETTER (LETTER | '0' . . '9' ) * ;
22

23 INTO : '<-' ;

Figure 3.5: A simplified EBNF grammar for tPPModel

block only if the code is not already refactored, and the map section generates the templates only

if the files do not exist.

Assume that there is a serial vector addition program ‘vectoradd.cpp.’ It has three arrays:

A, B, and C, each of size SIZE. All of these variables are declared as fields in the program. The

goal is to execute the program on a GPU. A programmer first identifies the parallel blocks in the

program (a function named “add_vectors”) and marks this function using a #pragma preprocessor

statement. This is shown in line 2 (commented line) of Figure 3.6. The original source code in the

program is line 2 and lines 14 to 17. The refactored code is shown in the figure and is explained in

the following sub-section.

3.4.1 declare Section

The declare section captures more information about each parallel block. The informa-

tion includes the parallel block name (same name used in the #pragma block), program name,

input variables and output variables. With this information, the tPPModel parser can identify the
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1 /* A parallel region is defined with name vectorAdd */
2 //#pragma tppmodel vectorAdd
3 # pragma TPPMODEL vec to rAdd
4 {
5 /* If part is added after refactoring.*/
6 # i f d e f vectorAdd_DEFINED
7

8 /* The abstract function*/
9 abs_vec to rAdd (A, B , C , SIZE ) ;

10

11 /* This is the default case or the orginal source code.*/
12 # e l s e
13 {
14 /* core computation in the program */
15 a d d _ v e c t o r s ( )
16 }
17 # e n d i f
18 }

Figure 3.6: Base program after refactoring

specific parallel block location and extract more information from the program. A symbol table is

created from the program. From this table, the type and size (in case of a pointer variable) of each

variable can be queried. The size of each variable is calculated using one of two strategies: 1) If

the variable is declared as an array, size is the value used in the declaration, and 2) If the variable is

declared as a pointer, size is the value used inside the malloc() function. While creating symbol

tables, the type of a variable is always one of the standard types. The types that are defined through

typedef and define are replaced with their actual types.

3.4.1.1 Why refactor Base Programs?

Software developers prefer their base programs to remain untouched, while at the same

time open to extensions [Meyer, 1988]. In a programming language like C, the features like pre-

processor directives make parsing hard. This is the same reason the refactoring tools for C are still

in the research phase, even though there is more code written in C/C++ than many of the other

popular programming languages [Garrido and Johnson, 2002].

As in the case of vector addition, the three arrays are declared each of size, SIZE and

type int. The SIZE is defined using a define directive. To re-target the implementation to
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1

2 //Declare section
3

4 d e c l a r e vec to rAdd [ v e c t o r a d d . cpp ] {
5

6 //Define input and output variables
7

8 in A, B , C , SIZE
9

10 out C
11

12 }
13 // Map section
14

15 map vectorAdd <−CUDA cuda_VA [ VAcuda . cu ] ,
16 OMP omp_VA [VAomp . cpp ] ,
17 MPI mpi_VA [ VAmpi . cpp ]
18

19 //Execution section
20

21 e x e c u t e VACUDA_EXE cuda_VA .

Figure 3.7: tPPModel code for vector addition in CUDA, OMP, and MPI

another platform, we abstract this information to a function so it can be replaced with other im-

plementations. The refactoring introduces a preprocessor conditional statement, through which

the execution is routed based on the value of a set of variables. If variable values are not de-

fined in the execution context, the program maintains the original behavior. Each parallel block is

given a name such that the programmer can obtain control of the execution of that parallel block.

In the case of the vector addition example, vectorAdd is the specified parallel block name,

vectorAdd_DEFINED and abs_vectorAdd are generated identifiers from the parallel block

name. The variable vectorAdd_DEFINED is set through the Makefile and calls the abstract

function abs_vectorAdd, whose implementation is defined in the execute section. The pa-

rameters for the abstract function are read from the declare section. The complete tPPModel

code for the vector addition in three platforms (CUDA, OpenMP, and MPI) is shown in Figure 3.7.

In the base program, an include statement is also added to include all the abstract functions in

that program with the extern keyword.
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3.4.2 map Section

In the map section, programmers provide concrete implementations of the abstract func-

tion. tPPModel currently supports three platforms: CUDA, OpenMP, and MPI. To provide an

implementation, a programmer has to specify the name of the parallel block (vectorAdd) and

type of implementation (CUDA, OMP, MPI). From the map section, the tPPModel parser: 1)

generates templates, and 2) identifies the compilation, as well as linking flags. Both of these are

based on the type of the mapping used. It is permissible to have more than one implementation for

the same type, as explained later in our case study.

For the vector addition example, three mappings are specified for the block vectorAdd:

1) Type CUDA, identified by cuda_VA, and the logic implemented in ‘VAcuda.cu;’ 2) Type OMP

(OpenMP), identified by omp_VA, and implemented in ‘VAomp.cpp;’ 3) Type MPI, identified

by mpi_VA in ‘VAmpi.cpp’. When the tPPModel file is parsed, if these files do not exist, the

parser will generate templates for these programs in the files specified. For OpenMP and MPI,

the template is a ‘cpp’ file with abstract function definitions, extern declarations of timers, and

include statements for the corresponding libraries. MPI templates have initialization of rank and

size variables and an empty if/else block to distinguish between the master and slave threads.

The template details of CUDA are explained in the following sub-section.

Template generation of CUDA programs: CUDA code generated for vector addition

using tPPModel is shown in Figure 3.8. Because GPU memory is different from the CPU mem-

ory, all the used memory locations from the CPU have to be copied to the GPU before the actual

execution, and all the updated GPU memory locations have to copied back to the CPU after ex-

ecution. In this case, there are three variables: A, B, and C. Hence, three new variables of the
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1 // Device code
2 _ _ d e v i c e _ _ void vec torAdd_main ( i n t * A, i n t * B , i n t * C , i n t o p t )
3 {
4 }
5

6 //This kernel distributes the work irrespective of the size
7 _ _ g l o b a l _ _ void v e c t o r A d d _ k e r n e l ( i n t * A, i n t * B , i n t * C , i n t SIZE )
8 {
9 c o n s t i n t t i d = blockDim . x * b l o c k I d x . x + t h r e a d I d x . x ;

10 c o n s t i n t THREAD_N = blockDim . x * gridDim . x ;
11

12 f o r ( i n t o p t = t i d ; o p t < SIZE ; o p t += THREAD_N) {
13 vec torAdd_main (A, B , C , o p t ) ;
14 }
15 }
16

17 // Host code
18 i n t * abs_vec to rAdd ( i n t * A, i n t * B , i n t * C , i n t SIZE )
19 {
20 t i m e r s t a r t ("CUDA" ) ;
21 i n t * d_A ; i n t * d_B ; i n t * d_C ;
22

23 // Allocate vectors in device memory (B and C)
24 c u t i l S a f e C a l l ( cudaMal loc ( ( void **)&d_A , s i z e o f ( i n t ) *SIZE ) ) ;
25

26 // Copy variables from host memory to device memory (B and C)
27 c u t i l S a f e C a l l ( cudaMemcpy ( d_A , A, s i z e o f ( i n t ) *SIZE , cudaMemcpyHostToDevice ) ) ;
28

29 // Kernel call with 480*256 threads
30 v e c t o r A d d _ k e r n e l < < <480 , 256>>>(d_A , d_B , d_C , SIZE ) ;
31 cu t i lCheckMsg ("kernel_launch_failure\n" ) ;
32 c u t i l S a f e C a l l ( c u d a T h r e a d S y n c h r o n i z e ( ) ) ;
33

34 // Copy variables from device memory to host memory
35 c u t i l S a f e C a l l ( cudaMemcpy (C , d_C , s i z e o f ( i n t ) *SIZE , cudaMemcpyDeviceToHost ) ) ;
36

37 // Clean variables, ( B and C )
38 i f ( d_A ) c u t i l S a f e C a l l ( c u d a F r e e ( d_A ) ) ;
39 t i m e r e n d ( ) ;
40

41 re turn C ;
42

43 }

Figure 3.8: CUDA code generated for vector addition

same size and type are created in the GPU as d_A, d_B, and d_C. GPU execution is performed

in these variables and the final result calculated in d_C is copied to the CPU variable C. As shown

in Figure 3.8, function abs_vectorAdd calls vectorAdd_kernel, a kernel function with

480*256 threads that calls vectorAdd_main, a device function, which performs the actual op-

eration. The kernel is implemented with a device function to support larger sizes (CUDA can

spawn only 65,536 threads in one dimension). If the SIZE is greater than the number of threads,
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each thread will be working on more than one element. In Figure 3.8, line 24, line 27 and line 38

show memory allocation, memory transfer and clearing of the d_A variable, respectively. There

are similar statements for d_B and d_C, but are not shown in the figure. tPPModel can handle

scenarios where the size of all pointer variables are not the same. In that case, the last parameter is

used to distribute the work between threads.

Template generation for other platforms: The complete template for CUDA can be ac-

cessed from the files section at the project website [Jacob, 2012]. A similar approach can be used

for generating templates for other platforms. The name, type, and size of input and output variables

declared in the declare section can be accessed from the template files.

3.4.3 execute Section

The execute section creates an instance of the given type of abstract function and gen-

erates a Makefile to build the project. From the programmer, this section collects the name of the

executable and its execution path. The execution path is a list of concrete implementations for all

the parallel blocks in the project. The concrete implementations used in the execution path should

be from the list of function definitions specified in the map section.

In the case of the vector addition example, VACUDA_EXE is the name of the executable

and only one parallel block used in the execution path is cuda_VA. Hence, the program builds a

binary of name VACUDA_EXE using the cuda_VA mapping. From the map section, cuda_VA

resolves to a concrete implementation of abstract vectorAdd. In the executable, abstract function

vectorAdd uses the implementation identified by cuda_VA and defined in ‘VAcuda.cu’. The

Makefile generated for the described tPPModel is shown in Figure 3.9. Based on the execution

path, all the variables are set to their corresponding values. The Makefile included at the last line

of the figure is from the NVIDIA CUDA installation package.

51



1

2 #Enable parallel block vectorAdd
3 COMMONFLAGS +=−DvectorAdd_DEFINED
4

5 #Any additional link flags
6 LINKFLAGS +=
7

8 #Executable name
9 EXECUTABLE := VACUDA_EXE

10

11 # Cuda source files (compiled with cudacc)
12 CUFILES := VAcuda . cu
13

14 # C/C++ source files (compiled with gcc / c++)
15 CCFILES := v e c t o r a d d . cpp p p _ t i m e r . cpp
16

17 # Rules and targets
18

19 i n c l u d e . . / . . / common / common . mk

Figure 3.9: Makefile generated for CUDA vector addition

3.5 Implementation Details of PPModel and tPPModel

PPModel and tPPModel are applications of Domain-Specific Modeling (DSM), which is

a Model-Driven Engineering (MDE) [Schmidt, 2006] methodology that makes use of a Domain-

Specific Modeling Language (DSML) [Lédeczi, Bakay, Maróti, Völgyesi, Nordstrom, Sprinkle,

and Karsai, 2001; Sprinkle, Mernik, Tolvanen, and Spinellis, 2009]. A DSML can be used to

define a system declaratively using specific domain concepts, directly compute and analyze the

domain through model interpreters (i.e., when models are interpreted by an engine written in a

generic language like Java), and automatically generate the desired software artifacts by model

transformation engines and generators. The metamodel [Atkinson and Kuhne, 2003] specifies the

entities, associations and constraints for the specific domain, which can be used to generate a

modeling environment. PPModel provides a graphical modeling environment and tPPModel is a

textual domain-specific language.

The Graphical Modeling Framework (GMF), a powerful DSM tool in Eclipse, is used to

implement PPModel. GMF consists of the three models: 1) Domain model (parallel blocks de-
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fine the information about the domain); 2) Graphical model (icons) defines the visualization of

components in the model editor; 3) Tooling model (actions) defines the editing operations. The

separation of these three models makes GMF an extensible modeling editor, which can be used to

make changes in one model without affecting other models.

In this case, the structure of parallel programs is the specific application domain and a

metamodel defines the formal specification of declare, map, and execute sections. The

models conform to the definition of the metamodel and can be used in computation, analysis and

generation of parallel programs.

3.5.1 Implementation of PPModel

The Eclipse C/C++ parser25 (CDT) has been used to separate the OpenMP preprocessor

statements from the rest of the C program. On parsing the programs, a data structure is constructed

with the information regarding the symbol table (variable information) and OpenMP preprocessor

statements. Each parallel block can be uniquely identified with the function signature and an

identifier representing the order of the block in that function. The initialized model can then be

edited in order to replace and modify the parallel components. Even though the flow of a program

is the same, programmers can provide implementations for the abstract functions.

3.5.2 Implementation of tPPModel

ANTLR26 is a language tool for developing compilers and interpreters from a grammar

containing actions, with support in many languages. ANTLR is used to implement tPPModel. A

complete grammar for tPPModel is included in Appendix A.A. StringTemplate27 is a Java template

25 C/C++ Development Tooling (CDT), http://www.eclipse.org/cdt
26 ANother Tool for Language Recognition (ANTLR), http://www.antlr.org
27 StringTemplate, http://www.stringtemplate.org
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engine that strictly enforces model-view separation [Parr, 2004] and generates text output in a

specified format.

We use the CDT parser to create the symbol table from the input base program. Using the

tPPModel grammar, the input and output variables are identified and more information (size and

type) about the variables are fetched from the symbol table. StringTemplate is used to generate

the template files for different platforms. Sample template files for a CUDA, OpenMP, and MPI

programs are available in Appendix sections A.B.1, A.B.2, and A.B.3. For refactoring the base pro-

gram, we have implemented a small refactoring library. The refactorings are implemented in this

library at the Abstract Syntax Tree (AST) level. Currently, the library supports two refactorings:

1) Inserting an include statement (required for inserting the header file of all abstract functions),

2) Replacing a statement with another statement (required to replace the current implementation

with an abstract function).

3.6 Case Study: Integer Sorting (IS)

The IS program is taken from the NAS Parallel Benchmarks, version NBP 3.2. The pro-

gram sorts N random integers and can be configured to execute for five different sizes of N (S, W,

A, B, C). The main issues addressed by our approach are explained in the following sub-sections.

All the execution time plots in this case study are plotted with an average value of at least 25

executions.

3.6.1 Code Maintenance by Separating Parallel and Sequential Sections

In the OpenMP, MPI, and Hybrid versions, sequential sections of the program are dupli-

cated. As an example, to convert the serial version of IS to an OpenMP version, the Lines Of Code

(LOC) removed is 30 (7% of the total serial LOC) and the number of modified or newly inserted

lines is 136 (25% of the total OpenMP code). The new OpenMP version of the program includes a
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Figure 3.10: Execution time distribution of IS (OpenMP) for different sizes and varying number
of threads

method find_my_seed which is identical to a function with the same name in the MPI version.

More than 50% of the total LOC is duplicated in all the different versions. As shown in Figure 3.1,

programs may vary their performance with a change in the size of data. Hence, there is a need to

keep all the versions. To add a new feature or change an existing feature, a programmer has to man-

ually edit all the versions, which can lead to maintenance issues (e.g., productivity, correctness).

With our approach, the sequential section of the program in stored only in one location.

3.6.2 Optimum Performance through Heterogeneous Computing

The execution time distribution of an IS benchmark for different sizes and a varying number

of threads is shown in Figure 3.10. In the plot, B4 refers to execution time of the IS benchmark

when executed with four threads and size B. The program has three parallel blocks: 1) Generating

random numbers, 2) Sorting the numbers, and 3) Verifying the results. Of these three, the execution

time is mostly determined by the random number generation and sorting, as shown in the figure. As

clearly seen in the figure, the execution time of the random generation part of the program scales
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1

2 //Declare section for randomize
3

4 d e c l a r e r and_gen [ i s . c ] {
5

6 //Define input and output variables
7

8 in k e y _ a r r a y , MAX_KEY , TOTAL_SIZE
9

10 out k e y _ a r r a y
11

12 }
13 // Declare section for sort
14

15 d e c l a r e sor t_num [ i s . c ] {
16

17 //Define input and output variables
18

19 in k e y _ a r r a y , TOTAL_SIZE
20

21 out k e y _ a r r a y
22

23 }
24 //Map section
25

26 map rand_gen <−CUDA cuda_ rand [ RNGcuda . cu ] ,
27 OMP omp_rand [RNGomp . cpp ] ,
28 CUDA cuda_rando [ RNGcudao . cu ]
29

30 map sor t_num <−OMP omp_sor t [ so r tomp . cpp ]
31

32 //Execution section
33

34 e x e c u t e RNGCUDA_SORTOMP_EXE cuda_rando omp_sor t .

Figure 3.11: tPPModel IS code to use CUDA for random number generation and OMP for sorting

down from C1 to C2 and also C2 from C4, but not from C4 to C8 (i.e., because this is a Quad-

core, there is a limited resource). A quick analysis of the source code reveals that the program is

well-suited for a platform like a GPU, which can spawn more threads. Hence, the parallel nature

of the random generation can be be further utilized for the optimum performance of the program.

In the cases of sorting and verification, no such pattern is seen even though it scales well with a

large size of data. The goal is to execute the random generation part of the program in a GPU and

the rest using the shared memory (OpenMP).
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Table 3.1: Speedup for the random function in CUDA
Type S W A B C
CUDA 0.087 0.082 2.40 2.61 2.53
CUDA (o) 0.169 2.065 12.6 26.6 38.0

3.6.3 Solution Approach: tPPModel

Because the sequential section of the program is separated from the parallel blocks, it is

possible to re-target the parallel block to another platform without modifying the sequential section.

For the IS benchmark program, we use CUDA for random number generation and OpenMP for

sorting.

The tPPModel code for achieving this is shown in Figure 3.11. The code declares two

parallel blocks: 1) rand_gen, an abstract function for generating random numbers, and 2)

sort_num, an abstract function for sorting integers. The parameters of the random number gen-

erator include an array, size of the array, and the maximum value of the integer. The parameters

of the sorting function are the array and the size of the array. We started from the serial version

of the code, marked the create_sequence function inside ‘is.c’ as the rand_gen parallel

block, and the rank function as the sort_num parallel block. As shown in Figure 3.11, we

tried two different implementations for random number generation in CUDA. The parser gener-

ated templates for the OpenMP and CUDA versions. The same code from ‘is.c’ was added to

‘sortomp.cpp’. In the first CUDA implementation (CUDA) we used the same functions as in the

OpenMP version by converting them into device functions. In the second implementation (CUDA

(o)) we used an optimized random number generator28 from a molecular dynamics simulation.

28 Molecular dynamics simulation using CUDA, http://www-old.amolf.nl/~vanmeel/mdgpu/
download2.html
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Figure 3.12: Execution time of IS (CUDA + OpenMP) for different sizes and varying number of
threads

3.6.3.1 Speedup with tPPModel

The speedup of the random function for two versions of CUDA is shown in Table 3.1. It

is shown that the optimized version of CUDA is 38 times faster than the sequential program for

data size ‘C.’ As mentioned above, even the optimized version of CUDA is slower than the serial

program for problem size ‘S.’

The execution plot for the total IS benchmark for the two versions after using CUDA is

shown in Figures 3.12 and 3.13. In Figure 3.10, 50% of the time was spent in generating random

numbers while another 50% was spent in sorting. In Figure 3.12, the time spent in random number

generation is reduced. It can also be noticed in Figures 3.12 and 3.13 that increasing the threads

have no affect in random generation because this part of the program is executed in CUDA and

not OpenMP. The threads shown in the figure refer to the OpenMP threads and are not in any
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Figure 3.13: Execution time of IS (CUDA (o) + OpenMP) for different sizes and varying number
of threads

way related to CUDA threads. As seen from Figure 3.13, the total execution is determined by the

sorting time.

A speedup comparison plot for the total IS benchmark with OpenMP (random function

implemented in OpenMP), CUDA (random function implemented in CUDA), and CUDA (o) (ran-

dom function implemented in CUDA (o)) is shown in Figure 3.14. In this program the sorting

and verification is implemented using OpenMP. The OpenMP version executed with four threads

gives speedup for all sizes (S, W, A, B, and C). The CUDA version gives speedup for only A, B,

and C, and CUDA (o) gives speedup for size W, also. The best speedup is observed for size A

when executed using CUDA (o). These results further reinforce that the preferred platform for a

program is a function of size. The complete source code used for the evaluation is available in

the files section of the project website [Jacob, 2012]. Complete example (Program and tPPModel
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Figure 3.14: Speedup plot for IS, when random function is executed in OpenMP, CUDA, and
CUDA (o)

files) for a simple Vector addition using our approach is included in Appendix sections A.C.1 and

A.C.2.

3.7 Discussion

In this chapter, we presented a graphical modeling tool named PPModel and a textual

representation called tPPModel. The tools are designed to assist programmers while porting a

program from a sequential to a parallel version, or from one parallel to another parallel version

targeting in a different parallel library. Using PPModel, a programmer can generate OpenMP

(shared), MPI (distributed), and CUDA (GPU) templates and can be extended easily by adding

more templates for the target paradigm. Our approach is demonstrated with an IS benchmark

program through which a programmer can keep the sequential section at one location and can

achieve optimized performance by executing one or many parallel sections in a different platform.

The benchmark executed 5x faster than the sequential version and 1.5x than the existing OpenMP

implementation.
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Chapter 4

MAPREDOOP: AN ALGORITHM-LEVEL ABSTRACTION FOR

EXECUTING MAPREDUCE ALGORITHMS

In the last chapter, we showed how code-level modeling can help HPC programmers in

heterogeneous computing and source code maintenance. In this chapter, we show how algorithm-

level modeling can help MapReduce programmers from the accidental complexities involved with

existing MapReduce implementations.

This chapter starts with an overview of Cloud computing and MapReduce in Section 4.1

then discusses the motivation for implementing MapRedoop in Section 4.2. The related works

are described in Section 4.3 and additional details about MapReduce programs are provided in

Section 4.4. A discussion of the benefits of applying MapRedoop can be found in Section 4.5. An

evaluation of MapRedoop on several examples is provided in Section 4.6. The final section of the

chapter includes a discussion.

4.1 Cloud Computing and MapReduce

Cloud computing provides users with the flexibility of performing high volume computa-

tions without the cost of building the required infrastructure. There are several purposes for writing

software within a cloud architecture, such as file storage and management [Ghemawat, Gobioff,

and Leung, 2003], cloud infrastructure management [Sugiki, Kato, Ishii, Taniguchi, and Hirooka,

2010], and computations of large datasets [Manjunatha, Anderson, Ranabahu, and Sheth, 2011].

The focus of this chapter is on writing MapReduce algorithms, which is a programming model
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used to solve problems involving large data sets utilizing a cluster of computation nodes where

input and output are converted to key/value pairs [Dean and Ghemawat, 2008]. The MapReduce

model allows: 1) partitioning the problem into smaller sub-problems, 2) solving the sub-problems,

and 3) combining the results from the smaller sub-problems to solve the original issue. The pro-

gramming model automatically partitions the problems based on the input given (e.g., splitting the

input into lines or blocks of lines if given a text file; files if given a directory; and objects if given

a list of objects). MapReduce is responsible for solving the sub-problems in parallel and makes

the individual results available for the combiner to act upon. From the programmer’s perspective,

MapReduce involves two main computations:

1. Map: implements the computation logic for the sub-problem; and

2. Reduce: implements the logic for combining the sub-problems to solve the larger problem.

According to [Dean and Ghemawat, 2008], since its development, “more than ten thousand

distinct MapReduce programs have been implemented internally at Google over the past four years,

and an average of one hundred thousand MapReduce jobs are executed on Google’s clusters every

day, processing a total of more than twenty petabytes of data per day.”

Although Google was among the first to implement and utilize MapReduce, Apache (Hadoop29)

and Stanford (Phoenix) have created open source implementations [Dean and Ghemawat, 2008].

Google identified five areas for the refinement of MapReduce, including customized input and out-

put types and simplified debugging [Dean and Ghemawat, 2008]. Not all MapReduce problems

will require the same input type (e.g., text file, associative array, clusters, vectors); therefore, if

a programmer wishes to use a different input type, it is the programmer’s responsibility to create

29 Apache’s Hadoop, http://hadoop.apache.org
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a conversion class. Google’s solution for customized input and output types is for the program-

mer to create a custom reader that will convert the input into the required key/value pairs for the

mapper, which are called protocol buffers30 (PB). PBs create data structures automatically, but the

programmer must create the appropriate converters. Although this solution did improve Google’s

MapReduce implementation, the responsibility still lies with the programmer. When debugging a

MapReduce algorithm in Google’s original implementation, the programmer was forced to debug

in the cloud at runtime. Google’s solution for simplified debugging is to use a specified flag to run

the code locally, at which time the programmer can use the debugging or testing tool of choice

[Dean and Ghemawat, 2004]. This gave the programmer the choice to test either in the cloud or

locally.

Our solution to the accidental complexity of customized input/output that emerges in MapRe-

duce solutions is to present a DSL, MapRedoop. MapRedoop is our contribution that addresses the

second accidental complexity related to simplified debugging of a MapReduce algorithm. MapRe-

doop is a framework consisting of a DSL and a customized environment within Eclipse. In MapRe-

doop, the programmer is given the flexibility to implement the map and reduce functions after

specifying some of the data structure details, such that the user is oblivious to the setup required to

execute the program and any possible type mismatches that might occur. Because MapRedoop is

a plug-in for Eclipse, a programmer may develop MapReduce algorithms within an IDE, in which

the programmer has the option to execute the code running Hadoop either in a cloud or on a lo-

cal machine instance. Section 4.4 describes how MapRedoop is used to address the challenges of

implementing MapReduce algorithms.

30 Protocol buffers, http://code.google.com/apis/protocolbuffers/
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4.2 Motivating Scenario: WordCount Example

As a motivating need for the approach described in this chapter, our first experience with

writing a MapReduce algorithm was confusing and frustrating. We wanted to modify the Word-

Count31 example algorithm to compute the probabilities of bigrams beginning with a specific word

occurring within a given text file. The algorithm itself was straightforward, but the environment,

particularly testing, data types, and class interactions presented challenges to our implementation.

In our initial solution using the pseudocode in Algorithm 4.1, we encountered several ac-

cidental complexities that contributed multiple challenges during the development process. The

primary issue we experienced was not demonstrated until we ran the code: we received zero for

each of the probabilities. We knew what the proper data type for each variable should be (int,

double, float), but Hadoop did not accept any of these types. Hadoop required the use of inter-

nal data types; therefore, we had to change each instance of the IntWritable data type to the

FloatWritable data type. After we corrected the class and attempted to execute the program,

we received a type mismatch error (“Type mismatch in key from map”), and we realized we needed

to alter the data type in additional classes (Driver).

A secondary issue we encountered was that the output of the mapper must match the type of

the input of the reducer. Additionally, if a partitioner or combiner were included in our program, the

output of the mapper would have to match the input of the partitioner, the output of the partitioner

would have to match the input of the combiner, and finally, the output of the combiner would have

to match the input of the combiner. This is a simple issue to which a programmer acclimates after

writing a few MapReduce programs; however, we feel this is yet another accidental complexity.

The situation differs when reading data from a text file versus reading the text file itself; Hadoop
31 WordCount program, http://wiki.apache.org/hadoop/WordCount
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Input - R: Text files and a word w
Output - Bigram probability of the word in the files

mapper
if word = w

output (bigram, 1)
output (word, 1)

endIf
reducer
while morevalues

sum = sum+ values
output (sum/total)

Figure 4.1: Bigram probability estimation

reads text files slowly when compared to sequential files. Sequential files support splitting up data

for parallel jobs, even if they are compressed, making them a sufficient point of contact for the

Hadoop framework. Therefore, the data from a text file must be converted to data in a sequential

file to decrease the program’s run-time. This experience caused us to ask a few questions:

1. How can the programmer easily identify the required input requirements?

2. Should the programmer need to be concerned with data types?

• Is there a way the programmer can use familiar data types and then use Hadoop to

internally convert these data types appropriately?

3. With what other issues should the programmer not have to be concerned?

We feel there are three primary areas about which the MapReduce programmer should not have to

be concerned:

1. Input structure: The current frameworks, which claim to address these issues, have not

solved the issues entirely. For example, a K-means [Kanungo, Mount, Netanyahu, Piatko,
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Silverman, and Wu, 2002] program executed in Mahout32 (a library for machine learning and

data-mining programs) expects a vector as an input; however, if the input structure differs,

the programmer has to rewrite the file to match the structure that Mahout supports.

2. Improper level of abstraction: Ideally, the programmer should have the ability to focus

solely on the map and reduce functions rather than the implementation details. Currently,

the MapReduce programmer has to search within the source code to identify the mapper and

the reducer (and depending on the program, the partitioner and combiner). After identifying

these classes, the programmer has to delve deeper into the code to determine the proper

inputs. The key challenge is that there is no central place where the required input values for

each of these classes can be identified in order to increase program comprehension.

3. Improper validation: Because the input and output for each class (mapper, partitioner,

combiner, and reducer) are declared separately, mistakes (such as the data type issue we

mentioned previously) are not identified until the entire program is executed. The program-

mer should have the ability to execute each class separately for validation purposes.

Upon identifying these three primary issues, we built a tool to aid the programmer in creating

MapReduce programs. Our tool and its implementation are described in Section 4.5.

4.3 Related Works in MapReduce Algorithms

Recently, there have been many studies about the usefulness of DSLs in Cloud Computing,

including work by the following: [Kromer, 2009; Low, Gonzalez, Kyrola, Bickson, Guestrin,

and Hellerstein, 2010; Manjunatha et al., 2011; McCullough, 2011; Pike, Dorward, Griesemer,

and Quinlan, 2005b; Ranabahu, Sheth, Manjunatha, and Thirunarayan, 2010; Sugiki et al., 2010].

32 Mahout library, http://mahout.apache.org/
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Some of the efforts that are most relevant to our work are briefly presented and discussed in this

section.

Kumoi is an embedded DSL for virtual data center management. Kumoi’s primary goal

was to “provide maximum management efficiency for experienced administrators” [Sugiki et al.,

2010]. Kumoi utilizes a DSL to allow data center administrators to write complex management

scripts while hiding unnecessary details. This tool reduced the number of lines of code required

to deploy Virtual Machines (VMs) by 71%, balance VMs by 81%, and shutdown VMs by 98%

as compared to the same scripts written in Libvirt33 (Java-base API). This tool is similar to our

MapRedoop in that it simplifies the code necessary for programmers to write; however, Kumoi’s

application domain is different from MapRedoop.

OptiML [Sujeeth, Lee, Brown, Rompf, Chafi, Wu, Atreya, Odersky, and Olukotun, 2011]

and GraphLab [Low et al., 2010] are two DSLs in the machine learning domain. OptiML automat-

ically analyzes and optimizes the domain specifications provided by the user and generates CUDA

code. The code generated shows significant improved compared to explicitly parallelized Matlab34

code. According to Low et al., “GraphLab achieves a balance between low-level (PThreads) and

high-level (MapReduce) abstractions” [Low et al., 2010]. The developers of GraphLab report a sig-

nificant speedup among the various ML (Machine Learning) algorithms tested, and thus, the goal

of balancing high-level and low-level abstractions while improving efficiency was met. MapRe-

doop differs from GraphLab and OptiML in that MapRedoop is based on creating an abstraction

for MapReduce and hence MapRedoop is more general compared to these two DSLs.

Manjunatha et al. [Manjunatha et al., 2011] presented a DSL within the Metabolink Toolkit

33 The virtualization API, http://libvirt.org/
34 MATLAB, http://www.mathworks.com
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for scientists to analyze Nuclear Magnetic Resonance based metabolomics data. Although the

Metabolink Toolkit can be implemented on multiple platforms including Apache’s Hadoop (tak-

ing advantage of MapReduce) and Microsoft’s Azure35. Similar to OptiML and GraphLab, this

work also has commonalities with MapRedoop, but the primary difference between each of the

described tools and the approach presented in this dissertation is the tools described above have

been created for a very specific domain. The goal of MapRedoop is to provide an easier method to

write MapReduce algorithms in a domain-independent manner.

Three additional tools presented by [Kromer, 2009; McCullough, 2011; Pike et al., 2005b]

are very similar because they provide a DSL to write MapReduce algorithms more easily. These

tools provide high-level abstractions to simplify the map and reduce functions. In contrast, MapRe-

doop simplifies the process of creating a MapRedoop program by generating Java template classes

and leaving the map and reduce function implementation to the programmer.

4.4 A Study of MapReduce Programs

While implementing a MapReduce solution for a given problem, the programmer has to

setup the data to allow the MapReduce framework to process the data efficiently, but the output

generated from the framework may need to be converted. Section 4.4.1 explains our classification

of MapReduce programs for generalization. Section 4.4.2 describes a data structure analysis we

performed on MapReduce programs and the summary of our analysis is provided in Section 4.4.3.

4.4.1 Classification of MapReduce Programs

The number of stages before and after the MapReduce execution differs based on the prob-

lem to be solved. As in the case of Hadoop, if the MapReduce implementation requires reading

and writing to and from sequential files, more stages are required. Sequential files are flat files

35 Window’s Azure, http://www.windowsazure.com/
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containing data in the key/value format. The input text files are read as Java objects and are written

to sequential files before the MapReduce operation and converted back to text files after (or any

other structure as needed).

To get a better understanding of the process, a detailed explanation is given for some of

the common types of MapReduce problems. We categorize the MapReduce programs into three

classes:

1. Class 1: Programs that take text files as the input and read tokens (e.g., WordCount, Bigram,

InvertedIndex [Lin and Dyer, 2010]);

2. Class 2: Programs that implement a machine learning algorithm (e.g., Clustering algorithms,

Classifier algorithms); and

3. Class 3: Programs that create a data structure (graph) internally for computation, e.g.,

PageRanking [Lin and Dyer, 2010], and Breadth First Search (BFS). Please note: although

some clustering algorithms take text files as input, we include it in the third class because

the text files must first be converted to sequential files before passing to the MapReduce

framework.

Programs that cannot be included either in the first or second classes are included in the

third class (e.g., matrix multiplication or matrix transposition). The examples to demonstrate the

process involved in implementing a MapReduce problem were carefully chosen such that the prob-

lems represent a general way of implementing a class of MapReduce programs. We selected In-

vertedIndex from the tokenizer algorithms (Class 1), the Clustering algorithm using Reuters bench-

69



mark36 from the machine learning class (Class 2), and page ranking Wikipedia articles from the

graph algorithms (Class 3). Each of the selected examples are explained in the following sub-

sections.

4.4.1.1 Inverted Index: A Class 1 Example

An InvertedIndex program for text files creates a data structure that maps words in the file to

their locations [Zobel and Moffat, 2006]. Another implementation of the InvertedIndex algorithm

involves a data structure, which has a field to store the document identifier and a counter for each

word in this data structure that is emitted from the mapper. The reducer collects the data structures

for each word and combines the data to give the final inverted index of that word. The input is a

text file, a data structure that is required to implement the MapReduce block, and a converter that

is required to read the data structures to the required output structure (see Figure 4.2).

4.4.1.2 PageRank: A Class 2 Example

PageRank37 is used by the Google search engine to sort search results [Page, Brin, Mot-

wani, and Winograd, 1998]. The algorithm assigns a weight to the pages based on the incoming

and outgoing links in the documents. Pages are mapped to nodes while links are mapped to edges

to create a graph structure. The algorithm works on the graph and weights are calculated for graph

edges. The implementation38 we used for our analysis was from Cloud939, a MapReduce library

implemented using Hadoop for both teaching and data intensive research projects.

The program we used for our analysis creates a PageRank for all of the articles in the current

36 Reuters benchmark, http://www.daviddlewis.com/resources/testcollections/
reuters21578/

37 PageRank algorithm, http://www.google.com/corporate/tech.html
38 PageRank implementation, http://www.umiacs.umd.edu/ÌČjimmylin/Cloud9/docs/content/

pagerank.html
39 Cloud9, http://www.umiacs.umd.edu/ÌČjimmylin/cloud9/docs/
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version of Wikipedia. Wikipedia allows downloading40 the article contents to a zip file, which can

later be extracted to an XML file (e.g., ‘date-pages-articles.xml’). As shown in Figure 4.2, the

XML file is converted to a sequential file of type PageRankNode using the class RepackWikipedia.

The MapReduce framework processes the sequential files and emits the output sequential files of

type PageRankNode. Using a converter, the output sequential files are read as Java objects of type

PageRankNode to get the data into the necessary final output structure.

Figure 4.2: Input process overview

4.4.1.3 Clustering: A Class 3 Example

Clustering algorithms assign data into smaller groups based on a similarity factor. We used

one of the simplest clustering algorithms, K-means. More details about K-means are presented

in Section 4.6.2. We used the same implementation as Mahout. The K-means program is also

commonly implemented using Hadoop. The program takes vectors as input and outputs a data

40 Wikipedia dumps, http://dumps.wikimedia.org/enwiki/
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structure of type Cluster. Using the data structure, the initial vectors can be clustered into specified

groups, and the current center of each cluster can be determined.

The input used for the algorithm testing was Reuters-21578, one of the most widely used

text collections in text categorization research. The text files are converted into sequential files

of type String and are passed to a DocumentVectorizer, which parses the string to a Vector. The

input vectors are then given to the MapReduce framework for clustering and output is generated

as sequential files of type Cluster. Using a converter, ClusterDumper, the cluster sequential

files are converted to text. The different stages of conversion involved in the K-means clustering

of Reuters-21578 are shown in Figure 4.2.

4.4.2 Data Structure Analysis of MapReduce Programs

As mentioned earlier, writing a MapReduce solution includes specifying mappers and re-

ducers. In some cases, adding a combiner and partitioner can make the solution more efficient. To

define any of these, however, programmers are expected to specify the key type and value type of

both the input and output. Hadoop has a small set of predefined key types and value types, which

we found to be insufficient for providing solutions for real-world problems. For our analysis, all

of the additional key or value types, which must be defined, are referred to as Writable. This

is the interface Hadoop utilizes for defining new types. Some of the defined types might require a

converter to read to and from Java Objects or text files. If they appear in the input of the mapper

or output of the reducer, such types are referred to as ‘Sequential types’ (the types are generally

written or read from sequential files). As an observation, if any of the input types of the mapper is

a Writable object, the input structure for the MapReduce job will be a sequential file structure.

The same is true for the output of the reducer.

Table 4.1 lists the various programs we used for our analysis and indicates whether the
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program has a mapper (M), reducer (R), combiner (C), and/or partitioner (P). The list of writable

and sequential writable types for each program are also specified. All of the types shown as se-

quential writable are also writable; hence, in the table, it is shown as just sequential writable. The

sequential writable types can be input (I), output (O), or both (I, O). The programs were collected

primarily from Hadoop, Cloud9, and Mahout examples. If a program was collected from another

source, the reference is provided within the table itself.

Class Type Name M R C P Writable types Sequential Writable types

Class 1

WordCount
√ √ √

Bigram
√ √ √

InvertedIndex
√ √ √

AssociatedArray
Collocation matrix

√ √ √
Map

Class 2

Collocation discovery
√ √ √

Gram
LDA model

√ √ √
Vector (I)

Kmeans
√ √ √

ClusterObservation Vector (I), Cluster (I,O)
Dirichlet clustering

√ √
Vector (I) Cluster (O)

FuzzyKmeans
√ √ √

ClusterObservation Vector (I), Cluster (I,O)

Class 3

HITS
√ √ √

HITSNode (O)
PageRank

√ √ √
PageRankNode (I, O)

BFS
√ √ √

BFSNode (I, O)
Matrix multiplication

√ √ √
Vector (O)

MonteCarlo
√ √ √

GridJobResult (O)
Image processing

√ √
Image (O,I)

Table 4.1: Data structure analysis of MapReduce programs

4.4.3 Summary of the Analysis

The results of our analysis can be summarized in the context of three key concepts from

software engineering based on criteria for well-designed software, such as comprehensibility and

reusability [Parnas and Clements, 1986].

4.4.3.1 Code Comprehensibility

Code comprehensibility plays a vital role both in software development and software main-

tenance [Deimel and Lionel, 1985; Kernighan and Plauger, 1982]. To understand the execution of a

73



given MapReduce program implemented in Hadoop, which is often spread throughout many Java

classes, the programmer must determine the Driver class. If proper naming conventions are not

followed, the programmer has to find out the extended classes (AbstractJob) and implemented

interfaces (Writable). This is the case for a programmer who is familiar with Hadoop APIs.

Even a Java programmer familiar with MapReduce concepts has to read Hadoop documentation to

get started with MapReduce programming.

The Driver class, which is the configuration file for Hadoop, is not sufficient in showing

relevant information for the code reader in MapReduce programs. As mentioned in the motivation

section, there exists a contract between Mapper, Reducer, and Combiner; the output of the mapper

should have the same type as the input of reducer, or vice versa.

4.4.3.2 Software Reusability

With the existing framework in Hadoop, MapReduce programs are written for a given input

using a specified structure. This situation also occurs for libraries that are built over Hadoop. As an

example, a BFS program from Cloud9 takes sequential files of type BFSNode as input. This type

can be created from text files, which specify the graph in the following structure: “NodeId Ad-

jacentNodeId1, AdjacenteNodeId2.” If a programmer desired to execute the BFS program where

the input is specified in a slightly different structure (e.g., “NodeId: AdjacentNodeId, AdjacentN-

odeId”), the programmer cannot directly use the BFS program from Cloud9.

4.4.3.3 Code Generation

Code generation brings the benefit of automation to software development [Czarnecki

and Eisenecker, 2000]. Many programs require custom data structures (writable and sequential

writable) to do the necessary computations. Implementing the Writable interface can be auto-

mated, as well as the corresponding converters, due to the type information about the output of the
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Mapper being redeclared in the input of the Reducer, and the input of Mapper being redeclared

as parameters in the map method of the Mapper class.

Our analysis concludes that these issues occur due to an improper level of abstraction.

Currently, MapReduce is implemented as an API, and these issues can be addressed if we can raise

the level of abstraction. Type checking should be done at this new level of abstraction to allow the

code to be more precise and readable. In the background, generative programming techniques can

be used to run Hadoop while the programmer is presented with a small language targeted solely for

MapReduce. Based on this analysis, a tool is presented that illustrates the potential for increasing

the extensibility of input/output types with code generation. Our case studies in Section 4.6 show

how MapRedoop can improve code comprehensibility and software reusability.

4.5 MapRedoop

In this section, the MapRedoop framework is explained. MapRedoop has been used inter-

changeably to denote both the framework and the DSL. Section 4.5.1 explains the implementation

of a MapReduce program using MapRedoop from a user’s perspective and Section 4.5.2 explains

the implementation of the MapRedoop framework. A demo using MapRedoop programs can be

found on our project site41.

4.5.1 Using MapRedoop in the Eclipse IDE

In this section, MapRedoop is explained from a user’s perspective. The programmer writes

the MapRedoop (DSL) for his/her current problem in a specialized editor (marked ‘7’ in Figure

4.3), which supports syntax highlighting, code completion, validation and quick fixes, and ad-

vanced editor features such as bracket matching and outline view.

Development of MapReduce programs in MapRedoop occurs in four stages:

41 MapRedoop, https://sites.google.com/site/mapredoop/
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Figure 4.3: Screenshot of MapRedoop in Eclipse IDE

1. Creating MapRedoop programs: The programmer completes the MapRedoop program,

which is represented by a file having extension “.hdp” (e.g., “kmeans.hdp” marked ‘1’ in

Figure 4.3). Within that program, the programmer specifies the required data structures and

plugin extension points in the framework.

2. Code generation: The programmer generates code by right-clicking the “.hdp” file and

using the “Generate code” option. This creates three Java packages: 1) hadoop.core, the

main package for executing, setting up, and running the mapper and reducer, 2) hadoop.ds,

the package for data structures in the program, and 3) hadoop.utils, the helper classes for

converting text files to sequential files, and vice versa.

3. Implementing MapReduce methods: The programmer implements the actual MapRe-

duce algorithm. After the code generation, there are empty stub methods inside the “Core-

Helper.java” classes. These empty methods give the full flexibility of the Java programming

language for the programmer to implement the MapReduce logic.
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4. Execution: The programs written using MapRedoop can be executed in two modes:

• Hadoop standalone version: Upon right-clicking the “.hdp” file and selecting the “Run

as MapRedoop” option, the programmer is presented with a “Run Configuration” dia-

log as shown in Figure 4.3. If the option “EC2” (marked ‘5’ in Figure 4.3) is unchecked,

upon selecting “Run” (marked ‘6’ in Figure 4.3), the program is executed as stan-

dalone. Because the run configuration (marked ‘2’ in Figure 4.3) is implemented using

the Eclipse run configuration framework42, the same programs can be executed with

different inputs or configurations, and these configurations can be saved.

• Hadoop cluster in EC2: Before executing a program in EC2, a Hadoop cluster should

be launched. This assumes that the required EC2 configurations have already been

made in the Hadoop installation folder to start a Hadoop cluster in EC2. Upon selecting

“EC2” (marked ‘3’ in Figure 4.3), the programmer is presented with a light-weight

pop-up (marked ‘4’ in Figure 4.3) to specify the cluster name and number of slaves.

All communication between the Hadoop server, whether it is standalone or EC2, are shown

in the console (marked ‘8’ in Figure 4.3). Video demonstrations of standalone executions

and EC2 clusters can be viewed at our project web site.

4.5.2 High-Level Design Diagram

A high-level design diagram of the MapRedoop framework is shown in Figure 4.4.

The configuration and control of this framework is achieved through the MapRedoop DSL

explained in Section 4.5.3 As shown in Figure 4.4, the MapRedoop tool has two components:

42 Eclipse run configuration, http://www.eclipse.org/articles/Article-Launch-Framework/
launch.html
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Figure 4.4: An overview of MapRedoop design

1. Code generator: This component takes the MapRedoop DSL as input and generates code

for three packages, as mentioned previously. These generated classes can be combined into

three categories:

(a) Core classes: These include the Mapper, Reducer, Combiner, Partitioner, and the

Driver. Other than the Driver class, these classes are only generated if they are men-

tioned in the MapRedoop DSL. In addition to the Driver class, a CoreHelper

class is generated; this is where the programmer will implement the actual MapReduce

algorithm.

(b) Data structure classes: Data structure classes are new types defined in the MapRedoop

DSL. There can be two types of data structure classes: 1) Data structure types that

occur as the key/value of any of the mappers or reducers, and 2) Data structure types

that are only used inside the program. In Hadoop, data structure types that occur as the

key/value pairs require Hadoop to implement an interface called Writable.
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(c) File conversion classes: Programmers can specify the template in which input files

should be read. The MapRedoop framework generates classes such that the data can

be read while converting the text file to a sequential file and also while converting the

sequential file back to a text file. The classes are executed before and after the execution

of the MapReduce programs to make the automatic conversion of data possible.

2. Code deployer: The deployment is done in four stages:

(a) Target environment: Based on the user’s choice, the tool deploys the code either in

Hadoop standalone version or in the EC2 Hadoop cluster.

(b) Format conversion I: Text files or the input information has to be converted to sequen-

tial files, and in the case of the user selecting the EC2 cluster, the sequential files must

be uploaded to the server.

(c) Communication: Collect the results from the server in case of a cluster deployment.

(d) Format conversion II: Convert the results back to the original input structure.

The key/value types of the program determine the steps. If the key-value types are not

composite, as in the case of the simple ‘WordCount’ program, the deployer just uploads the

input files to the server, executes the results and collects the output to the requested folder.

Class 1 programs generally skip the conversion steps because the input for the programs are

text files.

4.5.3 MapRedoop DSL

A subset of the grammar for the MapRedoop DSL is shown in Figure 4.5 (only the impor-

tant parts of the grammar are shown for clarity).
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1 grammar mapredoop ;
2

3 MapRedoop : D e c l a r a t i o n { ( C o n t e n t ) *}
4

5 D e c l a r a t i o n : 'program' ID ('extend' ID ) ?
6

7 C o n t e n t : L i s t o f E n t i t i e s | MRBlock
8

9 L i s t o f E n t i t i e s : 'metaelements' : { ( E n t i t y ) * }
10

11 E n t i t y : 'metaelement' ID ('extend' [ E n t i t y ] ) ? { ( F e a t u r e ) + }
12

13 F e a t u r e : T y p e D e c l a r a t i o n ; | ReadWri te ;
14

15 ReadWri te : 'read' (STRING , STRING ) | 'write' (STRING , STRING )
16

17 MRBlock : 'mapreduce' : ('loop' ) ? { Mapper Reducer }
18

19 Mapper : 'map''('Argument , Argument , STRING , STRING ')' Block
20

21 Reducer : 'reduce''('STRING , STRING , STRING , STRING')' Block ;
22

23 Block : [ ( J avaMethodCa l l ) * ]
24

25 JavaMethodCa l l : TimeOfCal l : ID
26

27 TimeOfCal l : 'after' | 'call' | 'before'

Figure 4.5: MapRedoop DSL grammar

The MapRedoop program starts with a declaration statement (line 2). An optional ‘extend’

is included to re-use some of the features already declared within a DSL. All of the data structures

declared in the parent DSL will be available inside the extending DSL (child DSL). The DSL has

two sections: 1) Meta-elements (line 9), and 2) MapReduce (line 17).

1. Meta-elements: This block is for generating Java code for the data structures to be used

later by file structure conversion classes or the MapReduce framework itself. For every

metaelement defined in the metaelements section, the code generator checks whether

that data structure appears as a type in the keys or values of the mapper or reducer. If

it does not appear, it is generated as a regular Java class with the fields declared in the

metaelement, adding mutator and accessor methods. If the types appear in any of the

key/value pairs of mapper or reduce, the class is generated as a Writable Java class.
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2. Writable classes: In Hadoop, the classes that are used as a key or value for the mappers or

reducers must implement the Writable interface. In order to implement this interface, the

programmer has to implement two methods, read and write. An example implementa-

tion43 of these methods is shown in Figure 4.6. The code block is taken from a class having

three fields (x, y, and z), each of type float. As demonstrated in Figure 4.6, it is clear that

if we know the field types, the code can be generated. Aggregate relationships, such as a Java

List, are implemented using an array of elements and each element’s type. In this situation,

our implementation adds an additional variable called fieldname+size of type int to

the original list of fields.

Each meta-element can have two types of features:

(a) A TypeDeclaration (metaelement or native type, such as int)

(b) ReadWrite. We first define the fields in a data structure and later link them to the

input structure in a text file. A line that is coded as:

read (“ ”, %nodeId%{%distanceFromSource%} :

%adjacentlist%");

This line specify a meta-element having three fields: nodeId, distanceFromSource,

and adjacentlist. It also declares its input structure for reading this object originating

from a text file. Given this information, during runtime, the parsers can create Java objects

with the values read from a text file. As an example, if a file has the following two lines:

“2{3} : 3” and “3{2} : 4 5 6”, two Java objects are created:

43 Writable implementation, http://developer.yahoo.com/hadoop/tutorial/module5.html
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(a) The first object created is nodeId 2 consisting of distanceFromSource 3 and a

list adjacentlist having the value of 3.

(b) The second object created is nodeId 3 consisting of distanceFromSource 2 and

a list adjacentlist having 4 5 6.

The second parameter of the read method defines the structure and the first parameter is an

optional way of specifying a delimiter while parsing a list of values. For objects of type

adjacentlist, a space is used as the delimiter.

3. MapReduce blocks: The MapReduce blocks were designed to avoid the repeated declara-

tion of types required in the Hadoop implementation. Hence, there is no input declaration

for reducer and input/output declaration for combiner, because these would be the same

as the output of the mapper. Therefore, reducer has no input declaration, only an out-

put declaration. The map function takes two parameters (type followed by variable name)

and two arguments (both representing a type). The first two parameters declare two vari-

ables, and those variables can be used inside the mapper function. The last two parameters

are arguments declaring the output type of the mapper. Those types are only used inside

the reducer; hence, those variable names are defined as the first two arguments of the

reducer. The last two parameters of the reducer define the output types of the MapRe-

duce program.

In addition to the above, the MapReduce block allows plug-in Java calls to implement the

actual MapReduce program. For reducer and mapper, these Java calls can be made either

during the process function, or before or after the core function call. Plug-in method calls are
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1

2 p u b l i c vo id w r i t e ( Da taOu tpu t o u t ) throws IOExcep t i on {
3

4 o u t . w r i t e F l o a t ( x ) ;
5 o u t . w r i t e F l o a t ( y ) ;
6 o u t . w r i t e F l o a t ( z ) ;
7 }
8

9 p u b l i c vo id r e a d F i e l d s ( D a t a I n p u t i n ) throws IOExcep t i on {
10

11 x= i n . r e a d F l o a t ( ) ;
12 y= i n . r e a d F l o a t ( ) ;
13 z= i n . r e a d F l o a t ( ) ;
14 }

Figure 4.6: Sample read and write implementation of Writable

Algorithm K-Means BFS
Tool MapRedoop Mahout % Reduction MapRedoop Cloud9 %Reduction

Lines of Code 99+23 493 75% 94+20 331 66%

Table 4.2: Lines of code comparison of Hadoop libraries with MapRedoop

generated to support iterations of MapReduce calls by setting the flag loop. Examples of two

programs written using MapRedoop are introduced in Section 4.6.

4.6 Two Case Studies for MapRedoop: BFS and K-means

In this section we describe two algorithms implemented using MapRedoop and compare

the solutions to other Hadoop libraries. Implementing the K-means clustering algorithm while

implementing the Breadth First Search (BFS) algorithm requires Class 3 types (please see Table

4.1). Code-level comparison of the programs is shown in Table 4.2. Lines of code for MapRedoop

represent the actual implementation added to the MapRedoop DSL code. The lines of code for

the libraries include the code specifically written for implementing the program. The pre-defined

data structures (e.g., Vector in Mahout) are not considered when counting the total lines of

code. As described in the table, MapRedoop requires 75% less lines of code to implement a BFS

algorithm as compared to Cloud9, and 66% less lines of code to implement a K-means algorithm

as compared to Mahout. A detailed performance comparison of the two case studies along with
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their MapRedoop solution is given in the following sub-sections. For the performance analysis,

we executed the two versions (MapRedoop and Hadoop Library) of the program in a standalone

Hadoop installation and also in an EC2 Hadoop cluster. The clusters were implemented with one,

two, four, and eight slaves for a given size of data. Every execution in the cluster, as well as the

standalone versions, was executed three times and the reading taken was the mean of the three

executions.

4.6.1 Implementing the Breadth First Search Algorithm in MapRedoop

Breadth First Search (BFS) is a common algorithm to find the distance from the source

node to all the reachable nodes. The algorithm begins by finding all of the neighbors for the

first node, and for each of the first node’s neighbors, the algorithm finds those neighbors. This

cycle continues until the algorithm reaches the goal node. Applications of BFS include finding the

shortest path and spanning forests.

Implementation of BFS in MapReduce involves finding the distance from the current node

to the source node. The mapper is responsible for storing the computed distance to the next node.

This node is then passed on to the reducer and emitted. The reducer collects all of the nodes from

the mapper, and for each node, the reducer selects the node storing the smallest distance. For

every node, the least distant node is selected. Each MapReduce iteration is a hop in the graph.

The mapper should emit the structure along with the distance so that the adjacent nodes can be

calculated for the next iteration. The MapRedoop DSL for describing these properties is shown in

Figure 4.7.

4.6.1.1 MapRedoop DSL

The MapRedoop solution for the BFS algorithm is shown in Figure 4.7. In the meta-

elements block, a data structure or meta-element is declared called Node with fields: nodeId,
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Figure 4.7: MapRedoop DSL for BFS in Eclipse IDE

distanceFromSource, nodeType, and adjacentList. A Java class will be generated

from this structure with the name and corresponding fields of each type, as mentioned in the DSL.

While reading the structure “2{3}: 3, 4” from a file, the read method creates a Node object

with nodeId of 2, distanceFromSource of 3, and adjacent nodes 3 and 4. In the

MapReduce block, the map function accepts mapkey of type Text as the input key, and the input

value mapnode of type Node. The mapper function sets up an output key of type long, and

creates an output value of type Node.

As shown in the BFS example in Figure 4.7, only the type is defined in the map function.

The name of the variables are defined in the reduce function, because reducer uses the variables

while the map function defines the type of the variables. The reduce function also defines the

type of the output key and value.

On code generation, MapRedoop creates Mapper and Reducer classes, along with the

Driver class containing all the necessary key value declarations. A class called CoreHelper is

created with methods emitStructure, emitDistance, and minimizeDistance. The
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Figure 4.8: Execution time of BFS programs in EC2 Hadoop cluster

Figure 4.9: Execution time of BFS programs in Hadoop standalone mode

code is configured such that the map method in the Mapper class calls the emitStructure

method, while the cleanup method in the Mapper class calls the emitDistance. Finally, the

reduce method in the Reducer class calls the minimizeDistance method.
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4.6.1.2 Performance Analysis

The data for the standalone version was classified into four categories: 1) Micro: a graph

having 2,000 nodes and a variable number of edges (0-5), 2) Small: graph having 10,000 nodes,

each having 5 edges, 3) Medium: a graph having 50,000 nodes, each having 5 edges, 4) Large: a

graph having 100,000 nodes, each having 5 edges. For the cluster micro, small, large, medium,

large, each had 100,000, 200,000, 300,000, and 500,000 nodes respectively. For performance

comparison, we selected a program written by expert Hadoop programmers from Cloud9, which

was implemented using the same algorithm. From the figures shown in Figure 4.8 and Figure 4.9,

both the MapRedoop and the expert-created program gave comparable performance in both the

standalone and cluster implementations. As the graphs illustrate, there are some scenarios where

MapRedoop performed more poorly than Cloud9. The bars represent the average of the trials ran,

and the error bars represent the max and min values of the trials. In some cases there is a large

delta between the max and min illustrating the inconsistency of the Hadoop File System, which is

part of the reason for the vast difference in performance from scenario to scenario. Additionally,

due to the added flexibility for input/output types provided by MapRedoop, there is a degradation

in runtime.

4.6.2 Implementing the K-means Algorithm in MapRedoop

K-means is possibly one of the most commonly used clustering algorithms according to

[Kanungo et al., 2002]. The K-means clustering algorithm groups a cluster into ‘k’ small clusters

based on a similarity factor. The similarity factor we used in this implementation is the distance.

The algorithm starts with randomly selected ‘k’ vectors (in our case, user specified vectors). For

every input vector, the algorithm calculates the distance from the initial ‘k’ vectors to the current
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Figure 4.10: MapRedoop DSL for K-means in Eclipse IDE

vector, and the closest ‘k’ vector is grouped with the current vector. In the MapReduce implemen-

tation of K-means, every vector in the mapper part is emitted to the nearest cluster and the reducer

part collects the vectors to a given cluster.

4.6.2.1 MapRedoop DSL

The DSL implementation of K-means using MapRedoop is shown in Figure 4.10. The

K-means program makes use of meta-element feature of MapRedoop. The ClusterInfo meta-

element is a special type that does not occur in any of the key/value types of the mapper or re-

ducer. Hence, ClusterInfo is generated as an ordinary Java class (not an implementation of

Writable) and KVector is generated as a Writable Java class. In this case, the before

keyword is used both in the map and reduce blocks. Hence, two additional methods are created

in the CoreHelper class, which is called from setup functions of Mapper and Reducer

classes. In the implementation of K-means, there is an additional input other than the input vectors

that represent the current clusters. Before invoking the map and reduce operations, the data from

the current clusters has to be loaded using loadClustersMap.

88



4.6.2.2 Performance Analysis

The K-means implementation from the Mahout project was used for a performance com-

parison. Both programs produce the same output. As input, N-points were used to group the output

into three clusters based on their Manhattan distance, which is the distance measured along axes

at right angles. The execution plots of these algorithms in EC2 and standalone are presented in

Figures 4.12 and 4.11. Four different values were used for N : 1) 100,000, 2) 200,000, 3) 300,000,

and 4) 500,000. The MapRedoop version dominated in the standalone version and had comparable

results in the cluster implementation. This can be attributed to the Vector data structure in Mahout.

Because the K-means solution in Mahout is a case of a generic clustering solution, there are many

fields in the data structure that are not relevant to the K-means problem. This can result in more

writing and reading during file operations. In the case of MapRedoop, solutions are written for a

problem, and hence the programmer needs to define only the fields relevant to the problem. As

mentioned in the previous analysis, the inconsistency in the Hadoop File System and the added

input/output flexibility contribute to MapRedoop’s degraded performance.

4.7 Discussion

After writing several MapReduce programs in Hadoop, we recognized three specific areas

of inefficiency resulting from accidental complexities: input structure inflexibility, level of ab-

straction, and ease of testing. Our solution, MapRedoop, is a framework implemented in Hadoop

that combines a DSL and IDE that removes the encountered accidental complexities. To eval-

uate the performance of our tool, we implemented two commonly described algorithms (BFS

and K-means) and compared the execution of MapRedoop to existing methods (Cloud9 and Ma-

hout). With MapRedoop, the programmer only needs to code the DSL and MapReduce algorithms,
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Figure 4.11: Execution time of K-means programs in Hadoop standalone mode

Figure 4.12: Execution time of K-means programs in EC2 Hadoop cluster

whereas Cloud9 and Mahout focused on input/output conversions. The analysis presented in Sec-

tion 4.6 illustrates that MapRedoop performs comparably to the existing, common methodologies,

and in some cases, MapRedoop proved to have better performance due to the programmer being

able to focus solely on the specifics of the problem.
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Chapter 5

SDL & WDL: A PROGRAM-LEVEL ABSTRACTION FOR

CREATING SIGNATURE DISCOVERY WORKFLOWS

Domain-agnostic Signature Discovery entails scientific investigation across multiple do-

mains through the re-use of existing programs into workflows. The existing programs may be

written in any programming language for various hardware architectures (e.g., desktops, commod-

ity clusters, and specialized parallel hardware platforms). This raises an

ering issue in generating Web services for heterogeneous programs so that they can be

composed into a scientific workflow environment (e.g., Taverna).

In this chapter, we show how program-level modeling can help scientists in generating

Web services from programs. This chapter starts with a brief introduction about the SDI project

in Section 5.1. Section 5.2 describes two specific engineering issues in the development process

and a current solution approach for the two driving issues using an example scenario focused on

BLAST44 execution workflow. A brief discussion of related work is summarized in Section 5.3

and implementation details of the approach are provided in Section 5.4. In Sections 5.5 and 5.6,

we introduce case studies for SDL and WDL. The chapter is concluded in Section 5.7.

5.1 Signature Discovery Initiative (SDI) Project

A signature is a unique or distinguishing measurement, pattern, or collection of data that

detects, characterizes, or predicts a target phenomenon (object, action, or behavior) of interest .

44 BLAST (Basic Local Alignment Search Tool), http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Signatures are valuable to a wide range of application domains (e.g., medicine, network security,

and explosives detection) for anticipating future events, diagnosing current conditions, and analyz-

ing past events. However, current approaches suffer from a lack of re-use of existing algorithms,

tools, and techniques across application domains and scientific disciplines. The Pacific Northwest

National Laboratory (PNNL) has been developing a generalized signature development method-

ology (SDI) that is applicable to any signature discovery problem [Baker, 2012]. The work of

signature discovery entails scientific investigation across multiple disciplines through the re-use

of existing algorithms, which may be written in any programming language for various hardware

architectures (e.g., desktops, commodity clusters, and specialized parallel hardware platforms).

Reusing these algorithms requires a common architecture through which analytical software com-

ponents created by scientists from different disciplines can be integrated.

Software developers and researchers at PNNL have been working closely with scientists

who have developed or applied algorithms using a wide range of programming languages and

tools. Software development tasks involve: 1) developing the service-oriented software frame-

work for scientists in specific domains to register and share their algorithms so that they can make

those algorithms as reusable service components, and 2) creating new signature discovery work-

flows in other domains using the created service components. In this chapter, we introduce two

DSLs: 1) SDL (Service Description Language), and 2) WDL (Workflow Description Language),

through which scientists can achieve these two tasks without dealing with the associated engineer-

ing requirements in the Signature Discovery process.

5.2 Example Scenario: BLAST Execution Workflow

Scientists use BLAST to find regions of similarity between biological sequences. From a

engineer’s (software developer) context, BLAST is a long-running job with input and output. The
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workflow is usually executed in three steps: 1) Submitting a BLAST job in a cluster using the

SLURM45, job scheduler; 2) Checking the status of the job; and 3) Download the output files upon

completion of the job. Note that a UNIX command utility (e.g., sh) and (or) a script file (e.g.,

SLURM) identifies each step. In the following sub-sections, three engineering challenges when

sharing signature discovery workflows with other scientists are explained.

5.2.1 Accidental Complexity of Generating Service Wrappers

To make existing programs available globally, web service wrappers were added for every

executable binary. The Legacy Wrapper pattern [Erl, 2009] was used to encapsulate existing al-

gorithms, while providing a standard interface so that they can be orchestrated with other services

to create re-usable workflows. Engineers creating wrappers for an existing script or executable

typically follow a common set of steps: 1) identify the input files and output files in the program;

2) retrieve the input files from the data management system; 3) execute the program; and 4) upload

the output files to the document management system as part of the existing signature discovery

software framework. This process for converting a script often results in significant extra code and

manual effort.

For BLAST, checkJob is a service for checking the job status, with a single input (JobId)

and output (status) requiring a service wrapper with 121 lines of Java code (in four Java classes)

and 35 lines of XML code (in two files). The goal of this project is to raise the level of abstraction

from these general purpose languages to the signatures domain, such that scientists only have to

specify the specifications for the executable binary (signature algorithms, in this case) that has to

made public and the language will generate and execute the code required for the process.

45 SLURM (Simple Linux Utility of Resource Management), https://computing.llnl.gov/linux/
slurm/
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5.2.2 Coupling between Workflows and Services

Even if the remote executable binaries are accessible globally, scientists still need to or-

chestrate such services to define the Signature Discovery workflow. To make any web service

available in a domain-independent workflow engine like Taverna, users have to 1) manually add

the operations (three steps in this case) to the workflow designer (called the workbench in Taverna)

using the web service, and 2) provide XML parsers and generators. In a Web service, the input and

output are expressed in XML. Hence, an XML generator is required before passing any workflow

parameters to the service. Similarly, an XML parser is required to process the service output after

executing the service. Hence, these two processes (i.e., service creation and service orchestration)

are coupled together as revealed by our BLAST execution example scenario.

An executable BLAST execution workflow in the Taverna workbench is shown in Figure

5.1. Engineers created three services as workflow deployable service components. In the figure,

all boxes (except the light blue, which represents workflow input and output) correspond to pro-

cessors; processors performing similar functions are identified by the same color. As shown in

Figure 5.1 (inside the sub-workflow checkJob), jobID is wrapped inside an XML descriptor

by jobStatusIn before passing to the actual service processor jobStatus. After executing

the service processor, the output XML is passed to the jobStatusOut processor, which parses

the XML and passes the status to workflow output port status. In case the output of a service is an

Object, as in the case of SubmitBlast, many XML parser processors (submitBlastOut,

submitBlastOut_submitBlastResults) are required for this conversion. Hence, the

type and the number of XML parsers and generators required to make a web service available

in a Taverna workspace is dependent on the structure (type and number of the input and the output)
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Figure 5.1: BLAST execution in Taverna

of the web service itself. For scientists to use these services in the Taverna workbench, they need

to: 1) know the input and the output format of each service, and 2) provide correct parsers and

generators for each of them.

5.2.3 Lack of End-User Environment Support

Many scientists are not familiar with service-oriented software technology, which forces

them to seek the help of engineers to make web services available in a workflow workbench. On
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the other hand, engineers find it difficult to work with scientific scripts and tools, which is not

usually their area of expertise. This technology barrier may degrade the efficiency of sharing sig-

nature discovery algorithms, because any changes or bug fixes of an algorithm require a dedicated

engineer and a scientist to navigate through the engineering process.

5.2.3.1 Solution approach using DSLs

In this chapter, a new approach to simplify the integration of signature discovery algorithms

into a common architecture is explained. In this approach, two sets of DSLs are defined that

contain: 1) A service description language (SDL) that can be used by the end-user to specify the

user credentials, executable path, script file, input and output of any script, and 2) A workflow

description language (WDL) that specifies the interactions of these services and takes input from

one or more service description files. The syntax of the workflow description language is mapped

to the Taverna workflow APIs. Thus, the glue code to orchestrate the service components from the

service description language is generated.

SDL and WDL files for the BLAST execution workflow are shown in Figure 5.2. In Figure

5.2.a, three services (submitBlast, jobStatus and blastResult) are defined along with

their input, resources (script files) and connection details. In Figure 5.2.b, a main workflow is

defined with input and output. The code used in these two files are explained later in the imple-

mentation section (Section 5.4). The few lines of code shown in Figure 5.2 is powerful enough to:

1) Create three web services, each service is a wrapper for a remote executable, that will upload

all the required files to the remote server before execution and after execution the resulting files

are downloaded, and 2) Create an executable workflow in a workflow engine like Taverna (Figure

5.1).

Using this approach, scientists can: 1) Design, develop, and deploy new service wrappers
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1//Remote machine configuration
2 d e f i n e s s h _ o l y as "sdi" at "olympus.pnl.gov"
3 with−key "/home/jaco181/.ssh/id_rsa"
4

5/*
6 * Creating a service to submit a blastJob
7 */
8 s e r v i c e s u b m i t B l a s t {
9 use s s h _ o l y ;

10 cmd "sh runJob.sh" ;
11 r e s o u r c e "jobScript.sh" , "runJob.sh" ;
12 in doc blossum , params , f a s t a ;
13 out jobID , o u t D i r ;
14 /*
15 *Inside run.sh
16 *echo "jobID=\$JOBID" > .properties
17 *echo "outDir=\$deployDir" >> .properties
18 */
19 }
20/*
21 * Creating a service to upload a remote

↪→file
22 */
23 s e r v i c e b l a s t R e s u l t {
24 use s s h _ o l y ;
25 cmd "cp $outDir$/test_all_v_all_m8.out

↪→outFile" ;
26 in o u t D i r ;
27 out doc o u t F i l e ;
28 }
29/*
30 * Creating a service to check status of a

↪→job
31 */
32 s e r v i c e j o b S t a t u s {
33 use s s h _ o l y ;
34 cmd "sh checkStatus.sh" ;
35 r e s o u r c e "checkStatus.sh" ;
36 in jobID ;
37 out s t a t u s ;
38 }

(a) SDL code for BLAST

1 use "SigQuality.sdl"
2/*
3 * Main workflow
4 */
5 workflow B l a s t S e a r c h ( in blosum , in params ,
6 in f a s t a , out o u t F i l e , out s t a t u s ) {
7

8 //Passing values to service
9 blosum−>s u b m i t B l a s t . b lossum

10 params −> s u b m i t B l a s t . params
11 f a s t a −> s u b m i t B l a s t . f a s t a
12

13 //Calling sub-workflow
14 c a l l checkJob
15 t i l l s t a t u s ="Done"
16 with s u b m i t B l a s t . jobID , s t a t u s
17

18 //Configuring execution
19 s u b m i t B l a s t . o u t D i r −> b l a s t R e s u l t . o u t D i r

↪→ a f t e r checkJob
20

21 //Passing to workflow output
22 b l a s t R e s u l t . o u t F i l e −> o u t F i l e
23

24 }
25/*
26 *Sub-workflow checkJob
27 */
28 workflow checkJob ( in wf_jobID , out

↪→w f _ s t a t u s ) {
29 wf_jobID−> j o b S t a t u s . jobID
30 j o b S t a t u s . s t a t u s −>w f _ s t a t u s
31

32 }

(b) WDL code for BLAST

Figure 5.2: BLAST execution using SDL and WDL

from remote executable scripts or commands and 2) Orchestrate and monitor the execution of such

services in a powerful workflow engine like Taverna.

5.3 Related Works in Workflows

In [Jacob et al., 2012a], we presented the initial work on domain-specific modeling for

signature discovery workflows Workflow engines like JBPM [Cumberlidge, 2007] also provide

graphical user interfaces for designing and deploying workflows. Other related works include
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Figure 5.3: Block diagram showing implementation of the approach

languages [Taylor, Deelman, Gannon, and Shields, 2006; Wilde, Hategan, Wozniak, Clifford, Katz,

and Foster, 2011] that are designed for composing computation intensive applications. Compared

to domain-independent workflows like JBPM and Taverna, the framework has the advantage that

it is configured only for scientific signature discovery workflows. In Taverna, a Web service can

be of different types and WSDL services are just one example. To keep the uniformity, every

time a WSDL processor is created, users have to add transformations to parse the XML input

and output. Our framework handles these details automatically through service and workflow

definition languages. Moreover, since the output is generated as a Taverna workflow file, it can be

viewed, edited and executed in Taverna’s full-fledged workflow development environment. There

are many tools [Maximilien, Wilkinson, Desai, and Tai, 2007; Pruett, 2007] available for creating

applications by composing web services from different vendors. Most of these tools assume that

the Web services are available. Our framework configures the workflow definition file that declares

how to compose services wrappers created by the framework.

5.4 Implementation Details

Figure 5.3 shows the overall approach to generate both wrappers and workflows. Scripts

or commands with template variables, SDL and WDL files are the only inputs. Using these input
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files, Web service wrappers and a workflow file deployable to a workflow engine (such as Taverna)

is generated. Each Web service wrapper is created from scripts and the associated SDL files, and

the workflow file is created using both SDL and WDL files. The code generation occurs in two

stages:

1. Web application creation. The tool creates Web services from the SDL files that describe the

key elements of a script;

2. Workflow creation. The SDL file from the first stage defines a service. It is passed together

with the WDL file to create the workflow constructs. These constructs are the basic elements

for the Taverna engine to create a workflow as defined in WDL.

At the load time of the SDL file, a web application with Web service wrappers correspond-

ing to each service in the SDL is created. Similarly, a “t2flow” (Taverna workflow executable)

file is created during the load time of WDL. When the t2flow is executed, the wrapped script(s)

and command(s) are executed in the remote host through an SSH session with the help of existing

signature discovery libraries (e.g., SDI). These libraries are responsible for making the input files

available before execution and uploading the output files to a dedicated data management system

after execution. We make use of a template engine to access runtime values of variables inside

services.

5.4.1 SDL Definition and Wrapper Generation

An SDL file has a list of services, where each service has a connection parameter ("SSH"

details), an execution command parameter (command to execute), resources (additional scripts

required to execute the command), and a set of inputs and outputs required for the execution of

the service. If the connection parameter is not specified, a service will be executed in the server
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in which the application is deployed. SDL supported input and output and their code generation

details are described in the following subsections.

5.4.1.1 Input and Output Strings

String is the default parameter type in SDL. Any parameter defined without a modifier

other than “in” and “out” are treated as string parameters. The “in” and the “out” modifiers define

the directions of the parameters. Each input string parameter is treated as a template variable and

is applied to the scripts and commands; any occurrence of the variable will be replaced by its

runtime value before execution. If there is an output string variable, code is generated to read a

.properties file after execution.

5.4.1.2 List of Documents or String

Code is generated to apply the document property or string property for all elements in the

list. As shown in Figure 5.5.a, while using the template variables and list, an end-user has to be

aware that a single variable may be substituted with many values.

5.4.1.3 Wrapper Generation

Code is generated for a Web service wrapper for each SDL file using the name of the

SDL file. For every service, two artifacts are generated; namely, the interface class and the cor-

responding implementation class. In addition, the framework also generates a helper class, called

SSHHelper, which automates the connection with remote computers.

5.4.2 SDL Example: BLAST Execution

The code generator creates service wrappers for each step. The job submission service is

shown in Figure 5.2a. A BLAST job is submitted using two script files: “jobScript.sh” (a SLURM

file) and “runJob.sh” (a BASH file). The script file “runJob.sh” executes the SLURM file and writes

jobID and outDir to the .properties file. In Figure 5.2.a, submitBlast has two outputs,
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the execution directory (outDir) and the job identifier (jobID). Both outputs are declared as the

default type; hence, the framework generates code for the string outputs. The generated code

downloads and reads their values from a .properties file. Other services (blastResult

and checkJob) are command SDL service wrappers (no script files) and are not shown. Service

checkJob checks the status of a given jobID and returns status “Running, Pending, or Done.”

Service blastResult downloads the files from a given directory.

At runtime, values and fields inside the script files need to be exposed as the input or

output of service wrappers. This is achieved by treating the scripts as templates and their runtime

values as template variables. The template variables are enclosed inside the “$” character. Before

executing any script files in the server, the scripts are passed through a template engine. The

template engine substitutes the scripts with runtime values. Template substitution is not necessary

for the files, as their runtime names are the same as the load time names. As an example, in Figure

5.2.a (line 25), the blastResult service is defined with a template variable outDir. When

the blastResult is executed, the $outDir$ in the command (line 25) will be replaced by the

runtime value of the variable outDir.

ANTLR StringTemplate is used for the template implementation. Hence, many advanced

features of the template engine can be utilized. As an example, to implement a Web service that

can aggregate all of the input files, an SDL file is defined (Figure 5.5.b) with an input as a “list” of

documents named inputs (line 3). Because the variable type is a list, the template is applied for

all the values. Using the StringTemplate “separator” keyword, the template engine separates the

individual values with a space.

In the case of a text output, the code is generated to read the .properties file and return

the specified property value. Hence, a user has to make sure that the output text values are written
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to the .properties if they want the service to return the value. As shown in Figure 5.2.a, after

submitting a BLAST job, the job identifier and the output directory is written to the .properties file

(commented lines 16 and 17). If there are multiple outputs, a new object return type is created with

fields as the outputs specified and returned.

5.4.3 WDL Definition and Workflow Generation

A WDL file creates a Taverna workflow based on the descriptions specified by the user. A

WDL workflow involves communication and interactions of various service wrappers among each

other and also with other workflows. A WDL file can have many workflows, but the top-most

workflow is considered the main workflow with all other workflows treated as sub-workflows.

Code is generated for sub-workflows only if it is called inside the main workflow.

Workflows have declarations of elements and connections. The Xtext46 grammar for WDL

is shown in Figure 5.4. Elements can be of any three types: 1) Sub-workflow, 2) Services, and

3) Strings. Strings are required to be initialized along with their declaration. Connections also

have three types: 1) Workflow input to service port, 2) Service port to service port, and 3) Service

port to workflow output or sub-workflow calls. A sub-workflow call in WDL introduces loops and

abstractions (function calls) to another WDL. It can connect a sub-workflow with the connection

ports. The sub-workflows, services and strings can be used without explicit declaration in that

case; their name itself will be used as the identifier. The main workflow uses a “call-till-with”

structure for communicating with sub workflows. As shown in Figure 5.4 (lines 13-16), using this

structure, the main workflow can iteratively “call” a sub workflow “till” it meets a condition “with”

main workflow ports. Hence, the “call-till-with” structure is a replacement for function calls and

loops in WDL.

46 Xtext Language tools, http://www.eclipse.org/Xtext/
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1 grammar gov . p n l . s d i .WDL wi th org . e c l i p s e . x t e x t . common . T e r m i n a l s
2 g e n e r a t e wDL "http://www.pnl.gov/sdi/WDL"
3

4 WorkflowModel :
5 'use' s e r v i c e f i l e =STRING workf lows +=Workflow +;
6

7 Workflow :
8 'workflow' name=ID '('p a r a m e t e r s = P a r a m e t e r s ? ')' '{'
9 ( d e f i n i t i o n s += D e f i n i t i o n * )

10 ( s t r i n g C o n s t a n t s += S t r i n g C o n s t a n t * )
11 ( p o r t l i n k s += P o r t L i n k | s e r v i c e L i n k s += S e r v i c e L i n k | w o r k f l o w C a l l s += Workf lowCal l ) +'}' ;
12

13 Workf lowCal l :
14 'call' workflowID=ID
15 ('till' c r i t e r i o n = C r i t e r i o n ) ?
16 'with' argument = P o r t (',' moreArguments+= P o r t ) * ;
17

18 C r i t e r i o n :
19 p o r t =ID op=OPERATOR v a l u e =STRING ;
20

21OPERATOR:
22 '=' | '<' | '>' ;
23

24 S t r i n g C o n s t a n t :
25 'String' s t r i n g A s s i g n m e n t s = S t r i n g A s s i g n m e n t s ;
26

27 S t r i n g A s s i g n m e n t s :
28 a s s i g n m e n t = S t r i n g A s s i g n m e n t (',' moreAss ignments += S t r i n g A s s i g n m e n t ) * ;
29

30 S t r i n g A s s i g n m e n t :
31 name=ID'=' v a l u e =STRING ;
32

33 D e f i n i t i o n :
34 'workflow' | 'service' ) name=ID s e r v i c e s = S e r v i c e s ;
35

36 S e r v i c e s :
37 s e r v i c e =ID (',' m o r e S e r v i c e s +=ID ) * ;
38

39 S e r v i c e L i n k :
40 s e r v i c e 1 =ID'|' s e r v i c e 2 =ID ;
41

42 P o r t L i n k :
43 ( p o r t 1 = P o r t | t e x t =STRING )'->' p o r t 2 = P o r t ;
44

45 P o r t :
46 se rv iceName =ID ('.'portName=ID ) ? ('after' a f t e r S e r v i c e N a m e =ID ) ? ;
47

48 P a r a m e t e r s :
49 p a r a m e t e r = P a r a m e t e r (',' m o r e P a r a m e t e r s += P a r a m e t e r ) * ;
50

51 P a r a m e t e r :
52 t y p e =('in' | 'out' ) v a r i a b l e =ID ;

Figure 5.4: Xtext grammar for WDL

A WDL specification file is used to define workflows. There can be many workflows inside

a WDL file. The first workflow in the file is the main workflow. Accordingly, a Taverna workflow

file will be generated with the same name as the main workflow with an added “t2flow” extension.
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The other workflows used inside the main workflow are sub workflows. The input for the services

in a SDL specification file can be defined in two ways:

1. Direct service specification: A service name followed by the operator ’.’ and the input

variable name specified in the SDL file (Figure 5.2.b, line 9-11)

2. Indirect service specification: An identifier defined as a service, followed by operator ’.’ and

the variable name (Figure 5.6.b, line 18).

The indirect service specification is required when there is more than one occurrence of

the same service. The ‘− >’, operator can be used for connecting any of the three cases, such

as connecting a workflow input to a service input, connecting a service output to another service

input, or connecting a service output to a workflow output. We introduced the “call-till-with”

construct to implement loops and abstraction in the WDL. Using the structure, sub-workflows can

be included into the main workflow. Using the optional “till” construct, the termination condition

for a sub-workflow can be specified. The sub-workflow will be executed only once as shown in

the landscape classification example in Figure 5.6.b. The support for a conditional expression is

restricted by the underlying workflow engine. Hence, for the expression, the first operand has to

be a sub-workflow port and the second operand has to be a string. WDL supports three logical

operators: ‘=’, ‘<’, and ‘>’. Using the “with” construct, the input and the output of the sub-

workflow are specified similar to arguments of a function call. If the arguments are defined as an

“out” type in a sub-workflow, the sub-workflow writes to the port after execution. Otherwise, it

reads from the port before the execution.
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5.4.4 WDL Example: BLAST Execution

The WDL file for the BLAST workflow is shown in Figure 5.2.b. The WDL specification

has two workflows: 1) BlastSearch, the main workflow, 2) checkJob, the sub-workflow.

The main workflow BlastSearch has the following steps:

1. submits a BLAST job after passing inputs to the submitBlast service (lines 9-11)

2. passes the jobID to the sub-workflow (line 16) and the output directory to the blastResult

service and waits for the sub-workflow to continue execution until it meets a criterion on fin-

ishing the sub-workflow (lines 14-16);

3. downloads the output file using service blastResult and passes it to the workflow output

(line 22).

In Figure 5.2.b, a workflow named checkJob is defined (lines 28-32). The workflow

takes one input (wf_jobID) and returns one output (wf_status). The workflow input jobID

is passed to the service, jobStatus (line 29), which is defined using SDL to find the status of

the specified job. The workflow output status is fetched from the service output status (line 30)

The order of execution is determined by the Taverna engine, which executes all the services

whose outputs are available. In some cases, scientists might want to control the order as it may not

be obvious to the Taverna engine. As an example, for the BLAST execution, the blastResult

service that downloads the output files needs to wait for the BLAST job to complete. To allow a

service to be executed only after the specified workflow or service, the “after” keyword is provided.

The “after” keyword can be added to any service invocation (Figure 5.2.b, line 19). More than one

service can also be in the “after.”
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1 s e r v i c e c l a s s _ T r a i n i n g {
2 use s s h _ e x e ;
3 cmd "R CMD BATCH training.r training.out" ;
4 r e s o u r c e "training.r" ;
5 in doc t r a i n X F i l e , t r a i n Y F i l e ;
6 in a l g o r i t h m ;
7 out doc m o d e l F i l e ;
8 }

(a) Service executing R script

1 s e r v i c e a g g r e g a t e {
2 use s s h _ e x e ;
3 cmd "cat $inputs; separator=\" \" $ >

↪→aggregatedFile" ;
4 in l i s t doc i n p u t s ;
5 out doc a g g r e g a t e d F i l e ;
6 }

(b) Service to add contents of a list of files

Figure 5.5: SDL examples

The language design and the associated software tools are available in Eclipse. We define

the syntax of service descriptions and workflows using Eclipse Xtext. The syntax is defined ac-

cording to Taverna workflow elements and processes. The code generation uses CXF47 APIs for

creating Web service wrappers for script files.

5.5 SDL Service Examples

In this section, some of the services created using SDL for Signature Discovery workflows

are described. In Figure 5.5, two examples are shown: 1) Figure 5.5.a shows wrappers for R48

scripts using SDL, and 2) Figure 5.5.b shows a utility wrapper service that can perform a vertical

merge for a list of files. Using the SDL service shown in Figure 5.5.a, a Web service wrapper is cre-

ated than executes an R script training.r with input files, trainXFile and trainYFile.

The R scripts can be executed using the command “R CMD BATCH scriptfile” as shown

in Figure 5.5.a (line 3). Similarly, the UNIX utility cat command is used in the aggregate

service to aggregate files (line 3 in Figure 5.5.b).

An overview of ten services carefully selected to highlight the core code generation features

of the SDL parser is shown in Table 5.1. In the table, Lines of Code (LOC) is defined as the

additional LOC generated to include the service. This does not include abstract classes or class

47 Apache CXF: An Open-Source Services Framework, http://cxf.apache.org
48 R Language for Statistical Computing, http://www.r-project.org/
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Table 5.1: An overview of SDL code generation
No Service Utils/Script [Inputs (type)] [Outputs(type)] LOC Total LOC (files)
1 echoString echo [0][1 (doc)] 10+13+1+6 30(4)
2 echoFile echo [1 (String)] [1 (doc) ] 10+14+1+6 31(4)
3 aggregate cat [1(List doc) ] [1 (doc) ] 10+20+1+7 38(4)
4 classifier_Training R [2 (doc), 1 (String) ] [1 (doc) ] 11+24+2+8 45(4)
5 classifier_Testing R [3 (doc), 1 (String) ] [1 (doc) ] 12+29+2+8 51(4)
6 accuracy R [1 (doc) ] [1 (doc) ] 11+19+1+6 37(4)
7 submitBlast SLURM, sh [3 (doc) ] [2 (String) ] 17+27+2+8+18 72(5)
8 jobStatus SLURM, sh [1 (String) ] [1 (String) ] 10+14+1+6 31(4)
9 blastResult cp [1 (String) ] [1 (doc) ] 10+14+1+6 31(4)

10 mafft mafft [1 (doc) ] [1 (doc) ] 10+18+1+6 35(4)

definitions, if the class already exists. SDL code generation takes place as: 1) Adding a method in

a Java RMI interface, 2) Adding a method in a Java SEI interface, 3) Implementing a method in a

Java class through a Helper class, 4) Creating the helper class for the service, and 5) Creating a new

Java bean, if there is more than one output. Code generated affecting multiple Java classes (e.g.,

five, if there are more than one output) for each service wrapper are shown in the LOC column of

the table.

5.6 A WDL Case Study: Landscape Classification

In this section, we demonstrate how the current approach can be used to define and deploy

signature workflow through a Landscape classification example. In the landscape classification

workflow, the goal is to compare accuracies of three landscape classification algorithms. Each

landscape classification algorithm is developed as R scripts and involves four stages:

1. Training stage: At this stage, image data along with their actual landscape classification

values are given as input. A model (a function approximation, generalized from the input

training patterns) is created and the model is returned as the output;

2. Testing stage: The image data and the estimated model from the training stage are passed as

inputs. The estimated classification type is returned as output.
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1 use "SigAnalysis.sdl"
2 workflow a l g o _ c l a s s i f y ( in a lgo , in t r a i n X ,

↪→ in t r a i n Y ,
3 in t e s t X , in t e s t Y , out o u t F i l e ) {
4

5 t r a i n X−> c l a s s i f i e r _ T r a i n i n g . t r a i n X F i l e
6 t r a i n Y−> c l a s s i f i e r _ T r a i n i n g . t r a i n Y F i l e
7

8 a lgo−> c l a s s i f i e r _ T r a i n i n g . a l g o r i t h m
9 a lgo−> c l a s s i f i e r _ T e s t i n g . a l g o r i t h m

10

11 c l a s s i f i e r _ T r a i n i n g . m o d e l F i l e −>
↪→ c l a s s i f i e r _ T e s t i n g . m o d e l F i l e

12

13

14 t e s t X−> c l a s s i f i e r _ T e s t i n g . t e s t X F i l e
15 t e s t Y−> c l a s s i f i e r _ T e s t i n g . t e s t Y F i l e
16

17 c l a s s i f i e r _ T e s t i n g . o u t F i l e −> o u t F i l e
18 }

(a) Landscape classification using WDL

1 workflow C l a s s i f i e r ( in t r a i n X , in t r a i n Y ,
↪→ in t e s t X ,

2 in t e s t Y , out f i n a l O u t ) {
3

4 workflow a l g o _ c l a s s i f y l d a _ c l a s s ,
↪→k n n _ c l a s s , s v m _ c l a s s

5

6 s e r v i c e a g g r e g a t e agg
7

8 c a l l l d a _ c l a s s
9 with "lda" , t r a i n X , t r a i n Y , t e s t X , t e s t Y ,

↪→agg . i n p u t s
10

11 c a l l k n n _ c l a s s
12 with "knn" , t r a i n X , t r a i n Y , t e s t X , t e s t Y ,

↪→agg . i n p u t s
13

14 c a l l s v m _ c l a s s
15 with "svmRadial" , t r a i n X , t r a i n Y , t e s t X ,

↪→ t e s t Y , agg . i n p u t s
16

17

18 agg . f i n a l O u t −>a c c u r a c y . i n p u t F i l e
19

20 a c c u r a c y . o u t p u t F i l e P r e f i x −> f i n a l O u t
21

22 }

(b) Classification accuracy using WDL

Figure 5.6: WDL examples

3. Aggregate stage: We want to perform the first two stages for three different algorithms:

LDA (Linear Discriminant Analysis), KNN (K-Nearest Neighbor), and SVM (Support Vec-

tor Machine). The result of the algorithms is merged to a single output file. This can be

implemented using a simple cat command.

4. Accuracy stage: Based on the estimated value and actual value, another R script is also avail-

able that can calculate the accuracy of a classification algorithm. SDL service definitions for

Training and Aggregate stages are shown in Figure 5.5. Similarly, we can define service

wrappers for the testing stage and accuracy services.

The next step is to define the workflow. Figure 5.6.a shows a workflow algo_classify

that imports the service definitions and connects the training and testing stages through their in-

puts. The inputs of the workflow are passed to the classifier_Training (lines 5-8) and
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classifier_Testing (lines 9 14, 15). The output of classifier_Training is passed

to classifier_Testing (line 11), and output of classifier_Testing is passed to the

workflow output outFile (line 17).

The workflow shown in Figure 5.6.a can return the classification results for a set of in-

puts and an algorithm. In Figure 5.7, a workflow Classifier is written with the same in-

puts as Classifier excluding the algo input. Three workflows, lda_class, knn_class,

and svm_class are defined as type workflow algo_classify (line 4). The Classifier

workflow is called for values “lda”, “knn”, and “svmRadial” (lines 8-9, 11-12, and 14-15). A ser-

vice of type aggregate agg is also defined (line 6). The output of each workflow algo_classify

is written to the input of agg (lines 9, 12, 15). Hence, the output of agg (finalOut) has

the aggregated results of all the three classifications. This is given to the input of the accuracy

inputFile (line 18) and the output of the service is given to workflow output (line 20).

The final output workflow executable generated is shown in Figure 5.7. As seen from

the figure, it would be challenging to maintain a workflow in that form. It has 50 processors

and a similar count of connections. Using this approach, scientists do not have to deal with the

engineering processes to make executables globally available and accessible in a mature workflow

engine like Taverna, but the approach provides all of the advantages and features of executing the

workflow in the Taverna workbench.

5.7 Discussion

This chapter describes the design and implementation of a framework for converting scripts

into scientific workflows. It includes how the domain-specific information required to create the

workflows are separated from the accidental complexities introduced by Web services and the

Taverna workflow engine, which allows end-users (scientists) to design and develop workflows.
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Figure 5.7: Taverna workflow for classification accuracy generated by WDL

The framework was evaluated with two real-world examples that are used to develop and deploy

two scientific workflows.
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Chapter 6

PNBSOLVER: A SUB-DOMAIN-LEVEL ABSTRACTION FOR

PARALLEL N-BODY SOLUTIONS

With the advent of multicore processors, parallel computation has become a necessity for

next generation applications. It is often a tedious task for domain users to optimize their programs

for a specific platform, algorithm, and problem size. We believe that domain users should be freed

from this task and they should be equipped with tool support to reuse the optimized solutions writ-

ten by expert parallel programmers. In this chapter, we introduce a two-stage modeling approach

that allows domain users to express the problem using domain constructs and reuse the available

optimized solutions. This approach has been applied successfully to Nbody problems using a DSL

called PNBsolver, which allows domain users to specify the computations in an Nbody problem

without any implementation or platform-specific details. Using the PNBsolver, the domain users

are allowed to control the platform and implementation of the generated code.

In the last three chapters, we described how code, algorithm, and program level modeling

can help HPC users. In this chapter, we apply our approach to a very restricted domain: Nbody

problems. We introduce PNBsolver, which is a DSL-based implementation of our sub-domain-

level modeling.

Section 6.1 introduces two research questions and explains how domain-specific modeling

can address these questions. The related works are reviewed in Section 6.2. Section 6.3 reviews

Nbody problems and analyzes a commonly used algorithm in such problems. Section 6.4 describes
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PNBsolver from a user’s perspective and the implementation details are explained in Section 6.5.

Section 6.6 gives details of a comparison study of PNBsolver solutions with existing implementa-

tions. Additional examples of using PNBsolver are shown in Section 6.7. The chapter is concluded

in Section 6.8.

6.1 Domain-Specific Modeling

Popular parallel programming paradigms include: 1) OpenMP (Shared memory), 2) Mes-

sage Passing Interface (Distributed memory), and 3) CUDA and OpenCL for GPU platforms. All

of these parallel programming paradigms have their advantages and disadvantages for a given prob-

lem, based on the execution environment, implementation, and even size of the problem. In the

current best practice, to find the optimized execution time for a problem of a given size in a specific

platform, a programmer must manually write a parallel version, optimize it and compare the exe-

cution time with other platforms. It is often hard for programmers to optimize these programs as

their domain of expertise is the problem domain and not the High Performance Computing (HPC)

domain. To solve this problem, the programmers should be freed from implementation and op-

timization of parallel versions, but should have the flexibility to express the problem and switch

between execution environments (optimal execution time is also a function of problem size). There

is no magical tool to convert any sequential program to an optimized parallel program. However,

for a restricted domain this can be achieved [DeVito, Joubert, Palacios, Oakley, Medina, Barrien-

tos, Elsen, Ham, Aiken, Duraisamy, Darve, Alonso, and Hanrahan, 2011; Heroux, Bartlett, Howle,

Hoekstra, Hu, Kolda, Lehoucq, Long, Pawlowski, Phipps, Salinger, Thornquist, Tuminaro, Wil-

lenbring, Williams, and Stanley, 2005; Püschel, Moura, Johnson, Padua, Veloso, Singer, Xiong,

Franchetti, Gačić, Voronenko, Chen, Johnson, and Rizzolo, 2005]. In this section, we address two

research questions that are summarized in the following subsections.
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6.1.1 Q1: Separating Specification and Implementation

Which algorithm on a specific platform can provide the optimized execution for a problem

of fixed size? To answer this question, the best way is to execute a program in different platforms

implementing various algorithms. This leads to the task of rewriting thousands of lines of code.

Can we re-use the implementation for another similar problem? This is possible only if the im-

plementations details are separated from the problem specification. Is there another new algorithm

which can give the optimized execution for the specific-problem than any of the existing algo-

rithms? This cannot be linked with the existing code even if the problem specification is separated

from the implementation.

6.1.2 Q2: Abstract Problem Specification

How can we maintain and switch between many program versions to provide the optimized

execution time? As mentioned earlier, there can be many implementations for a given problem

specification. If all such implementations are based on an abstract problem specification, any of

these implementations can be used with the given problem specification. If the domain is limited,

we can provide optimized solutions in required platforms for each of these implementations.

We used modeling techniques from software engineering to provide separation of spec-

ification and implementation, and abstraction in a restricted domain. Our solution approach is

explained in the following subsection.

6.1.3 Solution Approach: Modeling Parallel Programs

We developed a two-stage modeling technique for modeling parallel programs. In the first

stage, the domain experts create a model (DSL file) specifying the problem (this model has no

platform-specific or implementation-specific details) and in the second stage, this model is mapped
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to different platforms and implementations based on user preferences. The main advantage of

this two-step modeling technique is that it can be extended to include additional platforms and

implementations and is well-suited for a domain like parallel programming.

6.2 Related Works in Nbody Solvers

The related works are classified into two categories, as explained in the following subsec-

tions.

6.2.1 Nbody Solutions

A major advance in Nbody simulation was the introduction of the GRAPE (Gravity PiPE)

series of special-purpose computers [Makino and Taiji, 1998]. But recent works show that com-

parable speedup can be achieved through GPUs [Belleman, Bédorf, and Portegies Zwart, 2008].

AMBER [Pearlman, Case, Ross, Cheatham, DeBolt, Ferguson, Seibel, and Kollman, 1995] is

a package of computer programs written in FORTRAN to simulate the structural and energetic

properties of molecules. AMBER used a non-bonded cutoff sphere for applying approximation

in Nbody energy equations. AMBER 4.0 adds parallelism to modules of the program. NAMD

[Kalé, Skeel, Bhandarkar, Brunner, Gursoy, Krawetz, Phillips, Shinozaki, Varadarajan, and Schul-

ten, 1999] is a parallel simulation program written in C++ and used to simulate the behavior of

bio-molecular systems. NAMD2 uses Converse (a portable runtime framework) to support interop-

erability between different parallel paradigms. FMM-Yukawa [Huang et al., 2009] is a FORTRAN

program package for fast evaluation of the screened Coulomb interaction of N particles. Programs

can execute in linear time for nearly uniform particle distributions. Compared to PNBsolver, these

softwares or programs have targeted a specific field and to a specific Nbody problem. Matlab is a

high performance language for technical computing where solutions and problems are expressed

in mathematical notations. Being a general tool, it is highly improbable to have the expressiveness
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or performance as compared to the domain-specific PNBsolver, which can be extended to support

more algorithms by adding templates and allow programmers to fine-tune these algorithms based

on their specific problem.

6.2.2 Tree Code Algorithms

Cheng et. al. [Cheng, Huang, and Leiterman, 2006] developed an adaptive fast solver for

a modified Helmholtz equation in two dimensions using an adaptive quad tree structure. Ossmani

and Poncet [Ossmani and Poncet, 2010] used a tree based data structure to evaluate efficiency of a

multi-scale hybrid grid-particle vortex method. Krasny and Duan [Krasny and Duan, 2002] used

a tree code algorithm to compute non-bonded particle-cluster and cluster-cluster interaction. They

also used an oct-tree data structure and implemented different tree traversing techniques specific

to different boundary conditions. Krasny and Wang [Krasny and Wang, 2011] implemented the

tree code in Cartesian coordinates and used a recurrence relation to compute the Taylor coeffi-

cient for evaluating sums of multi-quadric radial basis function (RBF). Xu [Xu, 2010] used a tree

code algorithm for calculating polarized Coulomb interaction of an Nbody system. Li et. al. [Li,

Johnston, and Krasny, 2009] used the algorithm for evaluating electrostatic potential of screened

Coulomb interaction using a new recurrence relation. Baczewski and Shanker [Baczewski and

Shanker, 2011] presented an Accelerated Cartesian Expansion (ACE) method to evaluate periodic

Helmholtz, Coulomb and Yukawa potential using O(N) operations and O(N) storage using differ-

ent approximations in both tree building and tree traversing. All of these works represent different

variations of the original tree code algorithm. Because PNBsolver is more focused on the approach

than to a specific algorithm, PNBsolver can support any of these.
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6.3 Nbody Problems and Tree Code Algorithm

The Nbody problem is a generalized concept of problems related to the physical properties

of a system. The system can contain billions of interacting bodies. The classic Nbody problem

of celestial mechanics originated from Newton’s Principia [Diacu, 1996]. The bodies can be gi-

ant celestial objects in a solar system or minuscule particles in an atomic system. The physical

properties can be motion, energy, charge, momentum, or force. There are many areas in science

that use Nbody problems (e.g., astrophysics, plasma physics, molecular physics, fluid dynamics,

quantum chemistry and quantum chromo-dynamics) [Carlson et al., 1983; Jastrow, 1955; Sasai

and Wolynes, 2003; Watson, 1953]. Barnes et. al [Barnes and Hut, 1986] introduced a hierarchical

O(N logN) algorithm to calculate an Nbody force equation and was later used in different Nbody

problems [Krasny and Duan, 2002; Krasny and Wang, 2011; Xu, 2010]. In this section, the tree

code algorithm is reviewed, explaining how the efficient implementations of this algorithm can be

re-used in Nbody computations.

6.3.1 Tree Code Algorithm

The tree code algorithm has proved its efficiency for Nbody problems [Barnes and Hut,

1986]. It reduces the computational cost of these problem from O(N2) to O(N log(N)). The tree

code algorithm is explained in two perspectives: 1) Mathematical formulation; and 2) Source code.

In the mathematical formulation, the algorithm is explained with the help of a 3D cube, which itself

is divided in all dimensions into subunits recursively. In the source code, this is represented as a

tree structure.
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6.3.1.1 Tree Code Algorithm: A Mathematical Perspective

Ii =
N

∑
j=1, j 6=i

M jG(xi,y j) (6.1)

In a system consisting of N bodies, the interaction of body i with other N − 1 bodies is

given in Equation 6.1 [Krasny and Wang, 2011]. According to the tree code algorithm, for bodies

within a cell/cluster (one of the subunits of the 3D cube) satisfying the Multipole Acceptance

Criterion (MAC, θ ) [Salmon and Warren, 1994] in Equation 6.2, their interaction with body i can

be calculated more efficiently with controllable errors. In Equation 6.2, rc represents the location of

the cell center and R represents the distance between the ith body and the cell center. On satisfying

the MAC, the more efficient particle-cluster interaction between body i and bodies inside a cell is

given as Ii,c in Equation 6.3 from [Krasny and Duan, 2002; Li et al., 2009; Lindsay and Krasny,

2001]. Note here k, x, and y are vectors with three components.

rc

R
< θ (6.2)

Ii,c ≈
p

∑
||k||=0

1
k!

Dk
xG(xi,yc) ∑

y j∈c
M j(y j− yc)

k (6.3)

Ii,c ≈
p

∑
||k||=0

TCOEFF(k,G)×MOMENT S(c) (6.4)

In Equation 6.3, for each 3D value k, the first term computes the Taylor coefficients for

every target body (using recurrence relations) and the second term computes the moment of the

cluster, which is only evaluated once for each cluster. In general, Equation 6.3 can be rewritten as

Equation 6.4. To implement this algorithm for any interaction, programmers only need to choose
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one of our included interactions or provide the Taylor coefficients for user-specified interactions.

In Equations 6.3 and 6.4, p represents the ORDER of the Taylor coefficients.

6.3.1.2 Tree Code Algorithm: A Source Code Perspective

A general implementation of the tree code has three stages: 1) Tree creation, 2) node values

calculation, and 3) Tree traversal. Details of these stages are explained as follows:

1. Tree creation: At this stage, a tree-based structure is used to maintain a list of bodies.

Bodies of the system are added to the root node and if any node has more than a fixed

number of bodies (MAXPARNODE), the node is further branched to eight child nodes. This

is equivalent to dividing a 3D space recursively until each of the existing subunits has at most

MAXPARNODE number of bodies.

2. Node values calculation: At this stage (usually implemented along with tree creation), the

node properties are calculated. This includes calculating the resultant center of the node

and arranging inputs such that bodies in the same node are arranged closer for faster access.

Note that each intermediate node of the tree contains the approximate interaction information

(the second term, moments, in Equation 6.3) of the sub-units under that intermediate node.

Hence, the root node can approximate the entire system.

3. Tree traversal: In this stage, the interactions are calculated. The bodies are traversed from

the root node. If a node satisfies the MAC, traversal is stopped and a node’s approximated

value is used as the interaction. If MAC is not satisfied, the traversal is continued until it

reaches the leaves. At the leaves, interaction is computed by direct summation.

A summary of four tree code implementations collected from different sources [Ansari,

2012; Barnes, 2012; Johnston, 2012] implementing different interactions is shown in Table 6.1.
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Table 6.1: An analysis of existing tree code implementations
Name Equation Language LOC (files)

Total PE
N−1
∑

i=1
Qi

N
∑

j=i+1

Q j
|Ri−R j| FORTRAN 966 (3)

PEi
N
∑

j=i, j 6=i

Q j
|Ri−R j| FORTRAN 1006 (3)

Screenedi Qi
N
∑

j=i, j 6=i

Q je
−|Ri−R j |

|Ri−R j| FORTRAN 1023 (3)

Grav. Fi Mi
N
∑

j=i, j 6=i

M j(Ri−R j)

|Ri−R j|3
C 1921 (15)

Grav. Fi Mi
N
∑

j=i, j 6=i

M j(Ri−R j)

|Ri−R j|3
Javascript 908 (6)

We leave out some constants such as dielectric or gravitational constants for simplicity. As shown

in the table, all the implementations had roughly 1000 lines of code (LOC).

6.3.2 Analysis Summary

There are parallel implementations of tree code available [Bédorf, Gaburov, and Zwart,

2012; Burtscher and Pingali, 2011; Liu, Duan, Krasny, and Zhu, 2004]. In general, there are

two parallel implementations: 1) Parallelizing the node interactions, which are distributed equally

among the parallel instances (threads or processes) and every instance creates their own tree (same

tree) for computations; 2) Parallelizing tree creation and node interactions, the tree creation, as

well as tree walking, is distributed among the instances. In most cases, direct computation is

embarrassingly parallel. Hence, when such a computation is executed in a highly parallelized

device like a GPU, the direct computation can outperform the tree code algorithm for a range

of size. For a larger size problem, the O(N log(N)) tree code can outperform the O(N2) direct

summation. This justifies our combination of parallel direct summation implementation in a GPU,

parallel implementation of tree code in a CPU, and parallel implementation of tree code in a GPU.

119



The research questions introduced in Sections 6.1.1 and 6.1.2 are revisited in the context of Nbody

problems in the following subsections.

1. Separating specification and implementation in Nbody problems: The domain users

should be able to specify the Nbody problems without any implementation details (e.g.,

which algorithm to use). They should also be able to provide the implementation details

(e.g., desired accuracy, allowed error, platform). However, the problem specification should

be logically separated from the other details.

2. Abstract problem specification in Nbody problems: The problem should be represented

at the correct abstraction level. It should not be too high so we cannot apply code optimiza-

tions (e.g., users should be allowed to configure parameters like MAXPARNODE, ORDER,

THETA) and not too low level (e.g., users might not want to specify the bodies as charge or

mass).

PNBsolver is designed to address these questions. PNBsolver is introduced in the following

section from a user’s perspective.

6.4 Working with PNBsolver

The equation to calculate the gravitational force for each body in an Nbody system with

masses Mi and positions Ri is shown in Equation 6.5 [Salmon, 1994]. An equivalent representation

of the force using PNBsolver is shown in Figure 6.1. In the figure, the Force kernel is defined

in space R, mathematically R3. A “pnb” (parallel Nbody) file can be logically divided into three

sections: 1) Declaration , 2) Calculation, and 3) Generation sections. Each section is explained in

the following subsections.
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1 ke rn e l Force in R
2

3 // Kernel declarations
4 v e c t o r F
5 s c a l a r M
6 c o n s t a n t K=1
7

8 /*
9 * Read positions and mass from file

10 * formatted as <x y z>m
11 *
12 */
13 read "<R_1,R_2,R_3>M" , "data.dat"
14

15 //Actual computation
16 F=K*M SUM(M*R / ( R_*R_*R_ ) )
17

18 // Write force to file
19 w r i t e "F_1,F_2,F_3" , "out.dat"
20

21 endkernel
22

23 // Generate CUDA code for force kernel
24 g e n e r a t e CUDA ACCURATE Force .

Figure 6.1: Gravitational force kernel in space R using PNBsolver

Fi = KMi

N

∑
j=1, j 6=i

M j(Ri−R j)

|Ri−R j|3
(6.5)

6.4.1 PNBsolver Declaration Section

Every variable used in the calculation section should be declared before usage. PNBsolver

identifies three types of variables: 1) vector, 2) scalar, and 3) constants. Vectors and scalars are

linked to every body in the system. The total force that acts on a body or position of a body at an

instance are examples of vectors; the mass or charge of a body are example of scalars. The constant

data type is used to specify the constants in the calculation and also the global properties of the

system. The gravitational constant or the dielectric constant are examples of constant data types.

The scalar and the constant variables can be initialized along with their declaration as shown in

Figure 6.1 (line 6). In the case of a scalar, all the N bodies will be initialized with the given value.
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1 //A cluster not satisfying MAC
2

3 //Variable declarations
4 double dx , dy , dz , d i s t , d i s t s q , temp1 ;
5

6 //Calculating distance variables
7 dx = R[ i ] − t a r p o s [ 0 ] ;
8 dy = R[ i ] − t a r p o s [ 1 ] ;
9 dz = R[ i ] − t a r p o s [ 2 ] ;

10 d i s t s q = dx * dx + dy * dy + dz * dz ;
11

12 //Avoiding i==j
13 i f ( d i s t s q > 0 . 0 f ) {
14 d i s t = s q r t ( d i s t s q ) ;
15

16 //Calculating specified variables
17 temp1 = d i s t * d i s t * d i s t ;
18

19 //Actual calculation
20 Forcex = Forcex + M[ i ] * dx / temp1 ;
21 Forcey = Forcey + M[ i ] * dy / temp1 ;
22 F or ce z = F or ce z + M[ i ] * dz / temp1 ;
23 }

Figure 6.2: Code generated for the tree code algorithm with MPI/OMP

1 //Variable declarations
2 TYPE dx , dy , dz , d i s t s q , i n v d i s t , temp1 ;
3 //Calculating distance variables
4 dx = Ri . x − t a r p o s . x ;
5 dy = Ri . y − t a r p o s . y ;
6 dz = Ri . z − t a r p o s . z ;
7 d i s t s q = dx * dx + dy * dy + dz * dz ;
8

9 i f ( d i s t s q > 0 . 0 f ) {
10 //Using CUDA Fast functions
11 i f (ACCURATE)
12 i n v d i s t = r s q r t ( d i s t s q ) ;
13 e l s e
14 i n v d i s t = r s q r t f ( d i s t s q ) ;
15

16 //Calculating specified variables
17 temp1 = i n v d i s t * i n v D i s t * i n v D i s t ;
18

19 //Actual calculation
20 Force . x += dx * t a r p o s .w * temp1 ;
21 Force . y += dy * t a r p o s .w * temp1 ;
22 Force . z += dz * t a r p o s .w * temp1 ;
23 }

Figure 6.3: Kernel code generated for direct summation with CUDA

6.4.2 PNBsolver Calculation Section

Actual calculation for the kernel is specified in the Calculation section. As shown in Figure

6.1 (line 16), the calculation involves two expressions. The first expression, K ∗M corresponds

to the KMi in Equation 6.5. For discussion, this expression is called the outer expression and the
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second expression is called the inner expression. PNBsolver expects the inner equation to perform

the SUM operation. In addition to the variables declared, PNBsolver identifies the position vector

in both inner and outer expressions. For the Force kernel, the position vector is R (line 1). In the

outer expression, R represents the actual position, and in the inner expression R gives the relative

position with the iteration value. For calculations, the magnitude of a vector can be obtained by

adding the “_” to the name of the variable (R_ in line 16). PNBsolver achieves separation of

calculations within the expression statement with “(” brackets. The expression used in the brackets

are computed to a temporary variable before the final computation, and the temporary variable is

replaced with the occurrences of the expression in the final expression statement. As an example,

for an equation var1∗ (var2+var3), the equation var2+var3 is computed to a temporary variable

and all the occurrences of the equation is replaced by the variable name. This is done to optimize

the computation.

Read and write statements: This section helps PNBsolver to integrate with existing pro-

grams or functions. In this section, the vectors and scalars that are declared are initialized. The

read statements read the values from a file to the variables and write statements write the com-

puted results to a file. Both of these commands take two parameters: 1) Format and 2) File name.

The format argument specifies how values for each body are formatted in a line. A single kernel

can have many read and write statements. As an example, if masses were specified in a differ-

ent file, another read statement could be added before the calculation statement. For reading and

writing formats, the three co-ordinates of vectors can be accessed by adding “_1, _2,” and “_3,”

respectively, to their names (line 13 and line 19).
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6.4.3 PNBsolver Generation Section

The Declaration and Calculation sections can express the Nbody problem without any im-

plementation details. The Generation section controls the implementation and code generation.

The default code generation language is “C” and the algorithm is selected based on the mode and

target parallel programming paradigms. PNBsolver supports CUDA, OMP, and MPI parallel pro-

gramming paradigms. There are three modes for each paradigm: 1) ACCURATE, 2) AVERAGE,

3) FAST. The program runs faster when a mode is changed from ACCURATE to FAST and pro-

grams give more accurate results when the mode is changed from FAST to ACCURATE. More

details about how algorithms are selected based on the mode and paradigms are explained in the

implementation section.

A section of code generated for the tree code algorithm and CUDA direct implementation

is shown in Figures 6.2 and 6.3. This code computes the Force for the body located at Ri due to

another body located at tarpos. Both implementations have pre-defined variables, dx, dy,

dz, distsq. The distsq calculates the magnitude of the distance. The if statement could

be avoided if we set Mi = 0.0 before the computation, but our current implementation generates

the if statement. However, if there is a softening factor to the magnitude, the PNBsolver parser

identifies this and removes the if statement. An example for such a case is explained in Section

6.7.2.

In Figures 6.2 and 6.3, temp1 (line 4 and line 2, respectively) is a variable created by using

brackets in the expression statement. As shown in the figures, the calculation is implemented in two

different ways for the two versions (line 17 in Figures 6.2 and 6.3). For the CUDA implementation,

the type of the variable is defined based on the mode, for faster implementations float is used

124



and for accurate implementations double is used. Hence, the type of the variable is defined as a

C++ template variable TYPE (variable is removed by actual code during compilation). ACCURATE

is another template variable to tune optimization and speed. For distance, since CUDA has a fast

math function, to perform the square root and inverse, we use that function (Figure 6.3), instead

of the square root followed by the division operator (Figure 6.2) as in the CPU code. Use of

the float4 data type for the position and mass is another GPU optimization. If the variable

ACCURATE is set, CUDA fast functions (e.g., rsqrtf,__expf(x)) are used.

6.5 Implementation Details of PNBsolver

A block diagram showing the implementation of PNBsolver is illustrated in Figure 6.4. The

“pnb” file is passed to the parser and the parser identifies the mode and platform for selecting the

proper template. The parser also generates the kernel code which is further optimized and given to

the code integrator. The optimizations applied at this stage are very general and it is not coupled to

any specific platform. Removing the brackets with new temporary variables, finding expressions

that are repeated, and checking whether softening is applied are examples of optimizations at this

stage. The code integrator merges the kernel code to the template and fills the template values. This

includes updating function declaration and parameters, function calls and arguments, and declaring

type variables and initialization. After this, platform-specific optimizations are applied. Rewriting

functions with CUDA fast math functions [NVIDIA, 2007] is an example of such an optimization.

The project is implemented in Java and ANTLR is used for implementing the “pnb” file

parser. The template store is implemented using StringTemplate. Two important parts of the

implementation are “pnb” file parsing and code generation using templates. The code generation

varies based on the mode and platform selected in the “pnb” file. However, the code generated

will be either a parallel direct summation implementation or a parallel tree code implementation.
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Figure 6.4: Block diagram showing the implementation of PNBsolver

The PNBsolver Parser, PNBsolver code generator, and Modes of operation are explained in the

following subsections.

6.5.1 PNBSolver Parser

The simplified EBNF grammar for the PNBsolver language is shown in Figure 6.5. As

shown in the figure, the file allows one or more kernel, but code is generated for only one kernel.

This is designed to support future extensions, where the output of a kernel can be passed to the input

of another kernel. After parsing, the expression statement is captured in two expression objects, the

inner expression object and the outer expression object. All expressions in a “pnb” file are made

of variables defined in the declaration section. To use a constant inside the expression statement,

it should be declared as a constant and use the variable name in the expression statement. As a

rule, the read statements should be defined before the expression statement, and write statements

after the expression statement. This seems logical as a program usually requires reading before
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1

2 grammar PNBsolver ;
3

4 c o n t e n t
5 : k e r n e l s e x e c u t e "." EOF
6 ;
7

8 k e r n e l s
9 : ("kernel" ID "in" ID d e c l a r a t i o n s r e a d s t m t s

10 e x p r e s s i o n s t m t w r i t e s t m t s "endkernel" ) +
11 ;
12

13 d e c l a r a t i o n s
14 : ( t y p e v a r i a b l e d e c l a r a t i o n ) +
15 ;
16

17 e x e c u t e
18 : "generate" p l a t f o r m ("[" p a r a m e t e r s "]" ) ? mode ID
19 ;
20

21 p l a t f o r m
22 : "CUDA" | "OMP" | "MPI" | "OCL"
23 ;
24

25 mode
26 : "ACCURATE" | "AVERAGE" | "FAST"
27 ;
28 t y p e
29 : "vector" | "scalar" | "constant"
30 ;
31

32 e x p r e s s i o n s t m t
33 : IDENTIFIER "=" ( e x p r e s s i o n ) ? "SUM" e x p r e s s i o n
34 ;
35

36 e x p r e s s i o n
37 : m u l t i d i v ( "+" m u l t i d i v | "-" m u l t i d i v ) *
38 ;
39

40 m u l t i d i v
41 : atom ("*" atom | "/" atom ) *
42 ;
43

44 atom
45 : IDENTIFIER
46 | "(" e x p r e s s i o n ")"
47 | "exp" e x p r e s s i o n
48 | "pow" "(" e x p r e s s i o n "," NUMBER ")"
49 ;
50

51 r e a d s t m t s
52 : ("read" STRING "," STRING ) *
53 ;

Figure 6.5: Simplified EBNF grammar of PNBsolver

the calculation and writing after the calculation. The EBNF rules for variabledeclaration,

writestmts, parameters are not shown in the figure to provide clarity.
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1 s t r u c t t n o d e {
2 i n t numbodies , begin , end ;
3 double x_min , y_min , z_min , x_max , y_max , z_max ;
4 double x_mid , y_mid , z_mid , r a d i u s ;
5 i n t l e v e l , c h i l d r e n , e x i s t _ m s ;
6 double *** moments ;
7 s t r u c t t n o d e * c h i l d [ 8 ] ;
8 } ;

Figure 6.6: Structure tnode in the template

6.5.2 PNBsolver Code Generator

The PNBsolver parser can identity the inputs and outputs for the kernel. The code generator

inserts declarations and initialization (if any) into the program. The core computation code is

generated as shown in Figures 6.2 and 6.3. These two code sections are inserted into the template

identified by mode and platform. To add a new algorithm, new template is defined and configured

the parser to route through a different code generator. The same approach can be used to support

a language other than C. In Section 6.6, we generate FORTRAN code using a FORTRAN code

generator. There are four “C” templates available in the template store and are explained in the

following subsections.

6.5.2.1 Parallel CPU (OpenMP and MPI) Tree Code Templates

The tree code used for PNBsolver is adapted from [Krasny and Duan, 2002]. We developed

parallel versions of the tree code in MPI and OpenMP. More details about the speedup, error and

execution time of the parallel versions are included in Section 6.7. To complete a CPU tree code

template, we need: 1) Taylor coefficients, 2) Direct implementation, and 3) Tree code parameters

such as MAXPARNODE, ORDER (taylor coefficient order) and THETA (MAC). PNBsolver sets

default values for all of these parameters, but this can be customized by the user as shown later in

Figure 6.10.

Providing Taylor coefficients: The parameter value TAYLOR is used to find the Taylor
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coefficients. The PNBsolver code generator reads the file specified as the parameter value of

TAYLOR and looks for a function with signature comptcoeff (struct tnode *t), where

tnode is a structure representing the tree node. In this function, the position of an interacting body

can also be accessed. The declaration of structure tnode is shown in Figure 6.6. The values of the

Taylor coefficients should be set in a 3D array of size ORDER. In addition to the comptcoeff

function, users can add two more functions: setup() and teardown(), for declaring values

that might be required for the computation. These two functions are executed only once before

and after the tree creation, while the comptcoeff function is executed for every target that

satisfies THETA. All of these functions can access the user-specified parameters and some global

parameters that include NUMPARS (number of bodies). If PNBsolver is executed with a TAYLOR

parameter, it will look for a file specified as the value. If PNBsolver cannot find the file in the

current directory, a file having the above three function signatures will be created. PNBsolver uses

Taylor coefficients mentioned in [Krasny and Duan, 2002] if TAYLOR is not specified and it is

found effective for Force and Potential calculations.

6.5.2.2 Parallel GPU Template for Direct Computation

For the GPU implementation using the direct summation, we have used two optimization

techniques: 1) Tiling (partitioning of the computation domain into smaller tiles) with shared mem-

ory, and 2) Loop unrolling (replacing a loop with similar independent statements). The effect of

these optimizations for Coulomb Potential is shown in Figure 6.7. In the figure, the direct version

is the case when the kernel code generated was executed as a CUDA kernel without any modifica-

tions on a Tesla M2070. All kernels in the GPU template can be executed for double and float

mode. In the figure, Speedup is defined as the ratio of execution time of sequential implementation
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Figure 6.7: Effect of optimization techniques (Tiling and unrolling) for Coulomb potential

of Coulomb potential on a CPU to that of the CUDA implementation. Every reading is an average

value of at least three of the same executions.

6.5.2.3 Parallel GPU Tree Code Template

The implementation used for GPU tree code is adapted from [Burtscher and Pingali, 2011]

supports zeroth ORDER; hence, there is no need to specify Taylor coefficients for tree code imple-

mentation.

6.5.3 Modes of Operation

There are three modes of operation for PNBsolver: 1) ACCURATE, 2) AVERAGE, and 3)

FAST. The execution time of the problem increases from ACCURATE to FAST and error decreases

from FAST to ACCURATE. This is achieved by varying the parameters ORDER and THETA. The

effect of these two parameters for two problems executed for a PNBsolver OpenMP solution for

a fixed size is shown in Figures 6.8 and 6.9. As seen from Figure 6.8, as the ORDER increases,

error is less but the program takes longer to finish execution. In the case of THETA, the program
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Figure 6.8: Effect of ORDER in error and time

Figure 6.9: Effect of THETA in error and time

finishes faster for higher values of THETA, but has increased errors due to lowered threshold for

using particle-cluster interaction. Unless specified, the THETA value is set to 0.5 as a default.

PNBsolver uses these tuning parameters to allow programmers to control the error and

execution of generated programs. The parameter values set through a mode can be overridden by
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Table 6.2: PNBsolver operation modes
Platform Mode Algorithm Parameters

GPU (CUDA)
ACCURATE DIRECT FLOAT
AVERAGE DIRECT DOUBLE
FAST TREE

CPU (OpenMP & MPI)
ACCURATE TREE ORDER=6
AVERAGE TREE ORDER=4
FAST TREE ORDER=1

specifying the parameter in the generate clause. The value of relevant parameters for the three

modes are shown in Table 6.2.

6.6 PNBsolver and Handwritten Code Comparison

In this section, we compare the execution time of two kernels generated by PNBsolver with

that of handwritten code from expert programmers.

6.6.1 Yukawa Potential (Screened Coulomb Potential) Calculation

The electrostatic Yukawa energy potential [Brian Martin, 2008; Li et al., 2009] at the ith

charge Yi, due to the N mutually interacting charged particles with coordinates R and partial charges

Qi(i = 1,N), is calculated as shown in Equation 6.6 [Brian Martin, 2008].

Yi = Qi

N

∑
j=1, j!=i

Q je−|Ri−R j|

|Ri−R j|
(6.6)

The PNBsolver representation for Yukawa interactions is shown in Figure 6.10. The code is

generated for an MPI version with parameters: TAYLOR and MAXPARNODE (line 21). Since the

code is generated for AVERAGE mode, from Table 6.2, ORDER=4 and default value of THETA

is 0.5. It is assumed that the Taylor coefficient implementation is available in a file “comptt.c”

Comparison: We compared the execution time of MPI code generated by PNBsolver to

[Li et al., 2009]. To make the comparison as accurate as possible, 1) we set the same parameter
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1 ke rn e l Yukawa in R
2

3 // Kernel declarations
4 s c a l a r Y
5 s c a l a r Q
6 c o n s t a n t KAPPA=1.0
7

8 read "R_1,R_2,R_3,Q" , "data.dat"
9

10 //Actual computation
11 Y=Q SUM(Q* exp(−KAPPA*R) / R)
12

13 // Write Yukawa potential to file
14 w r i t e "Y" , "out.dat"
15

16 endkernel
17

18 g e n e r a t e MPI AVERAGE Yukawa
19 //Parameters
20 [TAYLOR= compt t . c , MAXPARNODE= 1 0 0 ] .

Figure 6.10: Screened (Yukawa) potential kernel in space R using PNBsolver

values for the version in test, 2) used a FORTRAN template instead of the C template, and 3)

MPI code generated by PNBsolver is executed with one process. The execution times are shown

in Figure 6.11, where FORTRAN screened [Li et al., 2009] is the version in test and FORTRAN

screened (PNBsolver) is the generated version. As seen in Figure 6.11, generated code executed

nearly as fast as the sequential hand written code.

6.6.2 Gravitational Acceleration

The equation to calculate gravitational acceleration is similar to Equation 6.5 without the

Mi in the outer loop. The PNBsolver code for Force is shown in Figure 6.1. We compared the

PNBsolver acceleration with an acceleration implementation from the NVIDIA CUDA installation

package49. We slightly modified the code to make more precise comparisons.

For all GPU plots, the execution time includes: 1) Time to allocate memory in the GPU,

2) Time to transfer memory from GPU to CPU, 3) GPU execution, 4) Copying results back to the

CPU. We added code to pass the input values to the GPU before execution and also code to read

49 CUDA SDK, http://developer.nvidia.com/cuda-cc-sdk-code-samples
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Figure 6.11: Execution time comparison of hand-written code with generated code

back after execution. However, we used the nbody_kernel.cu file, which performs the actual

implementation for comparison.

Comparison: The execution time of the NVIDIA implementation of gravitational accel-

eration with the generated code of PNBsolver was compared. The number of bodies were varied

from 1k to 2M. For PNBsolver, the CUDA direct summation was used with single point precision.

The execution times of both of these versions is shown in Figure 6.11. As seen from the figure,

PNBsolver can generate code which is as fast as the CUDA implementation.

6.7 More Nbody Problems

In this section, we explain the speedup and the errors of a few Nbody problems in three

different architectures: 1) Shared memory (OpenMP), 2) Distributed memory (MPI) , and 3) GPU

(CUDA). The analysis of OpenMP and MPI programs is given in the following subsection and

analysis of CUDA programs is provided in subsection 6.7.2.
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1 ke rn e l P o t e n t i a l in R
2

3 s c a l a r Y, Q
4

5 read "R_1,R_2,R_3,Q" , "data.dat"
6

7 //Actual computation
8 V=Q SUM(Q/ R)
9

10 // Write Yukawa potential to file
11 w r i t e "V" , "out.dat"
12

13 endkernel
14

15 g e n e r a t e OMP AVERAGE P o t e n t i a l .

Figure 6.12: Coulomb potential kernel in space R using PNBsolver

6.7.1 Analysis of OpenMP and MPI Programs

For the OpenMP and MPI program analysis, in addition to the Force (Equation 6.5) and

Yukawa potential (Equation 6.6), we generated code for the Coulomb potential which is calculated

as shown in Equation 6.7 [Halliday, Resnick, and Walker, 2008]. The PNBsolver representation of

the Coulomb potential is shown in Figure 6.12.

Vi = Qi

N

∑
j=1, j 6=i

Q j

|Ri−R j|
(6.7)

6.7.1.1 Execution Environment

The MPI and OpenMP programs were executed in a cluster with eight nodes. The programs

read positions and charges from a file of 5 million records. The generated code was modified to

include a direct implementation on every program to verify the accuracy of the implementation.

The programs were executed for a number of bodies ranging from 5k to 500k.

6.7.1.2 Speedup of MPI and OpenMP Programs

To evaluate our parallel implementations of the tree code algorithms in OpenMP and MPI

platforms, the speedup (ratio of the sequential tree code execution time to that of the parallel tree
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Figure 6.13: Speedup of tree code programs with sequential tree code

code), as shown in Figure 6.13, is plotted against the number of threads for OpenMP and processes

for MPI programs. As shown in the graph, our parallel implementation gave a linear speedup

until eight (number of nodes in the cluster) threads/processes. For more computation intensive

equations, executing with more threads or processes than the available resources can slow down

the program to a considerable rate as in the case of Screened Coulomb potential in Figure 6.13. In

Figure 6.14, the relative speedup is plotted against the number of bodies, where relative speedup is

defined as the ratio of execution time of a sequential program to that of the tree code program. In

this case, super linear speedup is observed with the tree code algorithm.

6.7.2 Analysis of CUDA Programs

For CUDA analysis, the expression shown in Equation 6.8 [Lindsay and Krasny, 2001] is

used for computing vortex sheet motion in 3D flow. The PNBsolver file is shown in Figure 6.15.

vi =−
N

∑
j=1, j 6=i

Wj

(|Ri−R j|2 +δ 2)3
(6.8)
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Figure 6.14: Speedup of tree code programs with sequential direct code

1 ke rn e l Vor tex in R
2

3 s c a l a r W
4 v e c t o r V
5 c o n s t a n t DELATSQ=0.00125
6

7 read "R_1,R_2,R_3,W" , "data.dat"
8

9 V= SUM(W/ ( ( R_*R_+DELTASQ) ( R_*R_+DELTASQ) ( R_*R_+DELTASQ) )
10

11 w r i t e "V_1,V_2,V_3" , "out.dat"
12

13 endkernel
14 g e n e r a t e CUDA AVERAGE Vor tex .

Figure 6.15: Coulomb potential kernel in space R using PNBsolver

6.7.2.1 Execution Environment

We executed the generated code on a Tesla M2070 GPU card. The generated code was

modified to verify the results for accuracy with the direct implementation. Similar to the OpenMP

and MPI implementations, the generated code read from a file of five million records and programs

were executed from a number of bodies ranging from 10K to 5M values.

137



Figure 6.16: Speedup of CUDA tree code with direct CUDA

6.7.2.2 Speedup of CUDA Programs

The OpenMP direct implementation of the Coulomb potential for five million bodies exe-

cuted with eight threads took almost two days to finish execution, while the CUDA FAST version

finished in less than a few seconds. For plotting, we defined relative speedup as the ratio of exe-

cution time of CUDA direct double or float to that of CUDA tree code. The speedup for the four

equations are shown in Figure 6.16 and relative errors recorded in the computation are shown in

Figure 6.17. A relative error is defined as the ratio of the highest absolute error to the highest value

in direct summation. As shown in Figures 6.16 and 6.17, PNBsolver can generate CUDA programs

that are fast and more accurate. From Figure 6.16, it can be seen that the speedup of float is less

than double. This is because the execution time of float is less compared to double, thereby the

speedup with the tree code is less.

6.8 Discussion

PNBsolver has been implemented to show that our two-stage modeling approach can be

applied to parallel programs. In the implementation, tree code algorithms are generated for the

specified order for MPI/OpenMP programs, and zero order for CUDA programs. Extending a
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Figure 6.17: Error in CUDA tree code programs

GPU program also for the specified order is a future direction of work. Another possible direction

would be adding more templates for supporting other platforms and paradigms like OpenCL.

Nbody problems involve computing interactions of multiple bodies in a 3D space. The

existing solutions work on a specific problem, specific algorithm, and specific platform. In this

chapter, we introduced a domain-specific language called PNBsolver, which can express the com-

putations in an Nbody problem in a manner that is oblivious to their implementation, platform, and

algorithmic details without compromising the execution time. PNBsolver can be executed in three

modes: 1) FAST, 2) AVERAGE, and 3) ACCURATE modes in three popular parallel programming

paradigms (CUDA, OpenMP and MPI). Modes are defined based on the target platform (e.g., AC-

CURATE mode on a GPU uses a double precision algorithm in CUDA, and the ACCURATE mode

on a CPU uses a 10-order tree code algorithm). The speedup and errors are analyzed for four com-

monly seen Nbody interactions. We compared the execution time of the generated code with that

of handwritten code by expert programmers to show that the execution time is not compromised.

PNBsolver was applied successfully to five Nbody problems and their corresponding speedups and

errors were plotted to demonstrate the performance of the approach to baseline implementations.
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Chapter 7

FUTURE WORKS

This dissertation is focused on the adoption of DSLs to assist in transitioning to a new

programming model and/or language. A DSL can provided a higher level of abstraction to spec-

ify what changes and where each changes must be performed, with code generators providing the

required program transformation associated with mapping the higher abstraction to a specific pro-

gramming model and/or language. To support program transformation, robust program transfor-

mation engines are required. In addition, optimized libraries or templates for the new programming

model and/or language will be required so that the new code generated delivers the desired perfor-

mance. With this intent, we developed PPModel to provide an interface for abstract hotspots in a

parallel program. If programmers can express their intent, separate from the target environment,

the same code can often be deployed on multiple platforms without requiring any changes to the

source code generated.

From our investigation of parallel programs in different platforms, we realized that there

are some very frequently used techniques in creating parallel versions for a sequential program as

well as converting a parallel program from one platform to another platform. If these techniques

can be identified at code-level abstraction, these techniques can provide the design and the use

cases from tool support that can help programmers in creating parallel versions for a sequential

program and converting from one parallel version to another. In this chapter, we explain three

possible extensions of the work described in this dissertation.
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7.1 Further Empirical Studies on HPC Applications

Hypothesis: HPC applications often require systematic and repetitive code changes.

Systematic and repetitive code changes emerge in two scenarios in the context of HPC

applications: 1) while converting sequential code (C or FORTRAN) to parallel code50, and 2)

while converting a parallel implementation to another parallel implementation. In both cases, an

HPC programmer follows three steps: 1) search for a popular pattern51 that is relevant to the

context and the target platform; 2) make modifications in the code to apply the selected pattern;

and 3) make modifications in the code to apply the pattern.

7.1.1 Study Method/Study Artifacts

The first step of this study will be to identify the patterns and observe if a large number

of parallel programs follow a very small number of patterns. Then, the edits made to apply the

pattern to the context need to be identified. It is better to conduct this study separately for each par-

allel implementation because all the parallel patterns may not be relevant to every target platform.

The latest NAS parallel benchmark suite has 12 benchmark programs available in serial, MPI, and

OpenMP. This benchmark will be a convincing resource in the HPC community, as more bench-

mark programs can be collected for each parallel paradigm. Research on converting sequential to

parallel, and parallel to other parallel implementations, can also provide an insight into the patterns

and the edits required for the conversion.

7.1.2 Expected challenges

Two of the expected challenges are listed below:

50 Parallel code or implementation refers to OpenMP (C or FORTRAN), MPI (C or FORTRAN), and GPU (CUDA
or OpenCL) implementations.

51 In our context, pattern is a code template used by parallel programmers.
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Figure 7.1: High-level design of the proposed two-model approach

• Manual analysis is necessary at least in the early stages to identify the patterns and the edits.

• Occurrences of more than one pattern in a program (pattern composition) can be different

from integrating the patterns independently. Hybrid patterns, where two or more patterns for

different parallel paradigms occur in a single program, offer another unique challenge. In the

approach described above, the objective is to look for patterns in each platform separately.

Hence, identifying hybrid patterns is a challenge.

7.2 Extending PPModel to a Two-Model Approach for HPC Programs

To address additional need for separation among the core computation and the particulars

of the HPC platform, a new framework will be investigated that has two models (ClModel and

PPModel) and a template language, as shown in Figure 7.1. The ClModel includes the machine-

specific information for the nodes, and the PPModel includes the core computation of the program.

The Translation unit converts the core computation written in the template language to machine-

specific code.
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7.2.1 Design of the Proposed Approach

The framework has three main components: 1) ClModel, 2) PPModel, and 3) Template

language. Each of these components are explained in the following sub-sections.

7.2.1.1 Architecture (Cluster) Model (ClModel)

Using a modeling environment, a cluster can be modeled to include all of the necessary

execution parameters of every node in a cluster. A model of a cluster may also include required

parameters that describe the interaction between the nodes, such as distance, which measures how

fast data can be transferred to a given node. Other resources that are modeled include GPUs,

CPUs and memory. A new resource can be added to the modeling environment as a node type.

Every resource is added to a cluster model with a set of execution parameters, which determines the

execution time of a program executed on that resource. In addition to the execution parameters, any

other relevant parameters can be added to the node (e.g., cache size can be linked to the node). The

ClModel captures all of the machine-specific details required to generate a program that can give

optimum execution time in that cluster. The logic of the program is independent of the hardware

configuration and is specified separately (in PPModel, which is described in the next section).

7.2.1.2 Parallel Program Model (PPModel)

PPmodel is a modeling environment for parallel programs, which has two goals: 1) to sep-

arate the parallel sections from the sequential parts of a program, which allows a programmer to

focus more on the parallelism, and 2) to define a new execution strategy for the computation inten-

sive part of the program without changing the flow of the program. The modeling environment of

PPModel is built from ClModel. Using PPmodel, the parallel part of the program can be separated

from the sequential part of the program, re-designed, and then regenerated. With our approach,
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programmers can switch between technical solution spaces (e.g., MPI, OpenMP, TBB, CUDA and

OpenCL) without actually changing the core sequential part of a program. This approach will al-

low a programmer to concentrate more on the essence of the parallelization, rather than focusing

on the accidental complexities of language-specific details.

7.2.1.3 Template Language

We propose a bottom-up approach for modeling HPC applications. We start with a bench-

mark program, and then for each parallel block we try to create templates for OpenMP, TBB, MPI

and CUDA architectures. The template will be in the base language with variables defined in

the sequential program and also the execution parameters. In addition to the template language,

implementations are available for some commonly used programs like Matrix-Vector operations,

and Fast Fourier Transformsn (FFTs). Programmers should be free to readily use libraries in their

program without re-implementing the entire function. While using a custom function followed

by additional code, there may be a better way to perform a specific task (e.g., vector addition

followed by finding the highest weight of the two vectors). There should be options to define

custom-functions using built-in functions and/or other custom-functions. Such custom functions

include code to optimize the interaction between the functions. Adding a new machine involves

implementing the templates and defining how to merge with the sequential code.

The five steps involved in developing a parallel version of a program from its sequential

version, or rewriting a parallel program for another platform using the framework, are explained

in the following steps:

1. Step 1: Creating ClModel- Modeling the execution architecture: A programmer first declares

144



and defines the resources available and builds the ClModel. The execution parameters are

set either by running some benchmark programs or by manual specification.

2. Step 2: Defining parallel sections in the program, which involves: 1) Creating a name for

the parallel section, 2) Defining the input variables (i.e., variables that will be used in the

parallel section), and 3) Defining the output variables (i.e., variables that will be updated

during parallel execution).

3. Step 3: Creating PPModel- Modeling the parallel sections: The parallel sections and the

modeled cluster are available in the modeling environment as shown in Figure 2. A pro-

grammer can link each of the parallel blocks to a resource of choice. A block not linked with

any resource will execute with the default behavior (i.e., the execution is defined in the main

program).

4. Step 4: Code generation: After modeling, a programmer can generate code, which creates

the needed code templates to execute the program in that resource. It also creates the neces-

sary scripts to run the program with that resource.

5. Step 5: Rewriting computation: Using the generated code templates, a programmer can

express the core computation using the variables from the associated sequential section and

the execution parameters of that resource.

7.2.2 Advantages of the Two-Model Approach

Some of the advantages we envision in using this approach are explained in the following

sub-sections:
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7.2.2.1 Optimum Performance

Because the final code executed in the nodes is tuned to a specific machine, optimum

execution time can be achieved for the programs. Moreover, this approach gives the flexibility

of finding the best execution environment for a program.

7.2.2.2 Code Maintenance

With this approach, only the different versions of a parallel section rather than the entire

program itself, is modified, which can help in improved code maintenance and evolution.

7.2.2.3 Heterogeneous Computing

Every parallel section can be modeled to any of the available resources, which provides

the advantage of executing one parallel section using one available resource (e.g., OpenMP) and

another using a resource (e.g., a GPU) that can give a performance improvement.

7.2.2.4 Small parallel sections

Because the programmer has to rewrite only the parallel section, a problem-oriented ap-

proach can be followed to focus more on the problem in hand; the tool support can generate and

execute the complete program.

7.2.2.5 Execution Modes

A programmer has the freedom to use different execution strategies for the same program.

As an example, a PPModel can be created to execute first the parallel section in a cluster and then

in a GPU, or, the PPModel can first execute the parallel section on a GPU and then in a cluster. For

each execution, different "modes" can be defined (e.g., timers that are included for every parallel

section in a timer mode implementation). A programmer can compare the execution time of two

models without writing any code for the timers, by just changing the mode before execution.
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7.2.2.6 Static Error Checking

Using the proposed approach, it can be discovered whether a node or cluster in which the

program is to be executed can satisfy the execution parameters required by the program. If a node

cannot execute the program, that information can be made available to the programmer during the

modeling stage itself.

7.3 Human-based Studies to Evaluate Usability

The evaluations discussed in this dissertation are focused on the execution time of the

programs. Further studies are required to evaluate the usability of the tools. We plan to conduct

human-based empirical studies to evaluate two factors: 1) Development time and 2) Maintenance

effort that affect the usability of the tool. These two future areas of assessment are explained in the

following sub-sections.

7.3.1 Development Time

We plan to select a small group of test subjects who can be HPC users or HPC programmers

based on the tool in test. In the training stage, selected subjects will be provided with a short tutorial

explaining the features and the restrictions of the tool. In the testing stage, a problem or a part of a

problem will be given to the test subjects to implement using the tool. A comparison study will be

performed with a group solving the problem with the tool and another group without the tool.

7.3.2 Maintenance Effort

A very similar study will be conducted to provide an evaluation of the level of maintenance

needed on the programs created using the tools discussed in this dissertation. To evaluate the effort

in maintaining such programs, we have to understand how well an HPC user can comprehend a

program written by another HPC user.
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Chapter 8

SUMMARY

With the realization that increasing clock speed is no longer a solution, the semiconduc-

tor industry has moved towards increasing the number of cores in a chip, giving rise to multicore

processors. For a multicore processor with low clock speed to outperform a single core proces-

sor with higher clock speed, software must be written in a parallel manner to take advantage of

the additional processing capabilities. Before the prevalence of multicore processors, parallel pro-

gramming was reserved for a small community like scientists. But now, with the introduction of

multicore CPU and GPU enabled desktops, there will be more HPC users. This is due to complexi-

ties involved in parallel programming. With all the latest advances in the HPC community, parallel

programming is still not an easy task for an average programmer. HPC users (scientists, software

programmers, physicists, mathematicians) can have different requirements during the software de-

velopment process. As an example, one HPC user may not want to compromise on execution time

while another HPC user may prefer shorter software development time. There may be cases where

both have the same requirements also; e.g., both developers want heterogeneous computing in the

software developed. This can be achieved by defining multiple levels of abstraction on HPC pro-

grams. The overall goal of this dissertation is to show that a customized tool set for HPC users can

be developed at different levels of abstraction.

Our study on parallel programs has revealed some of the common challenges faced by HPC

users while designing parallel programs. In this dissertation, we identify four different levels of
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abstraction for HPC programs. The four different levels of abstractions are: 1) Code, 2) Algorithm,

3) Program, and 4) Sub-domain and each of these abstractions with their motivation, solution

approach, and evaluation are explained in the following sections.

8.1 Code-level Modeling

Motivation: To have the optimum execution time for different sizes of problems in different

platforms, current parallel programming strategies require programmers to maintain different pro-

gram versions in popular parallel programming paradigms like OpenMP, MPI, CUDA, or OpenCL.

In these versions, the sequential code is often duplicated and the actual computation is tangled with

the sequential code. These have the potential to adversely affect program comprehension, evolu-

tion, and maintenance.

Solution: PPModel allows programmers to: 1) separate the computation intensive code

sections from the program, 2) define new implementations for the pre-defined code sections, and

3) build a new program with user-defined computation code sections. With this approach, the

sequential code is maintained only at one location and programmers have the flexibility to define a

different execution strategy for different size problems.

Evaluation: A well-known benchmark program, Integer Sorting (IS), was selected from

the NAS PBS. For the benchmark, three computation-intensive code sections were identified, two

of them were executed in OpenMP and one of them in a GPU. The overall execution time of the

program was reduced to one-fifth of the execution time, when compared to the sequential imple-

mentation, and to two-thirds when compared to the original benchmark OpenMP implementation.

8.2 Algorithm-level Modeling

Motivation: The programs that were implemented using a MapReduce framework (e.g.,

Hadoop) suffered from three kinds of problems: 1) the framework was unaware of the input for-
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mat; hence, a programmer has to provide reader and writer programs to read and write different

input formats; 2) there is an improper level of abstraction; the MapReduce logic in submerged in-

side Java classes and there is no strict separation between the computation part and the framework

implementation; and 3) Lack of MapReduce validation, since Hadoop programs express MapRe-

duce algorithms at a GPL (e.g., Java) level, they cannot handle the limitations at the MapReduce

level.

Solution: MapRedoop is a framework implemented in Hadoop that combines a DSL and

Eclipse Plugin that removes the three accidental complexities mentioned in the previous section.

Using MapRedoop, while declaring a data structure, programmers can specify the formats to seri-

alize or de-serialize the data structures. In MapRedoop, MapReduce validations are implemented

and hence programmers will be notified as they write the program. The Eclipse plugin allows a

programmer to execute the program in a commercial cloud like Amazon’s EC2 or local standalone

Hadoop installation.

Evaluation: Two commonly used MapReduce programs: BFS and K-means were used

to evaluate the performance overhead. The analysis with popular implementations like Cloud9’s

BFS and Mahout’s K-means, showed that MapRedoop implementations finished with comparable

execution time.

8.3 Program-level Modeling

Motivation: As a part of the SDI project at PNNL, software developers were employed

to implement web service wrappers for remote executable programs, so that scientists can design

new scientific workflows using these remote programs. This process introduced the accidental

complexity of creating boiler plate code for every web service wrapper. In addition, scientists had
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to be a part of the development process to provide suggestions on the input and output of web

services.

Solution: SDL and WDL are two DSLs designed and implemented to help scientists design

signature discovery workflows. Using SDL, scientists can generate web service wrappers for a

remote executable program. Using WDL, they can orchestrate the web services to design and

develop signature discovery workflow.

Evaluation: SDL was used to convert all of the remote executable programs for two work-

flows: 1) BLAST search, and 2) Landscape classification. WDL was used to orchestrate the web

services created by SDL to design the two workflows. The web services were generated using

Apache CXF and workflows were generated using Taverna.

8.4 Sub-domain-level Modeling

Motivation: Nbody solutions can be considered as a sub-domain of HPC programs, as se-

quential solutions of Nbody problems usually have a very high execution time and these problems

are easily parallelizable. Nbody problems use direct summation algorithms, as well as approxima-

tion algorithms. For both of these algorithms, parallel versions are available in OpenMP, MPI, and

CUDA. In the current practice, a mathematician or a physicist looking for an Nbody solution, 1)

has to find an algorithm, 2) modify the algorithm for his specific Nbody equation, 3) parallelize

the problem based on his/her resources.

Solution: Using PNBsolver, an Nbody user can specify the equation, resources, and accu-

racy required, and generate the code required for solving the equation. PNBsolver can generate

code for a direct summation algorithm or a tree code approximate algorithm for OpenMP, MPI,

and CUDA versions.

Evalution: The speedup and errors are analysed for four commonly seen Nbody interac-
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tions. The parallel tree code implementations in OpenMP and MPI with eight nodes were even

400x faster than the sequential direct implementation. The CUDA tree code implementation was

800x faster that CUDA direct summation for Force calculation. We also compared the execution

time of the generated code with that of handwritten code by expert programmers to show that the

execution time is not compromised.

In this dissertation, we identified four abstraction levels in HPC programs. We used soft-

ware modeling techniques to provide tool support for users at these four levels of abstraction. Our

research suggests that it is possible to support heterogeneous computing, reduce execution time,

and improve source code maintenance.
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Appendix A
PPMODEL

In this Appendix, the grammar, template files, and an example of PPModel are shown in
the following sections.
A.A PPModel ANTLR Grammar

1 grammar TPPModel ;
2 o p t i o n s {
3 b a c k t r a c k = t r u e ;
4 memoize= t r u e ;
5 k =3;
6 }
7 @header {
8 package grmr ;
9 }

10 @lexer : : h e a d e r { package grmr ; }
11

12 c o n t e n t r e t u r n s [ C o n t e n t c o n t ]
13 : l _ d e c l s = d e c l a r a t i o n s mps=mappings v r s = e x e c u t e '.' EOF
14 { $ c o n t = new C o n t e n t ( $ l _ d e c l s . l i s t o f d e c l s , $mps . maps , $ v r s . e x e c u t i o n ) ; }
15 ;
16

17 d e c l a r a t i o n s r e t u r n s [ L i s t < D e c l a r a t i o n > l i s t o f d e c l s ]
18 @init
19 {
20 $ l i s t o f d e c l s = new A r r a y L i s t < D e c l a r a t i o n > ( ) ;
21 }
22 : ('declare' nf = n a m e a n d f i l e '{' 'in' i n = v a r i a b l e s 'out' o u t = v a r i a b l e s'}'
23 { l i s t o f d e c l s . add ( new D e c l a r a t i o n ( $nf . n a m e f i l e , $ i n . v a r i a b l e s , $ou t . v a r i a b l e s ) ) ; } ) +
24 ;
25

26 mappings r e t u r n s [ Map< S t r i n g , L i s t <NameTypeAndFile >> maps ]
27 @init
28 {
29 $maps = new HashMap< S t r i n g , L i s t <NameTypeAndFile > >() ;
30 }
31 : ('map' i d 1 =IDENTIFIER INTO l f s = l i s t o f n a m e T f i l e
32 {maps . p u t ( $ id1 . t e x t , $ l f s . n a m e f i l e s ) ; } ) +
33 ;
34

35 e x e c u t e r e t u r n s [ E x e c u t i o n e x e c u t i o n ]
36 : 'execute' i d =IDENTIFIER v a r s = v a r i a b l e s
37 { $ e x e c u t i o n =new E x e c u t i o n ( $ i d . t e x t , $ v a r s . v a r i a b l e s ) ; }
38 ;
39

40 l i s t o f n a m e T f i l e r e t u r n s [ L i s t <NameTypeAndFile > n a m e f i l e s ]
41 @init
42 {
43 $ n a m e f i l e s = new A r r a y L i s t <NameTypeAndFile > ( ) ;
44 }
45 : p_ t1 = p l a t f o r m nf1 = n a m e a n d f i l e
46 { $ n a m e f i l e s . add ( new NameTypeAndFile ( $p_ t1 . platName , $nf1 . n a m e f i l e ) ) ; }
47 (',' p_ t2 = p l a t f o r m nf2 = n a m e a n d f i l e { $ n a m e f i l e s . add ( new NameTypeAndFile ( $p_ t2 . platName , $nf2 .

↪→n a m e f i l e ) ) ; } ) *
48 ;
49

50 v a r i a b l e s r e t u r n s [ L i s t < S t r i n g > v a r i a b l e s ]
51 @init
52 {
53 $ v a r i a b l e s = new A r r a y L i s t < S t r i n g > ( ) ;
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54 }
55 : i d 1 =IDENTIFIER { $ v a r i a b l e s . add ( $ id1 . t e x t ) ; } (',' i d 2 =IDENTIFIER { $ v a r i a b l e s . add ( $ id2 . t e x t )

↪→ ; } ) *
56 ;
57

58

59 n a m e a n d f i l e r e t u r n s [ NameAndFile n a m e f i l e ]
60 : i d =IDENTIFIER f1 = f i l e { $ n a m e f i l e =new NameAndFile ( $ i d . t e x t , $ f1 . f i l eName ) ; }
61 ;
62

63 f i l e r e t u r n s [ S t r i n g f i l eName ]
64 : '[' i d 1 =IDENTIFIER '.' i d 2 =IDENTIFIER']' { $f i l eName = $ id1 . t e x t +"."+ $ id2 . t e x t ; }
65 ;
66

67 p l a t f o r m r e t u r n s [ S t r i n g platName ]
68 : 'CUDA'{ $platName="CUDA" ; } | 'OMP'{ $platName="OMP" ; } | 'MPI'{ $platName="MPI" ; } | 'OCL'{ $platName="

↪→OCL" ; }
69 ;
70

71 IDENTIFIER
72 : LETTER (LETTER | '0' . . '9' ) *
73 ;
74

75 INTO
76 : '<-'
77 ;
78

79 f r a g m e n t
80LETTER
81 : '$'
82 | 'A' . . 'Z'
83 | 'a' . . 'z'
84 | '_'
85 ;
86

87WS : (' ' | '\r' | '\t' | '\u000C' | '\n' ) { $ c h a n n e l =HIDDEN; }
88 ;
89

90COMMENT
91 : '/*' ( o p t i o n s { g re ed y = f a l s e ; } : . ) * '*/' { $ c h a n n e l =HIDDEN; }
92 ;
93

94LINE_COMMENT
95 : '//' ~('\n' | '\r' ) * '\r'? '\n' { $ c h a n n e l =HIDDEN; }
96 ;
97

98// ignore #line info for now
99LINE_COMMAND

100 : '#' ~('\n' | '\r' ) * '\r'? '\n' { $ c h a n n e l =HIDDEN; }
101 ;

A.B PPModel Templates
In this section, the CUDA, MPI and OpenMP templates are shown.

A.B.1 PPModel CUDA Template
1 t e m p l a t e ( name , _va r s , _ p t r s , o _ p t r , i _ p t r _ w s , s i z e ) : := < <# i n c l u d e \ < s t d i o . h \ >
2 # i n c l u d e \ < c u t i l _ i n l i n e . h \ >
3

4

5 void e x te rn t i m e r s t a r t ( char * name ) ;
6 void e x te rn t i m e r e n d ( ) ;
7

8// Device code
9 _ _ d e v i c e _ _ void <name>_main ( < i _ p t r _ w s : { s | < s . p a r a m e t e r >} ; s e p a r a t o r =","> , i n t o p t )

10 {
11/* Sample Vector add code
12 C[opt]=A[opt]+ B[opt];
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13*/
14

15

16 }
17

18//This kernel distributes the work irrespective of the size
19 _ _ g l o b a l _ _ void <name> _ k e r n e l ( < _ p t r s : { s | < s . p a r a m e t e r >} ; s e p a r a t o r =",">,< _ v a r s : { s | < s . p a r a m e t e r >} ;

↪→ s e p a r a t o r =",">)
20 {
21 c o n s t i n t t i d = blockDim . x * b l o c k I d x . x + t h r e a d I d x . x ;
22 c o n s t i n t THREAD_N = blockDim . x * gridDim . x ;
23

24 f o r ( i n t o p t = t i d ; o p t \ < < s i z e > ; o p t += THREAD_N) {
25 <name>_main ( < i _ p t r _ w s : { s | < s . name >} ; s e p a r a t o r =","> , o p t ) ;
26 }
27 }
28

29// Host code
30 < o _ p t r . tType >* a b s t r a c t _ <name >( < _ p t r s : { s | < s . p a r a m e t e r >} ; s e p a r a t o r =",">,< _ v a r s : { s | < s . p a r a m e t e r >} ;

↪→ s e p a r a t o r =",">)
31 {
32 t i m e r s t a r t ("CUDA" ) ;
33 < _ p t r s : { s | <s . type >* d_<s . name> ; } ; s e p a r a t o r ="\n">
34

35 // Allocate vectors in device memory
36 < _ p t r s : { s | c u t i l S a f e C a l l ( cudaMal loc ( ( void **)&d_<s . name > , s i z e o f ( < s . type >) *< s . s i z e >) ) ; } ;

↪→ s e p a r a t o r ="\n">
37

38 // Copy variables from host memory to device memory
39

40 < _ p t r s : { s | c u t i l S a f e C a l l ( cudaMemcpy ( d_<s . name > , < s . name > , s i z e o f ( < s . type >) *< s . s i z e > ,
↪→cudaMemcpyHostToDevice ) ) ; } ; s e p a r a t o r ="\n">

41

42 // Kernel call with 480*256 threads
43

44

45

46 <name> _ k e r n e l \ < \ < \ <480 , 256\ >\ >\ >( < _ p t r s : { s | d_<s . name >} ; s e p a r a t o r =",">,< _ v a r s : { s | < s . name >} ;
↪→ s e p a r a t o r =",">) ;

47

48

49 cu t i lCheckMsg ("kernel launch failure\n" ) ;
50 c u t i l S a f e C a l l ( c u d a T h r e a d S y n c h r o n i z e ( ) ) ;
51

52 // Copy variables from device memory to host memory
53

54 < o _ p t r : { s | c u t i l S a f e C a l l ( cudaMemcpy ( < s . name > , d_<s . name > , s i z e o f ( < s . type >) *< s . s i z e > ,
↪→cudaMemcpyDeviceToHost ) ) ; } ; s e p a r a t o r ="\n">

55

56 < _ p t r s : { s | i f ( d_<s . name >) c u t i l S a f e C a l l ( c u d a F r e e ( d_<s . name >) ) ; } ; s e p a r a t o r ="\n">
57 t i m e r e n d ( ) ;
58

59 re turn < o _ p t r . name >;
60

61 }
62 >>

A.B.2 PPModel OpenMP Template
1 t e m p l a t e ( name , _va r s , _ p t r s , o _ p t r , i _ p t r _ w s , s i z e ) : := < <# i n c l u d e \ < s t d i o . h \ >
2 # i n c l u d e \ <omp . h \ >
3

4 void e x te rn t i m e r s t a r t ( char * name ) ;
5 void e x te rn t i m e r e n d ( ) ;
6

7// Host code
8 < o _ p t r . tType >* a b s t r a c t _ <name >( < _ p t r s : { s | < s . p a r a m e t e r >} ; s e p a r a t o r =",">,< _ v a r s : { s | < s . p a r a m e t e r >} ;

↪→ s e p a r a t o r =",">)
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9 {
10

11 t i m e r s t a r t ("OMP" ) ;
12 /************
13 SAMPLE OMP CODE GOES BELOW
14

15 int i, chunk = 100;
16#pragma omp parallel shared(A,B,C,chunk) private(i)
17 {
18#pragma omp for schedule(dynamic,chunk) nowait
19 for (i = 0; i \< TOTAL_SIZE; i++)
20 C[i] = A[i] + B[i];
21

22 }
23 *************/
24 t i m e r e n d ( ) ;
25 re turn < o _ p t r . name >;
26 }
27 >>

A.B.3 PPModel MPI Template
1 t e m p l a t e ( name , _va r s , _ p t r s , o _ p t r , i _ p t r _ w s , s i z e ) : := < </*MPI Template */
2 # i n c l u d e \ < s t d i o . h \ >
3 # i n c l u d e \ < mpi . h \ >
4

5 void e x te rn t i m e r s t a r t ( char * name ) ;
6 void e x te rn t i m e r e n d ( ) ;
7

8// Host code
9 < o _ p t r . tType >* a b s t r a c t _ <name >( < _ p t r s : { s | < s . p a r a m e t e r >} ; s e p a r a t o r =",">,< _ v a r s : { s | < s . p a r a m e t e r >} ;

↪→ s e p a r a t o r =",">)
10 {
11

12 t i m e r s t a r t ("MPI" ) ;
13 i n t rank , s i z e ;
14

15 M P I _ In i t (& argc , &argv ) ; /* starts MPI */
16 MPI_Comm_rank (MPI_COMM_WORLD, &rank ) ; /* get current process id */
17 MPI_Comm_size (MPI_COMM_WORLD, &s i z e ) ; /* get number of processes */
18

19/*********************
20 Implementation goes here
21

22**********************/
23

24 M P I _ F i n a l i z e ( ) ;
25

26 t i m e r s t a r t ("MPI" ) ;
27 re turn < o _ p t r . name >;
28

29 }
30 >>

A.C PPModel Example: Integer Sorting
A.C.1 Main Program File: Vectoradd

1 # i n c l u d e < s t d i o . h>
2 # d e f i n e TOTAL_SIZE 1000
3 i n t A[ 1 0 0 0 ] , B[ 1 0 0 0 ] ,C[ 1 0 0 0 ] ;
4

5 void v e c t o r a d d ( )
6 {
7 i n t i ;
8 f o r ( i =0 ; i <TOTAL_SIZE ; i ++)
9 {

10 C[ i ]= A[ i ]+B[ i ] ;
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11 }
12 }
13 void v e r i f y ( )
14 {
15 i n t i ;
16 f o r ( i =0 ; i <TOTAL_SIZE ; i ++)
17 {
18 i f (C[ i ] ! = 2 )
19 {
20 p r i n t f ("Failed" ) ;
21 re turn ;
22 }
23 }
24

25 p r i n t f ("Passed" ) ;
26 }
27 i n t main ( )
28 {
29 i n t i ;
30

31

32 f o r ( i =0 ; i <TOTAL_SIZE ; i ++)
33 {
34 A[ i ] = 1 ;
35 B[ i ] = 1 ;
36 }
37 # pragma tppmodel vec to rAdd
38 {
39 v e c t o r a d d ( ) ;
40 }
41

42

43 v e r i f y ( ) ;
44 re turn 0 ;
45 }

A.C.2 tPPModel File: Vectoradd
1 d e c l a r e vec to rAdd [ v e c t o r a d d . cpp ] {
2 in A, B , C , TOTAL_SIZE
3 out C
4 }
5 map vectorAdd <−CUDA cuda_VA [ VAcuda . cu ] , OMP omp_VA [VAomp . cpp ] , MPI omp_VA [ VAmpi . cpp ]
6

7 e x e c u t e VACUDA_EXE cuda_VA .
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Appendix B
PNBSOLVER

In this Appendix, the grammar and two examples of PNBsolver are shown in the following
sections.
B.A PNBsolver ANTLR Grammar

1 grammar PNBsolver ;
2 o p t i o n s {
3 b a c k t r a c k = t r u e ;
4 memoize= t r u e ;
5 k =3;
6 }
7 @header {
8 package grmr ;
9 }

10 @lexer : : h e a d e r { package grmr ; }
11

12 c o n t e n t r e t u r n s [ C o n t e n t c o n t ]
13 : l _ d e c l s = k e r n e l s v r s = e x e c u t e '.' EOF
14 { $ c o n t = new C o n t e n t ( $ l _ d e c l s . l i s t o f k e r n e l s , $ v r s . e x e c u t i o n ) ; }
15 ;
16

17 k e r n e l s r e t u r n s [ L i s t < Kerne l > l i s t o f k e r n e l s ]
18 @init
19 {
20 $ l i s t o f k e r n e l s = new A r r a y L i s t < Kerne l > ( ) ;
21 }
22 : ('kernel' nf =IDENTIFIER 'in' i d 2 =IDENTIFIER d e c l s = d e c l a r a t i o n s s t m t s = r e a d s t m t s s t m t =

↪→ e x p r e s s i o n s t m t wstmts = w r i t e s t m t s 'endkernel'
23 { l i s t o f k e r n e l s . add ( new K er ne l ( $nf . t e x t , $ s t m t s . s t m t s , s tmt , $ d e c l s . s t m t s ) ) ; } ) +
24 ;
25

26 d e c l a r a t i o n s r e t u r n s [ L i s t < S t a t e m e n t > s t m t s ]
27 @init
28 {
29 $ s t m t s = new A r r a y L i s t < S t a t e m e n t > ( ) ;
30 }
31 : ( op= v e c t o r s c a l a r n u m b e r v a r s = v a r i a b l e s { S t a t e m e n t s t m t = new S t a t e m e n t ( $op . vec_sca_num , $ v a r s .

↪→ v a r i a b l e s ) ; s t m t s . add ( s t m t ) ; } ) +
32 ;
33

34 e x p r e s s i o n s t m t r e t u r n s [ S t a t e m e n t s t m t ]
35 : i d 1 =IDENTIFIER '=' ( exp r1 = e x p r e s s i o n ) ? 'SUM' expr2 = e x p r e s s i o n { s t m t = new S t a t e m e n t ( $ id1 .

↪→ t e x t , $expr1 . va lue , $expr2 . v a l u e ) ; }
36 ;
37

38 e x p r e s s i o n r e t u r n s [ E x p r e s s i o n v a l u e ]
39 @init
40 {
41 L i s t < E x p r e s s i o n > e x p r l i s t = new A r r a y L i s t < E x p r e s s i o n > ( ) ;
42 L i s t < S t r i n g > o p s l i s t = new A r r a y L i s t < S t r i n g > ( ) ;
43 }
44 : e1= m u l t i d i v
45 ( '+' e2= m u l t i d i v { e x p r l i s t . add ( $e2 . v a l u e ) ; o p s l i s t . add ("+" ) ; }
46 | '-' e2= m u l t i d i v { e x p r l i s t . add ( $e2 . v a l u e ) ; o p s l i s t . add ("-" ) ; }
47 ) * { i f ( e x p r l i s t . s i z e ( ) <1) $ v a l u e =$e1 . v a l u e ; e l s e $ v a l u e = new E x p r e s s i o n ( $e1 . va lue ,

↪→ e x p r l i s t , o p s l i s t ) ; }
48 ;
49

50 m u l t i d i v r e t u r n s [ E x p r e s s i o n v a l u e ]
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51 @init
52 {
53 L i s t < E x p r e s s i o n > e x p r l i s t = new A r r a y L i s t < E x p r e s s i o n > ( ) ;
54 L i s t < S t r i n g > o p s l i s t = new A r r a y L i s t < S t r i n g > ( ) ;
55 }
56 : e1=atom
57 ('*' e2=atom { e x p r l i s t . add ( $e2 . v a l u e ) ; o p s l i s t . add ("*" ) ; }
58 | '/' e2=atom { e x p r l i s t . add ( $e2 . v a l u e ) ; o p s l i s t . add ("/" ) ; } ) * { i f ( e x p r l i s t . s i z e ( ) <1) $ v a l u e =$e1 .

↪→v a l u e ; e l s e $ v a l u e = new E x p r e s s i o n ( $e1 . va lue , e x p r l i s t , o p s l i s t ) ; }
59 ;
60

61 atom r e t u r n s [ E x p r e s s i o n v a l u e ]
62 : i d =IDENTIFIER{ v a l u e =new E x p r e s s i o n ( $ i d . t e x t ) ; }
63 | '(' exp r = e x p r e s s i o n ')' { $ v a l u e = $expr . v a l u e ; }
64 | 'exp' exp r = e x p r e s s i o n { $ v a l u e = new E x p r e s s i o n ( expr ,"exp" ) ; }
65 | 'pow' '('exp r = e x p r e s s i o n ',' num=NUMBER ')' { i n t n= I n t e g e r . p a r s e I n t ( $num . t e x t ) ; $ v a l u e =

↪→new E x p r e s s i o n ( expr , n ) ; }
66 ;
67

68 r e a d s t m t s r e t u r n s [ L i s t < S t a t e m e n t > s t m t s ]
69 @init
70 {
71 $ s t m t s = new A r r a y L i s t < S t a t e m e n t > ( ) ;
72 }
73 : ('read' i d 1 =STRING ',' i d 2 =STRING { S t a t e m e n t s t m t = new S t a t e m e n t ( $ id1 . t e x t , $ id2 . t e x t , 0 ) ;

↪→ s t m t s . add ( s t m t ) ; } ) *
74 ;
75

76 w r i t e s t m t s r e t u r n s [ L i s t < S t a t e m e n t > s t m t s ]
77 @init
78 {
79 $ s t m t s = new A r r a y L i s t < S t a t e m e n t > ( ) ;
80 }
81 : ('write' i d 1 =STRING ',' i d 2 =STRING { S t a t e m e n t s t m t = new S t a t e m e n t ( $ id1 . t e x t , $ id2 . t e x t , 1 ) ;

↪→ s t m t s . add ( s t m t ) ; } ) *
82 ;
83

84 e x e c u t e r e t u r n s [ E x e c u t i o n e x e c u t i o n ]
85 : 'generate' p_ t1 = p l a t f o r m ('[' p a r a m e t e r s ']' ) ? md=mode i d =IDENTIFIER
86 { $ e x e c u t i o n =new E x e c u t i o n ( $ i d . t e x t , $p_ t1 . platName , $md . md) ; }
87 ;
88

89 v a r i a b l e s r e t u r n s [ L i s t < S t r i n g > v a r i a b l e s ]
90 @init
91 {
92 $ v a r i a b l e s = new A r r a y L i s t < S t r i n g > ( ) ;
93 }
94 : i d 1 =IDENTIFIER { $ v a r i a b l e s . add ( $ id1 . t e x t ) ; } ( i n i t i a l i z a t i o n ) ? (',' i d 2 =IDENTIFIER { $ v a r i a b l e s

↪→ . add ( $ id2 . t e x t ) ; } ( i n i t i a l i z a t i o n ) ? ) *
95 ;
96

97 i n i t i a l i z a t i o n
98 : '=' NUMBER ('.' NUMBER) ?
99 ;

100

101 p l a t f o r m r e t u r n s [ i n t platName ]
102 : 'CUDA'{ $platName = 0 ; } |'OMP' { $platName = 1 ; } |'MPI'{ $platName = 2 ; } |'OCL'{ $platName =3;}
103 ;
104

105 p a r a m e t e r s
106 : IDENTIFIER '=' p a r a m e t e r (',' IDENTIFIER '=' p a r a m e t e r ) *
107 ;
108

109 p a r a m e t e r
110 : IDENTIFIER
111 |NUMBER ('.' NUMBER) ?
112 ;
113
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114 mode r e t u r n s [ i n t md ]
115 : 'ACCURATE'{$md = 0 ; } |'AVERAGE'{$md = 1 ; } |'FAST'{$md=2;}
116 ;
117

118

119 v e c t o r s c a l a r n u m b e r r e t u r n s [ i n t vec_sca_num ]
120 : 'vector'{ $vec_sca_num = 0 ; } |'scalar'{ $vec_sca_num = 1 ; } |'constant'{ $vec_sca_num =2;}
121 ;
122

123NUMBER
124 : '0' . . '9'+
125 ;
126

127 IDENTIFIER
128 : LETTER (LETTER | '0' . . '9' ) *
129 ;
130

131 INTO
132 : '<-'
133 ;
134 STRING
135 : '"' ( EscapeSequence | ~('\\' | '"' ) ) * '"'
136 ;
137 f r a g m e n t
138 EscapeSequence
139 : '\\' ('b' | 't' | 'n' | 'f' | 'r' | '\"' | '\'' | '\\' )
140 | UnicodeEscape
141 | O c t a l E s c a p e
142 ;
143

144 f r a g m e n t
145 O c t a l E s c a p e
146 : '\\' ('0' . . '3' ) ('0' . . '7' ) ('0' . . '7' )
147 | '\\' ('0' . . '7' ) ('0' . . '7' )
148 | '\\' ('0' . . '7' )
149 ;
150

151 f r a g m e n t
152 UnicodeEscape
153 : '\\' 'u' HexDig i t HexDig i t HexDig i t HexDig i t
154 ;
155

156 f r a g m e n t
157 HexDig i t : ('0' . . '9' | 'a' . . 'f' | 'A' . . 'F' ) ;
158

159 f r a g m e n t
160LETTER
161 : '$'
162 | 'A' . . 'Z'
163 | 'a' . . 'z'
164 | '_'
165 ;
166

167WS : (' ' | '\r' | '\t' | '\u000C' | '\n' ) { $ c h a n n e l =HIDDEN; }
168 ;
169

170COMMENT
171 : '/*' ( o p t i o n s { g re ed y = f a l s e ; } : . ) * '*/' { $ c h a n n e l =HIDDEN; }
172 ;
173

174LINE_COMMENT
175 : '//' ~('\n' | '\r' ) * '\r'? '\n' { $ c h a n n e l =HIDDEN; }
176 ;
177

178// ignore #line info for now
179LINE_COMMAND
180 : '#' ~('\n' | '\r' ) * '\r'? '\n' { $ c h a n n e l =HIDDEN; }
181 ;

178



B.B PNBsolver Example 1: Force Calculation
1 ke rn e l Force in R
2// Kernel declarations
3 v e c t o r F
4 s c a l a r M
5 c o n s t a n t K=1
6

7 /*
8 * Read positions and mass from file
9 * Data is formatted as shown

10 *
11 */
12 read "<R_1 R_2 R_3>M" ,"data.dat"
13

14//Actual computation
15 F=K*M SUM(M*R / ( R_*R_*R_ ) )
16

17// Write force to file
18 w r i t e "F_1 F_2 F_3" , "out.dat"
19

20 endkernel
21

22// Generate CUDA code for force kernel
23 g e n e r a t e OMP[MAXPARNODE=1] ACCURATE Force .

B.C PNBsolver Example 2: Potential Energy Calculation
1 ke rn e l P o t e n t i a l in R
2

3// Kernel declarations
4 s c a l a r PE
5

6 /*
7 * Read positions and mass from file
8 * Data is formatted as shown
9 *

10 */
11 read "R_1 R_2 R_3" ,"data.dat"
12

13//Actual computation
14 PE=Q SUM(Q/ R)
15

16// Write force to file
17 w r i t e "PE" , "out.dat"
18 endkernel
19 g e n e r a t e OMP[MAXPARNODE=1] ACCURATE P o t e n t i a l .
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Appendix C
MAPREDOOP

In this Appendix, the Xtext grammar of MapRedoop and two example MapRedoop appli-
cations: 1) BFS and 2) K-means are shown.
C.A MapRedoop Xtext Grammar

1 grammar cs . ua . edu . se . MapRedoop wi th org . e c l i p s e . x t e x t . common . T e r m i n a l s
2

3 g e n e r a t e mapRedoop "http://www.ua.cs/edu/se/MapRedoop"
4

5 MapRedoop
6 : d e c l a r a t i o n = D e c l a r a t i o n'{' ( c o n t e n t += C o n t e n t ) *'}'
7 ;
8

9 C o n t e n t
10 : e n t i t i e s = L i s t o f E n t i t i e s | mrBlocks=MRBlock
11 ;
12

13 L i s t o f E n t i t i e s
14 : { L i s t o f E n t i t i e s }'metaelements:''{' ( e n t i t i e s += E n t i t y ) *'}'
15 ;
16

17 MRBlock
18 :'mapreduce:' l oop ='loop'? '{'mapper=Mapper r e d u c e r = Reducer '}'
19 ;
20

21 D e c l a r a t i o n
22 :'program' name=ID ('extend' superName=ID ) ?
23 ;
24

25 Mapper
26 :'map''(' i n k e y =Argument',' i n v a l u e =Argument ',' outKeyType=STRING ','outValueType =STRING')'

↪→ t e x t =Block
27 ;
28

29 Reducer
30 : 'reduce''(' i n k e y =STRING',' i n v a l u e =STRING ',' outKeyType=STRING ','outValueType =STRING')'

↪→ t e x t =Block
31 ;
32

33 E n t i t y
34 :'metaelement' name=ID ('extend' superType =[ E n t i t y ] ) ? '{' ( f e a t u r e s += F e a t u r e ) + '}'
35 ;
36

37 F e a t u r e
38 : t y p e =TypeRef name=ID';' | r e a d o r W r i t e = ReadorWr i t e';'
39 ;
40

41 ReadorWr i t e
42 : 'read''(' t o k e n =STRING',' r e a d v a l =STRING')' | 'write''(' t o k e n =STRING ','w r i t e v a l =STRING')'
43 ;
44

45 TypeRef
46 : r e f e r e n c e d =Type ( m u l t i ?='*' ) ?
47 ;
48

49 Block
50 : b l o c k ='[' ( j a v a f u n c t i o n s += J a v a F u n c t i o n ) * ']'
51 ;
52
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53 J a v a F u n c t i o n
54 : t i m e o f C a l l =TimeOfCal l ':' paramname=ID
55 ;
56

57 TimeOfCal l
58 :'after' | 'call' | 'before'
59 ;
60

61

62 Type
63 : t y p e ='int' | t y p e ='float' | t y p e ='double' | t y p e ='text' | t y p e ='long' | name=ID
64 ;
65

66 Argument
67 : t y p e =Type argname=ID
68 ;
69

70 L i s t o f A r g u m e n t
71 :',' t y p e =Type argname=ID
72 ;

C.B MapRedoop Example 1: BFS
In this example, MapRedoop code is shown with the relevant input and output formats.

C.B.1 Sample Input
1 0 ( 0 ) : 1 3
2 1 ( 1 0 ) : 2 3
3 2 ( 1 0 ) : 4
4 3 ( 1 0 ) : 1 2 4
5 4 ( 1 0 ) : 2 0

C.B.2 Sample Output
1 0{0} : 1 3
2 1{1} : 2 3
3 2{2} : 4
4 3{1} : 1 2 4
5 4{2} : 2 0

C.B.3 MapRedoop Code
1 program BFS {
2 metaelements : {
3 metaelement Node {
4 long nodeId ;
5 long d i s t a n c e F r o m S o u r c e ;
6 i n t nodeType ;
7 i n t * a d j a c e n t l i s t ;
8 r e a d (':' ,"% nodeId%{%d i s t a n c e F r o m S o u r c e%} : %a d j a c e n t l i s t %" ) ;
9 }

10 }
11 mapreduce : loop {
12 map ( t e x t mapkey , Node mapnode , " long " , " Node " ) [
13 c a l l : e m i t S t r u c t u r e
14 a f t e r : e m i t D i s t a n c e
15 ]
16 r e d u c e ( " r ed ke y " , " nodes " , " long " , " Node " ) [
17 c a l l : m inmizeDi s t ance
18 ]
19 }
20 }

C.C MapRedoop Example 2: K-means
In this example, MapRedoop code and the code generated from the MapRedoop file is

shown (only two classes are shown).
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C.C.1 MapRedoop Code
1 program Kmeans{
2 metaelements : {
3 metaelement KVector {
4 f l o a t p o i n t 1 ;
5 f l o a t p o i n t 2 ;
6 r e a d (':' , " e l t s : {0:% p o i n t 1 %, 1:% p o i n t 2 %}" ) ;
7 }
8 metaelement C l u s t e r I n f o {
9 KVector c e n t e r ;

10 long i d ;
11 }
12 }
13 mapreduce : loop {
14 map ( t e x t mapkey , KVector mapvector , " long " , " KVector " ) [
15 b e f o r e : l o a d C l u s t e r s M a p
16 c a l l : e m i t T o N e a r e s t C l u s t e r
17 ]
18 r e d u c e ( " r ed ke y " , " c l u s t e r v a l u e s " , " long " , " KVector " ) [
19 b e f o r e : l o a d C l u s t e r s R e d
20 c a l l : c a l c u l a t e N e w C e n t e r
21 ]
22 }
23 }

C.C.2 KVector Class Generated
1 package hadoop . ds ;
2

3

4 import j a v a . i o . D a t a I n p u t ;
5 import j a v a . i o . Da taOutpu t ;
6 import j a v a . i o . IOExcep t ion ;
7

8 import org . apache . hadoop . i o . W r i t a b l e C o m p a r a b l e ;
9

10 p u b l i c c l a s s KVector implements Wri tab leComparab le <KVector > {
11

12 p u b l i c KVector ( ) {
13 // TODO Auto-generated constructor stub
14 }
15 p r i v a t e f l o a t p o i n t 1 ;
16 p u b l i c vo id s e t p o i n t 1 ( f l o a t p o i n t 1 ) {
17 t h i s . p o i n t 1 = p o i n t 1 ;
18 }
19 p u b l i c f l o a t g e t p o i n t 1 ( ) {
20 re turn p o i n t 1 ;
21 }
22 p r i v a t e f l o a t p o i n t 2 ;
23 p u b l i c vo id s e t p o i n t 2 ( f l o a t p o i n t 2 ) {
24 t h i s . p o i n t 2 = p o i n t 2 ;
25 }
26 p u b l i c f l o a t g e t p o i n t 2 ( ) {
27 re turn p o i n t 2 ;
28 }
29

30 p u b l i c vo id r e a d F i e l d s ( D a t a I n p u t a rg0 ) throws IOExcep t ion {
31 p o i n t 1 = a rg0 . r e a d F l o a t ( ) ;
32 p o i n t 2 = a rg0 . r e a d F l o a t ( ) ;
33 }
34 p u b l i c vo id w r i t e ( Da taOutpu t a rg0 ) throws IOExcep t i on {
35 a rg0 . w r i t e F l o a t ( p o i n t 1 ) ;
36 a rg0 . w r i t e F l o a t ( p o i n t 2 ) ;
37

38 }
39 p u b l i c i n t compareTo ( KVector a rg0 ) {
40
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41 re turn 0 ;
42 }
43 p u b l i c S t r i n g t o S t r i n g ( ) {
44 S t r i n g B u f f e r b u f f e r = new S t r i n g B u f f e r ( ) ;
45 b u f f e r . append ("elts: {0:" ) ;
46 b u f f e r . append ( p o i n t 1 ) ;
47 b u f f e r . append (", 1:" ) ;
48 b u f f e r . append ( p o i n t 2 ) ;
49 b u f f e r . append ("}" ) ;
50 re turn b u f f e r . t o S t r i n g ( ) ;
51 }
52

53 }

C.C.3 Main Class Generated
1 package hadoop . c o r e ;
2

3 import j a v a . i o . IOExcep t ion ;
4 import org . apache . hadoop . con f . C o n f i g u r a t i o n ;
5 import org . apache . hadoop . con f . C o n f i g u r e d ;
6 import org . apache . hadoop . f s . Pa th ;
7 import org . apache . hadoop . mapreduce . Job ;
8 import org . apache . hadoop . mapreduce . Mapper ;
9 import org . apache . hadoop . mapreduce . Reducer ;

10 import org . apache . hadoop . u t i l . Tool ;
11 import org . apache . hadoop . u t i l . ToolRunner ;
12 import org . apache . hadoop . f s . F i l e S y s t e m ;
13 import org . apache . hadoop . i o . Text ;
14 import org . apache . hadoop . i o . LongWr i t ab l e ;
15 import hadoop . ds . KVector ;
16 import org . apache . hadoop . mapreduce . l i b . i n p u t . F i l e I n p u t F o r m a t ;
17 import org . apache . hadoop . mapreduce . l i b . i n p u t . S e q u e n c e F i l e I n p u t F o r m a t ;
18 import org . apache . hadoop . mapreduce . l i b . o u t p u t . F i l e O u t p u t F o r m a t ;
19 import org . apache . hadoop . mapreduce . l i b . o u t p u t . S e q u e n c e F i l e O u t p u t F o r m a t ;
20 p u b l i c c l a s s Main ex tends C o n f i g u r e d implements Tool {
21 p u b l i c s t a t i c c l a s s MapClass ex tends Mapper <Text , KVector , LongWri tab le , KVector > {
22

23 p r o t e c t e d void map ( Text mapkey , KVector mapvector , C o n t e x t c o n t e x t )
24 throws IOExcept ion , I n t e r r u p t e d E x c e p t i o n {
25 new CoreHe lpe r ( ) . e m i t T o N e a r e s t C l u s t e r ( mapkey , mapvector , c o n t e x t ) ;
26

27

28 }
29 p r o t e c t e d void s e t u p ( org . apache . hadoop . mapreduce . Mapper < org . apache . hadoop . i o . Text , KVector ,

↪→LongWri tab le , KVector > . C o n t e x t c o n t e x t )
30 throws IOExcep t i on , I n t e r r u p t e d E x c e p t i o n {
31 new CoreHe lpe r ( ) . l o a d C l u s t e r s M a p ( c o n t e x t ) ;
32 }
33

34 }
35 p u b l i c s t a t i c c l a s s Reduce ex tends Reducer < LongWri tab le , KVector , LongWri tab le , KVector > {
36 p u b l i c vo id r e d u c e ( LongWr i t ab l e redkey , I t e r a b l e <KVector > c l u s t e r v a l u e s , C o n t e x t c o n t e x t )

↪→throws IOExcept ion , I n t e r r u p t e d E x c e p t i o n {
37 new CoreHe lpe r ( ) . c a l c u l a t e N e w C e n t e r ( redkey , c l u s t e r v a l u e s , c o n t e x t ) ;
38

39

40

41 }
42 }
43 p u b l i c i n t run ( S t r i n g [ ] a r g s ) throws E x c e p t i o n {
44

45 Pa th f i n a l o u t p u t = new Pa th ( a r g s [ 1 ] ) ;
46 Pa th i n p u t = new Pa th ( a r g s [ 0 ] ) ;
47 C o n f i g u r a t i o n c o n f i g u r a t i o n = new C o n f i g u r a t i o n ( ) ;
48 F i l e S y s t e m f s 1 = F i l e S y s t e m . g e t ( f i n a l o u t p u t . t o U r i ( ) , c o n f i g u r a t i o n ) ;
49 i f ( f s 1 . e x i s t s ( f i n a l o u t p u t ) ) f s 1 . d e l e t e ( f i n a l o u t p u t , t rue ) ;
50 Job j o b = new Job ( c o n f i g u r a t i o n , "Kmeans" ) ;
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51 j o b . s e t O u t p u t K e y C l a s s ( LongWr i t ab l e . c l a s s ) ;
52 j o b . s e t O u t p u t V a l u e C l a s s ( KVector . c l a s s ) ;
53

54 j o b . s e t M a p p e r C l a s s ( MapClass . c l a s s ) ;
55 j o b . s e t R e d u c e r C l a s s ( Reduce . c l a s s ) ;
56 j o b . s e t I n p u t F o r m a t C l a s s ( S e q u e n c e F i l e I n p u t F o r m a t . c l a s s ) ;
57 j o b . s e t O u t p u t F o r m a t C l a s s ( S e q u e n c e F i l e O u t p u t F o r m a t . c l a s s ) ;
58 F i l e I n p u t F o r m a t . a d d I n p u t P a t h ( job , i n p u t ) ;
59 F i l e O u t p u t F o r m a t . s e t O u t p u t P a t h ( job , f i n a l o u t p u t ) ;
60 j o b . s e t J a r B y C l a s s ( Main . c l a s s ) ;
61

62 i f ( j o b . w a i t F o r C o m p l e t i o n ( t rue ) == f a l s e ) {
63 throw new I n t e r r u p t e d E x c e p t i o n ("Kmeans Iteration failed processing " ) ;
64 }
65

66 re turn 0 ;
67

68 }
69 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws E x c e p t i o n {
70 // Setup.begin();
71 i n t r e s = ToolRunner
72 . run ( new C o n f i g u r a t i o n ( ) , new Main ( ) , a r g s ) ;
73 // Setup.end();
74 System . e x i t ( r e s ) ;
75

76 }
77

78 }
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Appendix D
SDL & WDL

In this Appendix, the SDL and the WDL grammars are shown along with some sample
usages and code generated.
D.A SDL Xtext Grammar

1 grammar gov . p n l . s d i . SDL wi th org . e c l i p s e . x t e x t . common . T e r m i n a l s
2

3 g e n e r a t e sDL "http://www.pnl.gov/sdi/SDL"
4

5 Model
6 : ( d e f i n t i o n s += D e f i n i t i o n | s e r v i c e += S e r v i c e ) +
7 ;
8

9 D e f i n i t i o n
10 :'define' e x e c u t a b l e = E x e c u t a b l e
11 ;
12

13 E x e c u t a b l e
14 : name=ID 'as' p a t h =STRING 'at' machine=STRING ('with-key' key=STRING ) ?
15 ;
16

17 S e r v i c e
18 :'service' name=ID ("extends" s u p e r =ID ) ? "{"
19 ( c o n n e c t S t m t = Connec tS tmt";" ) ?
20 ( cmdStmt=CmdStmt";" ) ?
21 ( r e s o u r c e S t m t = ResourceS tmt";" ) ?
22 ( i o S t m t s +=IOStmt * )
23 "}"
24 ;
25

26 CmdStmt
27 :"cmd" cmd=STRING
28 ;
29

30 Connec tS tmt
31 :"use" e x e _ r e f =ID
32 ;
33

34 IOStmt
35 : ( t y p e ="in" | t y p e ="out" ) ( m o d i f i e r L i s t ="list" ) ? m o d i f i e r ="doc"? v a r i a b l e s = V a r i a b l e s ";"
36 ;
37

38 ResourceS tmt
39 :"resource" r e s o u r c e s = R e s o u r c e s
40 ;
41

42 R e s o u r c e s
43 : v a r i a b l e 1 =STRING ("," v a r i a b l e 2 +=STRING ) *
44 ;
45

46 V a r i a b l e s
47 : v a r i a b l e 1 =ID ("," v a r i a b l e 2 +=ID ) *
48 ;
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D.B WDL Xtext Grammar
1

2 grammar gov . p n l . s d i .WDL wi th org . e c l i p s e . x t e x t . common . T e r m i n a l s
3

4 g e n e r a t e wDL "http://www.pnl.gov/sdi/WDL"
5

6 WorkflowModel
7 :'use' s e r v i c e f i l e =STRING workf lows +=Workflow+
8 ;
9

10 Workflow
11 :'workflow' name=ID '('p a r a m e t e r s = P a r a m e t e r s ? ')' '{'
12 ( d e f i n i t i o n s += D e f i n i t i o n * )
13 ( s t r i n g C o n s t a n t s += S t r i n g C o n s t a n t * )
14 ( p o r t l i n k s += P o r t L i n k | s e r v i c e L i n k s += S e r v i c e L i n k | w o r k f l o w C a l l s += Workf lowCal l ) +'}'
15 ;
16

17

18 Workf lowCal l
19 :'call' workflowID=ID
20 ('till' c r i t e r i o n = C r i t e r i o n ) ?
21 'with' argument = P o r t (',' moreArguments+= P o r t ) *
22 ;
23

24 C r i t e r i o n
25 : p o r t =ID op=OPERATOR v a l u e =STRING
26 ;
27

28OPERATOR
29 :"=" | "<" | ">"
30 ;
31

32 S t r i n g C o n s t a n t
33 :'String' s t r i n g A s s i g n m e n t s = S t r i n g A s s i g n m e n t s
34 ;
35

36 S t r i n g A s s i g n m e n t s
37 : a s s i g n m e n t = S t r i n g A s s i g n m e n t (',' moreAss ignments += S t r i n g A s s i g n m e n t ) *
38 ;
39

40 S t r i n g A s s i g n m e n t
41 : name=ID'=' v a l u e =STRING
42 ;
43

44 D e f i n i t i o n
45 :'define' name=ID s e r v i c e s = S e r v i c e s
46 ;
47

48 S e r v i c e s
49 : s e r v i c e 1 =ID (',' s e r v i c e 2 +=ID ) *
50 ;
51

52 S e r v i c e L i n k
53 : s e r v i c e 1 =ID'|' s e r v i c e 2 =ID
54 ;
55

56 P o r t L i n k
57 : ( p o r t 1 = P o r t | t e x t =STRING )'->' p o r t 2 = P o r t
58 ;
59

60 P o r t
61 : se rv iceName =ID ('.'portName=ID ) ? ('after' a f t e r S e r v i c e N a m e =ID ) ?
62 ;
63

64 P a r a m e t e r s
65 : p a r a m e t e r = P a r a m e t e r (',' m o r e P a r a m e t e r s += P a r a m e t e r ) *
66 ;
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67

68 P a r a m e t e r
69 : t y p e =('in' | 'out' ) v a r i a b l e =ID
70 ;

D.C SDL Examples
1 //Declaring a connection with security
2 d e f i n e s s h _ o l y as "sdi" at "olympus.pnl.gov"
3 with−key "C:\\cygwin\\home\\jaco181\\.ssh\\id_rsa"
4

5 //Declaring a connection without security
6 d e f i n e s s h _ e x e as "jaco181" at "sdi.pnl.gov"
7

8 d e f i n e s s h _ e x e as "jaco181" at "sdi.pnl.gov"
9 with−key "C:\\cygwin\\home\\jaco181\\.ssh\\id_rsa"

10

11 //A simple echo service
12 s e r v i c e echo {
13 env s s h _ e x e ;
14 cmd "cat input > output" ;
15 in i n p u t ;
16 }
17

18 //A service with only output
19 s e r v i c e sayHi {
20 use s s h _ e x e ;
21 cmd "echo 'someText' > outFile" ;
22 out doc o u t F i l e ;
23 }
24

25 //A service with two outputs (first document as 1 and second has 2 in it)
26 s e r v i c e s a y H e l l o {
27 use s s h _ e x e ;
28 cmd "echo 'text1=1' > .properties; echo 'text2=2' >> .properties; echo 'let us' > file1;echo

↪→'see' > file2;" ;
29 out t e x t 1 , t e x t 2 ;
30 out doc f i l e 1 , f i l e 2 ;
31 }
32

33 //A service for collecting all the inputs and output as one file
34 s e r v i c e a g g r e g a t e {
35 use s s h _ e x e ;
36 cmd 'cat $inputs; separator=\" \" $ > finalOut' ;
37 in l i s t doc i n p u t s ;
38 out doc f i n a l O u t ;
39 }
40

41 //Classifier training service
42 s e r v i c e c l a s s i f i e r _ T r a i n i n g {
43 use s s h _ e x e ;
44 cmd "R CMD BATCH training.r training.out" ;
45 r e s o u r c e "training.r" ;
46 in doc t r a i n X F i l e , t r a i n Y F i l e ;
47 in a l g o r i t h m ;
48 out doc m o d e l F i l e ;
49 }
50

51 //Classifier testing service
52 s e r v i c e c l a s s i f i e r _ T e s t i n g {
53 use s s h _ e x e ;
54 cmd "R CMD BATCH testing.r testing.out" ;
55 r e s o u r c e "testing.r" ;
56 in doc t e s t X F i l e , mode lF i l e , t e s t Y F i l e ;
57 in a l g o r i t h m ;
58 out doc o u t F i l e ;
59 }
60
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61 //Accuracy service
62 s e r v i c e a c c u r a c y {
63 use s s h _ e x e ;
64 cmd "R CMD BATCH accuracy.r accuracy.out" ;
65 r e s o u r c e "accuracy.r" ;
66 in doc i n p u t F i l e ;
67 out doc o u t p u t F i l e P r e f i x ;
68 }
69

70 //A service to submit BLAST job
71 s e r v i c e s u b m i t B l a s t {
72 use s s h _ o l y ;
73 cmd "sh runJob.sh" ;
74 r e s o u r c e "jobScript.sh" , "runJob.sh" ;
75 in doc blossum , params , f a s t a ;
76 out jobID , o u t D i r ;
77 }
78

79 //A service to check job status
80 s e r v i c e j o b S t a t u s {
81 use s s h _ o l y ;
82 cmd "sh checkStatus.sh" ;
83 r e s o u r c e "checkStatus.sh" ;
84 in jobID ;
85 out s t a t u s ;
86 }
87

88 //A service to collect the BLAST output file
89 s e r v i c e b l a s t R e s u l t {
90 use s s h _ o l y ;
91 cmd "cp $outDir$/test_all_v_all_m8.out outFile" ;
92 in o u t D i r ;
93 out doc o u t F i l e ;
94 }

D.D Generated Classes for Accuracy Service
SDL can create or modify four classes in four packages (rmi, ws, services and

hepers) for every new service added. The code generated for the Accuracy service in each
package is shown in the following sub-sections.
D.D.1 Method Generation- rmi Package

1/**
2 *
3 * @param inputFile
4 * @param
5 * @param
6 * @param
7 * @return
8 * @throws Exception
9 */

10 p u b l i c i n t a c c u r a c y (
11 i n t i n p u t F i l e
12 ) throws E x c e p t i o n ;

D.D.2 Method Generation- ws Package
1 @RequestWrapper ( partName = "accuracyIn" )
2 @ResponseWrapper ( partName = "accuracyOut" )
3 @WebResult ( name = "accuracyResults" )
4 @WebMethod
5 p u b l i c i n t a c c u r a c y ( @WebParam ( name = "inputFile" ) i n t i n p u t F i l e )
6 throws E x c e p t i o n ;

188



D.D.3 Method Generation- services Package
1 @Secured ( v a l u e = { "ROLE_AUTHENTICATED" } )
2 p u b l i c i n t a c c u r a c y (
3 i n t i n p u t F i l e
4 ) throws E x c e p t i o n {
5 AccuracyHe lpe r a c c u r a c y H e l p e r = new AccuracyHe lpe r ("jaco181" ,"sdi.pnl.gov" ,"C:\\cygwin\\home

↪→\\jaco181\\.ssh\\id_rsa" ) ;
6 F i l e o u t p u t F i l e P r e f i x = A f F i l e U t i l s . c r e a t e T e m p o r a r y F i l e ("outputFilePrefix" ) ;
7

8 a c c u r a c y H e l p e r . a c c u r a c y (
9 g e t U r i ( i n p u t F i l e ) ,

10 o u t p u t F i l e P r e f i x . g e t P a t h ( )
11 ) ;
12 a c c u r a c y H e l p e r . c l o s e ( ) ;
13 re turn u p l o a d F i l e ( 1 , 1 , o u t p u t F i l e P r e f i x . toURI ( ) . t o S t r i n g ( ) ) ;
14 }

D.D.4 Class Generation- helpers Package
1 package u t i l s . h e l p e r s ;
2 import u t i l s . A f F i l e U t i l s ;
3 import j a v a . n e t . URI ;
4

5 p u b l i c c l a s s AccuracyHe lpe r ex tends Ab s t r ac tS SHH elp e r {
6 p u b l i c AccuracyHe lpe r ( S t r i n g userName , S t r i n g hos t , S t r i n g k e y L o c a t i o n ) {
7 super ( userName , hos t , k e y L o c a t i o n ) ;
8 }
9 p u b l i c vo id a c c u r a c y (

10 S t r i n g i n p u t F i l e ,
11 S t r i n g o u t p u t F i l e P r e f i x P a t h
12 ) throws E x c e p t i o n {
13

14 URI i n p u t F i l e U r i = new URI ( i n p u t F i l e ) ;
15 S t r i n g i n p u t F i l e P a t h = A f F i l e U t i l s . r e s o l v e F i l e ( i n p u t F i l e U r i ) ;
16 u p l o a d F i l e ("inputFile" , i n p u t F i l e P a t h ) ;
17 t e m p l a t e V a r i a b l e s . p u t ("inputFile" , "inputFile" ) ;
18

19 t e m p l a t e V a r i a b l e s . p u t ("outputFilePrefix" , "outputFilePrefix" ) ;
20 u p l o a d C l a s s P a t h F i l e ("accuracy.r" ) ;
21 e x e c u t e S c r i p t ("R CMD BATCH accuracy.r accuracy.out" ) ;
22 d o w n l o a d F i l e ("outputFilePrefix" , o u t p u t F i l e P r e f i x P a t h ) ;
23 }
24 }
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