
http://http://www.cis.uab.eduwww.cis.uab.edu/wuh/DDF/wuh/DDF

The DSL Debugger Framework (DDF) contributes a mapping technique for augmenting existing DSL grammars to generate the hooks needed to interface with a supporting infrastructure written for Eclipse that
assists in debugging a program written in a DSL. This poster presents the challenges of debugging with a DSL, as well as a case study describing two techniques for adding the debugging concern to a grammar.

Domain Experts
program at DSL level

Domain Experts deal
with translated GPL

DSL translated into
General Purpose Language (GPL) Domain Experts

deal with DSL

Challenges with DSL DebuggingChallenges with DSL Debugging Mapping Technique to Generate DebuggerMapping Technique to Generate DebuggerArchitecture Overview of DSL Debugger FrameworkArchitecture Overview of DSL Debugger Framework

•Reuse existing GPL standalone command line debugger
•Generative Programming techniques are used to synthesize debugger
mapping code from DSL grammar specification

•Utilize the debugging methods mapping knowledge and source code
mapping information to generate the DSL debugger in Eclipse

•Map the GPL debugger output messages back to the DSL level through
the wrapper interface

First Approach: Weaving at the Generated Code Level

Key References:
• The AspectJ web site (http://aspectj.org).
• ANTLR - ANother Tool for Language Recognition, available from http://www.antlr.org.
• Ira Baxter, Christopher Pidgeon, and Michael Mehlich, “DMS: Program Transformation for

Practical Scalable Software Evolution,” International Conference on Software Engineering
(ICSE), Edinburgh, Scotland, May 2004, pp. 625-634

• D. Wright and B. Freeman-Benson, “How to Write an Eclipse Debugger,” Eclipse Corner, Fall
2004, http://www.eclipse.org/articles/index.html

• P. Henriques, M. Varanda Pereira, M. Mernik, M. Lenic, E. Avdicausevic, and V. Zumer,
“Automatic Generation of Language-based Tools,” Electronic Notes in Theoretical Computer
Science, Vol, 65, No. 3, 2002.

Key References:
• The AspectJ web site (http://aspectj.org).
• ANTLR - ANother Tool for Language Recognition, available from http://www.antlr.org.
• Ira Baxter, Christopher Pidgeon, and Michael Mehlich, “DMS: Program Transformation for

Practical Scalable Software Evolution,” International Conference on Software Engineering
(ICSE), Edinburgh, Scotland, May 2004, pp. 625-634

• D. Wright and B. Freeman-Benson, “How to Write an Eclipse Debugger,” Eclipse Corner, Fall
2004, http://www.eclipse.org/articles/index.html

• P. Henriques, M. Varanda Pereira, M. Mernik, M. Lenic, E. Avdicausevic, and V. Zumer,
“Automatic Generation of Language-based Tools,” Electronic Notes in Theoretical Computer
Science, Vol, 65, No. 3, 2002.

• A debugger is difficult to build because it depends
heavily on the underlying operating system’s
capabilities and lower-level native code functionality

• Manual construction of the debugger for each new
DSL can be time-consuming, expensive, and error-
prone

• Domain experts lack knowledge about the underlying
GPL

• Although techniques for constructing a debugger for a
GPL have been developed over the years, debug
support for DSLs has not been investigated deeply

• The underlying GPL can be messy and human
unreadable

• One line of GPL can be translated into tens of lines of
GPL code

…
command
:(RIGHT
{ dsllinenumber=dsllinenumber+1;

fileio.print(" //move right");
fileio.print(" x=x+1;");
gplbeginline=fileio.getLinenumber();
fileio.print(" time=time+1;");
gplendline=fileio.getLinenumber();
fileio.print(" ");
filemap.print(" mapping.add(new Map("+dsllinenumber+", \"Robot.java\","+gplbeginline+","+gplendline+"));");

}
|LEFT
{ dsllinenumber=dsllinenumber+1;

fileio.print(" //move left");
fileio.print(" x=x-1;");
gplbeginline=fileio.getLinenumber();
fileio.print(" time=time+1;");
gplendline=fileio.getLinenumber();
fileio.print(" ");
filemap.print(" mapping.add(new Map("+dsllinenumber+", \"Robot.java\","+gplbeginline+","+gplendline+"));");

}
|UP
{ dsllinenumber=dsllinenumber+1;

fileio.print(" //move up");
fileio.print(" y=y+1;");
gplbeginline=fileio.getLinenumber();
fileio.print(" time=time+1;");
gplendline=fileio.getLinenumber();
fileio.print(" ");
filemap.print(" mapping.add(new Map("+dsllinenumber+", \"Robot.java\","+gplbeginline+","+gplendline+"));");

}
…

To define this mapping, additional semantic actions
inside each grammar production are defined. These
mapping aspects crosscut the entire DSL grammar
specification. Manually specifying these aspects can be
expensive and error-prone, which compromises the
advantages of using a DSL.

Second Approach: Weaving at the DSL Grammar Level

The first approach to modularizing a debugging concern in
a DSL assumes the existence of an aspect weaver for the
generated GPL. For example, AspectJ is a seamless
aspect-oriented extension to Java that assists in modular
implementation of numerous crosscutting concerns. In the
figure above, ANTLR automatically generates the lexer
and parser from the DSL grammar. Assuming the
generated parser is in Java, AspectJ can be used to
define a debugging aspect that weaves the debug
mapping code to generate a new lexer and parser (Lexer’
and Parser’). After the debug concern is weaved into the
lexer and parser, DDF uses the transformed GPL and
mapping code to generate the DSL debugger.

The second approach involves the use of a mature
program transformation system to weave the
debugging concern into the grammar. In our work,
we use the Design Maintenance System (DMS)
from Semantic Designs. A debugging aspect is
specified as a DMS PARLANSE function, which
provides transformation functionality using pattern
matching and rewrite specifications on the AST of
a source program (in this case, the source is
actually a grammar file). Before the grammar is
even sent to ANTLR, it is first pre-processed by
DMS in order to weave the debugging aspect into
the original grammar productions. The transformed
grammar is then submitted to ANTLR in order to
generate the parser and lexer for a specific GPL.

…
6 after(int commandname):
7 call(void antlr.Parser.match(int))
8 && args(commandname)
9 { match(commandname); }
10
11 after():
12 call (void P.command());
13 {dsllinenumber=dsllinenumber+1;}
…

Debugging Aspect in AspectJDebugging Aspect in AspectJ

1. Specify ANTLR grammar specification
2. Specify Java semantic actions using DMS regular expression
3. Generate ANTLR Parser
4. Generate abstract syntax tree with ANTLR_ACTION nodes
5. Search ANTLR_ACTION nodes from the generated AST
6. Retrieve ANTLR_ACTION nodes and store them in a hash map
7. Retrieve associated string expression from each ANTLR_ACTION node
8. Modify the regular Java parser by changing the starting production
9. Parse the associated string expressions as regular Java statement lists
10.Transform the statement lists using the ASTInterface API
11.Regenerate the ANTLR_ACTION nodes with debugging

aspects weaved in
12.Output the complete ANTLR AST (with modified action nodes)

12 Steps to Weave Debugging Aspects into
DSL Grammar Level Using a

Program Transformation Engine (DMS)

12 Steps to Weave Debugging Aspects into
DSL Grammar Level Using a

Program Transformation Engine (DMS)

Disadvantages of this ApproachDisadvantages of this Approach

The lack of mature aspect weavers for many
languages (e.g., Object Pascal, C, or Ada) is a
serious disadvantage of the first approach.
That is, the first approach requires an aspect
weaver for the generated GPL as the
mechanism for modularizing the debug
concern. Another disadvantage of the first
approach is that it requires the developer of the
DSL to have detailed knowledge of the code
generator within ANTLR in order to construct
the appropriate pointcuts. In some cases, the
translation is done by a legacy parser, which
creates a difficulty because the generated
parser code can be messy and generally
unreadable by a human. One line in a DSL can
translate into dozens of lines of GPL code.

Advantages of this ApproachAdvantages of this Approach

The key contribution of this approach is the
transformation of the grammar itself. The
specification of the debug mapping is
modularized in a single place – the DMS
transformation function. The second approach
has the side benefit of language independence. It
does not matter which GPL serves as the
generated target.

This section presents a very simple DSL
that will be used to illustrate the concept of
debugging with a DSL. The Robot DSL
consists of four commands that control the
robot movement: up, down, right and down.
Every command will increase or decrease
the position of the robot along the x or y
coordinates. As a side effect, each
command will also increase the timer by one.
Additional Robot DSL statements are: initial
statement, set statement, and print
statement. Following is the sample code
written in the Robot DSL - line 2 initialize the
robot’s beginning position as (0, 0); line 5
forces (5, 6) as the robot’s new current
position; line 8 prints the robot’s current
position.

With the DDF, the Robot DSL debugger can
be generated automatically from the DSL
grammar provided that an explicit mapping
is specified between the DSL and the
translated GPL.

1 begin
2 init Position(0,0)
3 left
4 down
5 set Position(5,6)
6 up
7 right
8 print Position
9 end

Integrated
Development
Environment

(IDE)

subselect me
begin
 left
 right
 up
 down
end

Translater

subselect me
public class Robot{
 public static void
main(String[] args) {
 Robot robot =new Robot(0,0,0);
 //move left
 robot.move_left();
 //move down
 robot.move_down();robot.x = 5;
 robot.y = 6;

Debugging: A Crosscutting Grammar ConcernDebugging: A Crosscutting Grammar ConcernDifficulties with DSL Debugger ConstructionDifficulties with DSL Debugger Construction

A Case Study with Two Different ApproachesA Case Study with Two Different Approaches DSL Debugger Perspective in Eclipse DSL Debugger Perspective in Eclipse

EditorEditor

CompilerCompiler

VisualizerVisualizer

DebuggerDebugger

Source
Code

Mapping

Source
Code

Mapping

Debug
Methods
Mapping

Debug
Methods
Mapping

DSL Debugger
Framework

(DDF)

The source code mapping process
uses the generated mapping
information to determine which line
of the DSL code is mapped to the
corresponding segment of GPL
code. It indicates the location of
the GPL code segment.

The source code mapping process
uses the generated mapping
information to determine which line
of the DSL code is mapped to the
corresponding segment of GPL
code. It indicates the location of
the GPL code segment.

The debug methods mapping
process takes the user’s
debugging commands from the
debugger perspective at the DSL
level to determine what type of
debugging commands need to be
issued to a command line
debugger at the GPL level.

The debug methods mapping
process takes the user’s
debugging commands from the
debugger perspective at the DSL
level to determine what type of
debugging commands need to be
issued to a command line
debugger at the GPL level.

Debugging Domain-Specific Languages
Marjan Mernik

University of Maribor, Slovenia
marjan.mernik (at) uni-mb.si

Hui Wu, Jeff Gray
University of Alabama at Birmingham

{wuh, gray} (at) cis.uab.edu

