Software (inpw'llmn of Modeling L.aboratory -
. . . Hui Wu, Jeff Gray Marjan Mernik QOFT CcolM m
Debugglng Domaln-speCIﬁc Langu ages University of Alabama at Birmingham University of Maribor, Slovenia J i

{wuh, gray} (at) cis.uab.edu marjan.mernik (at) uni-mb.si

. |
http.' Jiwww.cis.uab.edu/wuh/DDF Department of Computer and n1om1al|;n Sciences
Un versity of A:c:'.'di“_.‘ al Birmingnan

The DSL Debugger Framework (DDF) contributes a mapping technique for augmenting existing DSL grammars to generate the hooks needed to interface with a supporting infrastructure written for Eclipse that
assists in debugging a program written in a DSL. This poster presents the challenges of debugging with a DSL, as well as a case study describing two techniques for adding the debugging concern to a grammar.

Challenges with DSL Debugging Difficulties with DSL Debugger Construction Architecture Overview of DSL Debugger Framework Mapping Technique to Generate Debugger Debugging: A Crosscutting Grammar Concern
Eclipse Debugpe ok A
1 e bl : : The source code mapping process (T st st
2 i S P) i Lser uses the generated mapping T cmesimti
* A debugger is difficult to build because it depends I Y{NTLR information to determine which line Y

mapping.add (new Map ("+dsllinenunber+", \"Robot.java\","+gplbeginline+","+gplendline+"));")

Editor heavily on the underlying operating system’s [Il

Source of the DSL code is mapped to the \%m i e
- capabilities and lower-level native code functionality v Y i Code corresponding segment of GPL 1o 15
i . |[Bource Code|| [ebugging . code. It indicates the location of e T A
Domain Experts Compiler » Manual construction of the debugger for each new GRE(ET=] s oo |(Re-Mapping Mapping
. : : Mappimg || Methods Mapping the GPL code segment. . K ey
program at DSL level 1 DSL can be time-consuming, expensive, and error- - L M ') *sopibegintines* Hoplendiinet®)))
Domain Experts deal prone . L] x o2
‘ Visualizer with translated GPL : : R et
* Domain experts lack knowledge about the underlying : Debug Ve dhbug Gl memdn
g GPL L] Methods process takes the user's 1 » " mapping.add (new Map(*+dsllinenumber+", \"Robot.java\","+gplbeginlines", *+gplendline+"));");
‘] » Although techniques for constructing a debugger for a GPL Diebasber Servr Mapping debugging commands from the
p— - GPL have been developed over the years, debug . debugger perspn_actlve at the DSL
- ;':I support for DSLs has not been investigated deeply level to determine what type of | To define this mapping, additional semantic actions
lit e i ‘R isting GPL standal d line deb DSL Debugger debugging commands need to be | qiqe gach grammar production are defined. These
= =l Development (L - The underlying GPL can be messy and human euse existing standalone command line debugger A e issued to a command line \ g produ r :
DSL translated into Environment : s unreadable -Gene_ratlve Programming techniques are u§ed to synthesize debugger (DDF) debugger at the GPL level. mapping .aspects crosscut. the entire DSL grammar
General Purpose Language (GPL) (IDE) Domain Experts + One line of GPL can be translated into tens of lines of ~ mapping code from DSL grammar specification specification. Manually specifying these aspects can be
deal with DSL GPL code « Utilize the debugging methods mapping knowledge and source code expensive and error-prone, which compromises the
mapping information to generate the DSL debugger in Eclipse advantages of using a DSL.
*Map the GPL debugger output messages back to the DSL level through
the wrapper interface
A Case Study with Two Different Approaches DSL Debugger Perspective in Eclipse
This section presents a very simple DSL| |First Approach: Weaving at the Generated Code Level Second Approach: Weaving at the DSL Grammar Level - Deblig oDt ebBEcl bse P it - [B]x]
that will be used to illustrate the concept of Fle Edt Navigate Search Project Run Window Help
debugging with a DSL. The Robot DSL . . - R o e e o T i) =
consists of four commands that control the Debqu'ng AsPeCt in ASpeCtJ Debuggng Aspect The second approach involves the use of a mature L E 2 (A & bl AR T G T Resource §7ava F0ehug
38 PIOEITIENLE (g, SO, OEJS Enel Conm Speciicaton program transformation system to weave the | |%oeus = B || 5 | Beakpaints Lt x v =8
Every command will increase or decrease 6 after(int commandname) : (PARLAMSE Fizction) debugging concern into the grammar. In our work, >0 m TYErE Y T
the position of the robot along the x or y 7 call (void antlr.Parser.match(int)) we use the Design Maintenance System (DMS) = [l Debunging Robok DAL [Robot D31]
coordinates. As a side effect, each 8 && args (commandname) from Semantic Designs. A debugging aspect is = &8 fafRobot.rob
command will also increase the timer by one. 9 { match (commandname); } specified as a DMS PARLANSE function, which = @u;hm;:[nll =
Additional Robot DSL statements are: initial 1o provides transformation functionality using pattern BR Ci\2schd 4.0 03ibrijava eve , 'De;a"s —
statement, set statement, and print 11 after(): matching and rewrite specifications on the AST of SpaRenh R)
statement. Following is the sample code 12 call (void P.command()); [S : a source program (in this case, the source is
written in the Robot DSL - line 2 initialize the 13 {dsllinenumber=dsllinenumber+1; } ; : S i — : _ actually a grammar file). Before the grammar is |5/ Robot.rab 22 “E
robot's beginning position as (0, 0); line 5 B2 GFL 1 et even sent to ANTLR, it s first pre-processed by PEOL e
g Tiahaiseee o . . init Position(d,d)
forces (5, 6) as the robot’s new current ~~FEEs DMS in order to weave the debugging aspect into lefr
position; line 8 prints the robot's current ~ the original grammar productions. The transformed s down -
position. grammar is then submitted to ANTLR in order to s=r Position(s, §)
. . enerate the parser and lexer for a specific GPL. iy
1 begin Disadvantages of this Approach Lol E & & » rignt
RN 5 print Position 2
2 init Position(0,0) : The lack of mature aspect weavers for many 12 Steps to Weave Debugging Aspects into Advantages of this Approach end
3 left S = languages (e.g., Object Pascal, C, or Ada) is a DSL Grammar Level Using a — - - -
serious disadvantage of the first approach. Program Transformation Engine (DMS) Vi Ly EEmilalitan @if s Zapreren 1B (e Elconsdle 52 Tasks =84 =
4 down) - transformation of the grammar itself. The T ”
The first approach to modularizing a debugging concern in | That is, the first approach requires an aspect T Sty ANTILR G en Saee et specification of the debug mapping s Cansale (Debugging Rabot DSL)
5 set Position(5,6) a DSL tasdsu(rsngi th;_a eX|stenceI of aAn aspttjct_ weaver forI the \rlquzi\r:z;isf;r]:(Qre r?]ir;euT:izezci!n GF:rI;e azegze 2, Sy Jeve sanETi esios vl BYS realer ermessia modularized in a single place = the DMS
© up g:nzgfgriented éxtgr:si?)):]art?)pJ(Zva fr?aetcasslisstsa insfr?(;zazsr concern. Another disadvantage of the firsgt 3. Generate ANTLR Parser transformation function. The second approach
7 right imglementation of numerous crosscutting concerns. In the approac-h is that it requires the geveloper of the 4. Generats abstract syntax trae with ANTLR_ACTION nodas P s sifda [beai o _Ianguage lesjpenEnzs: L
. N . . 5. Search ANTLR_ACTION nodes from the generated AST does not matter which GPL serves as the Key References:
8 print Position figure above, ANTLR automatically generates the lexer |DSL to havg (_jetalled kngwledge of the code 6. Retrieve ANTLR_ACTION nodes and store them in a hash map generated target. S e e)
and parser from the DSL grammar. Assuming the |generator within ANTLR in order to construct 7. Retri L . P p-/jaspecy.org). .
9 end i : . . Retrieve associated string expression from each ANTLR_ACTION node * ANTLR - ANother Tool for Language Recognition, available from http://www.antlr.org.
geqerated [PV _IS in Java, Aspect can be used to the appropr_|ate pointcuts. In some cases, t_he 8. Modify the regular Java parser by changing the starting production « Ira Baxter, Christopher Pidgeon, and Michael Mehlich, “DMS: Program Transformation for
. define a debugging aspect that weaves the debug translation is done by a legacy parser, which 9. Parse the associated string expressions as regular Java statement lists Practical Scalable Software Evolution,” International Conference on Software Engineering
With the DDF, the Robot DSL debugger can mapping code to generate a new lexer and parser (Lexer’ |creates a difficulty because the generated 10:Transform the statement ists using the ASTInterface API (ICSE), Edinburgh, Scotland, May 2004, pp. 625-634
be generated automatically from the DSL and Parser’). After the debug concern is weaved into the [parser code can be messy and generally 11 Regenerate the ANTLR_ACTION nodes with debugging « D. Wright and B. Freeman-Benson, “How to Write an Eclipse Debugger,” Eclipse Corner, Fall
grammar provided that an explicit mapping lexer and parser, DDF uses the transformed GPL and |unreadable by a human. One line in a DSL can éspects N—— - 2004, http://www.cclipse.org/articles/index.html . . 4
is specified between the DSL and the mapping code to generate the DSL debugger. translate into dozens of lines of GPL code. 12.0utput the complete ANTLR AST (with modified action nodes) o I, gtz M, Vengmi [Raite, R Rzt VL, Lenite, B, Avdiemmsis, il V. Ztma,
translated GPL. SA‘utomasc 1(32;161;1“0; (;i)lg)zzinguage-based Tools,” Electronic Notes in Theoretical Computer
cience, Vol, 65, No. 3, .

