
Model Driven EngineeringModel-Driven Engineering
of Industrial

P C t l A li tiProcess Control Applications

Tomaž Lukman1, Giovanni Godena1, Jeff Gray2, Stanko Strmčnik1

1 Jožef Stefan Institute, Department of Systems and Control, Ljubljana, Slovenia
2 University of Alabama, Department of Computer Science, Tuscaloosa, AL, USA

IEEE ETFA’ 10
13.09.2010, Bilbao, Spain

Outline
 Introduction (industrial process control applications)

 Engineering challenges

 Model-Driven Engineering (MDE)

 A MDE approach for process control applications

 Case study

 Discussion

 Future work

 Conclusion

Introduction
 Industrial process control systems – control a specific

industrial process
• Used in several industrial sectors -> improve production,

d d doptimize process, and reduce time and costs

 Research context: engineering of such systems,
emphasis on software

 The most common hardware platform for these systems
are Programmable Logic Controllers (PLC)

 The programming languages for PLCs are defined by the p g g g g y
IEC 6113-3 standard:
• Instruction list (IL), Structured text (ST), Ladder diagram

(LD), Function block diagram (FBD), Sequential function
h t (SFC)chart (SFC)

• None are object-oriented

Engineering Challenges
 Current challenges of process control

applications engineering are:
i. Lack of automation – the use of informal approaches or

of general-purpose approaches (e.g., UML without profiles)
does not facilitate automatic transformation

ii. The migration challenge – closed proprietary
development environments hinder migration

iii The use of inadequate abstractions low level solutioniii. The use of inadequate abstractions – low-level solution-
specific instead problem-specific abstractions

iv. The lack of verification and validation – exclusive
li t ti (i ll it)reliance on testing (especially on-site)

v. Developer specifics – programming skills (IEC
languages), no object-oriented and no modeling knowledge

Model-Driven Engineering (MDE)

Model-Driven Engineering (MDE)
• promotes the systematic and disciplined use of models

th h t th lif l hift th tt ti f d tthroughout the lifecycle, shifts the attention from code to
models

• has the potential to address the identified challenges

MDE relies on:
• Modeling Languages – Domain-Specific Modeling Languages

(DSMLs) use concepts (e.g., symbols) of a specific domain and
formalize the application structure, behavior, and requirements

• Model transformations – specify how target artifacts are p y g
generated

• Specialized tools – enable modeling with a DSML and
execution of model transformations

A MDE approach for process control
applications
 A few MDE attempts for the engineering of

process control applications already exist
Th t id l d t d• They are not widely adopted

» immature and

» do not properly address the identified challengesdo o p ope y add ess e de ed a e ges

 The answer: we developed our own MDE
approach, which contains of two levels:
• Infrastructure development level – domain experts (i.e.,

expert application developers) develop and evolve DSML(s)
and tool developers develop the tool infrastructure that
enables the MDE approach at the application development levelenables the MDE approach at the application development level

• Application development level - application developers
develop the process control applications based on the
application requirements and with the use of the provided toolapplication requirements and with the use of the provided tool
infrastructure

Infrastructure development level
 The infrastructure that enables our MDE approach:

• ProcGraph language – this already existing semi-formal DSML
had to be formalized to be useful for MDE -> through metamodelinghad to be formalized to be useful for MDE -> through metamodeling

• Model repository – the EMF (Eclipse Modeling Framework) tool
generated the repository from the ProcGraph metamodel

• Graphical model editor in GMF (Graphical Modeling• Graphical model editor – in GMF (Graphical Modeling
Framework) a notation, tooling, mapping and editor model were
defined to generate a basic editor. It was extended by custom code.

• Code generator –• Code generator
into a combination of
FBD and ST for
Mitsubishi PLCs.
E d d i dEncoded into code
generation templates
for the
openArchitectureWareopenArchitectureWare
tool. The Mitsubishi
import format had to
be decoded.

The MDE process
(Application development level)

 The development process activities:

M d li
Requirements

definition

Modeling
of

behavior
Platform
selection Testing

Structural
modeling

Modeling of
interdependent

behavior

Software
to

hardware
mapping

Process
control

application

 These development activities are presented
through a case study:

pp g

g y
• On a TiO2 (titanium dioxide) pigment production

subprocess

Case study (1/4)
 Requirements definition

• Defined through a P&ID (Piping and Instrumentation
Diagram) and supporting documents (e g informalDiagram) and supporting documents (e.g., informal
operational and safety related requirements).

1.
4.2.

4.1.

2

4.

3.

2.

Case study (2/4)
 Structural modeling

• Identify Procedural Control Entities (PCEs) –
main abst actions of P ocG aph (e g amain abstractions of ProcGraph (e.g., a
process, an operation or an activity)

• Identified by a system analyst based on
high cohesion and low coupling criteria

• Show on an Entity
dependencies p
diagram

 Modeling of
b h ibehavior
• Extended state

transition
diagrams define
the behavior of
each PCE

Case study (3/4)
 Modeling of interdependent behavior

• A dependencies state transition diagram defines the mutual
beha io dependencies bet een t o PCEsbehavior dependencies between two PCEs

• Two dependence relationships exist:
» conditional dependency, which is denoted p y,

by a normal line with a filled arrowhead

» propagation dependency, which is denoted
by a dashed line with filled arrowhead

Case study (4/4)
 Platform selection

• A platform is determined through the selected code generator
W d l d t f Mit bi hi PLC• We developed a generator for Mitsubishi PLCs

 Mapping of software onto the hardware
• No visual modeling – adjusted in the code generator or in the

development environment of the PLC vendor

 Testing
• The code has to be imported, compiled and uploaded on the

PLC

Discussion
 The presented MDE approach brings these benefits:

• Increased software quality – automatic code generation,
without human coding errors ProcGraph enables a better systemwithout human coding errors, ProcGraph enables a better system
decomposition

• Increased productivity – automatic code generation (->
challenge “i ”) and inherent reuse of domain knowledge throughchallenge i.) and inherent reuse of domain knowledge through
ProcGraph

• Platform independence and platform migration – migration is
achievable through the development of a new code generatorachievable through the development of a new code generator
(-> challenge “ii.”)

• Improved communication and interaction between
development participants – less misunderstandings betweendevelopment participants less misunderstandings between
developers, because ProcGraph is defined more formally

Future work

Develop tools that support additional
development tasks

• Verification tool – enables a “correct-by-
construction” process instead of a “construct-by-

ti ” (h ll “i ”)correction” (-> challenge “iv.”)

Quantitative evaluation of the benefits of our
MDE approach

Conclusion
 A MDE approach for the engineering of industrial process

control applications was introduced

 Th h ll f i i h li ti The challenges of engineering such applications were
identified

 The developed infrastructure that enables our MDEThe developed infrastructure that enables our MDE
approach was described

 The MDE process was presented though a case study

 The experienced benefits were presented

Contributions:

 A MDE approach for process control applications that is
aligned with the identified challenges

 The developed infrastructure that enables this approach The developed infrastructure that enables this approach
(i.e., supporting tools)

