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Abstract 

 
The integration of software tools used in an engineering 
process is a problem that arises frequently in large-scale 
projects. Simple solutions for integration are insufficient in 
the case of complex engineering tools and processes. The 
integration solution must also account for the evolution of 
the system, as tools and processes change over time. This 
paper shows a new approach to the problem, describes the 
supporting infrastructure, and discusses the background 
model-integrated generation technology.  

Introduction 
Every large-scale project on computer-based systems that 
uses software-based engineering tools has to face the 
problem of their integration. Each of these tools is usually 
a highly specialized package that contributes to a crucial 
step in the engineering process. While tool vendors may 
offer tool suites, the tools used in practice are very rarely 
integrated across the engineering process. In many cases, 
the tools were simply not designed with easy integration in 
mind.  
Current systems engineering tools tend to be built as 
isolated “stovepipe” solutions. They must inter-operate, 
but often the integration happens by chance, in a very 
human labor-intensive way, leaving users frustrated. The 
traditional solution of proposing the “next-generation 
systems engineering tool” that does everything that current 
individual tools do, and will be “on-line in a year from 
now,” does not help in alleviating the problems. Instead, 
we need to look for an integration of these tools —as they 
are— into a coherent framework, which ensures semantic 
interoperability among the component systems along with 
a strategy and toolset that supports this process. 

Solving the integration problem is not easy. The diversity 
of tools, the variations in their method of user interactions, 
and differences in file formats make the task formidable. 
However, the potential benefits are also great: using 
information captured in one tool in the context of another 
tool saves valuable, but often uninteresting, effort. 
 In this paper a solution is shown which approaches the 
integration issue from a model-based viewpoint. Model-
integrated computing [7] relies on the interpretation and 
use of domain-specific models in run-time environments. 
The domain models capture the relevant entities and their 
relationships in a specific domain, and are used in a 
generation process to create executable systems. One, 
often used example of MIC is that of the signal processing 
domain: models capture signal processing architectures in 
the form of signal flow diagrams, which are then compiled 
into an executable system that implements the 
specification.  MIC has been successfully applied in the 
development of various computer-based systems, 
including aerospace, manufacturing industry, and testing 
applications. 
This paper shows how the MIC technology can be applied 
in the integration problem discussed above. The trick is to 
represent (i.e., ‘model’) the semantics and the behavior of 
the individual tools and the transformations among them, 
and then generate software components that solve the 
integration problem. The approach has been used to solve 
the integration of a number of tools. Experience indicates 
that the techniques are feasible for large-scale integration 
as well.  



   

Background 
The development of computer-based systems typically 
involves a large number of engineering tools addressing a 
wide range of domains. One should recognize that 
Computer Based Systems are not simply software systems, 
but rather computing systems (software and hardware) that 
are tightly coupled to their respective environments. This 
necessitates the use of various engineering tools that model 
and analyze all aspects of the system, including the 
computing system and the physical environment. The 
trouble is, the tools are specialized for particular domains 
and tasks in those domains, and they very rarely 
communicate with each other (unless they form a tool-
suite, typically implemented by a single vendor).   
Whenever the tool integration issue comes up, 
organizations tend to generate quick solutions that 
eventually turn out to be insufficient. Some of these non-
solutions are reviewed below.   

File Translators 
The first “solution” that comes to mind is to argue for 
using “file translators” that translate between the file 
formats of the different tools. File translators are 
specialized programs which do nothing more than read 
data generated by one tool (typically the physical data file) 
and convert its contents into another data file suitable for 
consumption by another tool. Unfortunately, this approach 
has very some serious drawbacks. The translator writer has 
to be extremely proficient both in the file formats of the 
individual tools, and in the semantics of those tools, to be 
able to write the translator. The translator writing is a very 
time-consuming process: it requires special skills and 
intricate knowledge of the tools to be successful. Arguably 
the biggest shortcoming of the approach is its inherent 
problem with scalability. It is trivial to show that the 
number of translators required to integrate n tools is 
proportional to the square of the number of tools. To put it 
in another form: whenever a new tool is added to the suite, 
the same number of translators has to be prepared as the 
number of tools already in the package. This argument 
assumes the need for full tool interoperability, of course. 

Middleware: CORBA, COM 
One can consider the tools to be integrated as software 
components. There are well-established standards and 
tools for software component integration: CORBA[2] and 
COM[1] being the two major examples. It seems obvious 
that a middleware package can be used to solve the 
integration problem easily. Unfortunately, this solution 
also has its problems.  
Object-oriented middleware systems rely on the “remote 
object method invocation” approach. That is, they provide 
support for making method invocations on objects hosted 
on various nodes of a network. The theory is that one can 

create a “wrapper” object around tools, and in some way 
these tools will communicate with each other through 
remote method calls. Now to design and implement the 
communication between two tools can be very 
complicated, and it can quickly become a nightmare for a 
large number of tools. The point is that the middleware 
provides relatively low-level facilities for tool interactions, 
and all higher-level functions should be built from scratch. 
Some sort of translation needs to be done as well that 
requires deep understanding of tool behavior and data 
structures. Furthermore, if the tool cannot simply be 
“wrapped” as an object, one has to revert to the file 
manipulation techniques mentioned above, with all its 
shortcomings.  

Universal language  
This solution uses a radically different strategy from the 
above, although it requires the support of at least one of 
the above techniques. One can think about the tool 
integration problem in the context of the particular 
engineering process where it is needed. Processes (and 
organizations) tend to have their own vocabulary and 
idioms. So the idea comes: why not design a universal 
“language” (a database schema, in practice) that will be 
used by all the tools, across the process. Once a language 
is defined, we just have to write translators for each tool, 
or setup the middleware communications to use this shared 
language. This is a more efficient solution because the 
number of translators increases linearly by the number of 
tools. Unfortunately, where the approach breaks down is in 
the practical difficulty of coming up with this universal 
language. Projects tools are often selected using a 
opportunistic approach, and it is very difficult to make 
changes to the “universal” language during the lifetime of 
the project. It seems that the “universal” language is not 
very “universal” at all because it can’t be used on another 
project. 

Lessons Learned 
Integration of systems (into a system of systems) is 
traditionally one of the most expensive and difficult tasks 
in the engineering of software systems. The situation is 
only made worse by the lack of systematic approaches. 
While component integration technologies, like CORBA, 
DCOM, etc., solve part of the problem, they do not give 
much help in integrating two sophisticated applications 
(i.e. systems), let alone a large number of them. Higher-
level, semantically aware software tools are needed that 
help in building integration solutions, with minimum 
impact on existing systems, capitalizing on existing 
investment. 
Specifically, there are a couple of important points one 
learns from the above discussion. 
• Attention should be paid to the effort required to 

integrate a new tool. An integration solution does not 



   

work if the integration costs more than having people 
manually translate the data.  

• Scalability is an issue. If adding a single new tool 
requires the writing of a number of new software 
packages, then the approach is clearly a failure. 

• One needs a very deep understanding of the tool 
semantics before attempting any kind of integration. 
How fast this understanding can be turned into an 
integration solution will determine the success of any 
kind integration paradigm. 

Next an approach is described the addresses these issues 
and offers a solution to the problem. 

The approach 
The techniques described above clearly indicate that a tool 
integration solution should address the issue of semantic 
interoperability. We want our tools to work together 
towards a goal, and in order to do that, some mutual 
understanding or, shared semantics is needed. The tool 
integration solution should be the implementation vehicle 
for this shared semantics.  
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Figure 1: Tool integration 

If one associates semantics with static semantics (in the 
UML-sense [3]), the tool integration problem can be 
visualized as shown on Figure 1. Static semantics can be 
described as the integration of a data model that captures 
the allowed entities and relationships in the tool’s data 
with further logical constraints (Boolean invariants that 
must be true on the data). If we have a tool X with a data 
model, we want to take this data and map it into the data 
model of another tool Y. If we restrict the data model used 
to the “entity-relationship-attribute” variety [3], tool 
integration means the solving the mapping problem 
between two database schemas. Unfortunately, if we have 
more than two tools, the mapping problem becomes 
complicated, and we get to the same scaling problem as 
that we have seen with the file translators. It is more 
feasible to establish an integrated data model first, and 
then map the data model of each tool into that as shown on 
Figure 2.  The integrated data model can be defined as a 
data model that is rich enough to contain data from any of 
the tools.  Note that this integrated data model is neither 

the union nor the intersection of the data models of the 
individual tools, because tool data models will overlap 
(although not completely). The integrated data model 
(IDM) is the vehicle that implements the shared semantics 
across the tools.  
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Figure 2: Tool Integration with Integrated 
Data Model 

The Architecture 
The approach presented here is architecture-based, shown 
on Figure 3. The architecture contains two kinds of major 
components: the Integrated Model Server (IMS), and the 
Tool Adaptors (TA). The communication mechanism 
between the major components is implemented in CORBA 
(although any middleware package is suitable here). The 
functions of the components are as follows. 
The IMS is responsible for providing semantic translation 
services for the constituent tools. By semantic translation 
we mean a transformation of data from one data model 
into another one while preserving the semantics of the 
input data model and enforcing the semantics of the output 
data model. Again, semantics is understood here as static 
semantics, expressed in the form of constraints on the data. 
The IMS also provides a short-term repository for storing 
the result of the translation. The schema used in the 
repository is that of the Integrated Data Model.  
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Figure 3: Tool Integration Architecture 



   

The TA-s are responsible for interfacing with the tool 
directly. Their goal is to read and write tool data, directly 
in the form the tool generates and expects it. The adaptors 
ship the data read to the IMS and receive data from IMS 
that they send to the tool. The TA accesses the tool’s data 
in whatever way it is possible and suitable: through a data 
file, a COM interface, or something else. Note that the TA 
performs a syntactic translation on the data from the native 
data format of the tool to that of the middleware data-
structures.  
In a general sense the architecture operates as follows. 
When a tool wants to make its data available for other 
tools, its TA is started. The TA fetches the data from the 
tool and converts it into the “network” format and ships it 
to the IMS. The IMS receives it, performs a semantic 
translation on it, and places the result into its repository. At 
this point the data is transformed into an IDM-compliant 
form. When another tool wants use the data just translated, 
it accesses the IMS. The IMS performs a semantic 
translation on the data from the IDM-compliant data model 
into the tool-specific data model, and ships the result to the 
tool’s TA. The TA will take the data in network form and 
convert it into the physical data format of the tool.  
Note that the architecture separates the concerns of syntax 
and semantics, and assigns them to two different 
components: the IMS and the TA-s. This distinction makes 
the development of the integration solution easier. The 
binding between the major components is the middleware, 
specifically a protocol for data interchange. 

The Common Model Interface Protocol 
The Common Model Interface (CMI) protocol defines the 
rules of communication and the form of the data-structures 
used in the interactions between the IMS and the TA-s. 
The CMI is the same across all the tools: this is the 
common, canonical “form” into which all tool adaptors 
translate their data. The protocol has many components 
related to data transfer and interaction with the IMS, but 
only the most significant aspects will discussed here.  
Note that the protocol is defined in the form of a CORBA 
IDL specification, and as such it relies on the remote 
method invocation capabilities provided by CORBA. In 
the architecture, the objects on which the methods are 
executed always reside in the IMS.  
The primary purpose of the protocol is to facilitate data 
transfer between the TA-s and the IMS. The core data 
model used in CMI is a variant of the traditional entity-
relationship-attribute data model. Data consists of 
attributed objects, which can be models, entities, and 
relations. An attribute is simply a key-value pair (the data 
type of values must be from a small, but powerful set of 
primitive data types, and arrays of primitive values are 
allowed). An entity is a simple attributed object, without 
any further structure. A relationship is an attributed object 
that has two collections of objects, called roles, associated 

with it: these collections contain entities or models that 
play those roles in the relation. A model is an attributed 
object that contains entities, relations, and other models.  
This simple data model is sufficient to express data coming 
from any tool, but because of the differences among the 
tools it is not sufficient for precise differentiation among 
the tools. Therefore, each data object is tagged with a type 
tag that indicates the meaning of the object.  
The CMI makes this distinction between the data and its 
type apparent by dealing with the data on two-levels. 
Meta-data describes the data model of a particular tool. 
Physically, meta-data contains models, entities, and 
relations, but these are meta-models, meta-entities and 
meta-relations that describe the tool’s data model. The 
IMS exposes the meta-data of each of the tools as CORBA 
objects. Thus, each tool – or a generic browser – can 
access the meta-data for each of the tools. The instance-
data is data to be transferred. The instance-data contains 
models, entities and relations, where each data object is 
tagged with the corresponding meta-data object’s id 
(technically an object reference). This tagging makes it 
possible for the IMS to figure out what the “real” type of a 
data object is. Also, this makes it possible for a TA to get 
the same information.  
Thus, the TA should access the data model of its tool 
available as meta-data objects in the IMS. Whenever data 
is shipped to the IMS, the (instance) data objects should be 
tagged with the meta-data references. Whenever instance 
data is received, it will be tagged with the same meta-data 
references, and the TA can parse and process the packet 
accordingly.  
The remaining parts of the CMI deal with the specific 
interactions with the IMS. These interactions are expressed 
in the form of object interfaces. Some of the capabilities 
are listed below: 
• Directory services. These interfaces define access to 

the contents of the IMS repository, which is organized 
like a directory hierarchy.  

• Session management. This interface implements the 
operations for fetching and storing data, removing 
objects, etc. 

• IMS access. This interface implements the 
login/logout capabilities, and some other global 
operations (e.g. retrieval of IMS clock data). 

The Evolution of the System 
The architecture discussed above only gives the framework 
for implementing an integration solution: it does not speak 
about how the system evolves. When implementing an 
integration solution one has to recognize that the solution 
will never stay constant: new tools will be added, tool data 
models will introduced, and, perhaps tools will be 
removed. This continuous change necessitates the designer 
to place emphasis on how the system will evolve over 
time.  



   

During the evolution of the system, the most frequent 
problem is the addition of new tools. This means, a new 
tool adaptor has to be developed, and the IMS should be 
upgraded to “understand” the new tool. The upgrade 
means changes in the IDM (for the integrated model 
database), and the development of a new semantic 
translator that can manage the data of the new tool. Both of 
these are non-trivial steps, especially considering that we 
can already have a number of tools integrated in the 
system. 
The solution chosen here is closely related to the previous 
work on Model-Integrated Computing (MIC). In MIC, 
domain models are used to generate components that 
implement a system. In the integration framework, there 
are two kinds of models: 
1. data models of the tools and that of the integrated 

data, and 
2. translation (or mapping) models that capture how to 

transform data in one semantics into another 
semantics. 

If we somehow can capture and utilize these models in 
constructing an integration solution, then we can improve 
the evolutionary capabilities of the architecture.  
In the actual implementation the following has been done. 
IMS was developed not as a stand-alone, monolithic 
solution but rather as a “framework” that contains reusable 
components. Figure 4 shows the internals of a semantic 
translator in the IMS architecture. The reusable 
components contain the generic interfaces to the network 
side and to the repository side (accessible through the very 
same interface – just different implementations), the 
implementation of CMI services (directory, session and 
IMS access), and other housekeeping functions. To 
instantiate the IMS framework for a particular tool 
integration solution one has to build the semantic 
translators.  
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Figure 4: The Architecture of a Semantic 
Translator 

The semantic translators are not built by hand, rather, they 
are generated from models. Figure 5 shows how the 
semantic translators are structured and how they are 
generated. Each semantic translator has a set of static 
objects that represent the meta-data of the corresponding 
tool. The code for these objects is automatically generated 
from the data model of the tool. When the actual 
generation of the translator happens, the user must provide 
three models to the generator: the data model for the input, 
the data model for the output, and the translation model. 
(That is, each tool has two translators: one for translating 
into the IDM, and another one for translating from IDM.) 
The generator creates C++ code from the mapping 
specification which is then linked with the other generated 
code and the framework library elements to build up the 
IMS. 
Naturally the specification of the translation and mapping 
is key to the whole solution. One might think that the 
mapping is easy to formalize in the form of mapping rules 
of the form: 

map: (M,E,R,A) -> (M’,E’,R’,A’) 
where M,E,R, and A stand for models, entities, relations, 
and attributes, respectively. It is very easy to invent a 
simple mapping language that captures this, and it is 
simple to use and simple to generate code from it. 
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Figure 5: Generation of a Semantic 

Translator 
However, after looking at the first domain data model of 
an actual application the mapping language idea was 
quickly abandoned.  One problem with the data model was 
as follows. In one of the tools the surface data model was a 
simple object model, with a single level of containment. 
That is, models of type M contained entities of type E. In 
another tool the data model was hierarchical: models of 
type M’ contained entities of type E’ and models of type 
M’. At closer inspection, it turned out that the first tool’s 
data was really hierarchical: each entity contained an 
attribute (a string), whose value indicated the position of 
the entity in a hierarchy. That is, the attribute value was 



   

used to encode a hierarchical relationship. This lead to the 
conclusion that the translation model needs the full power 
of a programming language in practical situations, and, 
while the mapping language is appealing, it is not 
sufficient.  
However, to write a translator without any help, from 
scratch can still be a daunting task. A practical engineering 
solution was chosen to help in this situation. Based on 
previous work on the specification of model interpreters 
[5], a language has been defined and the corresponding 
generator tool developed which supports the rapid 
construction of the translators.  
The approach is based on a variant of the Traversal/Visitor 
pattern [4][6]. The semantic translator traverses the input 
data structure, starting from a root point (which is always a 
model). As it performs the traversal (possibly in multiple 
passes), it executes “actions”. Actions can generate an 
output object, change an output object, etc. During the 
traversal process one can also pass along shared data 
structures, a kind of context, which is used to store state 
information with the traversal.  
The actual form of the specification contains two parts: the 
traversal specification and visitor specification. Traversal 
specifications give the answer to following question: “if 
we are at node of type X, where do we go next?” The 
“next” should be an object that is reachable from objects of 
type X. Visitor specifications capture what should be done 
when visiting a particular kind of object. There are two 
options: either take a “user action” (i.e. execute a piece of 
user-supplied code), or it can proceed with the traversal 
(i.e. call the traverser with the object being visited). These 
can be intermixed and/or omitted completely. Note that the 
specification has an outer, high-level language for 
describing the structure, while the inner parts are written in 
a procedural language, C++ in our case. The generator 
translates the above, mixed form specification into straight 
C++, building the code sequences for the traversal and 
iterative parts during the process. The resulting translator 
code then is linked with the rest of the IMS framework.  
We have found that writing translators using the 
traversal/visitor approach is very convenient, because the 
uninteresting parts (pointer tracking, iteration, selection 
next steps), are automatically taken care of by the 
generator.  
Another capability of the semantic translators is the 
handling of constraints. One can include Boolean 
expressions into the input of the generator that capture the 
static semantics of the data. From these expressions the 
generator creates C++ procedures that “evaluate” the 
expression in the context of the result of the translation 
(which is a data structure). This evaluation is a kind of 
post-processing, which verifies that the data is compliant 
with the constraints of the data model. In case of failure, an 
error is raised, and the translation cancelled. The objective 
of this constraint checking is to ensure that whatever data 
the tool receives from IMS is compliant with the semantic 

rules implicitly enforced by the tool.  On Figure 4, the box 
labeled “Constraint enforcer” represents this function. 
To summarize, the system evolution in the IMS is 
supported by the use of models (both data models and 
translation models) and the use of generators. Of course, 
when a new tool is added the integrated data model may 
have to be revised. Because the data model is also captured 
in the form of an explicit model, this usually does not 
cause problems. Experience shows that adding new things 
to the data model is trivial because the already existing 
translators do not have to be modified (assuming suitable 
defaults are used for the newly defined attributes).  
The evolution of the system with respect to the tool 
adaptors is also supported by a model-integrated approach. 
A tool adaptor framework has been defined that contains 
reusable components for building tool adaptors. The 
framework mostly deals with the CMI issues, because tool 
specific data formats are quite different and it is hard to 
come up with a generic solution. The tool data model is 
used to generate “glue-code” that lets the tool adaptor 
writer access CMI data structures using notions of the 
tool’s domain. That is, instead of referring to Models, 
one can refer to XYZModels, where XYZModel is a tool 
specific class.  
Thus, the process of upgrading an integration solution is as 
follows.  
1. The data model of the tool to be integrated has to be 

determined. This data model should be expressed in 
the form suitable for processing by the generators.  

2. The integrated data model needs to be updated (if at 
all) to be able to capture data from and for the new 
tool.  

3. The tool adaptor has to be developed which reads and 
writes physical tool data. This requires the 
understanding the physical data layout, but does not 
require any semantic processing.  

4. The semantic translator has to be modeled and 
generated. The modeling involves the description of 
the translation process in terms of traversal/visitor 
specifications.  

The above process was found quite manageable in 
practical situations. Note that the process does not deal 
with migrating the tool data. The assumption is that the 
tools “own” the data. The IMS contains only a short-term 
repository, whose contents can be discarded when a new 
upgrade is necessary. Because IMS merely provides 
translation and publication services, it was not designed as 
a process-database solution.  

Experience, Conclusions and Future 
Work 
The approach described above has been used to develop 
integration solutions for various engineering tools. In one 
case, three tools have been integrated, in another case 
another four tools. For the latter case, the sizes of the 



   

individual schemas and that of the integrated schema are 
shown in the table below. 
 

 Model types 
[Attributes] 

Entity types 
[Attributes] 

Relation 
types 

Tool-1 1[1] 4[2,3,6,1] 3 
Tool-2 1[1] 2[7,19] 1 
Tool-3 2[1,5] 4[4,3,6,5] 2 
Tool-4 2[1,3] 2[4,2] 1 
Integrated 2[1,8] 5[1,2,19,6,2] 4 

 
The main effort went into discovering the semantics of the 
tools, and formalizing their data model. Once these were 
available, the rest of the work was fairly mechanical. If the 
semantic translators are correct, the system integration task 
for the IMS is quite trivial. The typical size of the 
translators in the above examples was about 2-3 pages of 
traversal/visitor specifications and C++ code. Experience 
has shown that a data model can be developed in one man 
week, the corresponding semantic translator(s) written in 
about 2 man weeks. The development of the tool adaptors 
depends on the experience of the programmer and the 
difficulty in accessing the tool’s data. In the projects 
mentioned above, it required 1-4 man weeks. 
In this project there have been several lessons learned, 
among them:  
• Tool integration involves both semantic and syntactic 

transformations. It is conceptually cleaner to keep 
these issues separate than solving everything in one 
step.  

• Complexities in the data may necessitate the use of the 
full power of a programming language when 
translating the data.  

• Using a framework as infrastructure and generating 
components from models can enhance the evolvability 
of the system. 

Strictly speaking, the solution described addresses the data 
integration problem. In some cases, especially when tools 
are used in an engineering process, another forms of 
integration might be necessary. For example, event-based 
integration is necessary to ensure the proper sequencing on 
the usage of the tools. One might think about a “workflow” 
engine, which sequences the operations in a process. It 
might be possible for the IMS to enforce these sequencing 
rules, but this requires extensions to the CMI.  
Another opportunity for improvements is the integration of 
web and other technologies. As an initial experiment, a 
generic tool has been implemented that lets the end-user 
browse the contents of the IMS. The tool uses the CMI to 
communicate with the server, and can retrieve and 
visualize both meta-data and instance-data. After a meta-
data model is selected, the instance data is shown in a form 
that is compliant with the meta-data specifications (i.e. the 
browser “acts” as if it were a specific tool). The browser is 
written entirely in Java and runs as an applet in web 

browser.  The obvious grow path for the approach is to 
make IMS data available in XML form. 
In this paper, we have shown a new approach to the 
integration of engineering tools. The approach is based on 
an architecture, and uses high-level models and generation 
to build integration solutions. Experience has shown the 
feasibility of the approach, and also indicates the directions 
for further improvements.  
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