

Integration of Design Tools and Semantic Interoperability

Gabor Karsai
Jeff Gray

Institute for Software-Integrated Systems
Vanderbilt University

PO Box 1829 Station B
Nashville, TN 37235,USA

{gabor,jgray}@vuse.vanderbilt.edu

George Bloor
Phantom Works

The Boeing Company
George.Bloor@jsf.boeing.com

Abstract

The integration of software tools used in an engineering
process is a problem that arises frequently in large-scale
projects. Simple solutions for integration are insufficient in
the case of complex engineering tools and processes. The
integration solution must also account for the evolution of
the system, as tools and processes change over time. This
paper shows a new approach to the problem, describes the
supporting infrastructure, and discusses the background
model-integrated generation technology.

Introduction
Every large-scale project on computer-based systems that
uses software-based engineering tools has to face the
problem of their integration. Each of these tools is usually
a highly specialized package that contributes to a crucial
step in the engineering process. While tool vendors may
offer tool suites, the tools used in practice are very rarely
integrated across the engineering process. In many cases,
the tools were simply not designed with easy integration in
mind.
Current systems engineering tools tend to be built as
isolated “stovepipe” solutions. They must inter-operate,
but often the integration happens by chance, in a very
human labor-intensive way, leaving users frustrated. The
traditional solution of proposing the “next-generation
systems engineering tool” that does everything that current
individual tools do, and will be “on-line in a year from
now,” does not help in alleviating the problems. Instead,
we need to look for an integration of these tools —as they
are— into a coherent framework, which ensures semantic
interoperability among the component systems along with
a strategy and toolset that supports this process.

Solving the integration problem is not easy. The diversity
of tools, the variations in their method of user interactions,
and differences in file formats make the task formidable.
However, the potential benefits are also great: using
information captured in one tool in the context of another
tool saves valuable, but often uninteresting, effort.
 In this paper a solution is shown which approaches the
integration issue from a model-based viewpoint. Model-
integrated computing [7] relies on the interpretation and
use of domain-specific models in run-time environments.
The domain models capture the relevant entities and their
relationships in a specific domain, and are used in a
generation process to create executable systems. One,
often used example of MIC is that of the signal processing
domain: models capture signal processing architectures in
the form of signal flow diagrams, which are then compiled
into an executable system that implements the
specification. MIC has been successfully applied in the
development of various computer-based systems,
including aerospace, manufacturing industry, and testing
applications.
This paper shows how the MIC technology can be applied
in the integration problem discussed above. The trick is to
represent (i.e., ‘model’) the semantics and the behavior of
the individual tools and the transformations among them,
and then generate software components that solve the
integration problem. The approach has been used to solve
the integration of a number of tools. Experience indicates
that the techniques are feasible for large-scale integration
as well.

Background
The development of computer-based systems typically
involves a large number of engineering tools addressing a
wide range of domains. One should recognize that
Computer Based Systems are not simply software systems,
but rather computing systems (software and hardware) that
are tightly coupled to their respective environments. This
necessitates the use of various engineering tools that model
and analyze all aspects of the system, including the
computing system and the physical environment. The
trouble is, the tools are specialized for particular domains
and tasks in those domains, and they very rarely
communicate with each other (unless they form a tool-
suite, typically implemented by a single vendor).
Whenever the tool integration issue comes up,
organizations tend to generate quick solutions that
eventually turn out to be insufficient. Some of these non-
solutions are reviewed below.

File Translators
The first “solution” that comes to mind is to argue for
using “file translators” that translate between the file
formats of the different tools. File translators are
specialized programs which do nothing more than read
data generated by one tool (typically the physical data file)
and convert its contents into another data file suitable for
consumption by another tool. Unfortunately, this approach
has very some serious drawbacks. The translator writer has
to be extremely proficient both in the file formats of the
individual tools, and in the semantics of those tools, to be
able to write the translator. The translator writing is a very
time-consuming process: it requires special skills and
intricate knowledge of the tools to be successful. Arguably
the biggest shortcoming of the approach is its inherent
problem with scalability. It is trivial to show that the
number of translators required to integrate n tools is
proportional to the square of the number of tools. To put it
in another form: whenever a new tool is added to the suite,
the same number of translators has to be prepared as the
number of tools already in the package. This argument
assumes the need for full tool interoperability, of course.

Middleware: CORBA, COM
One can consider the tools to be integrated as software
components. There are well-established standards and
tools for software component integration: CORBA[2] and
COM[1] being the two major examples. It seems obvious
that a middleware package can be used to solve the
integration problem easily. Unfortunately, this solution
also has its problems.
Object-oriented middleware systems rely on the “remote
object method invocation” approach. That is, they provide
support for making method invocations on objects hosted
on various nodes of a network. The theory is that one can

create a “wrapper” object around tools, and in some way
these tools will communicate with each other through
remote method calls. Now to design and implement the
communication between two tools can be very
complicated, and it can quickly become a nightmare for a
large number of tools. The point is that the middleware
provides relatively low-level facilities for tool interactions,
and all higher-level functions should be built from scratch.
Some sort of translation needs to be done as well that
requires deep understanding of tool behavior and data
structures. Furthermore, if the tool cannot simply be
“wrapped” as an object, one has to revert to the file
manipulation techniques mentioned above, with all its
shortcomings.

Universal language
This solution uses a radically different strategy from the
above, although it requires the support of at least one of
the above techniques. One can think about the tool
integration problem in the context of the particular
engineering process where it is needed. Processes (and
organizations) tend to have their own vocabulary and
idioms. So the idea comes: why not design a universal
“language” (a database schema, in practice) that will be
used by all the tools, across the process. Once a language
is defined, we just have to write translators for each tool,
or setup the middleware communications to use this shared
language. This is a more efficient solution because the
number of translators increases linearly by the number of
tools. Unfortunately, where the approach breaks down is in
the practical difficulty of coming up with this universal
language. Projects tools are often selected using a
opportunistic approach, and it is very difficult to make
changes to the “universal” language during the lifetime of
the project. It seems that the “universal” language is not
very “universal” at all because it can’t be used on another
project.

Lessons Learned
Integration of systems (into a system of systems) is
traditionally one of the most expensive and difficult tasks
in the engineering of software systems. The situation is
only made worse by the lack of systematic approaches.
While component integration technologies, like CORBA,
DCOM, etc., solve part of the problem, they do not give
much help in integrating two sophisticated applications
(i.e. systems), let alone a large number of them. Higher-
level, semantically aware software tools are needed that
help in building integration solutions, with minimum
impact on existing systems, capitalizing on existing
investment.
Specifically, there are a couple of important points one
learns from the above discussion.
• Attention should be paid to the effort required to

integrate a new tool. An integration solution does not

work if the integration costs more than having people
manually translate the data.

• Scalability is an issue. If adding a single new tool
requires the writing of a number of new software
packages, then the approach is clearly a failure.

• One needs a very deep understanding of the tool
semantics before attempting any kind of integration.
How fast this understanding can be turned into an
integration solution will determine the success of any
kind integration paradigm.

Next an approach is described the addresses these issues
and offers a solution to the problem.

The approach
The techniques described above clearly indicate that a tool
integration solution should address the issue of semantic
interoperability. We want our tools to work together
towards a goal, and in order to do that, some mutual
understanding or, shared semantics is needed. The tool
integration solution should be the implementation vehicle
for this shared semantics.

M M
L R U

F R

F D E

L R U V A R

Figure 1: Tool integration

If one associates semantics with static semantics (in the
UML-sense [3]), the tool integration problem can be
visualized as shown on Figure 1. Static semantics can be
described as the integration of a data model that captures
the allowed entities and relationships in the tool’s data
with further logical constraints (Boolean invariants that
must be true on the data). If we have a tool X with a data
model, we want to take this data and map it into the data
model of another tool Y. If we restrict the data model used
to the “entity-relationship-attribute” variety [3], tool
integration means the solving the mapping problem
between two database schemas. Unfortunately, if we have
more than two tools, the mapping problem becomes
complicated, and we get to the same scaling problem as
that we have seen with the file translators. It is more
feasible to establish an integrated data model first, and
then map the data model of each tool into that as shown on
Figure 2. The integrated data model can be defined as a
data model that is rich enough to contain data from any of
the tools. Note that this integrated data model is neither

the union nor the intersection of the data models of the
individual tools, because tool data models will overlap
(although not completely). The integrated data model
(IDM) is the vehicle that implements the shared semantics
across the tools.

M M
LR U

FR
FDE

LR U V AR

O BS
U N ITM SG

A LR

Figure 2: Tool Integration with Integrated
Data Model

The Architecture
The approach presented here is architecture-based, shown
on Figure 3. The architecture contains two kinds of major
components: the Integrated Model Server (IMS), and the
Tool Adaptors (TA). The communication mechanism
between the major components is implemented in CORBA
(although any middleware package is suitable here). The
functions of the components are as follows.
The IMS is responsible for providing semantic translation
services for the constituent tools. By semantic translation
we mean a transformation of data from one data model
into another one while preserving the semantics of the
input data model and enforcing the semantics of the output
data model. Again, semantics is understood here as static
semantics, expressed in the form of constraints on the data.
The IMS also provides a short-term repository for storing
the result of the translation. The schema used in the
repository is that of the Integrated Data Model.

CM I Protocol (CORB A/CO M)CM I Protocol (CORB A/CO M)

INTEGRATED
M ODEL

DATABASE

Tool AdaptorTool Adaptor
for for

ToolTool--XX

SYN TACTICSYN TACTIC
M appingM apping

SEM AN TICSEM AN TIC
M appingM apping Sem antic Translator

for
Tool-X

Integrated M odel Server

Figure 3: Tool Integration Architecture

The TA-s are responsible for interfacing with the tool
directly. Their goal is to read and write tool data, directly
in the form the tool generates and expects it. The adaptors
ship the data read to the IMS and receive data from IMS
that they send to the tool. The TA accesses the tool’s data
in whatever way it is possible and suitable: through a data
file, a COM interface, or something else. Note that the TA
performs a syntactic translation on the data from the native
data format of the tool to that of the middleware data-
structures.
In a general sense the architecture operates as follows.
When a tool wants to make its data available for other
tools, its TA is started. The TA fetches the data from the
tool and converts it into the “network” format and ships it
to the IMS. The IMS receives it, performs a semantic
translation on it, and places the result into its repository. At
this point the data is transformed into an IDM-compliant
form. When another tool wants use the data just translated,
it accesses the IMS. The IMS performs a semantic
translation on the data from the IDM-compliant data model
into the tool-specific data model, and ships the result to the
tool’s TA. The TA will take the data in network form and
convert it into the physical data format of the tool.
Note that the architecture separates the concerns of syntax
and semantics, and assigns them to two different
components: the IMS and the TA-s. This distinction makes
the development of the integration solution easier. The
binding between the major components is the middleware,
specifically a protocol for data interchange.

The Common Model Interface Protocol
The Common Model Interface (CMI) protocol defines the
rules of communication and the form of the data-structures
used in the interactions between the IMS and the TA-s.
The CMI is the same across all the tools: this is the
common, canonical “form” into which all tool adaptors
translate their data. The protocol has many components
related to data transfer and interaction with the IMS, but
only the most significant aspects will discussed here.
Note that the protocol is defined in the form of a CORBA
IDL specification, and as such it relies on the remote
method invocation capabilities provided by CORBA. In
the architecture, the objects on which the methods are
executed always reside in the IMS.
The primary purpose of the protocol is to facilitate data
transfer between the TA-s and the IMS. The core data
model used in CMI is a variant of the traditional entity-
relationship-attribute data model. Data consists of
attributed objects, which can be models, entities, and
relations. An attribute is simply a key-value pair (the data
type of values must be from a small, but powerful set of
primitive data types, and arrays of primitive values are
allowed). An entity is a simple attributed object, without
any further structure. A relationship is an attributed object
that has two collections of objects, called roles, associated

with it: these collections contain entities or models that
play those roles in the relation. A model is an attributed
object that contains entities, relations, and other models.
This simple data model is sufficient to express data coming
from any tool, but because of the differences among the
tools it is not sufficient for precise differentiation among
the tools. Therefore, each data object is tagged with a type
tag that indicates the meaning of the object.
The CMI makes this distinction between the data and its
type apparent by dealing with the data on two-levels.
Meta-data describes the data model of a particular tool.
Physically, meta-data contains models, entities, and
relations, but these are meta-models, meta-entities and
meta-relations that describe the tool’s data model. The
IMS exposes the meta-data of each of the tools as CORBA
objects. Thus, each tool – or a generic browser – can
access the meta-data for each of the tools. The instance-
data is data to be transferred. The instance-data contains
models, entities and relations, where each data object is
tagged with the corresponding meta-data object’s id
(technically an object reference). This tagging makes it
possible for the IMS to figure out what the “real” type of a
data object is. Also, this makes it possible for a TA to get
the same information.
Thus, the TA should access the data model of its tool
available as meta-data objects in the IMS. Whenever data
is shipped to the IMS, the (instance) data objects should be
tagged with the meta-data references. Whenever instance
data is received, it will be tagged with the same meta-data
references, and the TA can parse and process the packet
accordingly.
The remaining parts of the CMI deal with the specific
interactions with the IMS. These interactions are expressed
in the form of object interfaces. Some of the capabilities
are listed below:
• Directory services. These interfaces define access to

the contents of the IMS repository, which is organized
like a directory hierarchy.

• Session management. This interface implements the
operations for fetching and storing data, removing
objects, etc.

• IMS access. This interface implements the
login/logout capabilities, and some other global
operations (e.g. retrieval of IMS clock data).

The Evolution of the System
The architecture discussed above only gives the framework
for implementing an integration solution: it does not speak
about how the system evolves. When implementing an
integration solution one has to recognize that the solution
will never stay constant: new tools will be added, tool data
models will introduced, and, perhaps tools will be
removed. This continuous change necessitates the designer
to place emphasis on how the system will evolve over
time.

During the evolution of the system, the most frequent
problem is the addition of new tools. This means, a new
tool adaptor has to be developed, and the IMS should be
upgraded to “understand” the new tool. The upgrade
means changes in the IDM (for the integrated model
database), and the development of a new semantic
translator that can manage the data of the new tool. Both of
these are non-trivial steps, especially considering that we
can already have a number of tools integrated in the
system.
The solution chosen here is closely related to the previous
work on Model-Integrated Computing (MIC). In MIC,
domain models are used to generate components that
implement a system. In the integration framework, there
are two kinds of models:
1. data models of the tools and that of the integrated

data, and
2. translation (or mapping) models that capture how to

transform data in one semantics into another
semantics.

If we somehow can capture and utilize these models in
constructing an integration solution, then we can improve
the evolutionary capabilities of the architecture.
In the actual implementation the following has been done.
IMS was developed not as a stand-alone, monolithic
solution but rather as a “framework” that contains reusable
components. Figure 4 shows the internals of a semantic
translator in the IMS architecture. The reusable
components contain the generic interfaces to the network
side and to the repository side (accessible through the very
same interface – just different implementations), the
implementation of CMI services (directory, session and
IMS access), and other housekeeping functions. To
instantiate the IMS framework for a particular tool
integration solution one has to build the semantic
translators.

INTEGRATEDINTEGRATED
MODELMODEL

DATABASEDATABASE

UP TranslatorUP Translator

DOWN TranslatorDOWN Translator

Constraint EnforcerConstraint Enforcer

DatabaseDatabase
InterfaceInterface

Model Model
Instance Instance

DataData

Tool Meta DataTool Meta Data

C
M

I Im
pl

Figure 4: The Architecture of a Semantic
Translator

The semantic translators are not built by hand, rather, they
are generated from models. Figure 5 shows how the
semantic translators are structured and how they are
generated. Each semantic translator has a set of static
objects that represent the meta-data of the corresponding
tool. The code for these objects is automatically generated
from the data model of the tool. When the actual
generation of the translator happens, the user must provide
three models to the generator: the data model for the input,
the data model for the output, and the translation model.
(That is, each tool has two translators: one for translating
into the IDM, and another one for translating from IDM.)
The generator creates C++ code from the mapping
specification which is then linked with the other generated
code and the framework library elements to build up the
IMS.
Naturally the specification of the translation and mapping
is key to the whole solution. One might think that the
mapping is easy to formalize in the form of mapping rules
of the form:

map: (M,E,R,A) -> (M’,E’,R’,A’)
where M,E,R, and A stand for models, entities, relations,
and attributes, respectively. It is very easy to invent a
simple mapping language that captures this, and it is
simple to use and simple to generate code from it.

INTEGRATED
MODEL

DATABASE

UP TranslatorUP Translator

DOWN TranslatorDOWN Translator

Constraint EnforcerConstraint Enforcer

Database
Interface

Model Model
Instance Instance

DataData

Tool Meta DataTool Meta Data

C
M

I Im
pl

GeneratorGenerator

Tool MetaTool Meta
ModelModel

Mapping ModelMapping Model Meta Model ofMeta Model of
Integrated ModelsIntegrated Models

Figure 5: Generation of a Semantic

Translator
However, after looking at the first domain data model of
an actual application the mapping language idea was
quickly abandoned. One problem with the data model was
as follows. In one of the tools the surface data model was a
simple object model, with a single level of containment.
That is, models of type M contained entities of type E. In
another tool the data model was hierarchical: models of
type M’ contained entities of type E’ and models of type
M’. At closer inspection, it turned out that the first tool’s
data was really hierarchical: each entity contained an
attribute (a string), whose value indicated the position of
the entity in a hierarchy. That is, the attribute value was

used to encode a hierarchical relationship. This lead to the
conclusion that the translation model needs the full power
of a programming language in practical situations, and,
while the mapping language is appealing, it is not
sufficient.
However, to write a translator without any help, from
scratch can still be a daunting task. A practical engineering
solution was chosen to help in this situation. Based on
previous work on the specification of model interpreters
[5], a language has been defined and the corresponding
generator tool developed which supports the rapid
construction of the translators.
The approach is based on a variant of the Traversal/Visitor
pattern [4][6]. The semantic translator traverses the input
data structure, starting from a root point (which is always a
model). As it performs the traversal (possibly in multiple
passes), it executes “actions”. Actions can generate an
output object, change an output object, etc. During the
traversal process one can also pass along shared data
structures, a kind of context, which is used to store state
information with the traversal.
The actual form of the specification contains two parts: the
traversal specification and visitor specification. Traversal
specifications give the answer to following question: “if
we are at node of type X, where do we go next?” The
“next” should be an object that is reachable from objects of
type X. Visitor specifications capture what should be done
when visiting a particular kind of object. There are two
options: either take a “user action” (i.e. execute a piece of
user-supplied code), or it can proceed with the traversal
(i.e. call the traverser with the object being visited). These
can be intermixed and/or omitted completely. Note that the
specification has an outer, high-level language for
describing the structure, while the inner parts are written in
a procedural language, C++ in our case. The generator
translates the above, mixed form specification into straight
C++, building the code sequences for the traversal and
iterative parts during the process. The resulting translator
code then is linked with the rest of the IMS framework.
We have found that writing translators using the
traversal/visitor approach is very convenient, because the
uninteresting parts (pointer tracking, iteration, selection
next steps), are automatically taken care of by the
generator.
Another capability of the semantic translators is the
handling of constraints. One can include Boolean
expressions into the input of the generator that capture the
static semantics of the data. From these expressions the
generator creates C++ procedures that “evaluate” the
expression in the context of the result of the translation
(which is a data structure). This evaluation is a kind of
post-processing, which verifies that the data is compliant
with the constraints of the data model. In case of failure, an
error is raised, and the translation cancelled. The objective
of this constraint checking is to ensure that whatever data
the tool receives from IMS is compliant with the semantic

rules implicitly enforced by the tool. On Figure 4, the box
labeled “Constraint enforcer” represents this function.
To summarize, the system evolution in the IMS is
supported by the use of models (both data models and
translation models) and the use of generators. Of course,
when a new tool is added the integrated data model may
have to be revised. Because the data model is also captured
in the form of an explicit model, this usually does not
cause problems. Experience shows that adding new things
to the data model is trivial because the already existing
translators do not have to be modified (assuming suitable
defaults are used for the newly defined attributes).
The evolution of the system with respect to the tool
adaptors is also supported by a model-integrated approach.
A tool adaptor framework has been defined that contains
reusable components for building tool adaptors. The
framework mostly deals with the CMI issues, because tool
specific data formats are quite different and it is hard to
come up with a generic solution. The tool data model is
used to generate “glue-code” that lets the tool adaptor
writer access CMI data structures using notions of the
tool’s domain. That is, instead of referring to Models,
one can refer to XYZModels, where XYZModel is a tool
specific class.
Thus, the process of upgrading an integration solution is as
follows.
1. The data model of the tool to be integrated has to be

determined. This data model should be expressed in
the form suitable for processing by the generators.

2. The integrated data model needs to be updated (if at
all) to be able to capture data from and for the new
tool.

3. The tool adaptor has to be developed which reads and
writes physical tool data. This requires the
understanding the physical data layout, but does not
require any semantic processing.

4. The semantic translator has to be modeled and
generated. The modeling involves the description of
the translation process in terms of traversal/visitor
specifications.

The above process was found quite manageable in
practical situations. Note that the process does not deal
with migrating the tool data. The assumption is that the
tools “own” the data. The IMS contains only a short-term
repository, whose contents can be discarded when a new
upgrade is necessary. Because IMS merely provides
translation and publication services, it was not designed as
a process-database solution.

Experience, Conclusions and Future
Work
The approach described above has been used to develop
integration solutions for various engineering tools. In one
case, three tools have been integrated, in another case
another four tools. For the latter case, the sizes of the

individual schemas and that of the integrated schema are
shown in the table below.

 Model types
[Attributes]

Entity types
[Attributes]

Relation
types

Tool-1 1[1] 4[2,3,6,1] 3
Tool-2 1[1] 2[7,19] 1
Tool-3 2[1,5] 4[4,3,6,5] 2
Tool-4 2[1,3] 2[4,2] 1
Integrated 2[1,8] 5[1,2,19,6,2] 4

The main effort went into discovering the semantics of the
tools, and formalizing their data model. Once these were
available, the rest of the work was fairly mechanical. If the
semantic translators are correct, the system integration task
for the IMS is quite trivial. The typical size of the
translators in the above examples was about 2-3 pages of
traversal/visitor specifications and C++ code. Experience
has shown that a data model can be developed in one man
week, the corresponding semantic translator(s) written in
about 2 man weeks. The development of the tool adaptors
depends on the experience of the programmer and the
difficulty in accessing the tool’s data. In the projects
mentioned above, it required 1-4 man weeks.
In this project there have been several lessons learned,
among them:
• Tool integration involves both semantic and syntactic

transformations. It is conceptually cleaner to keep
these issues separate than solving everything in one
step.

• Complexities in the data may necessitate the use of the
full power of a programming language when
translating the data.

• Using a framework as infrastructure and generating
components from models can enhance the evolvability
of the system.

Strictly speaking, the solution described addresses the data
integration problem. In some cases, especially when tools
are used in an engineering process, another forms of
integration might be necessary. For example, event-based
integration is necessary to ensure the proper sequencing on
the usage of the tools. One might think about a “workflow”
engine, which sequences the operations in a process. It
might be possible for the IMS to enforce these sequencing
rules, but this requires extensions to the CMI.
Another opportunity for improvements is the integration of
web and other technologies. As an initial experiment, a
generic tool has been implemented that lets the end-user
browse the contents of the IMS. The tool uses the CMI to
communicate with the server, and can retrieve and
visualize both meta-data and instance-data. After a meta-
data model is selected, the instance data is shown in a form
that is compliant with the meta-data specifications (i.e. the
browser “acts” as if it were a specific tool). The browser is
written entirely in Java and runs as an applet in web

browser. The obvious grow path for the approach is to
make IMS data available in XML form.
In this paper, we have shown a new approach to the
integration of engineering tools. The approach is based on
an architecture, and uses high-level models and generation
to build integration solutions. Experience has shown the
feasibility of the approach, and also indicates the directions
for further improvements.

Acknowledgement
The DARPA/ITO EDCS program (F30602-96-2-0227),
and the Boeing Company have supported the activities
described in this paper.

References
[1] Box, Don: Essential COM, Addison-Wesley, 1998.
[2] Common Object Request Broker Architecture,
http://www.omg.org.
[3] Fowler,M: UML Distilled, Addison-Wesley, 1997.
[4] Gamma,E., Helm,R.,Johnson,R.,Vlissides,J.: Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.
[5] Karsai, G.: Structured Specification of Model
Interpreters, in Proc. of International Conference on
Engineering of Computer-Based Systems, 1999.,
Nashville, TN.
[6] Lieberherr, K.: Adaptive Object-Oriented Software,
International Thomson Publishing, 1996.
[7] Sztipanovits, J., Karsai, G.: “Model-Integrated
Computing”, IEEE Computer, pp. 110-112, April, 1997.

Gabor Karsai is Associate Professor of Electrical and
Computer Engineering at Vanderbilt University and co-
director of the Institute for Integrated Information
Systems. He has over twelve years of experience in
software engineering. He conducts research in the design
and implementation of advanced software systems for real-
time, intelligent control systems, and in programming tools
for building visual programming environments, and in the
theory and practice of model-integrated computing. He
received his BSc and MSc from the Technical University of
Budapest, in 1982 and 1984, respectively, and his PhD
from Vanderbilt University in 1988, all in electrical and
computer engineering. He has published over 60 papers,
and he is the co-author of four patents.

Jeff Gray received the BSc degree in computer science
from West Virginia University in 1991 and the MSc degree
in computer science from WVU in 1993. As a research
assistant at ISIS, he is pursuing the PhD degree in
computer science at Vanderbilt University. His interests
are formal specification languages and aspect oriented
programming. His current diversion is the creation of an
extensive list of ambiguous/inconsistent statements
(www.vuse.vanderbilt.edu/~jgray/ambig.html).

George Bloor is a Senior Principal Engineer working for the Boeing
Joint Strike Fighter Program and is currently serving as the lead
engineer for the Joint Strike Fighter's Prognostic and Health
Management Test Bench. He joined Boeing's Advanced Research
Group, then known as the High Technology Center, in 1987. While
at Boeing, he has worked in the disciplines of telecommunications,
flight controls and avionics. Prior to joining Boeing, George held
positions at Hewlett-Packard and at AT&T Bell Labs. He has earned
a Masters Degree in Electrical Engineering from the University of
Washington and a Masters Degree in Mathematical Statistic from
Iowa State University. George has published materials in the IEEE,
SMC, and for several other professional societies.

