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Abstract 
Despite the increasing interest in model-driven engineering, 
there are many open issues that need to be addressed to 
advance the technology and promote its adoption. This 
position paper outlines several current limitations of model 
transformation, with a specific emphasis on model 
optimization. A primary shortcoming that can be found in 
many model transformation approaches and tools is the lack 
of formal semantics to define the meaning of a modeling 
abstraction. This inadequacy is the source of many problems 
surrounding the practice of model engineering. 

1. Introduction 

Program transformation [2] is a widely used technique to 
support software evolution and maintenance, which 
transforms an input source to a modified target. Within the 
context of Model-Driven Engineering (MDE) [1], model 
transformation [3] plays a similar role of importance. Instead 
of transforming source code, a model transformation can be 
applied to evolve models that represent a higher level of 
abstraction. Although program and model transformation 
process different software artifacts, they share several 
similarities. This paper identifies several problems of model 
transformation and suggests that the more established area of 
program transformation may provide a solution context. 

A special type of program transformation is called 
rephrasing [2], which transforms a program into a different 
program in the same language (i.e., the source and target 
programs are written in the same programming language). 
Similarly, in model transformation, it is also common to 
transform a model to another model in the same domain (i.e., 
both the source and target models conform to the same 
metamodel), which is called an endogenous transformation [3]. 
Such transformations represent refinements that are realized at 
the same level of abstraction. An example of rephrasing, 
which is especially interesting for our discussion, is the 
modification of a particular source code (or model) to support 
some desired optimization. 

One essential requirement of optimization is to ensure that 
the semantics of the program (or model) is preserved in the 
whole process of optimization. That is, the target program (or 
model) must have the same meaning as the source input. One 
approach to achieve this level of correctness is to make a 
formal proof based on the semantics of the desired 
optimization. We conducted a small experiment to implement 
optimization for a simple domain-specific language (DSL) [4] 
and a domain-specific modeling language (DSML) [20] in 
order to make analogies between program optimization and 
model optimization. We discovered that the more mature 
foundation of programming language theory could be used to 
define the semantics of a DSL such that a formal optimization 
proof is realizable. However, for DSMLs, it was more 
challenging (and in some modeling tools not even possible) to 
prove optimization at the modeling level due to a lack of 
formal semantics for the modeling language. 

The paper is organized as follows: The next two sections 
introduce current approaches to define semantics for DSLs 
and DSMLs. A case study on optimizing a simple DSL and 

DSML is given in Section 4 to show that DSMLs often lack a 
formal approach to define semantics. In Section 5, some other 
problems raised by the lack of formal semantics in DSMLs 
are proposed for discussion, pointing toward future work. 
Finally, a conclusion offers a summary of our position. 

2. Methods for Representing Semantics 

There are several different methods that have been proposed 
to describe the semantics of programming languages in a 
concise, formal and complete manner [9]. They also have 
been successfully applied to define the semantics for DSLs. 
The following lists three main approaches to specify 
programming language semantics that may also be useful for 
defining the semantics of DSMLs. 

Denotational Semantics 

Denotational semantics [8] is a semantic definition technique, 
which is based on mathematical constructs. In denotational 
semantics, each language element is associated to a 
mathematical object by mapping functions. Concise and 
rigorous definition of objects and functions provides an 
excellent way to represent the meaning of constructs. 
Although the denotational semantics of DSMLs could be 
defined in terms of state changes, manipulating mathematical 
objects rather than DSML constructs lead to difficulties and 
complexity during implementation. 

Operational Semantics 

Operational semantics [10] can be used to specify the 
meaning of a programming language in terms of program 
execution on abstract machines. Semantic definitions are 
composed of rules, which describe specific effects of language 
constructs on an abstract machine. Each rule consists of 
preconditions that have to be met for the rule to apply and 
affects the transformation of the current state in some way. 
Applying the rules of operational semantics yields new states 
that gradually extend and finally replace the syntactic 
structures by auxiliary constructs and values. The final states 
of this transition system only contain values; they represent 
the result of the specification. Most of the DSML platforms 
that initiated a formal way of specifying the semantics have 
employed an operational style of the semantics definition (for 
more information, please see Section 4). 

Attribute Grammars 

An attribute grammar [11] is a formal technique used to 
specify static semantics as an extension of a context-free 
grammar. This technique can be used to specify dynamic 
semantics as an interpretation of constructs by defining a 
translation into lower level code. Attribute grammars are 
mostly utilized to check the correctness of the static semantics 
like variable type checking, compatibility between procedure 
definition and call. Attribute grammars form one of the 
essential parts of compilers and bring benefits such as 
automatic construction of compilers, interpreters and other 
language-based tools. However, the large number of rules 
required for a complete definition of a language may offer 
challenges when using attribute grammars to define a DSML. 



3. DSML Platforms and Semantics  

Compared with the rich and mature techniques and tools to 
define the semantics for programming languages, semantic 
specification and supporting tools in the context of DSMLs is 
still an open area. There have been a few initial approaches 
for semantic specification within DSML platforms, which 
generally provide a mechanism for specifying a mapping 
between the abstract syntax and the semantic domain. There 
are initial studies that extend denotational semantics (i.e., the 
denotational metamodeling [19] approach) or attribute 
grammars. In this section, approaches that are based on 
operational semantics are discussed. 

Atom3 [12] is a visual metamodeling tool that uses graph 
grammars to represent models. In addition to syntax definition, 
the tool includes code generation, model optimization and 
simulator specification facilities. In Atom3, operational 
semantics of models are defined as graph transformations 
based on graph rewriting. Graph transformations are 
composed of rules that map a source graph to a target graph. 
Although the tool enables definition of semantics in an 
abstract manner, relying on graph grammars typically 
introduces performance issues, which inherit from the time 
complexity of the graph matching algorithm [1]. 

Kermeta [13] is a model-driven toolsuite, which has been 
designed to provide tools to build models and actions in the 
same meta layer. To provide this functionality, the tool 
composes action metamodels with existing metalanguages 
(e.g., EMOF) and enables imperative control structures and 
iterators. This built-in support for specification of operational 
semantics enables the simulation and testing of metamodels. 
However, the necessity of defining the behavior of each 
concept in an imperative way results in code, which is written 
in the style of a general-purpose programming language. 

AMMA [17] and GME [18], which are two of the most 
known and mature non-commercial metamodeling tools, do 
not support the formal specification of DSML semantics 
natively. However, attempts were made for each tool to define 
the operational semantics of DSMLs via Abstract State 
Machines (ASM) [15]. These attempts were very similar and 
specified the semantics as operational rules through a 
sequence of state transitions on the ASM. The main difference 
was that the attempt in GME used an external tool 
(Microsoft’s ASML) to define the semantics [7]. The ASML 
tool was connected via transformations in the GREAT [16] 
transformation language. The effort to add semantics to 
AMMA integrated the semantics definition directly within the 
platform, rather than an external tool [14]. 

4. Example Program and Model Optimization 

We implemented a simple Robot language [5] that can be used 
to control the movement of a virtual robot. The grammar and 
its denotational semantics for the Robot language are shown 
in Figure 1. In the semantics part, functions C and P map to a 
mathematical object, which maps the Robot position to a new 
position based on a command sequence. In order to 
demonstrate the problem, we use both a DSL and DSML to 
define this language and show the optimization problem by 
comparison. In Figure 2 (left column) a simple program in the 
Robot language is shown. 

Suppose that we desire to optimize the program in Figure 
2 to increase the efficiency of its execution. In Optimization 1, 
the sequence of moves can be rearranged so that the same 
type of moves are adjacent. In Optimization 2, some 
combinations of moves have no effect and can be eliminated 
(e.g., down up ). The rationale behind Optimization 1 is that 
the robot can move faster if there is no need to change the 

direction. Intuitively, both are correct and reasonable 
optimizations. However, we believe that all transformations, 
in particular optimizations, should be based on proofs that 
utilize formal language semantics. In the case of the Robot 
DSL, the proof was not hard because a formal semantics 
definition is available [5]. The proof is given in Figure 3. To 
implement the optimization at the DSL level, several tools are 
available, such as program transformation systems [2] and 
language construction environments [4]. Most of these tools 
transform the program by syntax pattern matching. For 
example, in order to realize Optimization 1, a transformation 
rule could transform the program pieces that match the pattern 
down up down into down down up. By executing the rule 
until no more changes can be made, the same type of move 
can be constructed. For Optimization 2, a transformation rule 
can match down up and eliminate the contradicting moves. 

 
P ::= begin C end 
C ::= left | right | up | down | C1C2 
 

P : Program → Int*Int   
P [[ begin C end ]] = C [[ C ]] (0,0) 
 
C :: Command → Int*Int → Int*Int   
C [[ left ]] (x,y) = (x+Δx,y+Δy) where Δx=-1 and Δy=0 
C [[ right ]] (x,y) = (x+Δx,y+Δy) where Δx=+1 and Δy=0 
C [[ down ]] (x,y) = (x+Δx,y+Δy) where Δx=0 and Δy=-1 
C [[ up ]] (x,y) = (x+Δx,y+Δy) where Δx=0 and Δy=+1 
C [[ C1 C2 ]] (x,y) = let (x+Δx1, y+Δy1) = C [[ C1]] (x,y) in 
let (x+Δx1+Δx2, y+Δy1+Δy2) = C [[ C2]] (x+Δx1, y+Δy1) in 
 (x+Δx1+Δx2, y+Δy1+Δy2) 

Figure 1. Context-free Grammar and Denotational Semantics 
for the Robot Language 
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Figure 2. Program Instances written in Robot Language 
 

To prove "begin C1 C2 end" = "begin C2 C1 end" 
We have to show that: 
P [[ begin C1 C2 end ]] = P [[ begin C2 C1 end ]] 
In other words, we have to prove: 
C [[ C1 C2 ]] (0,0) = C [[ C2 C1 ]] (0,0) 
Since: 
C [[ C1 C2 ]] (0,0) = let (Δx1, Δy1) = C [[ C1]] (0,0) in 
  let (Δx1+Δx2, Δy1+Δy2) = C [[ C2]] (Δx1, Δy1) in 
    (Δx1+Δx2, Δy1+Δy2) 
C [[ C2 C1 ]] (0,0) = let (Δx2, Δy2) = C [[ C2]] (0,0) in 
  let (Δx2+Δx1, Δy2+Δy1) = C [[ C1]] (Δx2, Δy2) in 
     (Δx2+Δx1, Δy2+Δy1) 
Also: 
(Δx1+Δx2, Δy1+Δy2) = (Δx2+Δx1, Δy2+Δy1)  
     (due to associativity of +)  
We can get: 
C [[ C1 C2 ]] (0,0) = C [[ C2 C1 ]] (0,0)  
Therefore: 
P [[ begin C1 C2 end ]] = P [[ begin C2 C1 end ]] 

Figure 3. Proof for Optimization 1 



To achieve the same formal analysis capabilities at the DSML 
level is still a major challenge, due to the lack of formal 
semantic specification for DSMLs. The metamodel for the 
Robot language is simple: a robot with two attributes to 
record the coordinates can contain one or more movement 
commands. The direction attribute in the movement can 
be one of the four - left, right, up, and down. Figure 
4 is the metamodel for the Robot language. 

 

Figure 4. Metamodel for Robot Language 

In many modeling tools, the semantics of the language is 
defined solely by a model interpreter that translates the model 
representation into some other representation. The model 
interpreter traverses each element of the model and generates 
corresponding code. In this experiment, we implemented the 
Robot language in GEMS [6] and the model interpreter was 
written in Java. Figure 5 is an excerpt of the interpreter code. 
As can be seen, the semantics of each modeling element is 
defined by Java code. In this case, if the element is an action 
left, executing the code in the visitLeft method will 
change the corresponding coordinates and display them. Thus, 
to understand the meaning of a modeling language requires 
that the Java code representing the interpreter should be 
comprehended fully. This represents a poor solution to 
semantics and does not provide a representation that can be 
easily understood and processed (i.e., the concerns of the 
programming language hide the intention of the domain). This 
manner of representing semantics also does not allow 
semantic reasoning based on proofs. Several existing 
modeling tools force this style of code generation on the user 
with the resulting undesirable situation with respect to clear 
semantics of the DSML. Although some initial promising 
attempts focus on directly using or mapping the model 
concepts to existing models of computation (e.g., action 
semantics, denotational semantics, Abstract State Machines 
(ASM) [7]), they are not at the same level as the domain 
represented by the DSML. Because these alternative models 
of computation are at different levels of abstraction and 
represented in different technical spaces, there exist many 
challenges in providing a semantic mapping. 
 

public void visitLeft(Left tovisit) { 
 
  int temp_x = Integer.parseInt((String)(tovisit. 

  getParent().getAttribute("Pos_x"))); 
  int temp_y = Integer.parseInt((String)(tovisit. 

  getParent().getAttribute("Pos_y"))); 
 
  MakeAction((Robot)(tovisit.getParent()),    
                         tovisit, temp_x, temp_y); 
  displayRobotPosition(tovisit); 
  visitContainer(tovisit); 
 
} 

Figure 5. An Excerpt of the Robot Interpreter 

 
Due to these limitations, it is challenging to base model 
optimizations on DSML semantics. Without the ability to 
prove properties of an optimization, the resulting model 
instance may represent an incorrect transformation from the 
source model. The situation is somewhat similar to the state of 
programming language research during the early 1960s, 
before formal semantic approaches were invented, when 
researchers used concrete operational semantics. During those 
times, the meaning of a language construct was described by 
translation to machine code or by the interpreter’s code. 
Different formal semantic methods were developed with the 
aim to prove the properties of language constructs and to 
automatically generate compilers or interpreters, as well as 
other language tools (e.g., editors, debuggers, test engines). 

5. Other Problems Related with Semantics 
Without a formal and uniform specification for DSML 
semantics, several challenges are essential to the success of 
MDE. The following discussion represents our position for the 
workshop, which claims that program transformation systems 
and traditional language engineering tools may offer insight 
into a solution to some of these challenges. 

How to improve readability of DSMLs 

The semantics embedded in the model interpreter in the form 
of code is hard to comprehend. In addition, different modeling 
tools have different mechanisms to traverse the model 
instance, which makes the understanding process more 
difficult. For instance, a GEMS model interpreter works in a 
depth-first search pattern, but GME traverses the model in the 
order of types of the model elements. 

How to automatically generate model interpreters 

Without a formal and unique representation for semantics, a 
model compiler or interpreter cannot be generated 
automatically. For DSLs, a number of tools exist to support 
the generation of compilers according to the syntax and 
semantics specifications, such as Lisa [23], ASF+SDF [24], 
ANTLR [25]. A Lisa specification for the Robot language is 
shown in Figure 6. This robot language specification can be 
processed by Lisa to produce several generated files that are 
translated to a general-purpose language to provide 
executabiltiy. However, no such mechanism is generally 
available for DSMLs. A further consequence is that various 
other language-based tools such as debuggers, test engines 
also cannot be generated automatically. 

lexicon { 
        keywords  begin | end 
        operation left | right | up | down 
    ignore [\0x0D\0x0A\ ] 
    }                                                
    attributes int *.inx; int *.iny; 
                 int *.outx; int *.outy; 
    rule start { 
 START ::= begin COMMANDS end compute { 
     START.outx = COMMANDS.outx; 
     START.outy = COMMANDS.outy; 
     COMMANDS.inx = 0; 
     COMMANDS.iny = 0; 

};
Figure 6. An Excerpt of the Robot Specification in Lisa 

How to verify model compiler correctness 

Model compilers and interpreters are implemented mainly by 
general-purpose programming languages. Hence, verifying a 
model transformation is very difficult, if not impossible. 



How to prove properties of domain concepts 

Proving properties about concepts and relationships in the 
domain is not possible due to the lack of formal semantics of 
DSMLs. For instance, in the Robot case, the concept that two 
movements can be switched (proved in Figure 4) is an 
important property for this domain. However, an equivalent 
proof on the DSML level is difficult if verification, 
optimization, and parallelization of models are typically 
expressed through general-purpose programming languages. 

How to make model transformation languages connected 
with a semantic definition 
Currently, many model transformation languages (e.g. ATL 
[21], C-SAW [22]) exist, and have shown initial success in 
different aspects of model transformation. Although many of 
the languages are declarative and at a high level of abstraction, 
they do not support formal specification of the semantics or 
validation of the transformation. The rules are based on a 
developer’s subjective decisions, which are not reliable. 

6. Conclusion 

Due to the lack of formal semantics for DSMLs, the real 
meaning of a modeling language is available only in 
associated model interpreters. As a consequence, model 
transformations cannot be verified for preserving the 
semantics, which is a serious shortcoming compared to the 
capabilities offered by textual DSLs that are defined through 
grammars and language definition tools. At the workshop, we 
will outline these challenges and indicate how lessons from 
the areas of program transformation and language definition 
might address some of the challenges of representing the 
semantics of modeling languages. 
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