
Model Transformations Require Formal Semantics
1Yu Sun, 1Zekai Demirezen, 2Tomaž Lukman, 3,1Marjan Mernik, 1Jeff Gray

1 University of Alabama at Birmingham
Dept. of Computer and Information Sciences
{yusun,zekzek,gray}@cis.uab.edu

2 Jožef Stefan Institute
Dept. of Systems and Control
tomaz.lukman@ijs.si

3 University of Maribor
Faculty of Elec. Eng. and Computer Science

marjan.mernik@uni-mb.si

Abstract
Despite the increasing interest in model-driven engineering,
there are many open issues that need to be addressed to
advance the technology and promote its adoption. This
position paper outlines several current limitations of model
transformation, with a specific emphasis on model
optimization. A primary shortcoming that can be found in
many model transformation approaches and tools is the lack
of formal semantics to define the meaning of a modeling
abstraction. This inadequacy is the source of many problems
surrounding the practice of model engineering.

1. Introduction

Program transformation [2] is a widely used technique to
support software evolution and maintenance, which
transforms an input source to a modified target. Within the
context of Model-Driven Engineering (MDE) [1], model
transformation [3] plays a similar role of importance. Instead
of transforming source code, a model transformation can be
applied to evolve models that represent a higher level of
abstraction. Although program and model transformation
process different software artifacts, they share several
similarities. This paper identifies several problems of model
transformation and suggests that the more established area of
program transformation may provide a solution context.

A special type of program transformation is called
rephrasing [2], which transforms a program into a different
program in the same language (i.e., the source and target
programs are written in the same programming language).
Similarly, in model transformation, it is also common to
transform a model to another model in the same domain (i.e.,
both the source and target models conform to the same
metamodel), which is called an endogenous transformation [3].
Such transformations represent refinements that are realized at
the same level of abstraction. An example of rephrasing,
which is especially interesting for our discussion, is the
modification of a particular source code (or model) to support
some desired optimization.

One essential requirement of optimization is to ensure that
the semantics of the program (or model) is preserved in the
whole process of optimization. That is, the target program (or
model) must have the same meaning as the source input. One
approach to achieve this level of correctness is to make a
formal proof based on the semantics of the desired
optimization. We conducted a small experiment to implement
optimization for a simple domain-specific language (DSL) [4]
and a domain-specific modeling language (DSML) [20] in
order to make analogies between program optimization and
model optimization. We discovered that the more mature
foundation of programming language theory could be used to
define the semantics of a DSL such that a formal optimization
proof is realizable. However, for DSMLs, it was more
challenging (and in some modeling tools not even possible) to
prove optimization at the modeling level due to a lack of
formal semantics for the modeling language.

The paper is organized as follows: The next two sections
introduce current approaches to define semantics for DSLs
and DSMLs. A case study on optimizing a simple DSL and

DSML is given in Section 4 to show that DSMLs often lack a
formal approach to define semantics. In Section 5, some other
problems raised by the lack of formal semantics in DSMLs
are proposed for discussion, pointing toward future work.
Finally, a conclusion offers a summary of our position.

2. Methods for Representing Semantics

There are several different methods that have been proposed
to describe the semantics of programming languages in a
concise, formal and complete manner [9]. They also have
been successfully applied to define the semantics for DSLs.
The following lists three main approaches to specify
programming language semantics that may also be useful for
defining the semantics of DSMLs.

Denotational Semantics

Denotational semantics [8] is a semantic definition technique,
which is based on mathematical constructs. In denotational
semantics, each language element is associated to a
mathematical object by mapping functions. Concise and
rigorous definition of objects and functions provides an
excellent way to represent the meaning of constructs.
Although the denotational semantics of DSMLs could be
defined in terms of state changes, manipulating mathematical
objects rather than DSML constructs lead to difficulties and
complexity during implementation.

Operational Semantics

Operational semantics [10] can be used to specify the
meaning of a programming language in terms of program
execution on abstract machines. Semantic definitions are
composed of rules, which describe specific effects of language
constructs on an abstract machine. Each rule consists of
preconditions that have to be met for the rule to apply and
affects the transformation of the current state in some way.
Applying the rules of operational semantics yields new states
that gradually extend and finally replace the syntactic
structures by auxiliary constructs and values. The final states
of this transition system only contain values; they represent
the result of the specification. Most of the DSML platforms
that initiated a formal way of specifying the semantics have
employed an operational style of the semantics definition (for
more information, please see Section 4).

Attribute Grammars

An attribute grammar [11] is a formal technique used to
specify static semantics as an extension of a context-free
grammar. This technique can be used to specify dynamic
semantics as an interpretation of constructs by defining a
translation into lower level code. Attribute grammars are
mostly utilized to check the correctness of the static semantics
like variable type checking, compatibility between procedure
definition and call. Attribute grammars form one of the
essential parts of compilers and bring benefits such as
automatic construction of compilers, interpreters and other
language-based tools. However, the large number of rules
required for a complete definition of a language may offer
challenges when using attribute grammars to define a DSML.

3. DSML Platforms and Semantics

Compared with the rich and mature techniques and tools to
define the semantics for programming languages, semantic
specification and supporting tools in the context of DSMLs is
still an open area. There have been a few initial approaches
for semantic specification within DSML platforms, which
generally provide a mechanism for specifying a mapping
between the abstract syntax and the semantic domain. There
are initial studies that extend denotational semantics (i.e., the
denotational metamodeling [19] approach) or attribute
grammars. In this section, approaches that are based on
operational semantics are discussed.

Atom3 [12] is a visual metamodeling tool that uses graph
grammars to represent models. In addition to syntax definition,
the tool includes code generation, model optimization and
simulator specification facilities. In Atom3, operational
semantics of models are defined as graph transformations
based on graph rewriting. Graph transformations are
composed of rules that map a source graph to a target graph.
Although the tool enables definition of semantics in an
abstract manner, relying on graph grammars typically
introduces performance issues, which inherit from the time
complexity of the graph matching algorithm [1].

Kermeta [13] is a model-driven toolsuite, which has been
designed to provide tools to build models and actions in the
same meta layer. To provide this functionality, the tool
composes action metamodels with existing metalanguages
(e.g., EMOF) and enables imperative control structures and
iterators. This built-in support for specification of operational
semantics enables the simulation and testing of metamodels.
However, the necessity of defining the behavior of each
concept in an imperative way results in code, which is written
in the style of a general-purpose programming language.

AMMA [17] and GME [18], which are two of the most
known and mature non-commercial metamodeling tools, do
not support the formal specification of DSML semantics
natively. However, attempts were made for each tool to define
the operational semantics of DSMLs via Abstract State
Machines (ASM) [15]. These attempts were very similar and
specified the semantics as operational rules through a
sequence of state transitions on the ASM. The main difference
was that the attempt in GME used an external tool
(Microsoft’s ASML) to define the semantics [7]. The ASML
tool was connected via transformations in the GREAT [16]
transformation language. The effort to add semantics to
AMMA integrated the semantics definition directly within the
platform, rather than an external tool [14].

4. Example Program and Model Optimization

We implemented a simple Robot language [5] that can be used
to control the movement of a virtual robot. The grammar and
its denotational semantics for the Robot language are shown
in Figure 1. In the semantics part, functions C and P map to a
mathematical object, which maps the Robot position to a new
position based on a command sequence. In order to
demonstrate the problem, we use both a DSL and DSML to
define this language and show the optimization problem by
comparison. In Figure 2 (left column) a simple program in the
Robot language is shown.

Suppose that we desire to optimize the program in Figure
2 to increase the efficiency of its execution. In Optimization 1,
the sequence of moves can be rearranged so that the same
type of moves are adjacent. In Optimization 2, some
combinations of moves have no effect and can be eliminated
(e.g., down up). The rationale behind Optimization 1 is that
the robot can move faster if there is no need to change the

direction. Intuitively, both are correct and reasonable
optimizations. However, we believe that all transformations,
in particular optimizations, should be based on proofs that
utilize formal language semantics. In the case of the Robot
DSL, the proof was not hard because a formal semantics
definition is available [5]. The proof is given in Figure 3. To
implement the optimization at the DSL level, several tools are
available, such as program transformation systems [2] and
language construction environments [4]. Most of these tools
transform the program by syntax pattern matching. For
example, in order to realize Optimization 1, a transformation
rule could transform the program pieces that match the pattern
down up down into down down up. By executing the rule
until no more changes can be made, the same type of move
can be constructed. For Optimization 2, a transformation rule
can match down up and eliminate the contradicting moves.

P ::= begin C end
C ::= left | right | up | down | C1C2

P : Program → Int*Int
P [[begin C end]] = C [[C]] (0,0)

C :: Command → Int*Int → Int*Int
C [[left]] (x,y) = (x+Δx,y+Δy) where Δx=-1 and Δy=0
C [[right]] (x,y) = (x+Δx,y+Δy) where Δx=+1 and Δy=0
C [[down]] (x,y) = (x+Δx,y+Δy) where Δx=0 and Δy=-1
C [[up]] (x,y) = (x+Δx,y+Δy) where Δx=0 and Δy=+1
C [[C1 C2]] (x,y) = let (x+Δx1, y+Δy1) = C [[C1]] (x,y) in
let (x+Δx1+Δx2, y+Δy1+Δy2) = C [[C2]] (x+Δx1, y+Δy1) in
 (x+Δx1+Δx2, y+Δy1+Δy2)

Figure 1. Context-free Grammar and Denotational Semantics
for the Robot Language

Original
Program

Program
Optimization 1

Program
Optimization 2

begin
 down
 up

down
left

end

begin
down
down
up
left

end

begin
down
left

end

Figure 2. Program Instances written in Robot Language

To prove "begin C1 C2 end" = "begin C2 C1 end"
We have to show that:
P [[begin C1 C2 end]] = P [[begin C2 C1 end]]
In other words, we have to prove:
C [[C1 C2]] (0,0) = C [[C2 C1]] (0,0)
Since:
C [[C1 C2]] (0,0) = let (Δx1, Δy1) = C [[C1]] (0,0) in
 let (Δx1+Δx2, Δy1+Δy2) = C [[C2]] (Δx1, Δy1) in
 (Δx1+Δx2, Δy1+Δy2)
C [[C2 C1]] (0,0) = let (Δx2, Δy2) = C [[C2]] (0,0) in
 let (Δx2+Δx1, Δy2+Δy1) = C [[C1]] (Δx2, Δy2) in
 (Δx2+Δx1, Δy2+Δy1)
Also:
(Δx1+Δx2, Δy1+Δy2) = (Δx2+Δx1, Δy2+Δy1)
 (due to associativity of +)
We can get:
C [[C1 C2]] (0,0) = C [[C2 C1]] (0,0)
Therefore:
P [[begin C1 C2 end]] = P [[begin C2 C1 end]]

Figure 3. Proof for Optimization 1

To achieve the same formal analysis capabilities at the DSML
level is still a major challenge, due to the lack of formal
semantic specification for DSMLs. The metamodel for the
Robot language is simple: a robot with two attributes to
record the coordinates can contain one or more movement
commands. The direction attribute in the movement can
be one of the four - left, right, up, and down. Figure
4 is the metamodel for the Robot language.

Figure 4. Metamodel for Robot Language

In many modeling tools, the semantics of the language is
defined solely by a model interpreter that translates the model
representation into some other representation. The model
interpreter traverses each element of the model and generates
corresponding code. In this experiment, we implemented the
Robot language in GEMS [6] and the model interpreter was
written in Java. Figure 5 is an excerpt of the interpreter code.
As can be seen, the semantics of each modeling element is
defined by Java code. In this case, if the element is an action
left, executing the code in the visitLeft method will
change the corresponding coordinates and display them. Thus,
to understand the meaning of a modeling language requires
that the Java code representing the interpreter should be
comprehended fully. This represents a poor solution to
semantics and does not provide a representation that can be
easily understood and processed (i.e., the concerns of the
programming language hide the intention of the domain). This
manner of representing semantics also does not allow
semantic reasoning based on proofs. Several existing
modeling tools force this style of code generation on the user
with the resulting undesirable situation with respect to clear
semantics of the DSML. Although some initial promising
attempts focus on directly using or mapping the model
concepts to existing models of computation (e.g., action
semantics, denotational semantics, Abstract State Machines
(ASM) [7]), they are not at the same level as the domain
represented by the DSML. Because these alternative models
of computation are at different levels of abstraction and
represented in different technical spaces, there exist many
challenges in providing a semantic mapping.

public void visitLeft(Left tovisit) {

 int temp_x = Integer.parseInt((String)(tovisit.

 getParent().getAttribute("Pos_x")));
 int temp_y = Integer.parseInt((String)(tovisit.

 getParent().getAttribute("Pos_y")));

 MakeAction((Robot)(tovisit.getParent()),
 tovisit, temp_x, temp_y);
 displayRobotPosition(tovisit);
 visitContainer(tovisit);

}

Figure 5. An Excerpt of the Robot Interpreter

Due to these limitations, it is challenging to base model
optimizations on DSML semantics. Without the ability to
prove properties of an optimization, the resulting model
instance may represent an incorrect transformation from the
source model. The situation is somewhat similar to the state of
programming language research during the early 1960s,
before formal semantic approaches were invented, when
researchers used concrete operational semantics. During those
times, the meaning of a language construct was described by
translation to machine code or by the interpreter’s code.
Different formal semantic methods were developed with the
aim to prove the properties of language constructs and to
automatically generate compilers or interpreters, as well as
other language tools (e.g., editors, debuggers, test engines).

5. Other Problems Related with Semantics
Without a formal and uniform specification for DSML
semantics, several challenges are essential to the success of
MDE. The following discussion represents our position for the
workshop, which claims that program transformation systems
and traditional language engineering tools may offer insight
into a solution to some of these challenges.

How to improve readability of DSMLs

The semantics embedded in the model interpreter in the form
of code is hard to comprehend. In addition, different modeling
tools have different mechanisms to traverse the model
instance, which makes the understanding process more
difficult. For instance, a GEMS model interpreter works in a
depth-first search pattern, but GME traverses the model in the
order of types of the model elements.

How to automatically generate model interpreters

Without a formal and unique representation for semantics, a
model compiler or interpreter cannot be generated
automatically. For DSLs, a number of tools exist to support
the generation of compilers according to the syntax and
semantics specifications, such as Lisa [23], ASF+SDF [24],
ANTLR [25]. A Lisa specification for the Robot language is
shown in Figure 6. This robot language specification can be
processed by Lisa to produce several generated files that are
translated to a general-purpose language to provide
executabiltiy. However, no such mechanism is generally
available for DSMLs. A further consequence is that various
other language-based tools such as debuggers, test engines
also cannot be generated automatically.

lexicon {
 keywords begin | end
 operation left | right | up | down
 ignore [\0x0D\0x0A\]
 }
 attributes int *.inx; int *.iny;
 int *.outx; int *.outy;
 rule start {
 START ::= begin COMMANDS end compute {
 START.outx = COMMANDS.outx;
 START.outy = COMMANDS.outy;
 COMMANDS.inx = 0;
 COMMANDS.iny = 0;

};
Figure 6. An Excerpt of the Robot Specification in Lisa

How to verify model compiler correctness

Model compilers and interpreters are implemented mainly by
general-purpose programming languages. Hence, verifying a
model transformation is very difficult, if not impossible.

How to prove properties of domain concepts

Proving properties about concepts and relationships in the
domain is not possible due to the lack of formal semantics of
DSMLs. For instance, in the Robot case, the concept that two
movements can be switched (proved in Figure 4) is an
important property for this domain. However, an equivalent
proof on the DSML level is difficult if verification,
optimization, and parallelization of models are typically
expressed through general-purpose programming languages.

How to make model transformation languages connected
with a semantic definition
Currently, many model transformation languages (e.g. ATL
[21], C-SAW [22]) exist, and have shown initial success in
different aspects of model transformation. Although many of
the languages are declarative and at a high level of abstraction,
they do not support formal specification of the semantics or
validation of the transformation. The rules are based on a
developer’s subjective decisions, which are not reliable.

6. Conclusion

Due to the lack of formal semantics for DSMLs, the real
meaning of a modeling language is available only in
associated model interpreters. As a consequence, model
transformations cannot be verified for preserving the
semantics, which is a serious shortcoming compared to the
capabilities offered by textual DSLs that are defined through
grammars and language definition tools. At the workshop, we
will outline these challenges and indicate how lessons from
the areas of program transformation and language definition
might address some of the challenges of representing the
semantics of modeling languages.

Acknowledgements
This work supported by NSF CAREER award CCF-0643725.

References
1. Schmidt, D. “Model-Driven Engineering,” IEEE Computer,

vol. 39 no. 2, pp. 25-32 (2006).
2. Visser, E. “A Survey of Rewriting Strategies in Program

Transformation Systems,” Workshop on Reduction
Strategies in Rewriting and Programming, Electronic Notes
in Theoretical Computer Science, vol. 57, Utrecht, The
Netherlands (2001).

3. Mens, T., Gorp, P. “A Taxonomy of Model
Transformation,” Proceedings of the International
Workshop on Graph and Model Transformation, vol. 152,
pp. 125-142 (2005).

4. Mernik, M., Heering, J., Sloane, T. “When and How to
Develop Domain-Specific Languages,” ACM Computing
Surveys, vol. 37, issue 4, pp. 316-344 (2005).

5. Wu, X., Mernik, M., Bryant, B., Gray, J. “Implementation of
Programming Languages Syntax and Semantics,”
Encyclopedia of Information Science and Technology, 2nd
Edition, IGI Global (2008).

6. GEMS Project http://www.eclipse.org/gmt/gems
7. Chen, K., Sztipanovits, J., Neema, S., Emerson, M.

Abdelwahed, S. “Toward a Semantic Anchoring
Infrastructure for Domain-Specific Modeling Languages,”
Proceedings of the Fifth ACM International Conference on
Embedded Software, pp. 35-43 (2005).

8. Stoy, J. “Denotational semantics: The Scott-Strachey
Approach to Programming Language Theory,” MIT Press,
Cambridge, MA (1977).

9. Nielson, H., Nielson, F. Semantics with Applications: A
Formal Introduction, Wiley Professional Computing,
Wiley, Revised Edition (1999).

10. Plotkin, G. “The Origins of Structural Operational
Semantics,” Journal of Logic and Algebraic Programming,
vol. 60-61, Pp. 3-15 (2004).

11. Knuth, E. “Semantics of Context Free Languages,”
Mathematical Systems Theory, vol. 2, no. 2, pp. 127-145
(1968).

12. Syriani E., Vangheluwe, H. “Programmed Graph Rewriting
with Time for Simulation-Based Design,” First
International Conference on Model Transformation, pp.
91-106 (2008).

13. Muller, P., Fleurey, F., Jezequel, J. “Weaving Executability
into Object-Oriented Meta-languages,” In Proceedings of
MoDELS, pp. 264-278 (2005).

14. Di Ruscio, D., Jouault, F., Kurtev, I., Bezivin, J.,
Piearantonio, A. “Extending AMMA for supporting
dynamic semantics specifications of DSLs,” LINA
Research Report number 06.02, University of Nantes
(2006).

15. Borger, E. “High-Level System Design and Analysis using
Abstract State Machines,” In Proceedings of the
International Workshop on Current Trends in Applied
Formal Method: Applied Formal Methods, pp. 1-43 (1998) .

16. Agrawal, A. “Graph Rewriting and Transformation
(GReAT): A Solution for The Model Integrated Computing
(MIC) Bottleneck,” International Conference on Automated
Software Engineering, pp. 364-368 (2003).

17. Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.
“Model-based DSL Frameworks,” In Companion to the
21st Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, pp. 602-616 (2006).

18. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.
“Model-integrated Development of Embedded Software,”
Proceedings of the IEEE, vol. 91(1), pp. 145-164 (2003).

19. Hausmann, J. “Dynamic Meta Modeling: A Semantics
Description Technique for Visual Modeling Languages,”
Doctoral thesis, University of Paderborn, Paderborn,
Germany (2005).

20. Jackson, E. “The Software Engineering of Domain-Specific
Modeling Languages: A Survey Through Examples,”
Technical Report, Institute For Software Integrated Systems
(ISIS), ISIS-07-807, March (2008).

21. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I. “ATL: A
Model Transformatin Tool,” Science of Computer
Programming, vol. 72, nos. 1/2, June 2008, pp. 31-39
(2008).

22. Gray, J., Lin, Y., and Zhang, J. “Automating Change
Evolution in Model-Driven Engineering,” IEEE Computer,
Special Issue on Model-Driven Engineering (Doug Schmidt,
ed.), vol. 39, no. 2, February 2006, pp. 51-58 (2006).

23. Mernik, M., Korbar, N., Zumer, V. “LISA: A Tool for
Automatic Language Implementation,” ACM SIGPLAN
Notices, vol. 30(4) pp. 71–79 (1995).

24. Brand, M., Heering, J., Klint, P., Olivier, P. “Compiling
Language Definitions: The ASF+SDF Compiler,” ACM
Transactions on Programming Languages and Systems, vol.
24, no. 4, pp. 334-368 (2002).

25. Parr, T. The Definitive ANTLR Reference: Building
Domain-Specific Languages, The Pragmatic Programmer
(2007).

26. Varro, G., Schurr, A., Varro, D. “Benchmarking for Graph
Transformation,” IEEE Symposium on Visual Languages
and Human-Centered Computing, pp. 79-88 (2005).

