
52 Computing in Science & Engineering 1521-9615/14/$31.00 © 2014 IEEE Copublished by the IEEE CS and the AIP January/February 2014

WorkfloW ManageMent

Domain-Specific Languages for Developing and
Deploying Signature Discovery Workflows

Ferosh Jacob | CareerBuilder
Adam Wynne | Pacific Northwest National Laboratory
Yan Liu | Concordia University
Jeff Gray | University of Alabama

Domain-agnostic signature discovery supports scientific investigation across domains through algorithm reuse. A
new software tool defines two simple domain-specific languages that automate processes that support the reuse
of existing algorithms in different workflow scenarios. The tool is demonstrated with a signature discovery workflow
composed of services that wrap original scripts running high-performance computing tasks.

A
signature is a “unique or distinguishing mea-
surement, pattern, or collection of data that
detects, characterizes, or predicts a target
phenomenon (object, action, or behavior)

of interest.”1 Signatures are valuable in a wide range
of application domains—such as medicine, network
security, and explosives detection—for anticipating
future events, diagnosing current conditions, and
analyzing past events. However, current approaches
have limitations on reusing existing algorithms, tools,
and techniques across application domains and scien-
tific disciplines, which requires expertise in program-
ming language tools and the application domain.

At the Pacific Northwest National Laboratory
(PNNL), we’re developing the Signature Discovery
Initiative (SDI), a generalized signature development
methodology that’s applicable to any signature dis-
covery problem.1 Under the SDI, we’ve been working
closely with scientists who have developed or applied al-
gorithms using a wide range of programming languages
and tools. We’ve found that signature discovery facili-
tates scientific investigation across multiple disciplines
through the reuse of existing algorithms, which can
be written in any programming language for various
hardware architectures (including desktops, commodity
clusters, and specialized parallel hardware platforms).

Reusing these algorithms requires a common architec-
ture that can integrate analytical software components
created by scientists from different disciplines.

A common architecture to support reuse of
scientific workflow algorithms requires support in
two essential areas:

■■ a service-oriented software framework that lets
scientists in specific domains register and share
their algorithms, so that they can offer those al-
gorithms as reusable service components; and

■■ the creation of new signature discovery work-
flows in other domains using the created ser-
vice components.

This further raises an engineering challenge: Web
services must be generated for heterogeneous algo-
rithms, so that they become service components
and can be registered and composed into a scien-
tific workflow environment.

Here, we introduce two domain-specific lan-
guages (DSLs):2

■■ Service Description Language (SDL) describes
key elements of a signature discovery algorithm
and generates the service code.

CISE-16-01-Jacob.indd 52 29/01/14 3:27 PM

www.computer.org/cise 53

■■ Workflow Description Language (WDL) speci-
fies the services pipeline and generates deploy-
able artifacts for a workflow management
system.

Our contribution is the new capability that
emerges from combing SDL and WDL in a ser-
vice-oriented approach that enables the interoper-
ability and reuse of existing algorithms. Here, we
demonstrate our approach with a software tool that
removes the complexity associated with the engi-
neering requirements in the signature discovery
process. We also describe two specific engineering
challenges and how our solution addresses them
using an example scenario focused on the Basic
Local Alignment Search Tool (BLAST) execution
workflow (see http://blast.ncbi.nlm.nih.gov/Blast.
cgi for details on BLAST). In addition, we include

several SDL and WDL examples to show usage of
the tool.

Motivating Scenario: BLAST
Execution Workflow
The primary goal of our signature discovery re-
search is to develop a methodology and an as-
sociated set of software tools, called the Analytic
Framework, that allow scientists and analysts to
apply algorithms and techniques across multiple
domains. For example, after we find a technique
for developing and detecting a signature in one
domain, we aim to abstract the specific techniques
used and investigate whether they can be applied
to additional datasets and problems outside of their
normal usage. Because these software tools are be-
ing directed outside their usual context, the users
might be unfamiliar with them. We thus need to

Related Work in Automating Web Service and Workflow Creation

Several related efforts focus on code generation for Web

services and workflows. We mention a few here, along with a

discussion of related work in workflow automation and application

composing.

Workflow engines, such as Java Business Process Manage-

ment (JBPM),1 also provide GUIs for designing and deploying

workflows. Other related works include languages2,3 that are

designed for composing computation-intensive applications. There

are also many tools available for creating applications by compos-

ing Web services from different vendors.4,5 Most of these tools

assume that the Web services are available.

In a domain-independent workflow like Taverna, Web services

can be of different types; Web Services Description Language

(WSDL) services are just one example. To keep the uniformity,

every time a WSDL processor is created, users have to add trans-

formations to parse the XML input and output. Our framework

handles these details automatically through service and workflow

definition languages. Moreover, because the output is generated

as a Taverna workflow file, it can be viewed, edited, and executed

in Taverna’s full-fledged workflow development environment.

As Ian Gorton and Yan Liu demonstrated,6 reusing open source

component-based software frameworks significantly improved

the development of domain-specific scientific workflows. Our

framework configures the workflow definition file that declares how

to compose services wrappers created by our framework. This ap-

proach reduces the complexities of encapsulating domain-specific

computing procedures to general-purpose workflows.

The work described in this article is focused on helping

scientists in developing signature discovery workflows. The code

 generation for Web services and workflows is separated from the

Domain Specific Language (DSL) design to facilitate alternate

implementations for the Web services and workflows. Our tool’s

role in support of Signature Discovery Initiative (SDI) workflows

is similar to tools in other scientific collaboration environments,

such as Rappture (for rapid application infrastructure) with nano-

Hub.org,7 where Rappture generates a GUI based on the descrip-

tion of inputs and outputs of a simulator that can be deployed on

a hub platform.

References
1. M. Cumberlidge, Business Process Management with JBoss

jBPM, Packt Publishing, 2007.

2. I.J. Taylor et al., Workflows for e-Science: Scientific Workflows
for Grids, Springer-Verlag, 2006.

3. M. Wilde et al., “Swift: A Language for Distributed Paral-

lel Scripting,” Parallel Computing, vol. 37, no. 9, 2011,

pp. 633–652.

4. E.M. Maximilien et al., “A Domain-Specific Language for Web

APIs and Services Mashups,” Proc. Int’l Conf. Service-Oriented
Computing, 2007, pp. 13–26.

5. M. Pruett, Yahoo! Pipes, O’Reilly, 1st ed., 2007.

6. I. Gorton et al., “Build Less Code Deliver More Science: An Ex-

perience Report on Composing Scientific Environments Using

Component-Based and Commodity Software Platforms,” Proc.
Int’l ACM Sigsoft Symp. Component-Based Software Eng.,
2013, pp. 159–168.

7. M. McLennan and R. Kennell, “HUBzero: A Platform for Dis-

semination and Collaboration in Computational Science and

Engineering,” Computing in Science & Eng., vol. 12, no. 2,

2010, pp. 48–52.

CISE-16-01-Jacob.indd 53 29/01/14 3:27 PM

54 January/February 2014

WorkfloW ManageMent

make every effort to make what are sometimes
highly technical tools easy to use. We selected
BLAST for this motivating scenario because it il-
lustrates this process well.

In systems biology, scientists often use BLAST
to find regions of local similarity between biologi-
cal sequences. This has a wide range of practical
uses, including addressing the homology problem,
wherein researchers try to determine the similarity
between genes—which are composed of sequences
of nucleotides—in order to imply common evolu-
tionary origin. BLAST’s abstracted purpose is to
solve an inexact string-matching problem, which
has been applied successfully to the computer se-
curity domain to develop signatures of “families”
of related software code by representing the code
as sequences of subroutine calls or processor op-
erations.3 SDL/WDL offers an easier way for sci-
entists to construct services and workflows that
include sequence-based signatures like those used
in BLAST. One drawback of our approach is the
additional layer of tooling that must be main-
tained and updated as the underlying platform
evolves.

Practically speaking, BLAST is a long-running
job with input and output. The workflow is usually
executed in three steps:

1. Submit a BLAST job in a cluster using the
Simple Linux Utility of Resource Management
(SLURM) job scheduler (see https://computing.
llnl.gov/linux/slurm).

2. Check the job’s status.
3. Download the output f i les upon job

completion.

Note that a UNIX command utility (such as
sh) and/or a script file (such as SLURM) identi-
fies each step. We’ll now use this BLAST workflow
identified from the SDI to illustrate three engineer-
ing challenges when reusing signature discovery al-
gorithms from different domains.

Accidental Complexity of
Generating Service Wrappers
In keeping with our common architecture’s goal,
we aim to make existing BLAST programs avail-
able so that scientists can share them. To address
this objective, we provide Web service wrappers for
every executable binary. We adopt the legacy wrap-
per pattern4 to encapsulate existing algorithms,
while providing a standard interface so that they
can be orchestrated with other services to create

reusable workflows. Informally, we refer to these
services as wrappers.

Creating a wrapper for an existing script or ex-
ecutable typically follows a common set of steps:

■■ identify the input files and output files in the
program;

■■ retrieve the input files from the data manage-
ment system;

■■ execute the program; and
■■ upload the output files to the document man-

agement system as part of the existing signa-
ture discovery software framework.

We’ve observed that the process for converting
a script often results in significant extra code and
manual effort. For example, checkJob is a simple
BLAST service for checking the job status, with
a single input (JobId) and output (status). How-
ever, it requires a service wrapper with 121 lines of
Java code (in four Java classes) and 35 lines of XML
code (in two files). This extra code might increase
the complexity and development overhead signifi-
cantly from a scientist’s perspective.

Our goal is to raise the level of abstraction
from these general-purpose languages to the signa-
tures domain, such that scientists describe only the
specifications for the executable binary—in this
case, signature algorithms—that’s to be shared as
a service component using a DSL. The tools associ-
ated with our DSLs will generate and execute the
code required for creating a wrapper.

Coupling between Workflows and Services
Once the executable binaries are accessible as a ser-
vice component, scientists still must orchestrate the
services to define the signature discovery workflow.
To make any Web service available in a domain-
independent workf low engine such as Taverna
(www.taverna.org.uk), a user must:

■■ manually add each operation as a service to the
workflow designer, and

■■ provide XML generators and parsers.

In a Web service, the input and output are ex-
pressed in XML. Hence, an XML generator is re-
quired before passing any workflow parameters to
the service. Similarly, an XML parser is required
to process the service output after executing the
service. Therefore, these two processes (that is,
generating a service wrapper and registering a ser-
vice for orchestration) are coupled. Figure 1 shows

CISE-16-01-Jacob.indd 54 29/01/14 3:27 PM

www.computer.org/cise 55

this BLAST execution workflow in the Taverna
workbench.

As Figure 1 shows, the workflow consists of
three services: submitting a job, checking the job’s
status, and obtaining the result. In the figure, box-
es in light blue represent workflow inputs and out-
puts. Other boxes correspond to processors, where
processors performing similar functions are identi-
fied by the same color (for example, purple boxes
represent processors that handle XML parsing).
Within the checkJob service, jobID is wrapped
inside an XML descriptor by jobStatusIn before
passing to the actual service processor jobStatus.
After executing the service processor, the output
XML is passed to the jobStatusOut processor,
which parses the XML and passes the status to
workflow output port status.

In case a service output is an object, as in the
case of submitBlast, multiple XML parser pro-
cessors are applied (such as submitBlastOut and
submitBlastOut_submitBlastResults). Hence,
the type and number of XML parsers and gen-
erators required to make a Web service available
in a workflow orchestration depend on the struc-
ture—that is, the type and number of the input
and output—of the Web service itself. Given this,
scientists need comprehensive knowledge to use
these services in a workflow because they must
know the input and output format of every ser-
vice. The scientists would also need to provide cor-
rect parsers and generators for each service. This is
a challenging task for most scientists, and is one
full of accidental complexities.

Lack of End-User Environment Support
Because many scientists are unfamiliar with ser-
vice-oriented software technology, they’re forced to
seek the help of software developers to make Web
services available in a workflow environment. On
the other hand, software developers find it diffi-
cult to work with scientific scripts and tools, which
aren’t usually their area of expertise. This technol-
ogy barrier can degrade the benefits of sharing sig-
nature discovery algorithms, because any changes
or bug fixes to an algorithm require both a dedi-
cated software developer and a scientist to navigate
through the engineering process.

Solution Approach Using DSLs
We introduce a new approach to simplify the in-
tegration of signature discovery algorithms into a
common architecture. In this approach, two sets of
DSLs2 are defined that contain

Figure 1. An example Basic Local Alignment Search
Tool (BLAST) workflow. The two key processes—
generating a service wrapper and registering a service
for orchestration—are coupled.

Workflow input ports

fasta params blosum

submitBlastIn

submitBlast

submitBlastOut

checkJob

Workflow output ports

jobStatus

jobStatusOut

status

submitBlastOut_submitBlastResults

jobID

blastResultIn

blastResultOut

status outFile

blastResult

jobStatusIn

Workflow output ports

Workflow output ports

CISE-16-01-Jacob.indd 55 29/01/14 3:27 PM

56 January/February 2014

WorkfloW ManageMent

■■ an SDL that end users can use to specify the
user credentials, executable path, script file,
and the input and output of any script; and

■■ a WDL that specifies the interactions of these
services and takes input from one or more ser-
vice description files.

The WDL’s syntax is mapped to the APIs of a
workflow environment. Thus, we can generate the
glue code to orchestrate the service components
generated from SDL.

For example, Figure 2 shows SDL and WDL files
for a BLAST execution workflow. In Figure 2a, three
services—submitBlast, jobStatus, and blastRe
sult—are defined, along with their input, resources
(script files), and connection details. In Figure 2b, a
main workflow is defined with input and output (we
explain the code used in these two files later).

The few lines of code shown in Figure 2 are
powerful enough to

■■ create three Web services, where each service is
a wrapper for a remote executable that will up-
load all the required files to the remote server
before execution and download the files after
execution; and

■■ create an executable workflow in a workflow
engine such as Taverna (Figure 1).

Figure 3 shows the overall approach to gen-
erating wrappers and workflows. The input to the
process are scripts (or commands with template
variables) and the SDL and WDL files. Using
these input files, Web service wrappers and a work-
flow file deployable to a workflow engine (such as
 Taverna) are generated. Each Web service wrapper

Figure 2. BLAST execution workflow using Service Description Language (SDL) and Workflow Description Language (WDL). (a) The code
shown here can create three Web services that act as wrappers for remote executables that will upload and download files before and
after execution, respectively. (b) It also creates an executable workflow in the workflow engine (here, Taverna).

(a) (b)

CISE-16-01-Jacob.indd 56 29/01/14 3:27 PM

www.computer.org/cise 57

is created from scripts and the associated SDL files.
The workflow file is created using both SDL and
WDL files. Code generation occurs in two stages:

■■ Web application creation. The tool creates Web
services from the SDL files that describe a
script’s key elements.

■■ Workflow creation. The SDL file from the first
stage defines a service. It’s then passed together
with the WDL file to create the workflow con-
structs. These constructs are the basic elements
for the Taverna engine to create a workflow as
defined in WDL.

During the loading of an SDL file, a Web applica-
tion with Web service wrappers corresponding to each
service in the SDL is created. Similarly, a “t2flow”
(Taverna workflow executable) file is created during
the load time of WDL. When the t2flow is executed,
the wrapped script(s) and command(s) are executed
in the remote host through an SSH session with the
help of existing signature discovery libraries, which are
part of SDI. These libraries are responsible for making
the input files available before execution and upload-
ing the output files to a dedicated data management
system after execution. We use a template engine to
access runtime values of variables inside services.

SDL Definition and Wrapper Generation
An SDL file has a list of services, and each service
has a connection parameter (SSH details), an execu-
tion command parameter (command to execute),
resources (additional scripts required to execute
the command), and a set of inputs and outputs re-
quired for the service execution. If the connection
parameter isn’t specified, a service will be executed
in the server in which the application is deployed.

We now describe the code-generation details of
SDL input and output.

Input and output strings. String is the default param-
eter type in SDL. Any parameter defined without a
modifier other than “in” and “out” are treated as string
parameters. The “in” and the “out” modifiers define
the directions of the parameters. Each input string pa-
rameter is treated as a template variable and is applied
to the scripts and commands; any occurrence of the
variable will be replaced by its runtime value before
execution. If there’s an output string variable, code is
generated to read a .properties file after execution.

List of documents or string. Code is generated to
apply the document property or string property
for all elements in the list. As shown in Figure 4a,
while using the template variables and list, users
must be aware that a single variable can be substi-
tuted with many values.

Wrapper generation. We generate a Web service wrap-
per for each SDL file using the file name. For every
service, two artifacts are generated: the interface class
and the corresponding implementation class. In ad-
dition, the framework generates a helper class, called
SSHHelper, that automates the connection with re-
mote computers. For example, Figure 2 shows the
code generated for the submitBlast service, includ-
ing the interface class and its implementation.

SDL Execution
We’ve created service wrappers for each step. Fig-
ure 2a shows the job submission service. A BLAST
job is submitted using two script files: “jobScript.
sh” (a SLURM file) and “runJob.sh” (a BASH file).
The script file “runJob.sh” executes the SLURM

Figure 3. A block diagram showing the framework’s implementation. The process inputs are scripts and the SDL and
WDL files.

Inputs

Outputs (DSL load time)

Web services
(checkJob)

Taverna workflow
(BlastSearch.t2flow) Workflow engine

SDI framework

Template engine

Generated code runtime
Script metadata
(name, inputs)

SDL
(SiqQuality.sdl)

WDL
(SigQuality.wdl)

CISE-16-01-Jacob.indd 57 29/01/14 3:27 PM

58 January/February 2014

WorkfloW ManageMent

file and writes jobID and outDir to the .prop
erties file. In Figure 2a, submitBlast has two
outputs, the execution directory (outDir) and the
job identifier (jobID). Both outputs are declared as
the default type; hence, the framework generates
code for the string outputs. The generated code
downloads and reads their values from a .prop
erties file. Other services (blastResult and
checkJob) are command SDL service wrappers (no
script files) and are not shown. Service checkJob
checks the status of a given jobID and returns sta-
tus as “Running,” “Pending,” or “Done.” Service
blastResult downloads the files from a given
directory.

At runtime, values and fields inside the script
files must be exposed as the input or output of ser-
vice wrappers. This is achieved by treating the scripts
as templates and their runtime values as template
variables. The template variables are enclosed inside
the “$” character. Before executing any script files
in the server, the scripts are passed through a tem-
plate engine. The template engine substitutes the
scripts with runtime values. Template substitution
isn’t necessary for the files, because their runtime
names are the same as their load time names. As
an example, in Figure 2 (line 25), the blastResult
service is defined with a template variable outDir.
When the blastResult is executed, the $outDir$
in the command (line 25) will be replaced by the
runtime value of the variable outDir.

We use the Antlr StringTemplate (www.
stringtemplate.org) for the template implementa-
tion. Hence, we can use many advanced features
of a template engine. As an example, to implement
a Web service that can aggregate all of the input
files, we defined an SDL file (Figure 4b) with an
input as a “list’” of documents named inputs (line
3). Because the variable type is a list, the template
is applied for all the values. Using the StringTem-
plate “separator” keyword, we separate the individ-
ual values with a space. In the case of a text output,
the code is generated to read the .properties file
and return the specified property value. Hence, a
user has to make sure that the output text values
are written to the .properties if they want the
service to return the value.

As Figure 2a shows, after submitting a BLAST
job, the job identifier and the output directory are
written to the .properties file (commented lines
16 and 17). If there are multiple outputs, a new ob-
ject return type is created with fields as the outputs
specified and returned.

WDL Definition and Workflow Generation
A WDL file creates a Taverna workflow based on the
descriptions specified by the user. A WDL workflow
involves communication and interactions among
various service wrappers and between service wrap-
pers and other workflows. A WDL file can have
many workflows, but the topmost workflow is con-
sidered the main workflow with all other workflows
treated as subworkflows. Code is generated for a sub-
workflow only if it’s called inside the main workflow.

Workflows have declarations of elements and
connections. Figure 5 shows the Xtext (www.
eclipse.org/Xtext) grammar for WDL. Elements
can be of any three types: subworkflow, services,
and strings. Strings must be initialized, along with
their declaration. Connections also have three
types: workflow input to service port, service port
to service port, and service port to workflow out-
put or subworkflow calls.

A subworkflow call in WDL introduces loops
and abstractions (function calls) to another WDL.
It can connect a subworkflow with the connection
ports. In that case, the subworkflows, services, and
strings can be used without explicit declaration;
their names will be used as their identifiers. The
main workflow uses a “call-till-with” structure for
communicating with subworkflows. As lines 13–16
in Figure 5 show, using this structure, the main
workflow can iteratively “call” a subworkflow “till”
it meets a condition “with” main workflow ports.

Figure 4. More SDL examples. (a) Wrappers for R scripts using SDL. (b) A
utility wrapper service that can vertically merge a list of files.

(a)

(b)

CISE-16-01-Jacob.indd 58 29/01/14 3:27 PM

www.computer.org/cise 59

Hence, the “call-till-with” structure replaces func-
tion calls and loops in WDL.

We use a WDL specification file to define
workflows. A WDL file can contain many work-
flows. The first workflow in the file is the main
workflow. Accordingly, a Taverna workflow file
will be generated with the same name as the main
workflow, with an added t2flow extension. The
other workflows used inside the main workflow are
subworkflows. The input for the services in a SDL
specification file can be defined in two ways:

■■ Direct service specification—a service name followed
by the operator “.” and the input variable name
specified in the SDL file (Figure 2, lines 9–11).

■■ Indirect service specification—an identifier de-
fined as a service, followed by operator “.” and
the variable name (Figure 6, line 13).

The indirect service specification is required
when there’s more than one occurrence of the same
service. The “->” operator can be used for con-
necting any of the three cases, such as connecting

Figure 5. Xtext grammar for WDL. The top-level components are the SDL file locations and the workflows using the
services defined in the SDL.

CISE-16-01-Jacob.indd 59 29/01/14 3:27 PM

60 January/February 2014

WorkfloW ManageMent

a workflow input to a service input, connecting
a service output to another service input, or con-
necting a service output to a workflow output. We
introduced the call-till-with construct to imple-
ment loops and abstraction in the WDL. Using
the structure, subworkflows can be included into
the main workflow. Using the optional “till” con-
struct lets us specify the termination condition for
a subworkflow. The subworkflow will be executed
only once, as shown in the landscape classification
example in Figure 7.

The support for a conditional expression is
restricted by the underlying workflow engine.
Hence, for the expression, the first operand must
be a subworkflow port, and the second operand
must be a string. WDL supports three logical op-
erators: “=,” “<,” and “>.” Using the “with” con-
struct, the subworkflow’s input and output are
specified similar to a function call’s arguments. If
the arguments are defined as an “out” type in a
subworkflow, the subworkflow writes to the port
after execution. Otherwise, it reads from the port
before the execution.

WDL Execution
Figure 2b shows the WDL file for the BLAST
workflow. The WDL specification has two work-
flows: BlastSearch, the main workflow, and
checkJob, the subworkflow. The main workflow
BlastSearch has the following steps:

■■ Submit a BLAST job after passing inputs to
the submitBlast service (lines 9–11).

■■ Pass the jobID to the subworkflow (line 16)
and the output directory to the blastResult
service and wait for the subworkflow to con-
tinue execution until it meets a criterion on
finishing the subworkflow (lines 14–16).

■■ Download the output file using service blast
Result and pass it to the workflow output (line
22).

In Figure 2b, the checkJob workflow is de-
fined (lines 28–32). The workflow takes one input
(wf_jobID) and returns one output (wf_status).
The workflow input jobID is passed to the service,
jobStatus (line 29). The jobStatus service is de-
fined using SDL to find the status of the specified
job. The workflow output status is fetched from
the service output status (line 30). The order of
execution is determined by the Taverna engine,
which executes all the services whose outputs are
available. In some cases, scientists might want to
control the order, because it might not be obvious
to the Taverna engine.

As an example, for the BLAST execution, the
blastResult service that downloads the output
files must wait for the BLAST job to complete. To
allow a service to be executed only after the speci-
fied workflow or service, the “after” keyword is pro-
vided and can be added to any service invocation

Figure 6. Landscape classification using WDL. This workflow uses two services: classifier_training and
classifier_testing. The output of classifier_training links to the input of classifier_testing.

CISE-16-01-Jacob.indd 60 29/01/14 3:27 PM

www.computer.org/cise 61

(Figure 2b, line 19). More than one service can be
specified in the “after” clause. The language design
and the associated software tools are available as an
Eclipse plugin for PNNL scientists working in the
SDI project.

We define the syntax of service descriptions
and workflows using Eclipse Xtext. The syntax is
defined according to Taverna workflow elements
and processes. The code generation uses Apache
CXF APIs for creating Web service wrappers for
script files. (For more on the CFX open source ser-
vices framework, see http://cxf.apache.org).

SDL Service Examples
Figure 4 shows two examples of the services we cre-
ated using SDL for signature discovery workflows:

■■ Figure 4a shows wrappers for R (www.r-proj-
ect.org) scripts using SDL.

■■ Figure 4b shows a utility wrapper service that
can perform a vertical merge for a list of files.

Using the SDL service shown in Figure 4a, a
Web service wrapper is created that executes an R
script (training.r) with input files (trainXFile

Figure 7. Classification accuracy using Workflow Description Language (WDL). The output of each workflow algo_
classify is written to the input of agg (lines 9, 12, and 15). Hence, agg (finalOut) has the aggregated results
of all three classifications.

and trainYFile). The R scripts can be executed us-
ing the command “R CMD BATCH scriptfile” as
shown in Figure 4a (line 3). Similarly, the UNIX
utility cat command is used in the aggregate service
to aggregate files (line 3 in Figure 4b).

Table 1 shows an overview of 10 services careful-
ly selected to highlight the core code-generation fea-
tures of the SDL parser. In the table, “lines of code”
indicate the additional LOC generated to include the
service. This doesn’t include abstract classes or class
definitions if the class already exists. The SDL code
generation is comprised of the following steps:

■■ adding a method in a Java RMI interface;
■■ adding a method in a Java Service Endpoint

Interface (SEI) for creating an XML-based
Web service;

■■ implementing a method in a Java class through
a helper class;

■■ creating the helper class for the service; and
■■ creating a new Java bean, if there’s more than

one output.

The generated code affecting multiple Java classes
(such as five, if there’s more than one output) for

CISE-16-01-Jacob.indd 61 29/01/14 3:27 PM

62 January/February 2014

WorkfloW ManageMent

each service wrapper is shown in the table’s LOC
column.

A WDL Case Study: Landscape Classification
We now demonstrate how our approach can be used
to define and deploy signature workflow through a
landscape classification example. In the landscape
classification workflow, the goal is to compare ac-
curacies of three landscape classification algorithms.
Each landscape classification algorithm is developed
as R scripts and involves four stages:

■■ Training stage. Image data, along with their ac-
tual landscape classification values, are given
as input. A model (a function approximation,
generalized from the input training patterns)
is created, and the model is returned as the
output.

■■ Testing stage. The image data and the estimated
model from the training stage are passed as
inputs. The estimated classification type is re-
turned as output.

■■ Aggregate stage. We perform the first two stages
for three different algorithms: Linear Discrim-
inant Analysis (LDA), K-Nearest Neighbor
(KNN), and Support Vector Machine (SVM).
The results of the algorithms are merged to a
single output file. This can be implemented us-
ing a simple cat command.

■■ Accuracy stage. Based on the estimated and ac-
tual values, another R script is also available
that can calculate a classification algorithm’s
accuracy.

Figure 4 shows SDL service definitions for the
training and aggregate stages. Similarly, we can de-
fine service wrappers for the testing and accuracy
stages.

The next step is to define the workflow. Figure
6 shows a workflow algo_classify that imports
the service definitions and connects the training
and testing stages through their inputs. The work-
flow inputs are passed to classifier_Training
(lines 5–8) and classifier_Testing (lines 9, 14,
and 15). The output of classifier_Training is
passed to classifier_Testing (line 11), and out-
put of classifier_Testing is passed to the work-
flow output outFile (line 17).

The workflow shown in Figure 6 can return the
classification results for a set of inputs and an algo-
rithm. In Figure 7, a workflow Classifier is writ-
ten with the same inputs as Classifier excluding
the algo input. Three workflows (lda_class, knn_
class, and svm_class) are defined as workflow type
algo_classify (line 4). The Classifier workflow
is called for values “lda,” “knn,” and “ svmRadial”
(lines 8–9, 11–12, and 14–15). A service of type ag-
gregate agg is also defined (line 6).

Table 1. An overview of SDL code generation.

No. Service Utilities/Script [Inputs(type)] [Outputs(type)] LOC* Total LOC (files)

1 echoString Echo [0][1 (doc)] 10 + 13 + 1 + 6 30(4)

2 echoFile Echo [1 (String)] [1 (doc)] 10 + 14 + 1 + 6 31(4)

3 aggregate Cat [1(List doc)] [1 (doc)] 10 + 20 + 1 + 7 38(4)

4 classifier_

Training

R [2 (doc), 1 (String)] [1 (doc)] 11 + 24 + 2 + 8 45(4)

5 classifier_

Testing

R [3 (doc), 1 (String)] [1 (doc)] 12 + 29 + 2 + 8 51(4)

6 accuracy R [1 (doc)] [1 (doc)] 11 + 19 + 1 + 6 37(4)

7 submitBlast SLURM, sh [3 (doc)] [2 (String)] 17 + 27 + 2 + 8 + 18 72(5)

8 jobStatus SLURM, sh [1 (String)] [1 (String)] 10 + 14 + 1 + 6 31(4)

9 blastResult Cp [1 (String)] [1 (doc)] 10 + 14 + 1 + 6 31(4)

10 mafft Mafft [1 (doc)] [1 (doc)] 10 + 18 + 1 + 6 35(4)

*LOC stands for lines of code.

CISE-16-01-Jacob.indd 62 29/01/14 3:27 PM

www.computer.org/cise 63

The output of each workflow algo_classify is
written to the input of agg (lines 9, 12, and 15).
Hence, the output of agg (finalOut) has the aggre-
gated results of all three classifications. This is giv-
en to the input of the accuracy inputFile (line 18),
and the output of the service is given to workflow
output (line 20). Figure 8 shows the final output
workflow executable.

As Figure 8 shows, it would be challeng-
ing to maintain a workflow in this form using a
manual approach. This workflow has 50 proces-
sors and a similar number of connections. Using
our approach, scientists don’t have to deal with the

 engineering processes to make executables globally
available and accessible in a mature workflow en-
gine like Taverna—and our approach offers all the
advantages and features of executing the workflow
in the Taverna workbench.

Modern scientific computing in general, and signa-
ture discovery in particular, require the integra-

tion of multiple pieces of code into reusable programs
and workflows. We’ve taken a modern, service-
oriented approach to enabling the interoperability
and reuse of these codes. Our approach is extending

Figure 8. Taverna workflow for classification accuracy generated by WDL. The workflow has 50 processors and a similar number of
connections, making it difficult to maintain using a manual approach.

Ida

Ida_class

Workflow input ports

Workflow input ports

algo trainY

classifier_TrainingIn classifier_TrainingIn

classifier_Training

classifier_TrainingOut

classifier_Training

classifier_TrainingOut

classifier_TestingIn classifier_TestingIn

classifier_Testing

classifier_TestingOut

classifier_TrainingIn

classifier_Training

classifier_TrainingOut

classifier_TestingIn

classifier_Testing

classifier_TestingOut

Workflow output ports

outFile

Workflow output ports

outFile

aggregateIn

aggregate

aggregateOut

accuracyIn

accuracy

accuracyOut

Workflow output ports

finalOut

classifier_Testing

classifier_TestingOut

Workflow output ports

outFile

trainX testX testY

knn_class

trainY

trainY

trainX

trainX

testY knn svmRadial

svm_class

Workflow input ports

testY algo

testX

testX trainY trainX testY algotestX

Workflow input ports

CISE-16-01-Jacob.indd 63 29/01/14 3:27 PM

64 January/February 2014

WORKFLOW MANAGEMENT

the usefulness and value of scientifi c models and ana-
lytics that have been developed during the life of our
research, and we hope it will enable their use in con-
texts in which they weren’t originally envisioned.

Our service-oriented integration framework
enhances the software capabilities in our signature
discovery eff orts by reducing the engineering com-
plexity. Our framework can be extended to general
workfl ows and is currently being integrated with
other projects beyond signature discovery. Th is
success might be hampered, however, by the abil-
ity to integrate new codes as quickly as they are
needed. Th erefore, we see tools and languages such
as SDL and WDL being integral to the expansion
of our service-oriented analytics platform, because
they have the potential to ease the burden of inte-
grating code into the framework, while also ensur-
ing that it’s done using standard design patterns.

As such, in our future work, we plan to evaluate
the usefulness of these tools by scientists as well as
engineers inside and outside the signature discovery
area. For example, our framework is now being ap-
plied to the smart grid domain via PNNL’s Future
Power Grid Initiative (http://gridoptics.pnnl.gov) to
augment the GridOPTICS5 data integration frame-
work with comprehensive model integration capabil-
ities and service-oriented data sharing. Th is domain
also needs to integrate a wide range of tools quickly
into an enterprise-strength integration platform.

References
1. N. Baker et al., “Research Towards a Systematic

Signature Discovery Process,” Proc. Int’ l Conf. Intel-
ligence and Security Informatics, 2013, pp. 301–308.

2. M. Mernik, J. Heering, and A.M. Sloane, “When
and How to Develop Domain-Specifi c Languag-
es,” ACM Computing Surveys, vol. 37, no. 4, 2005,
pp. 316–344.

3. C.S. Oehmen, E.S. Peterson, and J.R. Teuton, “Evo-
lutionary Drift Models for Moving Target Defense,”
Proc. 8th Annual Cyber Security and Information In-
telligence Research Workshop, 2012, article no. 37.

4. T. Erl, SOA Design Patterns, Prentice Hall, 2009.
5. I. Gorton et al., “GridOPTICS A Novel Software

Framework for Integrating Power Grid Data Stor-
age, Management and Analysis,” Proc. Int’ l Conf. on
System Sciences (HICSS), 2013, pp. 2167–2176.

Ferosh Jacob is a software engineer at CareerBuilder.
His research interests include software modeling, high-
performance computing, and machine learning. Ferosh
has a PhD in computer science from the University of
Alabama. Contact him at ferosh.jacob@careerbuilder.
com.

Adam Wynne is a senior research engineer in the Na-
tional Security Directorate at the Pacifi c Northwest
National Laboratory. His research interests include soft-
ware architecture, middleware, and model-driven en-
gineering. Adam has an MS in computer science from
Western Washington University. Contact him at adam.
wynne@pnnl.gov.

Yan Liu is an associate professor in the Faculty of En-
gineering and Computer Science, Concordia University,
Canada, and was a senior scientist at Pacifi c Northwest
National Laboratory from 2009 to 2012. Her research
interests include cloud computing, distributed systems,
software architecture, and model-driven development.
Liu has a PhD in computer science from the University
of Sydney. Contact her at yan.liu@concordia.ca.

Jeff Gray is an associate professor in the Department
of Computer Science at the University of Alabama. His
research interests include software engineering, model-
driven engineering, software maintenance, and com-
puter science education. Gray has a PhD in computer
science from Vanderbilt University. Contact him at
gray@cs.ua.edu.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

Subscribe today for the latest in computational science and engineering research, news and analysis,
CSE in education, and emerging technologies in the hard sciences.

www.computer.org/cise

CISE-16-01-Jacob.indd 64 29/01/14 3:27 PM

