
52 Computing in Science & Engineering 1521-9615/14/$31.00 © 2014 IEEE Copublished by the IEEE CS and the AIP January/February 2014

WorkfloW ManageMent

Domain-Specific Languages for Developing and 
Deploying Signature Discovery Workflows

Ferosh Jacob | CareerBuilder
Adam Wynne | Pacific Northwest National Laboratory
Yan Liu | Concordia University
Jeff Gray | University of Alabama

Domain-agnostic signature discovery supports scientific investigation across domains through algorithm reuse. A 
new software tool defines two simple domain-specific languages that automate processes that support the reuse 
of existing algorithms in different workflow scenarios. The tool is demonstrated with a signature discovery workflow 
composed of services that wrap original scripts running high-performance computing tasks.

A 
signature is a “unique or distinguishing mea-
surement, pattern, or collection of data that 
detects, characterizes, or predicts a target 
phenomenon (object, action, or behavior) 

of interest.”1 Signatures are valuable in a wide range 
of application domains—such as medicine, network 
security, and explosives detection—for anticipating 
future events, diagnosing current conditions, and 
analyzing past events. However, current approaches 
have limitations on reusing existing algorithms, tools, 
and techniques across application domains and scien-
tific disciplines, which requires expertise in program-
ming language tools and the application domain.

At the Pacific Northwest National Laboratory 
(PNNL), we’re developing the Signature Discovery 
Initiative (SDI), a generalized signature development 
methodology that’s applicable to any signature dis-
covery problem.1 Under the SDI, we’ve been working 
closely with scientists who have developed or applied al-
gorithms using a wide range of programming languages 
and tools. We’ve found that signature discovery facili-
tates scientific investigation across multiple disciplines 
through the reuse of existing algorithms, which can 
be written in any programming language for various 
hardware architectures (including desktops,  commodity 
clusters, and specialized parallel hardware platforms). 

Reusing these algorithms requires a common architec-
ture that can integrate analytical software components 
created by scientists from different disciplines.

A common architecture to support reuse of 
scientific workflow algorithms requires support in 
two essential areas:

■■ a service-oriented software framework that lets 
scientists in specific domains register and share 
their algorithms, so that they can offer those al-
gorithms as reusable service components; and

■■ the creation of new signature discovery work-
flows in other domains using the created ser-
vice components. 

This further raises an engineering challenge: Web 
services must be generated for heterogeneous algo-
rithms, so that they become service components 
and can be registered and composed into a scien-
tific workflow environment.

Here, we introduce two domain-specific lan-
guages (DSLs):2

■■ Service Description Language (SDL) describes 
key elements of a signature discovery  algorithm 
and generates the service code.
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■■ Workflow Description Language (WDL) speci-
fies the services pipeline and generates deploy-
able artifacts for a workflow management 
system.

Our contribution is the new capability that 
emerges from combing SDL and WDL in a ser-
vice-oriented approach that enables the interoper-
ability and reuse of existing algorithms. Here, we 
demonstrate our approach with a software tool that 
removes the complexity associated with the engi-
neering requirements in the signature discovery 
process. We also describe two specific engineering 
challenges and how our solution addresses them 
using an example scenario focused on the Basic 
Local Alignment Search Tool (BLAST) execution 
workflow (see http://blast.ncbi.nlm.nih.gov/Blast.
cgi for details on BLAST). In addition, we include 

several SDL and WDL examples to show usage of 
the tool.

Motivating Scenario: BLAST  
Execution Workflow
The primary goal of our signature discovery re-
search is to develop a methodology and an as-
sociated set of software tools, called the Analytic 
Framework, that allow scientists and analysts to 
apply algorithms and techniques across multiple 
domains. For example, after we find a technique 
for developing and detecting a signature in one 
domain, we aim to abstract the specific techniques 
used and investigate whether they can be applied 
to additional datasets and problems outside of their 
normal usage. Because these software tools are be-
ing directed outside their usual context, the users 
might be unfamiliar with them. We thus need to 

Related Work in Automating Web Service and Workflow Creation

Several related efforts focus on code generation for Web 

services and workflows. We mention a few here, along with a 

discussion of related work in workflow automation and application 

composing.

Workflow engines, such as Java Business Process Manage-

ment (JBPM),1 also provide GUIs for designing and deploying 

workflows. Other related works include languages2,3 that are 

designed for composing computation-intensive applications. There 

are also many tools available for creating applications by compos-

ing Web services from different vendors.4,5 Most of these tools 

assume that the Web services are available.

In a domain-independent workflow like Taverna, Web services 

can be of different types; Web Services Description Language 

(WSDL) services are just one example. To keep the uniformity, 

every time a WSDL processor is created, users have to add trans-

formations to parse the XML input and output. Our framework 

handles these details automatically through service and workflow 

definition languages. Moreover, because the output is generated 

as a Taverna workflow file, it can be viewed, edited, and executed 

in Taverna’s full-fledged workflow development environment. 

As Ian Gorton and Yan Liu demonstrated,6 reusing open source 

component-based software frameworks significantly improved 

the development of domain-specific scientific workflows. Our 

framework configures the workflow definition file that declares how 

to compose services wrappers created by our framework. This ap-

proach reduces the complexities of encapsulating domain-specific 

computing procedures to general-purpose workflows.

The work described in this article is focused on helping 

scientists in developing signature discovery workflows. The code 

 generation for Web services and workflows is separated from the 

Domain Specific Language (DSL) design to facilitate alternate 

implementations for the Web services and workflows. Our tool’s 

role in support of Signature Discovery Initiative (SDI) workflows 

is similar to tools in other scientific collaboration environments, 

such as Rappture (for rapid application infrastructure) with nano-

Hub.org,7 where Rappture generates a GUI based on the descrip-

tion of inputs and outputs of a simulator that can be deployed on 

a hub platform.
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make every effort to make what are sometimes 
highly technical tools easy to use. We selected 
BLAST for this motivating scenario because it il-
lustrates this process well.

In systems biology, scientists often use BLAST 
to find regions of local similarity between biologi-
cal sequences. This has a wide range of practical 
uses, including addressing the homology problem, 
wherein researchers try to determine the similarity 
between genes—which are composed of sequences 
of nucleotides—in order to imply common evolu-
tionary origin. BLAST’s abstracted purpose is to 
solve an inexact string-matching problem, which 
has been applied successfully to the computer se-
curity domain to develop signatures of “families” 
of related software code by representing the code 
as sequences of subroutine calls or processor op-
erations.3 SDL/WDL offers an easier way for sci-
entists to construct services and workflows that 
include sequence-based signatures like those used 
in BLAST. One drawback of our approach is the 
additional layer of tooling that must be main-
tained and updated as the underlying platform 
evolves.

Practically speaking, BLAST is a long-running 
job with input and output. The workflow is usually 
executed in three steps:

1. Submit a BLAST job in a cluster using the 
Simple Linux Utility of Resource Management 
(SLURM) job scheduler (see https://computing.
llnl.gov/linux/slurm).

2. Check the job’s status.
3. Download the output f i les upon job 

completion. 

Note that a UNIX command utility (such as 
sh) and/or a script file (such as SLURM) identi-
fies each step. We’ll now use this BLAST workflow 
identified from the SDI to illustrate three engineer-
ing challenges when reusing signature discovery al-
gorithms from different domains.

Accidental Complexity of  
Generating Service Wrappers
In keeping with our common architecture’s goal, 
we aim to make existing BLAST programs avail-
able so that scientists can share them. To address 
this objective, we provide Web service wrappers for 
every executable binary. We adopt the legacy wrap-
per pattern4 to encapsulate existing algorithms, 
while providing a standard interface so that they 
can be orchestrated with other services to create 

reusable workflows. Informally, we refer to these 
services as wrappers.

Creating a wrapper for an existing script or ex-
ecutable typically follows a common set of steps:

■■ identify the input files and output files in the 
program;

■■ retrieve the input files from the data manage-
ment system;

■■ execute the program; and
■■ upload the output files to the document man-

agement system as part of the existing signa-
ture discovery software framework.

We’ve observed that the process for converting 
a script often results in significant extra code and 
manual effort. For example, checkJob is a simple 
BLAST service for checking the job status, with 
a single input (JobId) and output (status). How-
ever, it requires a service wrapper with 121 lines of 
Java code (in four Java classes) and 35 lines of XML 
code (in two files). This extra code might increase 
the complexity and development overhead signifi-
cantly from a scientist’s perspective.

Our goal is to raise the level of abstraction 
from these general-purpose languages to the signa-
tures domain, such that scientists describe only the 
specifications for the executable binary—in this 
case, signature algorithms—that’s to be shared as 
a service component using a DSL. The tools associ-
ated with our DSLs will generate and execute the 
code required for creating a wrapper.

Coupling between Workflows and Services
Once the executable binaries are accessible as a ser-
vice component, scientists still must orchestrate the 
services to define the signature discovery workflow. 
To make any Web service available in a domain- 
independent workf low engine such as Taverna 
(www.taverna.org.uk), a user must:

■■ manually add each operation as a service to the 
workflow designer, and

■■ provide XML generators and parsers.

In a Web service, the input and output are ex-
pressed in XML. Hence, an XML generator is re-
quired before passing any workflow parameters to 
the service. Similarly, an XML parser is required 
to process the service output after executing the 
service. Therefore, these two processes (that is, 
generating a service wrapper and registering a ser-
vice for orchestration) are coupled. Figure 1 shows 
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this BLAST execution workflow in the Taverna 
workbench.

As Figure 1 shows, the workflow consists of 
three services: submitting a job, checking the job’s 
status, and obtaining the result. In the figure, box-
es in light blue represent workflow inputs and out-
puts. Other boxes correspond to processors, where 
processors performing similar functions are identi-
fied by the same color (for example, purple boxes 
represent processors that handle XML parsing). 
Within the checkJob service, jobID is wrapped 
inside an XML descriptor by jobStatusIn before 
passing to the actual service processor jobStatus. 
After executing the service processor, the output 
XML is passed to the jobStatusOut processor, 
which parses the XML and passes the status to 
workflow output port status.

In case a service output is an object, as in the 
case of submitBlast, multiple XML parser pro-
cessors are applied (such as submitBlastOut and 
submitBlastOut_submitBlastResults). Hence, 
the type and number of XML parsers and gen-
erators required to make a Web service available 
in a workflow orchestration depend on the struc-
ture—that is, the type and number of the input 
and output—of the Web service itself. Given this, 
scientists need comprehensive knowledge to use 
these services in a workflow because they must 
know the input and output format of every ser-
vice. The scientists would also need to provide cor-
rect parsers and generators for each service. This is 
a challenging task for most scientists, and is one 
full of accidental complexities.

Lack of End-User Environment Support
Because many scientists are unfamiliar with ser-
vice-oriented software technology, they’re forced to 
seek the help of software developers to make Web 
services available in a workflow environment. On 
the other hand, software developers find it diffi-
cult to work with scientific scripts and tools, which 
aren’t usually their area of expertise. This technol-
ogy barrier can degrade the benefits of sharing sig-
nature discovery algorithms, because any changes 
or bug fixes to an algorithm require both a dedi-
cated software developer and a scientist to navigate 
through the engineering process.

Solution Approach Using DSLs
We introduce a new approach to simplify the in-
tegration of signature discovery algorithms into a 
common architecture. In this approach, two sets of 
DSLs2 are defined that contain

Figure 1. An example Basic Local Alignment Search 
Tool (BLAST) workflow. The two key processes—
generating a service wrapper and registering a service 
for orchestration—are coupled.
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■■ an SDL that end users can use to specify the 
user credentials, executable path, script file, 
and the input and output of any script; and

■■ a WDL that specifies the interactions of these 
services and takes input from one or more ser-
vice description files. 

The WDL’s syntax is mapped to the APIs of a 
workflow environment. Thus, we can generate the 
glue code to orchestrate the service components 
generated from SDL.

For example, Figure 2 shows SDL and WDL files 
for a BLAST execution workflow. In Figure 2a, three 
services—submitBlast, jobStatus, and blastRe
sult—are defined, along with their input, resources 
(script files), and connection details. In Figure 2b, a 
main workflow is defined with input and output (we 
explain the code used in these two files later).

The few lines of code shown in Figure 2 are 
powerful enough to

■■ create three Web services, where each service is 
a wrapper for a remote executable that will up-
load all the required files to the remote server 
before execution and download the files after 
execution; and

■■ create an executable workflow in a workflow 
engine such as Taverna (Figure 1).

Figure 3 shows the overall approach to gen-
erating wrappers and workflows. The input to the 
process are scripts (or commands with template 
variables) and the SDL and WDL files. Using 
these input files, Web service wrappers and a work-
flow file deployable to a workflow engine (such as 
 Taverna) are generated. Each Web service wrapper 

Figure 2. BLAST execution workflow using Service Description Language (SDL) and Workflow Description Language (WDL). (a) The code 
shown here can create three Web services that act as wrappers for remote executables that will upload and download files before and 
after execution, respectively. (b) It also creates an executable workflow in the workflow engine (here, Taverna).

(a) (b)
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is created from scripts and the associated SDL files. 
The workflow file is created using both SDL and 
WDL files. Code generation occurs in two stages:

■■ Web application creation. The tool creates Web 
services from the SDL files that describe a 
script’s key elements. 

■■ Workflow creation. The SDL file from the first 
stage defines a service. It’s then passed together 
with the WDL file to create the workflow con-
structs. These constructs are the basic elements 
for the Taverna engine to create a workflow as 
defined in WDL.

During the loading of an SDL file, a Web applica-
tion with Web service wrappers corresponding to each 
service in the SDL is created. Similarly, a “t2flow” 
(Taverna workflow executable) file is created during 
the load time of WDL. When the t2flow is executed, 
the wrapped script(s) and command(s) are executed 
in the remote host through an SSH session with the 
help of existing signature discovery libraries, which are 
part of SDI. These libraries are responsible for making 
the input files available before execution and upload-
ing the output files to a dedicated data management 
system after execution. We use a template engine to 
access runtime values of variables inside services.

SDL Definition and Wrapper Generation
An SDL file has a list of services, and each service 
has a connection parameter (SSH details), an execu-
tion command parameter (command to execute), 
resources (additional scripts required to execute 
the command), and a set of inputs and outputs re-
quired for the service execution. If the connection 
parameter isn’t specified, a service will be executed 
in the server in which the application is deployed.

We now describe the code-generation details of 
SDL input and output.

Input and output strings. String is the default param-
eter type in SDL. Any parameter defined without a 
modifier other than “in” and “out” are treated as string 
parameters. The “in” and the “out” modifiers define 
the directions of the parameters. Each input string pa-
rameter is treated as a template variable and is applied 
to the scripts and commands; any occurrence of the 
variable will be replaced by its runtime value before 
execution. If there’s an output string variable, code is 
generated to read a .properties file after execution.

List of documents or string. Code is generated to 
apply the document property or string property 
for all elements in the list. As shown in Figure 4a, 
while using the template variables and list, users 
must be aware that a single variable can be substi-
tuted with many values.

Wrapper generation. We generate a Web service wrap-
per for each SDL file using the file name. For every 
service, two artifacts are generated: the interface class 
and the corresponding implementation class. In ad-
dition, the framework generates a helper class, called 
SSHHelper, that automates the connection with re-
mote computers. For example, Figure 2 shows the 
code generated for the submitBlast service, includ-
ing the interface class and its implementation.

SDL Execution
We’ve created service wrappers for each step. Fig-
ure 2a shows the job submission service. A BLAST 
job is submitted using two script files: “jobScript.
sh” (a SLURM file) and “runJob.sh” (a BASH file). 
The script file “runJob.sh” executes the SLURM 

Figure 3. A block diagram showing the framework’s implementation. The process inputs are scripts and the SDL and 
WDL files.

Inputs

Outputs (DSL load time)

Web services
(checkJob)

Taverna workflow
(BlastSearch.t2flow) Workflow engine

SDI framework

Template engine

Generated code runtime
Script metadata
(name, inputs)

SDL
(SiqQuality.sdl)

WDL
(SigQuality.wdl)

CISE-16-01-Jacob.indd   57 29/01/14   3:27 PM



58  January/February 2014

WorkfloW ManageMent

file and writes jobID and outDir to the .prop
erties file. In Figure 2a, submitBlast has two 
outputs, the execution directory (outDir) and the 
job identifier (jobID). Both outputs are declared as 
the default type; hence, the framework generates 
code for the string outputs. The generated code 
downloads and reads their values from a .prop
erties file. Other services  (blastResult and 
checkJob) are command SDL service wrappers (no 
script files) and are not shown. Service checkJob 
checks the status of a given  jobID and returns sta-
tus as “Running,” “Pending,” or “Done.” Service 
blastResult downloads the files from a given 
directory.

At runtime, values and fields inside the script 
files must be exposed as the input or output of ser-
vice wrappers. This is achieved by treating the scripts 
as templates and their runtime values as template 
variables. The template variables are enclosed inside 
the “$” character. Before executing any script files 
in the server, the scripts are passed through a tem-
plate engine. The template engine substitutes the 
scripts with runtime values. Template substitution 
isn’t necessary for the files, because their runtime 
names are the same as their load time names. As 
an example, in Figure 2 (line 25), the blastResult 
service is defined with a template variable outDir. 
When the blastResult is executed, the $outDir$ 
in the command (line 25) will be replaced by the 
runtime value of the variable outDir.

We use the Antlr StringTemplate (www.
stringtemplate.org) for the template implementa-
tion. Hence, we can use many advanced features 
of a template engine. As an example, to implement 
a Web service that can aggregate all of the input 
files, we defined an SDL file (Figure 4b) with an 
input as a “list’” of documents named inputs (line 
3). Because the variable type is a list, the template 
is applied for all the values. Using the StringTem-
plate “separator” keyword, we separate the individ-
ual values with a space. In the case of a text output, 
the code is generated to read the .properties file 
and return the specified property value. Hence, a 
user has to make sure that the output text values 
are written to the .properties if they want the 
service to return the value. 

As Figure 2a shows, after submitting a BLAST 
job, the job identifier and the output directory are 
written to the .properties file (commented lines 
16 and 17). If there are multiple outputs, a new ob-
ject return type is created with fields as the outputs 
specified and returned.

WDL Definition and Workflow Generation
A WDL file creates a Taverna workflow based on the 
descriptions specified by the user. A WDL workflow 
involves communication and interactions among 
various service wrappers and between service wrap-
pers and other workflows. A WDL file can have 
many workflows, but the topmost workflow is con-
sidered the main workflow with all other workflows 
treated as subworkflows. Code is generated for a sub-
workflow only if it’s called inside the main workflow. 

Workflows have declarations of elements and 
connections. Figure 5 shows the Xtext (www.
eclipse.org/Xtext) grammar for WDL. Elements 
can be of any three types: subworkflow, services, 
and strings. Strings must be initialized, along with 
their declaration. Connections also have three 
types: workflow input to service port, service port 
to service port, and service port to workflow out-
put or subworkflow calls.

A subworkflow call in WDL introduces loops 
and abstractions (function calls) to another WDL. 
It can connect a subworkflow with the connection 
ports. In that case, the subworkflows, services, and 
strings can be used without explicit declaration; 
their names will be used as their identifiers. The 
main workflow uses a “call-till-with” structure for 
communicating with subworkflows. As lines 13–16 
in Figure 5 show, using this structure, the main 
workflow can iteratively “call” a subworkflow “till” 
it meets a condition “with” main workflow ports. 

Figure 4. More SDL examples. (a) Wrappers for R scripts using SDL. (b) A 
utility wrapper service that can vertically merge a list of files.

(a)

(b)
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Hence, the “call-till-with” structure replaces func-
tion calls and loops in WDL.

We use a WDL specification file to define 
workflows. A WDL file can contain many work-
flows. The first workflow in the file is the main 
workflow. Accordingly, a Taverna workflow file 
will be generated with the same name as the main 
workflow, with an added t2flow extension. The 
other workflows used inside the main workflow are 
subworkflows. The input for the services in a SDL 
specification file can be defined in two ways:

■■ Direct service specification—a service name followed 
by the operator “.” and the input variable name 
specified in the SDL file (Figure 2, lines 9–11).

■■ Indirect service specification—an identifier de-
fined as a service, followed by operator “.” and 
the variable name (Figure 6, line 13).

The indirect service specification is required 
when there’s more than one occurrence of the same 
service. The “->” operator can be used for con-
necting any of the three cases, such as connecting 

Figure 5. Xtext grammar for WDL. The top-level components are the SDL file locations and the workflows using the 
services defined in the SDL.
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a workflow input to a service input, connecting 
a service output to another service input, or con-
necting a service output to a workflow output. We 
introduced the call-till-with construct to imple-
ment loops and abstraction in the WDL. Using 
the structure, subworkflows can be included into 
the main workflow. Using the optional “till” con-
struct lets us specify the termination condition for 
a subworkflow. The subworkflow will be executed 
only once, as shown in the landscape classification 
example in Figure 7.

The support for a conditional expression is 
restricted by the underlying workflow engine. 
Hence, for the expression, the first operand must 
be a subworkflow port, and the second operand 
must be a string. WDL supports three logical op-
erators: “=,” “<,” and “>.” Using the “with” con-
struct, the subworkflow’s input and output are 
specified similar to a function call’s arguments. If 
the arguments are defined as an “out” type in a 
subworkflow, the subworkflow writes to the port 
after execution. Otherwise, it reads from the port 
before the execution.

WDL Execution
Figure 2b shows the WDL file for the BLAST 
workflow. The WDL specification has two work-
flows: BlastSearch, the main workflow, and 
checkJob, the subworkflow. The main workflow 
BlastSearch has the following steps:

■■ Submit a BLAST job after passing inputs to 
the submitBlast service (lines 9–11).

■■ Pass the jobID to the subworkflow (line 16) 
and the output directory to the blastResult 
service and wait for the subworkflow to con-
tinue execution until it meets a criterion on 
finishing the subworkflow (lines 14–16).

■■ Download the output file using service blast
Result and pass it to the workflow output (line 
22).

In Figure 2b, the checkJob workflow is de-
fined (lines 28–32). The workflow takes one input 
(wf_jobID) and returns one output (wf_status). 
The workflow input jobID is passed to the service, 
jobStatus (line 29). The jobStatus service is de-
fined using SDL to find the status of the specified 
job. The workflow output status is fetched from 
the service output status (line 30). The order of 
execution is determined by the Taverna engine, 
which executes all the services whose outputs are 
available. In some cases, scientists might want to 
control the order, because it might not be obvious 
to the Taverna engine.

As an example, for the BLAST execution, the 
blastResult service that downloads the output 
files must wait for the BLAST job to complete. To 
allow a service to be executed only after the speci-
fied workflow or service, the “after” keyword is pro-
vided and can be added to any service  invocation 

Figure 6. Landscape classification using WDL. This workflow uses two services: classifier_training and 
classifier_testing. The output of classifier_training links to the input of classifier_testing.
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(Figure 2b, line 19). More than one service can be 
specified in the “after” clause. The language design 
and the associated software tools are available as an 
Eclipse plugin for PNNL scientists working in the 
SDI project.

We define the syntax of service descriptions 
and workflows using Eclipse Xtext. The syntax is 
defined according to Taverna workflow elements 
and processes. The code generation uses Apache 
CXF APIs for creating Web service wrappers for 
script files. (For more on the CFX open source ser-
vices framework, see http://cxf.apache.org).

SDL Service Examples
Figure 4 shows two examples of the services we cre-
ated using SDL for signature discovery workflows:

■■ Figure 4a shows wrappers for R (www.r-proj-
ect.org) scripts using SDL.

■■ Figure 4b shows a utility wrapper service that 
can perform a vertical merge for a list of files.

Using the SDL service shown in Figure 4a, a 
Web service wrapper is created that executes an R 
script (training.r) with input files (trainXFile 

Figure 7. Classification accuracy using Workflow Description Language (WDL). The output of each workflow algo_
classify is written to the input of agg (lines 9, 12, and 15). Hence, agg (finalOut) has the aggregated results 
of all three classifications.

and trainYFile). The R scripts can be executed us-
ing the command “R CMD BATCH scriptfile” as 
shown in Figure 4a (line 3). Similarly, the UNIX 
utility cat command is used in the aggregate service 
to aggregate files (line 3 in Figure 4b).

Table 1 shows an overview of 10 services careful-
ly selected to highlight the core code-generation fea-
tures of the SDL parser. In the table, “lines of code” 
indicate the additional LOC generated to include the 
service. This doesn’t include abstract classes or class 
definitions if the class already exists. The SDL code 
generation is comprised of the following steps:

■■ adding a method in a Java RMI interface;
■■ adding a method in a Java Service Endpoint 

Interface (SEI) for creating an XML-based 
Web service;

■■ implementing a method in a Java class through 
a helper class;

■■ creating the helper class for the service; and
■■ creating a new Java bean, if there’s more than 

one output.

The generated code affecting multiple Java classes 
(such as five, if there’s more than one output) for 
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each service wrapper is shown in the table’s LOC 
column.

A WDL Case Study: Landscape Classification
We now demonstrate how our approach can be used 
to define and deploy signature workflow through a 
landscape classification example. In the landscape 
classification workflow, the goal is to compare ac-
curacies of three landscape classification algorithms. 
Each landscape classification algorithm is developed 
as R scripts and involves four stages:

■■ Training stage. Image data, along with their ac-
tual landscape classification values, are given 
as input. A model (a function approximation, 
generalized from the input training patterns) 
is created, and the model is returned as the 
output.

■■ Testing stage. The image data and the estimated 
model from the training stage are passed as 
inputs. The estimated classification type is re-
turned as output.

■■ Aggregate stage. We perform the first two stages 
for three different algorithms: Linear Discrim-
inant Analysis (LDA), K-Nearest Neighbor 
(KNN), and Support Vector Machine (SVM). 
The results of the algorithms are merged to a 
single output file. This can be implemented us-
ing a simple cat command.

■■ Accuracy stage. Based on the estimated and ac-
tual values, another R script is also available 
that can calculate a classification algorithm’s 
accuracy.

Figure 4 shows SDL service definitions for the 
training and aggregate stages. Similarly, we can de-
fine service wrappers for the testing and accuracy 
stages.

The next step is to define the workflow. Figure 
6 shows a workflow algo_classify that imports 
the service definitions and connects the training 
and testing stages through their inputs. The work-
flow inputs are passed to classifier_Training 
(lines 5–8) and classifier_Testing (lines 9, 14, 
and 15). The output of classifier_Training is 
passed to classifier_Testing (line 11), and out-
put of classifier_Testing is passed to the work-
flow output outFile (line 17).

The workflow shown in Figure 6 can return the 
classification results for a set of inputs and an algo-
rithm. In Figure 7, a workflow Classifier is writ-
ten with the same inputs as Classifier excluding 
the algo input. Three workflows (lda_class, knn_
class, and svm_class) are defined as workflow type 
algo_classify (line 4). The Classifier workflow 
is called for values “lda,” “knn,” and “ svmRadial” 
(lines 8–9, 11–12, and 14–15). A service of type ag-
gregate agg is also defined (line 6).

Table 1. An overview of SDL code generation.

No. Service Utilities/Script [Inputs(type)] [Outputs(type)] LOC* Total LOC (files)

1 echoString Echo [0][1 (doc)] 10 + 13 + 1 + 6 30(4)

2 echoFile Echo [1 (String)] [1 (doc)] 10 + 14 + 1 + 6 31(4)

3 aggregate Cat [1(List doc)] [1 (doc)] 10 + 20 + 1 + 7 38(4)

4 classifier_

Training

R [2 (doc), 1 (String)] [1 (doc)] 11 + 24 + 2 + 8 45(4)

5 classifier_

Testing

R [3 (doc), 1 (String)] [1 (doc)] 12 + 29 + 2 + 8 51(4)

6 accuracy R [1 (doc)] [1 (doc)] 11 + 19 + 1 + 6 37(4)

7 submitBlast SLURM, sh [3 (doc)] [2 (String)] 17 + 27 + 2 + 8 + 18 72(5)

8 jobStatus SLURM, sh [1 (String)] [1 (String)] 10 + 14 + 1 + 6 31(4)

9 blastResult Cp [1 (String)] [1 (doc)] 10 + 14 + 1 + 6 31(4)

10 mafft Mafft [1 (doc)] [1 (doc)] 10 + 18 + 1 + 6 35(4)

*LOC stands for lines of code.
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The output of each workflow algo_classify is 
written to the input of agg (lines 9, 12, and 15).  
Hence, the output of agg (finalOut) has the aggre-
gated results of all three classifications. This is giv-
en to the input of the accuracy inputFile (line 18), 
and the output of the service is given to workflow 
output (line 20). Figure 8 shows the final output 
workflow executable.

As Figure 8 shows, it would be challeng-
ing to maintain a workflow in this form using a 
manual approach. This workflow has 50 proces-
sors and a similar number of connections. Using 
our approach, scientists don’t have to deal with the 

 engineering processes to make executables globally 
available and accessible in a mature workflow en-
gine like Taverna—and our approach offers all the 
advantages and features of executing the workflow 
in the Taverna workbench.

Modern scientific computing in general, and signa-
ture discovery in particular, require the integra-

tion of multiple pieces of code into reusable programs 
and workflows. We’ve taken a modern, service- 
oriented approach to enabling the interoperability 
and reuse of these codes. Our approach is  extending 

Figure 8. Taverna workflow for classification accuracy generated by WDL. The workflow has 50 processors and a similar number of 
connections, making it difficult to maintain using a manual approach.
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the  usefulness and value of scientifi c models and ana-
lytics that have been developed during the life of our 
research, and we hope it will enable their use in con-
texts in which they weren’t originally envisioned.

Our service-oriented integration framework 
enhances the software capabilities in our signature 
discovery eff orts by reducing the engineering com-
plexity. Our framework can be extended to general 
workfl ows and is currently being integrated with 
other projects beyond signature discovery. Th is 
success might be hampered, however, by the abil-
ity to integrate new codes as quickly as they are 
needed. Th erefore, we see tools and languages such 
as SDL and WDL being integral to the expansion 
of our service-oriented analytics platform, because 
they have the potential to ease the burden of inte-
grating code into the framework, while also ensur-
ing that it’s done using standard design patterns.

As such, in our future work, we plan to evaluate 
the usefulness of these tools by scientists as well as 
engineers inside and outside the signature discovery 
area. For example, our framework is now being ap-
plied to the smart grid domain via PNNL’s Future 
Power Grid Initiative (http://gridoptics.pnnl.gov) to 
augment the GridOPTICS5 data integration frame-
work with comprehensive model integration capabil-
ities and service-oriented data sharing. Th is domain 
also needs to integrate a wide range of tools quickly 
into an enterprise-strength integration platform. 
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