
USING THE STRUCTURAL LOCATION OF TERMS TO IMPROVE THE RESULTS OF

TEXT RETRIEVAL BASED APPROACHES TO FEATURE LOCATION

by

BRIAN EDDY

JEFF GRAY, COMMITTEE CHAIR
NICHOLAS KRAFT
JEFFREY CARVER
SUSAN VRBSKY
RANDY SMITH

A DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the Graduate School of
The University of Alabama

TUSCALOOSA, ALABAMA

2015

Copyright Brian Eddy 2015
ALL RIGHTS RESERVED

ABSTRACT

Software maintenance and evolution make up a considerable portion of the time and effort

spent during the life cycle of a software system. During the maintenance and evolution phase, the

majority of a developer’s time is spent on program comprehension tasks. Feature location (i.e.,

identifying a starting point for a change), impact analysis (i.e., identifying all source elements

involved in a change), and software summarization (i.e., automatically summarizing the responsi-

bilities of a source element) are examples of such tasks. Recent research in these areas has focused

on improving each process to ease the burden on developers and decrease the time spent in each

task through the use of textual information, dependency graphs, and execution traces. Further-

more, the success of text retrieval in other areas (e.g., traceability) has initiated new studies in

automating feature location by the use of text retrieval techniques, such as the vector space model

(VSM), latent semantic indexing (LSI), and latent Dirichlet allocation (LDA). Some research has

been done to improve LSI and VSM models by combining structural information (i.e., information

regarding the creation and use of objects and methods within the code) with the corpus obtained

from extracting text from source code. However, little research has focused on improving LDA

and more sophisticated topic models (i.e., a statistical model of the abstract topics that occur in a

corpus) with structural information. Furthermore, no study has looked at how a developer’s knowl-

edge of a software system’s structure may be incorporated into text retrieval based feature location

for software maintenance tasks.

ii

The research presented in this dissertation makes two main contributions. First, it evalu-

ates a methodology for incorporating structural information into the corpus obtained in the text

extraction phase by modifying the weights of terms based on their importance to the individual

source elements. Furthermore, this dissertation introduces a novel technique for performing struc-

tured text retrieval that allows developers to use their existing knowledge about the structure of a

software system. This dissertation is organized into the following parts: a demonstration of the

effects of structural weighting schemes on the effectiveness of topic-modeling in feature location,

the introduction of a new structured source code retrieval model, a demonstration of the effects of

structured queries on the effectiveness of structured source code retrieval for feature location, and

additional insights into how and when these approaches should be incorporated.

iii

DEDICATION

To my Dad and my Papa, the men in my life who taught me what it means to live by your

heart and what the word "dedication" truly means.

iv

LIST OF ABBREVIATIONS AND SYMBOLS

AST abstract syntax tree

CAS content and structure queries

C(LC,M,P,BC,LV) a structural weighting scheme for LDA

C{C = 1,S = 1,B = 1} a combination and weighting in structured retrieval

CSB comments, signature, and body

d j the jth document in a corpus

~d j a document vector

F the F statistic for the Friedman or Kruskal-Wallis test

FCA Formal Concept Analysis

FLT Feature location technique

f reqi, j frequency of ith term in jth document

H0 the null hypothesis

HA the alternative hypothesis

k a modeling parameter for LSI

K the number of topics in LDA

ki the ith term in a document

ICL identifiers, comments, and literals

v

LD lexicon density

LMPBV comments, method names, parameters, local variables

|L| the cardinality of a lexicon

LCo the set of comments in a software system

LId the set of identifiers in a software system

LLi the set of literals in a software system

LDA latent Dirchlet allocation

LSI latent semantic indexing

~M term-document association matrix

max f reqi, j maximum frequency of a term in jth document

Md a language model of document d

MRR mean reciprical rank

~Mt the transpose of the matrix ~M

~M ~Mt the term-to-term correlation matrix

~Mt ~M the document-to-document correlation matrix

N number of documents in corpus

ni number of terms in which ith term appears

p the p statistic for significance testing

p(A|B) the probability of A given B

~q a query vector

vi

Q a query to a language model

|Q| the number of overall queries for a system

r the effect size

ri the effectiveness measure for a query

R̂t,d the risk factor for the language model

~S singular values of ~M

SDR structured document retrieval

SEMERU Software Engineering Maintenance and Evolution Research Unit

sim(d j,q) similarity between a document and a query

SVD singular value decomposition

TR text retrieval

tf-idf term frequency - inverse document frequency

~U eigenvectors from ~M ~Mt

UTC unique term contribution

UTD unique term density

USrc set of unique terms in source

VSM vector space model

~V t eigenvectors from ~Mt ~M

w a term weighting

wi, j weighting for ith term in the jth document

vii

XML extensible markup language

α Dirichlet hyperparameter for topic proportions

β Dirichlet hyperparameter for topic multinomials

σ number of iterations of Gibbs sampling

ψ the term-topic probability distribution

θ the topic-document probability distribution

∪ the union of two sets

∈ element in set

∏
t∈Q

a product over all terms in Q

∏
t /∈Q

a product over all terms not in Q

4 symmetric difference

{t1, t2, ..., tn} a set of terms

(w1,q,w2,q, ...,wn,q) weights for each term in a query

∑ a summation

viii

ACKNOWLEDGMENTS

First, I would like to thank the Department of Education and the GAANN fellowship.

Without the support provided by this program, I would not have been able to pursue my degree.

I would like to thank the members of my committee, Dr. Randy Smith, Dr. Jeffrey Carver,

and Dr. Susan Vrbsky. Dr. Smith, I appreciate your time and willingness to evaluate my disser-

tation research. Dr. Carver, I appreciate your software engineering classes, which have made a

considerable impact on the way that I view software engineering as a field. Dr. Vrbsky, I appreci-

ate your courses in databases and cloud computing, which have helped me broaden my skills and

knowledge.

I would like to thank Dr. Nicholas A. Kraft, who introduced me to the world of academic

research, and has been an invaluable resource for me throughout the years. Without you, I would

not have been in this excellent program. Your straightforward advice has always been appreciated,

and will serve me as I begin my own career.

I would like to thank Dr. Jeff Gray. By working with you, I have learned to see the broader

social impact that computer science and software engineering has on the world. You have allowed

me to grow as not only a computer scientist, but also as an educator. I have learned to not only

imagine what use my knowledge can be to the software engineering community, but the role it can

play in the larger world. I will continue to hold onto these ideals throughout my life.

ix

I would like to acknowledge the other graduate students in the department, especially Jef-

frey Robinson, Jonathan Corley, and Dustin Heaton. You have been the ones to keep me sane these

last few years. I have truly enjoyed the years that we have spent together as graduate students.

To my brothers, sisters, parents, and grandparents. You have been the ones to always

stand beside me. To see me through the thick and thin. To acknowledge me when I could not

acknowledge myself. The languages of this world are incomplete in that they do not have strong

enough words to express how blessed I am to be a member of this family. I know that I would not

be where I am today if not for your love and support.

Finally, to my future wife, Adrienne. I am not sure you knew what you signed up for,

but despite it all, you have stood beside me, with me. You are the love of my life, the one I am

priviledged to share my hopes and my dreams. Know that after the last chapter of this dissertation

comes to a close, it will only mean the opening of a brand new chapter in our lives. I am looking

forward to what God has in store for us.

x

CONTENTS

ABSTRACT . ii

DEDICATION . iv

LIST OF ABBREVIATIONS AND SYMBOLS . v

ACKNOWLEDGMENTS . ix

LIST OF TABLES . xvi

LIST OF FIGURES . xxix

1 INTRODUCTION . 1

1.1 Software Change . 3

1.2 Overview of Text Retrieval . 4

1.2.1 The Source Code Lexicon . 8

1.2.2 Vector Space Model (VSM) . 10

1.2.3 Latent Semantic Indexing (LSI) . 12

1.2.4 Latent Dirichlet Allocation (LDA) . 14

1.2.5 Language Modeling . 15

1.2.6 Structured Document Retrieval . 17

1.3 Overview . 18

1.3.1 Structural Weighting of LDA . 19

1.3.2 Structured Source Code Retrieval . 21

1.3.3 Comparing Structured Retrieval with Structural Weighting of LDA 22

xi

1.4 Organization . 22

2 RELATED WORK . 24

2.1 Text Retrieval Based Feature Location . 24

2.2 Combining Additional Information with Text Retrieval 27

2.3 Configuration and Corpus Creation . 34

3 PRELIMINARY STUDY ON CONFIGURING LDA 39

3.1 Case Study . 40

3.1.1 Definition and Context . 40

3.1.2 Overview . 40

3.1.3 Subject software systems . 42

3.1.4 Benchmarks . 43

3.1.5 Effectiveness measure . 44

3.1.6 Setting . 44

3.1.7 Hypotheses . 45

3.1.8 Data Collection and Analysis . 50

3.2 Results . 53

3.2.1 Part 1: Testing for Interactions among Factors 53

3.2.2 Part 2: Configuring the Query . 53

3.2.3 Part 3: Configuring the Text Extractor and K 57

3.2.4 Part 4: Configuring α and β . 59

3.2.5 Part 5: Applying the Lessons Learned . 61

3.3 Discussion of Results . 65

xii

3.3.1 Part 2: Configuring the Query . 65

3.3.2 Part 3: Configuring the Text Extractor and K 68

3.3.3 Part 4: Configuring α and β . 69

3.4 Threats to Validity . 70

3.5 Summary . 71

4 STRUCTURAL WEIGHTING OF LDA . 72

4.1 Study Design . 75

4.1.1 Definition and Context . 75

4.1.2 Research Questions . 81

4.1.3 Data Collection and Analysis . 83

4.1.4 Threats to Validity . 85

4.2 Results of Case Study . 86

4.2.1 Does structural weighting of comments, leading terms, and local variables
affect the accuracy of a LDA-based feature location technique (FLT)? . . . 86

4.2.2 Can a relationship between the contributions of each structural compo-
nent’s lexicon and their weighting factors be found? 118

4.3 Discussion of Results . 136

4.3.1 Does structural weighting of comments, leading terms, and local variables
affect the accuracy of a LDA-based feature location technique (FLT)? . . . 136

4.3.2 Can a relationship between the contributions of each structural compo-
nent’s lexicon and their weighting factors be found? 141

4.3.3 Recommendations . 144

4.4 Using Machine Learning to Find Optimum Configurations 145

4.4.1 Genetic Algorithms . 146

xiii

4.4.2 Fitness Functions Used in Study . 149

4.4.3 The Search Process . 150

4.4.4 Searching Eclipse . 152

4.5 Summary . 159

5 STRUCTURED SOURCE CODE RETRIEVAL . 161

5.1 Approach . 163

5.1.1 Overview of Indri . 163

5.1.2 The Indri Retrieval Model . 163

5.1.3 Creating a Structured Corpus . 166

5.1.4 Creating Structured Queries . 171

5.2 Study Design . 174

5.2.1 Definition and Context . 174

5.2.2 Research Questions . 179

5.2.3 Data Collection and Analysis . 181

5.2.4 Threats to Validity . 183

5.3 Results of Case Study . 185

5.3.1 Does query type affect the accuracy of a structured retrieval-based FLT? . . 185

5.3.2 Does changing the combination of included fields affect the accuracy of a
structured retrieval-based FLT? . 225

5.3.3 Does structural weighting affect the accuracy of a structured retrieval-
based FLT? . 280

5.3.4 How does the best configuration of structural field combination and weight-
ing affect the accuracy of a structured retrieval-based FLT? 350

5.4 Discussion of Results . 403

xiv

5.4.1 Does query type affect the accuracy of a structured retrieval-based FLT? . . 403

5.4.2 Does changing the combination of included fields affect the accuracy of a
structured retrieval-based FLT? . 411

5.4.3 Does structural weighting affect the accuracy of a structured retrieval-
based FLT? . 417

5.4.4 How does the best configuration of structural field combination and weight-
ing affect the accuracy of a structured retrieval-based FLT? 422

5.5 Summary . 428

6 LESSONS LEARNED AND FUTURE WORK . 429

6.1 What are the benefits and consequences of using structural weighting in LDA? . . . 429

6.2 What are the benefits and consequences of using structured retrieval for feature
location? . 431

6.3 Future Work . 431

6.3.1 Improved Learning Algorithms . 431

6.3.2 Empirical Studies . 432

6.3.3 Modeling Structural Information . 432

6.3.4 Additional Software Tasks . 433

7 CONCLUSION . 434

7.1 Structural Weighting of LDA . 435

7.2 Structured Retrieval . 435

7.3 Final Remarks . 437

REFERENCES . 438

APPENDIX . 447

A EXAMPLE QUERIES . 447

xv

LIST OF TABLES

3.1 Case study design: Part 1. 41

3.2 Case study design: Parts 2-4. 42

3.3 Case study design: Part 5. 42

3.4 Subject software systems. 43

3.5 Corpora Size Metrics . 51

3.5 Corpora Size Metrics . 52

3.6 Results of a factorial ANOVA. 54

3.7 The effectiveness measure for 28 configurations (Text/K pairs) of the LDA-based
FLT applied to all 618 features. 58

3.8 Key for Section 3.2.4. Each table entry provides an index for an α/β pair. 60

3.9 Case study design: Part 5. 62

3.10 Queries for ArgoUML, feature 4019. 67

3.11 Queries for jEdit, feature 2842444. 67

3.12 Queries for muCommander, feature 311. 67

3.13 Queries for Rhino, feature 352319. 68

4.1 Subject systems . 77

4.2 Numbers of methods in the gold sets. 78

4.3 Descriptive Statistics Weighting Leading Comments Alone 88

4.4 MRRs Weighting Leading Comments Alone . 90

4.5 Descriptive Statistics Weighting Method Names Alone 92

xvi

4.6 MRRs Weighting Method Names Alone . 94

4.7 Descriptive Statistics Weighting Parameters Alone 96

4.8 MRRs Weighting Parameters Alone . 98

4.9 Descriptive Statistics Weighting Body Comments Alone 100

4.10 MRRs Weighting Body Comments Alone . 102

4.11 Descriptive Statistics Weighting Local Variables Alone 104

4.12 MRRs Weighting Local Variables Alone . 106

4.13 Top ten configurations and unweighted configuration for each subject system and
combined . 111

4.13 Top ten configurations and unweighted configuration for each subject system and
combined . 112

4.13 Top ten configurations and unweighted configuration for each subject system and
combined . 113

4.14 Friedman Test Results . 113

4.15 Main Effects and Interactions for each subject system and combined 117

4.15 Main Effects and Interactions for each subject system and combined 118

4.16 MRRs For Maximizing Weighting On Leading Comments and Method Names . . 118

4.17 Unique Terms, Term Usages, and Present Documents for each lexicon for each
subject system . 129

4.18 Lexicon Density, Unique Term Density, and Unique Term Contribution for each
lexicon for each subject system . 130

4.19 Average Method Lexicon Density, Unique Term Density, and Unique Term Con-
tribution for Leading Comments for each subject system 131

4.20 Average Method Lexicon Density, Unique Term Density, and Unique Term Con-
tribution for Method Names for each subject system 132

xvii

4.21 Average Method Lexicon Density, Unique Term Density, and Unique Term Con-
tribution for Parameters for each subject system 133

4.22 Average Method Lexicon Density, Unique Term Density, and Unique Term Con-
tribution for Body Comments for each subject system 134

4.23 Average Method Lexicon Density, Unique Term Density, and Unique Term Con-
tribution for Local Variables for each subject system 135

4.24 Query document for JabRef feature 1588028 . 138

4.25 Eclipse . 153

4.26 Terms, Uses, and Document Counts and System-wide Lexicon Density, Unique
Term Density, and Unique Term Contribution for Eclipse 154

4.27 Average Method-level Lexicon Density, Unique Term Density, and Unique Term
Contribution for each of the lexicons for Eclipse 156

4.28 MRRs Weighting Candidate Lexicons Alone . 157

4.29 Number of times the top silhouette coefficient was in the top MRRs 159

5.1 MRRs for the three different query types (Title, Description, Combined) for Ar-
goUML . 186

5.2 MRRs for choosing the best, average, and worst case for each feature for ArgoUML190

5.3 Percentages for each query type where the best query was found for ArgoUML . . 190

5.4 MRRs for choosing the best, average, and worst case for each feature from all
corpora for ArgoUML . 192

5.5 Percentages for each corpus where the best query was found from all corpora for
ArgoUML . 192

5.6 Percentages for each query type where the best query was found from all corpora
for ArgoUML . 192

5.7 MRRs for the three different query types (Title, Description, Combined) for JabRef194

5.8 MRRs for choosing the best, average, and worst case for each feature for JabRef . 198

5.9 Percentages for each query type where the best query was found for JabRef 198

xviii

5.10 MRRs for choosing the best, average, and worst case for each feature from all
corpora for JabRef . 200

5.11 Percentages for each corpus where the best query was found from all corpora for
JabRef . 200

5.12 Percentages for each query type where the best query was found from all corpora
for JabRef . 200

5.13 MRRs for the three different query types (Title, Description, Combined) for jEdit 202

5.14 MRRs for choosing the best, average, and worst case for each feature for jEdit . . 206

5.15 Percentages for each query type where the best query was found for jEdit 206

5.16 MRRs for choosing the best, average, and worst case for each feature from all
corpora for jEdit . 208

5.17 Percentages for each corpus where the best query was found from all corpora for
jEdit . 208

5.18 Percentages for each query type where the best query was found from all corpora
for jEdit . 208

5.19 MRRs for the three different query types (Title, Description, Combined) for mu-
Commander . 210

5.20 MRRs for choosing the best, average, and worst case for each feature for mu-
Commander . 214

5.21 Percentages for each query type where the best query was found for muCommander214

5.22 MRRs for choosing the best, average, and worst case for each feature from all
corpora for muCommander . 216

5.23 Percentages for each corpus where the best query was found from all corpora for
muCommander . 216

5.24 Percentages for each query type where the best query was found from all corpora
for muCommander . 216

5.25 MRRs for the three different query types (Title, Description, Combined) for all
systems . 218

xix

5.26 MRRs for choosing the best, average, and worst case for each feature for all systems222

5.27 Percentages for each query type where the best query was found for all systems . 222

5.28 MRRs for choosing the best, average, and worst case for each feature from all
corpora for all systems . 224

5.29 Percentages for each corpus where the best query was found from all corpora for
all systems . 224

5.30 Percentages for each query type where the best query was found from all corpora
for all systems . 224

5.31 MRRs and descriptive statistics of the effectiveness measures for the LMPBV
corpus and Combined query type for ArgoUML 226

5.32 MRRs and descriptive statistics of the effectiveness measures for the LMPBV
corpus and Title query type for ArgoUML . 227

5.33 MRRs and descriptive statistics of the effectiveness measures for the CSB corpus
and Combined query type for ArgoUML . 228

5.34 MRRs and descriptive statistics of the effectiveness measures for the CSB corpus
and Title query type for ArgoUML . 228

5.35 MRRs and descriptive statistics of the effectiveness measures for the ICL corpus
and Combined query type for ArgoUML . 229

5.36 MRRs and descriptive statistics of the effectiveness measures for the ICL corpus
and Title query type for ArgoUML . 229

5.37 MRRs for choosing the best, average, and worst case for each feature for Ar-
goUML from structural combinations . 233

5.38 Percentage of the best queries obtained from each structural combination for Ar-
goUML . 233

5.39 MRRs for choosing the best, average, and worst case for each feature from all
corpora and all structural combinations for ArgoUML 235

5.40 Percentages for each corpus where the best query was found from all corpora and
all structural combinations for ArgoUML . 235

xx

5.41 MRRs and descriptive statistics of the effectiveness measures for the LMPBV
corpus and Combined query type for JabRef . 237

5.42 MRRs and descriptive statistics of the effectiveness measures for the LMPBV
corpus and Title query type for JabRef . 238

5.43 MRRs and descriptive statistics of the effectiveness measures for the CSB corpus
and Combined query type for JabRef . 239

5.44 MRRs and descriptive statistics of the effectiveness measures for the CSB corpus
and Title query type for JabRef . 239

5.45 MRRs and descriptive statistics of the effectiveness measures for the ICL corpus
and Combined query type for JabRef . 240

5.46 MRRs and descriptive statistics of the effectiveness measures for the ICL corpus
and Title query type for JabRef . 240

5.47 MRRs for choosing the best, average, and worst case for each feature for JabRef from
structural combinations . 244

5.48 Percentage of the best queries obtained from each structural combination for JabRef244

5.49 MRRs for choosing the best, average, and worst case for each feature from all
corpora and all structural combinations for JabRef 246

5.50 Percentages for each corpus where the best query was found from all corpora and
all structural combinations for JabRef . 246

5.51 MRRs and descriptive statistics of the effectiveness measures for the LMPBV
corpus and Combined query type for jEdit . 248

5.52 MRRs and descriptive statistics of the effectiveness measures for the LMPBV
corpus and Title query type for jEdit . 249

5.53 MRRs and descriptive statistics of the effectiveness measures for the CSB corpus
and Combined query type for jEdit . 250

5.54 MRRs and descriptive statistics of the effectiveness measures for the CSB corpus
and Title query type for jEdit . 250

5.55 MRRs and descriptive statistics of the effectiveness measures for the ICL corpus
and Combined query type for jEdit . 251

xxi

5.56 MRRs and descriptive statistics of the effectiveness measures for the ICL corpus
and Title query type for jEdit . 251

5.57 MRRs for choosing the best, average, and worst case for each feature for jEdit from
structural combinations . 255

5.58 Percentage of the best queries obtained from each structural combination for jEdit 255

5.59 MRRs for choosing the best, average, and worst case for each feature from all
corpora and all structural combinations for jEdit 257

5.60 Percentages for each corpus where the best query was found from all corpora and
all structural combinations for jEdit . 257

5.61 MRRs and descriptive statistics of the effectiveness measures for the LMPBV
corpus and Combined query type for muCommander 259

5.62 MRRs and descriptive statistics of the effectiveness measures for the LMPBV
corpus and Title query type for muCommander 260

5.63 MRRs and descriptive statistics of the effectiveness measures for the CSB corpus
and Combined query type for muCommander 261

5.64 MRRs and descriptive statistics of the effectiveness measures for the CSB corpus
and Title query type for muCommander . 261

5.65 MRRs and descriptive statistics of the effectiveness measures for the ICL corpus
and Combined query type for muCommander 262

5.66 MRRs and descriptive statistics of the effectiveness measures for the ICL corpus
and Title query type for muCommander . 262

5.67 MRRs for choosing the best, average, and worst case for each feature for mu-
Commander from structural combinations . 266

5.68 Percentage of the best queries obtained from each structural combination for mu-
Commander . 266

5.69 MRRs for choosing the best, average, and worst case for each feature from all
corpora and all structural combinations for muCommander 268

5.70 Percentages for each corpus where the best query was found from all corpora and
all structural combinations for muCommander 268

xxii

5.71 MRRs and descriptive statistics of the effectiveness measures for the LMPBV
corpus and Combined query type for all systems 270

5.72 MRRs and descriptive statistics of the effectiveness measures for the LMPBV
corpus and Title query type for all systems . 271

5.73 MRRs and descriptive statistics of the effectiveness measures for the CSB corpus
and Combined query type for all systems . 272

5.74 MRRs and descriptive statistics of the effectiveness measures for the CSB corpus
and Title query type for all systems . 272

5.75 MRRs and descriptive statistics of the effectiveness measures for the ICL corpus
and Combined query type for all systems . 273

5.76 MRRs and descriptive statistics of the effectiveness measures for the ICL corpus
and Title query type for all systems . 273

5.77 MRRs for choosing the best, average, and worst case for each feature for all
systems from structural combinations . 277

5.78 Percentage of the best queries obtained from each structural combination for all
systems . 277

5.79 MRRs for choosing the best, average, and worst case for each feature from all
corpora and all structural combinations for all systems 279

5.80 Percentages for each corpus where the best query was found from all corpora and
all structural combinations for all systems . 279

5.81 Top 10 configurations for ArgoUML . 283

5.82 Top 10 configurations for ArgoUML . 285

5.83 Top 10 configurations for ArgoUML . 287

5.84 MRRs for choosing the best, average, and worst case for each feature for Ar-
goUML from structural weighting . 291

5.85 The percentage of time that weighting each corpus improved the results for Ar-
goUML . 291

5.86 MRRs for choosing the best, average, and worst case for each feature from all
corpora and all structural weighting for ArgoUML 293

xxiii

5.87 Percentages for each corpus where the best query was found from all corpora and
all structural weighting for ArgoUML . 293

5.88 Top 10 configurations for JabRef . 297

5.89 Top 10 configurations for JabRef . 299

5.90 Top 10 configurations for JabRef . 301

5.91 MRRs for choosing the best, average, and worst case for each feature for JabRef from
structural weighting . 305

5.92 The percentage of time that weighting each corpus improved the results for JabRef 305

5.93 MRRs for choosing the best, average, and worst case for each feature from all
corpora and all structural weighting for JabRef 307

5.94 Percentages for each corpus where the best query was found from all corpora and
all structural weighting for JabRef . 307

5.95 Top 10 configurations for jEdit . 311

5.96 Top 10 configurations for jEdit . 313

5.97 Top 10 configurations for jEdit . 315

5.98 MRRs for choosing the best, average, and worst case for each feature for jEdit from
structural weighting . 319

5.99 The percentage of time that weighting each corpus improved the results for jEdit . 319

5.100 MRRs for choosing the best, average, and worst case for each feature from all
corpora and all structural weighting for jEdit . 321

5.101 Percentages for each corpus where the best query was found from all corpora and
all structural weighting for jEdit . 321

5.102 Top 10 configurations for muCommander . 325

5.103 Top 10 configurations for muCommander . 327

5.104 Top 10 configurations for muCommander . 329

xxiv

5.105 MRRs for choosing the best, average, and worst case for each feature for mu-
Commander from structural weighting . 333

5.106 The percentage of time that weighting each corpus improved the results for mu-
Commander . 333

5.107 MRRs for choosing the best, average, and worst case for each feature from all
corpora and all structural weighting for muCommander 335

5.108 Percentages for each corpus where the best query was found from all corpora and
all structural weighting for muCommander . 335

5.109 Top 10 configurations for all systems . 339

5.110 Top 10 configurations for all systems . 341

5.111 Top 10 configurations for all systems . 343

5.112 MRRs for choosing the best, average, and worst case for each feature for all
systems from structural weighting . 347

5.113 The percentage of time that weighting each corpus improved the results for all
systems . 347

5.114 MRRs for choosing the best, average, and worst case for each feature from all
corpora and all structural weighting for all systems 349

5.115 Percentages for each corpus where the best query was found from all corpora and
all structural weighting for all systems . 349

5.116 Top 10 configurations from all combinations for ArgoUML and the LMPBV corpus352

5.117 Top 10 configurations from all combinations for ArgoUML and the CSB corpus . 353

5.118 Top 10 configurations from all combinations for ArgoUML and the ICL corpus . 354

5.119 MRRs for choosing the best, average, and worst case for each feature for Ar-
goUML from all combinations . 358

5.120 The percentage of time that weighting each corpus improved the results for Ar-
goUML . 358

5.121 Percentage of the best queries obtained from each structural combination for Ar-
goUML . 358

xxv

5.122 MRRs for choosing the best, average, and worst case for each feature from all
corpora and all combinations for ArgoUML . 360

5.123 Percentages for each corpus where the best query was found from all corpora and
all combinations for ArgoUML . 360

5.124 Top 10 configurations from all combinations for JabRef and the LMPBV corpus . 363

5.125 Top 10 configurations from all combinations for JabRef and the CSB corpus . . . 364

5.126 Top 10 configurations from all combinations for JabRef and the ICL corpus . . . 365

5.127 MRRs for choosing the best, average, and worst case for each feature for JabRef from
all combinations . 369

5.128 The percentage of time that weighting each corpus improved the results for JabRef 369

5.129 Percentage of the best queries obtained from each structural combination for JabRef369

5.130 MRRs for choosing the best, average, and worst case for each feature from all
corpora and all combinations for JabRef . 371

5.131 Percentages for each corpus where the best query was found from all corpora and
all combinations for JabRef . 371

5.132 Top 10 configurations from all combinations for jEdit and the LMPBV corpus . . 373

5.133 Top 10 configurations from all combinations for jEdit and the CSB corpus 374

5.134 Top 10 configurations from all combinations for jEdit and the ICL corpus 375

5.135 MRRs for choosing the best, average, and worst case for each feature for jEdit from
all combinations . 379

5.136 The percentage of time that weighting each corpus improved the results for jEdit . 379

5.137 Percentage of the best queries obtained from each structural combination for jEdit 379

5.138 MRRs for choosing the best, average, and worst case for each feature from all
corpora and all combinations for jEdit . 381

5.139 Percentages for each corpus where the best query was found from all corpora and
all combinations for jEdit . 381

xxvi

5.140 Top 10 configurations from all combinations for muCommander and the LMPBV
corpus . 384

5.141 Top 10 configurations from all combinations for muCommander and the CSB
corpus . 385

5.142 Top 10 configurations from all combinations for muCommander and the ICL corpus386

5.143 MRRs for choosing the best, average, and worst case for each feature for mu-
Commander from all combinations . 390

5.144 The percentage of time that weighting each corpus improved the results for mu-
Commander . 390

5.145 Percentage of the best queries obtained from each structural combination for mu-
Commander . 390

5.146 MRRs for choosing the best, average, and worst case for each feature from all
corpora and all combinations for muCommander 392

5.147 Percentages for each corpus where the best query was found from all corpora and
all combinations for muCommander . 392

5.148 Top 10 configurations from all combinations for all systems and the LMPBV corpus394

5.149 Top 10 configurations from all combinations for all systems and the CSB corpus . 395

5.150 Top 10 configurations from all combinations for all systems and the ICL corpus . 396

5.151 MRRs for choosing the best, average, and worst case for each feature for all
systems from all combinations . 400

5.152 The percentage of time that weighting each corpus improved the results for all
systems . 400

5.153 Percentage of the best queries obtained from each structural combination for all
systems . 400

5.154 MRRs for choosing the best, average, and worst case for each feature from all
corpora and all combinations for all systems . 402

5.155 Percentages for each corpus where the best query was found from all corpora and
all combinations for all systems . 402

xxvii

A.1 Example Title Query for ArgoUML . 447

A.2 Example Output Title Queries for the ICL corpus for ArgoUML and Feature 549.
The {} are used to indicate that every combination of the contained values are used.447

xxviii

LIST OF FIGURES

1.1 Text Retrieval . 5

3.1 The effectiveness measure for three configurations (Title, Description, and Combined)
of the LDA-based FLT applied to 91 ArgoUML features, 38 JabRef features, 149
jEdit features, 90 muCommander features, 93 Mylyn features, 157 Rhino fea-
tures, and all 618 features. 55

3.2 The effectiveness measure for 36 configurations (α/β pairs) of the LDA-based
FLT applied to all 618 features. 61

3.3 The effectiveness measure for three configurations (Predicted, Heuristic1, and
Heuristic2) of the LDA-based FLT applied to 91 ArgoUML features, 38 JabRef
features, 149 jEdit features, and 157 Rhino features. 64

3.4 Source code for Mylyn method BugzillaAttachmentHandler.uploadAttachment. . 69

4.1 The Effectiveness Measures for Weighting Leading Comments Alone using Weight-
ing Factors of 1,2,4, and 8 . 89

4.2 The Effectiveness Measures for Weighting Method Names Alone using Weight-
ing Factors of 1,2,4, and 8 . 93

4.3 The Effectiveness Measures for Weighting Parameters Alone using Weighting
Factors of 1,2,4, and 8 . 97

4.4 The Effectiveness Measures for Weighting Body Comments Alone using Weight-
ing Factors of 1,2,4, and 8 . 101

4.5 The Effectiveness Measures for Weighting Local Variables Alone using Weight-
ing Factors of 1,2,4, and 8 . 105

4.6 The Top Configurations and unweighted configuration for Each System and All
Systems Combined . 114

4.6 The Top Configurations and unweighted configuration for Each System and All
Systems Combined . 115

xxix

4.6 The Top Configurations and unweighted configuration for Each System and All
Systems Combined . 116

4.7 The Search Process - An initial population is selected of most likely candidates,
pairs are selected for crossover and then mutation, new population is created and
the process repeats . 152

4.8 The unweighted configuration, top configuration from the untrained population,
and results of 50 iterations of the the genetic algorithm for population sizes of
10, 25, and 50 based on MRR using the MRR and silhouette coefficient fitness
functions . 158

5.1 Example Indri Model . 164

5.2 Document Extraction Process . 166

5.3 Different types of structured method documents 168

5.4 Example Method . 168

5.5 Example Document . 169

5.6 The Effectiveness Measures for the three different query types (Title, Description,
Combined) for ArgoUML . 186

5.7 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for ArgoUML. Graph is ordered by distance from
best to worst. 188

5.7 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for ArgoUML. Graph is ordered by distance from
best to worst. 189

5.8 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for ArgoUML. Graph is ordered by distance from
best to worst. 191

5.9 The Effectiveness Measures for the three different query types (Title, Description,
Combined) for JabRef . 194

5.10 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for JabRef. Graph is ordered by distance from best
to worst. 196

xxx

5.10 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for JabRef. Graph is ordered by distance from best
to worst. 197

5.11 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for JabRef. Graph is ordered by distance from best
to worst. 199

5.12 The Effectiveness Measures for the three different query types (Title, Description,
Combined) for jEdit . 202

5.13 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for jEdit. Graph is ordered by distance from best to
worst. 204

5.13 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for jEdit. Graph is ordered by distance from best to
worst. 205

5.14 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for jEdit. Graph is ordered by distance from best to
worst. 207

5.15 The Effectiveness Measures for the three different query types (Title, Description,
Combined) for muCommander . 210

5.16 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for muCommander. Graph is ordered by distance
from best to worst. 212

5.16 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for muCommander. Graph is ordered by distance
from best to worst. 213

5.17 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for muCommander. Graph is ordered by distance
from best to worst. 215

5.18 The Effectiveness Measures for the three different query types (Title, Description,
Combined) for all systems . 218

5.19 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for all systems. Graph is ordered by distance from
best to worst. 220

xxxi

5.19 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for all systems. Graph is ordered by distance from
best to worst. 221

5.20 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for all systems. Graph is ordered by distance from
best to worst. 223

5.21 Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for ArgoUML. Graph is
ordered by distance from best to worst. 231

5.21 Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for ArgoUML. Graph is
ordered by distance from best to worst. 232

5.22 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural combinations for ArgoUML. Graph
is ordered by distance from best to worst. 234

5.23 Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for JabRef. Graph is
ordered by distance from best to worst. 242

5.23 Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for JabRef. Graph is
ordered by distance from best to worst. 243

5.24 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural combinations for JabRef. Graph is
ordered by distance from best to worst. 245

5.25 Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for jEdit. Graph is or-
dered by distance from best to worst. 253

5.25 Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for jEdit. Graph is or-
dered by distance from best to worst. 254

5.26 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural combinations for jEdit. Graph is
ordered by distance from best to worst. 256

xxxii

5.27 Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for muCommander.
Graph is ordered by distance from best to worst. 264

5.27 Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for muCommander.
Graph is ordered by distance from best to worst. 265

5.28 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural combinations for muCommander.
Graph is ordered by distance from best to worst. 267

5.29 Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for all systems. Graph
is ordered by distance from best to worst. 275

5.29 Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for all systems. Graph
is ordered by distance from best to worst. 276

5.30 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural combinations for all systems. Graph
is ordered by distance from best to worst. 278

5.31 The top weighting configurations and flat configuration for ArgoUML and the
LMPBV corpus. The x axis is the configuration, while the y axis is the effective-
ness measure. 282

5.32 The top weighting configurations and flat configuration for ArgoUML and the
CSB corpus. The x axis is the configuration, while the y axis is the effectiveness
measure. 284

5.33 The top weighting configurations and flat configuration for ArgoUML and the
ICL corpus. The x axis is the configuration, while the y axis is the effectiveness
measure. 286

5.34 Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for ArgoUML. Graph is
ordered by distance from best to worst. 289

5.34 Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for ArgoUML. Graph is
ordered by distance from best to worst. 290

xxxiii

5.35 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural weighting for ArgoUML. Graph is
ordered by distance from best to worst. 292

5.36 The top weighting configurations and flat configuration for JabRef and the LMPBV
corpus. The x axis is the configuration, while the y axis is the effectiveness mea-
sure. 296

5.37 The top weighting configurations and flat configuration for JabRef and the CSB
corpus. The x axis is the configuration, while the y axis is the effectiveness mea-
sure. 298

5.38 The top weighting configurations and flat configuration for JabRef and the ICL
corpus. The x axis is the configuration, while the y axis is the effectiveness mea-
sure. 300

5.39 Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for JabRef. Graph is ordered
by distance from best to worst. 303

5.39 Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for JabRef. Graph is ordered
by distance from best to worst. 304

5.40 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural weighting for JabRef. Graph is or-
dered by distance from best to worst. 306

5.41 The top weighting configurations and flat configuration for jEdit and the LMPBV
corpus. The x axis is the configuration, while the y axis is the effectiveness mea-
sure. 310

5.42 The top weighting configurations and flat configuration for jEdit and the CSB
corpus. The x axis is the configuration, while the y axis is the effectiveness mea-
sure. 312

5.43 The top weighting configurations and flat configuration for jEdit and the ICL cor-
pus. The x axis is the configuration, while the y axis is the effectiveness measure. 314

5.44 Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for jEdit. Graph is ordered
by distance from best to worst. 317

xxxiv

5.44 Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for jEdit. Graph is ordered
by distance from best to worst. 318

5.45 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural weighting for jEdit. Graph is ordered
by distance from best to worst. 320

5.46 The top weighting configurations and flat configuration for muCommander and
the LMPBV corpus. The x axis is the configuration, while the y axis is the effec-
tiveness measure. 324

5.47 The top weighting configurations and flat configuration for muCommander and
the CSB corpus. The x axis is the configuration, while the y axis is the effective-
ness measure. 326

5.48 The top weighting configurations and flat configuration for muCommander and
the ICL corpus. The x axis is the configuration, while the y axis is the effective-
ness measure. 328

5.49 Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for muCommander. Graph
is ordered by distance from best to worst. 331

5.49 Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for muCommander. Graph
is ordered by distance from best to worst. 332

5.50 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural weighting for muCommander. Graph
is ordered by distance from best to worst. 334

5.51 The top weighting configurations and flat configuration for all systems and the
LMPBV corpus. The x axis is the configuration, while the y axis is the effective-
ness measure. 338

5.52 The top weighting configurations and flat configuration for all systems and the
CSB corpus. The x axis is the configuration, while the y axis is the effectiveness
measure. 340

5.53 The top weighting configurations and flat configuration for all systems and the
ICL corpus. The x axis is the configuration, while the y axis is the effectiveness
measure. 342

xxxv

5.54 Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for all systems. Graph is
ordered by distance from best to worst. 345

5.54 Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for all systems. Graph is
ordered by distance from best to worst. 346

5.55 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural weighting for all systems. Graph is
ordered by distance from best to worst. 348

5.56 The top configurations and flat configuration for ArgoUML and the LMPBV cor-
pus. The x axis is the configuration, while the y axis is the effectiveness measure. 352

5.57 The top configurations and flat configuration for ArgoUML and the CSB corpus.
The x axis is the configuration, while the y axis is the effectiveness measure. . . . 353

5.58 The top configurations and flat configuration for ArgoUML and the ICL corpus.
The x axis is the configuration, while the y axis is the effectiveness measure. . . . 354

5.59 Stacked bargraphs representing the distance from the best query from all com-
binations to the average (bottom) and the worst(top) for ArgoUML. Graph is
ordered by distance from best to worst. 356

5.59 Stacked bargraphs representing the distance from the best query from all com-
binations to the average (bottom) and the worst(top) for ArgoUML. Graph is
ordered by distance from best to worst. 357

5.60 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from all combinations for ArgoUML. Graph is or-
dered by distance from best to worst. 359

5.61 The top configurations and flat configuration for JabRef and the LMPBV corpus.
The x axis is the configuration, while the y axis is the effectiveness measure. . . . 363

5.62 The top configurations and flat configuration for JabRef and the CSB corpus. The
x axis is the configuration, while the y axis is the effectiveness measure. 364

5.63 The top configurations and flat configuration for JabRef and the ICL corpus. The
x axis is the configuration, while the y axis is the effectiveness measure. 365

xxxvi

5.64 Stacked bargraphs representing the distance from the best query from all combi-
nations to the average (bottom) and the worst(top) for JabRef. Graph is ordered
by distance from best to worst. 367

5.64 Stacked bargraphs representing the distance from the best query from all combi-
nations to the average (bottom) and the worst(top) for JabRef. Graph is ordered
by distance from best to worst. 368

5.65 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from all combinations for JabRef. Graph is ordered
by distance from best to worst. 370

5.66 The top configurations and flat configuration for jEdit and the LMPBV corpus.
The x axis is the configuration, while the y axis is the effectiveness measure. . . . 373

5.67 The top configurations and flat configuration for jEdit and the CSB corpus. The
x axis is the configuration, while the y axis is the effectiveness measure. 374

5.68 The top configurations and flat configuration for jEdit and the ICL corpus. The x
axis is the configuration, while the y axis is the effectiveness measure. 375

5.69 Stacked bargraphs representing the distance from the best query from all combi-
nations to the average (bottom) and the worst(top) for jEdit. Graph is ordered by
distance from best to worst. 377

5.69 Stacked bargraphs representing the distance from the best query from all combi-
nations to the average (bottom) and the worst(top) for jEdit. Graph is ordered by
distance from best to worst. 378

5.70 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from all combinations for jEdit. Graph is ordered by
distance from best to worst. 380

5.71 The top configurations and flat configuration for muCommander and the LMPBV
corpus. The x axis is the configuration, while the y axis is the effectiveness mea-
sure. 384

5.72 The top configurations and flat configuration for muCommander and the CSB
corpus. The x axis is the configuration, while the y axis is the effectiveness mea-
sure. 385

5.73 The top configurations and flat configuration for muCommander and the ICL cor-
pus. The x axis is the configuration, while the y axis is the effectiveness measure. 386

xxxvii

5.74 Stacked bargraphs representing the distance from the best query from all combi-
nations to the average (bottom) and the worst(top) for muCommander. Graph is
ordered by distance from best to worst. 388

5.74 Stacked bargraphs representing the distance from the best query from all combi-
nations to the average (bottom) and the worst(top) for muCommander. Graph is
ordered by distance from best to worst. 389

5.75 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from all combinations for muCommander. Graph is
ordered by distance from best to worst. 391

5.76 The top configurations and flat configuration for all systems and the LMPBV cor-
pus. The x axis is the configuration, while the y axis is the effectiveness measure. 394

5.77 The top configurations and flat configuration for all systems and the CSB corpus.
The x axis is the configuration, while the y axis is the effectiveness measure. . . . 395

5.78 The top configurations and flat configuration for all systems and the ICL corpus.
The x axis is the configuration, while the y axis is the effectiveness measure. . . . 396

5.79 Stacked bargraphs representing the distance from the best query from all com-
binations to the average (bottom) and the worst(top) for all systems. Graph is
ordered by distance from best to worst. 398

5.79 Stacked bargraphs representing the distance from the best query from all com-
binations to the average (bottom) and the worst(top) for all systems. Graph is
ordered by distance from best to worst. 399

5.80 Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from all combinations for all systems. Graph is or-
dered by distance from best to worst. 401

5.81 Recommended Corpus Structure . 427

xxxviii

Chapter 1

INTRODUCTION

Understanding a software system’s implementation is a crucial part of a developer’s job.

During maintenance and evolution, before any changes can be made, bugs fixed, or features added,

the developer must first understand the system’s implementation and locate source code elements

specific to the current maintenance task. Software maintenance and evolution accounts for 60-

80% [Alkhatib, 1992; Boehm, 1981; Erlikh, 2000; Standish, 1984] of the cost and effort during the

software life cycle, and during this time, over half [De Lucia, Risi, Rizzi, and Scanniello, 2008;

Müller, Jahnke, Smith, Storey, Tilley, and Wong, 2000] of developer effort is spent in trying to

understand the software system. Given these numbers and the increasing size and complexity of

software systems, the need for tools to aid in program understanding is evident.

Although different tools and techniques have been developed to aid in program compre-

hension activities, there still exists a gap in knowledge. There are two issues that confound the

matter. First, software maintenance is not only an engineering problem, it is also an information

management problem. The number of source and textual artifacts related to a software project are

spread across a wide array of databases and repositories and can span gigabytes or terabytes in

size. This makes finding relevant information to a specific task a nontrivial matter. Second, even

within the same domain or company, no two software products are alike. Software implementa-

tions and documentation differ. Tools and techniques developed for program comprehension must

1

be general enough to apply to a wide array of systems while still returning useful results [Marcus

and Menzies, 2010].

Many techniques for program comprehension have incoporated text retrieval [Antoniol,

Canfora, Casazza, Lucia, and Merlo, 2002; Lu and Kan, 2007; Marcus, Sergeyev, Rajlich, and

Maletic, 2004; Maskeri, Sarkar, and Heafield, 2008a]. Text retrieval (TR), also referred to as

document retrieval, is the study of information retrieval that focuses on retrieving documents of

unstructured text by the use of natural language queries. TR methods differ from pattern matching

utilities like grep in that they are based on statistical models that find relevant text by calculating

the similarity between the user’s query and the text. Examples of text retrieval techniques include

the vector space model (VSM) [Salton and McGill, 1986], latent semantic indexing (LSI) [Deer-

wester, Dumais, Furnas, Landauer, and Harshman, 1990], and latent Dirichlet allocation (LDA)

[Blei, Ng, and Jordan, 2003].

Previous research into text retrieval techniques has attempted to combine textual informa-

tion with multiple sources of structural (e.g., dependency graphs) and dynamic information (e.g.,

execution traces). By combining textual information with structural information and dynamic in-

formation, researchers have found an improvement over using textual information alone for some

systems. There are two existing problems with the existing research. First, previous research has

focused on latent semantic indexing (LSI) and the vector space model (VSM), discussed in more

detail later. However, more sophisticated techniques such as latent Dirichlet allocation (LDA) and

other topic modeling techniques (e.g., probabilistic LSI [Hofmann, 1999], Pachinko allocation [Li,

Blei, and McCallum, 2012; Li and McCallum, 2006; Mimno, Li, and McCallum, 2007], hierar-

chical Dirichlet processes [Teh, Jordan, Beal, and Blei, 2006]) have been shown to produce useful

results in other domains along with program comprehension tasks [Baldi, Lopes, Linstead, and Ba-

2

jracharya, 2008; Hindle, Godfrey, and Holt, 2009; Lukins, Kraft, and Etzkorn, 2008, 2010]. Topic

models differ from other TR techniques in that they attempt to model latent topics (e.g., the topic

of printing in a software system) in documents. Topic modeling allows for comparisons between

documents across topics instead of terms. Second, little research has studied the importance of

each structural location (e.g., whether method calls are as important as method names?).

This chapter begins with an explanation of the software change process. Then, an overview

of the text retrieval process is presented, along with a discussion of how TR may be applied to the

software change process. In particular, the work in this dissertation focuses on feature location.

This is the process that a developer performs when they are trying to identify the first source code

element that will need to be changed to fix a bug or implement a feature. This problem is the main

motivation for my studies.

1.1 Software Change

Software change is the process of adding, removing, or replacing functionality in an ex-

isting software system [Rajlich, 2011]. The process can be broken up into six distinct phases:

initiation, concept or feature location, impact analysis, actualization, verification, and conclusion.

In initiation, a change request is created. The purpose of the change request may vary but

the two main categories of change requests include bug reports and feature requests. In the case of

bug reports, a user of the system is identifying an unwanted feature of the software system. In the

case of the feature request, the user is asking that new functionality be added to the system. Once

a bug report is created, triaging is often performed to determine the priority of the change request

and to hopefully identify the developers that are most capable of making the change.

Once a change request is obtained by the developer, concept or feature location is per-

formed. The difference between concept location and feature location is subtle [Rajlich and Wilde,

3

2002]. In the case of concept location, the developer is attempting to identify domain concepts

within the change request and then to identify the elements of the source code that relate to that

concept. In the case of feature location, the developer is looking at the specific functionality iden-

tified in the change request and then to identify where that functionality is implemented. The

purpose of both of these tasks is to identify a starting point for making the initial changes required

to complete the change request.

Once a starting point is selected, impact analysis is performed to determine the strategy to

perform the change and to measure the effect making the change will have on the entire system.

One way of measuring this impact would be to identify the number of classes or methods that

would be required to change in order to complete the change request.

The remaining phases are responsible for making the change and adding it to the current

version of the software system. Actualization is the process of actually executing the strategy

determined in impact analysis and adding the new code to make the change. Verification is the

process of ensuring correctness of the change. Finally, the new change is added to the repository

and the change request is concluded.

The research described in this dissertation focuses on the problem of feature location.

Change requests will be used as queries for TR. The ranked list of results represent the order

of likelihood that each method in the system implements the functionality referred to in the change

request.

1.2 Overview of Text Retrieval

This section presents an outline of the TR process as it is applied to program comprehension

tasks. Most recent work in the use of TR for software maintenance tasks operates on models of

source code instead of the source code itself. Techniques involved in this process accept a corpus

4

Source
Code

Document Extractor

Corpus

Document
Document

Document

Text Extractor

Preprocessor

Terms

Tokens

TR Method

TR Model

Query
Preprocessor

Classifier

Results
1)
2)
3)

Query Engine

Query

Figure 1.1: Text Retrieval

that represents the source code being analyzed. In TR, a corpus is a collection of documents.

The documents that make up a corpus are created from stripping literals, comments, identifiers, or

some combination from elements of source code such as files, packages, classes, or methods. The

general approach to building a corpus from source code and performing TR is shown in Figure 1.1

and is performed by the following steps:

1. Document Extraction The source code is parsed according to a user defined granularity,

such as methods or classes. Each method or class constitutes a document in the source code

and is comprised of tokens from literals, comments, identifiers, or some combination thereof.

These tokens are sent to a preprocessor. Here, preprocessing techniques such as identifier

splitting (i.e., splitting identifiers into their component terms), stop word filtering (i.e., re-

moving commonly occurring words from the corpus), short word removal (i.e., removing

words that do not pass a length threshold), or stemming (i.e., reducing inflected terms to

their base) may be applied. The new sets of terms constitute the documents.

5

2. Build the TR model The corpus is provided as input to the TR method and a new statistical

model based on the method is produced.

3. Formulate the Query Queries are formed in one of two ways. Either a developer selects

a set of words manually, or queries are automatically formulated by the system from other

software artifacts. If preprocessing techniques were applied in step one, the same steps will

be applied to the query.

4. Rank Documents The query engine takes as input the TR model obtained from step 2 and

documents are ranked according to a classifier, or similarity measure. The classifier depends

on the TR method used. Based on the measure, documents are ranked according to similarity

with the query.

Although these steps define the general procedure for TR, steps may be altered or added

according to the approach used.

Before discussing the sources of text in source code and giving details about common TR

methods, the following offers a brief introduction to the problems of scale and query type. Both

problems have an effect on the choices made when identifying the proper model and TR technique

to use.

• Scale Scale has an important impact on TR [Newby, 2000]. In general TR, there are usu-

ally five different scales identified: web search (e.g., Google), enterprise (e.g., corporations),

institutional (e.g., universities and colleges), domain-specific (e.g., medicine or law), or per-

sonal (e.g., file searching on your personal computer) [Manning, Raghavan, and Schutze,

2008]. Each of these different techniques have various effects on the level of search that can

6

be done. For instance, when searching the web, a search engine must be capable of han-

dling billions of documents and reasonable results are expected in a short time frame. This

requires large networks of computers and algorithms that are highly parallelizable. On the

other hand, searching your file system can be accomplished with a single core system.

When searching software, there are often two different scales considered when performing

software engineering related tasks. The first focuses on performing searches in a software

repository containing multiple software systems. This is the goal of the system Sourcerer

[Bajracharya, Ngo, Linstead, Dou, Rigor, Baldi, and Lopes, 2006]. These types of searches

require models that are general enough to return good results when trained or built on mul-

tiple systems. This may lead to less customization and fine tuning of a particular model and

may not be as good for a software developer that is focused on one system. The second

focuses on a single system, which requires less computational resources and for models to

be trained for a particular system instead of remaining general. The trade-off is that there is

less text and information to build the model in the latter approach. The focus of my research

is on searching individual software systems for the purposes of feature location.

• Query Type Along with scale, the types of queries issued by the developer also have an

impact on the software search process. The types of queries used when searching software

typically break down into one of two categories. The first type uses natural language frag-

ments as the query. These queries are typically used when the developer is searching using

information obtained from a feature request or a bug report. However, it is also possible to

use this type of query when comparing source code elements based on the type of language

used in both elements’ source code. The second type of query uses program semantics or

7

the source code itself as the query [Reiss, 2009]. In these types of tasks, features about the

source code, such as what methods the source code element calls, what libraries or modules

it makes use of, or the parse trees of the two elements, are compared. In this case, the text of

the source code may be disregarded entirely. Such queries may be used when the developer

wishes to identify code clones or find examples of common API usage. The focus of this

research is on TR so natural language queries will be used.

The next subsection discusses sources for terms in source code and gives a brief overview

of common TR models. As discussed in Chapter 2, each of these models has been used with

varying levels of success in previous research studies of automated techniques for feature location

tasks.

1.2.1 The Source Code Lexicon

TR techniques are used to index and query documents of text. In the case of source code,

steps must be taken to transform programs from source code elements written in a given program-

ming language to documents of natural language text. This is typically done by extracting the

natural language tokens from the source code and throwing out the abstract syntax. In this way,

terms may be extracted from comments, literals, and identifiers embedded throughout the source

code. Preprocessing can then be done to convert tokens of text to terms for our documents, where

a document is defined at some particular granularity of source code (e.g., methods, classes, files).

The set of terms that are used by a particular software system is a software lexicon, and the

evolution and usage of terms in source code has been a subject for research [Antoniol, Gueheneuc,

Merlo, and Tonella, 2007; Fluri, Wursch, and Gall, 2007; Haiduc and Marcus, 2008]. Software

lexicons have been studied in the contexts of program comprehension [Abebe, Haiduc, Marcus,

8

Tonella, and Antoniol, 2009] and quality assessment [Lawrie, Morrell, Feild, and Binkley, 2006].

In a preliminary study [Biggers, Eddy, Kraft, and Etzkorn, 2011] the contributions of each of

these sources of terms were investigated. In the study, software lexicons were denoted by L =

{t1, t2, ..., tn}, where |L|= n. The focus of the study was on LSrc = LId ∪LCo∪LLi, where LId is the

set of identifier terms, LCo is the set of comment terms, and LLi is the set of (string) literal terms.

A set of 125 software systems composed of a combination of industry-like systems with

enforced coding standards, issue tracking systems, and maintenance developers, and open source

systems obtained from online software repositories were used to identify the characteristics of each

software lexicon. Three density measures were obtained for each lexicon.

The first density measure is lexicon density, or the percentage of the terms in the source

lexicon that appear in the lexicon (i.e., the amount of the source lexicon that a lexicon contains).

LD(Li) =
|Li|
|LSrc|

where Li ∈ {LId,LCo,LLi}.

The second density measure is unique term density, or the percentage of the lexicon’s terms

that are unique to the lexicon (i.e., the amount of unique information that a lexicon contains).

UT D(Li,L j,Lk) =
Li−(|L j∪Lk)|

|Li|

where Li, L j, and Lk are distinct lexicons in {LId,LCo,LLi}.

The remaining measure is unique term contribution. This measure requires the set of terms

in the source lexicon that appear in exactly one of {LId,LCo,LLi}. This set is computed, USrc, using

the symmetric difference operator:

USrc = LId4LCo4LLi

9

Next, for each lexicon the percentage of the terms in USrc that appear in the lexicon (i.e.,

the amount of USrc that a lexicon contributes) is computed.

UTC(Li,L j,Lk) =
|Li−(L j∪Lk)|
|USrc|

where Li, L j, and Lk are distinct lexicons in {LId,LCo,LLi}.

The results of this study showed that about 75% of the terms in a system’s source code

lexicon appear in the system’s identifier lexicon, whereas only about 40% of the terms in a system’s

source code lexicon appear in the system’s comment lexicon. The density of unique terms in a

software system’s identifiers remained consistent throughout the 125 systems, however it varied

widely for comments and literals. Finally, identifiers are the main contributor of unique terms in a

software system; however, literals and comments do contribute a few unique terms.

Although the results of some TR tasks may be improved by omitting one or more of the

lexicons, the presence of unique terms in each of the three lexicons makes including these lexicons

important for some models. Chapters 4 and 5 break these lexicons down into smaller forms and

consider specific structural locations of a method. Furthermore, Chapter 4 will refer back to these

measures and consider their relationship to structural weighting.

1.2.2 Vector Space Model (VSM)

One of the simplest models for TR is the vector space model (VSM) [Salton and McGill,

1986]. VSM is a framework for TR that models documents and queries by assigning non-binary

weights to index terms. VSM has been applied to multiple software engineering tasks [Pinheiro

and Goguen, 1996; Ramesh and Dhar, 1992; Runeson, Alexandersson, and Nyholm, 2007]. More

formally, documents are modeled as vectors of weights, where each weight w is positive and non-

binary. Let each wi, j be the weight associated with the pair (ki,d j) where ki is the ith term in

10

the vocabulary of the corpus and d j is the jth document. Then, the query is of the form ~q =

(w1,q,w2,q, ...,wn,q) and each document is of the form ~d j = (w1, j,w2, j, ...,wn, j). Each model is

represented as an n-dimensional vector. This model allows documents to be compared with queries

when only a partial match exists.

We can evaluate the degree of similarity between the query (q) and each document (d j)

by finding the correlation between the document and the query. While many measures for corre-

lation exist, the most commonly applied in this field is the cosine of the angle between the two

vectors [Antoniol, Canfora, Casazza, and De Lucia, 2000]. In this context, the measure is referred

to as cosine similarity and is computed by the following formula:

sim(d j,q) =
∑

n
i=1 wi, jwi,q√

∑
n
i=1 w2

i, j

√
∑

n
i=1 w2

i,q

Documents are ranked and returned in descending order according to this similarity mea-

sure. For the purposes of weighting, many term-weighting techniques exist [Salton and Buckley,

1988], but the most common in the field is term frequency-inverse document frequency, tf-idf.

The use of tf-idf is based on ideas from clustering that attempt to identify the features of

a set that best serve to characterize the data. In the case of TR, the features of a set of documents

are the terms. To identify the most important terms in a set of documents, two components are

used. The first is the normalized term frequency, tf, which identifies the terms most important to a

document by identifying the terms that are most frequently used. We can obtain tf for a term by

dividing the term’s frequency with the maximum combined frequency of all terms in the document,

i.e., by dividing the number of occurrences of a term by the total number of occurrences of all terms

in the document. This only solves part of the problem, however, as terms that appear in a large

percentage of the documents are insufficient for differentiating relevant documents from those that

11

are irrelevant. For this reason a second factor is used, the inverse document frequency, idf. This

factor helps to identify important features by factoring in the number of documents in which a term

appears and giving them a lower weight than more unique terms. The resulting formula for tf-idf

is:

wi, j =
f reqi, j

max f reqi, j
× log N

ni

In the given formula, f reqi, j is the frequency of the ith term in the jth document, max f reqi, j

is the maximum frequency of all terms inside the document, N is the total number of documents,

and ni is the number of documents in which the ith term appears.

1.2.3 Latent Semantic Indexing (LSI)

VSM suffers from two main issues [Salton and McGill, 1986]. The first is that many

unrelated documents might be returned from the answer set. The second issue comes from the

model’s inability to recognize the relationship between terms. VSM is unable to model synonymy,

when two words have the same meaning, or polysemy, when one word has multiple meanings. As a

result, the model is unable to find relevant documents when the queries given do not contain any of

the indexed terms, and may miss potentially relevant documents when multiple synonyms are used

in the corpus. One of the first TR techniques to attempt to handle these problems is latent semantic

indexing (LSI) [Deerwester et al., 1990]. Like VSM, LSI has been applied to multiple areas of

software engineering, including traceability [De Lucia, Oliveto, and Tortora, 2008; Jiang, Nguyen,

Chen, Jaygarl, and Chang, 2008; Lormans and van Deursen, 2005], clone detection [Tairas and

Gray, 2009], impact analysis [David, 2008; Poshyvanyk, Marcus, Ferenc, and Gyimóthy, 2009],

and feature location [Marcus, Rajlich, Buchta, Petrenko, and Sergeyev, 2005].

LSI attempts to index documents by the concepts described within each document instead

12

of the terms. To do so, each document and query vector is mapped from the space of weighted

terms to a lower dimensional space that is associated with the concepts. The goal is that retrieval

in this reduced space is an improvement over the VSM.

To perform the reduction required by LSI, the use of singular value decomposition (SVD)

is applied to the VSM. SVD is a form of factorization performed on a matrix of real or complex

numbers. The matrix of focus for this technique is the term-document association matrix obtained

from VSM. SVD decomposes this matrix, ~M, into three components.

~M = ~U~S~V t

The three components can be explained as follows:

• ~U , is the matrix of eigenvectors from the term-to-term correlation matrix, ~M ~Mt

• ~S, is an n-square diagonal matrix of singular values, where n is the rank of ~M

• ~V t , is the matrix of eigenvectors from the document-to-document correlation matrix, ~Mt ~M

By selecting only the k largest singular values and their corresponding columns from U , S,

and V t , a reduced space results that models the concepts of the corpus. The value k must be chosen

correctly as to be large enough to fit all the concepts from the corpus, but small enough to filter out

all irrelevant details that were present in the non-reduced VSM.

To query this model, a query may be treated as a pseudo-document in the VSM and reduced

along with the rest of the corpus. Querying can then take place by using the cosine similarity

presented in the earlier section [Kuhn, Ducasse, and Gírba, 2007].

13

There still exist problems with LSI. While LSI performs better than VSM on synonymy, it

still has weaknesses, and the problem of polysemy still remains. These problems are addressed by

the next model.

1.2.4 Latent Dirichlet Allocation (LDA)

Latent Dirichlet allocation (LDA) [Blei et al., 2003] is a probabilistic generative model in

which term co-occurrences are used to identify the latent (i.e., hidden) topics in a corpus. Each

document in a corpus is modeled as a finite mixture over a set of topics, and each topic is modeled

as an infinite mixture over a set of topic probabilities. That is, a topic identified by LDA is modeled

as a probability distribution indicating the likelihood of a term being assigned to the topic, and a

document is modeled as a probability distribution indicating the likelihood that it expresses each

topic. LDA is intractable for direct computation [Blei et al., 2003]. Gibbs sampling, a special case

of Markov-chain Monte Carlo (MCMC) simulation, can be used to approximate an LDA model by

directly estimating the assignment of terms to topics given the observed terms in a corpus [Griffiths

and Steyvers, 2004; Heinrich, 2009]. Input parameters to the Gibbs sampler include [Heinrich,

2009]:

• K, the number of topics

• α , the Dirichlet hyperparameter for topic proportions (influences the topic distributions per

document)

• β , the Dirichlet hyperparameter for topic multinomials (influences the term distributions per

topic)

• σ , the number of sweeps to make over the entire corpus

14

There are manual and automated methods for choosing K [Griffiths and Steyvers, 2004], though

the automated methods may be inadequate when applied to source code [Maskeri, Sarkar, and

Heafield, 2008b]. Estimation models for the hyperparameters exist, but common heuristics are α

= 50/K and β = 0.01 [Griffiths and Steyvers, 2004]. Output of the Gibbs sampler includes:

• ψ , the term-topic probability distribution

• θ , the topic-document probability distribution

The process illustrated in Figure 1.1 can be instantiated using LDA as the TR method. The docu-

ment extractor can be configured to produce a corpus in which each document is a vector storing

the frequency of each extracted term (i.e., a term frequency vector). The produced LDA model

can be queried using similarity analysis of document parameters or predictive document likelihood

[Heinrich, 2009]. For example, the similarity between a document and a query can be computed as

the conditional probability of the query given the document, in which case a document is relevant

to a query if it has a high probability of generating the words in the query [Hofmann, 1999].

1.2.5 Language Modeling

A language model is a statistical model of the distribution of natural language in speech

and natural language documents. A statistical language model in text takes the form of a set of

probabilities between terms and term phrases and their appearance in a document. Each term and

term phrase is assigned a probability and this probability is used to describe the usage of natural

language in the document. Statistical language modeling may be applied to TR by predicting the

likelihood that a document could produce the terms written in a query [Gao, Nie, Wu, and Cao,

2004].

The probabilities are similar to weighting schemes such as tf-idf. Approaches such as VSM

15

use tf-idf as a heuristic for predicting the likelihood of query terms in their document. In VSM, tf

and idf are not computed as part of the model itself. Instead, language modeling approaches do

not use the normal approach to tf-idf, but incorporate this information directly into the model.

To calculate the likelihood of a document producing the terms in a query, a language model

needs to be created for each document. For TR purposes, the general model used is a unigram

model (i.e., the model is made up of individual tokens and not phrases). This unigram model is

used to calculate the probability of a term being generated given the model [Gao et al., 2004].

p(Q|Md) = ∏
t∈Q

p(t|Md)x ∏
t /∈Q

1− p(t|Md)

The first term in this calculation is the probability of generating the terms in the query. The

second term is the probability of not generating additional terms. The simplest way to calculate

the probability of a term being generated by a language model is to divide the raw term frequency

by the total number of tokens in a document. However, there are two main problems with this

simplistic approach.

The first problem is that a document is typically only a small subset of a language model.

For this reason, it is not clear how well the document reflects the language model in its entirety.

Most language models handle this problem by finding the mean probability of a term across all

documents where that term is present. The mean probability and the computed probability for the

document are then mixed. However, since it cannot be certain that each document where a term

is present is part of the same language model, a risk factor is associated with the average [Gao

et al., 2004]. This risk factor determines how much emphasis is given to the mean probability in

the mixture. The riskier the computed mean probability is considered, the more emphasis there is

16

placed on the document’s computed probability. The new computed probability, where R̂t,d is the

risk factor, is:

p̂(Q|Md) = pml(t,d)(1−R̂t,d)xpavg(t)R̂t,d

The second problem arises when p(t|Md) = 0. This is the probability when a term does

not appear in a document. In this case, using the simplest calculation for the probability of a

query would result in p(Q|Md) = 0. For this reason, smoothing algorithms are used to predict the

probability of terms not present in a given document. An example of a simple smoothing algorithm

would be to use the ratio of all occurrences of the term in the corpus to the total number of terms

in the corpus [Gao et al., 2004]. For any document where the term is not present, this ratio is used

instead of the 0 probability.

1.2.6 Structured Document Retrieval

The techniques thus far have all been concerned with unstructured natural language doc-

uments. However, not all documents are unstructured. For instance, a scientific article may be

broken into the title, the abstract, the sections, the paragraphs, and the sentences. Words may ap-

pear in multiple locations in the document or in a single location in the document. The approach

of performing TR by breaking documents into fragments based on the structure of the document

and, either returning the most relevant fragments as a result of a query, or using the fragments to

find the most relevant documents, is known as structured document retrieval (SDR) [Lalmas and

Baeza-Yates, 2009]. The structure of a document may be either explicitly defined using a mark-up

language (e.g., XML) or derived.

Language modeling can be combined with SDR [Ogilvie and Callan, 2002]. In these

approaches, each location in the document is represented by its own language model or a set of

17

child language models from subcomponents. As an example, a scientific article is composed of

a title, an abstract, and the body of the paper which is composed of multiple sections. The title,

abstract, and each section in the paper are represented by a different language model. The language

model for the body of the paper is interpolated from the language models of the sections, while the

language model for the article is interpolated from the language models of the body, the title, and

the article.

These approaches allow for both structured and unstructured queries. Unstructured queries

can be issued on full documents or individual locations. In the case of full documents, the approach

described in the previous section on language modeling may be used. To query individual location,

the ranking for each component would need to be computed and then some filtering methodology

would be required to remove either parent or child components that had lower rankings in the

results. The last step is to remove duplications in the results.

For structured queries, new approaches have been defined for querying the language mod-

els. Two common types of queries include searching only within a specific location or searching

for entire documents where greater weight is given to terms appearing in certain locations over

others. In the case of the first type of query, the query would be issued across only those locations.

In the case of the second query, the probabilities for each location may be combined (e.g., using

a linear combination with the weights being scalar multiple for the probabilities of each location)

into a single probability for the entire document.

1.3 Overview

The goal of this dissertation is to investigate how techniques that incorporate structural lo-

cation (i.e., where in the method the term appears) affect the results of TR as it applies to feature

location. The work from this dissertation studied two different techniques. The first combines

18

structural weighting with LDA as an ad-hoc preprocessing step. The second uses structured docu-

ment retrieval (SDR) to represent different structural locations as fields and allow for queries to be

performed over various combinations of contexts. This dissertation concludes by providing addi-

tional insights about the benefits and consequences of each study and when each technique is most

appropriate.

1.3.1 Structural Weighting of LDA

TR techniques such as LSI and VSM have been shown to have their results improved

when combined with additional structural and dynamic information [Liu, Marcus, Poshyvanyk,

and Rajlich, 2007; Poshyvanyk, Gueheneuc, Marcus, Antoniol, and Rajlich, 2007; Revelle, Dit,

and Poshyvanyk, 2010; Zhao, Zhang, Liu, Sun, and Yang, 2006]. As a method for incorporating

this type of information into LDA, the effects of different structural weighting schemes for LDA

were investigated. These weighting schemes take into account the structural location of terms

present in source documents. For instance, terms may appear in parameters, method names, vari-

ables, and comments within a source document. However, each of these terms may not be uniform

in importance.

One criticism of the use of advanced topic modeling approaches on source code is that

terms are more sparse than in natural language documents. For instance, the most relevant topic to

a method may be the one that describes the method’s behavior. However, terms for that topic may

be limited to the method name and parameters and it is common for the method name to be limited

to the method’s signature. In such a case, placing higher importance on the terms in the method

name may result in higher probability of a document being associated with the correct topic(s).

However, this does not necessarily indicate that other terms should be disregarded.

Emphasizing certain terms (e.g., method names) while deemphasizing others (e.g., method

19

calls) may lead to a better topic model. An earlier work examined this relationship between method

calls and method names [Bassett and Kraft, 2013]. They found that by increasing the weights of

method names and lowering the weights of method calls resulted in a higher success rate when

retrieving relevant documents. In other words, by placing different weights on terms based on

their structural position they observed any change in the effectiveness of LDA on the TR process.

With this in mind, the main questions answered in Chapter 4 are:

1. Does structural weighting of comments, leading terms, and local variables affect the accu-

racy of a LDA-based feature location technique (FLT)?

(a) How does structural weighting of the individual stuctural locations affect the accuracy

of a LDA-based FLT?

(b) What are the top configurations for each system and across all systems?

(c) What are the main effects and interactions between the structural locations?

2. Can a relationship between the contributions of each structural location’s lexicon and their

weighting factors be found?

In order to perform this study, a proper configuration was required for LDA and its train-

ing parameters. For this reason, a preliminary study is presented that was conducted with other

researchers at the University of Alabama. The results of this study led to the recommendations

for configuring LDA that are described in Chapter 4. This study and the results are discussed in

Chapter 3.

20

1.3.2 Structured Source Code Retrieval

Instead of simply changing the weights of terms and using traditional queries, it is possible

to make each structural location in a method document searchable. In this approach, a methodol-

ogy is introduced for structured source code retrieval based on SDR. To my knowledge, the only

technique that uses structured TR on software organizes terms from a source code document into

one of four fields and treats each field uniformly [Saha, Lease, Khurshid, and Perry, 2013]. How-

ever, this previous study does not take into account additional structure or the possibility of using

these structured documents to allow for advanced query languages for the developer.

Very little research has focused on using developer knowledge about a system to improve

the results of a query. For instance, a developer may have an understanding of what terms are

actually used in the system, what terms relate to method names and class names, and what terms

refer to variables or fields. A developer might also have expectations of what context a term is used.

Allowing a more robust query system that allows developer input can increase the likelihood of

returning relevant results. Furthermore, such a query system would be complementary to existing

query refinement and reformulation techniques and provide additional input to such a technique

about a term’s context.

The first step to studying this problem is to evaluate the effects such a querying system

may have on the feature location task. To study this problem, the effects of structured queries

were observed on a language modeling approach to SDR, where fields are locations within method

documents. The performance of structured and unstructured TR techniques using different query

types (i.e., titles, descriptions, and the combination from feature requests), corpora, combinations

21

of fields, and structural weighting schemes was investigated. Chapter 5 answers the following

questions:

1. Does query type affect the accuracy of a structured retrieval-based feature location technique

(FLT)?

2. Does changing the combination of included fields affect the accuracy of a structured retrieval-

based FLT?

3. Does structural weighting affect the accuracy of a structured retrieval-based FLT?

4. How does the best configuration of structural field combination and weighting affect the

accuracy of a structured retrieval-based FLT?

Because this technique allows the developer to change structural weightings and combina-

tions between queries, multiple scenarios are discussed in Chapter 5.

1.3.3 Comparing Structured Retrieval with Structural Weighting of LDA

After performing these studies, experience was gained about the benefits and consequences

of using each approach. Chapter 6 seeks to answer the following two questions based on the

insights gained throughout this research:

1. What are the benefits and consequences of using structural weighting in LDA?

2. What are the benefits and consequences of using structured retrieval for feature location?

1.4 Organization

The remainder of this dissertation is organized as follows. Chapter 2 discusses related

work in the area of feature location. Chapter 3 presents a preliminary study on configuring LDA

22

for performning feature location tasks. Chapter 4 introduces structural weighting of LDA and how

weighting impacts the results. Furthermore, this chapter will present an approach to learning near

optimal weighting configurations for systems where an optimal configuration is unknown. Chapter

5 will discuss structured source code retrieval, the design of a structured retrieval system, and the

use of content and structure (CAS) queries that may be issued by a developer or recommended by

a system. Chapter 6 will provide insights gained from running these studies about when to best use

each technique, and discuss areas of future work in both techniques. Chapter 7 will conclude the

dissertation.

23

Chapter 2

RELATED WORK

The research presented in this dissertation covers the use of TR and topic modeling in pro-

gram comprehension and software maintenance tasks. Previous research has focused on improving

TR models in two main ways: by combining the TR model with information gained from the struc-

ture of the source code and from running the system and improving the preprocessing stages of the

TR process. My research is focused on ways that structural information can be used for improving

TR. While additional dynamic information has been shown to improve the results of TR, it requires

a running version of the system as well as a set of test cases that effectively cover the maintenance

task; either of these may not always be possible, or may be difficult to obtain. Furthermore, my

research focuses on the configuration of a TR model and the preprocessing steps. In this chapter,

related work is presented in this area.

2.1 Text Retrieval Based Feature Location

One of the earliest works in the use of TR for software maintenance is by Marcus et al.

[Marcus et al., 2004], which introduced the use of LSI [Deerwester et al., 1990] for the purposes

of concept location. Concept location involves finding all relevant methods to a specific concept

throughout the entirety of the source code. They identified relevant methods by computing the

similarity measure between the concept and the source code elements. They then used a minimum

similarity value as a cutoff for the relevant methods. To evaluate the effectiveness of their approach,

they took their relevant set and compared it to a gold set of known relevant source code elements

24

and computed recall (i.e., the percentage of relevant documents returned) and precision (i.e., the

percentage of returned documents that are relevant). The approach ran on NCSA Mosaic and

compared to grep. LSI was found to be almost as easy to use as grep and to give better results than

the standard keyword search. This paper showed how TR performs better than keyword searches

in software engineering tasks and was one of the first to use TR for a software maintenance task.

However, the methodology used only limited parsing techniques and presented only a small case

study.

Similar to topic modeling is Formal Concept Analysis [Wille, 2005], which was utilized

by Poshyvanyk and Marcus [Poshyvanyk and Marcus, 2007] by combining it with LSI for feature

location. The main idea behind FCA is to identify a concept hierarchy from a collection of objects

and their properties. In FCA, objects are grouped together into concepts when they share values for

a set of properties. A sub-concept is a subset of the concept located in the hierarchy above it. Each

concept and sub-concept contains two parts, the extension and the intension. The extension of the

concept is the set of objects for the concept while the intension is the complete set of attributes for

the concept. The set of all concepts obtained from the FCA comprises a concept lattice. In the

approach, LSI provides the objects as a collection of documents and the weights of the terms as

the attributes. Relevant source elements are those elements that appear within the same concept as

the query. The limitation with this approach is that FCA is performed after a query and a ranked

list is obtained.

The first use of LDA for the purposes of feature location was performed by Lukins et

al. [Lukins et al., 2008, 2010]. In their study, the use of LDA [Blei et al., 2003] was presented

as an alternative to LSI and probabilistic LSI for bug localization, i.e., feature location where the

25

feature is a bug. A possible topic in a software system could contain the terms "buffer," "read,"

and "scan," where the topic would be a "input."

Lukins et al. studied the effects of LDA over five different case studies on Mozilla, Rhino,

and Eclipse. For each study, the rank of the first relevant method or class was used as the eval-

uation criteria. The purpose of the study was to support the use of LDA for feature location by

demonstrating the technique’s accuracy, scalability, and sensitivity to source code stability. The

goal of case study 1 was to compare LDA TR to LSI TR as standalone techniques on five bugs in

Mozilla and three bugs in Eclipse. The results of the first case study showed that LDA performed

as good or better than LSI. The second case study examined the accuracy of LDA on all bugs in a

given software system. The results from LDA on 35 bugs from Rhino were analyzed. Stability of

source code was not shown to affect the accuracy of the technique. Of these results, 77% returned

the first relevant method in the top 10 results, and 63% returned in the top five results. At the

class level granularity, 54% of the bugs returned the first relevant class as the top results. Case

studies 3-5 analyzed 106 bugs over 12 versions of Rhino and 216 bugs in 13 versions of Eclipse.

The third case study focused on the accuracy of LDA as a software system scales. It involved the

largest analysis discussed in the review. This case study showed that the accuracy of LDA scales

well with the software system. The last two remaining case studies focused on the accuracy of

LDA compared to the size of the software system and stability, with no significant relationships

found. This study introduced LDA as a possible method for TR-based feature location, but it did

not take into account any structural information when building the topics nor did it incorporate any

additional sources of information.

This section outlines some of the early research into TR-based feature location. The tech-

niques presented in this section use TR as the standalone method for performing feature location

26

and introduces the basic methodology for performing TR on software. Of particular interest to my

research is the study presented by Lukins et al.

2.2 Combining Additional Information with Text Retrieval

Cleary and Exton [Cleary and Exton, 2007; Cleary, Exton, Buckley, and English, 2009]

presented an approach aimed at improving the TR process by incorporating additional non-source

code software artifacts into the TR model. Their approach used ideas of language modeling and

query expansion and was based on the realization that software engineers communicate and record

concerns in non-source code artifacts such as bug reports, emails, and external documentation.

They created a type of semantic space model for deriving term co-occurrence relationships from

a corpus and then find measures of information flow to identify a set of terms that are poten-

tially related to the terms in a query. The use of information flows is based off a process from

Song and Bruza [Song and Bruza, 2001]. They use these terms to expand and enhance a query.

They compare their approach, which has been referred to as query expansion KL-divergence

(QEKLD) [Cleary and Exton, 2007] or cognitive assignment [Cleary et al., 2009], against a clas-

sical language modeling approach [Zhai and Lafferty, 2004], a dependency language modeling

based approach [Gao et al., 2004], and LSI. They extended the cognitive assignment Eclipse plug-

in [Cleary and Exton, 2006] to perform feature location on an open source system called CHIVE.

QEKLD was seen to perform equal to or better than the other approaches. This study showed the

importance of relevant terms in a query and how proper queries can improve the TR process for

feature location. However, the limitation of this approach is that it requires the developers to make

available to the technique additional natural language documents outside of the source code.

The first study to combine TR with static analysis for the purposes of feature location was

introduced by Zhao et al. [Zhao, Zhang, Liu, Sun, and Yang, 2004; Zhao et al., 2006], which

27

presented a static, non-interactive approach to feature location (SNIAFL) with the goal of deliver-

ing a fully automated non-dynamic feature location technique (FLT). The approach combines TR

with Branch Reserving Call Graphs (BRCG), which are call graphs that have the added benefit of

providing branch information to the user.

SNIAFL involves four steps. First, the initial set of connections between all features and

the source code’s functions are acquired. Second, a threshold is determined by finding the greatest

difference in similarities between adjacently ranked functions in the initial ranked list of functions.

Anything above this threshold is included as one of the feature’s initial specific functions. After

this step, a BRCG is traversed. Any branch that is found to be irrelevant to the initial set of specific

functions is pruned. The next step involves traversing the BRCG again for each feature, when a

relevant function is encountered, the system checks if the feature is relevant to any other feature;

if not, the relevant function is marked with a 1, otherwise a 0. After this, a pseudo execution trace

may be returned to the user for each feature.

An experimental study was performed on an open source software system named DC. Of

the 49 functional requirements mentioned in the specifications documentation for the system, the

authors chose to use the 21 primitive functions for their study. Each of these 21 primitive functions

implemented a single functionality for the system. For each function, SNIAFL was applied to

obtain the relevant functions and three groups of data were obtained: the initial and final specific

functions of each feature, the relevant functions acquired by the BRCG from the initial specific

functions, and the pseudo execution traces constructed by the BRCG. SNIAFL was evaluated on

three aspects: the relevant functions, the execution traces, and the specific functions. Precision

and recall were used to compare SNIAFL, VSM, and a dynamic approach in obtaining relevant

functions. SNIAFL resulted in the highest recall with 99.57% and a precision of 90.97%. When

28

compared to the execution traces obtained from a purely dynamic approach, SNIAFL was found

to be less than effective. On the last criteria, the specific functions, SNIAFL obtained an 85.71%

correct ratio of the specific functions, while the correct ratio for the dynamic approach was 95.24%

given insufficient test cases and 100% given well-designed test cases. Overall, this study found that

SNIAFL worked better than either TR or static analysis alone for obtaining relevant methods and

was an acceptable alternative to dynamic analysis when searching for functions specific to only

one feature. This study highlights the importance of structural information in TR. However, the

results of the case study are limited as the systems used in the study are small (i.e., less than 100

functions).

Hill et al. [Hill, Pollock, and Vijay-Shanker, 2007] presented Dora, which combines TR

with structural representations of code similar to Zhao et al. Users formulate queries related to

software maintenance tasks and input a seed set of methods. Dora computes the relevance of the

query to the methods in the seed set by combining tf-idf scores and method features, such as the

locations of relevant terms in the method, in a linear regression model. Dora follows call graph

edges from the seed set of methods and finds additional relevant methods for the query. Dora then

outputs the relevant "neighborhood" (i.e., methods related to the user’s task) to the user. Dora

was compared to a structural-topology approach called Suade and to two additional lexical and

structural techniques, boolean-AND and boolean-OR. Dora was found to be the most successful.

Like Zhao, this research shows how structural information can be used to find relevant source

code elements. Unlike Zhao however, this research requires an initial set of seed methods that

may not be available. Of particular interest to my research is the use of method features. In their

approach, they place high emphasis on the appearance of terms in the method name and the number

of statements that contain a query term. Unlike my research, their approach does not pay attention

29

to the importance of other locations and makes use of the simplistic tf-idf model. Furthermore,

their approach does not take into account the differences between software systems.

Shao and Smith [Shao and Smith, 2009] used an affine transformation to combine LSI with

static dependency information extracted from call graphs. Their approach first performs a TR of

the source code using LSI and then defines a minimum similarity score threshold on the returned

ranked list. Any methods with similarity scores greater than or equal to the threshold are added

to a new list and a call graph is created for each method. A hash function is used to create a new

list for each method that contains the list of all methods that are one-edge away, that is a list of

methods that the method calls directly. A method’s similarity score from LSI and the density of

the method in the call graphs of all methods (i.e., a measure of how often the method is called by

other methods within the threshold) is then combined by the transformation to give the method a

new score. After such a score has been obtained for each method in the threshold, a new ranked list

is created and reported to the user. A case study compared this approach to LSI on an open source

software system, iVistaDesktop, and the approach was found to show some improvement over LSI

alone. This paper presented a new way of combining structural information with TR. There are

two key limitations to this study, however. First, the study carried out was only on one system.

Second, the call graph was only evaluated one-edge away and no empirical study was performed

for more than a single edge.

Scanniello and Marcus [Scanniello and Marcus, 2011] used clustering based off of struc-

tural dependencies and lexical similarities between methods to improve results over TR alone. In

their approach, VSM and cosine similarity are used to index the methods of a software system and

then compare them to neighboring methods in a dependency graph. Using these similarities, a new

weighted graph is created from the original dependency graph and is used as input to a BorderFlow

30

algorithm that clusters related methods based on flow. Document ranking is performed on both the

methods and the clusters, with the developers being presented with a ranked list of clusters. The

ranking of methods is maintained within each of their corresponding clusters. The effectiveness

of this technique over VSM is evaluated on four open source systems: ATunes, Art of Illusion,

Eclipse, and two versions of jEdit. Effectiveness of the approach was considered by the first rele-

vant method and the use of a Mann-Whitney test between the clustering approach and VSM alone.

The authors found that clustering significantly increases the effectiveness of TR over VSM alone.

The authors demonstrated how lexical information can be combined with structural dependencies

to create logical groupings amongst the elements of a software system. However, in this approach,

the relevant cluster must first be found before the relevant method.

Although focused on dynamic analysis, the work by Revelle et al. [Revelle et al., 2010]

is related to my research and presents a novel idea to feature location based on data fusion and

web mining. Data fusion is the process of combining multiple sources of information in such ways

that the combination of the sources produces better results than the sources used individually. The

types of data fusion applied in this study include combining LSI, execution traces, and web mining.

Web mining is a technique that has been used to analyze the World Wide Web (WWW). Two

algorithms are presented, these include Hyperlinked-Induced Topic Search (HITS) [Kleinberg,

1999] and PageRank [Brin and Page, 1998]. HITS identifies hubs and authorities based on whether

an element contains links to multiple relevant pages or are pointed to by many hubs. PageRank

attempts to score elements based on their relative importance with other elements. In order to

compute both of these scores, execution traces are used to build graphs that include methods and

calls between the methods.

Experiments were ran on various combinations of LSI, execution traces, and the two web

31

mining techniques. A study of these data fusions was performed on 45 features of Eclipse and

241 features of Rhino, and were compared against each other, LSI, and other techniques. Web

mining as a standalone approach produced results that were comparable to LSI. Of the standalone

web mining techniques, HITS was shown to be more effective than PageRank and ranking by

authorities performed better than ranking by hubs. When used as a means to filter data for the other

techniques, web mining effectively increased all techniques in Eclipse and most of the approaches

in Rhino.

Sisman and Kak [Sisman and Kak, 2012] used version histories of a software project to es-

timate a prior probability distribution for defect proneness of files in a given version of the software

project. They computed two different priors: a modification history prior and a defect history prior.

The modification history prior is based on the frequency of variation of a file whereas the defect

history prior is found by analyzing the version history and change requests for what the authors

refer to as bug fixing change sets. With these two priors, the authors apply a temporal decay so that

there is more emphasis on files that have been changed recently over files that were changed in the

distant past. These priors were used in a TR framework that utilized language modeling and diver-

gence from randomness, two techniques that have been shown to do well with probability priors

in the past. The authors conducted a case study on AspectJ [Kiczales, Hilsdale, Hugunin, Kersten,

Palm, and Griswold, 2001], an open source language extension to Java. To evaluate their models,

the authors calculated the mean average precision (MAP). Their approach showed improvement

over existing models including those that used tf-idf. This research shows how information in the

history of the software system can be used to improve the results of automated software mainte-

nance. More work would need to be performed to determine the best ways for computing the priors

and the decay.

32

Given the complexities of incorporating dynamic analysis and software repository mining

in software search, Moreno et al. [Moreno, Treadway, Marcus, and Shen, 2014] implemented a

technique which they referred to as Lobster (LOcating Bugs using Stack Traces and tExt Retrieval).

Their technique combined the results of a VSM-based TR technique with stack traces extracted

from bug reports. Their technique incorporates two key components. The first is a textual similarity

measure that is obtained from using any TR model and comparing the model to the query. In

the case of their study, the authors chose to use Lucene [Gospodnetic and Hatcher, 2005] which

combines VSM with a Boolean model. The second component is obtained by using the code

elements given in the stack trace of the bug report. They defined the similarity between a stack trace

and a method in the software system as the shortest path distance of any code element in a stack

trace to the target code element in the software system through the program dependency graph.

These two measures are combined into a single measure, labeled the total similarity, as a linear

combination of the two similarity scores. The authors evaluated their study using 17 versions of 14

open source Java systems with varying size and domain. The results of this empirical evaluation

showed that incorporating information from stack traces improved the baseline TR technique. The

importance of this technique is in the reduced overhead from computing the stack trace similarities

versus more intense techniques such as dynamic analysis and software repository mining.

The key importance of this section was to present how TR produces better results when

combined with other sources of information. Such information can come from other software

repositories, natural language artifacts, dynamic execution traces, or can even be embedded in the

source code. My research takes advantage of the last source (i.e., the structure of the source code).

33

2.3 Configuration and Corpus Creation

The effects of the stemming preprocessing step (i.e., reducing inflected terms to their base)

were studied by Hill et al. [Hill, Rao, and Kak, 2012]. The purpose of their study was to determine

the comparative effectiveness of different stemmers in the domain of software. The authors per-

formed two studies on software systems in Java analyzing the difference in stemmers on concept

location and bug localization. Four traditional TR stemmers were compared: Porter, Snowball,

KStem, and Paice. These stemmers were selected based on whether they were heavy or light,

morphological or algorithmic, or specialized for the domain of software. In each study, the au-

thors calculated the Mean Average Precision. For the bug localization study, the authors used

the iBUGS dataset [Dallmeier and Zimmermann, 2007] for AspectJ. This dataset contained 291

bugs that formed the basis for their experiment. In addition, the authors tested the effectiveness

of stemmers on three different types of queries: short descriptions that included titles from a bug

description, medium descriptions that included the first comment line in the bug description, and

long descriptions that included the entire bug description. The purpose of the different queries was

to see if the effectiveness of stemmers was different based on the type of query and to identify

those queries for which one stemmer performs the best.

The results of their study showed that in the case of long descriptions, the choice of stemmer

had relatively little effect on the task. However, in the case of the short queries, a high variability

was observed. They found that the effectiveness of stemmers was based on query type and the

specific software engineering task. For instance, while Paice was found to have high performance

in concept location, it showed poor performance for bug localization. This study shows the impor-

34

tance of preprocessing and the effects that variations of terms may have on the text retrieval model.

However, this study is limited in that it only focuses on AspectJ.

Similar to the approach of structural weighting discussed in my research, Alhindawi et al.

[Alhindawi, Dragan, Collard, and Maletic, 2013] proposed a method for improving the results of

TR through method stereotypes, which are terms that describe the abstract role of a method (e.g.,

get, set, and predicate). The authors presented a tool called StereoCode which automatically identi-

fies a method’s stereotype by analyzing static and structural information and then adds a comment

before the method defining the method’s stereotype. They then carried out TR as described in

Chapter 1.

Using LSI as the TR method, the authors conducted a study using two C++ open-source

software systems, HippoDraw [Kunz, 2001] and Qt [Manly and Olson, 1999]. The authors per-

formed feature location using LSI with and without the added stereotype information. The authors

evaluated their approach using a number of measures, including recall, precision, the rank of the

first relevant method, the rank of the last relevant method, and the ranks of all methods. The

study demonstrated that the added stereotype information improved the query results for the fea-

ture location process with improvements in each of the measures. While this study shows how

structural information improves TR by adding the terms directly to the document in the corpus, it

only incorporates method stereotypes.

Another weighting scheme was presented by Zamania et al. [Zamania, Lee, Shokripoura,

and Anvikb, 2014]. In their study, they focused on improving algebraic models to TR by using only

nouns and weighting terms based on when they were used in the repository. The focus of their study

looked at improving VSM which has been shown to perform poorly compared to query-likelihood

35

models and LDA [Binkley, Lawrie, Uehlingera, and Heinzb, 2015]. In addition, their results were

focused on the file level granularity as opposed to the method level that is the focus of this work.

Another study that focused on enhancing the corpus was carried out by Saha et al. [Saha

et al., 2013]. The authors introduced BLUiR (Bug Localization Using information Retrieval), an

automatic bug localization tool that leverages structural information in code to improve the TR

process. BLUiR was built on Indri [Strohman, Metzler, Turtle, and Croft, 2005], an open-source

information retrieval toolkit. BLUiR takes the source code files of the software system as input and

builds the abstract syntax tree (AST) for each source code file using the Eclipse Java Development

Tools. Information for each source file is stored as a structured XML document that is sent to Indri

for preprocessing. The authors distinguish between two query types (summary and description)

and within the documents four different fields (class, method, variable, comments). They then

perform separate searches for each of the eight different combinations and sum the results for a

document across all eight searches.

The authors evaluated BLUiR on four open source projects (Eclipse [desRivieres and Wie-

gand, 2004], AspectJ, SWT [Northover and Wilson, 2004], and ZXing [Scheuermann, Werner,

Kessel, Linnhoff-Popien, and Verclas, 2012]) with approximately 3,400 bugs. The authors com-

pared their tool to a previous tool (BugLocator [Zhou, Zhang, and Lo, 2012]) and evaluated each

tool on the top n results, mean reciprocal rank, and mean average precision. The results of the

study showed that BLUiR outperformed BugLocator. The authors found that including structural

information enables more accurate results for bug localization. This study is similar to my struc-

tured retrieval approach; however, the authors treat all document fields in the XML document

equally and only compute a simple sum between the rankings. The work does not consider the

36

possibility of different queries for each feature, nor does it take into account differing structures,

and weightings.

Panichella et al. [Panichella, Dit, Oliveto, Di Penta, Poshynanyk, and De Lucia, 2013]

investigated the configuration of LDA for software engineering tasks. Their approach, which they

termed LDA-GA for LDA genetic algorithms, uses genetic algorithms to find the best configuration

for LDA in three different software engineering tasks: traceability link recovery, feature location,

and software artifact labeling. Their approach is based on an assumption that the quality of results

from LDA in a software engineering task is dependent on the quality of clusters in the LDA model.

A cluster is a grouping of objects where the objects inside the cluster are closer to each other

than they are to objects outside of the cluster. Using LDA, documents should be closer to other

documents within their dominant topic than to those outside of it. To rate the quality of a cluster,

the authors used two criteria to calculate a coefficient: the closeness of documents inside of a

cluster and the distance of separation between clusters. Using this basic assumption, the authors

used genetic algorithms to search for the optimal solution or the highest coefficient. The authors

carried out a case study using six open source software systems and the three software engineering

tasks. They found that their approach significantly improved the results of LDA in these tasks.

While this study finds the optimal configuration for LDA, the model must be created multiple

times until an optimal solution is reached. The time required to do so may not be acceptable in an

actual development environment. My work applies a modified version of their approach to finding

the optimal structural weighting in LDA over time.

This section showed the importance of the corpus and proper configuration in the TR pro-

cess. Studies similar to the structural weighting scheme were discussed and the results of these

37

studies showed how structural information in the corpus can improve the results of a TR tech-

nique.

This chapter presented previous work in the area of TR-based feature location. The follow-

ing chapters discuss new approaches to this area that expand upon the uses of structural location to

TR. The next chapter discusses preliminary work on configuring LDA. This study will lead directly

into Chapter 4.

38

Chapter 3

PRELIMINARY STUDY ON CONFIGURING LDA

Before considering the effects of structural weighting in LDA, this chapter discusses how

to properly configure LDA for feature location. As a member of a research team at the University

of Alabama, we investigated the affect different configurations can have on the LDA-based FLT.

TR techniques are highly configurable. For example, when using LSI [Deerwester et al.,

1990] we must select k, the number of (reduced) dimensions, or when using LDA [Blei et al.,

2003] we must select α , β , and K, the two smoothing hyperparameters and the number of topics,

respectively.

Which text to extract from the source code is another important configuration decision. In

particular, the text extractor has seven possible configurations: (1) identifiers only, (2) comments

only, (3) literals only, (4) identifiers and comments, (5) identifiers and literals, (6) comments and

literals, and (7) identifiers, comments, and literals. Before we can index the source code, we must

choose one of these configurations.

Unfortunately, few studies of TR-based FLTs directly address the decisions that a practi-

tioner or researcher must make when configuring the FLT. The feature location literature contains

no empirical evidence that supports the selection of one configuration over another.

We conducted a case study in which we consider the configuration of an LDA-based FLT

using 618 features in six open source Java systems. Specifically, we consider five configuration

parameters, the first of which is the query. The second configuration parameter that we studied

39

is the extracted text, and we are aware of no study that considers this parameter. The remaining

configuration parameters are the number of topics (K) and the two smoothing hyperparameters (α

and β).

3.1 Case Study

This section describes the design of a case study that measured the effects of different

configurations on the accuracy of an LDA-based FLT.

3.1.1 Definition and Context

Our primary goals are to understand whether five factors interact and to what extent the

five factors affect the performance of an LDA-based FLT. The five factors of interest are the query

(Query), the source code text to extract (Text), and the three LDA parameter values (K, α , β). The

quality focus of the study is on establishing the importance of proper configuration to attain optimal

performance from an LDA-based FLT and on informing the configurations of five parameters.

The perspective of the study is of a software developer performing a change task on a software

system and using an LDA-based FLT to identify a starting point (i.e., a method) from which to

begin the change. The context of the study spans 618 features from six open source Java systems

(ArgoUML1, JabRef2, jEdit3, muCommander4, Mylyn5, Rhino6).

3.1.2 Overview

We consider six factors in the case study, which has five parts. The design of Part 1 is listed

in Table 3.1, the designs of Parts 2-4 are listed in Table 3.2, and the design of Part 5 is listed in

Table 3.3. The first factor is Query, which is a categorical variable. The next factor is Text, which

1 http://argouml.tigris.org
2 http://jabref.sourceforge.net
3 http://www.jedit.org
4 http://www.mucommander.com
5 http://www.eclipse.org/mylyn/
6 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino

40

http://argouml.tigris.org
http://jabref.sourceforge.net
http://www.jedit.org
http://www.mucommander.com
http://www.eclipse.org/mylyn/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino

is a categorical variable that represents the text extractor configuration. The third factor is K, which

is a ratio variable that represents the number of topics. α and β are the fourth and fifth factors,

representing the smoothing hyperparameters, and are ratio variables. System is the sixth factor and

is a categorical variable. We describe its categories in the next section.

Part 1 of the case study focuses on the interactions among five factors (Query, Text, K,

α , β). We use a full factorial design to permit the detection of interaction effects using factorial

ANOVA. To ensure the feasibility of this part of the case study, we limit each of the five factors to

three possible values (for a total of 243 distinct configurations).

Table 3.1: Case study design: Part 1.

Factor Values

Query Title, Description, Combined

Text I, CL, ICL

K 100, 200, 500

α 0.5, 1.0, 50.0

β 0.01, 0.1, 0.5

We focus on a different factor (or pair of factors) in each of Parts 2-4, controlling System

throughout. Part 2 focuses on Query and controls the other factors. Query has three categories

(Title, Description, Combined). Part 3 focuses on Text and K. Text has seven categories (I, C,

L, IC, IL, CL, ICL), and K has four categories per subject system. Because the value of Text may

affect the size of the corpus (i.e., the numbers of documents and terms), and because K should

be proportional to the size of the corpus, we vary these factors together. Part 4 of the case study

focuses on α and β . We vary these factors together, assigning six values to each factor (0.01, 0.1,

0.25, 0.5, 0.75, 1).

Part 5 of the case study applies the lessons learned in Parts 1-4 and compares our pre-

41

Table 3.2: Case study design: Parts 2-4.

Part Factor(s) of Interest Controlled Factors

2 Query Text (ICL), K (100 or 200), α (50/K), β (0.01)

3 Text, K Query (Combined), α (50/K), β (0.01)

4 α , β Query (Combined), Text (ICL), K (100 or 200)

dicted best configurations for four systems (ArgoUML, jEdit, JabRef, and Rhino) to two generic

configurations informed by heuristics from the literature.

Table 3.3: Case study design: Part 5.

Configuration Query, Text, K, α , β

PredictedArgoUML Combined, ICL, 500, 1.0, 0.1

Predicted jEdit Combined, ICL, 400, 1.0, 0.25

PredictedJabRe f Combined, ICL, 400, 1.0, 0.25

PredictedRhino Combined, ICL, 300, 1.0, 0.5

Heuristic1 Combined, ICL, 200, 0.25, 0.01

Heuristic2 Combined, ICL, 200, 0.25, 0.1

3.1.3 Subject software systems

We chose the six subjects of our study — ArgoUML, JabRef, jEdit, muCommander, Mylyn,

and Rhino. Table 3.4 lists four size metrics for each of the six subject systems: source lines of

code (SLOC), comment lines of code (CLOC), Java file count, and method count. The table also

lists the number of features that we study for each system. Further, the application domains of

the systems are as follows. ArgoUML is a UML modeling tool, and JabRef is a bibliography

reference manager. jEdit is a programmer’s text editor, and muCommander is a cross-platform file

manager. Mylyn is an Eclipse plug-in that provides a task-focused interface for ALM, and Rhino

is a JavaScript engine that provides a compiler, an interpreter, and a debugger.

42

Table 3.4: Subject software systems.

System Version SLOC CLOC Files Methods Features

ArgoUML 0.22 117,649 104,037 1,407 11,348 91

JabRef 2.6b 74,350 25,927 579 5,323 38

jEdit 4.3 98,460 42,589 483 6,550 149

muCommander 0.8.5 76,649 68,367 1,069 8,811 90

Mylyn 1.0.1 99,310 23,503 936 9,067 93

Rhino 1.6R5 45,225 15,451 129 2,565 157

Total 511,643 279,874 4,603 43,665 618

3.1.4 Benchmarks

We studied features that correspond to issues reported via Bugzilla or an equivalent issue

tracking system. Most of the issue reports are requests to change an unwanted functionality (i.e.,

to remove a faulty feature), though some are requests to add a new functionality (i.e., to add a new

feature). Two approaches are used to recover the set of methods modified to fix each bug or to

add each functionality. The patches submitted to Bugzilla are used to recover the set of methods

modified to address each issue, or the diffs stored in Subversion are used to recover the set of

methods modified.

We studied 618 features total. Specifically, we considered the following numbers of fea-

tures for each system: 91 for ArgoUML, 38 for JabRef, 149 for jEdit, 90 for muCommander, 93

for Mylyn, and 157 for Rhino. The selected features represent a subset of the available features for

each benchmark. We exclude any available feature for which the bug report’s title or description

is empty after the application of our preprocessing steps (i.e., splitting, normalizing, filtering, and

stemming).

Due to the large number of features that we consider, and to eliminate potential bias, we

43

automatically formulate three queries for each feature. Specifically, we use as the query the bug

report’s title, its description, or its title and description combined [Dit, Revelle, Gethers, and Poshy-

vanyk, 2012]. This query formulation process is conservative, in that it does not rely on developer

experience, and unbiased, in that it does not allow us to influence the results.

3.1.5 Effectiveness measure

Though modifying or removing a functionality requires that the developer identify all enti-

ties to be changed, the goal of automatic feature location is to identify a single method from which

the developer can begin the change [Lukins et al., 2010; Poshyvanyk et al., 2007]. Other methods

associated with the feature can then be identified using impact analysis.

Because static FLTs rank all methods in a system, recall and precision are not useful ac-

curacy measures in this context. In particular, in the context of static FLTs, recall is always 1.0,

and precision is always 1/n (where n is the number of methods). Thus, the rank of the first rel-

evant method is used instead [Lukins et al., 2008, 2010; Poshyvanyk et al., 2007; Revelle et al.,

2010]. This measure, which Poshyvanyk et al. [2007] term the “effectiveness measure” for feature

location, indicates the number of entities that the developer must examine (if following the rank-

ing) before reaching a method that actually belongs to the feature. That is, the measure quantifies

the number of false positives that a developer must examine. Thus, in this study we adopt the

effectiveness measure as our accuracy measure.

3.1.6 Setting

We implemented our document extractor in Python v2.6 using ANTLR v3 [Parr and Quong,

1995] and an open source Java 1.5 grammar7. We extract documents at the method level of gran-

ularity using a term count weighting scheme and consider every method to be distinct. That is, if

7 http://antlr.org/grammar/1152141644268/Java.g

44

http://antlr.org/grammar/1152141644268/Java.g

method bar is nested within method foo8, each method is considered separately, and the text for

method bar is not considered to be part of the text for method foo. We associate any comment

that is contained in a method with that method. We associate any block comment (or series of line

comments) that precedes a method with that method.

java.lang class names are filtered before splitting tokens. Tokens are split based on

camel case, underscores, and non-letters. After splitting tokens, the original token is retained. We

normalize to lower case before filtering English stop words, Java keywords, and terms shorter than

three characters. A Porter stemmer9 is applied to retained terms.

For the second and fourth parts of the first case study, we set K = 100 for Rhino and

K = 200 for the other five systems. Other researchers have set K = 100 [Lukins et al., 2008, 2010]

for Rhino, and we adopt the value because our task and setting are similar to those of the former

studies. We heuristically set K = 200 for the other five systems based on their sizes. As our study

is concerned primarily with relative performance, not absolute performance, it is not critical that

the optimal K is chosen for each system.

R lda v1.2.3 is used to compute and query LDA models. Because R lda implements a CGS

algorithm, σ must be set, the number of sweeps to make over the entire corpus. We set σ = 500,

which provides a balance between execution efficiency and model convergence. Our classifier is

conditional probability (P).

3.1.7 Hypotheses

This subsection describes the hypotheses for each part of the case study.

8 In Java, a method may contain a class (which may contain a method).
9 http://tartarus.org/~martin/PorterStemmer/python.txt

45

http://tartarus.org/~martin/PorterStemmer/python.txt

3.1.7.1 Hypotheses for Part 1

For the five factors (Query, Text, K, α , β), all two-way interactions, all three-way interac-

tions, all four-way interactions, and the five-way interaction are tested for statistical significance.

For the 10 two-way interactions, each null hypothesis is of the form:

H0 : µ +ν There is no interaction between factors µ and ν .

Further, each alternative hypothesis is of the form:

HA : µ ∗ν There is interaction between factors µ and ν .

For example:

H0 : Query+Text There is no interaction between factors Query and Text.

The remaining 9 null hypotheses are analogous. We tested these hypotheses using the effectiveness

measure.

If a null hypothesis can be rejected with high confidence (α = 0.05), we accept an al-

ternative hypothesis stating that the two factors interact. For example, the alternative hypothesis

corresponding to the example null hypothesis is:

HA : Query∗Text There is interaction between factors Query and Text.

The remaining 9 alternative hypotheses are analogous.

The null and alternative hypotheses for the 10 three-way interactions, the 5 four-way inter-

actions, and the five-way interaction are formulated similarly.

46

3.1.7.2 Hypotheses for Parts 2-5

This subsection compares a large number of configurations, and no presupposition is made

about the direction of the difference between any two configurations. Thus, all of our hypotheses

are two-sided. In particular, each null hypothesis is of the form:

H0 : µ = ν Configuration µ does not significantly affect the accuracy of the

LDA based FLT compared to configuration ν .

Further, each alternative hypothesis is of the form:

HA : µ 6= ν Configuration µ does significantly affect the accuracy of the LDA

based FLT compared to configuration ν .

The second part of the case study focuses on Query and control of the other factors. Query

is a categorical variable with three categories (Title, Description, Combined), so three null hy-

potheses were formed to test whether LDA-based feature location produces different results when

using different queries. In particular, for each null hypothesis, µ and ν are distinct query types in

{Title,Description,Combined}. For example:

H0 : Title = Description Title does not significantly affect the accuracy of the LDA

based FLT compared to Description.

The remaining two null hypotheses are analogous. We tested these hypotheses using the effective-

ness measure.

If a null hypothesis can be rejected with high confidence (α = 0.05), we accept a two-sided

alternative hypothesis stating that a query type has an effect on the ranking of the first relevant

method compared to another query type. For example, the alternative hypothesis corresponding to

the example null hypothesis is:

47

HA : Title 6= Description Title does significantly affect the accuracy of the LDA

based FLT compared to Description.

The remaining two alternative hypotheses are analogous.

The third part of the case study we focuses on Text and K and control of the other fac-

tors. Text is a categorical variable with seven categories (I, C, L, IC, IL, CL, ICL), and K is a

ratio variable with four values, so 378 null hypotheses were formed to test whether LDA-based

feature location produces different results when using different text and different numbers of top-

ics. In particular, for each null hypothesis, µ and ν are distinct pairs in {I,C,L, IC, IL,CL, ICL}×

{75,100,150,200}. For example:

H0 : (I,75) = (C,100) (I,75) does not significantly affect the accuracy of the

LDA-based FLT compared to (C,100).

The remaining 377 null hypotheses are analogous. We tested these hypotheses using the effective-

ness measure.

If a null hypothesis can be rejected with high confidence (α = 0.05), we accept a two-

sided alternative hypothesis stating that the text/topics pair has an effect on the ranking of the

first relevant method compared to another text/topics pair. For example, the alternative hypothesis

corresponding to the example null hypothesis is:

HA : (I,75) 6= (C,100) (I,75) does significantly affect the accuracy of the LDA-

based FLT compared to (C,100).

The remaining 377 alternative hypotheses are analogous.

The fourth part of the case study focuses on α and β and control of the other factors. The

hyperparameters α and β are ratio variables with six values each (0.01, 0.1, 0.25, 0.5, 0.75, 1), so

630 null hypotheses were formed to test whether LDA-based feature location produces different

48

results when using different values of α and β . In particular, for each null hypothesis, µ and ν are

distinct pairs in {0.01,0.1,0.25,0.5,0.75,1}×{0.01,0.1,0.25,0.5,0.75,1}. For example:

H0 : (0.5,0.01) = (0.25,0.1) (0.5,0.01) does not significantly affect the accuracy of the

LDA-based FLT compared to (0.25,0.1).

The remaining 629 null hypotheses are analogous. We tested these hypotheses using the effective-

ness measure.

If a null hypothesis can be rejected with high confidence (α = 0.05), we accept a two-sided

alternative hypothesis stating that the α/β pair has an effect on the ranking of the first relevant

method compared to another α/β pair. For example, the alternative hypothesis corresponding to

the example null hypothesis is:

HA : (0.5,0.01) 6= (0.25,0.1) (0.5,0.01) does significantly affect the accuracy of the

LDA-based FLT compared to (0.25,0.1).

The remaining 629 alternative hypotheses are analogous.

The fifth part of the case study compares our predicted best configurations for four sys-

tems (ArgoUML, jEdit, JabRef, and Rhino) to two generic configurations informed by heuris-

tics from the literature. In particular, for each null hypothesis, µ and ν are distinct pairs in

{PredictedArgoUML, Predicted jEdit , PredictedJabRe f , PredictedRhino} × {Heuristic1, Heuristic2}.

For example:

H0 : PredictedArgoUML = Heuristic1 PredictedArgoUML does not significantly affect the accuracy

of the LDA-based FLT compared to Heuristic1.

The remaining 7 null hypotheses are analogous.

49

If a null hypothesis can be rejected with high confidence (α = 0.05), we accept a two-

sided alternative hypothesis stating that the predicted configuration has an effect on the ranking

of the first relevant method compared to the heuristic configuration. For example, the alternative

hypothesis corresponding to the example null hypothesis is:

HA : PredictedArgoUML 6= Heuristic1 PredictedArgoUML does significantly affect the accuracy of

the LDA-based FLT compared to Heuristic1.

The remaining 7 alternative hypotheses are analogous.

3.1.8 Data Collection and Analysis

We collected two kinds of data for this case study. First, size metrics were collected for the

corpora. In particular, a corpus was built using each of the seven text extractor configurations, and

we collected three size metrics for each corpus:

Terms the number of unique terms

Uses the total number of term uses (i.e., instances)

Docs the number of non-empty documents

Table 3.5 lists the size metrics. Note that the Docs values for some corpora are less than the num-

bers of methods in the system. For example, Rhino’s L corpus contains 522 non-empty documents,

whereas Rhino contains 2,565 methods. This is because some Rhino methods contain no string

literals — documents for such methods are empty.

We also collected the effectiveness measure, which is the primary data of interest in our

case study. For each feature and configuration, we collected one effectiveness measure for each

query. We then analyzed the data for each system/configuration pair to determine the minimum,

50

Metric I C L IC IL CL ICL

Terms 11,065 5,866 1,565 12,735 11,549 6,283 13,033

Uses 326,417 144,162 13,357 470,579 339,774 157,519 483,936

Docs 11,348 10,781 2,352 11,348 11,348 10,853 11,348

(a) ArgoUML

Metric I C L IC IL CL ICL

Terms 8,081 3,725 2,411 9,476 9,426 4,969 10,500

Uses 223,638 44,780 23,643 268,418 247,281 68,423 292,061

Docs 5,323 2,151 1,760 5,323 5,323 2,983 5,323

(b) JabRef

Metric I C L IC IL CL ICL

Terms 8,749 4,162 1,714 9,861 9,159 4,788 10,150

Uses 259,082 59,208 13,842 318,290 272,924 73,050 332,132

Docs 6,549 4,311 1,519 6,550 6,549 4,737 6,550

(c) jEdit

Metric I C L IC IL CL ICL

Terms 10,491 4,552 1,624 11,943 11,222 5,289 12,556

Uses 273,507 122,604 7,932 396,111 281,439 130,536 404,043

Docs 8,811 4,393 923 8,811 8,811 4,624 8,811

(d) muCommander

Metric I C L IC IL CL ICL

Terms 11,591 3,210 1,309 12,514 11,988 3,724 12,818

Uses 396,570 33,553 16,810 430,123 413,380 50,363 446,933

Docs 9,067 2,348 1,217 9,067 9,067 3,117 9,067

(e) Mylyn

Table 3.5: Corpora Size Metrics

51

Metric I C L IC IL CL ICL

Terms 5,448 2,606 1,192 6,521 5,713 3,009 6,705

Uses 128,472 29,688 6,017 158,160 134,489 35,705 164,177

Docs 2,565 1,235 522 2,565 2,565 1,434 2,565

(f) Rhino

Table 3.5: Corpora Size Metrics

maximum, median, and the percentage of features for which the FLT failed, a phenomenon de-

scribed in the next paragraph. The FLT fails only in the second part of the case study, in which we

study different text extractor configurations, and in the fourth part of the case study, in which we

study factor interactions.

For each feature/configuration pair, the FLT assigns a rank in the range [1,n], where n is

the number of methods, to each document in the corpus. That is, the range of the effectiveness

measure is [1,n]. However, for some configurations the number of non-empty documents, m, is

less than n. In such a case, the rank assigned to each empty document is implementation defined

— a valid implementation may assign an empty document (which may represent a method in the

gold set) any rank in the range [m+ 1,n]. Thus, in such cases, an effectiveness measure in the

range [m+ 1,n] is meaningless because it is not based on the similarity between the query (i.e.,

description of the feature) and the document. For a system/configuration pair, if the effectiveness

measure for a feature is in the range [m+ 1,n] then we consider the FLT to have failed and is

reported.

In our initial data analysis, we use the Kruskal-Wallis test, a non-parametric test similar

to the (parametric) one-way ANOVA test. If a Kruskal-Wallis test reveals a significant effect, a

post-hoc test is conducted using pairwise Mann-Whitney tests with Holm correction. Further, if

52

a Mann-Whitney test reveals a significant difference in accuracy between two configurations, we

compute the effect size (r = Z/
√

N, where N is the total number of samples). We use the following

(standard) interpretations of the effect size, r: negligible for |r| < 0.1, small for 0.1 ≤ |r| < 0.3,

medium for 0.3≤ |r|< 0.5, and large for |r| ≥ 0.5.

3.2 Results

This section reports the results for each part of our case study.

3.2.1 Part 1: Testing for Interactions among Factors

Table 3.6 lists the results of a factorial ANOVA applied to the effectiveness measures for the

243 configurations applied to 618 features. We list all main effects but only statistically significant

interaction effects. Four of the five factors have significant main effects, which is consistent with

the results of Parts 2-4 of the case study. Only α does not have a significant main effect. There are

four significant two-way interactions: (1) Text and K, (2) K and α , (3) Text and β , and (4) α and

β . We anticipated the first and fourth interactions and accounted for them in the designs of Parts

3 and 4 of the case study. Further, the second and fourth interactions are inherent in LDA [Blei

et al., 2003]. Though there is an interaction between Text and β , any adjustment must be to the β

parameter. This is because ICL is the only value of Text for which there is good performance with

no failures (see Part 3 of the case study). There is one significant three-way interaction, between K,

α , and β . Again, this interaction is inherent in LDA. There are no significant four-way or five-way

interactions.

3.2.2 Part 2: Configuring the Query

This subsection presents a statistical analysis of the results and then offers a discussion of

the results.

53

Table 3.6: Results of a factorial ANOVA.

Factor F value p value

Query 79.3594 < 0.001

Text 57.6865 < 0.001

K 22.7080 < 0.001

α 2.8419 0.06

β 16.0175 < 0.001

Text : K 3.2958 0.01

K : α 3.4374 < 0.01

Text : β 26.8548 < 0.001

α : β 26.7096 < 0.001

K : α : β 1.9650 < 0.05

3.2.2.1 Statistical analysis

Figure 3.1 illustrates box plots that represent statistics describing the effectiveness mea-

sures for the test data. Recall that a small effectiveness measure is better than a larger one (i.e.,

rank 1 is better than rank 1,000). Several of the maximum effectiveness measures are beyond the

scales of the diagrams. However, we chose the scales to highlight the (small) differences between

the medians. Further, we omit outliers for readability.

The box plots show that there is no consistent pattern across all systems, except that for

each system there is relatively little difference between the medians of the three configurations.

Description generally has the worst performance, though for ArgoUML and Rhino, the medians

for Description are smaller (better) than those of Title. Similarly, Combined generally has the best

performance, though for JabRef the median for Combined is larger (worse) than that of Title and

for jEdit the median for Combined is equal to that of Title.

For each system we conducted a Kruskal-Wallis test to determine whether the Query factor

54

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

1000

2000

3000

4000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

(a) ArgoUML

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

1000

2000

3000

4000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

(b) JabRef

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

1000

2000

3000

4000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

(c) jEdit

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

1000

2000

3000

4000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

(d) muCommander

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

1000

2000

3000

4000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

(e) Mylyn

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

1000

2000

3000

4000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

(f) Rhino

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

1000

2000

3000

4000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

0

500

1000

1500

2000

Title Desc Comb

(g) ALL

Figure 3.1: The effectiveness measure for three configurations (Title, Description, and Combined)
of the LDA-based FLT applied to 91 ArgoUML features, 38 JabRef features, 149 jEdit features,
90 muCommander features, 93 Mylyn features, 157 Rhino features, and all 618 features.

has a significant effect on the accuracy of the LDA-based FLT. The test revealed a significant

effect only for ArgoUML (χ2(2) = 11.74, p < 0.003), and a post-hoc test for ArgoUML using

Mann-Whitney tests with Holm correction showed small differences between Description and

55

Title (p < 0.008, |r| = 0.20) and between Combined and Title (p < 0.002, |r| = 0.24). Based on

our statistical results, for ArgoUML we can reject the null hypotheses which states that Description

and Combined do not significantly affect the accuracy of the LDA-based FLT compared to Title,

and we can instead accept the corresponding alternative hypotheses. However, the effect sizes are

small in practice.

We also conducted a Kruskal-Wallis test on all 618 features, and the test revealed a sig-

nificant effect (χ2(2) = 7.67, p < 0.03). The post-hoc test using Mann-Whitney tests with Holm

correction showed the negligible difference between Combined and Title (p < 0.006, |r| = 0.08).

Based on our statistical results, when the data from all six subject systems are considered together,

we can reject the null hypothesis which states that Combined does not significantly affect the ac-

curacy of the LDA based FLT compared to Title, and we can instead accept the corresponding

alternative hypothesis. However, the effect size is negligible in practice.

Across all systems, Combined outperforms Title, and though we did not find a statistically

significant relationship between them, Title generally outperforms Description. This is an inter-

esting finding, because it indicates that length alone does not explain the effectiveness of a query.

That is, if shorter queries provided the best performance, we would expect Title to outperform both

Description and Combined. Similarly, if longer queries provided the best performance, we would

expect both Description and Combined to outperform Title. Instead, the results indicate that Title

and Description complement each other, as their combination outperforms either of them in iso-

lation. Based on the results of this part of our study, we recommend using Combined (i.e., the

combination of the title and the description) when automatically formulating a query string for

LDA-based feature location.

56

3.2.3 Part 3: Configuring the Text Extractor and K

This subsection presents a statistical analysis of the results and provides a discussion of the

results.

3.2.3.1 Statistical analysis

Table 3.7 lists statistics describing the effectiveness measures for the 28 configurations

applied to all 618 features. In particular, for each configuration we list the minimum (best) rank,

the maximum (worst) rank, the median rank, and the percentage of times that the configuration

failed (see Section 3.1.8). In Table 3.7, all of a configuration’s failures were included in the data

and were assigned a rank equal to the number of methods in the particular system. For example,

a failure for ArgoUML was assigned the rank 11,348 (the number of methods in ArgoUML),

whereas a failure for Mylyn was assigned the rank 9,067 (the number of methods in Mylyn). No

configuration that includes identifiers fails, whereas configurations that exclude identifiers fail from

5% to 28% of the time. Specifically, the CL configurations fail only about 5% of the time (for 30

of the 618 features), whereas the L configurations fail about 28% of the time (for 172 of the 618

features).

Table 3.7 highlights a surprising result. Configurations 8, 23 and 24 — (C,200), (CL,150)

and (CL,200), respectively — have the lowest median ranks among the 28 configurations, even

though these configurations each fail 5% to 8% of the time and are penalized harshly for each

failure. The configuration with the lowest median rank and no failures is configuration 28 —

(ICL,200) — with a median rank of 32.5. We conclude that failures may be an acceptable trade-off

for the concomitant gain in accuracy, particularly if the LDA-based FLT is to be combined with

another static or dynamic analysis (to form a hybrid technique).

57

ID (Text,K) Min Max Median % Failed

1 (I,75) 1 10,206 70.5 0

2 (I,100) 1 10,151 70 0

3 (I,150) 1 10,152 57.5 0

4 (I,200) 1 10,141 54 0

5 (C,75) 1 9,101 58 8

6 (C,100) 1 8,948 38 8

7 (C,150) 1 10,093 37 8

8 (C,200) 1 10,159 31 8

9 (L,75) 1 11,348 145.5 28

10 (L,100) 1 11,348 122 28

11 (L,150) 1 11,348 133 28

12 (L,200) 1 11,348 138.5 28

13 (IC,75) 1 11,090 57 0

14 (IC,100) 1 11,076 48.5 0

15 (IC,150) 1 11,154 42.5 0

16 (IC,200) 1 10,884 46 0

17 (IL,75) 1 10,537 69 0

18 (IL,100) 1 10,547 60.5 0

19 (IL,150) 1 10,277 43 0

20 (IL,200) 1 10,332 52 0

21 (CL,75) 1 9,469 49 5

22 (CL,100) 1 10,244 34 5

23 (CL,150) 1 9,826 31 5

24 (CL,200) 1 10,481 29.5 5

25 (ICL,75) 1 10,673 48.5 0

26 (ICL,100) 1 10,632 51 0

27 (ICL,150) 1 10,719 37 0

28 (ICL,200) 1 10,772 32.5 0

Table 3.7: The effectiveness measure for 28 configurations (Text/K pairs) of the LDA-based FLT
applied to all 618 features.

58

We conducted a Kruskal-Wallis test on all 618 features. In the test, all of a configuration’s

failures were included in the data and were assigned a rank equal to the number of methods in the

particular system. Thus, this test skewed the results in favor of the configurations with the fewest

failures.

The Kruskal-Wallis test (failures assigned maximum rank) revealed a significant effect

(χ2(27) = 215.37, p < 0.001). Based on the post-hoc test using Mann-Whitney tests with Holm

correction, we can reject 89 (of 378) null hypotheses. Effect sizes range from negligible to small.

In particular, the largest effect size (between configuration 9 and 24) is |r|= 0.20.

3.2.4 Part 4: Configuring α and β

This subsection presents a statistical analysis of the results and provides a discussion of the

results.

3.2.4.1 Statistical analysis

Figure 3.2 illustrates box plots that represent statistics describing the effectiveness mea-

sures for the 36 configurations applied to all 618 features.

Among each group of six configurations that share the same α value, the configuration with

β = 0.01 (the smallest value for β) performs the worst. That is, configurations 1, 7, 13, 19, 25, and

31 perform worst in their respective groups. Similarly, among each group of six configurations that

share the same α value, the configuration with β = 0.1 (the second smallest value for β) performs

either second- or third-worst. That is, configurations 2, 8, 14, 20, 26, and 32 perform second- or

third-worst in their respective groups.

For each system, we conducted a Kruskal-Wallis test to determine whether the α and β

factors together have a significant effect on the accuracy of the LDA-based FLT. The test revealed

significant effects for JabRef (χ2(35) = 54.06, p < 0.03), jEdit (χ2(35) = 76.13, p < 0.001), mu-

59

Table 3.8: Key for Section 3.2.4. Each table entry provides an index for an α/β pair.

1 2 3 4 5 6

(0.01,0.01) (0.01,0.10) (0.01,0.25) (0.01,0.50) (0.01,0.75) (0.01,1.00)

7 8 9 10 11 12

(0.10,0.01) (0.10,0.10) (0.10,0.25) (0.10,0.50) (0.10,0.75) (0.10,1.00)

13 14 15 16 17 18

(0.25,0.01) (0.25,0.10) (0.25,0.25) (0.25,0.50) (0.25,0.75) (0.25,1.00)

19 20 21 22 23 24

(0.50,0.01) (0.50,0.10) (0.50,0.25) (0.50,0.50) (0.50,0.75) (0.50,1.00)

25 26 27 28 29 30

(0.75,0.01) (0.75,0.10) (0.75,0.25) (0.75,0.50) (0.75,0.75) (0.75,1.00)

31 32 33 34 35 36

(1.00,0.01) (1.00,0.10) (1.00,0.25) (1.00,0.50) (1.00,0.75) (1.00,1.00)

Commander (χ2(35) = 67.46, p < 0.001), and Mylyn (χ2(35) = 128.18, p < 0.001). For JabRef

and muCommander, post-hoc tests using Mann-Whitney tests with Holm correction showed no

significant differences between any two configurations (α/β pairs). Based on an analogous post-

hoc test for jEdit, we can reject only three of the 630 null hypotheses, and similarly, based on the

post-hoc test for Mylyn, we can reject only 30 null hypotheses (or about 5% of the 630 null

hypotheses). Of the 30 rejected null hypotheses for Mylyn, all pertain to configurations 1, 7, and

13, which share the common value 0.01 for β .

We also conducted a Kruskal-Wallis test on all 618 features, and the test revealed a signif-

icant effect (χ2(35) = 250.21, p < 0.001). Based on the post-hoc test using Mann-Whitney tests

with Holm correction, we can reject 95 (of 630) null hypotheses. However, effect sizes range

from negligible to small. In particular, the largest effect size (between configurations 7 and 34) is

60

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Figure 3.2: The effectiveness measure for 36 configurations (α/β pairs) of the LDA-based FLT
applied to all 618 features.

|r|= 0.21. The stability of the medians across the 36 configurations demonstrates the small effect

sizes.

3.2.5 Part 5: Applying the Lessons Learned

This subsection describes the results of applying the lessons learned and offers recommen-

dations for configuring the LDA-based FLT.

3.2.5.1 Results of Applying the Lessons Learned

In this section we apply the lessons learned from Parts 1–4 of the case study. In particular,

the lessons learned are used to predict an improved configuration for each of four subject systems

— ArgoUML, JabRef, jEdit, and Rhino— when compared to two generic configurations informed

by heuristics from the literature. We chose ArgoUML because it is the largest of our subject

systems, Rhino because it is the smallest, and JabRef and jEdit because they are of similar size and

have similar source line to comment line ratios.

61

Table 3.9 repeats the predicted configurations and the heuristic configurations. We first

review the heuristic configurations. Both Heuristic1 and Heuristic2 have the value Combined for

the Query parameter. To the best of our knowledge, Lukins et al. [2010] specify the only (manual)

query formulation process for TR-based feature location. However, to avoid bias in our study,

we automatically formulate queries from issue reports. Thus, we select Combined, because it

performed the best in Part 2 of our study. Both Heuristic1 and Heuristic2 have the value ICL for

the Text parameter. We select ICL because most of the previous studies of text retrieval based

feature location use ICL. Both Heuristic1 and Heuristic2 have the value 200 for the K parameter.

We select 200 topics because our systems are of medium size. We use the heuristic 50/K and set

α to 0.25 for both Heuristic1 and Heuristic2. Finally, Heuristic1 has the value 0.01 for β , and

Heuristic2 has the value 0.1 for β .

Table 3.9: Case study design: Part 5.

Configuration Query, Text, K, α , β

PredictedArgoUML Combined, ICL, 500, 1.0, 0.1

Predicted jEdit Combined, ICL, 400, 1.0, 0.25

PredictedJabRe f Combined, ICL, 400, 1.0, 0.25

PredictedRhino Combined, ICL, 300, 1.0, 0.5

Heuristic1 Combined, ICL, 200, 0.25, 0.01

Heuristic2 Combined, ICL, 200, 0.25, 0.1

All predicted configurations have the value Combined for Query, because Combined per-

formed the best in Part 2 of our study. Further, all predicted configurations have the value ICL for

Text. We select ICL because in Part 3 of our study, ICL performed the best of the configurations

that did not have any failures. Similarly, we select the K values based on the results of Part 3.

Specifically, in Part 3 we observed that 200 was too small a value for K when paired with ICL for

62

Text. Indeed, we found that performance increased when setting K to 300 instead. Thus, we set

K = 300 for Rhino, the smallest of our systems. We conjecture that further increasing the value

of K for our larger systems can further increase performance. Thus, we set K = 400 for jEdit and

JabRef, and we set K = 500 for ArgoUML, the largest of our systems. We set α = 1.0 for all

systems, because that value resulted in the best performance in Part 4 of our study. Finally, we set

β for each system based on the value of K. We select β = 0.5 for Rhino (K = 300), because that

is the β value that resulted in the best performance in Part 4. For the remaining systems, we use a

β value that is inversely proportional to the value of K.

Figure 3.3 illustrates box plots that represent statistics describing the effectiveness mea-

sures for the test data. The box plots show that our predicted configurations outperform the

heuristic configurations in all cases. Moreover, the predicted configurations significantly affect

the accuracy of the LDA based FLT compared to the heuristic configurations.

Recommendations

Based on our results, we have a number of recommendations for configuring the LDA

based FLT. First, we define system sizes. We consider a small system to be one with less than

100 KLOC, less than 10 K unique terms, and less than 200 K term usages, whereas we consider

a small-medium system to be one with between 100 KLOC to 200 KLOC, approximately 10 K

unique terms, and between 200 K to 500 K term usages. We consider a medium-large system to be

one with greater than 200 KLOC, greater than 10 K unique terms, and approximately 500 K term

usages, and finally, we consider a large system to be one with greater than 1,000 KLOC. Based on

our results, the following are our recommendations:

1. Set K = 300 for small systems, set K = 400 for small-medium systems, and set K = 500 for

63

0

20

40

60

80

100

120

140

160

180

200

Predicted Heuristic_1 Heuristic_2

(a) ArgoUML

0

20

40

60

80

100

120

140

160

180

200

Predicted Heuristic_1 Heuristic_2

(b) JabRef

0

20

40

60

80

100

120

140

160

180

200

Predicted Heuristic_1 Heuristic_2

(c) jEdit

0

20

40

60

80

100

120

140

160

180

200

Predicted Heuristic_1 Heuristic_2

(d) Rhino

Figure 3.3: The effectiveness measure for three configurations (Predicted, Heuristic1, and
Heuristic2) of the LDA-based FLT applied to 91 ArgoUML features, 38 JabRef features, 149
jEdit features, and 157 Rhino features.

64

medium-large and large systems. Our recommendation regarding large systems is based on

prior experience with Eclipse and Mozilla [Lukins et al., 2008, 2010].

2. Set α = 1.0 for all systems.

3. Set β for each system based on the value of K. Set β = 0.5 for small systems, and for larger

systems, set β to be inversely proportional to K. For example, set β = 0.25 for small-medium

systems, and set β = 0.1 for medium-large and large systems.

3.3 Discussion of Results

This section discusses the results of our study.

3.3.1 Part 2: Configuring the Query

Our statistical analysis revealed that the Query factor has a significant effect on the accuracy

of the LDA-based FLT.

Figure 3.1g shows that the three queries produce similar results overall. However, it does

not help us to understand the relative performance of the different queries on the same feature.

That is, for a given feature, we cannot determine from the figure whether the three queries provide

similar performance. Therefore, we investigated how often all three queries return the same effec-

tiveness measure and found that this happened only 3% of the time (20 of 618 times). We also

found that for 17 of those 20 features, all three queries returned 1, the best possible effectiveness

measure. We then investigated how often all three queries return effectiveness measures within 10

ranks of each other (17% of the time or 102 of 618 times), within 50 ranks of each other (32% of

the time or 198 of 618 times), and within 100 ranks of each other (40% of the time or 248 of 618

times). Note that at least one of the queries performs noticeably worse than the others 83% of the

time.

65

In the following paragraphs, we highlight a number of features and discuss the performance

of the LDA-based FLT given different queries for each of these features.

Consider feature 401910 for ArgoUML. The three queries are shown in Table 3.10. For

each of the three queries, the LDA-based FLT returned 1. In particular, each of the queries re-

turned Pro jectBrowser.loadPro ject, a method from the gold set, first in the list of results. Upon

inspection of the queries, we note that the Title and the Description are of similar length and that

four of the five words in Title also appear in Description. Thus, it is probably not surprising that

the queries performed similarly.

Next, consider feature 284244411 for jEdit. Table 3.11 lists the three queries. For each of

the three queries, the LDA-based FLT returned 1. However, each of the queries returned a different

method (from the gold set) first in the list of results. Moreover, the three different methods come

from two distinct classes — HyperSearchRequest and HyperSearchResults. Upon inspection

of the queries, we note that the Title and the Description have noticeably different lengths. In

particular, Title has 7 words, whereas Description has 51 words (which include 5 of the 7 words

from Title). This feature is an example of a finding described in the previous section. In particular,

this feature demostrates that length alone does not explain the effectiveness of a query.

Consider feature 31112 for muCommander. The three queries are shown in Table 3.12. For

the Title query the LDA-based FLT returned 5, for the Description query it returned 3, and for

the Combined query it returned 1. Next consider feature 35231913 for Rhino. Table 3.13 lists

the three queries. For the Title query the LDA based FLT returned 62, for the Description query

it returned 3, and for the Combined query it returned 1. These features are examples of another
10 http://argouml.tigris.org/issues/show_bug.cgi?id=4019
11 http://sf.net/tracker/?func=detail&aid=2842444&group_id=588&atid=300588
12 http://trac.mucommander.com/ticket/311
13 https://bugzilla.mozilla.org/show_bug.cgi?id=352319

66

http://argouml.tigris.org/issues/show_bug.cgi?id=4019
http://sf.net/tracker/?func=detail&aid=2842444&group_id=588&atid=300588
http://trac.mucommander.com/ticket/311
https://bugzilla.mozilla.org/show_bug.cgi?id=352319

finding that we described in the previous section. In particular, these features demonstrate that

Title and Description can complement each other to provide improved performance as Combined.

This observation is consistent with the way LDA models documents — unique or rare (within the

corpus) word co-occurrences are key to differentiating documents from the corpus.

Table 3.10: Queries for ArgoUML, feature 4019.

Query Contents

Title save project dialog rememb load

Description save project dialog assum save filenam last project save project load

Combined Title+Description

Table 3.11: Queries for jEdit, feature 2842444.

Query Contents

Title manual stop hypersearch hyper search oper request

Description maximum result option prompt stop continu hypersearch hyper search nice
manual stop button purpos patch stop button ad us default set icon hypersearch
hyper search pane highlight multi result button disabl search current activ enabl
otherwis stop basic mimick max result mechan except temporari properti indic
stop button click handl fine

Combined Title+Description

Table 3.12: Queries for muCommander, feature 311.

Query Contents

Title free space indic flip

Description free space indic look compar what normal normal bar amount space drive fill
bar fill drive cool bar gradual chang color space drive orang color red color

Combined Title+Description

We also investigated how often all three queries returned effectiveness measures greater

than 100 and found that this happened 28% of the time (174 of 618 times). The most common

67

Table 3.13: Queries for Rhino, feature 352319.

Query Contents

Title cant restart continu catch block

Description attempt restart continu captur catch block except thrown function enteracti-
vationfunct enter activ function scriptruntim script runtim java line nativecal
nativ call call nativecal nativ call activ invok interpret java line scriptruntim
script runtim enteractivationfunct enter activ function frame scope throw frame
scope nativewith nativ creat catch block instead nativecal nativ call attach file
testcontinu test continu java testcontinu test continu jointli reproduc note wont
root caus run itll trigger interpret except handler thatll run npe continu stack
wasnt restor properli root caus guess rewrit interpret java line doesnt specifi
frame scope instead walk parent chain nativecal nativ call help chang signatur
scriptruntim script runtim enteractivationfunct enter activ function accept na-
tivecal nativ call instead gener scriptabl help enforc practic

Combined Title+Description

causes of such performance include queries that contain misleading words and gold set methods

that are short or contain only words that are common in the corpus. For example, consider method

BugzillaAttachmentHandler.uploadAttachment, which is listed in Figure 3.4. This method is

in the gold set for feature 15125714 for Mylyn. Indeed, this method is the only member of

the gold set for feature 151257. The LDA-based FLT performs poorly for this feature, because

BugzillaAttachmentHandler.uploadAttachment is relatively short and because its words often co-

occur in the corpus.

3.3.2 Part 3: Configuring the Text Extractor and K

Our statistical analysis revealed that the Text and K factors have a significant effect on the

accuracy of the LDA based FLT.

The results in Table 3.7 demonstrate that comments and literals play an important role

in the performance of the LDA-based FLT. That is, using identifiers only (I) for the LDA based

14 https://bugs.eclipse.org/bugs/show_bug.cgi?id=151257

68

https://bugs.eclipse.org/bugs/show_bug.cgi?id=151257

@Override
public void uploadAttachment(TaskRepository repository, AbstractTask
task, ITaskAttachment attachment, String comment, IProgressMonitor
monitor) throws CoreException {

try {
String bugId = task.getTaskId();
BugzillaClient client = connector.getClientManager()

.getClient(repository);
client.postAttachment(bugId, comment, attachment);

} catch (IOException e) {
throw new CoreException(new BugzillaStatus(Status.ERROR,

BugzillaCorePlugin.PLUGIN_ID,
RepositoryStatus.ERROR_IO, repository.getUrl(), e));

}
}

Figure 3.4: Source code for Mylyn method BugzillaAttachmentHandler.uploadAttachment.

FLT would result in reduced performance. Comments often provide a rich set of terms related to

the problem domain, and literals often map directly to error messages or other aspects of the user

interface that are mentioned in issue reports. On the other hand, identifiers often reflect the solution

domain.

The configurations that provide the best performance are those where Text is C, CL, or ICL

and where K is 200. Though (CL,200) provides the best absolute performance, it is subject to a

5% failure rate. Moreover, because the corpora grow substantially when adding identifiers — that

is, when switching from CL to ICL — we tested whether increasing K further (e.g., to 300) would

permit ICL to provide the best performance. Indeed, when we increased K from 200 to 300, ICL

provided the best performance.

3.3.3 Part 4: Configuring α and β

In the statistical sense, the α and β factors have little influence on the accuracy of the LDA-

based FLT. However, like Griffiths and Steyvers [2004], we observe that β has more influence than

α . In addition, in the context of our case study, 0.25 and 0.50 are the β values that provide the

69

best accuracy. Even though the observed effect sizes are relatively small, we find it interesting that

the de facto standard heuristics from the natural language document clustering community are not

optimal in this (source code) context.

3.4 Threats to Validity

Our study has limitations that impact the validity of our findings, as well as our ability to

generalize them. We describe some of these limitations and their impacts.

Threats to conclusion validity concern the degree to which conclusions we reach about

relationships in our data are reasonable. We made no assumption about the distribution of the

effectiveness measures, so we used a non-parametric statistical hypothesis test. Moreover, we used

an adjustment method to control the family-wise error rate of our hypothesis tests. The test results

are consistent with our observations.

Threats to construct validity concern the adequacy of the study procedure with regard to

measurement of the concepts of interest and can arise due to poor measurement design. One such

threat relates to our benchmarks. Specifically, errors in our gold sets would affect the correctness

of our effectiveness measures. To mitigate this threat, we used previously used gold sets [Dit

et al., 2012; Revelle et al., 2010]. The six gold sets were produced by other researchers and made

available to the community.

Threats to internal validity include possible defects in our tool chain and possible errors in

our execution of the study procedure, the presence of which might affect the accuracy of our results

and the conclusions we draw from them. We controlled for these threats by testing our tool chain

and by assessing the quality of our data. Because the same tool chain was applied to all subject

systems, any errors are systematic and are unlikely to affect our results substantially.

Additional threats to internal validity are due to the preprocessing steps we applied to tex-

70

tual information extracted from source code. For example, applying a stemmer can cause terms

with different meanings to be mapped to the same stem, thus causing overfitting of the data. Ap-

plying a more advanced stemmer may mitigate this issue. However, we believe that such a change

is unlikely to affect our results substantially. Other decisions that potentially affect our results are

the choices to split tokens, to retain the original (unsplit) tokens, and to filter stop words.

Another threat to internal validity pertains to our queries, which were obtained directly

from issue report titles and descriptions. It is possible that these titles and descriptions do not

accurately reflect the features of interest. However, four of the subject systems in our study are

used primarily by software developers, who are likely more able than end users to accurately

describe the faulty features. Although we certainly could have obtained better results by tuning the

queries [Lukins et al., 2010; Poshyvanyk et al., 2007], our query formulation process prevented us

from introducing bias.

Threats to external validity concern the extent to which we can generalize our results. The

subjects of our study comprise 618 features in 6 open source Java systems, so we cannot generalize

our results to systems implemented in other languages. However, the systems are from different

domains and have characteristics which are similar to those of systems developed in industry.

3.5 Summary

This chapter presented preliminary work on configuring a LDA-based FLT. LDA is a highly

configurable technique, and consideration must be taken to properly choose the correct α , β , K, as

well as the best query and terms from source code. This preliminary work looked at each of these

factors and the interactions between them. Based on the results of this study, recommendations

were given for different sizes of software systems. The next chapter uses the recommendations

from this work for my configurations.

71

Chapter 4

STRUCTURAL WEIGHTING OF LDA

This chapter considers the problem of structural weighting in LDA. Previous research has

shown [Liu et al., 2007; Poshyvanyk et al., 2007; Revelle et al., 2010; Zhao et al., 2006] that

combining structural and dynamic information with LSI and VSM will improve the results of these

techniques for feature location. Little research has been performed to examine the combination of

such sources with topic modeling. Of the two types of information, structural information fits

uniquely well with TR techniques as both require static information and can be computed without

the need of a running system. For systems where execution is not possible or too time consuming

for an individual feature location task, structural information may be already factored into the topic

model.

Structural information has been combined with TR techniques [Zhao et al., 2006] to im-

prove results in various ways. Typical techniques involve creating the full call graph from a set

of source files. Instead, Bassett and Kraft [Bassett and Kraft, 2013] proposed structural weighting

as a lightweight method for improving the traditional LDA model with some of the information

found in a call graph. Their study compared the accuracy of an LDA-based FLT when increasing

the weighting of terms derived from method names or methods calls. Their hypothesis was that a

method’s name contains terms that describe its behavior and purpose but that those terms are not

necessarily common throughout the method’s document. Furthermore, increasing weights of terms

in method calls might be considered a lightweight alternative to adding call graph information.

72

Term weighting is a preprocessing transformation in which weights are applied to terms to

adjust their importance within a document or corpus. Several different weighting schemes exist.

As an example, tf-idf places increased importance on terms that appear frequently in a particular

document, but appear infrequently throughout the entire corpus. In the tf-idf model, importance is

based on (normalized) term counts rather than on the role or meaning of a particular term.

The work by Bassett and Kraft was a first step in producing a general structural weighting

scheme for LDA. The importance of different weighting schemes seems sensible in that unlike

natural language documents, it is believed that source code elements will only contain a small

number of dominant topics. Increasing the weight of important terms that may be less frequent

in the source element’s document, should give a better topic distribution around those dominant

topics for that source element. However, work performed in the original study was preliminary.

Their study only investigated method names and method calls, and did not give any insights into

how to best define a weighting scheme for a new software system. My research increases the

number of weighting configurations under consideration from 16 in the original study to 1,024.

My research considers a broader scope of variables that has potential to have a significant effect

on the results of a TR-based FLT. Namely, my research focuses on leading comments, method

names, parameters, body comments, and local variables. I have carefully identified these term sets

(referred to as lexicons from henceforth) based on prior experience and understanding of how each

lexicon may play a role in the model. Leading comments often contain information pertaining to

the main responsibility of a method, but this responsibility may be less evident from the source

element’s identifiers. Parameters often describe the initial state of a method and could contain

additional information about the method’s responsibility that is complementary to the information

found in a method name. Body comments (i.e., comments found within a method body) are written

73

by the developers to provide explanations of particular statements that may not be clear from the

source code identifiers alone. It is possible for local variables to reflect information that is similar

to the parameters and may be complementary to the other lexicons selected.

My approach examines different weighting configurations based on multiple factors. First,

each lexicon is observed to understand how it affects the performance of an LDA-based feature

location technique when only the terms present within that lexicon are weighted. Second, I con-

sider the top configurations for each system and look for any main effects caused by weighting the

different lexicons. These results are compared to the metrics discussed in Chapter 1, to try to give

an explanation of the results. Finally, a technique based on genetic algorithms is presented that

allows developers to learn the best configuration for a software system over time. This technique

has the benefit of constantly improving the configuration until an optimal solution is discovered.

I use a large benchmark to perform my analysis. The benchmark contains over 350 features and

bugs from four open source Java systems. For each of the five lexicons previously listed, I use

4 different levels of weighting, resulting in 1024 different weighting schemes for each system.

The final section of this chapter will use Eclipse as a large system with an unknown weighting

configuration.

The main contributions of this chapter are an expansion of the structural term weighting

scheme presented by Bassett and Kraft [Bassett and Kraft, 2013], the results of the empirical study,

and the knowledge that is derived from the results.

The remainder of the chapter is organized as follows. Section 4.1 presents my empirical

study, Section 4.2 describes the results of this study, and Section 4.4 introduces a basic training

technique for weighting configurations and the results of my training technique on Eclipse. Finally,

Section 4.5 presents a summary of the contributions and describes future work.

74

4.1 Study Design

An empirical study was conducted to evaluate the effects of structural term weighting on

terms derived from comments, method signatures, and local variables on the accuracy of a LDA-

based FLT. This work is a partial replication of the work presented in Bassett and Kraft [Bassett

and Kraft, 2013] as well as an expansion. For this reason, I adopt similar notation and scaling

factors used in this earlier study. Namely, I use scaling factors that double with each increase up to

a maximum of 8. By doubling the weight, the number of configurations requiring testing reduces

from 32,000 to a more feasible 1,024 configurations for the study. Second, by doubling each time

instead of increasing linearly, changes in the performance should be more evident.

This section describes the design of the empirical study as well as a discussion of the threats

to the validity of the results.

4.1.1 Definition and Context

The primary goal of the study is to understand the effects structural weighting schemes for

terms derived from comments, the method signature, and local variables have on the accuracy of a

LDA-based FLT.

In this study, I computed 1,024 separate topic models for each of four open source Java

software systems, resulting in 4,096 separate topic models. Each topic model corresponds to a

different structural weighting scheme-software system pair. Over the four software systems, I

compared the accuracy of a FLT for 372 features and bugs.

For the weighting schemes, I considered terms derived from leading comments (i.e., those

preceding the method), method signature (method names and parameters), body comments (i.e.,

those in the method body), and local variables (i.e., identifiers only visible in the current method).

75

My choices are based off of prior research in the area of source code summarization [Eddy, Robin-

son, Kraft, and Carver, 2013; Haiduc, Aponte, and Marcus, 2010]. In these studies, researchers

asked human subjects to rank automatically generated summaries of source code elements and to

identify any terms that the subjects found relevant to the element. Subjects identified summaries

that contained leading terms (i.e., terms contained in the method signature and leading comments)

as those that produced the more descriptive summaries. Their reasoning was that terms from these

sources often described the intent and behavior of the element better than other related terms.

Therefore, I hypothesize that by raising such terms, there will be an improvement in the perfor-

mance of the LDA-based technique as the system will be able to more accurately identify the dom-

inant topics belonging to the source document. In addition, I believe that comments in a method’s

body may help to describe the individual functions in the methods, and that local variables are

complementary to parameters and the other lexicons included in the study.

As in Bassett and Kraft [Bassett and Kraft, 2013], I multiplied the number of terms orig-

inating from each of these groups by a scaling factor. For comparisons, I used the same scaling

factors presented in Bassett and Kraft’s paper: 1, 2, 4, and 8. These scaling factors multiply the

raw term counts utilized by LDA. I use similar notation to that used by Basset and Kraft. The

notation is:

C(LC,M,P,BC,LV)

where M is the method names scaling factor, LC is the leading comments scaling factor, P is the

parameters scaling factor, BC is the body comments scaling factor, and LV is the local variables

scaling factor. I allow each scaling factor to vary independently, resulting in a total of 1,024

configurations. Configuration C(1,1,1,1,1) establishes the baseline (uniform term weighting).

76

4.1.1.1 Subject Software Systems

Four open source Java software systems were used as the subject software systems in the

study — ArgoUML1, JabRef2, jEdit3, and muCommander4. These systems represent various size

software systems and application domains. They are comparable to systems developed in industry,

and been used in previous studies that I have worked on. For each of these subject systems,

benchmarks are available online.

A description of the subject systems and versions is described in Table 4.1. For each of

the subject systems, I give the source lines of code (SLOC), the comment lines of code (CLOC),

the number of methods in the Java source code, and the number of features and bugs used in this

study.

The domains of the systems are as follows: ArgoUML is a UML modeling tool with support

for all UML 1.4 diagrams. JabRef is a cross-platform bibliography reference management tool.

jEdit is a configurable and customizable text editor for programmers. muCommander is a cross-

platform virtual file browser.

Table 4.1: Subject systems

System Version SLOC CLOC Methods Features

ArgoUML 0.22 117,649 104,037 12,542 91

JabRef 2.6 74,350 25,927 5,323 39

jEdit 4.3 98,460 42,589 7,305 150

muCommander 0.8.5 76,649 68,367 8,811 92

Total 367,108 240,920 33,981 372

1 http://argouml.tigris.org
2 http://jabref.sourceforge.net
3 http://www.jedit.org
4 http://www.mucommander.com

77

http://argouml.tigris.org
http://jabref.sourceforge.net
http://www.jedit.org
http://www.mucommander.com

4.1.1.2 Benchmarks

I utilized the SEMERU5 benchmarks for my study. This is a set of benchmarks created

by other researchers and used in a number of studies in the feature location community. Each

benchmark contains a set of features and a “gold set” [Dit, Guerrouj, Poshyvanyk, and Antoniol,

2011].

Each feature in the benchmarks corresponds to an issue reported via an issue tracking sys-

tem for the software system. An issue report is either a request to change an unwanted functionality

or a request to add a new functionality to the code. For the purposes of this study, I use both types

and do not distinguish between the two. Queries are drawn from these issue reports by combining

the title with the description [Dit et al., 2011]. These queries reduce bias by mimicking queries

that a developer might formulate without intimate knowledge of the system.

A gold set corresponds to the set of methods that were believed to have been changed

in order to resolve the issue report. These methods were obtained by using the diffs stored in

Subversion and extracting the set of methods that were changed when the feature was resolved.

Table 4.2 gives a summary of the number of methods found in each gold set used in this study, as

well as descriptive statistics of the methods.

Table 4.2: Numbers of methods in the gold sets.

System Min Median Mean Max StdDev Total

ArgoUML 1 3 7.70 72 13.11 701

JabRef 1 4 7.18 33 8.78 280

jEdit 1 3 4.99 41 5.58 748

muCommander 1 3 7.80 104 16.06 718

5 http://www.cs.wm.edu/semeru/data/benchmarks

78

http://www.cs.wm.edu/semeru/data/benchmarks

Of the available benchmarks in SEMERU, I used 372 features and four open source Java

systems.

4.1.1.3 Effectiveness Measure

The goal of automatic feature location is to identify a single method from which a devel-

oper can begin a change [Poshyvanyk et al., 2007]. Because static FLTs rank all methods in a

system, recall and precision are not useful accuracy measures in this context. Furthermore, the

objective of feature location differs from a traditional search because the task is only concerned

with identifying an initial starting point. Other methods are identified by using the starting point

to predict changes during impact analysis. In the context of static FLTs, recall is always 1.0, and

precision is always 1/n (where n is the number of methods). Thus, the rank of the first relevant

method is used instead [Liu et al., 2007; Lukins et al., 2008, 2010; Poshyvanyk et al., 2007; Rev-

elle et al., 2010]. This measure, which [Poshyvanyk et al., 2007] term the ”effectiveness measure”

for feature location, indicates the number of entities that the developer must examine (if following

the ranking) before reaching a method that actually belongs to the feature. That is, the measure

quantifies the number of false positives that a developer must examine.

The effectiveness measure gives a way to interpret the effectiveness of a weighting con-

figuration on a single feature. To evaluate the effectiveness of a weighting configuration for the

FLT across all queries for that subject system, I use the mean reciprical rank. The mean reciprocal

rank (MRR) of the FLT is given by the average of the reciprocal of the effectiveness measure given

some sample set of queries [Voorhees, 1999]:

MRR =
1
|Q|

|Q|

∑
i=1

1
ri

(4.1)

79

where Q is the set of queries and ri is the effectiveness measure for some query Qi. The more

effective the technique, the higher the MRR should be. When determining the top configurations

for each system, I use the MRR, however, because MRR does not give any information to the

spread of the results, I also show the spread of the effectiveness measures.

4.1.1.4 Setting

To build my corpus, I use a text extractor and preprocessor implemented in Java 7 using an

open source Java 1.5 grammar and ANTLR v3. The text extractor and preprocessor has five steps.

The first step extracts documents from methods and treats inner methods as distinct methods. The

text of the inner method (e.g., a method inside an anonymous class) will only be attributed to that

method, and not the containing method. This step outputs each document as a separate XML file

for further processing. The next step rewrites the separate XML files into a single XML file with

comments preceding methods being folded into the text of that method. This single XML file is

then reread as a corpus for preprocessing. During the preprocessing stage, terms in the corpus are

split, normalized, stemmed, and all stop words are removed. The final step converts the corpus into

a format that can be read by a text retrieval tool (in this case Mallet 6). In this final step, terms are

duplicated according to weights provided by the user and corresponding to the current structural

term weighting configuration under study. I use the term weighting configurations described at the

beginning of this section.

As in Bassett and Kraft, the preprocessor implements the steps described in Figure 1.1

in Chapter 1. Identifiers are filtered from java.lang before splitting tokens on camel case,

underscores, and non-letters. After splitting, the original token is retained [Marcus et al., 2004].

The terms are then normalized to lowercase and then filtered by an English stop word list [Fox,

6 http://mallet.cs.umass.edu/

80

http://mallet.cs.umass.edu/

1992], Java keyword list, and term length (with any terms less than three character being removed).

A Porter stemmer7 is then applied.

I use Mallet to generate the LDA model from the formatted corpus. I use the same model-

ing parameters proposed by Biggers et al. [Biggers, Bocovich, Capshaw, Eddy, Etzkorn, and Kraft,

2012]. For ArgoUML, I use K = 500, α = 1.0, and β = 0.1. For the other three subject systems,

I use K = 400, α = 1.0, and β = 0.25. In addition to these parameters required by LDA, Mallet

also requires a number of iterations for Gibbs Sampling [Casella and George, 1992] (used to ap-

proximate the LDA model). Again, as in the previous study, I use the default value of 1,000. I use

Hellinger distance [Nikulin, 2001] to rank the results of a query comparing the topic distributions

of the model to the inferred distribution from the query.

4.1.2 Research Questions

The focus of the case study is to address the following questions:

1. Does structural weighting of comments, leading terms, and local variables affect the accu-

racy of a LDA-based feature location technique (FLT)?

(a) How does structural weighting of the individual stuctural lexicons affect the accuracy

of a LDA-based FLT?

(b) What are the top configurations for each system and across all systems?

(c) What are the main effects and interactions between the structural lexicons?

2. Can a relationship between the contributions of each structural component’s lexicon and

their weighting factors be found?

7 http://tartarus.org/~martin/PorterStemmer/

81

http://tartarus.org/~martin/PorterStemmer/

Parts (a), (b), and (c), are all questions that help to answer Research Question 1 which

addresses whether different weighting configurations have an effect on the accuracy of an LDA-

based FLT. In order to answer these question, I first consider how weighting the structural lexicons

independently affects a LDA-based FLT.

For Research Question 1(b) I conducted a Friedman test (discussed in Section 4.1.3) to

determine whether a statistically significant effect existed between the top configurations and the

unweighted configuration. If so, I form 55 hypothesis tests corresponding to each pair of weight-

ing configurations in the top ten configurations. The independent variables for these tests are the

weighting configurations with scaling factors (1, 2, 4, 8) and the dependent variables are the effec-

tiveness measures.

For each hypothesis test, I do not presuppose the directionality of the difference between

two configurations. Therefore, each hypothesis test is two-tailed. For each configuration pair, a null

hypothesis is formulated to evaluate whether there is a significant difference when one of the two

configurations is used over the other. If, after testing the null hypothesis, the null hypothesis can

be rejected with a high confidence (α = 0.05), an alternative hypothesis is accepted. Accepting the

alternative hypothesis corresponds to there being a significant difference between the two structural

weighting scheme configurations. These hypotheses are similar to the hypotheses used in the

previous study.

An example null hypothesis:

H0 : C(4,2,4,4,4) =C(2,4,4,4,4)

Configuration C(4,2,4,4,4) does not significantly affect the accuracy of the LDA-based

FLT compared to configuration C(2,4,4,4,4).

82

The corresponding alternative hypothesis:

HA : C(4,2,4,4,4) 6=C(2,4,4,4,4)

Configuration C(4,2,4,4,4) does significantly affect the accuracy of the LDA-based FLT

compared to configuration C(2,4,4,4,4).

The remaining 54 null and alternative hypotheses are analogous.

4.1.3 Data Collection and Analysis

For the results of the FLT, I followed the same data collection process followed by Bassett

and Kraft [Bassett and Kraft, 2013].

For each subject software system, the 1,024 topic models corresponding to the 1,024 differ-

ent weighting scheme configurations were built. All queries were then ran for that system against

each of the trained topic models. I collected the effectiveness measure corresponding to each

query for each configuration. This resulted in a list of effectiveness measures for each query and

configuration pair. This list of effectiveness measures was used as the basis for my analysis.

From this list of effectiveness measure, I computed descriptive statistics for each project

and configuration pair. The descriptive statistics computed include the minimum rank found, the

first quartile, the median, the third quartile, and the maximum rank found. Together, these de-

scriptive statistics describe the spread of the effectiveness measures for that configuration on that

system. I include the descriptive statistics and boxplots displaying the spread of this information

for the independently weighted lexicons, as well as for the top ten configurations for each system

and for all systems overall.

In addition to the descriptive statistics, I also compute the MRRs for each system and

configuration pair using the effectiveness measures on that configuration for the given system. The

83

numbers obtained ranged from 0 to 1 with higher values indicating better results. These numbers

are compared directly to discover trends in the data. The configurations with the highest MRRs

form the top ten best configurations for each system. This was also performed for all systems

combined.

To test my hypotheses in Research Question 1(b), I first conducted a Friedman test to deter-

mine whether a statistically significant effect exists in the data. A Friedman test is a non-parametric

statistical test that detects significant differences in data. It is the non-parametric analog to the one-

way repeated measures ANOVA and is used when distributions of data cannot be assumed to be

normal. The Friedman test was performed across the effectiveness measures. I performed a Fried-

man test for each individual system, as well as the top ten configurations for all four systems

combined. If in any system I found a statistical difference, I performed post-hoc Wilcoxon signed-

rank tests (the non-parametric analog to the t-test) with Holm p-value correction to identify which

pairs of configurations had a statistically significant difference.

In addition to the quantitative comparisons for Research Question 1(b), I also evaluate the

results qualitatively and attempt to give some insight into possible reasons for the results.

As an extension to the qualitative analysis of Research Question 1(b), in Research Question

2 I calculate multiple system wide statistics and metrics for each lexicon. The statistics I gather

include the number of terms in each lexicon system-wide, the number of uses for each term in

the lexicon system-wide, and the number of documents that terms from the lexicon appears in.

I also gather system-wide lexicon density, unique term density, and unique term contribution for

each lexicon. Because the system wide values include calculations for documents where a lexicon

does not appear, I also computed summary statistics for each of these values at the method level.

Summary statistics include the minimum, median, maximum, mean, and standard deviation. Each

84

of these values collected give some insight into various ways that the different lexicons compose

the entire system’s lexicon. They are evaluated qualitatively to determine whether there may be a

link between these values and the scaling factors applied in the top configurations.

4.1.4 Threats to Validity

The study has limitations that may affect the validity of my findings. This section describes

some of the limitations as well as my attempts to mitigate them.

Threats to conclusion validity concern how reasonable the conclusions reached about the

relationships in the data are. As in the previous study, in order to mitigate these I used non-

parametric statistical tests and did not make any assumptions about the distributions of my effec-

tiveness measures. In addition, I used Holm correction to account for errors in my p-values.

Threats to construct validity concern how well the measurements used in the study describe

the concept being studied. Possible threats to construct validity include how well the effectiveness

measure measures the feature location process and whether my benchmarks are accurate. I used

established measurements and benchmarks that were used in previous research [Dit et al., 2011,

2012; Revelle et al., 2010] and made publicly available online.

Threats to internal validity include possible errors in executing my study procedure or de-

fects in my tool chain. To mitigate these problems, I tested my tool chain and assessed the quality

of my results at each step in the procedure. Because the same tool chain was applied to all subject

systems, any errors are systematic and should not affect my results substantially.

As with the study by Bassett and Kraft, the queries are another threat to internal validity if

they do not describe the features of interest. ArgoUML and jEdit are tools developed for program-

mers. Therefore, it is likely that those who wrote the issue reports were more likely to accurately

describe the issue than other users.

85

Threats to external validity concern the extent to which I can generalize my results. All

four of my subject systems are written in the Java programming language, therefore I am unable

to generalize to different languages. However, the four subject systems represent a wide range

of sizes and domains. Furthermore, the selected subject systems are similar to systems found in

industry. Therefore, my results should be similar for other systems written in Java.

In the next section, I describe the results of my study using an LDA-based FLT for the four

benchmarks. Due to the large number of configurations, only a subset of the complete results are

included in my dissertation.

4.2 Results of Case Study

This section will discuss the results of the study by question.

4.2.1 Does structural weighting of comments, leading terms, and local variables affect the accu-

racy of a LDA-based feature location technique (FLT)?

This question is broken down into three parts. I look at the effects of weighting a lexicon

by itself, and then in conjunction with the other lexicons. I give the top configurations and report

any main effects and interactions that are found as the result of a factorial ANOVA.

4.2.1.1 How does structural weighting of the individual structural lexicons affect the accuracy of

a LDA-based FLT?

For each of the structural components, I give the overall descriptive statistics of all effec-

tiveness measures for each of the four software systems and all software systems combined, as

well as the MRRs for each individual software system. The descriptive statistics give a high-level

view of the configuration across the systems while the MRRs give a system-specific performance

measure. I also use boxplots to give a visual representation of the data presented in the descriptive

statistics. For clarity, the boxplots do not show outliers.

86

Leading Comments

Most comments are not written in the underlying programming language of the system.

Instead, they are one of the few components of the software system that are expressed in the

natural language of the developer. Leading comments in particular are believed to be particularly

relevant when explaining the responsibilities and role of a method. Therefore, a software system

with good leading comments should result in better performance when given heavier weighting in

a FLT. I address how raising the weights on leading comments affects each of the subject software

systems.

Table 4.3 gives the descriptive statistics for raising leading comments alone. Figure 4.1

gives the boxplots for the same information with outliers removed. The whiskers of the boxplots

represent 1.5 times the interquartile range (IRQ). For each of the subject systems, we see that the

minimum value for a search is 1. This means that for at least one of the queries issued on the subject

system, the relevant method was returned as the first method in the ranked list. This is the optimal

ranking for a feature location task. In ArgoUML, we can see that for the 1Q, median, and 3Q, the

values go lower as the weight on the leading comments increases. We can see from the boxplot,

that this results in a gradual decrease in the spread of the rankings as the weighting is increased.

However, in the maximum value, we do not see the gradual decrease as in the other values. There

is an overall decrease from the unweighted configuration to the maximum weighting, but in the

case of a weighting factor of 4 we see an increase over the unweighted configuration. This result is

an outlier and can be the result of slight differences in the training of LDA on a specific method’s

topic model. For JabRef, the 1Q, and median go lower as the weighting on the leading comments

increases, however the 3Q increases in the maximum weighting from the previous weighting factor

as does the maximum value. The median represents the point in which half of the queries are below

87

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 24 181 1093 10231

C(2,1,1,1,1) 1 22 148 904 9863

C(4,1,1,1,1) 1 16 132 718 10521

C(8,1,1,1,1) 1 14 72 532 8758

(a) ArgoUML

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 49 124 515 3940

C(2,1,1,1,1) 1 22 123 399 3861

C(4,1,1,1,1) 1 18 113 363 3679

C(8,1,1,1,1) 1 18 83 401 4390

(b) JabRef

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 10 49 240 6134

C(2,1,1,1,1) 1 7 31 231 6211

C(4,1,1,1,1) 1 5 22 163 5720

C(8,1,1,1,1) 1 6 29 126 4915

(c) jEdit

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 19 119 355 7354

C(2,1,1,1,1) 1 21 93 323 6821

C(4,1,1,1,1) 1 17 81 289 7429

C(8,1,1,1,1) 1 13 70 253 6391

(d) muCommander

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 13 101 616 10231

C(2,1,1,1,1) 1 12 91 559 9863

C(4,1,1,1,1) 1 7 77 456 10521

C(8,1,1,1,1) 1 7 70 427 8758

(e) All Systems

Table 4.3: Descriptive Statistics Weighting Leading Comments Alone

88

(a) ArgoUML

1 2 4 8

0
50

0
10

00
15

00
20

00
25

00

(b) JabRef

1 2 4 8

0
20

0
40

0
60

0
80

0
10

00

(c) jEdit

1 2 4 8

0
10

0
20

0
30

0
40

0
50

0

(d) muCommander

1 2 4 8

0
20

0
40

0
60

0
80

0

(e) All Systems

1 2 4 8

0
50

0
10

00
15

00

Figure 4.1: The Effectiveness Measures for Weighting Leading Comments Alone using Weighting
Factors of 1,2,4, and 8

89

System C(1,1,1,1,1) C(2,1,1,1,1) C(4,1,1,1,1) C(8,1,1,1,1)

ArgoUML 0.0989 0.1064 0.1218 0.1410

JabRef 0.0838 0.1038 0.1101 0.1176

jEdit 0.1427 0.1513 0.1573 0.1648

muCommander 0.1027 0.1170 0.1353 0.1254

Table 4.4: MRRs Weighting Leading Comments Alone

and half are above. These results show that half of the effectiveness measures have improved with

the weighting factor. Considering the results, it is not clear whether the next half are from all

effectiveness measures increasing or from a small number of outliers. I calculated the percentage

of effectiveness measures that improved from weighting leading comments at 4. From a weighting

factor of 4 to 8, 64% of all effectiveness measures improved, 15% remained the same as they were

already at 1, and 21% decreased. This results in 79% (i.e., 31 of the 39 effectiveness measures)

increasing; this increases to 92% (i.e., 36 of the 39 effectiveness measures) over the unweighted

configuration. In jEdit, with the exception of the 3Q and the max for a weighting factor of 2, we

can see that the 1Q, median, and 3Q, go lower as the weight on the leading comment increases.

The boxplots for jEdit show a continuous decrease in the spread of the effectiveness measures.

The only exception to this is for a weighting factor of 2. However, we can observe a large decrease

in the spread of effectiveness measures between the unweighted configuration and the maximum

weighting factor. muCommander shows a decrease in each measure except for the maximum and

upper 1.5 IRQ for a weighting factor of 4. From each of the individual systems, we see a general

trend to a decrease in the spread of effectiveness measures as the weighting factor increases. This

is supported by the collected results for all systems. It is important to note that for the collected

90

statistics over all systems, the maximums are set by the largest system (ArgoUML) as each of the

highest effectiveness measures come from this system.

Table 4.4 reports the MRRs for each of the subject systems as the weighting factor in-

creases. While the spread of effectiveness measures gives an idea of the percentage of variability

of the effectiveness measures, the MRR allows a configuration to be rated based off of central

tendency. A higher MRR indicates better effectiveness measures. Three of the software systems

show an improvement in the MRR for each increase in the weighting factor. In muCommander,

however, there is an observed drop in the MRR when going from a weighting factor of 4 to 8. This

is due to 44% of the effectiveness measures showing a decrease in effectiveness, while 14% remain

the same and only 42% improve in the change of the weighting factor. Therefore, while the spread

of the effectiveness measures improves, the MRR decreases. However, it is important to note that

for all systems, using a weighting factor of 8 improves over the unweighted configuration for all

systems.

Method Names

I observe the configurations where the method name is raised alone. The method name was

one of the two structural components considered by Bassett and Kraft. In their study, they found

that the performance of a FLT continued to rise as the weighting on a method name rose. I repeated

this study.

Table 4.5 presents the descriptive statistics for raising the weighting of method names alone,

while Figure 4.2 presents the boxplots with outliers removed. Looking at ArgoUML, decreases can

be observed in the values for the 1Q, 3Q, and maximum as the weighting factor increases. However,

while the median trends to an overall decrease, there is more fluctuation as the weighting factor

91

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 24 181 1093 10231

C(1,2,1,1,1) 1 24 202 1054 9641

C(1,4,1,1,1) 1 20 114 794 9259

C(1,8,1,1,1) 1 15 125 606 8972

(a) ArgoUML

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 49 124 515 3940

C(1,2,1,1,1) 1 31 147 486 3769

C(1,4,1,1,1) 1 14 93 298 3661

C(1,8,1,1,1) 1 5 64 306 3721

(b) JabRef

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 10 49 240 6134

C(1,2,1,1,1) 1 7 41 186 5911

C(1,4,1,1,1) 1 7 31 173 6036

C(1,8,1,1,1) 1 5 31 162 5792

(c) jEdit

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 19 119 355 7354

C(1,2,1,1,1) 1 17 81 299 6991

C(1,4,1,1,1) 1 7 61 233 6439

C(1,8,1,1,1) 1 5 48 194 6113

(d) muCommander

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 13 101 616 10231

C(1,2,1,1,1) 1 12 92 512 9641

C(1,4,1,1,1) 1 8 74 438 9441

C(1,8,1,1,1) 1 5 64 331 8972

(e) All Systems

Table 4.5: Descriptive Statistics Weighting Method Names Alone

92

(a) ArgoUML

1 2 4 8

0
50

0
10

00
15

00
20

00
25

00

(b) JabRef

1 2 4 8

0
20

0
40

0
60

0
80

0
10

00

(c) jEdit

1 2 4 8

0
10

0
20

0
30

0
40

0

(d) muCommander

1 2 4 8

0
20

0
40

0
60

0
80

0

(e) All Systems

1 2 4 8

0
50

0
10

00
15

00

Figure 4.2: The Effectiveness Measures for Weighting Method Names Alone using Weighting
Factors of 1,2,4, and 8

93

System C(1,1,1,1,1) C(1,2,1,1,1) C(1,4,1,1,1) C(1,8,1,1,1)

ArgoUML 0.0989 0.1119 0.1259 0.1223

JabRef 0.0838 0.1171 0.1225 0.1328

jEdit 0.1427 0.1523 0.1630 0.1628

muCommander 0.1027 0.1124 0.1258 0.1364

Table 4.6: MRRs Weighting Method Names Alone

increases. Considering the boxplots, an overall decrease can be obverved in the spread as the

weighting factor increases. For JabRef, there is an overall trend for the spread to decrease as

the weighting factor increases. The 1Q continues to decrease as the weighting factor increases,

however, the median spikes at weighting factor 2, the 3Q spikes at weighting factor 8, and there

is an observed fluctuation that tends to decrease for the max. There is a sudden decrease in the

upper 1.5 IRQ at weighting factor 4.. This sudden jump may be attributable to the doubling of

the weighting factors. Instead of using a linear progression of weighting factors, I double for

each increase to show larger changes in the spread. In jEdit we see a consistent decrease in the

1Q, median, and 3Q as we increase the weighting factor. However, for the 1.5 IRQ and the max

value, there is an increase. In muCommander, the spreads of the effectiveness measures continue

to decrease as the weighting factors decrease. Similar to leading comments, for method names we

can also see a general trend to a decrease in the spread of the effectiveness measures for each of the

four subject systems. Again, in the collected results for all systems, we see the spreads decrease as

the weighting factor increases.

Table 4.6 shows the MRRs for each of the four subject systems. Similar to the previous

study, we see an increase in performance with the heaviest weighting for method names for each of

the four subject systems. However, while the previous study found a slight decrease in performance

94

for ArgoUML at weighting factor 8, we found an increase over the unweighted configuration.

However, there is a decrease in the MRR between a weighting factor of 4 and a weighting factor of

8. This decrease in the MRR is contrary to the decrease in the spread of the effectiveness measures.

The explanation comes from a few exceptional effectiveness measures that showed a large increase

from weighting factor 4 at weighting factor 8. The largest increase in the MRR can be observed for

JabRef and muCommander. Similarly to ArgoUML, there is a decrease in performance for jEdit at

weighting factor 8 from weighting factor 4.

Parameters

Parameters are expected to give complementary information to the method names. As

method names are meant to describe the primary responsibility of a method, descriptive parameter

names and their types are expected to describe information that is needed to accomplish the primary

responsibility. I observe the configurations where the weights of parameter types and parameter

names are raised alone.

Table 4.7 gives the descriptive statistics for raising the weighting of parameters alone. Fig-

ure 4.3 gives the boxplots with outliers removed. Looking at ArgoUML, we see that the median

continues to increase as the weighting factor increases. For each other value, there are fluctuations

but a trend to increase. For each value, giving parameters a weighting factor of 8 increases over

the unweighted configuration. The smallest spread is seen at a weighting factor of 4. However, for

this weighting factor the 1Q and median are higher than the previous two weighting factors. For

JabRef, we see a similar situation to that of ArgoUML. However, where for ArgoUML the medians

constantly increased with each new weighting factor, in JabRef there is fluctuation. JabRef also

shows a slightly smaller spread in weighting factor 8 than the unweighted configuration. This can

95

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 24 181 1093 10231

C(1,1,2,1,1) 1 33 220 1156 10559

C(1,1,4,1,1) 1 30 293 905 10044

C(1,1,8,1,1) 1 29 334 1273 11354

(a) ArgoUML

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 49 124 515 3940

C(1,1,2,1,1) 1 44 212 567 4232

C(1,1,4,1,1) 1 51 134 405 4014

C(1,1,8,1,1) 1 42 164 506 3826

(b) JabRef

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 10 49 240 6134

C(1,1,2,1,1) 1 9 62 226 5609

C(1,1,4,1,1) 1 11 56 290 6817

C(1,1,8,1,1) 1 9 80 351 6648

(c) jEdit

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 19 119 355 7354

C(1,1,2,1,1) 1 26 139 388 7458

C(1,1,4,1,1) 1 20 126 489 7920

C(1,1,8,1,1) 1 25 127 435 7433

(d) muCommander

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 13 101 616 10231

C(1,1,2,1,1) 1 17 115 628 10559

C(1,1,4,1,1) 1 17 129 633 10044

C(1,1,8,1,1) 1 17 154 826 11354

(e) All Systems

Table 4.7: Descriptive Statistics Weighting Parameters Alone

96

(a) ArgoUML

1 2 4 8

0
50

0
10

00
15

00
20

00
25

00
30

00

(b) JabRef

1 2 4 8

0
20

0
40

0
60

0
80

0
10

00

(c) jEdit

1 2 4 8

0
20

0
40

0
60

0
80

0

(d) muCommander

1 2 4 8

0
20

0
40

0
60

0
80

0
10

00
12

00

(e) All Systems

1 2 4 8

0
50

0
10

00
15

00
20

00

Figure 4.3: The Effectiveness Measures for Weighting Parameters Alone using Weighting Factors
of 1,2,4, and 8

97

System C(1,1,1,1,1) C(1,1,2,1,1) C(1,1,4,1,1) C(1,1,8,1,1)

ArgoUML 0.0989 0.0767 0.0970 0.0558

JabRef 0.0838 0.0903 0.0940 0.0850

jEdit 0.1427 0.1509 0.1365 0.1384

muCommander 0.1027 0.0889 0.0940 0.0878

Table 4.8: MRRs Weighting Parameters Alone

be seen by looking at the 1Q, 3Q, and max. A weighting factor of 8 still results in a higher median

value than the unweighted configuration. In the boxplot of jEdit, a gradual increase can be seen

in the spread. There are some minor fluctuations for each of the values as the weighting factor

increases, but the trend is for the spread to increase. As the weighting factor for jEdit increases, so

does the upper 1.5 IRQ. Comparing the unweighted configuration to weighting factor 8 shows that

for all values except for 1Q there has been an increase. For muCommander, the greatest spread can

be observed at a weighting factor of 4. This configuration has a higher 3Q and max effectiveness

measure, but a lower 1Q and median when compared to weighting factors 2 and 8. When looking

at all systems, there is a typical trend for the spreads to increase as the weighting factor increases.

For all systems, each of the values in the spread increase with each factor increase.

Looking at the MRRs for parameters in Table 4.8, we see that for three of the four subject

systems, the MRR for a weighting factor of 8 is lower than the unweighted configuration. This is

for muCommander which also has the highest MRR at a weighting factor of 4. For ArgoUML and

muCommander, the highest MRR is found in the unweighted configuration. For jEdit, a weight-

ing factor of 2 results in a slightly higher MRR over the unweighted configuration, but both the

weighting factor of 4 and of 8 show a decrease when compared to the unweighted configuration.

98

This suggests that weighting parameters alone is not very effective and can result in a decrease in

performance for some systems.

Body Comments

Similar to leading comments, body comments are expressed in the natural language of the

developer. The difference between the two is sometimes thin because body comments can serve

the same purpose as leading comments. Body comments can also serve the purpose of describing

a difficult part of code or highlighting parts of code that need improvement (e.g., "TODO" in

comment fields). It is also possible for body comments to have information pertaining to the

specific bug that is being searched for.

Table 4.9 shows the descriptive statistics for raising the weighting of body comments alone.

Figure 4.4 shows the boxplots with outliers removed. Unlike leading comments, method names,

and parameters, weighting body comments does not show a trending increase or decrease in three

of the four subject systems. In ArgoUML, comparing the unweighted to having a weighting factor

of 8 shows an increase in the 1Q and the median, but a decrease in the 3Q, the max effectiveness

measure, and the upper 1.5 IRQ. When looking at JabRef, we see similar levels of fluctuation.

However, when comparing the unweighted configuration to having a weighting factor of 8, each

of the values decrease from the unweighted configuration. Because a consistent decreasing trend

is not observed, it is not apparent whether this decrease indicates that increasing the weighting

on body comments is having a positive impact on the spread of effectiveness measures for this

system. Interestingly, in jEdit we see a spike in the spread from the unweighted configuration to

the configuration with a weighting factor of 2. After this spike, there is a decline in the spread for

each subsequent weighting factor. By weighting factor 8, each of the values has decreased below

99

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 24 181 1093 10231

C(1,1,1,2,1) 1 26 199 1019 9981

C(1,1,1,4,1) 1 31 280 1093 9761

C(1,1,1,8,1) 1 29 197 1043 9956

(a) ArgoUML

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 49 124 515 3940

C(1,1,1,2,1) 1 52 137 522 3578

C(1,1,1,4,1) 1 58 143 485 3870

C(1,1,1,8,1) 1 48 120 475 3806

(b) JabRef

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 10 49 240 6134

C(1,1,1,2,1) 1 11 40 291 6033

C(1,1,1,4,1) 1 7 37 258 5984

C(1,1,1,8,1) 1 9 37 228 5724

(c) jEdit

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 19 119 355 7354

C(1,1,1,2,1) 1 25 90 298 7229

C(1,1,1,4,1) 1 23 68 293 7111

C(1,1,1,8,1) 1 20 75 337 6834

(d) muCommander

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 13 101 616 10231

C(1,1,1,2,1) 1 17 98 618 9981

C(1,1,1,4,1) 1 17 102 621 9761

C(1,1,1,8,1) 1 15 89 658 9956

(e) All Systems

Table 4.9: Descriptive Statistics Weighting Body Comments Alone

100

(a) ArgoUML

1 2 4 8

0
50

0
10

00
15

00
20

00
25

00

(b) JabRef

1 2 4 8

0
20

0
40

0
60

0
80

0
10

00

(c) jEdit

1 2 4 8

0
10

0
20

0
30

0
40

0
50

0
60

0

(d) muCommander

1 2 4 8

0
20

0
40

0
60

0
80

0

(e) All Systems

1 2 4 8

0
50

0
10

00
15

00

Figure 4.4: The Effectiveness Measures for Weighting Body Comments Alone using Weighting
Factors of 1,2,4, and 8

101

System C(1,1,1,1,1) C(1,1,1,2,1) C(1,1,1,4,1) C(1,1,1,8,1)

ArgoUML 0.0989 0.1141 0.0850 0.1080

JabRef 0.0838 0.0971 0.0869 0.0936

jEdit 0.1427 0.1395 0.1386 0.1415

muCommander 0.1027 0.0962 0.1184 0.1086

Table 4.10: MRRs Weighting Body Comments Alone

the unweighted configuration with the exception of the upper 1.5 IRQ. In muCommander, we see

a general trend for the spreads to decrease, with a weighting factor of 8 having all but the 1Q lower

than the unweighted configuration. At a weighting factor of 8, we see an interesting drop in the

upper 1.5 IRQ. Important to note, however, is that for each value other than the upper 1.5 IRQ,

there has been an increase from a weighting factor of 4 where there was a decrease from weighting

factors 2 to 4. Overall for all systems, it appears that weighting body comments may not make a

substantial difference in the spread of effectiveness measures. In fact, for all systems combined

we see that comparing the unweighted configuration to a weighting factor of 8 actually results in a

worse measure for the 1Q, 3Q, and upper 1.5 IRQ.

Table 4.10 shows the MRRs for the four subject systems when weighting body comments

alone. For three of the four systems, we see a slight increase in the MRR for that system. However,

for each of these three systems, the highest MRR is seen at either a weighting factor of 2 or a

weighting factor of 4. This may indicate that body comments can be of some limited benefit to the

topic models, but placing too great of an emphasis will limit the knowledge gained from terms in

other lexicons including important terms that may be contained in the leading comments or method

names. For jEdit, there was a decrease in the MRR from the unweighted configuration. The lowest

MRR for jEdit is seen at a weighting factor of 4, and the highest MRR is seen for the unweighted

102

configuration. Overall, the changes to the MRR are small and seem to only change slightly whether

body comments are weighted or not.

Local Variables

Local variables are identifiers that are found only within the scope of a method. Local

variables store data that is required for a method to perform their main operation. Due to local

variables being tied specifically to the method where they are created, they may contain information

that helps to understand the main responsibility of the method.

Table 4.11 gives the descriptive statistics for raising the weighting of body comments alone.

Figure 4.5 gives the boxplots with outliers removed. In ArgoUML, there are fluctuations in the

spread as the weighting factor increases. When comparing the unweighted configuration to having

a weighting factor of 8, there is an increase in each of the values except for the upper 1.5 IRQ.

In JabRef, the spread decreases for when a weighting factor of 2 is given. However, for each

subsequent increase in the weighting factor there is an increase in the spread. The greatest spread

is seen when local variables are given a weighting factor of 8. Both jEdit and muCommander show

similar situations as the weighting factor is increased. There are slight fluctuations as the weighting

factor increases. However, the trend is for the spread to increase as the weighting factor increases.

For both systems, the spread is the greatest when a weighting factor of 8 is given. Overall for the

four subject systems, weighting local variables is seen to have a negative effect on the spread of

the effectiveness measures.

Table 4.12 shows that for each of the four subject systems, giving local variables a weight-

ing factor of 8 decreases the performance over the unweighted configuration. In ArgoUML, there is

a continuous decline in the MRR for each increase in the weighting factor resulting in a weighting

factor of 8 having the lowest MRR. This is the same for both jEdit and for muCommander.

103

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 24 181 1093 10231

C(1,1,1,1,2) 1 25 266 1141 10040

C(1,1,1,1,4) 1 24 300 1127 10481

C(1,1,1,1,8) 1 26 345 1210 10681

(a) ArgoUML

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 49 124 515 3940

C(1,1,1,1,2) 1 43 127 415 3720

C(1,1,1,1,4) 1 69 226 484 3867

C(1,1,1,1,8) 1 57 253 605 4101

(b) JabRef

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 10 49 240 6134

C(1,1,1,1,2) 1 8 71 336 6492

C(1,1,1,1,4) 1 9 100 285 6339

C(1,1,1,1,8) 1 9 111 395 6192

(c) jEdit

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 19 119 355 7354

C(1,1,1,1,2) 1 18 136 487 7792

C(1,1,1,1,4) 1 22 161 442 7281

C(1,1,1,1,8) 1 24 218 512 8041

(d) muCommander

Config min 1Q median 3Q max

C(1,1,1,1,1) 1 13 101 616 10231

C(1,1,1,1,2) 1 13 138 682 10040

C(1,1,1,1,4) 1 17 184 777 10481

C(1,1,1,1,8) 1 16 221 785 10681

(e) All Systems

Table 4.11: Descriptive Statistics Weighting Local Variables Alone

104

(a) ArgoUML

1 2 4 8

0
50

0
10

00
15

00
20

00
25

00

(b) JabRef

1 2 4 8

0
20

0
40

0
60

0
80

0
10

00
12

00

(c) jEdit

1 2 4 8

0
20

0
40

0
60

0
80

0

(d) muCommander

1 2 4 8

0
20

0
40

0
60

0
80

0
10

00
12

00

(e) All Systems

1 2 4 8

0
50

0
10

00
15

00
20

00

Figure 4.5: The Effectiveness Measures for Weighting Local Variables Alone using Weighting
Factors of 1,2,4, and 8

105

System C(1,1,1,1,1) C(1,1,1,1,2) C(1,1,1,1,4) C(1,1,1,1,8)

ArgoUML 0.0989 0.0979 0.0848 0.0548

JabRef 0.0838 0.0995 0.0895 0.0772

jEdit 0.1427 0.1397 0.1215 0.0972

muCommander 0.1027 0.0935 0.0920 0.0667

Table 4.12: MRRs Weighting Local Variables Alone

However, the situation is different for JabRef, where the highest MRR is given for a weighting

factor of 2. After this, there is a decline in the MRR from a weighting factor of 2 to a weighting

factor of 4, and then again when the weighting factor is increased from 4 to 8. Overall, weighting

local variables seems to have a negative impact on the performance of the technique when given

high weighting factors.

4.2.1.2 What are the top configurations for each system and across all systems?

The previous question looked at how weighting the individual components by themselves

might help to improve or decrease the performance of an LDA-based FLT. Weighting a single

lexicon over others can give some insight into how important each lexicon is in relation to the

others. In the results of the previous question, leading comments and method names generally

produced an increase in performance, while parameters and local variables tended to produce a

decrease in performance, and weighting body comments tended to show little change overall.

While looking at how weighting each lexicon independently can be useful, it does not give

any insights into the best weighting configuration for a system. In this question, I address the

best configurations for each subject system. Due to the large number of configurations involved

in this experiment, for the purposes of feasibility in discussion, I limit this question to the top ten

106

configurations for each subject system according to MRR. I include the unweighted configurations

for comparison.

Table 4.13a gives the top configurations for ArgoUML. In these results, we see that each

of the top configurations has the maximum weighting factor of 8 for the leading comments. This

follows from the previous question which showed that ArgoUML had the highest MRR when giv-

ing high weights to leading comments. The same can be said for method names. When looking at

the top configurations, method names were given the highest weighting factor for seven of the ten

configurations. Parameters, however, were only weighted in three of the top ten configurations, and

was never given the highest weighting factor for any of the configurations. Weighting body com-

ments is shown to have some effect. However, it is not consistent across the top ten configurations

what weighting factor should be given to body comments. Only one of the top ten configurations

left body comments as unweighted. The most common weighting factor given to body comments

is a weighting factor of 8, and this is for four of the top ten configurations. This might indicate that

body comments contain some relevant information that should be accounted. The most common

weighting for local variables in ArgoUML was unweighted. Three other configurations gave local

variables a weighting factor of 2, and two gave local variables a weighting factor of 4. Only one

configuration of ten gave local variables the top weighting factor of 8. These results are consistent

with the previous question.

Table 4.13b illustrates the top ten configurations for JabRef. When looking at the leading

comments, there is a split in the number of configurations that use a weighting factor of 8 and

those that use a weighting factor of 4. High weighting factors for JabRef give the best results.

However, there is more variation on the weighting factor for JabRef than for ArgoUML. This may

indicate a difference in how leading comments are used between the two systems. Interestingly,

107

there may be more importance on method names in JabRef than for ArgoUML. For each of the

ten configurations, the highest weighting factor of 8 is used for method names. For three of the

top ten configurations, there is a weighting factor of 8 given to parameters. However, each other

configuration uses a weighting factor of 1 or 2. In most configurations, using a lower weighting

factor for parameters leads to a higher MRR. In three of the top ten configurations, body comments

are left unweighted. For five of the ten configurations, a weighting factor of 4 or 8 is used for body

comments. Similar to ArgoUML, there may be some information in body comments that should

be considered when choosing a weighting configuration. Nine of the ten configurations use the

unweighted configuration or a weighting factor of 2.

Table 4.13c shows the top ten configurations for jEdit. As in ArgoUML, jEdit used a

weighting factor of 8 for leading comments in each of the top configurations. For method names,

there was an even split between using a weighting factor of 4 and a weighting factor of 8. The

most common weighting factor for parameters was 4 for JabRef; this is in contrast to the results

of weighting the parameters alone which showed a drop in performance when using a weighting

factor of 4 or 8 for parameters. jEdit was the only subject system that showed a lower MRR for

a weighting factor of 8 for body comments than the unweighted configuration. However, when

considering the top configurations, a weighting factor of 4 or 8 is seen to be used in half of the

top configurations. It is interesting to note that only two of the configurations used the unweighted

configuration. This is less than the number of configurations in either JabRef or muCommander,

despite both systems having showed an increase over the unweighted configuration when using

a weighting configuration for body comments. In nine of the ten configurations, the unweighted

configuration or a weighting factor of 2 are used for local variables.

The top ten configurations for muCommander are given in Table 4.13d. Similar to JabRef,

108

leading comments were given either a weighting factor of 4 or 8 in each of the top configura-

tions and method names were given a weighting factor of 8 in all top configurations. Half of

the top configurations for muCommander use a weighting configuration of 4 or 8. Only two of

the configurations used the unweighted configuration for parameters. This contrasts to the results

for weighting parameters alone, which showed that the unweighted configuration had the highest

MRR. The most common weighting factor for body comments in muCommander is to use the un-

weighted configuration. Only three of the ten weighting configurations are body comments given a

weighting factor of 4 or 8. This is the lowest number for any of the subject systems. The weighting

factors for local variables are also slightly different in muCommander with a weighting factor of

4 or 8 being used in five of the ten configurations. However, the unweighted configuration is used

for the top three configurations.

The top configurations for all systems combined are shown in Table 4.13e. For each of

the ten configurations, leading comments and method names are given a weighting factor of 8.

This would seem to indicate that across all systems, leading comments and method names have a

positive impact on the performance of the LDA based FLT. For each of the other three lexicons, the

increase in performance is not as high. For parameters, nine of ten configurations used a weighting

factor of 1 or 2, and only one configuration used a weighting factor of 4. In the case of body

comments, seven of the ten configurations used a weighting factor of 1 or 2. Two of the remaining

configurations used a weighting factor of 4 and one used a weighting factor of 8. The most common

weighting factor was a weighting factor of 2. Local variables had a weighting factor of 1 or 2 for

seven of the ten configurations, but the most common weighting factor was unweighted. Of the

three configurations that weighted local variables higher, each of them used a weighting factor of

4. No weighting configuration used a weighting factor of 8 for local variables. However, it is

109

important to note that for the top configuration, each of the lexicons was given a weighting factor

of at least 2, with body comments receiving a weighting factor of 4. This may indicate that overall

each of the lexicons provide some information that is important to the topic model.

Figure 4.6 shows the boxplots and spreads for the top ten configurations and the unweighted

configuration for each of the subject systems and for all systems combined. From the boxplots, it

can be seen that each of the top configurations produces a greatly reduced spread when compared

with the unweighted configuration. ArgoUML shows the most substantial changes between the un-

weighted configuration and the top configurations. For each configuration of this system, the upper

1.5 IRQ has been reduced to be lower than the 3Q of the unweighted configuration. When looking

at all the systems combined, we see a similar situation where each of the ten top configurations

have a substantially reduced spread when compared to the unweighted configuration.

A Friedman test for each of the four systems was conducted to determine if this reduction

meant changing the structural term weighting scheme has a significant effect on the results of the

LDA-based FLT for a system. The Friedman test is the non-parametric analog of the repeated

measures ANOVA. In addition, I conducted a Friedman test for the combined data sets of all four

systems over all 372 query results. The results of the tests are shown in Table 4.14. To maintain

feasibility of this study, I limited this analysis to only the top ten configurations. This reduces the

number of post-hoc tests required for a system from over 500,000 to a more manageable 55.

I conducted post-hoc Wilcoxon signed-rank tests with Holm correction to find configura-

tion pairs with statistically significant differences (p < 0.01). From the results, it was found that all

top configurations were significantly different from the unweighted configuration. However, none

of the top configurations were found to be significantly different.

110

System Config MRR

ArgoUML

C(8,8,1,8,4) 0.1559

C(8,8,1,2,2) 0.1559

C(8,8,4,8,2) 0.1556

C(8,4,1,4,1) 0.1556

C(8,8,1,1,1) 0.1546

C(8,8,2,8,1) 0.1546

C(8,8,4,4,4) 0.1546

C(8,4,1,8,8) 0.1545

C(8,8,1,2,1) 0.1545

C(8,4,1,4,2) 0.1495

C(1,1,1,1,1) 0.0989

(a) ArgoUML

System Config MRR

JabRef

C(8,8,8,8,2) 0.1657

C(4,8,1,1,2) 0.1656

C(8,8,8,8,1) 0.1656

C(4,8,2,4,1) 0.1649

C(8,8,1,4,1) 0.1649

C(8,8,2,4,2) 0.1646

C(4,8,1,2,2) 0.1597

C(4,8,8,2,2) 0.1596

C(8,8,2,1,1) 0.1590

C(4,8,2,1,4) 0.1586

C(1,1,1,1,1) 0.0838

(b) JabRef

Table 4.13: Top ten configurations and unweighted configuration for each subject system and
combined

111

System Config MRR

jEdit

C(8,4,4,1,2) 0.1869

C(8,4,4,4,2) 0.1859

C(8,8,4,2,1) 0.1859

C(8,4,2,2,1) 0.1848

C(8,8,2,1,2) 0.1840

C(8,8,2,8,2) 0.1828

C(8,8,4,8,1) 0.1827

C(8,8,4,2,2) 0.1798

C(8,4,1,8,2) 0.1788

C(8,4,1,4,4) 0.1767

C(1,1,1,1,1) 0.1427

(c) jEdit

System Config MRR

muCom

C(8,8,1,2,1) 0.1669

C(4,8,2,2,1) 0.1659

C(4,8,8,1,1) 0.1659

C(8,8,4,4,2) 0.1558

C(8,8,4,8,4) 0.1550

C(4,8,2,1,4) 0.1549

C(8,8,1,8,8) 0.1549

C(8,8,8,1,1) 0.1548

C(4,8,4,1,2) 0.1548

C(8,8,2,2,4) 0.1547

C(1,1,1,1,1) 0.1027

(d) muCommander

Table 4.13: Top ten configurations and unweighted configuration for each subject system and
combined

112

System Config MRR

All

C(8,8,2,4,2) 0.1664

C(8,8,2,1,2) 0.1658

C(8,8,2,2,4) 0.1658

C(8,8,4,1,1) 0.1647

C(8,8,2,4,1) 0.1646

C(8,8,1,2,2) 0.1644

C(8,8,2,1,1) 0.1634

C(8,8,1,8,4) 0.1633

C(8,8,1,2,4) 0.1633

C(8,8,1,2,1) 0.1629

C(1,1,1,1,1) 0.1159

(e) All Systems

Table 4.13: Top ten configurations and unweighted configuration for each subject system and
combined

System χ2 df p-value

ArgoUML 128.792 10 < 0.01

JabRef 89.538 10 < 0.01

jEdit 102.321 10 < 0.01

muCommander 107.306 10 < 0.01

All 270.162 10 < 0.01

Table 4.14: Friedman Test Results

4.2.1.3 What are the main effects and interactions between the structural lexicons?

To answer this question, I performed a factorial analysis. Table 4.15 lists the results of a

factorial ANOVA applied to the effectiveness measures for the 1,024 configurations for each sys-

tem and for all 372 features combined. Only the statistically significant main effects and interaction

effects are listed. This analysis is conducted to find all main effects, two-way effects, three-way

effects, and four-way effects. For each of the four subject systems, there were significant main

113

(a) ArgoUML

88
18

4

88
12

2

88
48

2

84
14

1

88
11

1

88
28

1

88
44

4

84
18

8

88
12

1

84
14

2

11
11

1

0

500

1000

1500

2000

2500

(b) JabRef

88
88

2

48
11

2

88
88

1

48
24

1

88
14

1

88
24

2

48
12

2

48
82

2

88
21

1

48
21

4

11
11

1

0

200

400

600

800

1000

Figure 4.6: The Top Configurations and unweighted configuration for Each System and All Sys-
tems Combined

114

(c) jEdit

84
41

2

84
44

2

88
42

1

84
22

1

88
21

2

88
28

2

88
48

1

88
42

2

84
18

2

84
14

4

11
11

1

0

100

200

300

400

(d) muCommander

88
12

1

48
22

1

48
81

1

88
44

2

88
48

4

48
21

4

88
18

8

88
81

1

48
41

2

88
22

4

11
11

1

0

200

400

600

800

Figure 4.6: The Top Configurations and unweighted configuration for Each System and All Sys-
tems Combined

115

(e) All Systems

88
24

2

88
21

2

88
22

4

88
41

1

88
24

1

88
12

2

88
21

1

88
18

4

88
12

4

88
12

1

11
11

1

0

500

1000

1500

Figure 4.6: The Top Configurations and unweighted configuration for Each System and All Sys-
tems Combined

effects from the leading comments, method names, and local variables. This is supported by the

results of Research Question 1(a) and Research Question 1(b). Parameters were a significant main

effect for ArgoUML. Body comments were not shown to have a statistically significant effect on

any of the systems. For all systems combined, a significant main effect was seen from all but the

body comments. For three of the four subject systems, there was an interaction between lead-

ing comments and method names. This interaction was also seen for all systems combined. For

JabRef, there were no significant interactions found. For jEdit, there was an additional significant

interaction found between the leading comments and the local variables. There were no significant

three-way, four-way, or five-way interactions found.

Due to the interactions and effects found from leading comments and method names, I

looked at the configurations that gave the maximum weighting factor to both lexicons. The MRRs

116

System Variable Df F value Pr(>F)

ArgoUML

LC 3 223.36 < 2.2e-16

MN 3 37.49 < 2.2e-16

P 3 6.27 < 0.01

LV 3 6.09 < 0.01

LC:MN 9 2.55 < 0.01

(a) ArgoUML

System Variable Df F value Pr(>F)

JabRef
LC 3 11.96 < 0.01

MN 3 80.77 < 2.2e-16

LV 3 14.89 < 0.01

(b) JabRef

System Variable Df F value Pr(>F)

jEdit

LC 3 154.64 < 2.2e-16

MN 3 37.59 < 2.2e-16

LV 3 9.94 < 0.01

LC:MN 9 6.01 < 0.01

LC:LV 9 4.57 < 0.01

(c) jEdit

System Variable Df F value Pr(>F)

muCommander

LC 3 33.55 < 0.01

MN 3 181.78 < 2.2e-16

LV 3 15.68 < 0.01

LC:MN 9 3.16 < 0.01

(d) muCommander

Table 4.15: Main Effects and Interactions for each subject system and combined

117

System Variable Df F value Pr(>F)

All

LC 3 382.79 < 2.2e-16

MN 3 219.37 < 2.2e-16

P 3 8.86 < 0.01

LV 3 34.09 < 2.2e-16

LC:MN 9 10.32 < 0.01

(e) All Systems

Table 4.15: Main Effects and Interactions for each subject system and combined

System C(8,8,1,1,1) p-value

ArgoUML 0.1846 < 0.01

JabRef 0.1596 < 0.01

jEdit 0.1812 < 0.01

muCommander 0.1706 < 0.01

Table 4.16: MRRs For Maximizing Weighting On Leading Comments and Method Names

for these configurations are shown in Table 4.16 along with the results of a Wilcoxon signed-rank

test (no directionality assumed) between the configuration and the unweighted configuration for

each of these systems. The results show a significant difference between these configurations and

the unweighted configuration. This shows that for each of the subject systems, using a weighting

factor of 8 on leading comments and method names can lead to a statistically significant improve-

ment over the unweighted configuration.

4.2.2 Can a relationship between the contributions of each structural component’s lexicon and

their weighting factors be found?

The purpose of this question is to understand qualitatively how each of the lexicons might

contribute to the overall topic model. For the purposes of answering this question, I collected

several measures from the terms in the source code.

118

Table 4.17 lists multiple counts collected by looking over the corpus for each system. Each

of these counts may defined as follows:

• Terms - The number of terms without counting duplicates

• Uses - The number of terms with duplicates (i.e., the number of instances of the terms)

• Docs - The number of documents with terms from that lexicon (e.g., the number of methods

with leading comments)

Each of these values give important information about the composition and prevalence of

the lexicons in the systems.

In addition to these counts, I calculated the system-wide lexicon density (LD), unique term

density (UTD), and unique term contribution (UTC) for each of the systems. Since these values

give a high-level look at how each lexicon fits into the system, and do not take into account the

fact that all methods do not contain a lexicon or help to understand how each lexicon contributes to

the methods for which it is present, I also calculated summary statistics for the three values at the

method level. The method level statistics are calculated for the LD, UD, and UTC for which they

are present. It is important to note when considering the UTC that these lexicons do not make up

the total of all terms in the corpus. There are other lexicons that were not considered in this study.

ArgoUML

For ArgoUML, the two most common lexicons that appear in the docs of the system are

the leading comments and the method names. For leading comments, the ratio of terms to uses

is approximately 1:24. This indicates that the terms in the leading comments are often reused

throughout the system. In Table 4.18a, the system-wide density measures can be observed for

119

ArgoUML. We see that leading comments contain 25% of the terms in the system. While the

number of unique terms in the leading comments lexicon is low, the lexicon contributes over 22%

of the unique terms in the system. Table 4.19 contains the method-level density measures for

leading comments. For methods where leading comments are present, they contain 41% of the

terms in the method. Interesting to note is that at the method level UTD is 50%. This indicates

that there are terms that are common in many of the leading comments throughout the system. An

example of such a term is "constructor," which is used to indicate the method that represents the

constructor for a class. For a method, leading comments contribute 50% of the unique terms in the

method. The prevalence of leading comments in the system and their contribution to the unique

terms may be an indicator of why increasing the weighting factors for leading comments improves

the results of the FLT.

Method names are in the largest number of docs with a ratio of terms to uses for method

names is lower with a ratio of 1:6. Method names have a lower LD and UTC than leading com-

ments. However, they still contribute the second most unique terms at 9% and contain the second

most terms in the systems at 7%. These lower values may be indicative of the reduced size of

method names which normally only consist of a small number of terms for each method. When

looking at the method level densities in Table 4.20, it is observed that they contain 15% of the terms

in the method and contribute 11% of the unique terms. These values vary widely, however, with

standard deviations of 14% and 19%, respectively. This means that a method name may contribute

between 0% to 30% of the unique terms in the method, and contain between 0.5% and 28% of the

terms. Looking at the UTD, approximately 27% of the terms in a method name are unique to that

lexicon and this can vary from 0% to 58%. In the cases that method names contain only a small

120

LD, but have a higher UTD or UTC, it could be beneficial to raise the weighting factor and this

may be the cause of the importance of the method names in the top configurations.

Parameters have a lower usage, but still appear in 55% of all docs with a ratio of 1:13 for

terms to their uses. Parameters contain 3% of the terms in the system, and contribute less that 1%

of the unique terms in the system. This is not a fair value, however, as parameters are typically

used in the body of the method lowering their uniqueness. This has been accounted for in the

method level densities by ignoring the parameters’ usage. The method level densities are available

in Table 4.21. We see that when parameters are present they contain 8% of the terms in the method.

Despite the removal of a parameter’s usage, they only have a UTD of 6% and contribute only 2%

of the unique terms in the system. This means that for methods where parameters are present,

other lexicons contribute the same terms that appear in the parameters. This low composition and

contribution of unique terms may be the reason why parameters are not valued highly in the top

configurations.

Body comments appear the least out of the five lexicons. Body comments only appear in

13% of all docs in the system with a ratio of 1:7. However, despite being in less than a third of the

number of docs of parameters, body comments contribute 4% of the unique terms in the system.

They also contain the second highest UTD of any lexicon system wide. Table 4.22 shows the

method-level densities for body comments. In this table, we can see that for methods where body

comments are present, there is a UTD of 56% and a UTC of 12%. Both of these values are higher

than the values for method names. However, body comments only contain 8% of the terms in the

methods where they appear. The low number of docs for body comments may be a contributing

factor as to why body comments do not have a greater effect on the top configurations.

Local variables appear the second least in the total number of docs for the system at 29%

121

and a ratio of 1:5 between terms and their uses. Local variables contain less than 3% of the terms

in the system and contribute the least amount of unique terms out of all lexicons. However, local

variables contain the highest composition of unique terms in their lexicon. Looking at the method

level densities in Table 4.23 we see that local variables contribute the least amount of unique terms

out of all lexicons at less than 1%. They also contain the least amount of terms in the method.

This low UTC and overall contribution may be an indicator of why raising the weighting factors

for local variables results in poor performance.

JabRef

JabRef shows a lower percentage of docs containing leading comments. For the system,

only 28% of the docs contain leading comments with a ratio of 1:10 between terms and their us-

ages. This drop in percentage and in ratio is due to the change in usage between the two systems

of leading comments. In ArgoUML, leading comments were used for most methods as quick de-

scriptors of the purpose of the method within the class. Leading comments in ArgoUML identified

methods as constructors, helpers, accessors, and so forth in addition to other details. In JabRef,

leading comments are used more sparingly and may be clarifications for certain methods or tasks.

Looking at the system-wide metrics show that leading comments contain 9% of the terms in the

system. This is higher than method names which appear in more docs. Furthermore, while only

having a UTD of 2%, leading comments contribute 11% of the unique terms in the system, higher

than any other lexicon. The method-level densities show that leading terms have a UTD of 47%

and contain 31% of the method’s terms and contributes 38% of the unique terms in the methods.

While these values are lower than they are for ArgoUML, these are still high values when com-

pared to the other lexicons. The drop in the percentage of docs and the method level densities may

122

explain why some of the top configurations for JabRef give leading comments a weighting factor

of 4 instead of 8.

Method names are present in the most docs of all lexicons. There is a ratio of 1:5 for terms

to their uses. While being present in the largest number of docs, method names only contain 5% of

the terms in the system. This is due to a low number of terms in each doc for a method name. Of

the terms in the method names across the system, over 2.5% are unique to that lexicon. This is the

highest percentage of all lexicons in the study. In addition to this, method names contribute over

8% of the unique terms in the system. This is the second most, falling behind leading comments.

Looking at the method-level densities, method names are composed of 55% unique terms. This is

an increase over ArgoUML. In addition, method names contain on average 21% of the terms in the

method and contribute 24% of the unique terms to the method. Each of these values are higher than

ArgoUML, and may be a reason why JabRef used a weighting factor of 8 in all top configurations.

Similar to ArgoUML, parameters in JabRef appear in 55% of all docs, and have a close

ratio of 1:11. Parameters in JabRef have a slightly higher LD at 4% of the terms of the system.

Again, looking at the system-wide density measures for UTD and UTC are not beneficial. In-

stead, we look at the method level densities. The method level densities for JabRef are higher than

the values for ArgoUML. In JabRef, 28% of the parameters are composed of unique terms. Fur-

thermore, parameters contain 17% of the method’s terms and contribute over 11% of the unique

terms in the methods. For both ArgoUML and JabRef, there is a large standard deviation. How-

ever, the increases in the means for JabRef over ArgoUML may help to understand why in the top

configuration of JabRef the parameters were given a weighting factor of 8.

Body comments appear in 23% of the docs for JabRef with a term to use ratio of 1:7, the

same ratio as ArgoUML, but with 10% more docs. Body comments contain 5% of JabRef’s terms

123

while being composed of 2% unique terms and contributing 7% of the unique terms in the system.

Body comments are the third highest contributor of unique terms among the lexicons, and contain

the second highest percentage of terms, behind the leading comments. Looking at the method

level measures, body comments are composed of 47% unique terms. Body comments contain only

13% of the method’s terms for where they appear and contribute only 16% of the unique terms

in the methods for which they appear. Each of these values are lower than the values for leading

comments and method names which are shown to have a greater impact on the results of the FLT.

Local variables appear in 35% of the docs for JabRef and have a term to use ratio of 1:4,

the lowest ratio for any of the lexicons. For JabRef, local variables contain the least amount of the

terms for the system amongst the lexicons at 3%. Similar to ArgoUML, local variables contribute

the least amount of unique terms to the system. These low values are seen in the method level as

well, when local variables appear in a method they contribute less than 1% of the unique terms

in the method. This consistently low value of unique terms for each system may be due to a low

number of local variables to other terms in the method or it could be due to how local variables

are used in general. If a local variable stores the return value of a method call, terms in the local

variable may be the same as terms in the method call. Or it could be due to comments that explain

the purpose of the local variables sharing terms. However, this sharing of information between

local variables may be an indicator of why raising the weighting factor of local variables reduces

the performance of the FLT for most configurations.

jEdit

As can be seen in Table 4.17c, leading comments have a higher prevalence in jEdit with

61% of the docs containing terms from the lexicon. As was seen with ArgoUML, the leading com-

124

ments in jEdit have a high ratio of terms to uses at 1:13 indicating some reuse of terms. However,

Table 4.18 still shows that amongst the lexicons, leading comments contribute the highest per-

centage of unique terms at 16%. Leading comments also contain the highest percentage of terms

amongst the lexicons at 15%. Looking at leading comments we see that they are composed of only

1% unique terms. This indicates that while terms may be reused between the leading comments,

they provide information that is not available in the other lexicons. Looking at the method level

densities, for methods with leading comments, leading comments provide 40% of the unique terms

while containing 31% of the method’s terms and being composed of 42% unique terms.

In jEdit, 99% of the methods contain method names and there is a ratio of 1:4 between terms

and uses. The small percentage of methods that do not have names for a system are anonymous

methods that are contained within other methods. A low term to use ratio indicates that there is

little repetition between terms in the method lexicon. Terms that are repeated are often terms such

as ’get’ or ’set’ that are used to identify getter and setter methods in the system. The system-wide

densities show that method names contribute the second most unique terms for the system, behind

leading comments. Method names contain 5% of the terms in the system and over 1% of the

terms in the method names lexicon are unique. At the method level, method names in jEdit only

contribute 14% of the unique terms in the method. This is the second lowest of any system,

with ArgoUML being the lowest. The method names also have the second lowest composition

of unique terms at 33% and contains the lowest percentage of the method’s terms at 16%, again

ArgoUML has the lowest percentages. This may be due to sharing of terms between the method

names and the leading comments as both ArgoUML and jEdit have the highest number of docs

with leading comments. These lower values may explain why for both systems, there are top

configurations that do not give method names a weighting factor of 8.

125

Parameters appear in 60% of the docs for jEdit with a term to use ratio of 1:11. Considering

the system-wide densities, parameters contain the third most terms in the system with over 4%.

Considering methods with parameters and removing usages shows that lexicons contribute 10% of

the unique terms in the system. This is higher than ArgoUML and muCommander, however lower

than JabRef. jEdit also contains the second highest composition of unique terms at 18%.

Body comments in jEdit have the lowest number of docs amongst the lexicons. Only 13%

of the docs in the system contain body comments. The ratio of terms to uses is 1:6. It is not sur-

prising to find that body comments contain the smallest percentage of terms for JabRef at 3%. The

contribution of unique terms is the third highest at 6% and body comments have the highest com-

position of unique terms at 2%. For methods where body comments are present, they contribute

14% of the unique terms in the method. This is the second highest of any of the lexicons, behind

leading comments. Furthermore, 47% of the body comments are unique terms. Body comments

have a lower percentage of the method’s terms at only 10%. This low value and the low presence

of body comments overall may be one of the reasons that body comments do not have a significant

impact on the results of the FLT.

Of the docs in the system, approximately 35% of them contain local variables with a ratio

of term to use of 1:5. This is the same percentage of docs as JabRef and a similar ratio. Local

variables contain 3% of the terms in the systems and are composed of and contributes the lowest

percentages of uniques terms with both percentages being less than 1%. The values are not better

at the method level, as they contain only 5% of the and contribute less than 1% of the unique terms

to the method. Local variables are only composed of 2% of unique terms. These low values for the

uniqueness of local variables may be an indicator for why nine of the top ten configurations use

the unweighted configuration or a weighting factor of 2 for local variables.

126

muCommander

muCommander contains leading comments in 44% of the docs for the system with a high

term to use ratio of 1:25. As in all four subject systems, leading comments had the second highest

term count of any of the lexicons, falling behind method names. System-wide densities in Table

4.17d show that leading comments in muCommander make up 25% of the terms in the system.

This is the second highest lexicon density, falling behind ArgoUML. However, despite this, leading

comments also contribute the second lowest percentage of unique terms of the four subject systems,

falling behind jEdit at 15% and are composed of less than 1% unique terms. This indicates high

reuse of the terms in the leading comments with other lexicons. Looking at the method level

densities, when leading comments appear in a method, they have the lowest composition of unique

terms of any of the four subject systems. Leading comments in muCommander also have the

highest percentages of terms in the lexicon and of unique terms contributed for these methods with

49% and 58%, respectively. Leading comments are typically longer in relation to the methods in

muCommander and therefore give more unique terms while also having a large amount of overlap

with the other lexicons.

Not surprisingly, method names are present in over 99% of the docs in muCommander with

a term to use ratio of 1:5. An important note is that for half of the four subject systems, the

term to use ratio for method names is the lowest while, in the other half, method names have the

second lowest ratio. This indicates that terms are not often reused throughout the system. This is

important to consider when understanding that method names are believed to often describe the

main responsibility of a method. This means that only a small number of methods would contain

the same method terms, whereas for leading comments with a higher ratio have terms that are

often reused between methods. Method names are composed of the highest percentage of unique

127

terms at over 2% with the second highest percentages for both lexicon density and unique term

contribution at 6% and 10%, respectively. For method level densities, an average lexicon density

of 20%, an average unique term density of 43%, and a unique term contribution of 21%, give

muCommander the second highest densities among the four subject systems. The only system

with higher density measures is JabRef, which is the other of the two systems that has a weighting

factor of 8 for all top configurations for the FLT.

Parameters appear in 50% of the docs for muCommander with a ratio of 1:12 for terms

to uses. Considering the system-wide density measures, parameters contain 5% of the terms for

the subject system. This is the second lowest value for any of the lexicons. According to the

method level densities, parameters contribute only 9% of the unique terms in the system. This is

the second lowest of any of the four subject systems. When parameters appear in methods, they

consist of 16% of the terms used by the method and have are composed of 18% unique terms on

average. This unique term contribution is the second lowest of the four subject systems, while the

lexicon density is the second highest.

Body comments are present in 17% of the docs for muCommander with a ratio of 1:11 for

terms to uses. This is the second highest percentage of docs that contain body comments of the

four subject systems. Body comments have roughly the same percentage of terms as the method

names in muCommander at 6%, but contribute less than half of the unique terms compared to

method names. At the method level, body comments contribute 15% of the terms in the method,

and only 17% of the unique terms.

Local variables have the second lowest number of terms in the lexicon, but are the lexicon

with the lowest number of term uses and appear in the lowest number of docs. The ratio of terms

128

System Count LC MN P BC LV

ArgoUML
Terms 5,850 6,152 1,506 1,777 3,221

Uses 145,248 37,731 19,259 12,494 16,873

Docs 11,309 12,529 7,019 1,652 3,666

(a) ArgoUML

System Count LC MN P BC LV

JabRef
Terms 2,848 3,259 1,216 2,409 2,136

Uses 28,165 15,108 13,131 16,917 9,568

Docs 1,516 5,296 2,945 1,179 1,873

(b) JabRef

System Count LC MN P BC LV

jEdit
Terms 4,089 4,749 1,581 1,923 2,497

Uses 57,096 20,601 17,769 11,034 12,238

Docs 4,489 7,248 4,416 971 2,549

(c) jEdit

System Count LC MN P BC LV

muCommander
Terms 4,110 4,822 1,629 2,182 2,075

Uses 105,403 25,822 20,251 25,217 9,038

Docs 3,917 8,760 4,406 1,540 1,834

(d) muCommander

Table 4.17: Unique Terms, Term Usages, and Present Documents for each lexicon for each subject
system

129

System Measure LC MN P BC LV

ArgoUML
LD 0.2519 0.0654 0.0334 0.0216 0.0292

UTD 0.0074 0.0109 0.0009 0.0166 0.0292

UTC 0.2252 0.0858 0.0039 0.0430 0.0024

(a) ArgoUML

System Measure LC MN P BC LV

JabRef
LD 0.0935 0.0501 0.0435 0.0561 0.0317

UTD 0.0194 0.0274 0.0025 0.0206 0.0031

UTC 0.1168 0.0886 0.0070 0.0747 0.0064

(b) JabRef

System Measure LC MN P BC LV

jEdit
LD 0.1521 0.0549 0.0476 0.0294 0.0326

UTD 0.0122 0.0155 0.0025 0.0228 0.0009

UTC 0.1651 0.0755 0.0108 0.0592 0.0028

(c) jEdit

System Measure LC MN P BC LV

muCommander
LD 0.2504 0.0613 0.0481 0.0599 0.0214

UTD 0.0079 0.0225 0.0014 0.0097 0.0003

UTC 0.1560 0.1080 0.0053 0.0453 0.0005

(d) muCommander

Table 4.18: Lexicon Density, Unique Term Density, and Unique Term Contribution for each lexi-
con for each subject system

130

System Measure min median max mean Std.dev.

ArgoUML
LD 0.0022 0.4167 0.9798 0.4142 0.2195

UTD 0.0000 0.5000 1.0000 0.5036 0.2077

UTC 0.0000 0.5000 1.0000 0.4998 0.2803

(a) ArgoUML

System Measure min median max mean Std.dev.

JabRef
LD 0.0044 0.2667 0.9118 0.3115 0.2234

UTD 0.0000 0.4706 1.0000 0.4778 0.2151

UTC 0.0000 0.3333 1.0000 0.3852 0.2745

(b) JabRef

System Measure min median max mean Std.dev.

jEdit
LD 0.0020 0.2857 1.0000 0.3186 0.2240

UTD 0.0000 0.4000 1.0000 0.4289 0.2153

UTC 0.0000 0.3333 1.0000 0.4071 0.3086

(c) jEdit

System Measure min median max mean Std.dev.

muCommander
LD 0.0051 0.5333 1.0000 0.4976 0.2472

UTD 0.0000 0.3636 1.0000 0.3886 0.1724

UTC 0.0000 0.6061 1.0000 0.5788 0.2956

(d) muCommander

Table 4.19: Average Method Lexicon Density, Unique Term Density, and Unique Term Contribu-
tion for Leading Comments for each subject system

131

System Measure min median max mean Std.dev.

ArgoUML
LD 0.0008 0.1111 1.0000 0.1464 0.1410

UTD 0.0000 0.2000 1.0000 0.2652 0.3161

UTC 0.0000 0.0143 1.0000 0.1126 0.1942

(a) ArgoUML

System Measure min median max mean Std.dev.

JabRef
LD 0.0010 0.1250 1.0000 0.2104 0.2245

UTD 0.0000 0.5000 1.0000 0.5518 0.3369

UTC 0.0000 0.1176 1.0000 0.2422 0.2952

(b) JabRef

System Measure min median max mean Std.dev.

jEdit
LD 0.0007 0.1071 1.0000 0.1660 0.1806

UTD 0.0000 0.2500 1.0000 0.3330 0.3533

UTC 0.0000 0.0435 1.0000 0.1396 0.2336

(c) jEdit

System Measure min median max mean Std.dev.

muCommander
LD 0.0003 0.1250 1.0000 0.1986 0.2144

UTD 0.0000 0.4000 1.0000 0.4355 0.3283

UTC 0.0000 0.1053 1.0000 0.2152 0.2748

(d) muCommander

Table 4.20: Average Method Lexicon Density, Unique Term Density, and Unique Term Contribu-
tion for Method Names for each subject system

132

System Measure min median max mean Std.dev.

ArgoUML
LD 0.0005 0.0625 0.6667 0.0816 0.0706

UTD 0.0000 0.0000 1.0000 0.0657 0.1837

UTC 0.0000 0.0000 1.0000 0.0246 0.0781

(a) ArgoUML

System Measure min median max mean Std.dev.

JabRef
LD 0.0014 0.1190 1.0000 0.1701 0.1521

UTD 0.0000 0.2000 1.0000 0.2844 0.3106

UTC 0.0000 0.0385 1.0000 0.1178 0.1736

(b) JabRef

System Measure min median max mean Std.dev.

jEdit
LD 0.0007 0.0909 1.0000 0.1346 0.1306

UTD 0.0000 0.0000 1.0000 0.1786 0.2789

UTC 0.0000 0.0000 1.0000 0.0993 0.2037

(c) jEdit

System Measure min median max mean Std.dev.

muCommander
LD 0.0007 0.1011 0.8889 0.1587 0.1504

UTD 0.0000 0.0000 1.0000 0.1783 0.2622

UTC 0.0000 0.0000 1.0000 0.0922 0.1523

(d) muCommander

Table 4.21: Average Method Lexicon Density, Unique Term Density, and Unique Term Contribu-
tion for Parameters for each subject system

133

System Measure min median max mean Std.dev.

ArgoUML
LD 0.0027 0.0682 0.8457 0.0871 0.0798

UTD 0.0000 0.5000 1.0000 0.5694 0.3099

UTC 0.0000 0.1034 0.8182 0.1275 0.1151

(a) ArgoUML

System Measure min median max mean Std.dev.

JabRef
LD 0.0028 0.0840 0.9574 0.1307 0.1346

UTD 0.0000 0.4444 1.0000 0.4792 0.2834

UTC 0.0000 0.1111 1.0000 0.1604 0.1570

(b) JabRef

System Measure min median max mean Std.dev.

jEdit
LD 0.0017 0.0645 0.9670 0.0958 0.0990

UTD 0.0000 0.4444 1.0000 0.4799 0.3010

UTC 0.0000 0.0930 1.0000 0.1400 0.1437

(c) jEdit

System Measure min median max mean Std.dev.

muCommander
LD 0.0069 0.1297 0.8182 0.1501 0.1083

UTD 0.0000 0.3333 1.0000 0.3591 0.2449

UTC 0.0000 0.1333 1.0000 0.1691 0.1463

(d) muCommander

Table 4.22: Average Method Lexicon Density, Unique Term Density, and Unique Term Contribu-
tion for Body Comments for each subject system

134

System Measure min median max mean Std.dev.

ArgoUML
LD 0.0008 0.0465 0.2093 0.0559 0.0378

UTD 0.0000 0.0000 1.0000 0.0340 0.1317

UTC 0.0000 0.0000 0.1429 0.0072 0.0281

(a) ArgoUML

System Measure min median max mean Std.dev.

JabRef
LD 0.0017 0.0417 0.2222 0.0479 0.0325

UTD 0.0000 0.0000 1.0000 0.0310 0.1479

UTC 0.0000 0.0000 0.2000 0.0039 0.0175

(b) JabRef

System Measure min median max mean Std.dev.

jEdit
LD 0.0027 0.0432 0.2222 0.0500 0.0324

UTD 0.0000 0.0000 1.0000 0.0191 0.1247

UTC 0.0000 0.0000 0.2143 0.0022 0.0137

(c) jEdit

System Measure min median max mean Std.dev.

muCommander
LD 0.0021 0.0364 0.2222 0.0464 0.0344

UTD 0.0000 0.0000 1.0000 0.0035 0.0466

UTC 0.0000 0.0000 0.1538 0.0004 0.0051

(d) muCommander

Table 4.23: Average Method Lexicon Density, Unique Term Density, and Unique Term Contribu-
tion for Local Variables for each subject system

135

to term uses in the lowest with a ratio of 1:4. Looking at the system-wide metrics, local variables

have the lowest unique term density and the lowest unique term contribution at less than 1% for

both measures. From the method level measures, it can be seen that for muCommander, local

variables have the lowest lexicon density, unique term density, and unique term contribution, out

of all four of the subject systems.

4.3 Discussion of Results

This section discusses the case study and provides additional information to explain the

results.

4.3.1 Does structural weighting of comments, leading terms, and local variables affect the accu-

racy of a LDA-based feature location technique (FLT)?

This question was broken down into three parts to examine how weighting affects the ac-

curacy of a LDA-based FLT. I looked at weighting comments, leading terms, and local variables

individually. I looked at the top configurations for each system and across all systems overall.

Finally, I looked at the results of a factorial ANOVA to identify main effects from each component

and to identify significant interactions.

Looking over each of the individual components it can be seen that the highest weights of

leading comments and method names tend to produce better results, while parameters and local

variables produce worse results at higher weights and body comments show more variation be-

tween systems. This is not unexpected. Leading comments often describe the purpose and usage

of a method. For systems in industry and open source that adhere to commenting standards, in-

creases in the weights of these terms should produce better results. Method names usually define

the responsibility of the method, however, will typically only appear once. Increasing the weight

of the method name allows it to have more impact on the results despite being infrequent. The

136

performance improvements for method names in this study were similar to those found by Bassett

and Kraft. Parameters are often secondary to the main responsibility of the method, and unlike

terms in the method name that might refer to the main topic of the method, terms from the param-

eters are likely to increase the weight of secondary topics. Local variables are sometimes similar

in this regard. The variations in body comments may be due to a low usage of body comments in

documents when compared to the other lexicons.

There are three ways that changing the structural weighting scheme typically works to

affect the accuracy of the feature location technique: directly, indirectly, and a combination of the

two. All three ways deal with changing the topic distributions of the methods in the model.

The accuracy of the FLT is directly affected by the structural weighting scheme when the

component being scaled is present in the methods of the gold sets. In this case, the ranks of the

methods in the gold sets were directly increased due to new topics distributions being observed

from the documents. As an example, consider feature 1588028 from JabRef. This query mentions

needing to fix the "DOI" url when exporting to an HTML table. It mentions prefixing the current

url with the domain of a website to make it an absolute link. The query document for this feature

is given in Table 4.3.1. The method to return for this query is the format method of the DOICheck

class. Looking at this method reveals that a majority of the text in this document is from the iden-

tifier "fieldtext." This identifier and the split terms contained within do not appear in the query

document for this feature. Terms that are important to this query that appear in this method docu-

ment are "doi," "prefix," "http," "org," and "dx." However, the majority of these terms only appear

once in a block comment included in the body of the method. More importantly, “fieldtext” is not

prevalent in the same topics as the other terms. This means that for the given feature, the important

topics do not line up between the topic distribution for the query and the topic distribution for the

137

Query Document

export html tabl html tabl wabstract doi
url relat link instead absolut link url
prefix http dx doi org resource lay-
out tablerefs tablerefsbib layout line re-
source layout tablerefsabsbib tablerefs-
absbib layout line export html tabl doi
url

Table 4.24: Query document for JabRef feature 1588028

method. Querying against the unweighted model returns this method as the 74th result. Increasing

the weighting of the body comments creates a new topic distribution with increased emphasis on

the relevant terms. Therefore when querying against the model with structural weighting scheme

C(1,1,1,8,1), this method is returned as the 27th result.

In contrast to the direct effects of the structural weighting scheme on the accuracy of the

feature location technique, it is also possible to indirectly affect the accuracy. This is done when the

methods returned as the first relevant methods do not contain the structural components influenced

by the weighting scheme (e.g., a method without any leading comments or local variables). This

happens for two reasons. First, the methods that do contain the structural components should have

their topic distributions better estimated in the model. When a query is then given that is unrelated

to the method, it will be less likely for that method to be returned as a false positive. The second

way is that the term-topic distribution should have a better approximation in the weighted scheme.

This leads to better topic distributions for all methods whether they contain the weighted structural

components or not. It is also possible that the rankings are affected by a combination of the two

effects.

The results of the statistical analysis showed a significant effect from structural weighting

138

in each of the four subject systems between the unweighted scheme and the top configurations.

Although there is not a single weighting configuration that is best for all systems, there are some

things that can be noticed in the results. The top configuration for each system included a scal-

ing factor of 8 for leading comments, a scaling factor of 8 for method names on three of the four

systems, and a scaling factor of 8 for body comments on two of the four systems. There was

a difference in the scaling factors for parameters and local variables. Both ArgoUML and mu-

Commander used a scaling factor of 1 for parameters while JabRef used a scaling factor of 8 and

jEdit used a scaling factor of 4. The highest weighting factor for local variables was a 4 for Ar-

goUML. All other systems gave local variables a scaling factor of 1 or 2. For all systems overall,

the top configuration maintained a weighting factor of 8 for both leading comments and method

names, a weighting factor of 4 for body comments, and a weighting factor of 2 for both parameters

and local variables.

Comparing the top configurations to the results of weighting lexicons individually does

not show an exact relationship. When looking at the individual weights for ArgoUML, using

the best MRR for each individual component leads to a prediction of the top configuration being

C(8,4,1,2,1). However, the top configuration is actually C(8,8,1,8,4). There are a few reasons

for this. First, as terms associated with a topic increase for a method, that topic becomes more

dominant in the method. As select topics become more dominant, secondary topics lose their im-

pact on the final results. This can be detrimental when multiple methods share the same dominant

topic with the query, but different secondary topics. An example of this could be two documents

that both have "computer science" as a dominant topic, but where one has a secondary topic of

"robotics" and the other has a secondary topic of "graphics". By increasing the weight on "com-

puter science" too heavily, the topics of "robotics" and "graphics" can be lost. If a query then comes

139

in with topics of "computer science" and "graphics", the right document may not be returned. Sec-

ond, lexicons may interact with one another and share complementary information. If the weight

on one lexicon is increased, the weight on the other lexicon should also increase.

To test whether this second case existed, I performed a factorial ANOVA to identify signif-

icant main effects and interactions. I found an interaction between leading comments and method

names on three of the four subject systems, with the only subject system that did not have an inter-

action between these two lexicons being JabRef. This is perhaps due to the fact that JabRef had the

lowest percentage of documents with leading comments and therefore did not have enough infor-

mation to find an interaction. This interaction makes sense. Both leading comments and method

names are used to define the main responsibility of the method document. While information and

terms between the two lexicons can overlap to some extent, both lexicons tend to provide infor-

mation that is not present in the other lexicon. This can be seen by looking at the unique term

contributions of the two lexicons for each of the four subject systems. This interaction was found

for all systems as well. Surprisingly, for jEdit, another interaction was found. This interaction was

between leading comments and local variables. It is not clear why this interaction is present in

jEdit. However, in some methods, there is overlap between the terms in the leading comments and

the terms in the local variables. No other interactions were identified.

For each of the four subject systems, there were main effects from the leading comments,

the method names, and the local variables. This is not surprising as increasing the weights of

leading comments and method names resulted in the best increase in MRR for the four subject

systems, while increasing the weight of local variables resulted in the lowest MRRs for each of the

four subject systems. Parameters also showed a main effect for ArgoUML. In ArgoUML, increas-

ing the weight of parameters led to a poor MRR. For the other three subject systems, increasing the

140

weight of parameters did not show a significant change on the results of the FLT for the software

systems. However, when looking at the results for all systems, parameters once again showed a

main effect. Body comments did not show as a main effect for any of the four subject systems. This

could be due to the fact that body comments were found in the lowest percentage of documents for

each of the four subject systems. In a system where the developers make widespread use of body

comments, the results could be different.

4.3.2 Can a relationship between the contributions of each structural component’s lexicon and

their weighting factors be found?

For each of the four subject systems, I looked at the system-wide lexicon density, unique

term density, and unique term contribution for each of the five lexicons. I also looked at the method

level statistics for these values for methods where at least one term in the method document came

from the lexicon.

Leading comments had the second highest percentage of docs in two of the four subject

systems. In the case of JabRef, leading comments were behind method names, parameters, and

local variables. For muCommander, leading comments were behind method names and parameters.

Despite these lower percentages of docs, leading comments had the highest system-wide lexicon

densities and unique term contributions of all of the lexicons. These values were the highest

for the mean method values as well. For both ArgoUML and jEdit, where leading comments

had the second highest percentage, each of the top ten configurations had the highest weighting

factor of 8 for leading comments. In the case of both JabRef and muCommander, some of the top

configurations used a weighting factor of 4 instead of 8 for leading comments. For all four of the

subject systems, using one of the two highest scaling factors was done for all top configurations.

141

However, in the two systems where leading comments were present in the highest percentage of

documents, only weighting factors of 8 were used.

Not surprisingly, method names were present in the highest percentage of documents for all

four of the subject systems. The only documents that do not contain method names are documents

that refer to anonymous methods in Java. Method names also have the second highest system-

wide and mean method level lexicon density and unique term contribution for each of the four

subject systems. Looking at the MRRs for the four subject systems, each of the four subject

systems have higher MRRs at a weighting factor of 8 versus a weighting factor of 4. However,

both ArgoUML and jEdit actually show a decrease in the MRR from a weighting factor or 4 to

a weighting factor of 8. This is reflected in the top configurations for each subject system which

shows a weighting factor of 8 for all top configurations of both JabRef and muCommander while

some of the top configurations for both ArgoUML and jEdit use a weighting factor of 4. In fact,

for the top configuration of jEdit a weighting factor of 4 is used. Interestingly, when looking at

the mean method level values, ArgoUML and jEdit have the lowest mean lexicon densities, unique

term densities, and unique term contributions.

Parameters had the third highest percentage of documents for two of the four subject sys-

tems and the second highest percentage for two of the four subject systems. Parameters have the

second lowest system-wide and mean method level unique term contribution among the lexicons.

Lexicon density was the third highest in two of the four subject systems. The highest weighting

factor of 8 is only used in a small number of top configurations among the subject systems. In

general, parameters are given a lower weighting factor for the top configurations. However, for

JabRef a weighting factor of 8 was used in the top configuration. Furthermore, a weighting factor

of 8 is used for three of the top configurations for JabRef. When looking at the method level val-

142

ues, it can be seen that parameters have the highest mean lexicon density, unique term density, and

unique term contribution values of the four subject systems.

Body comments have the lowest percentage of documents for each of the four subject

systems. However, despite having the lowest percentage of documents in each of the four subject

systems, body comments had the third highest lexicon density in two of the four subject systems

and the third highest system-wide and mean method-level unique term contribution in all of the

four subject systems. The MRRs for raising body comments alone showed an increase in three

of the four subject systems for a weighting factor of 8 over the unweighted configuration. For

three of the four subject systems, a weighting factor of 4 or 8 is used for at least half of the top

configurations. The exception to this is muCommander which still uses a weighting factor of 4

or 8 for three of the top configurations. muCommander has the lowest system-wide unique term

density and unique term contribution of all the four subject systems.

Local variables have the second lowest percentage of documents for three of the four sub-

ject systems and the third highest percentage for JabRef. Local variables have the lowest system-

wide and mean method-level unique term contributions for each of the four subject systems. Lex-

icon density is the second lowest for two of the four subject systems and third highest for the

remaining two. When looking at the MRRs of weighting local variables alone, each of the subject

systems showed a decrease when comparing a weighting factor of 8 to the unweighted configura-

tion. The top configurations also used low weighting factors for local variables. The best weighting

factors for local variables were in ArgoUML, which used a weighting factor of 4 for the top con-

figuration, and in muCommander, which used a weighting factor of 4 or 8 for four of the top

configurations. ArgoUML has the highest mean method-level unique term contribution amongst

143

the four subject systems and muCommander has the highest system-wide unique term contribution

for local variables.

When comparing the density measures to the results, a few interesting things can be said.

First, for a lexicon with high weighting factors, higher system-wide and mean method level unique

term contributions are desired. Having low values for this measure seems to indicate that increasing

the weight of that lexicon will result in poorer results. While more studies would be needed to prove

this, there is some reasoning behind this claim. Lexicons that have low unique term contributions

share their terms with other lexicons in the document and across the system. When these values are

raised, the existing information that already exists from multiple sources is being raised. This is

unlikely to result in better topic distributions. However, when a lexicon is the only source of certain

terms in the documents, raising that lexicon can produce better topic distributions assuming that the

terms are relevant to the task and not noise. Second, when looking at whether a lexicon will have

a main effect on the results, there seem to be two contributing parts. The first is in the prevalence

of the lexicon indicated by the percentage of present documents and in the lexicon density. The

greater the presence of the lexicon, the bigger the chance that the lexicon will affect the results.

Second, is the unique term contribution or the amount of new or shared information contained in

the lexicon.

4.3.3 Recommendations

The results of this study can give some early recommendations for determining when to

raise the weight of a lexicon. To simplify the process, I recommend using weighting factors of 4

or 8 for any lexicon that is selected and leaving all other lexicons as unweighted. The process for

selecting which lexicons to raise can be broken down into two steps:

144

1. Compute the percentage of documents for which each lexicon is present. In addition, com-

pute the system-wide and average method-level densities. Identify lexicons with a document

percentage around 30%, a lexicon density around 0.05, a system-wide unique term contribu-

tion of at least 0.08, average method-level lexicon density and unique term contribution of

at least 0.10-0.15 each, and average unique term density of at least 0.25.

2. If available, use a testing set of features to calculate the MRRs of the unweighted configu-

ration of an individual lexicon and then that lexicon individually weighted with a factor of

8.

Both of these steps serve to cut down on the number of tests required to determine whether

to weigh a lexicon in the configuration of the system. The first step cuts down on the number of

lexicons needed to be checked. The second step helps to identify whether raising the weight of the

identified lexicon will increase noise or useful information for the FLT. Using the steps as given, I

studied other lexicons for JabRef and identified the literals lexicon. Weighting this lexicon along

with the leading comments and the method names lexicon resulted in a MRR of 0.1912, which is

greater than any MRR found in this study thus far.

4.4 Using Machine Learning to Find Optimum Configurations

While general recommendations are given in the previous section for determining an ap-

propriate configuration for a given system, there is no guarantee that the guidelines will produce

the optimum configuration for a system. To find the optimum configuration requires searching all

configurations at all levels of weighting. Furthermore, the weighting configurations chosen in the

previous study double the weighting factors with each step. This was to show greater variations

between values, but does not ensure that the best configuration is selected between the minimum

145

and maximum weighting configurations. However, this problem is not an easy one. Even if the

search is limited to the lexicons selected in the case study, there are five lexicons with weighting

factors ranging from 1 to 8. This results in a total of 85 = 32,768 different topic models to check.

For JabRef, the smallest system in the study, the time to train a topic model on a reasonable com-

puter can range from 5 to 10 minutes. This is between one hundred to two hundred days to search.

This is for a system of less than 75k lines of code. For larger systems, the time becomes worse.

If the best configuration is required, then a better search process will be required to return

results in a reasonable manner of time. This section presents a search process based on genetic

algorithms that searches through topic models for an unknown system by using information learned

during the search process to identify the most likely candidates. The search process was performed

using two different fitness functions. The first uses the MRR as in the case study. The second

uses the silhouette function [Rousseeuw, 1986] (a measure of the quality of clusters) in a process

similar to the process introduced by Panichella et al. [Panichella et al., 2013] for finding the best

configuration of parameters of LDA on an unknown system. The first fitness function requires

training data such as a list of features or bugs with their corresponding gold sets to be computed.

The second does not require training data, but may result in a sub-optimal topic model being found.

The following discusses genetic algorithms, introduces the fitness functions, and then shows

the results of the search process. The purpose of this example is not to find the optimal solution, but

instead to show that a search process can be used to find increasingly optimal solutions. Therefore,

the search concludes after a certain point has been reached.

4.4.1 Genetic Algorithms

Genetic algorithms [Bäck, 1996] are evolutionary algorithms that attempt to mimic the

process of natural selection. Genetic algorithms are heuristic search techniques. A population of

146

candidate solutions is created and then a search heuristic is used to evolve the existing candidates.

An iteration of a genetic algorithm is referred to as a generation, and with each generation the

best solutions are selected and crossed-over to produce a new candidate population. Crossing-over

takes parts of two solutions and trades those parts between the two solutions to create two new

candidates. After the cross-over, it is possible for mutations to occur which randomly changes part

of a solution. This process is repeated until a new population is created with the same number of

candidates as the previous generation. Sometimes, a genetic algorithm will incorporate elitism,

which is the option of choosing a small number of the most fit candidates to survive between

generations.

Genetic algorithms require both a genetic representation of a solution and a fitness function

to evaluate a solution. The genetic representation depicts each solution as a chromosome. A stan-

dard representation of a candidate solution is an array of bits or values. Each candidate typically

has the same number of values in the array. The fitness function assigns a fitness value to each so-

lution that represents how well the solution solves the given problem. Given an appropriate fitness

function, a higher fitness value indicates a better solution.

The algorithm is first initialized with an initial population, which may be randomly selected

or include solutions that are known to be likely to produce an optimal solution. A random popula-

tion will cover the entire range of possible solutions, but a more focused set of solutions will focus

on leading to an optimal solution faster.

After an initial population is set, a fitness function computes the fitness value for each of the

chromosomes in the population. Pairs of chromosomes are then selected to be the parents of new

chromosomes for the next generation. There are two common ways for choosing parents. The first

is roulette selection which gives chromosomes with a higher fitness value a proportionately higher

147

chance of being selected as a parent. The other way is to use rank selection which orders each of the

chromosomes by fitness value and then uses the ranks to assign probabilities of each chromosome

being selected. Rank selection avoids any chromosome from having a substantially higher chance

of being selected over any other chromosome, but this also leads to slower convergence.

After chromosomes are selected, crossover occurs, which is the step where sub-parts of

each parent are swapped between each other. There are four common ways for crossover to occur.

The first is single point crossover where a single point is selected in the offspring. The information

leading up to that point is copied from the beginning of the first parent while the information after

that point is copied from the ending of the second parent. In two point crossover, two points are

selected and the beginning and end of the offspring come from the first parent while the middle

comes from the second parent. In uniform crossover, bits and pieces are copied from each parent.

Finally, in arithmetic crossover an arithmetic operation such as a vector product is performed to

result in the offspring. It is possible that after crossover occurs a mutation will follow. Possible

ways to perform mutation include adding values to random places in the chromosome, swapping

the order of the values, inverting the values in the chromosome, or selecting new values from

a range of values at random points in the chromosome. Elitism ensures that a small number of

chromosomes can remain unchanged between generations. This means that these chromosomes

will not go through crossover or mutation.

These steps repeat until a new population is created and then the process begins again.

The genetic algorithm continues until a termination condition is reached. Possible termination

conditions include a set number of iterations, finding the maximum fitness value, exhausting the

search space, or finding a solution with an acceptable margin of error. In many cases, determining

the maximum fitness value is as difficult as finding the optimum solution in the search space.

148

4.4.2 Fitness Functions Used in Study

For the purposes of this study, the search process was performed using two different fitness

functions. The reason for this is to compare the silhouette function, which does not require addi-

tional training data, to the search process using the actual MRR. The MRR was defined earlier in

this chapter. For the purposes of the search process, the MRR is computed for each candidate in

the population and used as the fitness value for that candidate.

Panichella et al. [Panichella et al., 2013] use the silhouette function as a measure to evaluate

how well a given LDA configuration clusters related documents around their dominant topics. In

their paper, they make the assumption that documents should be clustered around dominant topics

in topic spaces. In this case, a dominant topic is considered to be a topic that has a maximum

probability in the topic-document probability distribution. The silhouette coefficient [Rousseeuw,

1986] was introduced as a way to measure the quality of clusters. The idea behind the silhouette

coefficient is that objects inside of the cluster should be more similar to each other than to objects

outside of the cluster. The more similarity to objects inside of the cluster and dissimilarity to

objects outside of the cluster, the better. To compute the silhouette coefficient, for all objects i, the

following must be computed:

• a(i) - the average dissimilarity of i to all objects in cluster A, where A is the cluster for which

i is present

• d(i,C) - the average dissimilarity of i to a cluster C 6= A, this value must be computed for

each possible C

• b(i) - the minimum of all d(i,C)

149

The silhouette coefficient, s(i), can then be computed as:

a(i)−b(i)
max{a(i),b(i)}

In the case of this study, each object i refers to a topic distribution that has been placed into

a cluster based on its dominating topic. To calculate the dissimilarity, we use the Hellinger distance

between the topic distributions. The number of calculations for finding b(i) can be simplified by

using centroids, which can be calculated as the mean of all topic distributions in the cluster. This

allows for the Hellinger distance to be found between the document and the centroid of each C,

instead of between i and all documents not in A. The fitness value used is the mean silhouette for

all documents in the corpus.

There is an important distinction to make between a dominant topic for a method that is

determined by the algorithm and a relevant topic that helps handle a feature location task. The

algorithm will determine the dominant topic by the number of assignments of terms to each indi-

vidual topic. Relevant topics are the dominant topics of the queries. If weighting a topic produces

better clustering for dominant topics that are not relevant topics to the feature location task, then

an improvement in the ranks and the MRR will not be observed. For this reason, I compare the

genetic algorithm technique using the silhouette function to the results using the MRR.

4.4.3 The Search Process

The specific process used in this section can be described in the following way:

1. An initial population is created based on the recommendations from the case study. This is

done by choosing the lexicons with the highest likelihood to produce better results and giving

them higher weighting factors, while giving other lexicons lower weighting factors. Each

chromosome is represented as an array of five values corresponding to the five weighting

150

factors for the lexicons. The search process was executed multiple times with population

sizes of 10, 25, and 50.

2. The fitness function was computed for each of the chromosomes in the initial population.

The same search process was used for both the silhouette coefficient and for the MRR.

3. I chose to use roulette selection. This should lead to faster convergence. I also choose to

use a two point convergence which maintains the best two chromosomes across generations.

This ensures that if someone wants to perform a feature location task during the search, they

have the best topic model found up to that point.

4. Uniform crossover was performed. This means that multiple points can be selected for

crossover and ensures that the same weighting factors will not be consistently swapped be-

tween parents.

5. Uniform mutation was performed by selecting random points in the offspring and exchang-

ing the values at those points with other values in the range from 1 to 8.

6. When using this search process in an actual development environment, the search should

continue until the entire search space is exhausted or in the unlikely event that an MRR

of 1 is identified. However, for feasibility and since the purpose of this study is only to

demonstrate the search process, the number of iterations for this study was limited to 50.

Figure 4.7 shows this process. Genetic algorithms have a problem of getting stuck on local

optima, so in addition to these steps I also incorporate an additional step if the average fitness value

has failed to show acceptable change within five iterations. The additional step is to select half of

the non-elite solutions and replace them with a random set of solutions from the remaining search

151

Figure 4.7: The Search Process - An initial population is selected of most likely candidates, pairs
are selected for crossover and then mutation, new population is created and the process repeats

space. This results in a soft reset of the search process and allows for the search to continue away

from a local optima.

4.4.4 Searching Eclipse

An experiment was conducted to evaluate whether the genetic algorithm would be able to

identify better structural weightings over time. The study was performed as both a proof of concept

and as an evaluation of the two possible fitness functions. I use the same notation as presented in

the previous study. The primary goal of the study is to show that genetic algorithms can be used to

identify better weighting schemes when a proper fitness function is applied. The exception occurs

when the initial population started with an optimum weighting configuration. The advantage of

this process over other search techniques is that a genetic algorithm incorporates past experience

and learned information to target the most likely candidates first. In practice, this should lead to

improvements in less steps than other search techniques.

I chose to use Eclipse8 for this experiment. Eclipse is included in the SEMERU benchmark

that was used in the previous study. Eclipse is an integrated development environment for Java,

8 https://eclipse.org/

152

https://eclipse.org/

C\C++, and PHP. A description of the system and the version used can be found in Table 4.25.

This system was omitted from the previous study for feasibility purposes. The size of the system

is substantially larger than the subject systems used in the previous study, and therefore requires

far more time to train in LDA. Searching through 32,768 different weighting configurations for

this system (using possible weights of 1 through 8 for each of the five lexicons) is infeasible.

For this reason, an improved search methodology is required to identify near optimum weighting

configurations in as few steps as possible.

System Version SLOC CLOC Methods Features

Eclipse 0.3 1,255,149 704,092 126,744 45

Table 4.25: Eclipse

I use the same setting as was used in the previous study, with population sizes of 10, 25,

and 50 candidates, and an ending condition of 50 iterations for the genetic algorithm. The search

focuses on different weighting schemes of the same five lexicons that were used in the previous

study. The focus of the experiment is to address the following two questions:

1. Does the genetic algorithm identify weighting configurations with higher MRRs after 50

iterations?

2. How well does the silhouette coefficient perform in identifying better weighting configura-

tions when compared to the MRR?

The goal of Research Question 1 is to identify a weighting configuration with a higher MRR

in a small number of iterations. The number of iterations was limited to 50 for this experiment due

to feasibility for the experiment. Because the actual difference is not important and it is assumed

153

Count LC MN P BC LV

Terms 19,623 42,167 13,315 6,594 18,883

Uses 1,114,457 330,357 341,757 179,292 187,071

Docs 63,308 114,751 73,131 26,920 73,131

(a) counts

Measure LC MN P BC LV

LD 0.1955 0.0579 0.0599 0.0314 0.0328

UTD 0.0028 0.0132 0.0048 0.0053 0.0002

UTC 0.0769 0.1098 0.0407 0.0237 0.0008

(b) system-wide measures

Table 4.26: Terms, Uses, and Document Counts and System-wide Lexicon Density, Unique Term
Density, and Unique Term Contribution for Eclipse

that the algorithm can continue to run for a longer period of time finding better results over time,

the significance of the difference is not computed. ForResearch Question 2, when performing the

genetic algorithm using the silhouette coefficient, I also calculated the MRR. In addition to looking

at whether the approach leads to a higher MRR after the 50 iterations, I also looked at how often

the silhouette coefficient selects the same two elite candidates as if following the approach using

the MRR.

The first step is to identify the initial starting population for the experiment. To do this,

I compute the system counts and the system-wide and method-level lexicon density, unique term

density, and unique term contribution for each of the five lexicons. The results of these computa-

tions are shown in Tables 4.26 and 4.27. Based on the recommendations obtained from the previous

study, candidates for a high weight include leading comments and method names. Parameters meet

all criteria except for the system-wide UTC. For this reason, I chose to also test parameters. The

results of weighting each of the three lexicons alone with weighting factors of 1, 2, 4, and 8, are

154

shown in Table 4.28. The MRRs for Eclipse are significantly lower than any of the other four

subject systems. However, these results are higher than other know pure text models [Wang, Lo,

and Lawall, 2014] and can be explained due to significantly higher number of methods in Eclipse.

Queries that have a poor result will lower the results farther than a poor result in the other four

subject systems. The results of weighting the three lexicons independently indicate that a high

weight should be appropriate for all three.

To identify the initial population, I compute all weighting configurations where leading

comments, method names, and parameters are given a weighting factor between 6 and 8, and body

comments and local variables are given weighting factors between 1 and 3. Then, I randomly select

49 configurations from the set. I use the configuration C(8,8,8,1,1) as the final configuration in

each of the three populations. Finally, I compute the MRR for each of the 50 configurations and

sort them in descending order based on the computed MRR. I use the top 10, 25, and 50 for each

of the initial populations.

The results of the experiment are shown in Figure 4.8. Along with the final results obtained

from the three population sizes, I include the highest MRR found from the initial population and

the MRR of the unweighted configuration. The unweighted LDA configuration results in an MRR

of 0.0026 for Eclipse, the highest MRR from the initial population is 0.0046. Looking at the results

of using the MRR as the fitness function, the MRR of the weighting configuration identified in the

final result gets larger as the population size searched increases. This makes sense as increasing the

population size increases the space that is searched. For a population size of 10 and 50 iterations,

a total of 50 configurations are searched. However, while there is a slight increase in the final

MRR of the weighting configuration identified in the search for all three population sizes, for the

155

Measure min median max mean Std.dev.

LD 0.0009 0.4000 1.0000 0.4168 0.2511

UD 0.0000 0.4390 1.0000 0.4652 0.2159

UTC 0.0000 0.4857 1.0000 0.4873 0.2937

(a) leading comments

Measure min median max mean Std.dev.

LD 0.0001 0.0980 1.0000 0.1579 0.1824

UD 0.0000 0.3333 1.0000 0.3896 0.3458

UTC 0.0000 0.0690 1.0000 0.1525 0.2261

(b) method names

Measure min median max mean Std.dev.

LD 0.0003 0.1062 1.0000 0.1570 0.1553

UD 0.0000 0.0714 1.0000 0.2245 0.2884

UTC 0.0000 0.0156 1.0000 0.1110 0.1817

(c) parameters

Measure min median max mean Std.dev.

LD 0.0016 0.0526 1.0000 0.0804 0.0886

UD 0.0000 0.5000 1.0000 0.5869 0.3322

UTC 0.0000 0.0698 1.0000 0.1111 0.1210

(d) body comments

Measure min median max mean Std.dev.

LD 0.0002 0.0455 0.2564 0.0520 0.0324

UD 0.0000 0.0000 1.0000 0.0061 0.0593

UTC 0.0000 0.0000 0.3333 0.0009 0.0080

(e) local variables

Table 4.27: Average Method-level Lexicon Density, Unique Term Density, and Unique Term Con-
tribution for each of the lexicons for Eclipse

156

Lexicon 1 2 4 8

Leading Comments 0.0026 0.0031 0.0035 0.0039

Method Names 0.0026 0.0030 0.0037 0.0042

Parameters 0.0026 0.0029 0.0030 0.0029

Table 4.28: MRRs Weighting Candidate Lexicons Alone

silhouette coefficient using a population size of 50 did not help identify the configuration with the

higher MRR faster than the population size of 25 or 10. There are a few possible reasons for this.

The first possibility is due to the randomness of the candidates selected as pairs in each

generation. Given that the paths are non-deterministic and each run of the genetic algorithm will

result in a different path, the result could be due to the selection of a poor path. The second

possibility may be due to the fact that the silhouette coefficient indicates how well the trained LDA

model clusters documents around dominant topics and not relevant topics. This means that the

choices in the elite candidates may not be the candidates with the highest MRRs. The candidates

identified when searching with a population of size 10 or size 25 may have been identified when

searching with a population size of 50. However, they may not have been the candidates with the

highest silhouette coefficient in the generation and therefore not carried over to the next generation.

To determine how well the silhouette coefficient selected the candidates with the highest

MRR, I computed this alongside the silhouette coefficient at each generation. The number of times

the highest silhouette coefficient also had the highest MRR, fell in the top 3 of all MRRs, fell in

the top 5, and fells in the top 10 is shown in Table 4.29. It can be observed from this table that the

silhouette coefficient does not always identify the weighted configuration with the highest MRR.

In addition, the larger population size also resulted in more occurrences where the top silhouette

coefficient did not line up with the top MRR. It is important to realize, however, that this does not

157

(a) MRR

(b) Silhouette

Figure 4.8: The unweighted configuration, top configuration from the untrained population, and
results of 50 iterations of the the genetic algorithm for population sizes of 10, 25, and 50 based on
MRR using the MRR and silhouette coefficient fitness functions

158

Population Top 1 Top 3 Top 5 Top 10

10 44 47 49 50

25 40 42 46 50

50 33 39 43 49

Table 4.29: Number of times the top silhouette coefficient was in the top MRRs

indicate that a smaller population size will result in a better search. If both searches ran until the

end, aside from possible noise when training the LDA models, all searches should identify the

same final weighting configuration.

Although the results of the search using the silhouette coefficient did not always identify the

best weighting configuration, each search did identify after 50 iterations a weighting configuration

that was higher than the starting configuration. Furthermore, the top silhouette coefficient was

in the top 10 of MRRs the majority of the time. A good strategy may be to use the silhouette

coefficient as the fitness function until sufficient training data is available.

4.5 Summary

In this chapter, I looked at weighting configurations of LDA for four subject software sys-

tems and showed that weighting lexicons identified by their structure increases the performance

of an LDA-based FLT. I also identified characteristics of the lexicons that showed the best in-

creases in performance when weighted highly and made recommendations for identifying which

lexicons should receive higher weights. While the recommendations may not identify the configu-

ration with the highest performance, I outlined a search process that can identify better weighting

configurations over time.

The limitations of this approach are in the need to identify the lexicons that should receive

higher weighting factors and the time required to identify the best weighting configuration. In the

159

next chapter, I present a way to perform retrieval using language modeling, but still allows the

developer to weight terms appearing in certain lexicons. This approach removes the overhead of

training different LDA models.

160

Chapter 5

STRUCTURED SOURCE CODE RETRIEVAL

In the previous chapter, I presented an approach to LDA for source code that used structural

weighting to improve the performance of a FLT. This research was based on previous research

conducted in configuring LDA for feature location, and on a previous study conducted on using

structural weighting for LDA. This approach showed a significant improvement over unweighted

LDA when using the proper weighting configuration. The weakness of this approach is that it

requires multiple models to be trained in order to properly identify the best weighting configuration

for a new software system. In this chapter, I present a new approach that uses structured retrieval

and advanced queries to improve the performance of a FLT without requiring the formation of a

new index.

The approach presented in this chapter combines language models with SDR. Structured

retrieval differs from the previous LDA approach and other common techniques in TR-based fea-

ture location in that it does not treat documents as bags of words, and instead considers documents

as structured templates that contain contents in the form of the terms. Documents extracted from

source code can be structured using AST information. Consider a document representing a method.

Distinct sections can represent the signature and body. Within the signature, fields can represent

the method name, and a subsection can represent the parameter list, within which fields can repre-

sent the parameter types and names. Similarly, sections and fields can represent parts of the method

body, including statements and their constituent expressions. Note that a given term may appear

161

in only the signature (e.g., a parameter type) or in both the signature and body (e.g., a parameter

name). Unlike a traditional TR model, in which the structure of a method is not considered, a struc-

tured retrieval model allows a developer to issue a query that includes terms and sections/fields of

interest.

Context is key in source code search tasks. Identifiers play many roles in source code,

and an identifier can convey different information in different contexts. For example, suppose the

identifier test appears in the name of one method and in a method call in the body of another

method. In the former case, test may relate to the main responsibility of the method, whereas in

the latter case, test may relate to one step in a larger responsibility. Using content and structure to

search a corpus and retrieving either the most relevant section(s) or document(s) based on content

relevance and structural similarity is known as structured document retrieval (SDR) [Lalmas and

Baeza-Yates, 2009]. Unlike traditional TR models, SDR models support powerful query languages

in which a user may specify several constraints, including the scope of the query and the weight or

probability assigned to each term or structural entity.

In this chapter I present:

• A methodology for feature location using CAS queries

• Motivating examples for and an empirical study of the use of CAS queries for feature loca-

tion

The focus of the empirical study is on how different aspects of the CAS queries affect

the performance of the SDR-based FLT. This gives insights into the aspects that are most impor-

tant, and an understanding about the possible performance gains that can be achieved using the

approach. In future studies described in Chapter 6, I plan to use the results of this study as a

162

base for understanding and improving the way developers will be able to use the technique by

recommending queries and providing additional information to developers through improved user

interfaces.

5.1 Approach

For my study, I use the Indri Retrieval Model which combines language modeling with an

inference network to create a structured retrieval model. In this section I describe my approach,

including the Indri retrieval model on which it is based.

5.1.1 Overview of Indri

Indri1 is a search engine developed as part of the Lemur project between the University

of Massachusetts and Carnegie Mellon University. The search engine supports structured query

documents written in the Indri Query language and provides the user of the system with a flexible

model for defining fields and other attributes of a document in the corpus. The system uses a

combination of language modeling and inference networks as the search engine’s retrieval model.

To study the effects of CAS queries, I used Indri as a structured retrieval search engine and wrapped

it in a system for indexing and querying a software system.

5.1.2 The Indri Retrieval Model

Before Indri can index a corpus and build a model, the user needs to provide the search

engine with a parameters file. This parameters file contains both fields and metadata about the

corpus being indexed. For the purposes of my research, I make direct use of the fields that can be

specified in the parameters. Fields are extents of the textual content of a document (e.g. a heading

or body tag in an HTML document). Indexed field names are available for use in an Indri query

language query. In a query, the user may specify the fields they wish to search. By specifying fields

1 http://www.lemurproject.org/indri/

163

http://www.lemurproject.org/indri/

Figure 5.1: Example Indri Model

and using an appropriate file format, users may develop their own structured formats for indexing

in the Indri system.

The Indri Retrieval Model combines inference networks for TR [Turtle and Croft, 1990]

with language models. An inference network is a method of defining a joint probability distri-

bution over a collection of random variables. It is represented as a directed acyclic graph where

each node in the graph corresponds to random variables. Edges in an inference network represent

conditional dependencies where nodes that have no connection are independent. With each node is

an associated probability function that takes as input the variable from the node’s parent variables

and gives as output the random variable represented by the node. Documents and language models

are represented as nodes in the inference network.

An example of an Indri model is shown in Figure 5.1 The Indri Retrieval Model contains

the following nodes (nodes are discussed from parents down to children):

• Document node (D) - a document is represented as a multiset of binary vectors where each

vector in the multiset corresponds to a position in the document and each binary value rep-

resents the presence or absence of a possible feature (e.g., a term, phrase, entity) at that

position in the document.

164

• Smoothing parameter node - represent hyperparameters that are used in the smoothing of

the language models. By default, Indri uses Dirichlet smoothing and therefore the hyperpa-

rameters in the default case represent the hyperparameters α and β .

• Model node (θ) - for each feature in the document (e.g., a context) there is an associated

model node that contains smoothed multiple-Bernoulli distributions that represent a lan-

guage model for all text under that field (i.e., a model node representing a method signature

would contain all text from the method signature of that document). This allows for struc-

tured queries that combine evidence from multiple representations of a document.

• Representation concept node(r) - represents binary random variables related to the features

in the document representation (e.g., whether a specific term appears in a document). Each

representation concept node is a child of a model node and the same representation concept

node may appear as a child of multiple model nodes in the network.

• Belief node (q) - based on a structured query, these nodes are added dynamically to the

network and are binary random variables corresponding to a conditional probability table

derived from the query. They allow for combining of beliefs in a query and for weighting of

queries. The various belief operators will be described later in this section.

• Information need node (I) - belief node that combines all evidence within the network into

a single probability. This probability is used for ranking the documents and is the same as

P(I |D, alpha, beta)

165

Figure 5.2: Document Extraction Process

5.1.3 Creating a Structured Corpus

I developed a tool to extract structured documents from methods in source code. This

is shown in Figure 5.2. The tool takes as input a set of source code files written in the Java

programming language and parses the files using ANTLR2 (the tool is extensible to other languages

or to make the current output of the tool more expressive for different documents, all that is needed

is a new grammar). Tokens are extracted from the document and tagged with their source entity

(e.g., method name, comment). The tool maintains order of tokens and folds leading comments

into their respective methods by associating comments immediately preceding a method with that

method. These tokens are then fed to a preprocessor that performs splitting, case normalization,

2 http://www.antlr.org/

166

stop word removal, and stemming. When performing splitting both the split and original tokens

are maintained, however this can be configured to change. The resulting terms are then grouped

into documents and placed into a corpus. The next step is the document formatter that reads the

corpus and is given as input a structure for the new method documents. The formatter then outputs

a corpus of structured documents in the specified format and an Indri parameters file.

While the objective is to provide the flexibility needed by the developer, there are important

considerations to take into account during creation of a structured corpus.

The traditional approach to TR techniques on feature location is to treat method documents

as flat files of text with no structure. Indri is able to perform this operation using an inference

network with a single language model node, shown in Figure 5.3a.

However, terms in source code may be categorized due to implicit structural information.

For example, a developer reading code is able to recognize variables, methods, classes, literals,

class fields, comments, etc., due to the usage and relationship of the terms to the code. Furthermore,

a developer is able to recognize whether a term is a part of a declaration or use. This information

can be extracted automatically by tools to build structured documents from source code.

The structure in a source code document is implicit and is understood in different ways.

Therefore it is possible to create different structural representations of a method document. As

an example, terms in source code can be broken down into three broad categories: identifiers,

literals, and comments. Each of these three categories reflect the different ways that terms can

be used. Identifiers for instance define the state and behaviors of the system. Literals are terms

that are found in input and output operations. Terms in comments are important to the developer

as they give additional information that is not present in the program’s instructions. For each

structural lexicon in the document, a new model node is created. An inference network with these

167

(a) Flat File Representation

(b) Identifiers, Comments, and Literals

Figure 5.3: Different types of structured method documents

/ * computes t h e area o f a t r i a n g l e u s i n g heron ’ s f o r m u l a * /
p u b l i c s t a t i c double a r e a T r i a n g l e (P o i n t p o i n t 1 , P o i n t p o i n t 2 , P o i n t p o i n t 3)
{

/ / compute t h e l e n g t h s o f t h e s i d e s
double s i d e 1 = c o m p u t e D i s t a n c e (p o i n t 1 , p o i n t 2) ;
double s i d e 2 = c o m p u t e D i s t a n c e (p o i n t 2 , p o i n t 3) ;
double s i d e 2 = c o m p u t e D i s t a n c e (p o i n t 3 , p o i n t 1) ;

/ / compute h a l f o f t h e p e r i m e t e r
double p = (s i d e 1 + s i d e 2 + s i d e 3) / 2 ;

re turn Math . s q r t (p * (p − s i d e 1) * (p − s i d e 2) * (p − s i d e 3)) ;
}

Figure 5.4: Example Method

three categories would require language model nodes for each of the three lexicons. I show such

a network in Figure 5.3b. While this type of document is simple, it allows for quick and easy

searches over all of a method’s identifiers, comments, and literals. An example of a useful query

would be one where the developer believes an error message should print with a certain class of

words. This type of model for the structured document reduces the complexity for querying and

requires less storage for the index. However, it is not as robust or as flexible as it could be.

168

<method_doc>
<method_comment>computes < / method_comment>
<method_comment> t h e < / method_comment>
<method_comment> a r e a < / method_comment>

. . .
< s i g n a t u r e >

<method_name> a r e a T r i a n g l e < / method_name>
< p a r a m e t e r _ t y p e > P o i n t < / p a r a m e t e r _ t y p e >
< paramete r_name > p o i n t 1 < / paramete r_name >

. . .
< / s i g n a t u r e >
<body>

< l ine_comment >compute< / l ine_comment >
< l ine_comment > t h e < / l ine_comment >
. . .
< l o c a l _ v a r _ n a m e > s i d e 1 < / l o c a l _ v a r _ n a m e >
< m e t h o d _ c a l l > c o m p u t e D i s t a n c e < / m e t h o d _ c a l l >
< p r i m a r y _ n a m e _ r e f > p o i n t 1 < / p r i m a r y _ n a m e _ r e f >
< p r i m a r y _ n a m e _ r e f > p o i n t 2 < / p r i m a r y _ n a m e _ r e f >
< l o c a l _ v a r _ n a m e > s i d e 2 < / l o c a l _ v a r _ n a m e >
< m e t h o d _ c a l l > c o m p u t e D i s t a n c e < / m e t h o d _ c a l l >
< p r i m a r y _ n a m e _ r e f > p o i n t 2 < / p r i m a r y _ n a m e _ r e f >
< p r i m a r y _ n a m e _ r e f > p o i n t 3 < / p r i m a r y _ n a m e _ r e f >
. . .

<body>
< / method_doc>

Figure 5.5: Example Document

As another approach, Figure 5.4 gives an example of a Java method that may be present in

the source code of a system. Inspecting this method, we can identify several categories for terms.

The first line of the method is a leading comment related to the method. In the method signature we

can identify the method name, parameter types, and parameter names. In the body of the method,

we can identify method calls, local variables, line comments, and references. An example of a

structured document with this information is given in Figure 5.5 using XML formatting. The root

of the document is divided into three main categories, the method comment, the method signature,

and the body. In this case, method comments precede methods and are the same as our leading

169

comments from the previous chapter. Method comments are believed to be used for defining the

responsibilities of a method and therefore provide important terms for searching. The method

signature can be broken down further into method name, parameter names, and parameter types. I

show a nesting structure that allows for multiple types of queries at different levels of granularity.

The goal is to allow for more flexible queries that will lead to an increase in accuracy. Similarly, I

show nested terms appearing in the body.

This document allows for increased flexibility in the search queries. Any of the structural

lexicons can now be queried and with the proper parameters file, indexed by the search engine.

However, while this improves the flexibility for certain tasks, it decreases the flexibility for others.

For instance, if the developer wishes to query the system over all variables, the query needs to be

explicit on which fields to search. This applies to comments and literals as well. Furthermore, it is

possible that a finer granularity may not lead to any improvement in relevant results obtained from

a structured query. With each new structural lexicon added, I increase the number of language

models for a document and these language models are increasingly smaller in size. Language

models are an approximation of the usage of terms in a particular context. Therefore, the more

information available for the language model, the better that approximation can be. Defining too

many lexicons increases the overall complexity of the system while the benefits for doing so should

start to see diminishing returns.

Furthermore, the complexity continues to increase not only in the modeling of lexicons,

but also in the network. Every field specified in a parameters file given to Indri becomes indexable,

meaning that every field creates a new sub-document node under the original method document.

The choice of structure used for a structured method document should be based on the

170

system being indexed, what is needed to complete the tasks, and the resources available for the

process.

5.1.4 Creating Structured Queries

Current queries used in feature location take the general approach of utilizing the descrip-

tion or title from a bug or issue report as a query. This approach is due to the need in research to

make the most general queries possible without making assumptions about the developer. While

these queries fit the purposes of such studies, very little research has focused on using developer

knowledge about a system to improve the results of a query. For instance, a developer may have an

understanding of what terms are actually used in the system, what terms relate to method names

and class names, and what terms refer to variables or fields. A developer might also have expecta-

tions of what context a term is used in. Allowing a more robust query system that allows developer

input can increase the likelihood of returning relevant results. Furthermore, such a query system

would be complementary to existing query refinement and reformulation techniques and provide

additional input to such a technique about a term’s context. I wish to leverage a developer’s knowl-

edge during the software search process. For this reason, a proper query language should allow for

multiple options and be highly configurable. The Indri query language allows for a wide variety of

queries. The simplest queries in Indri take the form:

#combine(“side” “computes” Point)

The # signifies a query, combine means to search for the terms together in a document, while the

query is provided in the parentheses. I wrote a translator for a simplified version of the Indri Query

Language. In the simplified version, the aforementioned query is written as:

“side” “computes” Point

171

For such a query, each term in the query is given equal weighting and the query is issued across all

fields. This query does not make use of the structural document, but instead uses the document as

a bag of words where each term is given an equal weight. The quotation marks around a term indi-

cate a search for the unstemmed/unnormalized version of the term. Lack of quotations searches for

the stemmed/normalized terms. These queries represent content only queries. These queries try to

match over all terms in a query instead of based on fields and each field is of equal importance.

Developer knowledge is not incorporated into this phase of the retrieval process.

Queries are not limited to these basic types however. It is possible to search for queries

based on fields:

[signature](Point point1 areaTriangle)

[method_name](areaTriangle)

[signature]([method_name](area triangle) [parameter_name](point1))

In these queries, the fields appear in the square brackets while the query appears in the

parentheses. Each of these queries makes use of the field to increase the likelihood that a particular

method will be found. The examples above all search for particular terms in a method signature.

The first of these queries looks for the terms over all terms in the signature (i.e., the method name,

parameter type, and parameter name). The second query is more specific and searches directly

for all methods with the name “areaTriangle.” This query is useful if the developer already knows

the terms to be a part of the name of methods in the program. The final query is a nested query.

It searches for terms in the method signature but also searches for “areaTriangle” in the method

name and “point1” in the terms for parameters. Each of these queries returns increasingly specific

results and is based on what the developer knows about the source code.

172

In addition to the basic and structural queries, Indri allows for terms and queries to be

weighted. Weighting queries opens up another avenue for increasing accuracy. In the previous

chapter, we saw how structural weighting could increase search results. If the developer has certain

beliefs about the usage or location of terms, they may choose to vary the weights of terms in queries

or the weights of nested queries. The basic structure of a weighted query is:

weight(2.0 [signature](area) 1.0 [body](area))

In the example query, the developer has given greater weight to documents with area ap-

pearing in the method signature versus the method body. Perhaps, the developer knows the method

they want computes an area, so they believe that area is likely to be in the method name. They

want to see methods with area in the method name before other possible choices. By weighting

the query, they are more likely to retrieve the results they want. While developers may manually

weight their queries, we also wish to identify queries that may return higher results for developers

that are less familiar with the system or suggest queries that may produce more relevant results to

the developer. There are multiple ways to suggest queries in this case. Two possible approaches

include issuing the same query across each field in a source document but varying the weight of

each field according to some heuristic or suggesting fields in which a term is most likely to be

found. Future research is required to refine these approaches.

Queries form belief nodes that have conditional probability tables associated with them.

This allows for multiple types of queries and for queries to be performed efficiently. Weighting of

structural lexicons is performed using the weight belief operator. The function for computing the

weight is given in the following expression, where n is the number of parent nodes, each with a

belief bi and weight wi:

173

bweight =
n
∏
i=1

bwi/W
i

5.2 Study Design

I conducted an emprical study to determine the effects of structured retrieval on a FLT. I

study the effects of different query types derived from bug reports, the effects of including different

structural lexicons in a query, and the effects of different weightings on the structural lexicons. I

use three different types of structured queries during my study. The first is derived from the terms

in the comments, signature, and body of the method. The second corpus is derived from terms in

the indentifiers, comments, and literals. Finally, I look at a finer grained corpus that is composed of

terms derived from the leading comments, method names, parameters, body comments, and local

variables. The last is composed of children lexicons from the previous. All other terms in this

corpus fall into a structural lexicon called the body. The purpose of this last corpus type is to look

at a finer granularity of structural lexicons without making the study infeasible. Across the entire

study, I look at 4,608 different queries for each feature of four different subject software systems.

In this section, I describe the design of the empirical study as well as present threats to the

validity of the results. Since I have already discussed the subject systems, the benchmarks, and the

effectiveness measures in the previous chapter, I will not include them in the study description.

5.2.1 Definition and Context

The goal of this study is to understand how the different lexicons (i.e., the query, corpus,

combinations of lexicons, and structural weighting) of the structured retrieval system can effect

the performance of a FLT. It is not the goal of the study to determine the optimum configuration

for every feature for every software system, as this would require knowing the best search strings

to use.

174

I computed 4,608 different queries for each of the four open source Java systems that were

presented in the previous chapter. I used the same software systems to make it easier to understand

the differences between the two techniques as will be discussed in Chapter 6. For each of the four

software systems, I used the same 372 features and bugs that were used in the previous chapter.

I compared three different corpora. The first corpus breaks a method into comments, the

signature, and the body (CSB). Comments include both the leading comments that come before

the method and the comments that are found within the body. The method signature includes all

terms that are found within the header of a method. Finally, the body contains all terms that are

found within the definition of the method, including the local variables, literals, method calls, etc.

The second corpus that I used includes the identifiers, literals, and comments (ICL). Identifiers

are taken from both the method signature and from the body of the method. Finally literals are

string literals that as you would find in print statements or error messages. The final corpus is

the analogous corpus to the corpus used in the previous chapter. This corpus is composed of the

leading comments, the method names, the parameters, the local variables, and the body comments

(LMPBV). To avoid the problem that would arise from missing terms if we did not include other

fields, I grouped all other terms in the method into an other field. This other field was included

in all queries. Since the importance of the study is in looking at the relative results and not the

absolute results. This field should not have an impact on our results.

I used the same weighting factors as were used in the previous study. This is for both the

reasons listed in the previous chapter and in order to make comparisons between the two techniques

easier. However, these weighting factors differ in function compared to the previous study. The

weighting factors used in LDA multiply the raw term counts utilized during the LDA training

process. However, weighting factors in the structured retrieval model give a relative importance

175

to the belief of each sub-query. In this study, this translates to giving a relative importance to the

results of searching for terms in each structural field. As an example, if a weighting factor of 2 was

given to method names while a weighting factor of 1 was given to leading comments, then it would

be twice as important that the terms appear in the method name versus the leading comments.

Since there are multiple combinations of structural lexicons and because each structural

lexicon can receive a different weighting in the query, I adopt a modified notation to the notation

presented in the previous chapter.

The notation for the comments, signature, and body corpus is:

C{C = 1,S = 1,B = 1}

where C is the comments, S is the signature, and B is the body. Each number represents the

weighting factor for that structural lexicon. The remaining notations for the last two corpora are

analagous.

For the identifiers, comments, and literals corpus, the notation is:

C{I = 1,C = 1,L = 1}

And for the final corpus, the notation is:

C{LC = 1,M = 1,P = 1,BC = 1,LV = 1}

In addition to these three corpora, I also computed the results of each feature using the

flat corpus with no fields. This allows for me to compare the structured retrieval approach to the

traditional language modeling approach.

5.2.1.1 Setting

There are three distinct parts to building the language model for the study. The first uses

a text extractor and preprocessor implemented in Java 7 using an open source Java 1.5 grammar

176

and ANTLR v3. The tool has four steps. The first step extracts documents from methods and

treats inner methods as distinct methods. The text of the inner method (e.g., a method inside an

anonymous class) will only be attributed to that method, and not the containing method. This step

outputs each document as a separate XML file for further processing. The next step rewrites the

separate XML files into a single XML file with comments preceding methods being folded into

the text of that method. This single XML file is then reread as a corpus for preprocessing. During

the preprocessing stage, terms in the corpus are split, normalized, stemmed, and all stop words are

removed. The second part of the corpus construction takes this XML file and a second XML file

as input. The second XML contains a mapping of all parts of the first XML file to the structured

fields. It then converts the XML files to a set of documents with the proper terms included in the

appropriate fields. In addition, it produces a parameters file that is used by Indri for indexing. The

third and final part is performed by Indri which takes in the outputted documents in the corpus and

the parameters file and creates an index. For this study, I use the default α and β values for Indri

that are used to smooth the language model.

As in the previous study, the preprocessor implements the steps described in Figure 1.1

in Chapter 1.2. Identifiers are filtered from java.lang before splitting tokens on camel case,

underscores, and non-letters. After splitting, the original token is retained [Marcus et al., 2004].

The terms are then normalized to lowercase and then filtered by an English stop word list [Fox,

1992], Java keyword list, and term length (with any terms less than three character being removed).

A Porter stemmer3 is then applied.

I use a similar preprocessor for the queries. Because Indri requires a parameters file for

queries that is written in their language, I use a parser that takes queries written in the simplified

3 http://tartarus.org/~martin/PorterStemmer/

177

http://tartarus.org/~martin/PorterStemmer/

language presented in Section 5.1.4, applies the same preprocessing steps that were applied to the

method document, and then outputs a parameters file to the query language used by Indri. It then

runs the query against the indexed system.

5.2.1.2 Creating Queries

For the purposes of this study, I created queries by using the title, description, and the com-

bination of the two from the feature requests in the benchmark. There are two possible ways that a

developer may use CAS queries, the first is to write the queries with their own search strings while

defining the fields and the weighting to be used. The second possibility is for queries to be auto-

matically generated while the developer indicates what fields to search and the proper weighting

to use. Future studies will look into both possibilities. However, by looking at the three types of

queries in this study, the goal is to understand how different types of information and query lengths

impact the results. To form the queries, the following process was used:

1. Represent each combination of fields as a binary string where a 1 indicates that a field is

present in the query (i.e., for the binary string 101 for the ICL corpus, the first 1 means

include identifiers and the second 1 means include literals).

2. Use depth-first search to identify every possible weighting configuration for a given combi-

nation.

3. For every field and weighting factor in the combination, include the title, description, or the

combination as the search string.

4. Repeat this process for all combinations for a given corpus.

An example of the title queries for ArgoUML can be found in Appendix A.

178

5.2.2 Research Questions

The focus of the case study is to address the following questions:

1. Does query type affect the accuracy of a structured retrieval-based FLT?

2. Does changing the combination of included fields affect the accuracy of a structured retrieval-

based FLT?

3. Does structural weighting affect the accuracy of a structured retrieval-based FLT?

4. How does the best configuration of structural field combination and weighting affect the

accuracy of a structured retrieval-based FLT?

For each of the above research questions, I conducted a series of Friedman tests to deter-

mine whether a statistically significant effect existed between the different configurations for each

question. If so, I form hypothesis tests corresponding to each pair of configurations involved in the

test. The independent variables for these tests are the weighting configurations with scaling factors

(1, 2, 4, 8) and the different combinations of structural lexicons for each of the corpora, while the

dependent variables are the effectiveness measures.

For each hypothesis test, I do not presuppose the directionality of the difference between

two configurations. Therefore, each hypothesis test is two-tailed. For each configuration pair, I

formulate a null hypothesis to evaluate whether there is a significant difference when one of the

two configurations is used over the other. If, after testing the null hypothesis, I find I can reject

it with a high confidence (α = 0.05), I accept an alternative hypothesis. Accepting the alternative

hypothesis corresponds to there being a significant difference between the two structural weighting

scheme configurations.

179

An example null hypothesis:

H0 : C{I = 4,C = 2,L = 4}=C{I = 2,C = 4,L = 4}

Configuration C{I = 4,C = 2,L = 4} does not significantly affect the accuracy of the struc-

tured retrieval-based FLT compared to configuration C{I = 2,C = 4,L = 4}.

The corresponding alternative hypothesis:

HA : C{I = 4,C = 2,L = 4} 6=C{I = 2,C = 4,L = 4}

Configuration C{I = 4,C = 2,L = 4} does significantly affect the accuracy of the structured

retrieval-based FLT compared to configuration C{I = 2,C = 4,L = 4}.

The remaining null and alternative hypotheses are analogous.

Since queries are independent of one another, it is possible to choose a query for each

feature that is either the best for that feature, the worst for that feature, or somewhere in the middle.

For this reason, I also perform the same analysis comparing the best, middle, and average for each

corpus. If I find that a statistically significant effect existed, I formulate a set of hypotheses to test

between each case.

An example null hypthesis of this type:

H0 : Best{ICL_QUERY}= Average{ICL_QUERY}

Best{ICL_QUERY} does not significantly affect the accuracy of the structured retrieval-

based FLT compared to Average{ICL_QUERY}.

180

The corresponding alternative hypothesis:

HA : Best{ICL_QUERY} 6= Average{ICL_QUERY}

Best{ICL_QUERY} does significantly affect the accuracy of the structured retrieval-based

FLT compared to Average{ICL_QUERY}.

Finally, it is also possible that I do not have to choose between different corpus configura-

tions and can select the overall best configuration for each query. In that case, I only wish to know

how the best, average, and worst configurations compare.

An example null hypothesis of this type:

H0 : Best{QUERY}= Average{QUERY}

Best{QUERY} does not significantly affect the accuracy of the structured retrieval-based

FLT compared to Average{QUERY}.

The corresponding alternative hypothesis:

HA : Best{QUERY} 6= Average{QUERY}

Best{QUERY} does significantly affect the accuracy of the structured retrieval-based FLT

compared to Average{QUERY}.

5.2.3 Data Collection and Analysis

For each of the questions, I followed a slightly different data collection process.

The first step that I followed was to run each of the systems with the flat corpus with no

fields. This represents the traditional query-likelihood model used with language modeling. This

became my baseline for understanding the effectiveness of the structured retrieval approach.

181

For Research Question 1, I used the feature title, feature description, and the combination

of the two as my query types. I ran all queries for each system for each corpus of CSB, ICL,

and LMPBV with all three query types. I collected the effectiveness measures corresponding to

each query for each query configuration and each corpus. This resulted in a list of effectiveness

measures for each query and configuration pair that I used as the basis for my analysis on this

problem.

I created boxplots for each system, corpus, and query type. I also include this for all

systems overall. Afterwards, I identify the best, average, and worst case from all query types for

each corpus and from all corpora. I use a bar graph to show the differences between these values

for each feature. In addition, I calculate the percentage of times that each query type is better

for each corpus and the percentage of time each corpus has the best rank for a feature. Finally, I

calculate the MRRs for all of the above configurations as well as the best, average, and worse cases

for each corpus and across all corpora.

To determine whether there are any significant effects, I conduct Friedman tests with

wilcoxon posthoc tests and holm correction. I perform this analysis to compare each of the query

types in each of the corpora, and to compare the best, average, and worst for each feature for each

corpus, and to compare the best, average, and worst, along with the flat corpus.

For both Research Question 2 and Research Question 3, I keep both of the combined and

title query types for comparison. Because description makes up a large portion of the combined

queries, I do not include it for comparison in these questions. I plot the best, average, and worst

cases for each feature when combining the combined and title query types for each corpus and

across all corpora. I then perform significance testing to determine whether there is a difference

between the best, worst, and average across both query types for each corpus and for all corpora.

182

In Research Question 2 I look at each of the different structural combinations for each of

the three corpora. For CSB and ICL, there are 7 different configurations each. For LMPBV, there

is a total of 31 different configurations. Due to the number of configurations, I do not show the

boxplots, but instead report descriptive statistics along with the MRRs. The descriptive statistics

computed include the minimum rank, first quartile, median, third quartile, and maximum rank.

Together these descriptive statistics describe the spread of the effectiveness measures for each

corpus and query type for that system.

I look at the top weighting configurations for Research Question 3 and produce the boxplots

and MRRs for each of these configurations.

The remainder of the analysis for Research Question 2 and Research Question 3 is analo-

gous to Research Question 1.

For feasiblity, I only look at the title query type for Research Question 4. This reduces

the number of combined queries required by 2,151 for each system. Since combined queries take

significantly longer than title queries, this results in a significant difference in the time required

(by 1.5 months). The analysis for this problem is similar to the analysis performed for Research

Question 3.

5.2.4 Threats to Validity

The study has limitations that may affect the validity of my findings. In this section, I

describe some of the limitations as well as my attempts to mitigate them.

Threats to conclusion validity concern how reasonable the conclusions we reach about

the relationships in our data are. As in the previous chapter, in order to mitigate these I used

non-parametric statistical tests and did not make any assumptions about the distributions of my

effectiveness measures. In addition, I used Holm correction to account for errors in my p-values.

183

Threats to construct validity concern how well the measurements used in the study describe

the concept being studied. Possible threats to construct validity include how well the effectiveness

measure measures the feature location process and whether my benchmarks are accurate. I used

previously established measurements and benchmarks that were used in previous research [Dit

et al., 2011, 2012; Revelle et al., 2010] and made publicly available online.

Threats to internal validity include possible errors in executing my study procedure or de-

fects in my tool chain. To mitigate these problems, I thoroughly tested my tool chain and assessed

the quality of my results at each step in the procedure. Because The same tool chain was applied

to all subject systems, any errors are systematic and should not affect my results substantially.

As with the previous chapter, the queries are another threat to internal validity if they do

not describe the features of interest. ArgoUML and jEdit are tools developed for programmers.

Therefore it is likely that those who wrote the issue reports were more likely to accurately describe

the issue than other users.

Threats to external validity concern the extent to which I can generalize my results. All

four of my subject systems are written in the Java programming language, therefore I am unable

to generalize to different languages. However, The four subject systems represent a wide range

of sizes and domains. Furthermore, the selected subject systems are similar to systems found in

industry. Therefore, my results should be similar for other systems written in Java.

Another threat to external validity is in the way developers may actually use the queries.

Since I obtain queries from feature requests, and not from the developers, it is possible that the

queries may be written differently. However, the purpose of this study is not to find the optimum

queries or to instruct the developer on the best way to write the query. Additional studies are

required for this. The purpose of the study is to understand how the different aspects of the struc-

184

tured retrieval process can effect the results of a FLT. For this purpose, the feature request contains

information about the feature of interest written by users and developers of the system.

In the next section, I describe the results of my study. Due to the large number of configu-

rations and queries, only a subset of the complete results are included in this dissertation.

5.3 Results of Case Study

In this section, I present the results of the study by question.

5.3.1 Does query type affect the accuracy of a structured retrieval-based FLT?

The first question that I wished to address was how different queries can affect the accuracy

of the FLT. For this question, I used three different types of queries obtained from the feature

request of each of the studied features. The ultimate goal of this technique is to allow developers

to use their own knowledge of the system to formulate the best queries possible. However, the

goal of this question is to study how different aspects of a query may affect the accuracy of the

technique, and the hope of using queries obtained from the feature request is to eliminate bias

during comparison while still giving insights into query effects.

5.3.1.1 ArgoUML

In Figure 5.6, we see the boxplots for the different corpora under study. For comparison, I

also included the results of performing the FLT on the flat corpus. For both CSB and ICL, the Title

queries had slightly lower spreads versus the Description and Combined queries. While the spread

for Title in the LMPBV corpus is slightly larger than the other two, the 3Q and 1Q value are both

reduced when compared to the other corpora. In contrast, for the flat corpus, the Title spread is

larger than the other corpora, but has a lower 1Q measure.

185

(a) CSB

Title Description Combined

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

(b) ICL

Title Description Combined

0
20

00
40

00
60

00
80

00
10

00
0

(c) LMPBV

Title Description Combined

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

(d) Flat

Title Description Combined

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

Figure 5.6: The Effectiveness Measures for the three different query types (Title, Description,
Combined) for ArgoUML

Query CSB ICL LMPBV Flat

Title 0.0688 0.0387 0.0098 0.0617

Description 0.0275 0.0286 0.0074 0.0155

Combined 0.0374 0.0283 0.0072 0.0262

Table 5.1: MRRs for the three different query types (Title, Description, Combined) for ArgoUML

186

We can see the MRRs for the four different corpora and the three different query types for

ArgoUML in Table 5.1. Of the three different query types, the highest MRRs for each of the four

corpora come from the Title queries with the highest MRR being for the CSB corpus with the Title

queries. For the remaining three corpora, Flat has the second highest MRR and LMPBV has the

lowest MRRs for all four corpora. For both the ICL and the LMPBV corpora, the Description

queries have a slightly higher MRR for both corpora.

I ran a Friedman test with a wilcoxon post-hoc analysis to determine whether there were

any significant differences between the three different query types for each of the four corpora.

The results of the analysis found that there is significant difference between each of the three

query types for the CSB corpus. For ICL, there does not exist a significant difference between

Description and Combined or Title and Combined, but there does exist a significant difference

between Title and Description. For LMPBV, there exists no significant differences between the

three query types. Finally, for the flat corpus, there exists a significant difference between the Title

and the Descriptions query types.

While a single query type may be used for each feature, this does not have to be the case.

In this approach, each feature can have a query that is uniquely tailored to identify the relevant

source code elements for that feature. For this reason, I looked at what would happen if I chose a

query that was the best for each feature, the worst for each feature, or near the average. In Figure

5.7, I show the differences between the different cases for each feature in each of the four different

corpora.

Of the four corpora, CSB has the smallest differences between the best queries and the

worst. The largest difference between the best and worst query is greater than 10,000. The maxi-

mum difference between the average and the best query is just over 6,971. The greatest mean

187

(a) CSB

(b) ICL

Figure 5.7: Stacked bargraphs representing the distance from the best query to the average (bot-
tom) and the worst(top) for ArgoUML. Graph is ordered by distance from best to worst.

188

(c) LPMBV

(d) Flat

Figure 5.7: Stacked bargraphs representing the distance from the best query to the average (bot-
tom) and the worst(top) for ArgoUML. Graph is ordered by distance from best to worst.

189

Query CSB ICL LMPBV Flat

Best 0.0707 0.0416 0.0113 0.0728

Average 0.0304 0.0269 0.0068 0.0091

Worst 0.0258 0.0253 0.0057 0.0038

Table 5.2: MRRs for choosing the best, average, and worst case for each feature for ArgoUML

Query CSB ICL LMPBV Flat

Title 64 57 57 55

Description 15 21 35 22

Combined 21 22 8 23

Table 5.3: Percentages for each query type where the best query was found for ArgoUML

distance between the best query and the worst is 2,113, while the greatest mean distance between

the average query and the best query is 1,047. The smallest means come from LMPBV which has

a mean distance between the worst query and the best query of 724 and the mean distance between

the average query and the best query is 381.

I also calculated new MRRs based on the best, average, and worst case queries. The results

can be found in Table 5.2. For each of the four corpora, choosing the best query for each feature

results in a higher MRR than any of the single query types. This means that there is not a single

query type where all features perform better. The largest improvement for MRR is for the flat

corpus, while the smallest improvement is for LMPBV.

To understand whether a single query type dominated when selecting the best queries, I

calculated the percentages of each query type where the best query was selected. I did this for all

four corpora and the results can be found in Table 5.5. From this table it is also observed that for

190

Figure 5.8: Stacked bargraphs representing the distance from the best query to the average (bot-
tom) and the worst(top) for ArgoUML. Graph is ordered by distance from best to worst.

each of the four corpora, the Title query type has the highest percentage of preferred queries. For

all but one of the corpora, the description has the lowest percentage of preferred queries.

I performed a Friedman test with a wilcoxon post-hoc for each of the four corpora to deter-

mine whether there was any significant difference between the best, average, and worst cases. For

each of the four corpora there was a significant difference found between each of the three cases.

While it increases the complexity of the model, it is possible to combine each of the three

different corpus types and to use them interchangeably. For this reason, I calculated the best, av-

erage, and worst case when choosing the query using any of the corpora. The differences between

the values can be seen in Figure 5.8.

In the case of allowing for all corpora, the greatest distance between the best query and the

191

Best Average Worst

MRR 0.0888 0.0020 0.0007

Table 5.4: MRRs for choosing the best, average, and worst case for each feature from all corpora
for ArgoUML

CSB ICL LMPBV Flat

Percentage 19 18 12 43

Table 5.5: Percentages for each corpus where the best query was found from all corpora for Ar-
goUML

Title Description Combined

Percentage 59 16 25

Table 5.6: Percentages for each query type where the best query was found from all corpora for
ArgoUML

worst query is 10,738. The mean distance between the best query and the worst query is 4,706,

while the mean distance between the best and the average is 2,114.

I computed the MRR for the best, average, and worst case of each feature. The results of

these calculations can be found in Table 5.4. Again, the MRR increases over the top MRRs for

each corpus indicating that there is not a single corpus that has the best query for every feature. I

show the percentage of best queries that come from each corpus in Table 5.5. CSB and ICL have

roughly the same percentage of best queries around 18%. The corpus with the largest percentage

of best queries is the flat corpus at 43%, while LMPBV had the smallest percentage at 12%. I also

calculated the percentage of best queries that came from each query type. Similar to previous re-

sults, the Title query type has the highest percentage of best queries at 59%. The lowest percentage

comes from the Description query type at 16%.

192

Finally, I performed a Friedman test with a wilcoxon post-hoc for the best, average, and

worst case of each feature across all corpora. The results of the analysis showed that there is a

significant difference between each case.

5.3.1.2 JabRef

The boxplots for JabRef can be found in Figure 5.9. For three of the four corpora, there

is not a consitently smaller spread for any of the three query types when compared to the others.

For CSB, the smallest spread is for Title while the largest spread is for Description. For both ICL

and LMPBV, Title has the lowest 1Q measure, however for LMPBV, Title also had the largest

spread. The smallest spread for ICL came from Description, while the largest spread came from

Combined. In the case of LMPBV, Description had the smallest spread but it did not have the

lowest 1Q or 3Q measure. For the flat corpus, Combined had the smallest spread while Title had

the largest spread, however Title had a lower 1Q value than Description.

I calculated the MRRs for each query type for all four corpora and recorded their values in

Table 5.7. For each of the four corpora, the MRR for the Title query type is significantly higher

than the MRR values for the Description and the Combined query types. The highest MRR is found

for the flat corpus with the Title query type while the lowest MRR is also found for the flat corpus

but with the Description query type. For the Description query type, CSB slightly outperformed

the other three corpora. While for the Combined query type, the flat corpus had the highest MRR.

I ran a Friedman test with a wilcoxon post-hoc analysis to determine whether there were

any significant differences between the three different query types for each of the four corpora.

The results of the analysis found that there were no significant differences between any of the three

query types for any of the four corpora.

Despite the Friedman test not finding any significant differences between the three query

193

(a) CSB

Title Description Combined

0
10

00
20

00
30

00
40

00
50

00

(b) ICL

Title Description Combined

0
10

00
20

00
30

00
40

00
50

00

(c) LMPBV

Title Description Combined

0
10

00
20

00
30

00
40

00
50

00

(d) Flat

Title Description Combined

0
10

00
20

00
30

00
40

00
50

00

Figure 5.9: The Effectiveness Measures for the three different query types (Title, Description,
Combined) for JabRef

Query CSB ICL LMPBV Flat

Title 0.0342 0.0316 0.0429 0.0832

Description 0.0038 0.0036 0.0032 0.0027

Combined 0.0040 0.0040 0.0032 0.0046

Table 5.7: MRRs for the three different query types (Title, Description, Combined) for JabRef

194

types, improvements may still be found if we choose the best result for each feature from the three

query types. In Figure 5.10, I show the differences between the best, average, and worst cases for

each feature for the four different corpora.

The greatest distance between the best and worst query can be found in the flat corpus at

4,334, slightly higher than the maximum for ICL at 4,106. However, the greatest mean distance

between the best query and the worst query can be found in the CSB corpus at 1,334. The greatest

distance between the best query and the average query is 2,710 and it is found in the flat corpus,

while the greatest mean distance between the best query and the average query is once again found

in the CSB corpus. The smallest mean distance between the best query and the worst query is 684

and it is found in the LMPBV corpus. LMPBV also has the smallest mean distance between the

best query and the average query at 337. This corpus also has the smallest distance between the

best and the worst query at 0. For three of the four corpora, the mean distance between the best

and the average query is smaller than the distance between the average and the worst query.

The MRRs for the best, average, and worst queries for each of the four corpora in JabRef can

be found in Table 5.8. As could be predicted from the results of the previous Friedman test, the

differences between the MRRs for the best queries and the MRRs of the best query type for each

corpus are small. The largest difference is found in ICL at 0.02. The smallest change is found for

LMPBV at less than 0.0001. This result is not surprising after comparing the MRR to the mean

difference between the best and the worst queries for each feature. Also of note for this system,

the greatest MRR is found for the flat corpus.

I calculated the percentages of times that the best query was selected from each of the three

query types for each of the four corpora. The results of these calculations can be found in Table

5.11. For three of the four corpora, the Title query type had the best query over 50% of the time.

195

(a) CSB

(b) ICL

Figure 5.10: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for JabRef. Graph is ordered by distance from best to worst.

196

(c) LPMBV

(d) Flat

Figure 5.10: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for JabRef. Graph is ordered by distance from best to worst.

197

Query CSB ICL LMPBV Flat

Best 0.0359 0.0336 0.0430 0.0843

Average 0.0031 0.0029 0.0036 0.0024

Worst 0.0020 0.0018 0.0030 0.0016

Table 5.8: MRRs for choosing the best, average, and worst case for each feature for JabRef

Query CSB ICL LMPBV Flat

Title 56 51 56 38

Description 36 31 38 38

Combined 8 18 6 24

Table 5.9: Percentages for each query type where the best query was found for JabRef

The highest percentage for Title was 56% and was found for both CSB and LMPBV. In contrast,

Combined was selected far less with less than 25% for each corpus and only 8% for CSB and 6%

for LMPBV. The flat corpus had a more even distribution between the three corpora with both Title

and Description having the best query 38% of the time and Combined having its highest percentage

of the four corpora at 24%.

I ran a Friedman test with a wilcoxon post-hoc analysis to determine whether there was any

significant difference between the best, average, and worst queries for each feature. The results of

my analysis found that for three of the four corpora, there was significant differences between

each of the three cases. The exception was found for the LMPBV corpus which found that there

was a significant difference between the best and worst queries, however there was no significant

difference found between the best and the average queries.

Despite finding only small differences between the MRRs of the best queries and the MRRs

198

Figure 5.11: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for JabRef. Graph is ordered by distance from best to worst.

of the best query type for each corpus, there still exists the possibility that each of the four corpora

perform significantly different. In this case, selecting the best queries from each corpus could lead

to a significantly higher difference in the MRRs and the effectiveness measures. The distances

between the best, average, and worst queries from all of the corpora can be found in Figure 5.11.

The greatest distance between the best and the worst query for all corpora is 5,167, much

higher than any of the distances found for the four corpora individually. The smallest distance

between the best and the worst query is 190 and the smallest distance between the best and the

average query is 99. The greatest distance between the best and the average query is 2,376. The

mean distance between the best and the worst queries is 2,386 which is over 1,000 more than

the mean distance found when looking at the four corpora individually. Furthermore, the mean

distance between the best and the average query is found to be 991 which is higher than the mean

199

Best Average Worst

MRR 0.1288 0.0020 0.0007

Table 5.10: MRRs for choosing the best, average, and worst case for each feature from all corpora
for JabRef

CSB ICL LMPBV Flat

Percentage 19 11 14 47

Table 5.11: Percentages for each corpus where the best query was found from all corpora for
JabRef

Title Description Combined

Percentage 57 20 23

Table 5.12: Percentages for each query type where the best query was found from all corpora for
JabRef

best and worst queries, there should be a more substantial change in the MRR.

I show the the computed MRRs for the best, average, and worst case of each feature in

Table 5.10. Unlike the previous MRRs choosing the best query across all query types and corpora

does show a substantial change in the MRR value. Table 5.11 shows the percentage of times the

best query was selected from each corpus. The flat corpus contained the highest percentage of the

best queries selected. ICL contained the lowest percentage of the best queries at only 11%. The

percentage of times each query type resulted in the best query is found in Table 5.12. This table

shows that Title had the highest percentage of queries that were selected as the best. Unlike when

looking at the corpora individually, when looking across all corpora, the Combined query type has

a higher percentage than the Description query type.

Finally, I performed a Friedman test with a wilcoxon post-hoc for the best, average, and

200

worst case of each feature across all corpora. The results of the analysis showed that there is a

significant difference between each case.

5.3.1.3 jEdit

The boxplots for jEdit can be found in Figure 5.12. For each of the four corpora, the spread

for Title is lower than the other corpora with the exception of the upper 1.5 IRQ for LMPBV. The

same consistency is shown for the largest spread of the four corpora. The largest spread can be

found for the Description query type in each of the four corpora, with the exception of the upper

1.5 IRQ for each of the four corpora. While the median is higher for the Description query type

for all four corpora, the medians between Description and Combined are close for both ICL and

LMPBV.

I calculated the MRRs for each query type for all four corpora and recorded their values in

Table 5.13. For each of the four corpora, the MRR for the Title query type is significantly higher

than the MRR values for the Description and the Combined query types. The highest MRR is

found for the flat corpus with the Title query type while the lowest MRR is found for the LMPBV

corpus with a tie between the Description and the Combined corpora. For three of the four corpora,

the MRR for the Description query type is lower than the MRR for the Combined query type. For

each query type, the flat corpus has a higher MRR than the corresponding query type for the other

three corpora.

I ran a Friedman test with a wilcoxon post-hoc analysis to determine whether there were

any significant differences between the three different query types for each of the four corpora. The

results of the analysis found that there were significant differences in each corpus between each

query type, with the exception of the Title and Combined query types for the flat configuration.

201

(a) CSB

Title Description Combined

0
20

00
40

00
60

00

(b) ICL

Title Description Combined

0
20

00
40

00
60

00

(c) LMPBV

Title Description Combined

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

(d) Flat

Title Description Combined

0
20

00
40

00
60

00

Figure 5.12: The Effectiveness Measures for the three different query types (Title, Description,
Combined) for jEdit

Query CSB ICL LMPBV Flat

Title 0.0398 0.0403 0.0153 0.0579

Description 0.0012 0.0013 0.0010 0.0029

Combined 0.0013 0.0014 0.0010 0.0097

Table 5.13: MRRs for the three different query types (Title, Description, Combined) for jEdit

202

For this corpus, the upper 1.5 IRQ and the 3Q measures are lower for the two query types, however

the median, lower 1.5 IRQ, and 1Q measures are similar between the two query types.

I show the differences between the best, average, and worst cases in Figure 5.13. The

greatest distance between the best and worst query can be found in the ICL corpus at 6,447. The

greatest mean distance between the best query and the worst query can be found in the CSB corpus

at 1,734. The greatest distance between the best query and the average query is 4,018 and it is

found in the ICL corpus, while the greatest mean distance between the best query and the average

query is once again found in the CSB corpus at 862. The smallest mean distance between the

best query and the worst query is 674 and it is found in the LMPBV corpus. The LMPBV corpus

also has the smallest mean distance between the best query and the average query at 389. This

corpus also has the smallest distance between the best and the worst query at 0. For three of the

four corpora, the mean distance between the best and the average query is larger than the distance

between the average and the worst query.

The MRRs for the best, average, and worst queries for each of the four corpora in jEdit can

be found in Table 5.14. The differences between the MRRs for the best queries and the MRRs

of the best query type for each corpus are small for each of the four corpora. For CSB, ICL, and

LMPBV, the change in MRR is less than .0002. The largest difference is found in the flat corpus

and is .0010. The smallest change is found for LMPBV at less than 0.0001. The greatest MRR

between the four corpora is once again found for the flat corpus.

I calculated the percentages of times that the best query was selected from each of the three

query types for each of the four corpora. The results of these calculations can be found in Table

5.17. For each of the four corpora, the Title query was the best query type over 50% of the time.

The highest percentage for Title was 71% and was found for the LMPBV corpus. For each of the

203

(a) CSB

(b) ICL

Figure 5.13: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for jEdit. Graph is ordered by distance from best to worst.

204

(c) LPMBV

(d) Flat

Figure 5.13: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for jEdit. Graph is ordered by distance from best to worst.

205

Query CSB ICL LMPBV Flat

Best 0.0400 0.0405 0.0154 0.0589

Average 0.0011 0.0013 0.0012 0.0035

Worst 0.0008 0.0009 0.0010 0.0018

Table 5.14: MRRs for choosing the best, average, and worst case for each feature for jEdit

Query CSB ICL LMPBV Flat

Title 56 56 71 57

Description 30 31 20 23

Combined 14 12 10 20

Table 5.15: Percentages for each query type where the best query was found for jEdit

four corpora, the Description query type had a higher percentage of the best queries when com-

pared to the Combined queries. The smallest percentae for the Combined query type is for the

LMPBV corpus. This corpus also has the lowest value for the Description. This is due to the high

percentage of this corpus that is given to the Title query type.

I ran a Friedman test with a wilcoxon post-hoc analysis to determine whether there was any

significant difference between the best, average, and worst queries for each feature. The results of

my analysis found that for each of the four corpora, there was significant differences between each

of the three cases.

As with JabRef, despite finding only small differences between the MRRs of the best

queries and the MRRs of the best query type for three of the four corpora, there still exists the

possibility that each of the four corpora perform significantly different. In this case, selecting the

best queries from each corpus could lead to a significantly higher difference in the MRRs and the

206

Figure 5.14: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for jEdit. Graph is ordered by distance from best to worst.

effectiveness measures. The distances between the best, average, and worst queries from all of the

corpora can be found in Figure 5.14.

The greatest distance between the best and the worst query for all corpora is 6,672, only

230 higher than the greatest distance found for the four corpora individually. The smallest distance

between the best and the worst query is 130 and the smallest distance between the best and the

average query is 69. The greatest distance between the best and the average query is 4,233. The

mean distance between the best and the worst queries is 3,491 which is almost two times the

greatest distance found when looking at the four corpora individually. Furthermore, the mean

distance between the best and the average query is found to be 1,561 which is higher than the

mean distance found between the best and the average query of the individual corpora by 700.

I show the computed MRRs for the best, average, and worst case of each feature in Table

207

Best Average Worst

MRR 0.0862 0.0010 0.0005

Table 5.16: MRRs for choosing the best, average, and worst case for each feature from all corpora
for jEdit

CSB ICL LMPBV Flat

Percentage 20 11 18 43

Table 5.17: Percentages for each corpus where the best query was found from all corpora for jEdit

Title Description Combined

Percentage 65 17 18

Table 5.18: Percentages for each query type where the best query was found from all corpora for
jEdit

5.16. Again there is a substantial difference between the MRR when choosing the best query across

all corpora with a difference of .0273 over the best MRR from the flat corpus. Table 5.17 shows the

percentage of times the best query was selected from each corpus. The flat corpus had the highest

percentage of 43%.The percentages for LMPBV and CSB are close to each other with less than a

2% difference between the two corpora. ICL had the smallest percentage of the four corpora. The

percentage of times each query type resulted in the best query is found in Table 5.18. This table

shows that once again Title had the highest percentage of queries that were selected as the best.

Finally, I performed a Friedman test with a wilcoxon post-hoc for the best, average, and

worst case of each feature across all corpora. The results of the analysis showed that there is a

significant difference between each case.

208

5.3.1.4 muCommander

The boxplots for muCommander can be found in Figure 5.15. For three of the four corpora,

the spread for Title is smaller than the other two query types. The exception is found in the flat

corpus where Title has the largest spread. For this corpus, the largest spread exists for flat corpus,

however for each measure aside from the upper 1.5 IRQ and the 3Q value, the measures are lower

for the Title corpus. For each of the four corpora, Description and Combined have a similar spread.

When comparing the Description and Combined, the 3Q value is slightly lower in each corpus.

I calculated the MRRs for each query type for all four corpora and recorded their values

in Table 5.19. The MRRs for the Title query type are significantly lower for muCommanderwhen

compared to the other systems. For each of the four corpora, the MRR for the Title query type is

significantly higher than the MRR values for the Description and the Combined query types. The

highest MRR is found for the flat corpus with the Title query type while the lowest MRR is found

for the ICL corpus. For three of the four corpora, the MRR for the Description query type is lower

than the MRR for the Combined query type. For each query type, the flat corpus has a higher MRR

than the corresponding query type for the other three corpora.

I ran a Friedman test with a wilcoxon post-hoc analysis to determine whether there were any

significant differences between the three different query types for each of the four corpora. The

results of the analysis found that there were significant differences for three of the four corpora

between each query type. For the flat corpus, there were no significant difference found between

any of the three query types.

I show the differences between the best, average, and worst cases in Figure 5.16. The

209

(a) CSB

Title Description Combined

0
20

00
40

00
60

00
80

00

(b) ICL

Title Description Combined

0
20

00
40

00
60

00
80

00

(c) LMPBV

Title Description Combined

0
20

00
40

00
60

00
80

00

(d) Flat

Title Description Combined

0
20

00
40

00
60

00
80

00

Figure 5.15: The Effectiveness Measures for the three different query types (Title, Description,
Combined) for muCommander

Query CSB ICL LMPBV Flat

Title 0.0113 0.0103 0.0179 0.0237

Description 0.0021 0.0022 0.0011 0.0046

Combined 0.0024 0.0023 0.0012 0.0042

Table 5.19: MRRs for the three different query types (Title, Description, Combined) for muCom-
mander

210

greatest distance between the best and worst query can be found in the flat corpus at 7,784. The

greatest mean distance between the best query and the worst query can be found in the CSB corpus

at 1,587. The greatest distance between the best query and the average query is 4,411 and it is

found in the flat corpus, while the greatest mean distance between the best query and the average

query is found in the ICL corpus at 850. The smallest mean distance between the best query and

the worst query is 838 and it is found in the LMPBV corpus. The LMPBV corpus also has the

smallest mean distance between the best query and the average query at 478. The LMPBV corpus

has the smallest distance between the best and the worst query at 0. For each of the four corpora,

the mean distance between the best and the average query is larger than the distance between the

average and the worst query.

The MRRs for the best, average, and worst queries for each of the four corpora in muCom-

mander can be found in Table 5.20. Once again, the differences between the MRRs for the best

queries and the MRRs of the best query type for each corpus are small at less than or equal to

.0025 for each of the four corpora. The largest difference is found in the flat corpus and is .0025.

The smallest change is found for LMPBV at less than 0.0002. The greatest MRR between the four

corpora is once again found for the flat corpus at .0262. The flat corpus also has the highest values

for the average and worst MRRs, both of which are over .0020. Neither the average or the the

worst is higher than .0020 for any other corpus.

I calculated the percentages of times that the best query was selected from each of the three

query types for each of the four corpora. The results of these calculations can be found in Table

5.23. For each of the four corpora, the Title query was the best query type over 47% of the time.

The highest percentage for Title was 64% and was found for the LMPBV corpus. For each of the

four corpora, the percentages for Description are higher than the percentages for Combined. In

211

(a) CSB

(b) ICL

Figure 5.16: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for muCommander. Graph is ordered by distance from best to worst.

212

(c) LPMBV

(d) Flat

Figure 5.16: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for muCommander. Graph is ordered by distance from best to worst.

213

Query CSB ICL LMPBV Flat

Best 0.0121 0.0110 0.0180 0.0262

Average 0.0019 0.0019 0.0015 0.0029

Worst 0.0014 0.0014 0.0012 0.0022

Table 5.20: MRRs for choosing the best, average, and worst case for each feature for muComman-
der

Query CSB ICL LMPBV Flat

Title 58 62 64 47

Description 29 22 25 31

Combined 13 16 11 22

Table 5.21: Percentages for each query type where the best query was found for muCommander

each corpus, the percentages for Combined are less than 25% while for the Description query type,

the percentages are above 20%. The highest percentage for the Description and for the Combined

query types are found in the flat corpus, while this corpus has the lowest percentage for Title.

I ran a Friedman test with a wilcoxon post-hoc analysis to determine whether there was any

significant difference between the best, average, and worst queries for each feature. The results of

my analysis found that for each of the four corpora, there was significant differences between each

of the three cases.

As with jEdit, despite finding only small differences between the MRRs of the best queries

and the MRRs of the best query type for each corpus, there still exists the possibility that each of

the four corpora perform significantly different. In this case, selecting the best queries from each

corpus could lead to a significantly higher difference in the MRRs and the effectiveness measures.

214

Figure 5.17: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for muCommander. Graph is ordered by distance from best to worst.

The distances between the best, average, and worst queries from all of the corpora can be found in

Figure 5.17.

The greatest distance between the best and the worst query for all corpora is 7,866, slightly

higher than any of the distances found for the four corpora individually. However, the difference

between the greatest distance found overall and the greatest distance found by the individual cor-

pora is only 82. The smallest distance between the best and the worst query is 97 and the smallest

distance between the best and the average query is 45. Both of these values are higher than the

values found for the corpora individually. The greatest distance between the best and the average

query is 4,906, 495 highest than the value found for the corpora individually. The mean distance

between the best and the worst queries is 3,622 which is over 2,000 more than the mean distance

found when looking at the four corpora individually. Furthermore, the mean distance between

215

Best Average Worst

MRR 0.0374 0.0010 0.0004

Table 5.22: MRRs for choosing the best, average, and worst case for each feature from all corpora
for muCommander

CSB ICL LMPBV Flat

Percentage 16 10 16 48

Table 5.23: Percentages for each corpus where the best query was found from all corpora for
muCommander

Title Description Combined

Percentage 63 18 19

Table 5.24: Percentages for each query type where the best query was found from all corpora for
muCommander

the best and the average query is found to be 1,534 which is higher than the mean distance when

looking at the corpora individually.

I show the the computed MRRs for the best, average, and worst case of each feature in

Table 5.22. muCommander shows the lowest MRR of any of the four subject systems, however

choosing the best query across across all query types and corpora still shows a substantial change

in the MRR value. Table 5.23 shows the percentage of times the best query was selected from

each corpus. The flat corpus contained the highest percentage of the best queries selected. ICL

contained the lowest percentage of the best queries at only 10%. The remaining two corpora, CSB

and LMPBV, have the same percentage of best queries at 16% each. The percentage of times each

query type resulted in the best query is found in Table 5.24. Similar to previous systems, this table

shows that Title had the highest percentage of the best queries followed by Combined.

216

Finally, I performed a Friedman test with a wilcoxon post-hoc for the best, average, and

worst case of each feature across all corpora. The results of the analysis showed that there is a

significant difference between each case.

5.3.1.5 All Systems

The boxplots for all systems combined can be found in Figure 5.18. For three of the four

corpora, the spread for Title is smaller than the other two query types. The exception is found in

the flat corpus where Title has a larger spread than the Combined query type. However, for this

corpus as with the other three corpora, Title has the lowest 1Q, median, and 3Q measures. For each

of the four corpora, Description has the largest spread but for both ICL and LMPBV, this spread is

close to the spread for Combined. ICL is the only corpus where the median measure for Combined

is higher than for Description.

I calculated the MRRs for each query type for all four corpora and recorded their values in

Table 5.25. For each of the four corpora, the MRR for the Title query type is significantly higher

than the MRR values for the Description and the Combined query types. The highest MRR is found

for the flat corpus with the Title query type while the lowest MRR is found for the LMPBV corpus

with a tie between the Description and Combined query types. With the exception of LMPBV,

the MRR for the Description query type is lower than the MRR for Combined. For both the Title

and Combined query types, the flat corpus has a higher MRR than for the other three corpora. For

Description, the ICL corpus has the highest MRR followed closely by the CSB corpus. For ICL,

the difference between the Description query type and the Combined query type is less than .0001.

I ran a Friedman test with a wilcoxon post-hoc analysis to determine whether there were

any significant differences between the three different query types for each of the four corpora. The

results of the analysis found that there were significant differences for three of the four corpora

217

(a) CSB

Title Description Combined

0
20

00
40

00
60

00
80

00

(b) ICL

Title Description Combined

0
20

00
40

00
60

00
80

00
10

00
0

(c) LMPBV

Title Description Combined

0
20

00
40

00
60

00
80

00
10

00
0

(d) Flat

Title Description Combined

0
20

00
40

00
60

00
80

00
10

00
0

Figure 5.18: The Effectiveness Measures for the three different query types (Title, Description,
Combined) for all systems

Query CSB ICL LMPBV Flat

Title 0.0395 0.0316 0.0176 0.0531

Description 0.0082 0.0085 0.0029 0.0064

Combined 0.0107 0.0086 0.0029 0.0119

Table 5.25: MRRs for the three different query types (Title, Description, Combined) for all systems

218

between each query type. For the flat corpus, there was a significant difference found between the

Title and the Description query types.

I show the differences between the best, average, and worst cases in Figure 5.19. The

greatest distance between the best and worst query can be found in the ICL corpus at 10,470. The

greatest mean distance between the best query and the worst query can also be found in the ICL

corpus at 1,672. The greatest distance between the best query and the average query is 6,971 and it

is found in the ICL corpus, while the greatest mean distance between the best query and the average

query is found in the CSB corpus at 859. The smallest mean distance between the best query and

the worst query is 728 and it is found in the LMPBV corpus. The LMPBV corpus also has the

smallest mean distance between the best query and the average query at 402. The LMPBV corpus

has the smallest distance between the best and the worst query at 0. For three of the four corpora,

the mean distance between the best and the average query is larger than the distance between the

average and the worst query.

The MRRs for the best, average, and worst queries for each of the four corpora in all

systems combined can be found in Table 5.26. Like the systems alone, the differences between

the best queries and the highest query types are small. The largest difference is found in the flat

corpus and is .0039. The smallest change is found for LMPBV at less than 0.0002. The greatest

MRR between the four corpora is found for the flat corpus, while the smallest MRR is found for

LMPBV.

I calculated the percentages of times that the best query was selected from each of the three

query types for each of the four corpora. The results of these calculations can be found in Table

5.29. For each of the four corpora, the Title query was the best query type over 50% of the time.

The highest percentage for Title was 64% and was found for the LMPBV corpus. For each of

219

(a) CSB

(b) ICL

Figure 5.19: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for all systems. Graph is ordered by distance from best to worst.

220

(c) LPMBV

(d) Flat

Figure 5.19: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for all systems. Graph is ordered by distance from best to worst.

221

Query CSB ICL LMPBV Flat

Best 0.0403 0.0328 0.0178 0.0570

Average 0.0087 0.0079 0.0029 0.0047

Worst 0.0073 0.0072 0.0025 0.0024

Table 5.26: MRRs for choosing the best, average, and worst case for each feature for all systems

Query CSB ICL LMPBV Flat

Title 58 57 64 52

Description 27 26 27 26

Combined 15 16 9 21

Table 5.27: Percentages for each query type where the best query was found for all systems

the four corpora, the percentage for Description was higher than the percentage for Combined.

The highest percentage for Combined was 21% for the flat corpus, while the lowest percentage for

Description was 26% for both the flat corpus and ICL. The lowest percentage of any query type is

for Combined in the LMPBV corpus. This is the only percentage that drops below 10%.

I ran a Friedman test with a wilcoxon post-hoc analysis to determine whether there was any

significant difference between the best, average, and worst queries for each feature. The results of

my analysis found that for each of the four corpora, there was significant differences between each

of the three cases.

As stated previously, the four corpora can act significantly different and this can lead to

improvements in the overall results of the MRRs. The distances between the best, average, and

worst queries from all of the corpora can be found in Figure 5.20.

The greatest distance between the best and the worst query for all corpora is 10,738, higher

222

Figure 5.20: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) for all systems. Graph is ordered by distance from best to worst.

than any of the distances found for the four corpora individually. However, this value is only 268

higher than the highest found for ICL. The smallest distance between the best and the worst query

is 97 and the smallest distance between the best and the average query is 45. The greatest distance

between the best and the average query is 8,477. The mean distance between the best and the worst

queries is 3,707 which is over 2,000 more than the mean distance found when looking at the four

corpora individually. Furthermore, the mean distance between the best and the average query is

found to be 1,631 which is higher than the mean distance when looking at the corpora individually

and only 41 less than the mean distance between the best query and the worst query when looking

at the corpora individually. Overall, the mean distance between the best query and the average

query is closer than the mean distance between the best query and the worst query.

I show the the computed MRRs for the best, average, and worst case of each feature in

223

Best Average Worst

MRR 0.0793 0.0013 0.0005

Table 5.28: MRRs for choosing the best, average, and worst case for each feature from all corpora
for all systems

CSB ICL LMPBV Flat

Percentage 18 11 16 48

Table 5.29: Percentages for each corpus where the best query was found from all corpora for all
systems

Title Description Combined

Percentage 62 17 21

Table 5.30: Percentages for each query type where the best query was found from all corpora for
all systems

Table 5.28. There is a substantial increase in the MRR when compared to the MRRs of looking

at the corpora individually. The difference between the best and the best for each query type is

.0223. Table 5.29 shows the percentage of times the best query was selected from each corpus.

Only 7% of the queries resulted in a tie between the corpora. The highest percentage for any of the

corpora was found for the flat corpus, while the lowest percentage was found for the ICL corpus.

The difference between the CSB and the LMPBV corpora is only 2%. The percentage of times

each query type resulted in the best query is found in Table 5.30. Title had the highest percentage

of the best queries at 62%, while Combined came in second with only 21% of the best queries.

Finally, I performed a Friedman test with a wilcoxon post-hoc for the best, average, and

worst case of each feature across all corpora. The results of the analysis showed that there is a

significant difference between each case.

224

5.3.2 Does changing the combination of included fields affect the accuracy of a structured retrieval-

based FLT?

The purpose of this question is to address how using different combinations of the structural

lexicons in a corpus may lead to differences in the MRRs for each corpus and overall. For this

problem, I used both the Title and the Combined query types as they make up the shortest and the

longest queries of the three types. Because there are no combinations for the flat corpus, I do not

repeat the corpus’s MRRs in this section, however I will use the flat corpus when I compute the

best MRR overall.

5.3.2.1 ArgoUML

Due to the number of combinations in LMPBV, instead of using boxplots, I present the

results of the MRR computation along with the spread in Table 5.31 for the Combined query type

and in Table 5.32 for the Title query type. I list the results for ICL and CSB in similar tables.

Looking at the results of the Combined query for ArgoUML and the LMPBV corpus, there

are two combinations tied for having the highest MRR. These combinations are the leading com-

ments alone (L) and the leading comments combined with the method names (LM). In neither case

do either of the combinations have the smallest spreads of effectiveness measures. However, LM

does have the smallest median value of all the combinations, while L has the lowest minimum

rank. The combination with the lowest MRR is the method names combined with the local vari-

ables (MV). This combination has the highest minimum rank out of all combinations. Interestingly,

when looking at the results of the Title query type, the combination with the highest MRR

225

Combination min 1Q median 3Q max MRR

V 4 708 2942 6862 11006 0.0071

B 4 732 2921 7030 11695 0.0095

BV 4 735 2922 6997 11694 0.0081

P 5 633 2955 7055 11072 0.0076

PV 5 672 2941 7102 11078 0.0076

PB 5 711 2970 7061 11692 0.0075

PBV 5 712 2936 7062 11695 0.0075

M 5 782 2897 6884 10739 0.0046

MV 8 747 2913 7018 10783 0.0038

MB 4 736 2893 6881 10571 0.0074

MBV 4 753 2909 7177 11969 0.0065

MP 5 714 2918 6866 10780 0.0074

MPV 5 713 2914 7056 10796 0.0074

MPB 5 713 2929 7056 10642 0.0074

MPBV 5 712 2909 6910 10714 0.0074

L 2 698 2902 6995 10949 0.0109

LV 3 714 2965 7058 10867 0.0092

LB 4 683 2912 6937 11087 0.0080

LBV 4 700 3000 7054 11955 0.0080

LP 3 693 3004 6866 10867 0.0093

LPV 4 709 3006 7063 10926 0.0082

LPB 4 683 3016 6999 11459 0.0082

LPBV 5 698 3028 6874 11592 0.0073

LM 2 717 2869 7052 10848 0.0109

LMV 4 738 2944 7148 11983 0.0079

LMB 4 708 2893 7543 10590 0.0078

LMBV 4 735 3041 7136 11921 0.0078

LMP 4 697 2981 6734 10792 0.0080

LMPV 5 712 2975 6910 10802 0.0074

LMPB 4 686 2963 7172 10646 0.0079

LMPBV 5 710 3002 7002 10733 0.0072

Table 5.31: MRRs and descriptive statistics of the effectiveness measures for the LMPBV corpus
and Combined query type for ArgoUML

226

Combination min 1Q median 3Q max MRR

V 1 673 2909 6702 11836 0.0169

B 1 674 2899 6554 11598 0.0183

BV 2 715 3074 6667 11759 0.0096

P 1 555 2860 6878 11633 0.0246

PV 1 604 2940 6602 11920 0.0182

PB 2 617 2964 6859 11302 0.0127

PBV 2 657 2923 6918 10796 0.0118

M 7 747 2834 6397 11986 0.0028

MV 9 706 2937 6169 11665 0.0029

MB 2 731 2889 6639 11815 0.0095

MBV 2 757 2900 6378 11690 0.0086

MP 5 688 2994 6284 11987 0.0045

MPV 5 689 2967 6177 11998 0.0049

MPB 2 626 2944 6340 11272 0.0118

MPBV 2 696 3052 6492 11934 0.0112

L 1 722 3047 7564 10907 0.0134

LV 1 734 3143 6683 11878 0.0134

LB 1 636 3043 7625 11335 0.0150

LBV 2 665 3332 6783 11647 0.0095

LP 1 640 3108 6912 10918 0.0139

LPV 2 623 3070 6212 11783 0.0079

LPB 2 591 3062 7156 11973 0.0098

LPBV 2 583 3036 6838 10600 0.0099

LM 1 638 2935 6437 11976 0.0134

LMV 2 607 3143 6331 11580 0.0079

LMB 1 533 2897 7238 11782 0.0150

LMBV 2 557 3139 6764 11445 0.0097

LMP 1 570 3013 6141 11144 0.0136

LMPV 2 597 2956 6393 11873 0.0079

LMPB 2 553 3040 6455 11571 0.0101

LMPBV 2 578 3140 6613 11977 0.0098

Table 5.32: MRRs and descriptive statistics of the effectiveness measures for the LMPBV corpus
and Title query type for ArgoUML

227

Combination min 1Q median 3Q max MRR

B 1 456 2126 5235 11907 0.0256

S 3 664 2659 6139 10816 0.0080

SB 1 467 2136 5881 11848 0.0245

C 2 676 3134 6414 11794 0.0155

CB 1 575 2072 5364 11930 0.0386

CS 1 749 2259 6879 11643 0.0191

CSB 1 542 2416 5994 11745 0.0375

Table 5.33: MRRs and descriptive statistics of the effectiveness measures for the CSB corpus and
Combined query type for ArgoUML

Combination min 1Q median 3Q max MRR

B 1 570 2148 5612 11868 0.0505

S 5 494 2548 5116 11851 0.0074

SB 1 380 1797 5389 11151 0.0470

C 1 490 3457 6821 11230 0.0413

CB 1 639 3309 6420 11818 0.0575

CS 1 413 3404 6387 11604 0.0419

CSB 1 383 2572 6207 11593 0.0688

Table 5.34: MRRs and descriptive statistics of the effectiveness measures for the CSB corpus and
Title query type for ArgoUML

is actually the parameters alone (P). This combination is tied with multiple other combinations

for having the lowest minimum rank. The combination with the lowest MRR is the method name

by themselves (M). This combination does not have the highest value for any of the descriptive

statistics.

The results of the experiment for the CSB corpus can be found in Tables 5.33 and 5.34. For

the Combined query type, the combination with the highest MRR is comments combined with

228

Combination min 1Q median 3Q max MRR

L 1 725 3014 6533 11732 0.0263

C 2 676 3134 6414 11794 0.0155

CL 1 586 2819 5634 11772 0.0252

I 1 730 2864 5507 11940 0.0155

IL 1 680 2799 7286 11863 0.0208

IC 1 706 2162 5825 11999 0.0329

ICL 1 594 2482 5977 11384 0.0284

Table 5.35: MRRs and descriptive statistics of the effectiveness measures for the ICL corpus and
Combined query type for ArgoUML

Combination min 1Q median 3Q max MRR

L 1 436 2132 6248 11321 0.0703

C 1 490 3457 6821 11230 0.0413

C 1 612 2272 5674 11367 0.0264

CL 1 457 2414 5456 11744 0.0410

I 1 612 2272 5674 11367 0.0264

IL 1 466 3488 6096 11908 0.0497

IC 1 717 3289 6291 11484 0.0381

ICL 1 560 3021 6143 11211 0.0387

Table 5.36: MRRs and descriptive statistics of the effectiveness measures for the ICL corpus and
Title query type for ArgoUML

the body (CB). The MRR of this combination is followed closely by the entire corpus (CSB). CSB

and CB are tied with three other combinations for having the lowest minimum rank, while CB

also has the lowest median of all combinations. The combination with the lowest MRR is the

signature alone (S). In the case of the Title query type, the CSB and CB have the highest MRRs

once again, however in this case, the MRR for CSB is higher than the MRR for CB. Neither of

these combinations have the lowest of any of the descriptive statistics. The lowest MRR is once

229

again for S. This combination is .0339 lowest than the next lowest combination. This combination

has the highest minimum rank of any of the combinations.

In Tables 5.35 and 5.36, we can find the results of the experiment on the ICL corpus. For the

Combined query type, the combination with the highest MRR is the identifiers combined with the

comments (IC). This combination has the lowest median value of the combinations. Interestingly,

there is a tie for the combination with the lowest MRR between the comments alone (C) and the

identifiers alone (I). I has the highest 1Q value of any of the combinations while C has the highest

median value. The Title query type shows literals alone (L) as having the highest MRR. This

combination has the lowest 1Q and median values of any of the combinations. Another interesting

find is that the combination with the lowest MRR when using the Title query is found to be the IC

combination. In this case, the combination has the highest 1Q value.

I performed a Friedman test with a wilcoxon post-hoc for each of the corpora between each

of the different structural combinations. This analysis was performed for both the Combined and

the Title query types. For the Combined query type, a significant difference was found in both

the ICL and the LMPBV corpora, however there was no significant difference found in the CSB

corpus. For the LMPBV corpus, 25 pairs were found to have significant differences. For the ICL

corpus, there were 6 significant differences found with significant difference found between L,

IL, IC, and ICL. For the Title query type, more significant differences were found for CSB and

LMPBV. For CSB, 9 significant differences were found. For the LMPBV corpus, 148 significant

differences were found. ICL had a lower number of significant differences found with only 4.

These significant differences are not as important for the individual combinations involved, but for

understanding any improvements that will be seen when looking at choosing the best queries.

230

(a) CSB

(b) ICL

Figure 5.21: Stacked bargraphs representing the distance from the best query from structural com-
binations to the average (bottom) and the worst(top) for ArgoUML. Graph is ordered by distance
from best to worst.

231

(c) LPMBV

Figure 5.21: Stacked bargraphs representing the distance from the best query from structural com-
binations to the average (bottom) and the worst(top) for ArgoUML. Graph is ordered by distance
from best to worst.

Similarly to how I selected the best query based on each query type in the previous problem,

I selected the best query from each of the combinations for each feature. I selected from both the

Combined and the Title query types. Figure 5.21 shows the differences between the best, average,

and worst cases for each feature. The greatest distance between the best query and the worst query

for the three corpora is found in the LMPBV corpus at 11,967, while the greatest mean distance

between the best and the worst query is found in the CSB corpus at a distance of 7,004, while ICL

showed the greatest mean distance between the best query and the average case is at 5,489. The

smallest values in each case were found for the LMPBV corpus with a mean distance between the

best and the worst queries of 2,198 and a mean distance between the best and the average case of

1,063. For each of the three corpora, the mean distance between the best and the average query is

smaller than the mean between the average and the worst.

232

Query CSB ICL LMPBV

Best 0.1120 0.1237 0.0612

Average 0.0045 0.0089 0.0027

Worst 0.0013 0.0014 0.0019

Table 5.37: MRRs for choosing the best, average, and worst case for each feature for Ar-
goUML from structural combinations

B S SB C CB CS CSB

40 16 6 17 13 4 1

(a) CSB

L C CL I IL IC ICL

25 20 5 25 10 10 1

(b) ICL

V B BV P PV PB PBV M MV MB MBV

10 9 1 18 0 1 0 14 3 0 3

MP MPV MPB MPBV L LV LB LBV LP LPV

2 1 0 0 4 0 0 2 3 1

LPB LPBV LM LMV LMB LMBV LMP LMPV LMPB LMPBV

1 0 5 1 1 4 4 1 2 2

(c) LMPBV

Table 5.38: Percentage of the best queries obtained from each structural combination for Ar-
goUML

The MRRs have been computed for each case and the results can be found in Table 5.37.

Comparing the MRRs between the best cases and the results of the best structural combinations

shows large increases. The largest increase occurs for the ICL corpus with a difference between

233

Figure 5.22: Stacked bargraphs representing the distance from the best query to the average (bot-
tom) and the worst(top) from structural combinations for ArgoUML. Graph is ordered by distance
from best to worst.

the best queries and the L combination of .0534. The smallest difference occurs for the LMPBV

corpus with a difference of .0366. Of the three corpora, the largest MRR can also be found for the

ICL corpus while the smallest MRR can be found for the LMPBV corpus.

In order to understand the combinations that make the greatest contribution to the MRR for

each corpus, I computed the percentage of best queries that are found within each combination. The

results of this computation can be found in Table 5.38. In the case of the CSB corpus, the highest

percentage is found for the body combination alone (B) at 40%. The next closest percentage occurs

for the comments alone (C) at 17%, less than half the percentage for B. The smallest percentage

is found for the full corpus with the full corpus only representing 1% of the best queries. The

percentages for the full ICL and LMPBV corpus are similar with ICL only representing 1% and

LMPBV only representing 2%. Of the combinations in ICL, there is a tie for the highest percentage

234

Best Average Worst

MRR 0.1759 0.0013 0.0003

Table 5.39: MRRs for choosing the best, average, and worst case for each feature from all corpora
and all structural combinations for ArgoUML

CSB ICL LMPBV Flat

Percentage 49 21 11 19

Table 5.40: Percentages for each corpus where the best query was found from all corpora and all
structural combinations for ArgoUML

between literals alone (L) and identifiers alone (I). These are followed by the comments alone (C).

The highest percentages for LMPBV come from the parameters alone (P) and the method names

alone (M). It should be noted that for each of the three corpora, the highest percentages come from

combinations where only one structural lexicon is used.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

Similar to how choosing between the three query types for all corpora can lead to improve-

ments in the results of the FLT, so can taking the combinations across the different corpora. In this

computation I also included the best queries from the flat corpus. In Figure 5.22, you can see the

difference between the best, average, and worst cases for each individual feature across all corpora.

The greatest distance between the best and the worst query is 11,986. The mean distance between

the best and worst query is 6,649 and the mean distance between the best query and the average

case is 2,911 while the greatest distance between the best and the average case is 8,968. The mean

distance distances between the best and the worst cases and the best and the average case are ac-

235

tually lower than the mean distance for the corpora individually. The mean distance from the best

and the average case is smaller than the mean distance between the average and the worst case.

I computed the MRRs for these three cases and the results can be found in Table 5.39. The

results of this computation show that there is another large increase from the individual corpora to

taking the best across all queries. To understand which corpus is contributing the highest number of

best queries from the corpora, I computed the percentage for each query and recorded the results

in Table 5.40. From this table it can be seen that the CSB corpus contributed close half of the

queries for the features. The corpus with the lowest percentage is the LMPBV corpus while ICL

has a higher percentage than the flat corpus. The combinations with the highest percentages from

the three corpora include literals only (L) from ICL with 13%, parameters only (P) from LMPBV

with 4%, and the body alone (B) from CSB.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

5.3.2.2 JabRef

The MRRs for JabRef and the LMPBV corpus can be found in Tables 5.41 and 5.42. When

looking at the results of the Combined query type, the majority of the MRRs for this corpus are less

than .005. There are three exceptions to this. The first is found for the body comments alone(B),

while the second and third come from the leading comments alone (L) and the leading comments

with the local variables (LV), respectively. The highest MRR of the three comes from L with LV

having less than a .001 difference. The three combinations make up the combinations with the

three lowest minimum rank values. Additionally, L and LV have the lowest median values of any

236

Combination min 1Q median 3Q max MRR

V 26 544 1617 2990 4819 0.0031

B 2 476 1279 2806 5038 0.0164

BV 26 458 1149 2754 4760 0.0035

P 26 532 1133 2800 5136 0.0034

PV 26 518 1133 2763 4957 0.0031

PB 26 518 1150 2594 5073 0.0034

PBV 26 484 1133 2612 4884 0.0033

M 26 539 1133 2743 5150 0.0043

MV 26 508 1133 2844 4967 0.0037

MB 26 489 1194 2471 5075 0.0037

MBV 26 484 1133 2587 4868 0.0033

MP 26 540 1133 2485 5155 0.0033

MPV 26 525 1133 2516 5027 0.0030

MPB 26 523 1133 2336 5090 0.0034

MPBV 26 487 1133 2421 4912 0.0032

L 1 432 1079 2706 5106 0.0286

LV 1 469 1088 2765 4892 0.0285

LB 17 509 1263 2721 5089 0.0049

LBV 26 492 1124 2651 4832 0.0033

LP 26 493 1133 2723 5165 0.0034

LPV 26 509 1133 2552 4997 0.0031

LPB 26 527 1136 2556 5110 0.0035

LPBV 26 523 1133 2572 4919 0.0032

LM 26 494 1133 2481 5171 0.0042

LMV 26 499 1133 2582 5003 0.0037

LMB 26 520 1176 2426 5107 0.0035

LMBV 26 504 1133 2475 4915 0.0033

LMP 26 496 1133 2278 5171 0.0033

LMPV 26 517 1133 2292 5077 0.0031

LMPB 26 541 1133 2291 5119 0.0033

LMPBV 26 519 1133 2302 4998 0.0032

Table 5.41: MRRs and descriptive statistics of the effectiveness measures for the LMPBV corpus
and Combined query type for JabRef

237

Combination min 1Q median 3Q max MRR

V 2 453 1211 2729 4572 0.0190

B 1 383 1219 2312 4404 0.0795

BV 1 392 1205 2240 4435 0.0793

P 1 445 1082 2327 5136 0.0598

PV 2 625 1065 2856 4707 0.0156

PB 1 347 1290 2231 4684 0.0558

PBV 1 329 1235 2230 4707 0.0560

M 2 482 1133 2273 4941 0.0201

MV 2 498 1082 2365 4545 0.0196

MB 1 375 1258 2401 4520 0.0485

MBV 1 363 1389 2204 4583 0.0439

MP 2 465 1092 2202 5089 0.0197

MPV 2 480 1121 2387 5035 0.0193

MPB 1 393 1383 2475 4979 0.0430

MPBV 1 363 1249 2410 4937 0.0429

L 2 416 1430 2590 5010 0.0217

LV 2 443 1153 2933 5010 0.0160

LB 1 353 1551 2325 4774 0.0792

LBV 1 411 1346 2166 4926 0.0791

LP 2 432 1344 2832 4982 0.0162

LPV 2 446 1188 2626 5055 0.0163

LPB 1 387 1517 2496 4669 0.0557

LPBV 1 410 1282 2574 4922 0.0559

LM 2 357 1387 2284 4033 0.0175

LMV 2 398 1220 2476 4499 0.0177

LMB 1 315 1505 2851 4694 0.0438

LMBV 1 372 1361 2403 4926 0.0436

LMP 2 405 1554 2426 5069 0.0172

LMPV 2 411 1235 2616 5019 0.0172

LMPB 1 371 1203 2600 5012 0.0428

LMPBV 1 387 1161 2530 4943 0.0430

Table 5.42: MRRs and descriptive statistics of the effectiveness measures for the LMPBV corpus
and Title query type for JabRef

238

Combination min 1Q median 3Q max MRR

B 60 338 930 2419 4975 0.0032

S 26 539 1254 2199 5168 0.0034

SB 29 474 1121 2363 5105 0.0036

C 1 193 1144 2007 4949 0.0331

CB 6 235 1065 2034 5091 0.0079

CS 26 363 1218 2516 5077 0.0042

CSB 26 395 1118 2391 5101 0.0040

Table 5.43: MRRs and descriptive statistics of the effectiveness measures for the CSB corpus and
Combined query type for JabRef

Combination min 1Q median 3Q max MRR

B 1 407 1271 2257 4968 0.0799

S 1 361 970 2242 4797 0.0451

SB 1 406 1046 2063 5078 0.0367

C 1 332 1025 2478 4676 0.0704

CB 1 309 1373 2565 4872 0.1043

CS 1 153 954 2541 4690 0.0717

CSB 1 253 683 2063 4845 0.0342

Table 5.44: MRRs and descriptive statistics of the effectiveness measures for the CSB corpus and
Title query type for JabRef

of the combinations. The combination with the lowest MRR value is the method names combined

with the parameters and the local variables (MPV), however this value is within a .0005 range

of the majority of other combinations in this corpus. Looking at the Title query type, there are

four top combinations that are within .0004 of each other. These include B, LB, BV, and LBV.

The combination with the lowest MRR is PV which is tied for the highest minimum rank, has the

highest 1Q, and the highest median value.

239

Combination min 1Q median 3Q max MRR

L 16 393 1294 2278 5000 0.0045

I 26 333 1109 2318 5104 0.0035

IL 21 496 1124 2471 4951 0.0039

C 1 193 1144 2007 4949 0.0331

CL 26 220 1086 2316 5116 0.0042

IC 24 299 1068 2076 4984 0.0044

ICL 21 384 969 2429 5115 0.0040

Table 5.45: MRRs and descriptive statistics of the effectiveness measures for the ICL corpus and
Combined query type for JabRef

Combination min 1Q median 3Q max MRR

L 1 397 1428 2851 4847 0.0380

I 1 309 1046 2331 4768 0.0304

IL 1 500 1096 2186 5033 0.0308

C 1 332 1025 2478 4676 0.0704

CL 1 260 1233 2526 4920 0.0882

IC 1 369 1613 2621 4709 0.0574

ICL 1 253 1116 2478 4859 0.0316

Table 5.46: MRRs and descriptive statistics of the effectiveness measures for the ICL corpus and
Title query type for JabRef

We can see the results of the CSB corpus in Tables 5.43 and 5.44. For the Combined query

type, one MRR is significantly higher than the others. This MRR is for the comments alone (C) and

is the only MRR to get over .008 with a value of .0331. This combination has the lowest minimum

rank, 1Q, 3Q, and maximum rank of the combinations. The combination with the lowest MRR is

the body alone (B) with the highest minimum rank, however interesting to note of this combination

is that it has the lowest median value of any combination. This combination is slightly lower than

the signature alone (S) and SB. Interestingly, for the Title query type, B actually has a higher MRR

240

than C, however the highest MRR of the combinations is from CB, when the two are combined.

The combination with the lowest MRR is the full corpus. However, the full corpus has the lowest

median and 3Q values.

Tables 5.45 and 5.46 contain the results for the ICL corpus. Similar to the CSB corpus,

C has the highest MRR for ICL and the Combined query type as well. This combination has the

lowest of each value excepting the median. The corpus with the lowest MRR is the identifiers by

themselves (I). For the Title query type, the comments combined with literals (CL) has the highest

MRR. Once again, I has the lowest MRR of any of the combinations.

I performed a Friedman test with a wilcoxon post-hoc for each of the corpora between each

of the different structural combinations. This analysis was performed for both the Combined and

the Title query types. For the Combined query type, a significant difference was found in both

the ICL and the LMPBV corpora, however there was no significant difference found in the CSB

corpus. For the LMPBV corpus, 107 pairs were found to have significant differences. For the ICL

corpus, there were only 2 significant differences found with significant difference found between

IL and IC, and IL and ICL. Interestingly, for the Title query type, a far fewer number of significant

differences were found. For CSB and ICL, no significant differences were found. Furthermore, for

the LMPBV corpus, only 4 significant differences were found.

The results of the best, average, and worst cases for each feature for each corpus and both

query types can be found in Figure 5.23. The greatest distance between the best query and the

worst query for the three corpora is found in the LMPBV corpus at 5,054, while the greatest mean

distance between the best and the worst query is found in the CSB corpus at a distance of 2,377.

ICL showed the greatest mean distance between the best query and the average case is at 998. The

smallest mean values in each case were found for the LMPBV corpus with a mean

241

(a) CSB

(b) ICL

Figure 5.23: Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for JabRef. Graph is ordered by distance
from best to worst.

242

(c) LPMBV

Figure 5.23: Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for JabRef. Graph is ordered by distance
from best to worst.

distance between the best and the worst queries of 1,559 and a mean distance between the best

and the average case of 710. The smallest distance between the best and worst query is 111 and

found in the ICL corpus. The smallest distance between the best and the average case is 47 and

also found in the ICL corpus. For each of the three corpora, the mean distance between the best

and the average query is smaller than the mean between the average and the worst.

The MRRs have been computed for each case and the results can be found in Table 5.47.

Comparing the MRRs between the best cases and the results of the best structural combinations

shows large increases. The largest increase occurs for the ICL corpus with a difference between

the best queries and the CL combination of .1031. The smallest difference occurs for the CSB

corpus with a difference of .0331. Of the three corpora, the largest MRR can also be found for the

ICL corpus while the smallest MRR can be found for the LMPBV corpus.

243

Query CSB ICL LMPBV

Best 0.1374 0.1913 0.1171

Average 0.0022 0.0020 0.0025

Worst 0.0008 0.0007 0.0014

Table 5.47: MRRs for choosing the best, average, and worst case for each feature for JabRef from
structural combinations

B S SB C CB CS CSB

33 15 5 20 7 7 10

(a) CSB

L C CL I IL IC ICL

20 25 5 30 5 10 2

(b) ICL

V B BV P PV PB PBV M MV MB MBV

12 23 2 12 0 0 0 5 0 2 2

MP MPV MPB MPBV L LV LB LBV LP LPV

0 0 2 2 23 0 2 2 0 0

LPB LPBV LM LMV LMB LMBV LMP LMPV LMPB LMPBV

0 0 0 0 0 5 0 0 0 0

(c) LMPBV

Table 5.48: Percentage of the best queries obtained from each structural combination for JabRef

The percentages for JabRef can be found in Table 5.48. In the case of the CSB corpus,

the highest percentage is found for the body combination alone (B) at 33%. The next closest

percentage occurs for the comments alone (C) at 20%, 13% less than the percentage for B. The

smallest percentage is found for the signature combined with the body (SB) with this combination

244

Figure 5.24: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural combinations for JabRef. Graph is ordered by distance
from best to worst.

only representing 5% of the best queries. For both the ICL and LMPBV corpus, the full corpora

perform poorly with ICL only representing 1% and LMPBV making up 0% of the best queries for

the corpus. Of the combinations in ICL, the I outperforms the other combinations with 30%. The

next closest combination is C with 25% and then L with 20%. The lowest percentage is found for

the full corpus. The highest percentages for LMPBV come from the two types of comments (lead-

ing and body) alone. It should be noted that for each of the three corpora, the highest percentages

come from combinations where only one structural lexicon is used.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

In Figure 5.24, you can see the difference between the best, average, and worst cases for

245

Best Average Worst

MRR 0.2404 0.0018 0.0005

Table 5.49: MRRs for choosing the best, average, and worst case for each feature from all corpora
and all structural combinations for JabRef

CSB ICL LMPBV Flat

Percentage 41 33 19 7

Table 5.50: Percentages for each corpus where the best query was found from all corpora and all
structural combinations for JabRef

each individual feature across all corpora. The greatest distance between the best and the worst

query is 5,227. The mean distance between the best and worst query is 3,019 and the mean distance

between the best query and the average case is 1,235 while the greatest distance between the best

and the average case is 3,400. Each of these values are higher than the values found for the same

cases of the individual corpora. The mean distance from the best and the average case is smaller

than the mean distance between the average and the worst case.

I computed the MRRs for these three cases and the results can be found in Table 5.49. The

results of this computation show that there is another large increase from the individual corpora to

taking the best across all queries. To understand which corpus is contributing the highest number

of best queries from the corpora, I computed the percentage for each query and recorded the results

in Table 5.50. From this table it can be seen that the CSB corpus contributed the largest percentage

of the queries for the features. The corpus with the lowest percentage is the flat corpus while ICL

has a higher percentage than the LMPBV corpus. The combinations with the highest percentages

from the three corpora include the comments only (C) from ICL with 10%, the body comments

only (B) from LMPBV with 7%, and the body alone (B) from CSB at 18%.

246

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

5.3.2.3 jEdit

The MRRs for jEdit and the LMPBV corpus can be found in Tables 5.51 and 5.52. When

looking at the results of the Combined query type, there is an interesting situation. All combina-

tions for this corpus are less than .0015 and with the exception of three combinations, they have

the same MRR at .0011. While this is true, each of the combinations have different spreads. The

three exceptions are for body comments alone (B), parameters alone (P), and parameters combined

with local variables (LV). Each of these combinations are higher than the .0011 shared by the other

combinations. The combination with the highest MRR is P. This corpus also hass the lowest min-

imum rank of the combinations at 38. Looking at the Title query type, there is more variation

between the MRRs of the different combinations. While the majority of MRRs are below .02, the

exception exists for the highest MRR that was found for B at .0304. This combination shares the

lowest minimum rank of 1 with multiple other combinations, but also has the lowest 1Q value for

any of the combinations. The lowest MRR of the combinations exists for the parameters combined

with the local variables (PV). PV has the highest minimum rank and the highest 3Q values of the

combinations.

We can see the results of the CSB corpus in Tables 5.53 and 5.54. For the Combined query

type, there is more variation between the MRRs than there were for the Combined query type and

the LMPBV corpus. All MRRs range from .0010 and .0020. The highest MRR found for any of

the combinations is .0020 and is found for the body alone (B) which has the lowest minimum

247

Combination min 1Q median 3Q max MRR

V 57 744 2035 4037 7279 0.0011

B 77 715 2120 3994 7275 0.0012

BV 126 754 2065 4040 7279 0.0011

P 38 753 1936 4011 7281 0.0013

PV 57 756 1915 3944 7281 0.0012

PB 131 773 1867 3975 7281 0.0011

PBV 126 785 1916 4014 7281 0.0011

M 86 748 2166 4163 7027 0.0011

MV 86 715 2085 4139 7071 0.0011

MB 131 701 1982 3906 7160 0.0011

MBV 131 719 2030 3829 7085 0.0011

MP 86 760 1923 4054 7100 0.0011

MPV 86 749 1958 4197 7077 0.0011

MPB 131 726 1836 3927 7124 0.0011

MPBV 131 730 1912 4104 7105 0.0011

L 86 730 1913 3882 7085 0.0011

LV 86 721 1915 4078 7088 0.0011

LB 131 714 2002 3703 7242 0.0011

LBV 131 720 1904 3816 7094 0.0011

LP 86 765 1793 4119 7081 0.0011

LPV 86 751 1874 4010 7086 0.0011

LPB 131 740 1837 3988 7175 0.0011

LPBV 131 741 1893 4048 7115 0.0011

LM 86 704 1886 4088 7148 0.0011

LMV 86 692 1911 3988 7061 0.0011

LMB 131 667 1894 3825 7231 0.0011

LMBV 131 682 1864 3842 7066 0.0011

LMP 86 715 1822 4178 7078 0.0011

LMPV 86 726 1792 4203 7085 0.0011

LMPB 131 686 1788 3941 7132 0.0011

LMPBV 131 700 1780 4097 7088 0.0011

Table 5.51: MRRs and descriptive statistics of the effectiveness measures for the LMPBV corpus
and Combined query type for jEdit

248

Combination min 1Q median 3Q max MRR

V 1 655 1837 3652 6895 0.0093

B 1 503 1913 3491 7122 0.0304

BV 1 528 1854 3662 7045 0.0092

P 4 554 1889 3694 6924 0.0042

PV 18 578 1866 3771 6998 0.0021

PB 1 594 1797 3542 7045 0.0087

PBV 1 536 1816 3997 7027 0.0088

M 1 523 1745 3386 6925 0.0169

MV 1 529 1767 3493 7124 0.0167

MB 1 548 1612 3377 7006 0.0170

MBV 1 521 1491 3413 7163 0.0166

MP 1 555 1749 3303 6970 0.0158

MPV 1 564 1738 3630 7108 0.0156

MPB 1 587 1554 3456 6999 0.0156

MPBV 1 540 1657 3416 7059 0.0156

L 1 580 1653 3723 7169 0.0155

LV 1 544 1680 3718 7086 0.0119

LB 1 572 1684 3788 7116 0.0084

LBV 1 536 1739 3612 7099 0.0084

LP 1 581 1683 3852 7117 0.0085

LPV 1 576 1711 3709 7079 0.0085

LPB 1 588 1549 3728 7070 0.0083

LPBV 1 546 1640 3521 7141 0.0084

LM 1 564 1566 3342 7157 0.0156

LMV 1 535 1535 3466 7125 0.0155

LMB 1 548 1401 3446 7099 0.0154

LMBV 1 538 1368 3397 7175 0.0154

LMP 1 559 1625 3489 7122 0.0155

LMPV 1 557 1612 3485 7200 0.0155

LMPB 1 548 1368 3108 7110 0.0154

LMPBV 1 538 1584 3202 7191 0.0154

Table 5.52: MRRs and descriptive statistics of the effectiveness measures for the LMPBV corpus
and Title query type for jEdit

249

Combination min 1Q median 3Q max MRR

B 28 582 1731 3934 7125 0.0020

S 86 792 1692 3592 7300 0.0011

SB 59 672 1895 3862 7255 0.0014

C 35 658 1685 4503 7101 0.0016

CB 59 606 1743 4154 7285 0.0016

CS 92 783 1455 3960 7179 0.0012

CSB 88 681 1855 4054 7248 0.0013

Table 5.53: MRRs and descriptive statistics of the effectiveness measures for the CSB corpus and
Combined query type for jEdit

Combination min 1Q median 3Q max MRR

B 1 545 1694 3782 7121 0.0545

S 1 674 1481 3397 6651 0.0376

SB 1 539 1586 3705 7102 0.0378

C 1 624 1730 4070 7240 0.0386

CB 1 526 1969 3937 6991 0.0473

CS 1 665 1393 3237 7187 0.0196

CSB 1 480 1548 3921 7125 0.0398

Table 5.54: MRRs and descriptive statistics of the effectiveness measures for the CSB corpus and
Title query type for jEdit

rank and 1Q of any of the combinations. The combination with the lowest MRR is found for

the signature alone (S) with the highest maximum rank of the different combinations. The lowest

MRRs for this corpus are found with any combination of S and the other structural lexicons. When

looking at the Title query type, B is once again the combination with the highest MRR with the next

closest being the combination of the comments with the body (CB). Neither of these combinations

have the lowest of any of the values. The lowest MRR comes from comments combined

250

Combination min 1Q median 3Q max MRR

L 1 601 1582 4089 7166 0.0190

I 26 614 1660 4190 7280 0.0021

IL 50 708 1909 3895 7234 0.0016

C 35 658 1685 4503 7101 0.0016

CL 71 634 1803 4152 7263 0.0013

IC 40 661 1845 4079 7274 0.0017

ICL 70 669 1966 4295 7266 0.0015

Table 5.55: MRRs and descriptive statistics of the effectiveness measures for the ICL corpus and
Combined query type for jEdit

Combination min 1Q median 3Q max MRR

L 1 547 1538 3915 7012 0.0648

I 1 453 1603 3650 7257 0.0586

IL 1 515 1722 3539 6960 0.0466

C 1 624 1730 4070 7240 0.0386

CL 1 484 1693 4043 7218 0.0282

IC 1 517 1419 3953 6998 0.0538

ICL 1 466 1811 3964 7217 0.0403

Table 5.56: MRRs and descriptive statistics of the effectiveness measures for the ICL corpus and
Title query type for jEdit

with the signature (CS) which is the only MRR to drop below .02. This combination does not have

the highest of any of the values, however it does have the lowest median of all combinations.

Tables 5.55 and 5.56 contain the results for the ICL corpus. When looking at the Combined

query type, the literals alone (L) shows a substantial improvement over the other combinations. It

is close to ten times the next closest MRR, has the lowest minimum rank, 1Q, and median values.

The lowest MRR is found when combining the literals with the comments (CL). This combination

has the highest minimum rank of the combinations. For the Title query type, the literals once again

251

have the highest MRR of the different combinations, however it does not have the highest of any

of the descriptive statistics. Again, CL has the lowest MRR of the combinations with a difference

from L of .0366.

I performed a Friedman test with a wilcoxon post-hoc for each of the corpora between each

of the different structural combinations. This analysis was performed for both the Combined and

the Title query types. For the Combined query type, a significant difference was found for each of

the three corpora. For CSB, there was only a single significant difference between the CB and CSB

combinations. For the LMPBV corpus, 65 pairs were found to have significant differences. For

the ICL corpus, there were only 3 significant differences found with significant difference found

between I and ICL, and CL and ICL. For the Title query type, no significant differences were found

for CSB, while the only significant difference found for the ICL corpus was between CL and ICL.

There was an increase in the number of significant differences found for the LMPBV corpus. For

this corpus, a total of 104 significant differences were found.

The results of the best, average, and worst cases for each feature for each corpus and both

query types can be found in Figure 5.25. The greatest distance between the best query and the

worst query for the three corpora is found in the LMPBV corpus at 7,273, while the greatest mean

distance between the best and the worst query is found in the CSB corpus at a distance of 3,612.

This mean is only 4 higher than the mean distance for the ICL corpus. ICL showed the greatest

mean distance between the best query and the average case at 1,612. The smallest mean values in

each case were found for the LMPBV corpus with a mean distance between the best and the worst

queries of 1,554 and a mean distance between the best and the average case of 834. The smallest

distance between the best and worst query is 24 and found in the LMPBV corpus. The smallest

distance between the best and the average case is 11 and also found in the LMPBV corpus.

252

(a) CSB

(b) ICL

Figure 5.25: Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for jEdit. Graph is ordered by distance
from best to worst.

253

(c) LPMBV

Figure 5.25: Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for jEdit. Graph is ordered by distance
from best to worst.

For two of the three corpora, the mean distance between the best and the average query is smaller

than the mean between the average and the worst. The exception is for the LMPBV corpus.

The MRRs have been computed for each case and the results can be found in Table 5.57.

Comparing the MRRs between the best cases and the results of the best structural combinations

shows large increases. The largest increase occurs for the ICL corpus with a difference between

the best queries and the L combination of .0781. The smallest difference occurs for the LMPBV

corpus with a difference of .0339. Of the three corpora, the largest MRR can also be found for the

ICL corpus while the smallest MRR can be found for the LMPBV corpus.

The percentages for jEdit can be found in Table 5.58. In the case of the CSB corpus, the

highest percentage is found for the body combination alone (B) at 30%. There is a tie for the next

closest percentage which occurs between the comments alone (C) and the signature alone

254

Query CSB ICL LMPBV

Best 0.1047 0.1429 0.0643

Average 0.0009 0.0012 0.0012

Worst 0.0004 0.0005 0.0008

Table 5.57: MRRs for choosing the best, average, and worst case for each feature for jEdit from
structural combinations

B S SB C CB CS CSB

30 23 7 23 5 7 1

(a) CSB

L C CL I IL IC ICL

29 18 6 31 4 6 2

(b) ICL

V B BV P PV PB PBV M MV MB MBV

14 17 2 8 0 1 1 10 0 2 1

MP MPV MPB MPBV L LV LB LBV LP LPV

1 0 1 1 8 1 0 0 2 0

LPB LPBV LM LMV LMB LMBV LMP LMPV LMPB LMPBV

1 2 7 1 4 0 0 0 2 2

(c) LMPBV

Table 5.58: Percentage of the best queries obtained from each structural combination for jEdit

(S) at 23% each, 7% less than the percentage for B. The smallest percentage is found for the full

corpus with this combination only representing 1% of the best queries. For both the ICL and

LMPBV corpus, the full corpora perform poorly with both corpora only contributing 2% of the

best queries for the corpus. Of the combinations in ICL, the I combination outperforms the other

255

Figure 5.26: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural combinations for jEdit. Graph is ordered by distance
from best to worst.

combinations with 31%. The next closest combination is L with 29% and then C with 18%. The

lowest percentage is found for the full corpus. The highest percentages for LMPBV come from

the variables, body comments, and method names alone. It should be noted that for each of the

three corpora, the highest percentages come from combinations where only one structural lexicon

is used.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

In Figure 5.26, you can see the difference between the best, average, and worst cases for

each individual feature across all corpora. The greatest distance between the best and the worst

256

Best Average Worst

MRR 0.2032 0.0010 0.0003

Table 5.59: MRRs for choosing the best, average, and worst case for each feature from all corpora
and all structural combinations for jEdit

CSB ICL LMPBV Flat

Percentage 32 33 21 14

Table 5.60: Percentages for each corpus where the best query was found from all corpora and all
structural combinations for jEdit

query is 7,273. The mean distance between the best and worst query is 4,421 and the mean distance

between the best query and the average case is 1,832 while the greatest distance between the best

and the average case is 5,571. Each of these values are higher than the values found for the same

cases of the individual corpora. The mean distance from the best and the average case is smaller

than the mean distance between the average and the worst case.

I computed the MRRs for these three cases and the results can be found in Table 5.59. The

results of this computation show that there is another large increase from the individual corpora to

taking the best across all queries. To understand which corpus is contributing the highest number of

best queries from the corpora, I computed the percentage for each query and recorded the results in

Table 5.60. From this table it can be seen that the ICL corpus contributed the largest percentage of

the queries for the features. This corpus was followed closely by the CSB corpus with a difference

of less than 1%. The corpus with the lowest percentage is the flat corpus. The combinations with

the highest percentages from the three corpora include the identifiers only (I) from ICL with 12%,

the body comments only (B) from LMPBV with 7%, and the signature alone (S) from CSB at 12%.

257

For the ICL corpus, the literals and the comments alone follow closely with a tie at 10%. None of

the full corpora contributed to the best queries.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

5.3.2.4 muCommander

The MRRs for muCommander and the LMPBV corpus can be found in Tables 5.61 and

5.62. When looking at the results of the Combined query type, the highest MRR is found for the

parameters only (P) combination with .0070. This combination has the lowest minimum rank of

all the combinations. The next closest combination is for body comments only (B) which is the

only other combination that is above .002. This combination has the second lowest minimum rank

of all the combinations. There are three combinations with the lowest MRR of .0011, the local

variables alone (V), the leading comments alone (L), and the leading comments combined with

the parameters (LP). When looking at the Title query type, the highest MRR is for combining

the parameters with the local variables (PV). This is followed by the leading comments combined

with PV (LPV). The combination with the lowest MRR is the leading comments combined with

the local variables and the body comments (LPB). This is the only combination with an MRR less

than .01, however this combination does not have the highest of any of the descriptive statistics.

We can see the results of the CSB corpus in Tables 5.63 and 5.64. For the Combined query

type, the only combination that is higher than 0.91 is for the comments alone (C). This combination

has the lowest minimum rank, 1Q, and median of all the combinations. The next closest MRR is

.0101 below C at .0035 for the comments combined with the signature (CS). The lowest MRR for

258

Combination min 1Q median 3Q max MRR

V 32 1233 2686 5763 8544 0.0011

B 11 1053 2720 6023 8531 0.0021

BV 18 1042 2743 6000 8560 0.0017

P 2 1178 2685 5994 8479 0.0070

PV 19 1229 2683 5884 8516 0.0016

PB 19 1138 2666 5923 8506 0.0016

PBV 25 1198 2703 5846 8526 0.0015

M 18 1143 2658 5406 8479 0.0014

MV 31 1195 2653 5530 8513 0.0012

MB 16 1062 2728 5288 8503 0.0015

MBV 24 1056 2719 5457 8530 0.0013

MP 17 1148 2666 5422 8510 0.0015

MPV 31 1222 2612 5398 8481 0.0012

MPB 25 1129 2606 5328 8480 0.0013

MPBV 26 1187 2602 5459 8497 0.0012

L 42 1200 2729 5817 8510 0.0011

LV 34 1196 2728 5799 8566 0.0012

LB 25 964 2728 5623 8520 0.0013

LBV 26 1029 2667 5691 8780 0.0013

LP 41 1199 2728 5956 8602 0.0011

LPV 32 1229 2724 5791 8488 0.0012

LPB 27 1104 2681 5560 8495 0.0013

LPBV 27 1140 2651 5654 8511 0.0013

LM 34 1208 2723 5366 8509 0.0012

LMV 32 1186 2685 5503 8507 0.0012

LMB 26 1005 2681 5084 8497 0.0013

LMBV 27 1030 2716 5179 8511 0.0012

LMP 33 1237 2683 5321 8487 0.0012

LMPV 31 1241 2690 5444 8484 0.0012

LMPB 27 1142 2647 5145 8486 0.0012

LMPBV 27 1131 2709 5212 8496 0.0012

Table 5.61: MRRs and descriptive statistics of the effectiveness measures for the LMPBV corpus
and Combined query type for muCommander

259

Combination min 1Q median 3Q max MRR

V 1 964 2625 5492 8071 0.0196

B 1 1009 2625 5482 8362 0.0127

BV 1 1012 2701 5581 8341 0.0128

P 1 1135 2572 5444 8288 0.0142

PV 1 1229 2542 5297 8197 0.0256

PB 19 1115 2296 5293 8308 0.0015

PBV 1 1151 2348 5578 8153 0.0128

M 2 914 2578 4889 8549 0.0165

MV 1 969 2641 4987 8375 0.0180

MB 2 918 2368 4951 8573 0.0106

MBV 1 976 2691 4947 8377 0.0178

MP 2 966 2645 4917 8569 0.0108

MPV 1 994 2429 4891 8384 0.0181

MPB 2 1030 2328 5041 8575 0.0103

MPBV 1 1076 2278 4945 8433 0.0178

L 1 1105 2775 5147 7955 0.0126

LV 1 988 2739 5209 8294 0.0139

LB 19 902 2363 5204 8195 0.0016

LBV 1 951 2461 4949 8207 0.0127

LP 1 1071 2991 4926 7810 0.0129

LPV 1 1025 2913 4939 8199 0.0241

LPB 11 1032 2518 4740 7959 0.0024

LPBV 1 1032 2352 4936 8118 0.0128

LM 1 979 2592 4787 8306 0.0217

LMV 1 964 2553 4830 8245 0.0180

LMB 2 899 2227 4886 8557 0.0114

LMBV 1 934 2333 4855 8205 0.0177

LMP 1 1035 2585 4825 8228 0.0215

LMPV 1 1028 2489 4882 8161 0.0183

LMPB 1 986 2446 4803 8352 0.0213

LMPBV 1 1022 2328 4761 8134 0.0180

Table 5.62: MRRs and descriptive statistics of the effectiveness measures for the LMPBV corpus
and Title query type for muCommander

260

Combination min 1Q median 3Q max MRR

B 13 977 2276 5141 8348 0.0031

S 12 956 2358 4632 8469 0.0020

SB 17 1044 2661 4485 8260 0.0022

C 1 600 2069 3959 8284 0.0136

CB 13 895 2306 4137 8188 0.0029

CS 5 678 2093 4114 8506 0.0035

CSB 14 788 2377 3934 8191 0.0024

Table 5.63: MRRs and descriptive statistics of the effectiveness measures for the CSB corpus and
Combined query type for muCommander

Combination min 1Q median 3Q max MRR

B 1 716 2099 4009 8058 0.0218

S 1 741 1791 3560 8789 0.0284

SB 2 671 1986 3656 8107 0.0115

C 2 787 2127 3895 8372 0.0113

CB 1 846 2200 3577 8160 0.0218

CS 1 510 1893 3682 8668 0.0222

CSB 2 763 1963 3116 8440 0.0114

Table 5.64: MRRs and descriptive statistics of the effectiveness measures for the CSB corpus and
Title query type for muCommander

the combinations is for the signature alone (S), and this combination does not have the highest of

any of the descriptive statistic values. Aside from the comments combined with the body (CB)

that has a lower MRR than CS, the lowest MRRs for this corpus are found with any combination

of S and the other structural lexicons. However, when looking at the Title query type, S has the

highest MRR of any of the combinations. This combination has the lowest median value of any of

the combinations. The next closest combination is CS which is .0062 lowest than S. CS has the

261

Combination min 1Q median 3Q max MRR

L 1 978 2641 6135 8587 0.0128

I 16 1047 2371 4182 8156 0.0027

IL 18 967 2385 4937 8549 0.0017

C 1 600 2069 3959 8284 0.0136

CL 11 750 2273 4894 8777 0.0023

IC 14 858 2143 3936 8270 0.0023

ICL 10 840 2414 4281 8789 0.0023

Table 5.65: MRRs and descriptive statistics of the effectiveness measures for the ICL corpus and
Combined query type for muCommander

Combination min 1Q median 3Q max MRR

L 1 1092 2789 4715 8687 0.0307

I 1 820 2144 3900 7795 0.0204

IL 2 839 2199 4354 8763 0.0104

C 2 787 2127 3895 8372 0.0113

CL 2 860 2256 4050 8486 0.0099

IC 1 806 2208 3772 8469 0.0206

ICL 2 971 1749 3735 8512 0.0103

Table 5.66: MRRs and descriptive statistics of the effectiveness measures for the ICL corpus and
Title query type for muCommander

lowest 1Q value of the combinations. The lowest MRR comes from the comments alone (C) at

.0113. This combination is tied for having the highest minimum rank.

Tables 5.65 and 5.66 contain the results for the ICL corpus. When looking at the Combined

query type, there are two combinations that are significantly higher than the other combinations.

These combinations include the literals alone (L) and the comments alone (C), with C having the

higher MRR of the two. C is tied with L for the lowest minimum rank, and has the lowest 1Q

and median values of all the combinations. L does not have the lowest of any of the descriptive

262

statistics. The lowest MRR comes from the identifiers combined with the literals and has the

highest minimum rank of any of the combinations. For the Title query type, the literals alone (L)

have the highest MRR of the different combinations, however it does not have the highest of any

of the descriptive statistics. CL has the lowest MRR of the combinations with a difference from L

of .0208.

I performed a Friedman test with a wilcoxon post-hoc for each of the corpora between each

of the different structural combinations. This analysis was performed for both the Combined and

the Title query types. For the Combined query type, a significant difference was found for each

of the three corpora. For CSB, there were four significant differences found between the com-

binations. For both LMPBV and ICL, a large proportion of the pairings resulted in significant

differences. For the LMPBV corpus, 211 pairs were found to have significant differences. For

the ICL corpus, there were 13 significant differences found with significant difference found with

every combination being significantly different compared to L. For the Title query type, no sig-

nificant differences were found for CSB, while the number of significant differences for ICL and

LMPBV were reduced. For ICL, only 4 significant differences were found with L being signifi-

cantly different from the C, the comments combined with L (CL), and the full corpus, a significant

difference was also found between ICL and the identifiers combined with L (IL). For LMPBV,

the total number of pairings found with significant differences is 78. This is a reduction of 133

pairings.

The results of the best, average, and worst cases for each feature for each corpus and both

query types can be found in Figure 5.27. The greatest distance between the best query and the

worst query for the three corpora is found in the CSB corpus at 8,558, while the greatest mean

distance between the best and the worst query is found in the ICL corpus at a distance of 3,920.

263

(a) CSB

(b) ICL

Figure 5.27: Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for muCommander. Graph is ordered by
distance from best to worst.

264

(c) LPMBV

Figure 5.27: Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for muCommander. Graph is ordered by
distance from best to worst.

ICL also showed the greatest mean distance between the best query and the average case at 1,682.

The smallest mean values in each case were found for the LMPBV corpus with a mean distance

between the best and the worst queries of 2,129 and a mean distance between the best and the

average case of 1,176. The smallest distance between the best and worst query is 25 and found in

the LMPBV corpus. The smallest distance between the best and the average case is 19 and also

found in the LMPBV corpus. For two of the three corpora, the mean distance between the best and

the average query is smaller than the mean between the average and the worst. The exception is

for the LMPBV corpus.

The MRRs have been computed for each case and the results can be found in Table 5.67.

Comparing the MRRs between the best cases and the results of the best structural combinations

shows large increases, however these differences are the smallest of the four subject systems. The

265

Query CSB ICL LMPBV

Best 0.0545 0.0635 0.0571

Average 0.0013 0.0009 0.0009

Worst 0.0005 0.0004 0.0007

Table 5.67: MRRs for choosing the best, average, and worst case for each feature for muComman-
der from structural combinations

B S SB C CB CS CSB

19 19 5 26 12 13 3

(a) CSB

L C CL I IL IC ICL

19 31 9 19 5 9 3

(b) ICL

V B BV P PV PB PBV M MV MB MBV

8 12 0 10 0 2 2 12 0 3 0

MP MPV MPB MPBV L LV LB LBV LP LPV

3 1 1 1 10 0 5 0 2 0

LPB LPBV LM LMV LMB LMBV LMP LMPV LMPB LMPBV

1 0 4 1 10 1 1 0 2 1

(c) LMPBV

Table 5.68: Percentage of the best queries obtained from each structural combination for muCom-
mander

largest increase occurs for the ICL corpus with a difference between the best queries and the L

combination of .0328. The smallest difference occurs for the CSB corpus with a difference of

266

Figure 5.28: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural combinations for muCommander. Graph is ordered by
distance from best to worst.

.0261. Of the three corpora, the largest MRR can also be found for the ICL corpus while the

smallest MRR can be found for the CSB corpus.

The percentages for muCommander can be found in Table 5.68. In the case of the CSB

corpus, the highest percentage is found for the comments combination alone (C) at 26%. There

is a tie for the next closest percentage which occurs between the body alone (B) and the signature

alone (S) at 19% each, 7% less than the percentage for C. The smallest percentage is found for

the full corpus with this combination only representing 3% of the best queries. For both the ICL

and LMPBV corpus, the full corpora perform poorly with the ICL corpus only contributing 3%

of the best queries and LMPBV only contributing 1% of the best queries for the corpus. Of the

combinations in ICL, the C combination outperforms the other combinations with 31%. There is

a tie between L and I for the next closest combination at 19%. The lowest percentage is found

267

Best Average Worst

MRR 0.1039 0.0008 0.0003

Table 5.69: MRRs for choosing the best, average, and worst case for each feature from all corpora
and all structural combinations for muCommander

CSB ICL LMPBV Flat

Percentage 41 30 13 16

Table 5.70: Percentages for each corpus where the best query was found from all corpora and all
structural combinations for muCommander

for the full corpus. The highest percentages for LMPBV come from the body comments alone. It

should be noted that for each of the three corpora, the highest percentages come from combinations

where only one structural lexicon is used.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

In Figure 5.28, you can see the difference between the best, average, and worst cases for

each individual feature across all corpora. The greatest distance between the best and the worst

query is 8,619. The mean distance between the best and worst query is 4,828 and the mean distance

between the best query and the average case is 2,179 while the greatest distance between the best

and the average case is 6,311. Each of these values are higher than the values found for the same

cases of the individual corpora. The mean distance from the best and the average case is smaller

than the mean distance between the average and the worst case.

I computed the MRRs for these three cases and the results can be found in Table 5.69. The

results of this computation show that there is another large increase from the individual corpora to

268

taking the best across all queries, but this MRR is the lowest of all subject systems. To understand

which corpus is contributing the highest number of best queries from the corpora, I computed the

percentage for each query and recorded the results in Table 5.70. From this table it can be seen that

the CSB corpus contributed the largest percentage of the queries for the features. This corpus was

followed by the ICL corpus with a difference of 11%. The corpus with the lowest percentage is the

LMPBV corpus. The combinations with the highest percentages from the three corpora include

the comments only (C) from ICL and CSB with 16% and the parameters only (P) from LMPBV

with 4%. None of the full corpora contributed to the best queries.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

5.3.2.5 All Systems

The MRRs for all the systems combined and the LMPBV corpus can be found in Tables

5.71 and 5.72. When looking at the results of the Combined query type, all MRRs are below .005

with the exception of three, the body comments alone (B), the leading comments alone (L), and the

leading comments combined with the local variables (LV). The highest MRR is found for L which

is tied for the lowest minimum rank of the combinations. The combination with the lowest MRR is

the method name combined with the local variables (MV) which has the highest minimum rank of

any of the combinations and an MRR of .0021. When looking at the Title query type, the highest

MRR is for the body comments alone (B) which has an MRR of .0284, the only MRR with a value

higher than .02. The next closest MRR is from the combination of the leading comments, method

names, parameters, and body comments (LMPB), and has an MRR of .0185. This is a difference

269

Combination min 1Q median 3Q max MRR

V 4 813 2316 5066 11006 0.0028

B 2 766 2279 5163 11695 0.0051

BV 4 783 2273 4963 11694 0.0032

P 2 777 2289 5146 11072 0.0044

PV 5 780 2267 5072 11078 0.0031

PB 5 782 2260 5180 11692 0.0031

PBV 5 802 2237 5160 11695 0.0030

M 5 777 2276 5027 10739 0.0024

MV 8 780 2285 5019 10783 0.0021

MB 4 756 2257 5059 10571 0.0030

MBV 4 791 2279 4944 11969 0.0027

MP 5 782 2265 5082 10780 0.0030

MPV 5 780 2268 5073 10796 0.0029

MPB 5 771 2231 5107 10642 0.0029

MPBV 5 785 2259 5022 10714 0.0029

L 1 738 2240 5139 10949 0.0064

LV 1 764 2266 5152 10867 0.0060

LB 4 721 2263 4996 11087 0.0032

LBV 4 755 2237 4893 11955 0.0031

LP 3 784 2265 5185 10867 0.0034

LPV 4 789 2241 5151 10926 0.0031

LPB 4 742 2270 5129 11459 0.0031

LPBV 5 772 2251 5069 11592 0.0029

LM 2 739 2214 4879 10848 0.0038

LMV 4 762 2242 4944 11983 0.0031

LMB 4 710 2219 4833 10590 0.0031

LMBV 4 735 2215 4881 11921 0.0030

LMP 4 762 2175 5049 10792 0.0030

LMPV 5 767 2206 5007 10802 0.0029

LMPB 4 730 2135 4987 10646 0.0030

LMPBV 5 761 2211 4934 10733 0.0029

Table 5.71: MRRs and descriptive statistics of the effectiveness measures for the LMPBV corpus
and Combined query type for all systems

270

Combination min 1Q median 3Q max MRR

V 1 688 2166 4673 11836 0.0147

B 1 672 2068 4954 11598 0.0284

BV 1 697 2018 4838 11759 0.0178

P 1 600 2127 4778 11633 0.0178

PV 1 686 2183 4728 11920 0.0133

PB 1 687 2092 4923 11302 0.0130

PBV 1 699 2012 4907 10796 0.0156

M 1 593 2080 4433 11986 0.0136

MV 1 621 2038 4468 11665 0.0138

MB 1 631 1976 4647 11815 0.0169

MBV 1 675 1946 4589 11690 0.0178

MP 1 643 2045 4379 11987 0.0121

MPV 1 659 1973 4418 11998 0.0140

MPB 1 657 1961 4606 11272 0.0163

MPBV 1 669 1854 4622 11934 0.0179

L 1 654 2029 4773 10907 0.0149

LV 1 624 2149 4854 11878 0.0132

LB 1 635 2041 4741 11335 0.0160

LBV 1 624 2034 4671 11647 0.0173

LP 1 626 2110 4742 10918 0.0118

LPV 1 623 2115 4661 11783 0.0131

LPB 1 651 2069 4667 11973 0.0124

LPBV 1 601 1958 4659 10600 0.0149

LM 1 560 1995 4413 11976 0.0168

LMV 1 573 1963 4455 11580 0.0144

LMB 1 548 1933 4540 11782 0.0174

LMBV 1 559 1860 4583 11445 0.0176

LMP 1 570 2049 4392 11144 0.0167

LMPV 1 588 2035 4398 11873 0.0145

LMPB 1 566 1810 4404 11571 0.0185

LMPBV 1 571 1875 4441 11977 0.0176

Table 5.72: MRRs and descriptive statistics of the effectiveness measures for the LMPBV corpus
and Title query type for all systems

271

Combination min 1Q median 3Q max MRR

B 1 557 1862 4019 11907 0.0081

S 3 766 1907 4120 10816 0.0033

SB 1 665 2043 4371 11848 0.0075

C 1 570 1857 4414 11794 0.0113

CB 1 605 1823 4168 11930 0.0116

CS 1 688 1735 4302 11643 0.0065

CSB 1 625 2072 4274 11745 0.0107

Table 5.73: MRRs and descriptive statistics of the effectiveness measures for the CSB corpus and
Combined query type for all systems

Combination min 1Q median 3Q max MRR

B 1 563 1765 4019 11868 0.0482

S 1 573 1679 3707 11851 0.0285

SB 1 526 1665 3805 11151 0.0335

C 1 519 2116 4681 11230 0.0360

CB 1 526 2019 4128 11818 0.0497

CS 1 517 1699 4172 11604 0.0314

CSB 1 458 1688 4078 11593 0.0394

Table 5.74: MRRs and descriptive statistics of the effectiveness measures for the CSB corpus and
Title query type for all systems

in .0099 from the highest MRR. The combination with the lowest MRR is the combination

of the leading comments and the parameters (LP) with an MRR of .0118.

We can see the results of the CSB corpus in Tables 5.73 and 5.74. For the Combined query

type, there are three combinations with MRRs higher than .01. These combinations include the

comments alone (C), the comments combined with the body (CB), and the full corpus (CSB). Of

the three, the highest MRR is for CB with a value of .0116 which is .0003 higher than the MRR

272

Combination min 1Q median 3Q max MRR

L 1 689 1964 5039 11732 0.0177

I 1 676 1869 4262 11940 0.0057

IL 1 688 2146 4567 11772 0.0077

C 1 570 1857 4414 11794 0.0113

CL 1 606 1925 4874 11863 0.0066

IC 1 681 1953 4189 11999 0.0098

ICL 1 669 2088 4364 11384 0.0086

Table 5.75: MRRs and descriptive statistics of the effectiveness measures for the ICL corpus and
Combined query type for all systems

Combination min 1Q median 3Q max MRR

L 1 577 2023 4534 11321 0.0552

I 1 521 1858 4132 11367 0.0382

IL 1 573 1913 4161 11744 0.0346

C 1 519 2116 4681 11230 0.0360

CL 1 523 2053 4507 11908 0.0354

IC 1 536 1969 4182 11484 0.0421

ICL 1 533 1843 4165 11211 0.0316

Table 5.76: MRRs and descriptive statistics of the effectiveness measures for the ICL corpus and
Title query type for all systems

for C. The lowest MRR for the combinations is for the signature alone (S) which has the highest

minimum rank and the highest 1Q of all combinations. Aside from the body comments alone

(B) which has a lower MRR than the full corpus, the lowest MRRs are for any combination that

includes S. When looking at the Title query type, the highest MRR is also found for CB. This

combination is followed by the body comments alone with a difference of .0015 between the two

combinations. These are the only two MRRs above .04. The lowest MRR is found for S which is

273

also the only combination with an MRR less than .03. This combination also has the highest 1Q

value of all combinations.

Tables 5.75 and 5.76 contain the results for the ICL corpus. When looking at the Combined

query type, there are two combinations that are higher than the other combinations. These combi-

nations include the literals alone (L) and the comments alone (C), with L having the higher MRR

of the two. C has the lowest 1Q and median values of the combinations. L does not have the lowest

of any of the descriptive statistics. The lowest MRR comes from the identifiers alone (I). For the

Title query type, the literals alone (L) have the highest MRR of the different combinations with the

only MRR higher than .05, however the combination has the highest 1Q of the combinations. The

full corpus has the lowest MRR with a difference from L of .0236.

I performed a Friedman test with a wilcoxon post-hoc for each of the corpora between

each of the different structural combinations. This analysis was performed for both the Combined

and the Title query types. For the Combined query type, significant differences were found for

each of the three corpora. For CSB, there were four significant differences found between the

combinations. For both LMPBV and ICL, a large proportion of the pairings resulted in significant

differences. For the LMPBV corpus, 231 pairs were found to have significant differences. For

the ICL corpus, there were 14 significant differences found with significant difference found with

every combination being significantly different compared to L. For the Title query type, the CSB

corpus had an increase to 7 significant differences, while the number of significant differences

for ICL and LMPBV were reduced. For ICL, only 2 significant differences were found with C

and I being significantly different from IL. For LMPBV, the total number of pairings found with

significant differences is 179.

The results of the best, average, and worst cases for each feature for each corpus and both

274

(a) CSB

(b) ICL

Figure 5.29: Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for all systems. Graph is ordered by
distance from best to worst.

275

(c) LPMBV

Figure 5.29: Stacked bargraphs representing the distance from the best query from structural
combinations to the average (bottom) and the worst(top) for all systems. Graph is ordered by
distance from best to worst.

query types can be found in Figure 5.29. The greatest distance between the best query and the

worst query for the three corpora is found in the LMPBV corpus at 11,967, while the greatest

mean distance between the best and the worst query is found in the ICL corpus at a distance of

4,008. ICL also showed the greatest mean distance between the best query and the average case

at 1,737. The smallest mean values in each case were found for the LMPBV corpus with a mean

distance between the best and the worst queries of 1,856 and a mean distance between the best

and the average case of 962. The smallest distance between the best and worst query is 10 and

found in the LMPBV corpus. The smallest distance between the best and the average case is 1 and

found in the ICL corpus. For two of the three corpora, the mean distance between the best and the

average query is smaller than the mean between the average and the worst. The exception is for

the LMPBV corpus.

276

Query CSB ICL LMPBV

Best 0.1033 0.1180 0.0674

Average 0.0020 0.0031 0.0016

Worst 0.0007 0.0007 0.0011

Table 5.77: MRRs for choosing the best, average, and worst case for each feature for all systems
from structural combinations

B S SB C CB CS CSB

30 20 6 22 9 8 2

(a) CSB

L C CL I IL IC ICL

25 23 7 26 6 8 2

(b) ICL

V B BV P PV PB PBV M MV MB MBV

11 14 1 11 0 1 1 11 1 2 1

MP MPV MPB MPBV L LV LB LBV LP LPV

1 0 1 1 9 0 1 0 2 0

LPB LPBV LM LMV LMB LMBV LMP LMPV LMPB LMPBV

1 0 5 1 4 1 1 0 1 1

(c) LMPBV

Table 5.78: Percentage of the best queries obtained from each structural combination for all sys-
tems

The MRRs have been computed for each case and the results can be found in Table 5.77.

Comparing the MRRs between the best cases and the results of the best structural combinations

shows large increases from the individual corpora. The largest increase occurs for the ICL corpus

277

Figure 5.30: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural combinations for all systems. Graph is ordered by
distance from best to worst.

with a difference between the best queries and the L combination of .0628. The smallest difference

occurs for the LMPBV corpus with a difference of .0390. Of the three corpora, the largest MRR

can also be found for the ICL corpus while the smallest MRR can be found for the LMPBV corpus.

The percentages for all systems combined can be found in Table 5.78. In the case of the

CSB corpus, the highest percentage is found for the body combination alone (B) at 30%. The next

closest percentage is for the comments alone (C) at 22% followed by the signature alone (S) at

20%. The smallest percentage is found for the full corpus with this combination only representing

2% of the best queries. For both the ICL and LMPBV corpus, the full corpora perform poorly with

the ICL corpus only contributing 2% of the best queries and LMPBV only contributing 1% of the

best queries for the corpus. Of the combinations in ICL, the identifiers alone (I) outperforms the

other combinations with 26%. The next two combinations are the literals alone (L) at 25% and

278

Best Average Worst

MRR 0.1759 0.0011 0.0003

Table 5.79: MRRs for choosing the best, average, and worst case for each feature from all corpora
and all structural combinations for all systems

CSB ICL LMPBV Flat

Percentage 40 29 16 15

Table 5.80: Percentages for each corpus where the best query was found from all corpora and all
structural combinations for all systems

C again with a percentage of 23%. The lowest percentage is found for the full corpus. The highest

percentage for LMPBV comes from the body comments alone (B). It should be noted that for each

of the three corpora, the highest percentages come from combinations where only one structural

lexicon is used.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

In Figure 5.30, you can see the difference between the best, average, and worst cases for

each individual feature across all corpora. The greatest distance between the best and the worst

query is 11,986. The mean distance between the best and worst query is 4,924 and the mean

distance between the best query and the average case is 2,121 while the greatest distance between

the best and the average case is 8,698. Each of these values are higher than the values found for

the same cases of the individual corpora. The mean distance from the best and the average case is

smaller than the mean distance between the average and the worst case.

I computed the MRRs for these three cases and the results can be found in Table 5.79. The

279

results of this computation show that there is another large increase from the individual corpora to

taking the best across all queries. To understand which corpus is contributing the highest number

of best queries from the corpora, I computed the percentage for each query and recorded the results

in Table 5.80. From this table it can be seen that the CSB corpus contributed the largest percentage

of the queries for the features. This corpus was followed by the ICL corpus with a difference of

11%. The corpus with the lowest percentage is the flat corpus. The combinations with the highest

percentages from the three corpora include a tie between comments only (C) from ICL and CSB

and literals only (L) from ICL with 11% and the body comments only (B) from LMPBV with 4%.

None of the full corpora contributed to the best queries.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

5.3.3 Does structural weighting affect the accuracy of a structured retrieval-based FLT?

The purpose of this question is to isolate the weighting from the structural combination in

the query, and to determine what type of effects weighting alone can have on the results. I used

the full corpus in each case (ICL, CSB, and LMPBV) and both the Combined and the Title query

type. This allows me to see if the query type has any effect on the top weightings in each corpus.

5.3.3.1 ArgoUML

I start by creating boxplots of the effectiveness measures. The boxplots for the LMPBV

corpus and each query type can be found in Figure 5.31. These are the boxplots for the ten weight-

ing configuration with the highest MRRs. The resulting MRRs can be found in Table 5.81. All

MRRs can be found within a range of .0002 from one another. For each of the top configurations

for Combined, the leading comments have the highest weighting factor of 8 while the local vari-

280

ables have the lowest weighting factor of 1. Looking at the boxplots, while the flat corpus has the

highest upper 1.5 IRQ, it has the smallest spread otherwise. The remaining weighting configura-

tions have similar spreads to one another with only slight fluctuations. The Title query type shows

a bit more fluctuation and has MRRs with a distance of .0047. While the flat configuration still has

a lower 1Q value than the weighted configurations, it has a higher median value than all but two

of the configurations. When using the Title query, leading comments have lower weighting factors

and now body comments have a weighting factor of 8 in all but one of the top configurations.

The weightings factors for parameters are slightly lower, but the weighting factors for the method

names and local variables stay similar to their Combined counterparts.

The boxplots for the CSB corpus can be found in Figure 5.32, while the MRRs can be

found in Table 5.82. For the top configurations for the Combined query type, there is actually a

three-way tie for the top position. The three configurations with a tie actually represent variants of

one another as they are all configurations that weight the comments and the body equally. Even

though it has a lower MRR, the fourth configuration also falls into this category, however it also

weights the signature equally which appears to lower the MRR. Configurations 5, 7, and 9, are also

variants of one another with a 2:1 ratio for comments to the body, however these variants do result

in different MRRs. Overall, the top configurations are a distance of .0109 from one another. There

is fluctuation in the spreads of the top configurations and the flat corpus, and while the flat corpus

has some of the lowest values, it does not have the lowest value at any point when compared to the

weighting configurations. When looking at the Title query type, the top five configurations do not

weight the body, but the top four weight the comments, and the top two give some weighting to the

signature. There is a difference of .01 between the configurations. When looking at the boxplots,

281

(a) LMPBV Combined

82
42

1

81
41

1

82
41

1

81
81

1

81
82

1

82
11

1

81
11

1

82
21

1

81
21

1

84
22

1

F
la

t

0

2000

4000

6000

8000

10000

12000

(b) LMPBV Title

11
28

1

11
18

1

21
28

1

21
18

1

22
18

1

41
48

1

21
14

1

81
48

1

41
28

1

41
18

1

F
la

t

0

2000

4000

6000

8000

10000

12000

Figure 5.31: The top weighting configurations and flat configuration for ArgoUML and the
LMPBV corpus. The x axis is the configuration, while the y axis is the effectiveness measure.

282

Config MRR

C{L = 8,M = 2,P = 4,B = 2,V = 1} 0.0284

C{L = 8,M = 1,P = 4,B = 1,V = 1} 0.0284

C{L = 8,M = 2,P = 4,B = 1,V = 1} 0.0284

C{L = 8,M = 1,P = 8,B = 1,V = 1} 0.0284

C{L = 8,M = 1,P = 8,B = 2,V = 1} 0.0284

C{L = 8,M = 2,P = 1,B = 1,V = 1} 0.0284

C{L = 8,M = 1,P = 1,B = 1,V = 1} 0.0283

C{L = 8,M = 2,P = 2,B = 1,V = 1} 0.0283

C{L = 8,M = 1,P = 2,B = 1,V = 1} 0.0283

C{L = 8,M = 4,P = 2,B = 2,V = 1} 0.0283

(a) LMPBV Combined

Config MRR

C{L = 1,M = 1,P = 2,B = 8,V = 1} 0.0320

C{L = 1,M = 1,P = 1,B = 8,V = 1} 0.0305

C{L = 2,M = 1,P = 2,B = 8,V = 1} 0.0281

C{L = 2,M = 1,P = 1,B = 8,V = 1} 0.0281

C{L = 2,M = 2,P = 1,B = 8,V = 1} 0.0280

C{L = 4,M = 1,P = 4,B = 8,V = 1} 0.0276

C{L = 2,M = 1,P = 1,B = 4,V = 1} 0.0275

C{L = 8,M = 1,P = 4,B = 8,V = 1} 0.0274

C{L = 4,M = 1,P = 2,B = 8,V = 1} 0.0273

C{L = 4,M = 1,P = 1,B = 8,V = 1} 0.0273

(b) LMPBV Title

Table 5.81: Top 10 configurations for ArgoUML

283

(a) CSB Combined

41
4

81
8

21
2

11
1

21
1

12
1

81
4

22
1

41
2

44
1

F
la

t

0

2000

4000

6000

8000

10000

12000

(b) CSB Title

42
1

22
1

21
1

81
1

11
1

41
2

82
1

81
2

81
4

88
1

F
la

t

0

2000

4000

6000

8000

10000

12000

Figure 5.32: The top weighting configurations and flat configuration for ArgoUML and the CSB
corpus. The x axis is the configuration, while the y axis is the effectiveness measure.

284

Config MRR

C{C = 4,S = 1,B = 4} 0.0385

C{C = 8,S = 1,B = 8} 0.0385

C{C = 2,S = 1,B = 2} 0.0385

C{C = 1,S = 1,B = 1} 0.0375

C{C = 2,S = 1,B = 1} 0.0302

C{C = 1,S = 2,B = 1} 0.0289

C{C = 8,S = 1,B = 4} 0.0288

C{C = 2,S = 2,B = 1} 0.0284

C{C = 4,S = 1,B = 2} 0.0282

C{C = 4,S = 4,B = 1} 0.0276

(a) CSB Combined

Config MRR

C{C = 4,S = 2,B = 1} 0.0713

C{C = 2,S = 2,B = 1} 0.0709

C{C = 2,S = 1,B = 1} 0.0695

C{C = 8,S = 1,B = 1} 0.0693

C{C = 1,S = 1,B = 1} 0.0688

C{C = 4,S = 1,B = 2} 0.0688

C{C = 8,S = 2,B = 1} 0.0636

C{C = 8,S = 1,B = 2} 0.0634

C{C = 8,S = 1,B = 4} 0.0631

C{C = 8,S = 8,B = 1} 0.0613

(b) CSB Title

Table 5.82: Top 10 configurations for ArgoUML

285

(a) ICL Combined

88
1

44
1

22
1

12
1

84
1

21
1

12
2

14
4

11
1

42
1

F
la

t

0

2000

4000

6000

8000

10000

12000

(b) ICL Title

18
4

14
8

14
2

18
1

18
2

18
8

28
1

14
1

48
1

24
1

F
la

t

0

2000

4000

6000

8000

10000

12000

Figure 5.33: The top weighting configurations and flat configuration for ArgoUML and the ICL
corpus. The x axis is the configuration, while the y axis is the effectiveness measure.

286

Config MRR

C{I = 8,C = 8,L = 1} 0.0412

C{I = 4,C = 4,L = 1} 0.0402

C{I = 2,C = 2,L = 1} 0.0351

C{I = 1,C = 2,L = 1} 0.0298

C{I = 8,C = 4,L = 1} 0.0291

C{I = 2,C = 1,L = 1} 0.0289

C{I = 1,C = 2,L = 2} 0.0286

C{I = 1,C = 4,L = 4} 0.0285

C{I = 1,C = 1,L = 1} 0.0284

C{I = 4,C = 2,L = 1} 0.0283

(a) ICL Combined

Config MRR

C{I = 1,C = 8,L = 4} 0.0613

C{I = 1,C = 4,L = 8} 0.0609

C{I = 1,C = 4,L = 2} 0.0601

C{I = 1,C = 8,L = 1} 0.0588

C{I = 1,C = 8,L = 2} 0.0550

C{I = 1,C = 8,L = 8} 0.0543

C{I = 2,C = 8,L = 1} 0.0537

C{I = 1,C = 4,L = 1} 0.0508

C{I = 4,C = 8,L = 1} 0.0496

C{I = 2,C = 4,L = 1} 0.0494

(b) ICL Title

Table 5.83: Top 10 configurations for ArgoUML

287

we can see that the lowest spreads are given for the unweighted configuration (weighting factor of

1 for all lexicons) and the configuration C{C = 2,S = 2,B = 1}.

In Figure 5.33 and Table 5.83, you can see the boxplots and MRRs for the ICL corpus. The

top three configurations are variations of one another with a 1:1 ratio between the identifiers and

the comments, but unlike with the CSB corpus, there is a difference of .0051 between these config-

urations. There is a difference of .0129 between the top configurations. Of the top configurations,

C{I = 2,C = 2,L = 1} has the smallest spread. For the Title query type, the top three configura-

tions weight the comments and the literals, with both the top and the third highest configurations

having a ratio of 2:1. Each configuration amongst the top gives the comments some weight, while

for the top six configurations there is no weighting given to the identifiers. There is a difference

of .0119 between the top configurations. Aside from the upper 1.5 IRQ, the smallest spread is for

C{I = 1,C = 4,L = 8}. The second smallest spread is seen for the flat corpus.

I conducted a Friedman test with a post-hoc analysis on the top configurations and the flat

corpus. I chose to only look at the top configurations and the flat corpus to lower the number of

possible pairings that need to be compared. For the Combined query type, the results of the analysis

did not show any significant differences for the CSB corpus, however significant differences were

found for both the ICL and the LMPBV corpora. For the ICL corpus, there were 30 significant

differences found between the weighting configurations, however of these 30 differences, none

were between the flat corpus and the weighting configurations. For LMPBV, only 2 significant

differences were found with one between C{L = 8,M = 2,P = 4,B = 2,V = 1} and C{L = 8,M =

1,P = 8,B = 1,V = 1}, and the other between C{L = 8,M = 1,P = 8,B = 1,V = 1} and C{L =

8,M = 4,P = 2,B = 2,V = 1}. For the Title query type, each of the three corpora had significant

differences. For the CSB corpus, there was a total of 21 significant differences discovered with

288

(a) CSB

(b) ICL

Figure 5.34: Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for ArgoUML. Graph is ordered by distance
from best to worst.

289

(c) LPMBV

Figure 5.34: Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for ArgoUML. Graph is ordered by distance
from best to worst.

no significant differences betweent he flat corpus and the weighting configurations. For ICL, there

were 6 significant differences, the flat corpus was found to be significantly different from the

C{I = 1,C = 8,L = 4} and C{I = 1,C = 4,L = 2} configurations. For the LMPBV corpus, 11

significant differences were found with no significant differences between the flat corpus and the

weighting configurations.

I computed the best, worst, and average cases for each feature for each corpus using both

query types. The differences between each case can be found in Figure 5.34. The greatest distance

between the best query and the worst query for the three corpora is found in the CSB corpus at

11,785, while the greatest mean distance between the best and the worst query is found in the ICL

corpus at a distance of 5,015. ICL also showed the greatest mean distance between the best query

and the average case at 2,147. The smallest mean distance between the best and the worst

290

Query CSB ICL LMPBV

Best 0.1109 0.1123 0.0463

Average 0.0168 0.0249 0.0049

Worst 0.0119 0.0127 0.0025

Table 5.84: MRRs for choosing the best, average, and worst case for each feature for Ar-
goUML from structural weighting

CSB ICL LMPBV

Weighted 97 97 97

Table 5.85: The percentage of time that weighting each corpus improved the results for ArgoUML

case is found for the LMPBV with a mean distance of 4,340. The smallest mean distance between

the best and the average case was found for the CSB corpus with a mean distance of 1,898. The

smallest distances are found for both the ICL and CSB corpus with a distance of 0. For each of the

three corpora, the mean distance between the best and the average query is smaller than the mean

between the average and the worst.

The MRRs have been computed for each case and the results can be found in Table 5.84.

Comparing the MRRs between the best cases and the results of the best structural combinations

shows large increases from the individual corpora. The largest increase occurs for the ICL corpus

with a difference between the best queries and the top weighting configuration of .0510. The

smallest difference occurs for the LMPBV corpus with a difference of only .0143. Of the three

corpora, the largest MRR can also be found for the ICL corpus while the smallest MRR can be

found for the LMPBV corpus.

I also computed the percentage of times that the best query was a result of one of the

291

Figure 5.35: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural weighting for ArgoUML. Graph is ordered by distance
from best to worst.

weighting configurations. This helps to understand whether the weighted or unweighted configu-

rations are having a bigger impact on the results for each corpus. The results of this calculation

can be found in Table 5.85. For each of the three corpora, the weighting configurations had the

best queries 97% of the time, indicating that the unweighted configuration only had 3% of the best

queries in any corpus.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

I computed the best, worst, and average cases for each feature across all corpora using both

query types. The differences between each case can be found in Figure 5.35. The greatest distance

between the best query and the worst query for the three corpora is 11,785, while the

292

Best Average Worst

MRR 0.1146 0.0035 0.0005

Table 5.86: MRRs for choosing the best, average, and worst case for each feature from all corpora
and all structural weighting for ArgoUML

CSB ICL LMPBV Flat

Percentage 33 23 17 27

Table 5.87: Percentages for each corpus where the best query was found from all corpora and all
structural weighting for ArgoUML

mean distance between the best and the worst query is 6,525. The mean distance between the best

query and the average case was 2,855. The smallest distance betweent the best and worst case was

105, while the smallest distance betweent the best and average cases was found to be 97. Each of

these values are greater than the values for the individual corpora. The mean distance between the

best and the average query is smaller than the mean between the average and the worst.

I computed the MRRs for these three cases and the results can be found in Table 5.86.

Surprisingly, the results of this computation only show a small increase, of only .0026, from the

individual corpora to taking the best across all queries. To understand which corpus is contributing

the highest number of best queries from the corpora, I computed the percentage for each query and

recorded the results in Table 5.87. Despite the small increase, there is a balanced spread across the

four corpora. From this table it can be seen that the CSB corpus contributed the largest percentage

of the queries for the features. This corpus was followed by the flat corpus with a difference of

6%. The corpus with the lowest percentage is the LMPBV corpus. A weighting configurations

was used for 73%, indicating that the only queries not weighted were those coming from the flat

corpus.

293

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

5.3.3.2 JabRef

The boxplots for the LMPBV corpus and each query type can be found in Figure 5.36.

These are the boxplots for the ten weighting configuration with the highest MRRs. The resulting

MRRs can be found in Table 5.88. All MRRs can be found within a range of .001 from one

another. For each of the top configurations for Combined, the method names have the highest

weighting factor of 8 while the local variables have the lowest weighting factor of 1 for all but

one configuration. Looking at the boxplots, while the flat corpus has a slightly higher upper 1.5

IRQ when compared to C{L = 1,M = 8,P = 1,B = 1,V = 2}, it has the smallest spread otherwise.

The remaining weighting configurations have similar spreads to one another except for C{L =

1,M = 8,P = 1,B = 1,V = 2} which has the smallest spread of the weighting configurations. The

Title query type shows a bit more fluctuation and has MRRs with a distance of .0027. The flat

configuration actually has the highest spread of the configurations. When using the Title query,

method names still have a weighting factor of 8 in seven of the configurations. Local variables

continue to have low weighting factors, as well as parameters and body comments, however in

several cases the weighting factors on leading comments have increased.

The boxplots for the CSB corpus can be found in Figure 5.37, while the MRRs can be

found in Table 5.89. For the top configurations for the Combined query type, the difference be-

tween the configurations is .0014. Amongst the weighting configurations, in nine out of the ten

configurations, the signature is not weighted, however the comments and the body are. The high-

est performing ratio between comments and the body is a 1:1 ratio with higher weighting factors

294

outperforming smaller ones. Another common ratio is 2:1, seen in three of the ten top configu-

rations with the emphasis being on the comments. Of the configurations, the flat configuration

has he second smallest spread behind C{C = 8,S = 1,B = 2}. However, C{C = 8,S = 1,B = 4}

has a similar spread with the lowest median value. For the Title query type, there is a difference

of .0417 between the configurations. For the top five configurations, the comments are given a

weighting factor of 8. While the signature is not weighted in seven of the configurations, for the

top configuration, the signature is given a weighting factor of 4. The remaining two weighting

factors for the signature are 2. The body is weighted with the comments in five of the ten con-

figurations. The spreads of the different configurations are similar except for a large amount of

fluctuation around the median. The flat configuration has the largest spread of all configurations,

while C{C = 2,S = 2,B = 1} has the lowest median value, and C{C = 8,S = 4,B = 1} has the

lowest 1Q value.

In Figure 5.38 and Table 5.90, you can see the boxplots and MRRs for the ICL corpus.

For the Combined query type, there is a difference between the configurations of only .0003.

For each of the configurations, the comments have been weighted with a weighting factor of 8

used in six of the top ten configurations. This includes the top five configurations. The top two

configurations give a smaller weighting factor to identifiers, with the top configuration having a

ratio of 1:2 between the identifiers and the commments, and the second configuration having a ratio

of 1:4. Three of the top configurations only weight the comments and leave both the identifiers

and the literals unweighted. Of all configurations, literals only receive a weighting factor in three

configurations. Despite the small difference in MRR, there is fluctuation in the size of the spreads

with the smallest spread being for C{I = 1,C = 8,L = 1}. When looking at the Title query type,

there is a difference between the top configurations of .0253. Comments are heavily weighted

295

(a) LMPBV Combined

28
11

1

18
11

1

48
11

1

18
21

1

18
12

1

28
21

1

28
12

1

18
22

1

18
11

2

88
11

1

F
la

t

0

1000

2000

3000

4000

5000

(b) LMPBV Title

18
11

1

48
11

1

84
11

1

28
11

1

48
21

1

82
11

1

81
11

1

28
12

1

18
21

2

18
12

1

F
la

t

0

1000

2000

3000

4000

5000

Figure 5.36: The top weighting configurations and flat configuration for JabRef and the LMPBV
corpus. The x axis is the configuration, while the y axis is the effectiveness measure.

296

Config MRR

C{L = 2,M = 8,P = 1,B = 1,V = 1} 0.0050

C{L = 1,M = 8,P = 1,B = 1,V = 1} 0.0050

C{L = 4,M = 8,P = 1,B = 1,V = 1} 0.0050

C{L = 1,M = 8,P = 2,B = 1,V = 1} 0.0048

C{L = 1,M = 8,P = 1,B = 2,V = 1} 0.0047

C{L = 2,M = 8,P = 2,B = 1,V = 1} 0.0047

C{L = 2,M = 8,P = 1,B = 2,V = 1} 0.0044

C{L = 1,M = 8,P = 2,B = 2,V = 1} 0.0040

C{L = 1,M = 8,P = 1,B = 1,V = 2} 0.0040

C{L = 8,M = 8,P = 1,B = 1,V = 1} 0.0040

(a) LMPBV Combined

Config MRR

C{L = 1,M = 8,P = 1,B = 1,V = 1} 0.0597

C{L = 4,M = 8,P = 1,B = 1,V = 1} 0.0597

C{L = 8,M = 4,P = 1,B = 1,V = 1} 0.0593

C{L = 2,M = 8,P = 1,B = 1,V = 1} 0.0590

C{L = 4,M = 8,P = 2,B = 1,V = 1} 0.0589

C{L = 8,M = 2,P = 1,B = 1,V = 1} 0.0587

C{L = 8,M = 1,P = 1,B = 1,V = 1} 0.0586

C{L = 2,M = 8,P = 1,B = 2,V = 1} 0.0581

C{L = 1,M = 8,P = 2,B = 1,V = 2} 0.0577

C{L = 1,M = 8,P = 1,B = 2,V = 1} 0.0570

(b) LMPBV Title

Table 5.88: Top 10 configurations for JabRef

297

(a) CSB Combined

81
8

81
4

41
4

41
8

41
2

81
2

21
1

21
2

41
1

42
1

F
la

t

0

1000

2000

3000

4000

5000

(b) CSB Title

84
1

81
4

81
8

81
2

82
1

41
1

41
4

22
1

21
2

81
1

F
la

t

0

1000

2000

3000

4000

5000

Figure 5.37: The top weighting configurations and flat configuration for JabRef and the CSB
corpus. The x axis is the configuration, while the y axis is the effectiveness measure.

298

Config MRR

C{C = 8,S = 1,B = 8} 0.0061

C{C = 8,S = 1,B = 4} 0.0060

C{C = 4,S = 1,B = 4} 0.0057

C{C = 4,S = 1,B = 8} 0.0053

C{C = 4,S = 1,B = 2} 0.0052

C{C = 8,S = 1,B = 2} 0.0052

C{C = 2,S = 1,B = 1} 0.0048

C{C = 2,S = 1,B = 2} 0.0047

C{C = 4,S = 1,B = 1} 0.0047

C{C = 4,S = 2,B = 1} 0.0047

(a) CSB Combined

Config MRR

C{C = 8,S = 4,B = 1} 0.1069

C{C = 8,S = 1,B = 4} 0.0926

C{C = 8,S = 1,B = 8} 0.0874

C{C = 8,S = 1,B = 2} 0.0862

C{C = 8,S = 2,B = 1} 0.0849

C{C = 4,S = 1,B = 1} 0.0835

C{C = 4,S = 1,B = 4} 0.0830

C{C = 2,S = 2,B = 1} 0.0814

C{C = 2,S = 1,B = 2} 0.0814

C{C = 8,S = 1,B = 1} 0.0652

(b) CSB Title

Table 5.89: Top 10 configurations for JabRef

299

(a) ICL Combined

48
1

28
1

18
1

18
2

24
1

14
1

12
1

18
4

88
1

14
2

F
la

t

0

1000

2000

3000

4000

5000

(b) ICL Title

18
4

14
2

48
1

14
1

18
2

28
1

18
1

18
8

14
4

24
1

F
la

t

0

1000

2000

3000

4000

5000

Figure 5.38: The top weighting configurations and flat configuration for JabRef and the ICL
corpus. The x axis is the configuration, while the y axis is the effectiveness measure.

300

Config MRR

C{I = 4,C = 8,L = 1} 0.0045

C{I = 2,C = 8,L = 1} 0.0045

C{I = 1,C = 8,L = 1} 0.0044

C{I = 1,C = 8,L = 2} 0.0044

C{I = 2,C = 4,L = 1} 0.0044

C{I = 1,C = 4,L = 1} 0.0043

C{I = 1,C = 2,L = 1} 0.0042

C{I = 1,C = 8,L = 4} 0.0042

C{I = 8,C = 8,L = 1} 0.0042

C{I = 1,C = 4,L = 2} 0.0042

(a) ICL Combined

Config MRR

C{I = 1,C = 8,L = 4} 0.0847

C{I = 1,C = 4,L = 2} 0.0845

C{I = 4,C = 8,L = 1} 0.0835

C{I = 1,C = 4,L = 1} 0.0833

C{I = 1,C = 8,L = 2} 0.0671

C{I = 2,C = 8,L = 1} 0.0667

C{I = 1,C = 8,L = 1} 0.0651

C{I = 1,C = 8,L = 8} 0.0616

C{I = 1,C = 4,L = 4} 0.0601

C{I = 2,C = 4,L = 1} 0.0594

(b) ICL Title

Table 5.90: Top 10 configurations for JabRef

301

again, but literals have been given higher weighting factors. In the top configuration, there is a 2:1

ratio between the comments and the literals. The top configuration from the Combined query type

is still listed, but has dropped down to the third configuration. There are similar spreads for the top

configurations of the Title query type, with the flat configuration having the largest spread, but the

lowest 3Q value.

I conducted a Friedman test with a post-hoc analysis on the top configurations and the flat

corpus. I chose to only look at the top configurations and the flat corpus to lower the number

of possible pairings that need to be compared. For the Combined query type, the results of the

analysis did not show any significant differences for the CSB of the ICL corpus, however significant

differences were found for the LMPBV corpora. There were a total of 5 different significant

differences identified for the LMPBV corpus, with 3 of the differences being between the flat

corpus and the top four weighting configurations for the corpus. The only significant difference

found between the weighting configurations was identified between C{L = 1,M = 8,P = 1,B =

1,V = 1} and C{L = 1,M = 8,P = 1,B = 1,V = 2}. For the Title query type, there were no

significant differences identified for either the ICL or the LMPBV corpus. For the CSB corpus

there was only a single significant difference found. This significant difference was identified

between the configurations C{C = 2,S = 2,B = 1} and C{C = 8,S = 1,B = 1}.

I computed the best, worst, and average cases for each feature for each corpus using both

query types. The differences between each case can be found in Figure 5.39. The greatest distance

between the best query and the worst query for the three corpora is found in the CSB corpus at

4,697, but this distance is less than 30 higher than the greatest distance for the ICL corpus. The

greatest mean distance between the best and the worst query is also found in the CSB corpus at a

mean distance of 2,209. CSB also showed the greatest mean distance between the best query and

302

(a) CSB

(b) ICL

Figure 5.39: Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for JabRef. Graph is ordered by distance
from best to worst.

303

(c) LPMBV

Figure 5.39: Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for JabRef. Graph is ordered by distance
from best to worst.

the average case at 928, a value that is only 10 higher than the mean distance between the best

query and the average case for ICL. The smallest mean distance between the best and the worst

case is found for the LMPBV with a mean distance of 2,051. This corpus also had the smallest

mean distance between the best and the average case with a mean distance of 885. In addition the

smallest mean distances, the smallest distances were found in the LMPBV corpus with a distance

between the best and the worst queries of 6 and a distance between the best query and the average

case of 2. For each of the three corpora, the mean distance between the best and the average query

is smaller than the mean between the average and the worst.

The MRRs have been computed for each case and the results can be found in Table 5.91.

Comparing the MRRs between the best cases and the results of the best structural combinations

shows large increases from the individual corpora. The largest increase occurs for the ICL corpus

304

Query CSB ICL LMPBV

Best 0.1545 0.1464 0.1180

Average 0.0030 0.0029 0.0034

Worst 0.0011 0.0010 0.0014

Table 5.91: MRRs for choosing the best, average, and worst case for each feature for JabRef from
structural weighting

CSB ICL LMPBV

Weighted 95 95 90

Table 5.92: The percentage of time that weighting each corpus improved the results for JabRef

with a difference between the best queries and the top weighting configuration of .0617. The

smallest difference occurs for the CSB corpus with a difference of .0476. Of the three corpora, the

largest MRR can also be found for the CSB corpus while the smallest MRR can be found for the

LMPBV corpus.

I also computed the percentage of times that the best query was a result of one of the

weighting configurations. This helps to understand whether the weighted or unweighted configu-

rations are having a bigger impact on the results for each corpus. The results of this calculation

can be found in Table 5.92. For both the CSB and the ICL corpora, the unweighted configuration

has the best queries only 5% of the time. The percentage for the LMPBV corpus is not much

higher. The percentage of time that the unweighted configuration has the best queries is 10% for

this corpus.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

305

Figure 5.40: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural weighting for JabRef. Graph is ordered by distance
from best to worst.

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

I computed the best, worst, and average cases for each feature across all corpora using both

query types. The differences between each case can be found in Figure 5.40. The greatest distance

between the best query and the worst query for the three corpora is 5,176, while the mean distance

between the best and the worst query is 2,928. The mean distance between the best query and the

average case was 1,217. The smallest distance betweent the best and worst case was 95, while the

smallest distance betweent the best and average cases was found to be 45. Each of these values

are greater than the values for the individual corpora. The mean distance between the best and the

average query is smaller than the mean between the average and the worst.

I computed the MRRs for these three cases and the results can be found in Table 5.93.

306

Best Average Worst

MRR 0.2081 0.0030 0.0008

Table 5.93: MRRs for choosing the best, average, and worst case for each feature from all corpora
and all structural weighting for JabRef

CSB ICL LMPBV Flat

Percentage 35 17 31 17

Table 5.94: Percentages for each corpus where the best query was found from all corpora and all
structural weighting for JabRef

Unlike for ArgoUML where only a small increase was seen for the overall results of the system,

the results of this computation show a large increase, of .0536, from the individual corpora to

taking the best across all queries. To understand which corpus is contributing the highest number

of best queries from the corpora, I computed the percentage for each query and recorded the results

in Table 5.94. From this table it can be seen that the CSB corpus contributed the largest percentage

of the queries for the features. This corpus was followed by the LMPBV corpus with a difference

of 4%. There is a tie between the ICL and the flat corpora for the lowest percentages. Each of these

corpora contributed 17% of the best queries to the results. A weighting configuration was used for

74% of the best queries. Adjusting for the flat corpus shows that either a weighting configuration

of the flat corpus was used 91% of the time. This indicates that the unweighted configurations of

one of the others corpora was used for 9% of the best queries in the results.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

307

5.3.3.3 jEdit

The boxplots for the LMPBV corpus and each query type can be found in Figure 5.41.

These are the boxplots for the ten weighting configuration with the highest MRRs. The resulting

MRRs can be found in Table 5.95. When looking at the Combined query type, there is less than a

.0001 difference between all the top ten configurations. For each of the ten configurations, neither

the body comments or the local variables are weighted. The most weighted lexicon in the corpus is

the method names with it being the only lexicon in the top configuration and in the ninth configu-

ration. Other lexicons that were weighted include the parameters which were weighted in seven of

the ten configurations and leading comments which were weighted twice. The boxplots only show

minor fluctuations in the effectiveness measures of the ten weighting configurations, however the

flat corpus has a slightly larger spread than the weighting configurations. When looking at the Title

query type, there is only a slight increase in the difference for the ten configurations at .0003. For

all but one of the configurations, the leading comments were given a weighting factor of 8 while

parameters were given a weighting factor of 8 for the top four configurations and then a weighting

factor of 4 for all other configurations. Local variables were not weighted in any of the top ten con-

figurations. Body comments were given a weighting factor of 2 for seven configurations with the

other three either giving a weighting factor of 4 or leaving the lexicon unweighted. While method

names were unweighted in the top configuration, they were weighted in seven configurations with

a weighting factor of 8 for three configurations. The most common ratio was a ratio of 1:1 between

leading comments and parameters for the top five configurations. When looking at the boxplots,

there are slight fluctuations in the 3Q measure and the median, but the spreads were close in other

values. The flat corpus had the smallest spread of the configurations.

308

The boxplots for the CSB corpus can be found in Figure 5.42, while the MRRs can be found

in Table 5.96. For the Combined query type, there was a similar closeness as with the LMPBV

corpus. There was only a difference of .0003 in the top ten configurations. For each of the ten

configurations, the body was given a weighting factor of 8 or 4 with the top two configurations

having a weighting factor of 8. The second and third highest weighting configurations had a ratio

of 1:4 between the comments and the body in the corpus. There was also a ratio of 1:2 for the

fifth and sixth configurations between the comments and the body, while the ninth and the tenth

highest configurations had a ratio of 1:1 between the comments and the body. The comments

were weighted in five of the top ten configurations with three of the weightings being lower than

the weight for the body. The signature had similar ratios with the body. In the third and fourth

configurations, there was a ratio of 1:4 between the signature and the body, while in the seventh and

eighth configurations there was a ratio of 1:2 between the signature and the body. The signature

always had a lower weighting configuration than the body. The boxplots show little difference

in the spreads across all of the configurations. When looking at the Title query type, there is a

larger difference between the configurations of .0094. While the body is still weighted in each

of the ten configurations, there is now more balance between the signature and the body, and the

comments and the body. For five of the top six configurations, there is a ratio of 1:1 between the

signature and the body or the comments and the body with the top two configurations giving equal

weighting to the signature and the body. The boxplots still show similar spreads for each of the

weighting configurations, however the flat corpus now has a smaller spread than any of the other

configurations.

309

(a) LMPBV Combined

18
11

1

14
21

1

28
11

1

18
81

1

12
41

1

18
21

1

24
21

1

14
11

1

12
21

1

14
41

1

F
la

t

0

2000

4000

6000

(b) LMPBV Title

81
82

1

81
81

1

82
81

1

82
82

1

48
42

1

88
44

1

88
42

1

82
42

1

84
42

1

81
42

1

F
la

t

0

2000

4000

6000

Figure 5.41: The top weighting configurations and flat configuration for jEdit and the LMPBV
corpus. The x axis is the configuration, while the y axis is the effectiveness measure.

310

Config MRR

C{L = 1,M = 8,P = 1,B = 1,V = 1} 0.0011

C{L = 1,M = 4,P = 2,B = 1,V = 1} 0.0011

C{L = 2,M = 8,P = 1,B = 1,V = 1} 0.0011

C{L = 1,M = 8,P = 8,B = 1,V = 1} 0.0011

C{L = 1,M = 2,P = 4,B = 1,V = 1} 0.0011

C{L = 1,M = 8,P = 2,B = 1,V = 1} 0.0011

C{L = 2,M = 4,P = 2,B = 1,V = 1} 0.0011

C{L = 1,M = 4,P = 1,B = 1,V = 1} 0.0011

C{L = 1,M = 2,P = 2,B = 1,V = 1} 0.0011

C{L = 1,M = 4,P = 4,B = 1,V = 1} 0.0011

(a) LMPBV Combined

Config MRR

C{L = 8,M = 1,P = 8,B = 2,V = 1} 0.0161

C{L = 8,M = 1,P = 8,B = 1,V = 1} 0.0161

C{L = 8,M = 2,P = 8,B = 1,V = 1} 0.0160

C{L = 8,M = 2,P = 8,B = 2,V = 1} 0.0160

C{L = 4,M = 8,P = 4,B = 2,V = 1} 0.0159

C{L = 8,M = 8,P = 4,B = 4,V = 1} 0.0159

C{L = 8,M = 8,P = 4,B = 2,V = 1} 0.0159

C{L = 8,M = 2,P = 4,B = 2,V = 1} 0.0158

C{L = 8,M = 4,P = 4,B = 2,V = 1} 0.0158

C{L = 8,M = 1,P = 4,B = 2,V = 1} 0.0158

(b) LMPBV Title

Table 5.95: Top 10 configurations for jEdit

311

(a) CSB Combined

11
8

21
8

11
4

12
8

41
8

21
4

14
8

12
4

81
8

41
4

F
la

t

0

2000

4000

6000

(b) CSB Title

12
2

14
4

41
4

11
2

21
2

81
8

81
2

21
4

12
4

41
2

F
la

t

0

1000

2000

3000

4000

5000

6000

7000

Figure 5.42: The top weighting configurations and flat configuration for jEdit and the CSB corpus.
The x axis is the configuration, while the y axis is the effectiveness measure.

312

Config MRR

C{C = 1,S = 1,B = 8} 0.0018

C{C = 2,S = 1,B = 8} 0.0018

C{C = 1,S = 1,B = 4} 0.0017

C{C = 1,S = 2,B = 8} 0.0017

C{C = 4,S = 1,B = 8} 0.0017

C{C = 2,S = 1,B = 4} 0.0016

C{C = 1,S = 4,B = 8} 0.0016

C{C = 1,S = 2,B = 4} 0.0016

C{C = 8,S = 1,B = 8} 0.0016

C{C = 4,S = 1,B = 4} 0.0015

(a) CSB Combined

Config MRR

C{C = 1,S = 2,B = 2} 0.0528

C{C = 1,S = 4,B = 4} 0.0526

C{C = 4,S = 1,B = 4} 0.0494

C{C = 1,S = 1,B = 2} 0.0479

C{C = 2,S = 1,B = 2} 0.0477

C{C = 8,S = 1,B = 8} 0.0477

C{C = 8,S = 1,B = 2} 0.0439

C{C = 2,S = 1,B = 4} 0.0438

C{C = 1,S = 2,B = 4} 0.0438

C{C = 4,S = 1,B = 2} 0.0434

(b) CSB Title

Table 5.96: Top 10 configurations for jEdit

313

(a) ICL Combined

28
1

81
2

81
1

82
1

84
1

81
4

41
1

41
2

42
1

18
1

F
la

t

0

2000

4000

6000

(b) ICL Title

28
1

12
1

22
1

21
1

21
2

18
1

88
1

48
1

44
1

14
1

F
la

t

0

1000

2000

3000

4000

5000

6000

7000

Figure 5.43: The top weighting configurations and flat configuration for jEdit and the ICL corpus.
The x axis is the configuration, while the y axis is the effectiveness measure.

314

Config MRR

C{I = 2,C = 8,L = 1} 0.0020

C{I = 8,C = 1,L = 2} 0.0019

C{I = 8,C = 1,L = 1} 0.0018

C{I = 8,C = 2,L = 1} 0.0018

C{I = 8,C = 4,L = 1} 0.0018

C{I = 8,C = 1,L = 4} 0.0018

C{I = 4,C = 1,L = 1} 0.0017

C{I = 4,C = 1,L = 2} 0.0017

C{I = 4,C = 2,L = 1} 0.0017

C{I = 1,C = 8,L = 1} 0.0017

(a) ICL Combined

Config MRR

C{I = 2,C = 8,L = 1} 0.0495

C{I = 1,C = 2,L = 1} 0.0473

C{I = 2,C = 2,L = 1} 0.0472

C{I = 2,C = 1,L = 1} 0.0459

C{I = 2,C = 1,L = 2} 0.0456

C{I = 1,C = 8,L = 1} 0.0453

C{I = 8,C = 8,L = 1} 0.0450

C{I = 4,C = 8,L = 1} 0.0446

C{I = 4,C = 4,L = 1} 0.0438

C{I = 1,C = 4,L = 1} 0.0435

(b) ICL Title

Table 5.97: Top 10 configurations for jEdit

315

In Figure 5.43 and Table 5.97, you can see the boxplots and MRRs for the ICL corpus.

Once again, for the Combined query type there is only a small difference of .0003 between the top

ten weighting configurations. The top configuration gives a weighting factor of 8 to the comments

with a 1:4 ratio between identifiers and the comments. This is the only configuration until the

tenth configuration where any lexicon has a higher weighting than the identifiers. For the second

through the sixth configuration, the identifiers have a weighting factor of 8 with the third through

the fifth configuration be decreasing ratios of 8:1, 4:1, and 2:1 between the identifiers and the

comments. The literals are only weighted in three of the top ten configurations. The boxplots for

the effectiveness measures are similar to the boxplots from the previous two corpora with little

difference between the spreads of each of the configurations. The Title query type has a wider

difference of .006 between the top ten configurations. For comments the weightings have increased

from what they were for the Combined query type. The top configuration is the same as the top

configuration for the Combined query type, however for the top six configurations, the identifiers

only get a weighting factor of 1 or 2. For the second through the fifth configuration, the highest

weighting factors are 2 with the second configuration having a 1:2 ratio between identifiers and

comments, the third configuration having a 1:1 ratio between the identifiers and the comments,

and the fourth configuration having a 2:1 ratio between the identifiers and the comments. The

spreads of the boxplots are similar for to the 1Q value, however afterward there is fluctuation for

the medians, 3Q, and upper 1.5IRQ. The smallest spread of the configuration is for the flat corpus.

I conducted a Friedman test with a post-hoc analysis on the top configurations and the flat

corpus. I chose to only look at the top configurations and the flat corpus to lower the number of

possible pairings that need to be compared. For the Combined query type, there were 13 significant

differences found for the CSB corpus. None of these differences were identified between the flat

316

(a) CSB

(b) ICL

Figure 5.44: Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for jEdit. Graph is ordered by distance from
best to worst.

317

(c) LPMBV

Figure 5.44: Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for jEdit. Graph is ordered by distance from
best to worst.

configuration and the weighting configurations. For the ICL corpus, 17 significant differences

were identified with none of the differences being between the flat configuration and the weight-

ing configurations. There differences were found despite the small difference in the MRRs and the

spreads of effectiveness measures. There were no significant differences identified for the LMPBV

corpus. For the Title query type, no significant differences were found for the CSB corpus, while

the number of significant differences for the ICL corpus decreases, and 12 significant differences

were identified between the weighting configurations for LMPBV. For the ICL corpus, 10 signifi-

cant differences were found with 4 of the 10 being between the flat corpus and the configurations:

C{I = 1,C = 2,L = 1}, C{I = 2,C = 1,L = 1}, C{I = 2,C = 1,L = 2}, and C{I = 1,C = 4,L = 1}.

I computed the best, worst, and average cases for each feature for each corpus using both

318

Query CSB ICL LMPBV

Best 0.0639 0.0775 0.0204

Average 0.0011 0.0013 0.0011

Worst 0.0005 0.0006 0.0006

Table 5.98: MRRs for choosing the best, average, and worst case for each feature for jEdit from
structural weighting

CSB ICL LMPBV

Weighted 96 97 96

Table 5.99: The percentage of time that weighting each corpus improved the results for jEdit

query types. The differences between each case can be found in Figure 5.44. The greatest distance

between the best query and the worst query for the three corpora is found in the LMPBV corpus at

7,171. The greatest mean distance between the best and the worst query is found in the ICL corpus

at a mean distance of 3,328. ICL also showed the greatest mean distance between the best query

and the average case at 1,471, a value that is only 37 higher than the mean distance between the best

query and the average case for CSB. The smallest mean distance between the best and the worst

case is found for the LMPBV with a mean distance of 2,784. This corpus also had the smallest

mean distance between the best and the average case with a mean distance of 1,197. There was a

tie for the smallest distance between the best and the worst queries between the ICL and the CSB

corpora. Both corpora had a minimum distance of 22. ICL also had the smallest distance between

the best query and the average case at 9. For each of the three corpora, the mean distance between

the best and the average query is smaller than the mean between the average and the worst.

The MRRs have been computed for each case and the results can be found in Table 5.98.

319

Figure 5.45: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural weighting for jEdit. Graph is ordered by distance from
best to worst.

Comparing the MRRs between the best cases and the results of the best structural combinations

shows only moderate increases from the individual corpora. The largest increase occurs for the

ICL corpus with a difference between the best queries and the top weighting configuration of

.0280. The smallest difference occurs for the LMPBV corpus with only a difference of .0043. Of

the three corpora, the largest MRR can also be found for the ICL corpus while the smallest MRR

can be found for the LMPBV corpus.

I also computed the percentage of times that the best query was a result of one of the

weighting configurations. This helps to understand whether the weighted or unweighted configu-

rations are having a bigger impact on the results for each corpus. The results of this calculation

320

Best Average Worst

MRR 0.1044 0.0010 0.0003

Table 5.100: MRRs for choosing the best, average, and worst case for each feature from all corpora
and all structural weighting for jEdit

CSB ICL LMPBV Flat

Percentage 28 26 24 22

Table 5.101: Percentages for each corpus where the best query was found from all corpora and all
structural weighting for jEdit

can be found in Table 5.99. For each of three corpora, the unweighted configuration has the best

queries at most 4% of the time.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

I computed the best, worst, and average cases for each feature across all corpora using both

query types. The differences between each case can be found in Figure 5.45. The greatest distance

between the best query and the worst query is 7,171, while the mean distance between the best

and the worst query is 4,332. The mean distance between the best query and the average case was

1,734. The smallest distance between the best and worst case was 263, while the smallest distance

betweent the best and average cases was found to be 114. Each of these values are greater than

the values for the individual corpora. The mean distance between the best and the average query is

smaller than the mean between the average and the worst.

I computed the MRRs for these three cases and the results can be found in Table 5.100. The

results of this computation show a large increase, of .0269, from the individual corpora to taking

321

the best across all queries. To understand which corpus is contributing the highest number of best

queries from the corpora, I computed the percentage for each query and recorded the results in

Table 5.101. From this table it can be seen that the CSB corpus contributed the largest percentage of

the queries for the features. This corpus was followed closely by the ICL corpus with a difference

of 2%. The flat corpus has the lowest percentage with 22% only a 6% difference from the highest

percentage. A weighting configuration was used for 76% of the best queries. Adjusting for the flat

corpus shows that either a weighting configuration of the flat corpus was used 98% of the time.

This indicates that the unweighted configurations of one of the others corpora was used for only

2% of the best queries in the results.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

5.3.3.4 muCommander

The boxplots for the LMPBV corpus and each query type can be found in Figure 5.46.

These are the boxplots for the ten weighting configuration with the highest MRRs. The resulting

MRRs can be found in Table 5.102. When looking at the Combined query type, there is a difference

of .001 between the configuations. Each configuration has a weighting factor of 8 for the method

names while also having a weighting factor of 1 for the local variables. The top configuration gives

the parameters a weighting factor of 2 while the second configuration only has the method names

weighted. Other lexicons that receive weighting during the configurations include the leading and

body comments which receive weighting factors of 2 in a subset of the configurations. The only

lexicon to get a weighting factor higher than 2 other than the method names are the parameters in

two of the configurations. The most common ratios of the configurations include a 1:4 between

322

leading comments and the method names and a 4:1 ratio between the method names and the pa-

rameters. When looking at the boxplots, the weighting configurations have a similar spread, while

the flat corpus has a reduced spread when compared to the other configurations. The Title query

type gives leading comments a weighting factor of 8 in all but one of the top configurations. The

second configuration is the only configuration with a weighting factor of 4 for the leading com-

ments. The weighting factors for the method names are reduced when compared to the Combined

query type. The method names only receive a weighting factor in four of the ten configurations,

while only receiving a weighting factor of 8 in two configurations. The parameters, local variables,

and body comments also receive weighting factors of 8 in a majority of the configurations. The

ten configurations are close in distance with only a .0012 difference between the configurations.

When looking at the boxplots, the flat corpus has a smaller spread when compared to the other

configurations with the exception of the upper 1.5IRQ.

The boxplots for the CSB corpus can be found in Figure 5.47, while the MRRs can be found

in Table 5.103. For the Combined query type, the difference between the top ten configurations is

.0011. The highest weighting factors are given for the comments with a weighting factor of 8 being

given to comments in the top five configurations. The body is the least weighted lexicon with only

two configurations being weighted, receiving a weighting factor of 2 in one case and a weighting

factor of 8 in the other. The signature receives weighting in five of the top ten configuration with

the top configuration giving signature a weighting factor of 4 and a 2:1 ratio with the comments,

while the second configuration gives the signature a weighting factor of 8 for a 1:1 ratio with the

comments. The flat corpus has the smallest spread of any of the configurations when looking at

the boxplots. For the weighting configurations there are only small fluctuations in the spreads. For

the Title query type, there is a difference of .0059 in the top ten configurations.

323

(a) LMPBV Combined

18
21

1

18
11

1

18
12

1

28
11

1

18
22

1

18
41

1

28
21

1

28
22

1

28
12

1

28
41

1

F
la

t

0

2000

4000

6000

8000

(b) LMPBV Title

81
88

4

41
88

4

88
81

8

81
88

8

84
81

8

81
84

8

88
18

8

81
48

8

82
81

8

81
82

8

F
la

t

0

2000

4000

6000

8000

Figure 5.46: The top weighting configurations and flat configuration for muCommander and the
LMPBV corpus. The x axis is the configuration, while the y axis is the effectiveness measure.

324

Config MRR

C{L = 1,M = 8,P = 2,B = 1,V = 1} 0.0028

C{L = 1,M = 8,P = 1,B = 1,V = 1} 0.0023

C{L = 1,M = 8,P = 1,B = 2,V = 1} 0.0023

C{L = 2,M = 8,P = 1,B = 1,V = 1} 0.0022

C{L = 1,M = 8,P = 2,B = 2,V = 1} 0.0019

C{L = 1,M = 8,P = 4,B = 1,V = 1} 0.0019

C{L = 2,M = 8,P = 2,B = 1,V = 1} 0.0018

C{L = 2,M = 8,P = 2,B = 2,V = 1} 0.0018

C{L = 2,M = 8,P = 1,B = 2,V = 1} 0.0018

C{L = 2,M = 8,P = 4,B = 1,V = 1} 0.0018

(a) LMPBV Combined

Config MRR

C{L = 8,M = 1,P = 8,B = 8,V = 4} 0.0189

C{L = 4,M = 1,P = 8,B = 8,V = 4} 0.0189

C{L = 8,M = 8,P = 8,B = 1,V = 8} 0.0179

C{L = 8,M = 1,P = 8,B = 8,V = 8} 0.0178

C{L = 8,M = 4,P = 8,B = 1,V = 8} 0.0178

C{L = 8,M = 1,P = 8,B = 4,V = 8} 0.0178

C{L = 8,M = 8,P = 1,B = 8,V = 8} 0.0178

C{L = 8,M = 1,P = 4,B = 8,V = 8} 0.0177

C{L = 8,M = 2,P = 8,B = 1,V = 8} 0.0177

C{L = 8,M = 1,P = 8,B = 2,V = 8} 0.0177

(b) LMPBV Title

Table 5.102: Top 10 configurations for muCommander

325

(a) CSB Combined

84
1

88
1

81
2

81
1

82
1

44
1

42
1

41
1

81
8

21
1

F
la

t

0

2000

4000

6000

8000

(b) CSB Title

41
1

81
2

81
1

82
1

81
4

41
2

21
8

11
8

21
4

41
8

F
la

t

0

2000

4000

6000

8000

Figure 5.47: The top weighting configurations and flat configuration for muCommander and the
CSB corpus. The x axis is the configuration, while the y axis is the effectiveness measure.

326

Config MRR

C{C = 8,S = 4,B = 1} 0.0039

C{C = 8,S = 8,B = 1} 0.0036

C{C = 8,S = 1,B = 2} 0.0035

C{C = 8,S = 1,B = 1} 0.0034

C{C = 8,S = 2,B = 1} 0.0034

C{C = 4,S = 4,B = 1} 0.0030

C{C = 4,S = 2,B = 1} 0.0030

C{C = 4,S = 1,B = 1} 0.0030

C{C = 8,S = 1,B = 8} 0.0029

C{C = 2,S = 1,B = 1} 0.0028

(a) CSB Combined

Config MRR

C{C = 4,S = 1,B = 1} 0.0277

C{C = 8,S = 1,B = 2} 0.0252

C{C = 8,S = 1,B = 1} 0.0244

C{C = 8,S = 2,B = 1} 0.0241

C{C = 8,S = 1,B = 4} 0.0236

C{C = 4,S = 1,B = 2} 0.0227

C{C = 2,S = 1,B = 8} 0.0218

C{C = 1,S = 1,B = 8} 0.0218

C{C = 2,S = 1,B = 4} 0.0218

C{C = 4,S = 1,B = 8} 0.0218

(b) CSB Title

Table 5.103: Top 10 configurations for muCommander

327

(a) ICL Combined

18
1

28
1

18
2

18
4

24
1

14
1

48
1

14
2

81
2

12
1

F
la

t

0

2000

4000

6000

8000

(b) ICL Title

18
1

14
1

28
1

48
1

84
1

41
1

88
1

24
1

82
1

81
2

F
la

t

0

2000

4000

6000

8000

Figure 5.48: The top weighting configurations and flat configuration for muCommander and the
ICL corpus. The x axis is the configuration, while the y axis is the effectiveness measure.

328

Config MRR

C{I = 1,C = 8,L = 1} 0.0033

C{I = 2,C = 8,L = 1} 0.0032

C{I = 1,C = 8,L = 2} 0.0032

C{I = 1,C = 8,L = 4} 0.0030

C{I = 2,C = 4,L = 1} 0.0029

C{I = 1,C = 4,L = 1} 0.0029

C{I = 4,C = 8,L = 1} 0.0029

C{I = 1,C = 4,L = 2} 0.0027

C{I = 8,C = 1,L = 2} 0.0026

C{I = 1,C = 2,L = 1} 0.0026

(a) ICL Combined

Config MRR

C{I = 1,C = 8,L = 1} 0.0246

C{I = 1,C = 4,L = 1} 0.0245

C{I = 2,C = 8,L = 1} 0.0232

C{I = 4,C = 8,L = 1} 0.0221

C{I = 8,C = 4,L = 1} 0.0200

C{I = 4,C = 1,L = 1} 0.0199

C{I = 8,C = 8,L = 1} 0.0199

C{I = 2,C = 4,L = 1} 0.0199

C{I = 8,C = 2,L = 1} 0.0198

C{I = 8,C = 1,L = 2} 0.0198

(b) ICL Title

Table 5.104: Top 10 configurations for muCommander

329

The comments still receive the most weighting of any of the configurations with a weighting factor

of 4 in the first configuration and a weighting factor of 8 for the second configuration through

the fifth. The signature receives reduced weighting from the Combined query type with only one

configuration giving signature a weighting factor of 2. Two of the top configurations only weight

the comments with the first configuration having a 4:1:1 ratio and the third configuration having an

8:1:1 ratio. Looking at the boxplots shows two configurations with similar spreads that are smaller

than the others. These spreads are for the C{C = 8,S = 1,B = 4} and the C{C = 4,S = 1,B = 2}

configurations. Both of these configurations have a 2:1 ratio between the comments and the body.

In Figure 5.48 and Table 5.104, you can see the boxplots and MRRs for the ICL corpus.

There is only a .0007 difference between the top configurations for the Combined query type. For

the top four configurations, the comments get a weighting factor of 8, while for eight of the ten

configurations they receive a weighting factor of 8 or 4. The weighting factors for both identifiers

and literals are substantially lower. The top configuration does not weight either the identifiers or

the literals, making the comments the only lexicon with weighting. This occurs for three of the

top ten configurations. When looking at the boxplots, the flat corpus has a smaller spread than any

of the weighting configurations. The weighting configurations show small fluctuations. For the

Title query type, there is a difference of .0048 between the top configurations. Comments maintain

high weighting factors, however for eight of the configurations, the weighting for the identifiers

has increased. Literals continue to have low weighting and have even been further reduced to only

having a weighting factor of 2 in the tenth configuration. The boxplots show that the flat corpus

has the smallest 1Q value, but the greatest spread of any of the configurations. The smallest spread

comes for the C{I = 4,C = 8,L = 1} configuration.

I conducted a Friedman test with a post-hoc analysis on the top configurations and the flat

330

(a) CSB

(b) ICL

Figure 5.49: Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for muCommander. Graph is ordered by
distance from best to worst.

331

(c) LPMBV

Figure 5.49: Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for muCommander. Graph is ordered by
distance from best to worst.

corpus. I chose to only look at the top configurations and the flat corpus to lower the number

of possible pairings that need to be compared. For the Combined query type, there was only 1

significant difference for the CSB corpus between the C{C = 8,S = 4,B = 1} and the C{C = 4,S =

1,B = 1} configurations. For the ICL corpus there were 29 significant differences found with only

one difference with the flat corpus. This difference was found for the configuration C{I = 1,C =

8,L = 4}. For the LMPBV corpus, there were 27 significant differences discovered. Ten of those

differences were from the flat corpus and each of the weighting configurations. The Title query

type resulted in 1 significant difference for the CSB corpus between the C{C = 2,S = 1,B = 8}

and the C{C = 1,S = 1,B= 8} configurations. For the ICL corpus, only two significant differences

were found between the C{I = 4,C = 1,L = 1} and the C{I = 8,C = 2,L = 1} configurations,

332

Query CSB ICL LMPBV

Best 0.0464 0.0288 0.0255

Average 0.0015 0.0013 0.0016

Worst 0.0005 0.0005 0.0008

Table 5.105: MRRs for choosing the best, average, and worst case for each feature for muCom-
mander from structural weighting

CSB ICL LMPBV

Weighted 95 95 95

Table 5.106: The percentage of time that weighting each corpus improved the results for muCom-
mander

and the C{I = 8,C = 2,L = 1} and the C{I = 8,C = 1,L = 2} configurations. For LMPBV, 25

significant differences were found with there once again being significant differences between the

flat corpus and each of the ten configurations.

I computed the best, worst, and average cases for each feature for each corpus using both

query types. The differences between each case can be found in Figure 5.49. The greatest distance

between the best query and the worst query for the three corpora is found in the CSB corpus at

8,008. The greatest mean distance between the best and the worst query is found in the LMPBV

corpus at a mean distance of 3,722. LMPBV also showed the greatest mean distance between the

best query and the average case at 1,603. The smallest mean distance between the best and the

worst case is found for the CSB corpus with a mean distance of 3,422. This corpus also had the

smallest mean distance between the best and the average case with a mean distance of 1,338. These

values are close to the values for the ICL corpus. The smallest distance between the best and the

worst query was found for the ICL corpus with a distance of 0. There was a tie for the

333

Figure 5.50: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural weighting for muCommander. Graph is ordered by
distance from best to worst.

smallest distance between the best query and the average case between the ICL and the LMPBV

corpora. Both corpora had a minimum distance of 0. For each of the three corpora, the mean

distance between the best and the average query is smaller than the mean between the average and

the worst.

The MRRs have been computed for each case and the results can be found in Table 5.105.

Comparing the MRRs between the best cases and the results of the best structural combinations

shows only moderate increases from the individual corpora. The largest increase occurs for the

CSB corpus with a difference between the best queries and the top weighting configuration of

.0187. The smallest difference occurs for the ICL corpus with only a difference of .0042. Of the

334

Best Average Worst

MRR 0.0611 0.0014 0.0003

Table 5.107: MRRs for choosing the best, average, and worst case for each feature from all corpora
and all structural weighting for muCommander

CSB ICL LMPBV Flat

Percentage 40 12 25 23

Table 5.108: Percentages for each corpus where the best query was found from all corpora and all
structural weighting for muCommander

three corpora, the largest MRR can also be found for the CSB corpus while the smallest MRR can

be found for the LMPBV corpus.

I also computed the percentage of times that the best query was a result of one of the

weighting configurations. This helps to understand whether the weighted or unweighted configu-

rations are having a bigger impact on the results for each corpus. The results of this calculation

can be found in Table 5.106. For each of three corpora, the unweighted configuration has the best

queries at most 5% of the time.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

I computed the best, worst, and average cases for each feature across all corpora using both

query types. The differences between each case can be found in Figure 5.50. The greatest distance

between the best query and the worst query is 8,564, while the mean distance between the best

and the worst query is 5,026. The mean distance between the best query and the average case was

2,081. The smallest distance between the best and worst case was 184, while the smallest distance

335

between the best and average cases was found to be 135. Each of these values are greater than the

values for the individual corpora. The mean distance between the best and the average query is

smaller than the mean between the average and the worst.

I computed the MRRs for these three cases and the results can be found in Table 5.107.

While muCommander has the lowest MRR of the four subject systems, the results of this compu-

tation show a moderate increase, of .0147, from the individual corpora to taking the best across all

queries. To understand which corpus is contributing the highest number of best queries from the

corpora, I computed the percentage for each query and recorded the results in Table 5.108. From

this table it can be seen that the CSB corpus contributed the largest percentage of the queries for

the features. This corpus was followed by the LMPBV corpus with a difference of 15%. The ICL

corpus has the lowest percentage with 12%. A weighting configuration was used for 74% of the

best queries. Adjusting for the flat corpus shows that either a weighting configuration of the flat

corpus was used 97% of the time. This indicates that the unweighted configurations of one of the

others corpora was used for only 3% of the best queries in the results.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

5.3.3.5 All Systems

The boxplots for the LMPBV corpus and each query type can be found in Figure 5.51.

These are the boxplots for the ten weighting configuration with the highest MRRs. The resulting

MRRs can be found in Table 5.109. For the Combined query type, each of the top ten config-

urations are less and a distance of .0001 apart. In addition, each of the top ten configurations

uses a weighting factor of 8 for each of the configurations and a weighting factor of 1 for local

336

variables. The method names and the parameters are each weighted in the majority of the config-

urations while the body comments are only weighting in three of the ten configurations. Method

names have a weighting factor that is greater than or equal to the weighting factor for parame-

ters in six of the ten configurations. When looking at the boxplots, the flat corpus has the lowest

spread of the configurations, while the smallest spreads for the weighting configurations are seen

for C{L = 8,M = 2,P = 4,B = 2,V = 1} and C{L = 8,M = 1,P = 8,B = 1,V = 1}. For the Title

query type, the difference between the top ten configurations is now .0012. Each of the configura-

tions once again give leading comments a weighting factor of 8, while method names are weighted

in seven of the ten configurations and parameters are weighted in four of the ten configurations.

Body comments are weighted more than they were in the Combined query type, where they have

a weighting factor of 4 or 8 in eight of the top ten configurations. Local variables once again have

a weighting factor of 1 in each of the top configurations. The smallest spread is seen for the con-

figuration C{L = 8,M = 1,P = 1,B = 4,V = 1}, while the flat corpus has the smallest 1Q value.

Important to note is that for each of the subject systems and for all systems combined, there did

not exists a weighting configuration that weighted every lexicon.

The boxplots for the CSB corpus can be found in Figure 5.52, while the MRRs can be

found in Table 5.110. For the Combined query type, there is a difference of .0029 between the top

configurations. The top four configurations show a ratio of 1:1 between the comments and the body,

beginning with a weighting factor of 8 for each lexicon and then decreasing by each weighting

factor until reaching the unweighted configuration in the fourth position. This is followed by a ratio

of 2:1 between comments and the body in the fifth, sixth, and eighth positions. For the signature,

no weighting factors were used except in the ninth and tenth configurations where the signature

was given a weighting factor of 2. The flat corpus has the smallest spread of the effectiveness

337

(a) LMPBV Combined

81
41

1

82
41

1

84
11

1

84
21

1

82
42

1

82
11

1

81
81

1

82
21

1

84
12

1

84
22

1

F
la

t

0

2000

4000

6000

8000

10000

(b) LMPBV Title

84
14

1

81
11

1

82
11

1

82
14

1

82
24

1

81
14

1

81
24

1

84
18

1

84
28

1

82
44

1

F
la

t

0

2000

4000

6000

8000

10000

Figure 5.51: The top weighting configurations and flat configuration for all systems and the
LMPBV corpus. The x axis is the configuration, while the y axis is the effectiveness measure.

338

Config MRR

C{L = 8,M = 1,P = 4,B = 1,V = 1} 0.0081

C{L = 8,M = 2,P = 4,B = 1,V = 1} 0.0081

C{L = 8,M = 4,P = 1,B = 1,V = 1} 0.0081

C{L = 8,M = 4,P = 2,B = 1,V = 1} 0.0081

C{L = 8,M = 2,P = 4,B = 2,V = 1} 0.0081

C{L = 8,M = 2,P = 1,B = 1,V = 1} 0.0081

C{L = 8,M = 1,P = 8,B = 1,V = 1} 0.0081

C{L = 8,M = 2,P = 2,B = 1,V = 1} 0.0081

C{L = 8,M = 4,P = 1,B = 2,V = 1} 0.0081

C{L = 8,M = 4,P = 2,B = 2,V = 1} 0.0081

(a) LMPBV Combined

Config MRR

C{L = 8,M = 4,P = 1,B = 4,V = 1} 0.0205

C{L = 8,M = 1,P = 1,B = 1,V = 1} 0.0204

C{L = 8,M = 2,P = 1,B = 1,V = 1} 0.0204

C{L = 8,M = 2,P = 1,B = 4,V = 1} 0.0203

C{L = 8,M = 2,P = 2,B = 4,V = 1} 0.0203

C{L = 8,M = 1,P = 1,B = 4,V = 1} 0.0200

C{L = 8,M = 1,P = 2,B = 4,V = 1} 0.0199

C{L = 8,M = 4,P = 1,B = 8,V = 1} 0.0199

C{L = 8,M = 4,P = 2,B = 8,V = 1} 0.0198

C{L = 8,M = 2,P = 4,B = 4,V = 1} 0.0193

(b) LMPBV Title

Table 5.109: Top 10 configurations for all systems

339

(a) CSB Combined

81
8

41
4

21
2

11
1

21
1

81
4

41
8

41
2

22
1

12
1

F
la

t

0

2000

4000

6000

8000

10000

(b) CSB Title

81
4

81
2

41
4

81
8

41
2

21
2

41
1

81
1

22
1

82
1

F
la

t

0

2000

4000

6000

8000

10000

Figure 5.52: The top weighting configurations and flat configuration for all systems and the CSB
corpus. The x axis is the configuration, while the y axis is the effectiveness measure.

340

Config MRR

C{C = 8,S = 1,B = 8} 0.0114

C{C = 4,S = 1,B = 4} 0.0113

C{C = 2,S = 1,B = 2} 0.0111

C{C = 1,S = 1,B = 1} 0.0107

C{C = 2,S = 1,B = 1} 0.0092

C{C = 8,S = 1,B = 4} 0.0089

C{C = 4,S = 1,B = 8} 0.0086

C{C = 4,S = 1,B = 2} 0.0086

C{C = 2,S = 2,B = 1} 0.0085

C{C = 1,S = 2,B = 1} 0.0085

(a) CSB Combined

Config MRR

C{C = 8,S = 1,B = 4} 0.0487

C{C = 8,S = 1,B = 2} 0.0486

C{C = 4,S = 1,B = 4} 0.0482

C{C = 8,S = 1,B = 8} 0.0480

C{C = 4,S = 1,B = 2} 0.0465

C{C = 2,S = 1,B = 2} 0.0460

C{C = 4,S = 1,B = 1} 0.0454

C{C = 8,S = 1,B = 1} 0.0451

C{C = 2,S = 2,B = 1} 0.0428

C{C = 8,S = 2,B = 1} 0.0420

(b) CSB Title

Table 5.110: Top 10 configurations for all systems

341

(a) ICL Combined

88
1

44
1

22
1

12
1

84
1

21
1

42
1

11
1

48
1

12
2

F
la

t

0

2000

4000

6000

8000

10000

(b) ICL Title

28
1

18
1

14
1

48
1

18
4

14
2

18
2

24
1

12
1

88
1

F
la

t

0

2000

4000

6000

8000

10000

Figure 5.53: The top weighting configurations and flat configuration for all systems and the ICL
corpus. The x axis is the configuration, while the y axis is the effectiveness measure.

342

Config MRR

C{I = 8,C = 8,L = 1} 0.0118

C{I = 4,C = 4,L = 1} 0.0115

C{I = 2,C = 2,L = 1} 0.0102

C{I = 1,C = 2,L = 1} 0.0089

C{I = 8,C = 4,L = 1} 0.0089

C{I = 2,C = 1,L = 1} 0.0087

C{I = 4,C = 2,L = 1} 0.0086

C{I = 1,C = 1,L = 1} 0.0086

C{I = 4,C = 8,L = 1} 0.0085

C{I = 1,C = 2,L = 2} 0.0085

(a) ICL Combined

Config MRR

C{I = 2,C = 8,L = 1} 0.0459

C{I = 1,C = 8,L = 1} 0.0457

C{I = 1,C = 4,L = 1} 0.0449

C{I = 4,C = 8,L = 1} 0.0444

C{I = 1,C = 8,L = 4} 0.0423

C{I = 1,C = 4,L = 2} 0.0413

C{I = 1,C = 8,L = 2} 0.0402

C{I = 2,C = 4,L = 1} 0.0402

C{I = 1,C = 2,L = 1} 0.0399

C{I = 8,C = 8,L = 1} 0.0395

(b) ICL Title

Table 5.111: Top 10 configurations for all systems

343

measures. For the Title query type, there is a difference between the top ten configurations of

.0067. Comments and the body continue to be the most weighted lexicons while the signature is

once again only weighting in the ninth and tenth positions. For the top two configurations, the ratio

of comments to body has increase to 2:1 and then 4:1, while in the third and fourth positions, the

comments and body have a 1:1 ratio again. The unweighted configuration is no longer amongst

the top ten configurations. The C{C = 2,S = 1,B = 2} configuration now has the smallest spread

of the ten configurations.

In Figure 5.53 and Table 5.111, you can see the boxplots and MRRs for the ICL corpus.

There is a .0033 difference between the top configurations for the Combined query type. For the

top three configurations there is a 1:1 ratio between the identifiers and the comments. In the fourth

position there is a 1:2 ratios between identifiers and comments which switches to a 2:1 ratio for the

fifth through the seventh positions. The literals are only given a weighting factor of 2 in the tenth

position. The boxplots show that the flat corpus has a similar spread to C{I = 4,C = 2,L = 1}.

The two make up the smallest spreads for the configurations. For the Title query type, there is a

difference of .0064 between the top configurations. For the top nine configurations, the comments

have a higher weighting factor than either the identifiers or the literals. The identifiers are only

weighted in four of the ten configurations, while the literals are only weighting in three of the top

ten configurations. The first and third configurations have a ratio of 1:4 between the identifiers

and the comments with the second and third having comments as the only weighted lexicon. The

configurations C{I = 1,C = 4,L = 1}, C{I = 4,C = 8,L = 1}, and C{I = 2,C = 4,L = 1}, have

the similar spreads and make up the smallest spreads of the top configurations.

I conducted a Friedman test with a post-hoc analysis on the top configurations and the flat

344

(a) CSB

(b) ICL

Figure 5.54: Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for all systems. Graph is ordered by distance
from best to worst.

345

(c) LPMBV

Figure 5.54: Stacked bargraphs representing the distance from the best query from structural
weighting to the average (bottom) and the worst(top) for all systems. Graph is ordered by distance
from best to worst.

corpus. I chose to only look at the top configurations and the flat corpus to lower the number

of possible pairings that need to be compared. For the Combined query type, there were a large

number of significant differences for each of the corpora. For CSB, 41 significant differences were

found. For the ICL corpus, there were 45 significant differences identified, while for the LMPBV

corpus there were 24 significant differences found. For each of the three corpora, the flat corpus

was identified to be significantly different from all weighting configurations. For the Title query

type, the number of significant differences were decreased for the CSB and ICL corpora with only

11 identifiers for the CSB corpus and 24 for the ICL corpus. For the LMPBV corpus there was an

increase in the number of significant differences to a total of 44. For both ICL and LMPBV the flat

corpus was significantly different from the weighting configurations, while for the CSB corpus the

flat corpus was not significantly different from the weighting configurations.

346

Query CSB ICL LMPBV

Best 0.0808 0.0814 0.0384

Average 0.0053 0.0073 0.0024

Worst 0.0034 0.0036 0.0012

Table 5.112: MRRs for choosing the best, average, and worst case for each feature for all systems
from structural weighting

CSB ICL LMPBV

Weighted 96 96 95

Table 5.113: The percentage of time that weighting each corpus improved the results for all systems

I computed the best, worst, and average cases for each feature for each corpus using both

query types. The differences between each case can be found in Figure 5.54. The greatest distance

between the best query and the worst query for the three corpora is found in the CSB corpus at

11,785. The greatest mean distance between the best and the worst query is found in the ICL corpus

at a mean distance of 3,636. ICL also showed the greatest mean distance between the best query

and the average case at 1,561. The smallest mean distance between the best and the worst case is

found for the LMPBV corpus with a mean distance of 3,323. This corpus also had the smallest

mean distance between the best and the average case with a mean distance of 1,458. There was a

tie between the smallest distance between the best and worst query with a 0 for both ICL and CSB.

LMPBV also had minimum distance of 0 between the best and the average case. For each of the

three corpora, the mean distance between the best and the average query is smaller than the mean

between the average and the worst.

The MRRs have been computed for each case and the results can be found in Table 5.112.

347

Figure 5.55: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from structural weighting for all systems. Graph is ordered by distance
from best to worst.

Comparing the MRRs between the best cases and the results of the best structural combinations

shows large increases from the individual corpora. The largest increase occurs for the ICL corpus

with a difference between the best queries and the top weighting configuration of .0355. The

smallest difference occurs for the LMPBV corpus with a difference of .0179. Of the three corpora,

the largest MRR can also be found for the ICL corpus while the smallest MRR can be found for

the LMPBV corpus.

I also computed the percentage of times that the best query was a result of one of the

weighting configurations. This helps to understand whether the weighted or unweighted configu-

rations are having a bigger impact on the results for each corpus. The results of this calculation

348

Best Average Worst

MRR 0.1072 0.0019 0.0004

Table 5.114: MRRs for choosing the best, average, and worst case for each feature from all corpora
and all structural weighting for all systems

CSB ICL LMPBV Flat

Percentage 33 21 23 23

Table 5.115: Percentages for each corpus where the best query was found from all corpora and all
structural weighting for all systems

can be found in Table 5.113. For each of three corpora, the unweighted configuration has the best

queries at most 5% of the time.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

I computed the best, worst, and average cases for each feature across all corpora using both

query types. The differences between each case can be found in Figure 5.55. The greatest distance

between the best query and the worst query is 11,785, while the mean distance between the best

and the worst query is 4,897. The mean distance between the best query and the average case was

2,042. The smallest distance between the best and worst case was 95, while the smallest distance

between the best and average cases was found to be 45. Each of these values are greater than the

values for the individual corpora. The mean distance between the best and the average query is

smaller than the mean between the average and the worst.

I computed the MRRs for these three cases and the results can be found in Table 5.114. The

results of this computation show a large increase, of .0258, from the individual corpora to taking

349

the best across all queries. To understand which corpus is contributing the highest number of best

queries from the corpora, I computed the percentage for each query and recorded the results in

Table 5.115. From this table it can be seen that the CSB corpus contributed the largest percentage

of the queries for the features. This corpus was followed by a tie between the LMPBV corpus and

the flat corpus with a difference of 10%. The ICL corpus has the lowest percentage with 21%. A

weighting configuration was used for 74% of the best queries. Adjusting for the flat corpus shows

that either a weighting configuration of the flat corpus was used 97% of the time. This indicates

that the unweighted configurations of one of the others corpora was used for only 3% of the best

queries in the results.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

5.3.4 How does the best configuration of structural field combination and weighting affect the

accuracy of a structured retrieval-based FLT?

In the previous questions, I looked at the different dimensions that can affect the query

results in the structured retrieval process. In this question I look at the structural combination

together with the weighting configuration. Each of these questions only provide a piece of the

picture when looking at the effects of this process, however taking them together can give a better

understand than any one question would. It is important to note that in this question, I am not

looking for the best possible results. This would require optimizing the α and β values for the

language model and finding the best text to include in the query. Instead, for feasibility of the

study, I am using only the Title query type and looking at the relative differences. In the previous

questions, approximately 25% of the best queries came from the Combined query type.

350

5.3.4.1 ArgoUML

The top combinations for ArgoUML and the LMPBV were computed. I show boxplots

of the effectiveness measures in Figure 5.56 and the MRRs in Table 5.116. To save space, I

list the configurations in the boxplots with the combination and the weighting schemes separated

by a ’_’. There is a difference of .0119 between the top configurations. For each of the top

configurations, the leading comments are included. The only combination to include local variables

is the top configuration, while the body comments are included in eight configurations, the method

names in five, and the parameters in four. No configuration uses a weighting factor of 8 for any

lexicon, and the most common weighting factors are 1 and 2. The smallest spread comes from the

C{L = 2,M = 1,B = 1} with the flat corpus being amongst the largest.

The boxplots for the CSB corpus can be found in Figure 5.57, while the MRRs can be

found in Table 5.117. There is a difference of .0079 in the top configurations. The most common

combination across the top configurations uses the full corpus. In seven of the configurations

where the full corpus is used, the comments are given a heavier weighting than the signature or the

body. Each of the top six configurations give the body a weighting factor of 1, while the top two

configurations give the signature a weighting factor of 2. Looking at the boxplots, there is not a

clear winner for the smallest spread. The full corpus with no weighting has the smallest median

value, while the configuration C{C = 2,S = 2,B = 1} has the smallest 1Q and 3Q values.

For the ICL corpus, the boxplots can be found in Figure 5.58, while the MRRs can be found

in Table 5.118. The difference between the top configurations is .0153. Literals are present in each

of the top configurations with the top configuration being the unweighted literals alone. Comments

are the second most common lexicon, being present in nine of the ten configurations

351

LV
_2

1

LP
B

_2
11

LM
P

B
_2

11
1

LM
B

_2
21

LM
_2

1

LP
B

_4
12

LM
B

_2
11

LM
P

B
_4

11
2

LB
_2

1

LP
B

_2
12 F
la

t

0

2000

4000

6000

8000

10000

12000

Figure 5.56: The top configurations and flat configuration for ArgoUML and the LMPBV corpus.
The x axis is the configuration, while the y axis is the effectiveness measure.

Config MRR

C{L = 2,V = 1} 0.0704

C{L = 2,P = 1,B = 1} 0.0703

C{L = 2,M = 1,P = 1,B = 1} 0.0696

C{L = 2,M = 2,B = 1} 0.0630

C{L = 2,M = 1} 0.0607

C{L = 4,P = 1,B = 2} 0.0601

C{L = 2,M = 1,B = 1} 0.0600

C{L = 4,M = 1,P = 1,B = 2} 0.0599

C{L = 2,B = 1} 0.0598

C{L = 2,P = 1,B = 2} 0.0585

Table 5.116: Top 10 configurations from all combinations for ArgoUML and the LMPBV corpus

352

C
S

B
_4

21

C
S

B
_2

21

C
B

_8
1

C
S

B
_2

11

C
S

B
_8

11

C
S

B

C
S

B
_4

12

C
S

B
_8

21

C
B

_2
1

C
S

B
_8

12 F
la

t

0

2000

4000

6000

8000

10000

12000

Figure 5.57: The top configurations and flat configuration for ArgoUML and the CSB corpus.
The x axis is the configuration, while the y axis is the effectiveness measure.

Config MRR

C{C = 4,S = 2,B = 1} 0.0713

C{C = 2,S = 2,B = 1} 0.0709

C{C = 8,B = 1} 0.0698

C{C = 2,S = 1,B = 1} 0.0695

C{C = 8,S = 1,B = 1} 0.0693

C{C = 1,S = 1,B = 1} 0.0688

C{C = 4,S = 1,B = 2} 0.0688

C{C = 8,S = 2,B = 1} 0.0636

C{C = 2,B = 1} 0.0634

C{C = 8,S = 1,B = 2} 0.0634

Table 5.117: Top 10 configurations from all combinations for ArgoUML and the CSB corpus

353

L

C
L_

41

C
L_

21

IC
L_

18
4

IC
L_

14
8

IC
L_

14
2

C
L_

81

IC
L_

18
1

C
L_

12

IC
L_

18
2

F
la

t

0

2000

4000

6000

8000

10000

12000

Figure 5.58: The top configurations and flat configuration for ArgoUML and the ICL corpus. The
x axis is the configuration, while the y axis is the effectiveness measure.

Config MRR

C{L = 1} 0.0703

C{C = 4,L = 1} 0.0697

C{C = 2,L = 1} 0.0624

C{I = 1,C = 8,L = 4} 0.0613

C{I = 1,C = 4,L = 8} 0.0609

C{I = 1,C = 4,L = 2} 0.0601

C{C = 8,L = 1} 0.0592

C{I = 1,C = 8,L = 1} 0.0588

C{C = 1,L = 2} 0.0555

C{I = 1,C = 8,L = 2} 0.0550

Table 5.118: Top 10 configurations from all combinations for ArgoUML and the ICL corpus

354

and often having a higher weighting factor than the literals. Identifiers are present in only five of

the configurations, but are not weighted in any of the combinations. The boxplots show that the

smallest spread comes for the C{I = 1,C = 4,L = 8} configuration.

I conducted a Friedman test with a post-hoc analysis on the top configurations and the flat

corpus. I chose to only look at the top configurations and the flat corpus to lower the number

of possible pairings that need to be compared. For the CSB corpus, 20 significant differences

were found between the top configurations with none found with the flat corpus and the other

configurations. For the ICL corpus, 7 significant differences were found, with 6 of the differences

between the flat corpus and the other configurations. Finally for the LMPBV corpus, 21 significant

differences were found with none between the flat corpus and the other configurations.

I computed the best, worst, and average cases for each feature for each corpus. The dif-

ferences between each case can be found in Figure 5.59. The greatest distance between the best

query and the worst query for the three corpora is found in the LMPBV corpus at 11,973. The

greatest mean distance between the best and the worst query is found in the LMPBV corpus at a

mean distance of 6,037. LMPBV also showed the greatest mean distance between the best query

and the average case at 2,596. The smallest mean distance between the best and the worst case is

found for the CSB corpus with a mean distance of 3,726. This corpus also had the smallest mean

distance between the best and the average case with a mean distance of 1,620. There was a tie

between the smallest distance between the best and worst query with a 14 for both ICL and CSB.

These corpora also had the minimum distance of 2 between the best and the average case. For each

of the three corpora, the mean distance between the best and the average query is smaller than the

mean between the average and the worst.

The MRRs have been computed for each case and the results can be found in Table 5.119.

355

(a) CSB

(b) ICL

Figure 5.59: Stacked bargraphs representing the distance from the best query from all combina-
tions to the average (bottom) and the worst(top) for ArgoUML. Graph is ordered by distance from
best to worst.

356

(c) LPMBV

Figure 5.59: Stacked bargraphs representing the distance from the best query from all combina-
tions to the average (bottom) and the worst(top) for ArgoUML. Graph is ordered by distance from
best to worst.

Comparing the MRRs between the best cases and the results of the best configurations shows large

increases from the individual corpora. The largest increase occurs for the LMPBV corpus with a

difference between the best queries and the top configuration of .1093. The smallest difference

occurs for the CSB corpus with a difference of .0455. Of the three corpora, the largest MRR can

also be found for the LMPBV corpus while the smallest MRR can be found for the CSB corpus.

I also computed the percentage of times that the best query was a result of one of the

weighting configurations. This helps to understand whether the weighted or unweighted configu-

rations are having a bigger impact on the results for each corpus. The results of this calculation

can be found in Table 5.120. For both ICL and CSB, a weighting configuration was used 100% of

357

Query CSB ICL LMPBV

Best 0.1168 0.1341 0.1797

Average 0.0071 0.0174 0.0029

Worst 0.0018 0.0017 0.0004

Table 5.119: MRRs for choosing the best, average, and worst case for each feature for Ar-
goUML from all combinations

CSB ICL LMPBV

Weighted 100 100 92

Table 5.120: The percentage of time that weighting each corpus improved the results for ArgoUML

B S SB C CB CS CSB

0 0 30 0 23 15 30

(a) CSB

L C CL I IL IC ICL

0 0 21 0 28 14 35

(b) ICL

V B BV P PV PB PBV M MV MB MBV

2 4 9 11 6 4 0 9 9 4 0

MP MPV MPB MPBV L LV LB LBV LP LPV

0 0 2 0 6 6 9 0 2 0

LPB LPBV LM LMV LMB LMBV LMP LMPV LMPB LMPBV

0 0 2 0 4 0 2 0 0 0

(c) LMPBV

Table 5.121: Percentage of the best queries obtained from each structural combination for Ar-
goUML

358

Figure 5.60: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from all combinations for ArgoUML. Graph is ordered by distance
from best to worst.

the time, while for LMPBV a weighting configuration was used 92% of the time. This indicates

that the unweighted configuration only had 8% of the best queries in the LMPBV corpus.

The percentages for the individual combinations having the best queries regardless of

weighting can be found in Table 5.121. In the case of the CSB corpus, there is a tie for the

highest percentage between the structure combined with the body (SB) and the full corpus. While

each of the combinations that combined two lexicons contributed to the best queries, the individual

lexicons by themselves did not. For the ICL corpus, the highest percentage was for the full corpus,

with each of the two lexicon combinations contributing to the best queries and none of the one

lexicon combinations contributing. For the LMPBV corpus, the highest percentage actually came

from the parameters alone (P). The full corpus did not contribute to the best queries.

359

Best Average Worst

MRR 0.2196 0.0028 0.0003

Table 5.122: MRRs for choosing the best, average, and worst case for each feature from all corpora
and all combinations for ArgoUML

CSB ICL LMPBV Flat

Percentage 2 7 80 11

Table 5.123: Percentages for each corpus where the best query was found from all corpora and all
combinations for ArgoUML

The percentages decreased for contributing to the best queries as the number of lexicons in the

combination went up.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

I computed the best, worst, and average cases for each feature across all corpora using both

query types. The differences between each case can be found in Figure 5.60. The greatest distance

between the best query and the worst query is 11,986, while the mean distance between the best

and the worst query is 6,445. The mean distance between the best query and the average case was

2,747. The smallest distance between the best and worst case was 311, while the smallest distance

between the best and average cases was found to be 90. Each of these values are greater than the

values for the individual corpora. The mean distance between the best and the average query is

smaller than the mean between the average and the worst.

I computed the MRRs for these three cases and the results can be found in Table 5.122. The

results of this computation show that there is another large increase from the individual corpora to

360

taking the best across all queries. To understand which corpus is contributing the highest number of

best queries from the corpora, I computed the percentage for each query and recorded the results

in Table 5.123. From this table it can be seen that the LMPBV corpus contributed the largest

percentage of the queries for the features by far. The next closest corpus was the flat corpus

with only 11% of the best queries. The combinations with the highest percentages from the three

corpora include the combination of the signature and body (SB) from CSB with 2%, the comments

combined with the literals (CL) with 4%, and the parameters only (P) from LMPBV with 10%.

None of the full corpora contributed to the best queries. A weighting configurations was used for

80% of the best queries, after adjusting for the flat corpus, the percentage of best queries that do

not use a weighting configuration or the flat corpus totals 9%.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

5.3.4.2 JabRef

The top combinations for JabRef and the LMPBV were computed. I show boxplots of the

effectiveness measures in Figure 5.61 and the MRRs in Table 5.124. To save space, I list the config-

urations in the boxplots with the combination and the weighting schemes separated by a ’_’. There

is a difference of .0249 between the top configurations. For each of the top configurations, the

leading comments are included with a weighting factor of 8 or 4. Method names are not included

in any of the top configurations. Body comments are also included in all configurations with the

most common weighting factors of 2 and 1. The parameters are included in four configurations,

while local variables are used in five. In none of the configurations is there a lexicon given a higher

361

weighting factor than the leading comments. The largest spread comes from the flat corpus, while

there is not a clear winner for the smallest spread.

The boxplots for the CSB corpus can be found in Figure 5.62, while the MRRs can be

found in Table 5.125. There is a difference of .0297 in the top configurations. The most common

combination across the top configurations uses the full corpus. In each of the configurations where

the full corpus is used, the comments are given a heavier weighting than the signature or the body.

The top two configurations are two lexicon configurations with the comments and the signature

(CS) and the comments with the body (CB). CB appears in three of the top six configurations.

Looking at the boxplots, there is not a clear winner for the smallest spread. The flat corpus has the

largest spread of the configurations. The C{C = 2,S = 1} configuration has the lowest 1Q value,

while C{C = 4,S = 1,B = 1} has the lowest median value.

For the ICL corpus, the boxplots can be found in Figure 5.63, while the MRRs can be found

in Table 5.126. The difference between the top configurations is .0196. The two most common

combinations used include the full corpus and the combination of the comments with the literals

(CL). Comments are the most common lexicons in any of the configurations while literals are

the second most common. In seven of the configurations that contain both comments and literals,

comments are weighted heavier than literals. Identifiers are present in five of the top configurations

and only receive a weighting in one of the configurations. C{C = 8,L = 1} and C{C = 1} have the

smallest spreads, however have higher 1Q values than other configurations. The flat corpus has the

largest spread of the configurations.

I conducted a Friedman test with a post-hoc analysis on the top configurations and the flat

corpus. I chose to only look at the top configurations and the flat corpus to lower the number of

possible pairings that need to be compared. No significant differences were identified for the

362

LB
V

_8
21

LP
B

_8
12

LB
_8

1

LB
_4

1

LP
B

_8
11

LB
V

_8
11

LB
V

_8
41

LB
V

_4
21

LP
B

_8
21

LP
B

V
_8

11
1

F
la

t

0

1000

2000

3000

4000

5000

Figure 5.61: The top configurations and flat configuration for JabRef and the LMPBV corpus.
The x axis is the configuration, while the y axis is the effectiveness measure.

Config MRR

C{L = 8,B = 2,V = 1} 0.1424

C{L = 8,P = 1,B = 2} 0.1380

C{L = 8,B = 1} 0.1331

C{L = 4,B = 1} 0.1321

C{L = 8,P = 1,B = 1} 0.1314

C{L = 8,B = 1,V = 1} 0.1186

C{L = 8,B = 4,V = 1} 0.1178

C{L = 4,B = 2,V = 1} 0.1176

C{L = 8,P = 2,B = 1} 0.1175

C{L = 8,P = 1,B = 1,V = 1} 0.1175

Table 5.124: Top 10 configurations from all combinations for JabRef and the LMPBV corpus

363

C
B

_2
1

C
S

_2
1

C
S

B
_8

41 C
B

C
S

B
_8

14

C
B

_4
1

C
S

B
_8

18

C
S

B
_8

12

C
S

B
_8

21

C
S

B
_4

11 F
la

t

0

1000

2000

3000

4000

5000

Figure 5.62: The top configurations and flat configuration for JabRef and the CSB corpus. The x
axis is the configuration, while the y axis is the effectiveness measure.

Config MRR

C{C = 2,B = 1} 0.1132

C{C = 2,S = 1} 0.1085

C{C = 8,S = 4,B = 1} 0.1069

C{C = 1,B = 1} 0.1043

C{C = 8,S = 1,B = 4} 0.0926

C{C = 4,B = 1} 0.0884

C{C = 8,S = 1,B = 8} 0.0874

C{C = 8,S = 1,B = 2} 0.0862

C{C = 8,S = 2,B = 1} 0.0849

C{C = 4,S = 1,B = 1} 0.0835

Table 5.125: Top 10 configurations from all combinations for JabRef and the CSB corpus

364

C
L

IC
L_

18
4

IC
L_

14
2

IC
_1

2

IC
L_

48
1

IC
L_

14
1

C
L_

81

C
L_

21 C

C
L_

41 F
la

t

0

1000

2000

3000

4000

5000

Figure 5.63: The top configurations and flat configuration for JabRef and the ICL corpus. The x
axis is the configuration, while the y axis is the effectiveness measure.

Config MRR

C{C = 1,L = 1} 0.0882

C{I = 1,C = 8,L = 4} 0.0847

C{I = 1,C = 4,L = 2} 0.0845

C{I = 1,C = 2} 0.0842

C{I = 4,C = 8,L = 1} 0.0835

C{I = 1,C = 4,L = 1} 0.0833

C{C = 8,L = 1} 0.0800

C{C = 2,L = 1} 0.0757

C{C = 1} 0.0704

C{C = 4,L = 1} 0.0686

Table 5.126: Top 10 configurations from all combinations for JabRef and the ICL corpus

365

ICL or the CSB corpora, while only a single significant difference was found for the LMPBV

configuration between the C{L = 8,P = 1,B = 1} and C{L = 4,B = 2,V = 1} configurations.

I computed the best, worst, and average cases for each feature for each corpus. The differ-

ences between each case can be found in Figure 5.64. The greatest distance between the best query

and the worst query for the three corpora is found in the LMPBV corpus at 5,054. The greatest

mean distance between the best and the worst query is found in the LMPBV corpus at a mean

distance of 2,673. LMPBV also showed the greatest mean distance between the best query and the

average case at 1,142. The smallest mean distance between the best and the worst case is found for

the ICL corpus with a mean distance of 1,530. This corpus also had the smallest mean distance be-

tween the best and the average case with a mean distance of 693. The ICL corpus had the smallest

distances with a distance between the best and worst query of 32 and a distance between the best

query and the average case of 9. For each of the three corpora, the mean distance between the best

and the average query is smaller than the mean between the average and the worst.

The MRRs have been computed for each case and the results can be found in Table 5.127.

Comparing the MRRs between the best cases and the results of the best configurations shows large

increases from the individual corpora. The largest increase occurs for the LMPBV corpus with a

difference between the best queries and the top configuration of .1250. The smallest difference

occurs for the ICL corpus with a difference of .0818. Of the three corpora, the largest MRR can

also be found for the LMPBV corpus while the smallest MRR can be found for the ICL corpus.

I also computed the percentage of times that the best query was a result of one of the

weighting configurations. This helps to understand whether the weighted or unweighted configu-

rations are having a bigger impact on the results for each corpus. The results of this calculation

can be found in Table 5.128. For both ICL and CSB, a weighting configuration was used 100% of

366

(a) CSB

(b) ICL

Figure 5.64: Stacked bargraphs representing the distance from the best query from all combina-
tions to the average (bottom) and the worst(top) for JabRef. Graph is ordered by distance from
best to worst.

367

(c) LPMBV

Figure 5.64: Stacked bargraphs representing the distance from the best query from all combina-
tions to the average (bottom) and the worst(top) for JabRef. Graph is ordered by distance from
best to worst.

the time, while for LMPBV a weighting configuration was used 87% of the time. This indicates

that the unweighted configuration only had 13% of the best queries in the LMPBV corpus.

The percentages for the individual combinations having the best queries regardless of

weighting can be found in Table 5.129. In the case of the CSB corpus, there is a tie for the

highest percentage between the structure combined with the body (SB) and the full corpus. These

two corpora make up 100% of the best queries for the CSB corpus. For the ICL corpus, the highest

percentage was for the full corpus, with a tie for the remaining percentage between the comments

combined with the literals and the identifiers combined with the literals. For the LMPBV corpus,

the highest percentage came from the parameters alone (P). The full corpus did not contribute to

the best queries.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

368

Query CSB ICL LMPBV

Best 0.2015 0.1700 0.2674

Average 0.0117 0.0106 0.0030

Worst 0.0014 0.0018 0.0006

Table 5.127: MRRs for choosing the best, average, and worst case for each feature for JabRef from
all combinations

CSB ICL LMPBV

Weighted 100 100 87

Table 5.128: The percentage of time that weighting each corpus improved the results for JabRef

B S SB C CB CS CSB

0 0 50 0 0 0 50

(a) CSB

L C CL I IL IC ICL

0 0 28 0 28 0 42

(b) ICL

V B BV P PV PB PBV M MV MB MBV

0 12 6 18 12 6 12 0 6 6 0

MP MPV MPB MPBV L LV LB LBV LP LPV

0 6 0 0 0 6 0 6 0 0

LPB LPBV LM LMV LMB LMBV LMP LMPV LMPB LMPBV

0 0 0 0 0 0 0 0 0 0

(c) LMPBV

Table 5.129: Percentage of the best queries obtained from each structural combination for JabRef

369

Figure 5.65: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from all combinations for JabRef. Graph is ordered by distance from
best to worst.

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

I computed the best, worst, and average cases for each feature across all corpora using both

query types. The differences between each case can be found in Figure 5.65. The greatest distance

between the best query and the worst query is 5,227, while the mean distance between the best

and the worst query is 2,882. The mean distance between the best query and the average case was

1,202. The smallest distance between the best and worst case was 204, while the smallest distance

between the best and average cases was found to be 68. Each of these values are greater than the

values for the individual corpora. The mean distance between the best and the average query is

smaller than the mean between the average and the worst.

I computed the MRRs for these three cases and the results can be found in Table 5.130. The

370

Best Average Worst

MRR 0.3193 0.0029 0.0006

Table 5.130: MRRs for choosing the best, average, and worst case for each feature from all corpora
and all combinations for JabRef

CSB ICL LMPBV Flat

Percentage 6 0 94 0

Table 5.131: Percentages for each corpus where the best query was found from all corpora and all
combinations for JabRef

results of this computation show that there is another large increase from the individual corpora to

taking the best across all queries. To understand which corpus is contributing the highest number

of best queries from the corpora, I computed the percentage for each query and recorded the results

in Table 5.131. From this table it can be seen that the LMPBV and the CSB corpora were the only

two corpora to contribute to the top results. The LMPBV corpus contributed the largest percentage

of the queries for the features by far. The CSB corpus only contributed 6% of the best queries.

The combinations with the highest percentages from the two corpora include the full CSB corpus

with 6% and the parameters only (P) from LMPBV with 18%. The CSB corpus was the only full

corpus to contribute to the best queries. A weighting configurations was used for 79% of the best

queries, since the flat corpus does not contribute to the best queries, the percentage of best queries

that do not use a weighting configuration or the flat corpus totals 21%.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

371

5.3.4.3 jEdit

The top combinations for jEdit and the LMPBV were computed. I show boxplots of the

effectiveness measures in Figure 5.66 and the MRRs in Table 5.132. To save space, I list the

configurations in the boxplots with the combination and the weighting schemes separated by a ’_’.

There is a difference of only .0038 between the top configurations. The top configuration comes

from using the unweighted body comments alone, however the body comments are not used again

until the seventh configuration. The most common lexicons are the leading comments, parameters,

and the local variables, with the leading comments appearing in eight of the ten configurations.

Looking at the boxplots, the smallest spread comes from the flat corpus.

The boxplots for the CSB corpus can be found in Figure 5.67, while the MRRs can be

found in Table 5.133. There is a difference of .0113 in the top configurations. The two most

common lexicons include the comments and the body with body lexicons appearing in nine of

the top ten configurations. The two most common combinations include the comments combined

with the body and the full corpus. There is not a clear winner for the smallest spread among the

configurations, however the flat corpus has the lowest 1.5IRQ of the configurations and a similar

value with the smallest 1Q, median, and 3Q values.

For the ICL corpus, the boxplots can be found in Figure 5.68, while the MRRs can be found

in Table 5.134. The difference between the top configurations is .0176. The unweighted literals

are the only lexicon present in the top configuration. In the second configuration, the only lexicon

is the unweighted identifiers. The two most common combinations include the identifiers with the

literals and the full corpus. In each configuration where identifiers and literals are together, the

identifiers are given a higher weighting than the literals. Comments only appear

372

B

LP
V

_8
18

LP
V

_4
14

LV
_2

1

LM
_2

1

LP
_2

1

M
P

B
_1

14

LM
P

_4
12

LB
_2

1

LP
_8

1

F
la

t

0

2000

4000

6000

Figure 5.66: The top configurations and flat configuration for jEdit and the LMPBV corpus. The
x axis is the configuration, while the y axis is the effectiveness measure.

Config MRR

C{B = 1} 0.0304

C{L = 8,P = 1,V = 8} 0.0296

C{L = 4,P = 1,V = 4} 0.0295

C{L = 2,V = 1} 0.0286

C{L = 2,M = 1} 0.0281

C{L = 2,P = 1} 0.0278

C{M = 1,P = 1,B = 4} 0.0278

C{L = 4,M = 1,P = 2} 0.0272

C{L = 2,B = 1} 0.0272

C{L = 8,P = 1} 0.0266

Table 5.132: Top 10 configurations from all combinations for jEdit and the LMPBV corpus

373

C
B

_8
1

S
B

_1
8 B

C
S

B
_1

22

C
S

B
_1

44

C
B

_4
1

C
B

_2
1

C
S

B
_4

14

C
S

_8
1

C
S

B
_1

12 F
la

t

0

2000

4000

6000

Figure 5.67: The top configurations and flat configuration for jEdit and the CSB corpus. The x
axis is the configuration, while the y axis is the effectiveness measure.

Config MRR

C{C = 8,B = 1} 0.0592

C{S = 1,B = 8} 0.0574

C{B = 1} 0.0545

C{C = 1,S = 2,B = 2} 0.0528

C{C = 1,S = 4,B = 4} 0.0526

C{C = 4,B = 1} 0.0498

C{C = 2,B = 1} 0.0496

C{C = 4,S = 1,B = 4} 0.0494

C{C = 8,S = 1} 0.0480

C{C = 1,S = 1,B = 2} 0.0479

Table 5.133: Top 10 configurations from all combinations for jEdit and the CSB corpus

374

L I

IC

IL
_4

1

IL
_8

1

IL
_2

1

IC
L_

28
1

IC
_1

2

IC
L_

12
1

IC
L_

22
1

F
la

t

0

2000

4000

6000

Figure 5.68: The top configurations and flat configuration for jEdit and the ICL corpus. The x
axis is the configuration, while the y axis is the effectiveness measure.

Config MRR

C{L = 1} 0.0648

C{I = 1} 0.0586

C{I = 1,C = 1} 0.0538

C{I = 4,L = 1} 0.0519

C{I = 8,L = 1} 0.0510

C{I = 2,L = 1} 0.0501

C{I = 2,C = 8,L = 1} 0.0495

C{I = 1,C = 2} 0.0476

C{I = 1,C = 2,L = 1} 0.0473

C{I = 2,C = 2,L = 1} 0.0472

Table 5.134: Top 10 configurations from all combinations for jEdit and the ICL corpus

375

once in the top six configurations, while they appear in the sixth through the tenth configuration.

For the top three configurations, no weighting is used. Again, there is no clear smallest spread

amongst the configurations, however the flat corpus has the smallest upper 1.5IRQ and C{I =

1,C = 1} has the smallest median.

I conducted a Friedman test with a post-hoc analysis on the top configurations and the flat

corpus. I chose to only look at the top configurations and the flat corpus to lower the number of

possible pairings that need to be compared. No significant differences were found for the CSB

corpus. For the ICL corpus, 4 significant differences were found, with 2 of the differences between

the flat corpus and the C{I = 2,L = 1} and C{I = 1,C = 2,L = 1} configurations. Finally for the

LMPBV corpus, only 2 significant differences were found with each being between the flat corpus

and the C{L = 2,V = 1} and C{L = 2,B = 1} configurations.

I computed the best, worst, and average cases for each feature for each corpus. The differ-

ences between each case can be found in Figure 5.69. The greatest distance between the best query

and the worst query for the three corpora is found in the CSB corpus at 7,046. The greatest mean

distance between the best and the worst query is found in the LMPBV corpus at a mean distance

of 3,887. LMPBV also showed the greatest mean distance between the best query and the average

case at 1,458. The smallest mean distance between the best and the worst case is found for the CSB

corpus with a mean distance of 2,484. This corpus also had the smallest mean distance between the

best and the average case with a mean distance of 1,175. The smallest distance between the best

and worst query was found in the CSB corpus with a 25. The smallest distance between the best

query and the average case was found for the LMPBV corpus at 5. For each of the three corpora,

the mean distance between the best and the average query is smaller than the mean between the

average and the worst.

376

(a) CSB

(b) ICL

Figure 5.69: Stacked bargraphs representing the distance from the best query from all combina-
tions to the average (bottom) and the worst(top) for jEdit. Graph is ordered by distance from best
to worst.

377

(c) LPMBV

Figure 5.69: Stacked bargraphs representing the distance from the best query from all combina-
tions to the average (bottom) and the worst(top) for jEdit. Graph is ordered by distance from best
to worst.

The MRRs have been computed for each case and the results can be found in Table 5.135.

Comparing the MRRs between the best cases and the results of the best configurations shows large

increases from the individual corpora. The largest increase occurs for the LMPBV corpus with a

difference between the best queries and the top configuration of .1454. The smallest difference

occurs for the CSB corpus with a difference of .0544. Of the three corpora, the largest MRR can

also be found for the LMPBV corpus while the smallest MRR can be found for the CSB corpus.

I also computed the percentage of times that the best query was a result of one of the

weighting configurations. This helps to understand whether the weighted or unweighted configu-

rations are having a bigger impact on the results for each corpus. The results of this calculation

can be found in Table 5.136. For both ICL and CSB, a weighting configuration was used 100% of

378

Query CSB ICL LMPBV

Best 0.1136 0.1412 0.1758

Average 0.0081 0.0046 0.0012

Worst 0.0011 0.0009 0.0004

Table 5.135: MRRs for choosing the best, average, and worst case for each feature for jEdit from
all combinations

CSB ICL LMPBV

Weighted 100 100 84

Table 5.136: The percentage of time that weighting each corpus improved the results for jEdit

B S SB C CB CS CSB

0 0 20 0 26 53 0

(a) CSB

L C CL I IL IC ICL

0 0 31 0 18 43 6

(b) ICL

V B BV P PV PB PBV M MV MB MBV

8 17 6 6 3 12 1 6 4 1 1

MP MPV MPB MPBV L LV LB LBV LP LPV

1 1 0 0 9 6 1 1 1 0

LPB LPBV LM LMV LMB LMBV LMP LMPV LMPB LMPBV

0 0 3 0 0 0 0 0 0 1

(c) LMPBV

Table 5.137: Percentage of the best queries obtained from each structural combination for jEdit

379

Figure 5.70: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from all combinations for jEdit. Graph is ordered by distance from
best to worst.

the time, while for LMPBV a weighting configuration was used 84% of the time. This indicates

that the unweighted configuration only had 16% of the best queries in the LMPBV corpus.

The percentages for the individual combinations having the best queries regardless of

weighting can be found in Table 5.137. In the case of the CSB corpus, each of the two lexi-

con combinations contribute to the best queries with the combination of the comments and the

signature (CS) contributing the highest percentage of the best queries. Neither the one lexicon

combinations or the full corpus contributed to the best queries. For the ICL corpus, the full corpus

and the two lexicon combinations contribute to the best queries, while none of the best queries are

found in the one lexicon combinations. The highest percentage comes from

380

Best Average Worst

MRR 0.2374 0.0012 0.0003

Table 5.138: MRRs for choosing the best, average, and worst case for each feature from all corpora
and all combinations for jEdit

CSB ICL LMPBV Flat

Percentage 3 5 83 9

Table 5.139: Percentages for each corpus where the best query was found from all corpora and all
combinations for jEdit

the identifiers with the comments. For the LMPBV corpus, the highest percentage comes from the

body comments alone (B). The full corpus contributed 1% of the best queries in the corpus.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

I computed the best, worst, and average cases for each feature across all corpora using both

query types. The differences between each case can be found in Figure 5.70. The greatest distance

between the best query and the worst query is 7,076, while the mean distance between the best

and the worst query is 4,202. The mean distance between the best query and the average case was

1,610. The smallest distance between the best and worst case was 60, while the smallest distance

between the best and average cases was found to be 55. Each of these values are greater than the

values for the individual corpora. The mean distance between the best and the average query is

smaller than the mean between the average and the worst.

I computed the MRRs for these three cases and the results can be found in Table 5.138. The

results of this computation show that there is another large increase from the individual corpora to

381

taking the best across all queries. To understand which corpus is contributing the highest number of

best queries from the corpora, I computed the percentage for each query and recorded the results

in Table 5.139. From this table it can be seen that the LMPBV corpus contributed the largest

percentage of the queries for the features by far. The next closest corpus was the flat corpus with

only 9% of the best queries. The combinations with the highest percentages from the three corpora

include the combination of the comments and the signature from CSB with 3%, the identifiers

combined with the comments (IC) with 3%, and the body comments only (B) from LMPBV with

15%. Only the full LMPBV corpus contributed to the best queries among the full corpora. A

weighting configuration was used for 75% of the best queries, after adjusting for the flat corpus,

the percentage of best queries that do not use a weighting configuration or the flat corpus totals

16%.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

5.3.4.4 muCommander

The top combinations for muCommander and the LMPBV were computed. I show boxplots

of the effectiveness measures in Figure 5.71 and the MRRs in Table 5.140. To save space, I list

the configurations in the boxplots with the combination and the weighting schemes separated by a

’_’. There is a difference of .0021 between the top configurations. The leading comments and the

method names are the two most common lexicons in the top ten configurations, with the method

names and the local variables making up the top configuration. The body comments only appear in

configurations combined with the leading comments and the method names, while local variables

382

appear with either parameters or method names. The flat corpus has the largest spread of the top

configurations, while the smallest spread comes from the C{L = 8,M = 4,B = 1} configuration.

The boxplots for the CSB corpus can be found in Figure 5.72, while the MRRs can be found

in Table 5.141. There is a difference of .0042 in the top configurations. While the signature is the

only lexicon present in the top configuration, the most common lexicon across all configurations

is the comments. Signatures represent the second most common lexicon appearing in eight of the

ten configurations, but are never weighted. The body appears in six configurations with weighting

in only one case. There are three combinations with a high frequency in the top configurations,

including the full corpus, the comments combined with the signature, and the comments combined

with the body. Looking at the boxplots, the largest spread comes for the C{C = 2,S = 1} config-

uration followed by the flat corpus. The smallest spread is seen for the C{C = 8,S = 1,B = 2}

configuration.

For the ICL corpus, the boxplots can be found in Figure 5.73, while the MRRs can be found

in Table 5.142. The difference between the top configurations is .0101. The most common lexicon

across the ten configurations is the identifiers, which appears in nine of the top ten configurations.

However, the only lexicon that appears in the top configuration is the unweighted literals. The

two most common combinations include the full corpus and the identifiers combined with the

comments. While the identifiers are the most common lexicon, they are only weighted in two

configurations while the comments are the most heavily weighted lexicon. The smallest spread for

the ten configurations comes from the C{I = 4,C = 8,L = 1} configurations, while the largest are

from the C{L = 1} and the C{I = 1,L = 2} configurations.

I conducted a Friedman test with a post-hoc analysis on the top configurations and the flat

383

M
V

_8
1

LM
B

_8
21 P
V

LM
_4

1

LM
B

_8
41

LM
_8

1

LM
P

_8
21

LP
V

LM
B

_8
11

LM
B

_8
12 F
la

t

0

2000

4000

6000

8000

Figure 5.71: The top configurations and flat configuration for muCommander and the LMPBV
corpus. The x axis is the configuration, while the y axis is the effectiveness measure.

Config MRR

C{M = 8,V = 1} 0.0260

C{L = 8,M = 2,B = 1} 0.0257

C{P = 1,V = 1} 0.0256

C{L = 4,M = 1} 0.0255

C{L = 8,M = 4,B = 1} 0.0246

C{L = 8,M = 1} 0.0246

C{L = 8,M = 2,P = 1} 0.0243

C{L = 1,P = 1,V = 1} 0.0241

C{L = 8,M = 1,B = 1} 0.0239

C{L = 8,M = 1,B = 2} 0.0239

Table 5.140: Top 10 configurations from all combinations for muCommander and the LMPBV
corpus

384

S

C
S

B
_4

11

C
B

_4
1

C
B

_2
1

C
S

B
_8

12

C
S

_2
1

C
B

_8
1

C
S

_8
1

C
S

B
_8

11

C
S

_4
1

F
la

t

0

2000

4000

6000

8000

Figure 5.72: The top configurations and flat configuration for muCommander and the CSB corpus.
The x axis is the configuration, while the y axis is the effectiveness measure.

Config MRR

C{S = 1} 0.0284

C{C = 4,S = 1,B = 1} 0.0277

C{C = 4,B = 1} 0.0265

C{C = 2,B = 1} 0.0254

C{C = 8,S = 1,B = 2} 0.0252

C{C = 2,S = 1} 0.0252

C{C = 8,B = 1} 0.0246

C{C = 8,S = 1} 0.0245

C{C = 8,S = 1,B = 1} 0.0244

C{C = 4,S = 1} 0.0242

Table 5.141: Top 10 configurations from all combinations for muCommander and the CSB corpus

385

L

IC
_1

2

IC
L_

18
1

IC
L_

14
1

IC
_1

4

IC
L_

28
1

IC
_1

8

IC
L_

48
1

IL
_1

2 IC

F
la

t

0

2000

4000

6000

8000

Figure 5.73: The top configurations and flat configuration for muCommander and the ICL corpus.
The x axis is the configuration, while the y axis is the effectiveness measure.

Config MRR

C{L = 1} 0.0307

C{I = 1,C = 2} 0.0259

C{I = 1,C = 8,L = 1} 0.0246

C{I = 1,C = 4,L = 1} 0.0245

C{I = 1,C = 4} 0.0232

C{I = 2,C = 8,L = 1} 0.0232

C{I = 1,C = 8} 0.0225

C{I = 4,C = 8,L = 1} 0.0221

C{I = 1,L = 2} 0.0214

C{I = 1,C = 1} 0.0206

Table 5.142: Top 10 configurations from all combinations for muCommander and the ICL corpus

386

corpus. I chose to only look at the top configurations and the flat corpus to lower the number of

possible pairings that need to be compared. No significant differences were identified for the CSB

corpus. The ICL corpus had 9 significant differences identified with two of the differences being

between the flat corpus and the C{L = 1} and C{I = 1,L = 2} configurations. For the LMPBV

corpus, 22 significant differences were identified with two being between the flat corpus and the

C{P = 1,V = 1} and C{L = 1,P = 1,V = 1} configurations.

I computed the best, worst, and average cases for each feature for each corpus. The differ-

ences between each case can be found in Figure 5.74. The greatest distance between the best query

and the worst query for the three corpora is found in the CSB corpus at 8,446. The greatest mean

distance between the best and the worst query is found in the LMPBV corpus at a mean distance

of 4,469. LMPBV also showed the greatest mean distance between the best query and the average

case at 1,789. The smallest mean distance between the best and the worst case is found for the CSB

corpus with a mean distance of 2,745. This corpus also had the smallest mean distance between

the best and the average case with a mean distance of 1,166. For each of the three corpora, the

smallest distances between the best and the worst queries and the best query and the average case

was 0. For each of the three corpora, the mean distance between the best and the average query is

smaller than the mean between the average and the worst.

The MRRs have been computed for each case and the results can be found in Table 5.143.

Comparing the MRRs between the best cases and the results of the best configurations shows large

increases from the individual corpora. The largest increase occurs for the LMPBV corpus with a

difference between the best queries and the top configuration of .1047. The smallest difference

occurs for the CSB corpus with a difference of .0366. Of the three corpora, the largest MRR can

also be found for the LMPBV corpus while the smallest MRR can be found for the CSB corpus.

387

(a) CSB

(b) ICL

Figure 5.74: Stacked bargraphs representing the distance from the best query from all combina-
tions to the average (bottom) and the worst(top) for muCommander. Graph is ordered by distance
from best to worst.

388

(c) LPMBV

Figure 5.74: Stacked bargraphs representing the distance from the best query from all combina-
tions to the average (bottom) and the worst(top) for muCommander. Graph is ordered by distance
from best to worst.

I also computed the percentage of times that the best query was a result of one of the

weighting configurations. This helps to understand whether the weighted or unweighted configu-

rations are having a bigger impact on the results for each corpus. The results of this calculation

can be found in Table 5.144. For both ICL and CSB, a weighting configuration was used 100% of

the time, while for LMPBV a weighting configuration was used 91% of the time. This indicates

that the unweighted configuration only had 9% of the best queries in the LMPBV corpus.

The percentages for the individual combinations having the best queries regardless of

weighting can be found in Table 5.145. In the case of the CSB corpus, the highest percentage

is found for the combination of the comments with the signature, while there is a tie between the

comments combined with the body and the full corpus. For the ICL corpus, there is a tie for the

highest percentage between the comments combined with the literals and the identifiers combined

389

Query CSB ICL LMPBV

Best 0.0650 0.0690 0.1307

Average 0.0096 0.0072 0.0078

Worst 0.0070 0.0060 0.0059

Table 5.143: MRRs for choosing the best, average, and worst case for each feature for muCom-
mander from all combinations

CSB ICL LMPBV

Weighted 100 100 91

Table 5.144: The percentage of time that weighting each corpus improved the results for muCom-
mander

B S SB C CB CS CSB

0 0 0 0 30 40 30

(a) CSB

L C CL I IL IC ICL

0 0 42 0 14 42 0

(b) ICL

V B BV P PV PB PBV M MV MB MBV

0 11 2 9 7 7 0 4 0 9 0

MP MPV MPB MPBV L LV LB LBV LP LPV

2 0 0 2 14 2 11 2 0 0

LPB LPBV LM LMV LMB LMBV LMP LMPV LMPB LMPBV

0 2 0 2 2 0 0 2 2 0

(c) LMPBV

Table 5.145: Percentage of the best queries obtained from each structural combination for mu-
Commander

390

Figure 5.75: Stacked bargraphs representing the distance from the best query to the average (bot-
tom) and the worst(top) from all combinations for muCommander. Graph is ordered by distance
from best to worst.

with the comments. Only the two lexicon combinations contribute to the best queries for ICL. For

LMPBV, the highest percentage comes for the leading comments followed by the body comments

and the leading comments combined with the body comments. The full corpus did not contribute

to the best queries.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

I computed the best, worst, and average cases for each feature across all corpora using both

query types. The differences between each case can be found in Figure 5.75. The greatest distance

between the best query and the worst query is 8,619, while the mean distance between

391

Best Average Worst

MRR 0.1663 0.0070 0.0059

Table 5.146: MRRs for choosing the best, average, and worst case for each feature from all corpora
and all combinations for muCommander

CSB ICL LMPBV Flat

Percentage 2 4 83 11

Table 5.147: Percentages for each corpus where the best query was found from all corpora and all
combinations for muCommander

the best and the worst query is 4,889. The mean distance between the best query and the average

case was 1,911. The smallest distances between the best and worst case and the best and the

average case were both 0. Each of these values are greater than the values for the individual

corpora. The mean distance between the best and the average query is smaller than the mean

between the average and the worst.

I computed the MRRs for these three cases and the results can be found in Table 5.146. The

results of this computation show that there is another large increase from the individual corpora to

taking the best across all queries. To understand which corpus is contributing the highest number

of best queries from the corpora, I computed the percentage for each query and recorded the results

in Table 5.147. From this table it can be seen that the LMPBV corpus contributed the largest per-

centage of the queries for the features by far. The next closest percentage is the flat corpus at 11%.

The combinations with the highest percentages from the three corpora include the combination of

the comments and the body for CSB corpus with 2%, the leading comments from LMPBV with

13%, and the combination of the comments and literals from the ICL corpus with 4%. None of

the full corpora contributed to the best queries. A weighting configurations was used for 82% of

392

the best queries, which means that after adjusting for the flat corpus, the percentage of best queries

that do not use a weighting configuration or the flat corpus totals 7%.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

5.3.4.5 All Systems

The top combinations for all systems and the LMPBV were computed. I show boxplots of

the effectiveness measures in Figure 5.76 and the MRRs in Table 5.148. To save space, I list the

configurations in the boxplots with the combination and the weighting schemes separated by a ’_’.

There is a difference of .0062 between the top configurations. In each of the top ten configurations,

the leading comments appear and are weighted higher than other lexicons. The most common pair

of lexicons is the leading comments combined with the body comments. This pair appears with the

parameters, with the method names, and alone. The boxplots do not show a spread that is clearly

smaller than the others, however the C{L = 8,B = 1} configurations appears to have the largest

spread.

The boxplots for the CSB corpus can be found in Figure 5.77, while the MRRs can be found

in Table 5.149. There is a difference of .0079 in the top configurations. The top four configurations

are the comments combined with the body with the weighting factor for the comments being

greater than or equal to the weighting factor for the body. The next most common combination

includes the full corpus with the signature given a weighting factor of 1 and the comments having

a weighting factor greater than or equal to the body. For the full corpus, both the comments and the

body are weighted in each case. There are several top configurations with similarly small spreads,

however the largest spread appears for the C{C = 8,B = 1} configuration.

393

LV
_2

1

LB
_4

1

LP
B

_8
12

LB
_2

1

LV
_4

1

LB
V

_8
11

LB
_8

1

LP
_8

1

LP
B

_8
11

LM
B

_2
11 F
la

t

0

2000

4000

6000

8000

10000

Figure 5.76: The top configurations and flat configuration for all systems and the LMPBV corpus.
The x axis is the configuration, while the y axis is the effectiveness measure.

Config MRR

C{L = 2,V = 1} 0.0430

C{L = 4,B = 1} 0.0430

C{L = 8,P = 1,B = 2} 0.0402

C{L = 2,B = 1} 0.0397

C{L = 4,V = 1} 0.0390

C{L = 8,B = 1,V = 1} 0.0378

C{L = 8,B = 1} 0.0377

C{L = 8,P = 1} 0.0377

C{L = 8,P = 1,B = 1} 0.0376

C{L = 2,M = 1,B = 1} 0.0368

Table 5.148: Top 10 configurations from all combinations for all systems and the LMPBV corpus

394

C
B

_8
1

C
B

_2
1

C
B

_4
1

C
B

C
S

B
_8

14

C
S

B
_8

12 B

C
S

B
_4

14

C
S

B
_8

18

S
B

_1
8

F
la

t

0

2000

4000

6000

8000

10000

Figure 5.77: The top configurations and flat configuration for all systems and the CSB corpus.
The x axis is the configuration, while the y axis is the effectiveness measure.

Config MRR

C{C = 8,B = 1} 0.0557

C{C = 2,B = 1} 0.0539

C{C = 4,B = 1} 0.0513

C{C = 1,B = 1} 0.0497

C{C = 8,S = 1,B = 4} 0.0487

C{C = 8,S = 1,B = 2} 0.0486

C{B = 1} 0.0482

C{C = 4,S = 1,B = 4} 0.0482

C{C = 8,S = 1,B = 8} 0.0480

C{S = 1,B = 8} 0.0478

Table 5.149: Top 10 configurations from all combinations for all systems and the CSB corpus

395

L

IC
L_

28
1

IC
L_

18
1

IC
L_

14
1

IC
L_

48
1

IC
_1

2

C
L_

81

C
L_

21

IC
L_

18
4 IC

F
la

t

0

2000

4000

6000

8000

10000

Figure 5.78: The top configurations and flat configuration for all systems and the ICL corpus. The
x axis is the configuration, while the y axis is the effectiveness measure.

Config MRR

C{L = 1} 0.0552

C{I = 2,C = 8,L = 1} 0.0459

C{I = 1,C = 8,L = 1} 0.0457

C{I = 1,C = 4,L = 1} 0.0449

C{I = 4,C = 8,L = 1} 0.0444

C{I = 1,C = 2} 0.0443

C{C = 8,L = 1} 0.0437

C{C = 2,L = 1} 0.0435

C{I = 1,C = 8,L = 4} 0.0423

C{I = 1,C = 1} 0.0421

Table 5.150: Top 10 configurations from all combinations for all systems and the ICL corpus

396

For the ICL corpus, the boxplots can be found in Figure 5.78, while the MRRs can be found

in Table 5.150. The difference between the top configurations is .0131. The top configuration is

for the unweighted literals alone. However the full corpus appears in the next four positions. For

the full corpus, the comments have the greatest weight with a weighting to the identifiers being

preferred over a weighting of the literals. The smallest spreads are for the C{I = 1,C = 4,L = 1}

and C{I = 4,C = 8,L = 1} which have very similar spreads.

I conducted a Friedman test with a post-hoc analysis on the top configurations and the

flat corpus. I chose to only look at the top configurations and the flat corpus to lower the num-

ber of possible pairings that need to be compared. Significant differences were identfied for each

of the three corpora. For the CSB corpus, 6 significant differences with 2 of the differences being

between the flat corpus and the C{C = 8,B = 1} and C{C = 4,B = 1} configurations. The ICL cor-

pus had 19 significant differences identified with several significant differences identified between

the flat corpus and the other configurations. For the LMPBV corpus, 26 significant differences

were identified with several significant differences identified between the flat corpus and the other

configurations.

I computed the best, worst, and average cases for each feature for each corpus. The dif-

ferences between each case can be found in Figure 5.79. The greatest distance between the best

query and the worst query for the three corpora is found in the LMPBV corpus at 11,973. The

greatest mean distance between the best and the worst query is found in the LMPBV corpus at a

mean distance of 4,435. LMPBV also showed the greatest mean distance between the best query

and the average case at 1,789. The smallest mean distance between the best and the worst case is

found for the CSB corpus with a mean distance of 2,761. This corpus also had the smallest mean

distance between the best and the average case with a mean distance of 1,235. For each of the three

397

(a) CSB

(b) ICL

Figure 5.79: Stacked bargraphs representing the distance from the best query from all combina-
tions to the average (bottom) and the worst(top) for all systems. Graph is ordered by distance from
best to worst.

398

(c) LPMBV

Figure 5.79: Stacked bargraphs representing the distance from the best query from all combina-
tions to the average (bottom) and the worst(top) for all systems. Graph is ordered by distance from
best to worst.

corpora, the smallest distances between the best and the worst queries and the best query and the

average case was 0. For each of the three corpora, the mean distance between the best and the

average query is smaller than the mean between the average and the worst.

The MRRs have been computed for each case and the results can be found in Table 5.151.

Comparing the MRRs between the best cases and the results of the best configurations shows large

increases from the individual corpora. The largest increase occurs for the LMPBV corpus with a

difference between the best queries and the top configuration of .1324. The smallest difference

occurs for the CSB corpus with a difference of .0561. Of the three corpora, the largest MRR can

also be found for the LMPBV corpus while the smallest MRR can be found for the CSB corpus.

399

Query CSB ICL LMPBV

Best 0.1118 0.1247 0.1754

Average 0.0086 0.0090 0.0035

Worst 0.0027 0.0024 0.0018

Table 5.151: MRRs for choosing the best, average, and worst case for each feature for all sys-
tems from all combinations

CSB ICL LMPBV

Weighted 100 100 88

Table 5.152: The percentage of time that weighting each corpus improved the results for all systems

B S SB C CB CS CSB

0 0 20 0 25 35 20

(a) CSB

L C CL I IL IC ICL

0 0 29 0 22 27 20

(b) ICL

V B BV P PV PB PBV M MV MB MBV

3 12 6 9 6 8 1 6 4 4 0

MP MPV MPB MPBV L LV LB LBV LP LPV

1 1 0 0 9 5 6 1 1 0

LPB LPBV LM LMV LMB LMBV LMP LMPV LMPB LMPBV

0 0 1 0 1 0 0 0 0 0

(c) LMPBV

Table 5.153: Percentage of the best queries obtained from each structural combination for all
systems

400

Figure 5.80: Stacked bargraphs representing the distance from the best query to the average
(bottom) and the worst(top) from all combinations for all systems. Graph is ordered by distance
from best to worst.

I also computed the percentage of times that the best query was a result of one of the

weighting configurations. This helps to understand whether the weighted or unweighted configu-

rations are having a bigger impact on the results for each corpus. The results of this calculation

can be found in Table 5.152. For both ICL and CSB, a weighting configuration was used 100% of

the time, while for LMPBV a weighting configuration was used 88% of the time. This indicates

that the unweighted configuration only had 12% of the best queries in the LMPBV corpus.

The percentages for the individual combinations having the best queries regardless of

weighting can be found in Table 5.153. In the case of the CSB corpus, the highest percentage

is found for the combination of the comments with the signature. Each of the two lexicon combi-

nations and the full corpus contributed to the best queries for the corpus. For the ICL corpus,

401

Best Average Worst

MRR 0.2196 0.0028 0.0003

Table 5.154: MRRs for choosing the best, average, and worst case for each feature from all corpora
and all combinations for all systems

CSB ICL LMPBV Flat

Percentage 3 5 83 9

Table 5.155: Percentages for each corpus where the best query was found from all corpora and all
combinations for all systems

the highest percentage is found for the comments combined with the literals. Again, all two lex-

icon combinations and the full corpus contributed to the best queries. For LMPBV, the highest

percentage comes from the body comments followed by the leading comments comments and the

parameters. The full corpus contributed less than 1% of the best queries.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

I computed the best, worst, and average cases for each feature across all corpora using both

query types. The differences between each case can be found in Figure 5.80. The greatest distance

between the best query and the worst query is 11,986, while the mean distance between the best

and the worst query is 4,788. The mean distance between the best query and the average case was

1,923. The smallest distances between the best and worst case and the best and the average case

were both 0. Each of these values are greater than the values for the individual corpora with the

402

exception of the smallest distances. The mean distance between the best and the average query is

smaller than the mean between the average and the worst.

I computed the MRRs for these three cases and the results can be found in Table 5.154. The

results of this computation show that there is another large increase from the individual corpora to

taking the best across all queries. To understand which corpus is contributing the highest number of

best queries from the corpora, I computed the percentage for each query and recorded the results

in Table 5.155. From this table it can be seen that the LMPBV corpus contributed the largest

percentage of the queries for the features by far. The next closest percentage is the flat corpus at

9%. The combinations with the highest percentages from the three corpora include the combination

of the comments and the signature for CSB corpus with 1%, the body comments from LMPBV

with 10%, and the combination of the comments and literals from the ICL corpus with 2%. A

weighting configuration was used for 79% of the best queries, which means that after adjusting for

the flat corpus, the percentage of best queries that do not use a weighting configuration or the flat

corpus totals 12%.

I performed a Friedman test with a wilcoxon post-hoc for the best, average, and worst case

of each feature for each of the four corpora. The results of the analysis showed that there is a

significant difference between each case.

5.4 Discussion of Results

In this section, I discuss the case study and try to give additional information to explain the

results.

5.4.1 Does query type affect the accuracy of a structured retrieval-based FLT?

To understand how the query type changes the results of the structured retrieval-based FLT,

it is important to consider how the language models are queried. Language models use query-

403

likelihood prediction, which in the basic language model involves computing the probability that

terms in the query generated by the language model coupled with the probability that additional

terms were not. Knowing this, there are three main ways that the types of queries can affect the

results of the FLT.

First, by changing the probability that the terms in the query will be generated by the

language model. As an example, the title of a feature request may only be made up of terms that

have a high probability of coming from the language model. This leads to a high probability for

a document with that language model to be related to the query. However, when the combination

of the title and description is used, this probability can be lowered. The terms from the title are

still present, but terms introduced by the description can have a low probability of being generated

by the language model. In this case, the title would be preferred over the combined or description

query types.

Second, by introducing terms that have a higher probability of being generated by the

language model. Once again, if we were to consider the title query with terms that have a high

probability of being generated by the language model, there is an additional lexicon that we must

consider. If the title query does not contain many terms, then there is a chance that a large number

of terms that the language model would have generated are not present in the query. In this case,

when we add the terms from the description, we can include additional terms from this category,

increasing the rating for the combined query type. This would also hold for the description if the

terms in the query were a superset of the terms found in the title.

Finally, it is possible that the likelihood of the query does not change between the different

queries. In this situation, it is not the likelihood between the query and the relevant result that

is important, but the likelihood of the queries and the alternative results. If changing the query

404

changes the likelihood that the query will be generated by a false positive, then the rank of the

relevant result can change. This is an indirect way of increasing or decreasing the performance of

the language modeling technique.

I will now look at the systems individually, and explain how the results changed with the

different query types: Title, Description, and Combined. In a completed retrieval system, it is

highly likely that these query types will not be used, but the developers will write the queries

themselves. The importance of this question is in understanding how different forms of information

will affect the results of the technique.

In addition to looking at different query types, for each of the research questions I looked

at different types of corpora. The reason for using different corpora is due to the complexity and

performance of different types of language models. For instance, when looking at the CSB corpus,

the comments are together in one lexicon, the comment types (leading and body) work together to

form a single language model that is composed of terms from both sources. To query this lexicon

requires a single query on one language model. When breaking up the comments into leading

comments and body comments, two different language models are created. In order to obtain

results, both comment types must now be queried which increases the time required to get results,

and since there are now two language models created from a subset of the terms, the performance

can be weaker. The tradeoff comes in the form of flexibility by allowing a wider range of possible

queries by the developer.

5.4.1.1 ArgoUML

In this question, I looked at four different types of corpora that represented different ways

that a method could be structured. I began by looking at two different types of results and using

them to compare and contrast the performance of each query type on the overall results of the

405

structured retrieval technique. I looked at both the spread of the effectiveness measures and the

MRR for the results. The reason for looking at both is due to the fact that when computing the

MRR, higher ranks get more emphasis than lower ranks. Therefore, this measure alone does not

give a complete picture of how the technique is performing.

For each of the four corpora that I looked at, the Title query type resulted in a higher

MRR measures than any of the other query types. The Title query type was also found to be

significantly different when compared to the description in three of the four query types. Leading

to the conclusion that the Title query type performed better than the Description query type.

However, the purpose of this query system is to allow developers to write the best queries

for each feature. Therefore, it is not sufficient to only consider the query types individually. I then

looked at what would happen if I took the best query from each query type. If there was a query

type that was clearly better than the others, then there would not be a significant difference between

the performance of the Title query type (e.g., the top performing query type) and the combination

of the query types. Given this freedom, I charted what would happen if the developer selected the

best query, the worst query, or a query that was close to average for the feature. This was plotted

to show that in several queries, there is a significant difference based on the choice of query for the

feature. However, when the developer chooses the best query, there is an increase in performance

for the FLT. For each of the corpora under investigation, I found that the Title query type had a

measure around 60% of the best queries overall. This gives the other two query types around 40%

of the best queries possible in the other query types. Using one type of queries therefore results in

a loss for the flexibility of this technique.

For the same reason that I looked at taking the best queries in each corpus from the three

query types, I looked at taking the best queries from each corpus. While it increases the complexity

406

of the model, it is possible to design a corpus that allows for all types of queries. Using this model,

the question is whether or not one corpus dominates the results over the others, minimizing the

benefits of combining information. I found a significant increase in the results of the FLT, and

while the flat corpus comprised 43% of the best queries, 57% of the best results came from the

unweighted, full corpora.

5.4.1.2 JabRef

I repeated the same series of experiments for each of the four subject systems and then

the combination of the systems. The goal was to see whether the results were generalizable to

each system or were more system dependent. When looking at the performance of the individual

query types, the Title query type had a much higher MRR than the others for all four corpora.

However, when looking at the spreads, in two of the corpora the Title query type had a larger

spread. Indicating that there were features with decreased performance due to this query type.

The results of combining the best queries did not lead to a significant increase in the MRR.

This is explained due to some of the best queries that came from the other query types still having

poor rankings. The higher the rankings, the lower the impact they will have on the computation of

the MRR. Therefore, even though some features had their rankings impacted, the resulting change

was not good enough to make a significant impact on the MRR. Looking at the percentages still

showed that both the description and the combined query types contributed to the best queries in

the corpus.

However, when looking at the overall results, there was a significant increase in the perfor-

mance. This indicated that there was a significant difference in how features were performning in

each of the three corpora. Each corpus contained a high performing queries that were not found in

the other corpora. This is further supported by the percentages between the corpora where each of

407

the three structured corpora contributed between 10-20% of the best queries to the overall results.

As with ArgoUML, JabRef showed Title queries comprising roughly 60% of the best queries in

the overall results.

5.4.1.3 jEdit

jEdit contained the largest number of features used in this study as the only system with

over 100 features. In line with the previous two systems, the Title query type outperformed the

other two query types. The spreads helped to support this conclusion. While the overall spreads

were similar, the Title query type was more bottom heavy, indicating that there were more query

results with lower rankings.

When looking at the results of the best queries, like with JabRef, the differences were

small. However, as previously explained, if the rankings improved, but the ranks were still low,

they would have a small impact on the overall results. As can be seen from the bar graphs, there

existed several features where the difference between choosing the best query and the worst query

for the feature would result in substantially different rankings, and after looking at the percentages,

over 30% of the best queries were results from a query type other than the Title.

The results from the overall MRRs showed that there was a significant increase when using

queries from each of the different corpora, meaning that there were queries from each corpus

that performed differently for that corpus than for others. The percentages were similar to the

previous two systems, with the flat corpus represented 43% of the best results and the remaining

three corpora, each contributing 10-20% of the best queries, and that the Title query type was in a

similar range with the previous systems.

408

5.4.1.4 muCommander

The muCommander results were the lowest of the four subject systems. However, the

results were similar to the previous subject systems. For each corpus, the Title query type out-

performed the other query types. For three of the four corpora, the spread of the Title query type

was smaller than the other two query types. The only exception to this was from the flat corpus.

However, for this corpus, the MRR was still substantially higher for the Title query type. This

indicated that in this corpus, while there was a wider range, there were several queries that had

much lower ranks than for the other two query types. This was supported by the median value for

the Title query type.

We see a similar situation to the previous systems when looking at the combination of the

best queries. For each corpus, the Title query type represented the query type with the highest per-

centage of the three query types. Another interesting note, is that with the exception of ArgoUML,

the Combined query type had the lowest percentage of any query type for each corpus.

Looking at the overall results, while muCommander has the lowest results of the four sub-

ject systems, the MRR still increased substatially, with an MRR that is over double the value for

the flat corpus. The percentages for the four corpora were similar to the results of the other systems

with each structured corpus representing 10-20% of the best queries. As with the previous systems

that showed the Combined query type as having a lower percentage for each corpus, the percentage

for the Combined query type and the overall results was higher than the Description query type.

This indicates that the best ranks for the Description query type were lower than the best ranks for

the Combined query type in another corpus, even if they were better than the Combined query type

in their own corpus.

409

5.4.1.5 All Systems

By combining the four subject systems and looking at the aggregated results, some similar-

ities between the systems become easier to see. Unsurprisingly, the Title query type outperformed

the other query types with higher MRRs and smaller spreads for three of the four corpora. The

only exception was a smaller spread for the flat corpus for the Combined query type. However,

when comparing the two spreads, you can see a lower 1Q and median value for the Title query

type.

Of interest is the bargraph for the LMPBV corpus. This bargraph shows that for a majority

of the features, there is little to no difference between the results of the three query types. There-

fore, despite teh Title query type having better performance in the percentages, these differences

were small. This is further supported by the corpus MRRs where the smallest difference was seen

for the LMPBV corpus. For each corpus, there was an increase in the MRR for the best queries.

Overall, using the best queries from each corpus resulted in a substantial increase to the

MRRs.

5.4.1.6 Combining Results

After looking at the results of the four subject systems and their combination, there are

a few results that are worth pointing out. The Title query type outperforms the other two query

types. Since the Combined query type is a superset of the Title, it indicates that the Combined

query type often introduces extra noise that makes it difficult to identify the correct feature. When

the Combined query type outperforms the Title query, a common cause is that the Title query type

does not adequately describe the desired feature. When the Description query type outperforms

the Title query type, it is often for one of two reasons. Either, the Title query type does not give

410

specifics to indicate the desired feature, or the Description repeats the terms in the Title and acts

similar to the Combined query type by helping to supplement the information in the title with

additional terms.

In most cases, the best queries are those that are concise but adequately describe the prob-

lem or feature. Additional terms can help to improve the results, but more often increase the

amount of noise in the query jeopardizing the performance.

5.4.2 Does changing the combination of included fields affect the accuracy of a structured retrieval-

based FLT?

Under the structured retrieval approach presented in this chapter, each structural context in

a corpus becomes a new language model. For the CSB corpus, comments, method signatures, and

body comments each form their own language model. These language models are composed of

terms that were discovered in those contexts. For the LMPBV corpus, all comments are present in

this corpus, however they are looked at in two different contexts, as leading comments or as body

comments. With this corpus, there is no way to combine the two contexts into one language model

for querying. The question then becomes, how does this affect the results of the FLT. Does one

corpus clearly outperform another?

Furthermore, there are additional considerations. First, it is important to consider how the

FLT performs when only a subset of the contexts are queried. Without querying over every context,

the entire method will not be considered, but instead a subset. There are two possibilities, one is

that querying specific contexts will improve the results because a query best describes one aspect

of the method. A possible example of this would be a query that contains terms from an error

message. When searching the entire method, the terms may not appear in the identifiers or the

comments, but they will appear in the literals. However, if in other methods the terms were to

411

appear in the identifiers or the comments, then a false positive can result from the search degrading

the performance.

Another way of looking at this is that by only querying a subset, the developer only gets a

small indicator of the relationship between the method and the query. Take the same example, but

let us assume that two methods exist with similar error messages. The query may contain terms

that are found in the identifiers of one method, but not the other. Therefore, the results would be

improved if the developer searched over more contexts.

I looked at both the Combined and the Title query types. The reason for this is to see how

the information within the query could affect the performance of the different combinations.

5.4.2.1 ArgoUML

The two combinations with the best results for the LMPBV corpus and the Combined query

type were the leading comments and the leading comments combined with the method names. For

the Title query type, the parameters alone outperformed the other combinations. This shows that

the performance of a particular combination is affected by the information in the query. Instead

of getting the same leading combinations but with different MRRs for each query type, adding the

information from the description changed the best performing combination. In contrast, for the

CSB corpus, both the Combined query type and the Title query type showed the leading perfor-

mance from the comments combined with the body and the full corpus. For the ICL corpus, there

was once again a difference in the best performing combinations with the Combined query type

showing better results for the identifiers combined with the comments, and the Title query type

showing the literals alone to have the leading performance.

There were larger increases when taking the best queries from the combinations than there

were for the different query types. The ICL corpus was shown to have the leading performance

412

of the three corpora, while the LMPBV corpus was shown to have the worst performance. For

the CSB corpus, the body contributed the highest percentage of best queries. For the ICL corpus,

the identifiers and the literals were tied, while the comments followed closely. For the LMPBV

corpus, the highest percentages were for the parameters and for the method names. These were

followed by the local variables and the body comments.

By taking the results of the best queries from all corpora, there was a significant increase

in the results of the FLT. Unlike for the query types, the highest percentage was contributed by the

CSB corpus, followed by the ICL corpus. The LMPBV corpus contributed the lowest percentage

of the best queries. The combinations with the highest percentages from each corpus included the

literals from the ICL, the parameters from the LMPBV, and the body from the CSB. Notable about

this is that the leading percentages did not come from combinations of multiple lexicons.

5.4.2.2 JabRef

The best combinations from the LMPBV corpus and the Combined query type come from

the body comments, the leading comments, and the leading comments combined with the local

variables. Again, the results were different for the Title query type. While the body comments

were still included, other top combinations included the leading comments combined with the

body comments, the body comments combined with the local variables, and the combination of all

three (leading comments, body comments, and local variables). For the CSB corpus, there is also a

difference between the Combined and Title query types with the Combined query type having the

leading performance for the comments, and the Title query type having the leading performance

for the comments combined with the body. For the ICL corpus, the comments once again has the

best performance for the Combined query type, while for the Title query type the best performance

comes from the comments combined with the body.

413

JabRef also showed larger increases when taking the best queries from the combinations.

The ICL corpus was shown to have the best performance from the three corpora. Again, LMPBV

had the lowest performance of the corpora. Each of the individual lexicons had the highest per-

centages for the corpora.

By taking the results of the best queries from all corpora, there was a significant increase

in the results of the FLT. The CSB corpus once again contributed the highest percentage from the

three corpora, while the lowest percentage came from the flat corpus. This shows that the additional

flexibility in the queries leads to better performance. Interestingly, while the ICL corpus presented

the highest MRR of the three corpora, the highest number of best queries were contributed by

the CSB corpus. This also happened for ArgoUML, and can be explained by stating that the best

queries contributed by the CSB corpus typically had higher ranks than the best queries contributed

by ICL.

5.4.2.3 jEdit

For the LMPBV corpus and the Combined query type, a majority of the combinations

shared the same results MRRs and spreads. The three exceptions to this were for body comments,

parameters alone, and parameters combined with the local variables. For the Title query type,

the best performing combination was for body comments alone. For the CSB corpus, the highest

MRR for both query types came from the body alone. Similarly, for the ICL query, both query

types share the literals as the combination with the highest MRR.

There were large increases again for the best queries from the different combinations. The

highest MRR was again found for the ICL corpus, and the lowest MRR was found for the LMPBV

corpus, and once again the best combinations were the combinations composed of a single lexicon.

In the case of jEdit, we do not see the CSB once again as having the highest percentage

414

of the corpora, however it is close to ICL. The corpus with the lowest percentage was once again

the flat corpus. The combinations that contributed the highest percentages included the body com-

ments from the LMPBV corpus, the signature from the CSB corpus, and a tie between the literals

and comments for the ICL corpus.

5.4.2.4 muCommander

The LMPBV corpus and Combined query type for muCommander found that parameters

had the highest MRR, while for the Title query type, the parameters combined with the local

variables had the highest performance. Parameters combined with local variables also appeared in

jEdit as a notable combination. This is because there is significant overlap in the terms between the

local variables and the parameters. For the CSB corpus, the comments had the best performance

for the Combined query type, while the signature had the best performance for the Title query type.

The literals had the leading performance for both the Combined and Title query types in ICL. In

addition, the comments were also identified for the Combined query type.

As with the other subject systems, the ICL corpus had the highest MRR of the three corpora,

and we once again see the highest percentages for the individual lexicons.

While there is another large increase in the MRR for looking at the best queries across

corpora, the MRR is the lowest of the four subject systems. The highest percentage once again

comes for the CSB corpus, while the lowest is found for the LMPBV corpus. The combinations

with the highest percentages included the comments from ICL and CSB and the parameters from

LMPBV.

5.4.2.5 All Systems

For the LMPBV corpus and the Combined query type, the leading comments, body com-

ments, and leading comments combined with the local variables were shown to have the best

415

performance. For the Title query type, the body comments outperformed the other combinations.

For the Combined query type in CSB, the comments, the comments combined with the body, and

the full corpus had the best performance. The comments combined with the body had the best per-

formance for the Title query type. For both query types, the literals had the leading performance

of the combinations, while the comments were also a top performer for ICL.

As with the results for the individual systems, the ICL corpus had the highest MRR while

LMPBV had the lowest. Furthermore, the individual lexicons were shown to contribute the highest

percentages amongst the corpora.

Overall, the CSB corpus was shown to contribute the highest percentage of the best queries.

The flat corpus was shown to contribute the least. The highest contributing combinations included

the comments alone, the literals alone, and the body comments alone.

5.4.2.6 Combining the Results

Looking at the overall results, we can see that the query type can impact which combination

has the leading performance. When looking at the results, the Title query type still outperforms the

Combined query type. Calculating the best queries coming from each query type shows that the

Title query type contributes approximately 75% of the best queries between the two query types.

The changes in the combinations are highly attributed to noise from the Combined query type

that makes it harder to find the relevant lexicon. Therefore, it will be important for the developer

creating the queries to have an understanding of which terms to use when querying each lexicon.

Individual lexicons were shown to outperform composite combinations. Of the lexicons,

the most important ones were found to be the comments and the literals. Identifiers were found

to have a weaker relationship with the queries, however the top performing lexicon from the iden-

tifiers included the parameters. With these results in mind, it is important to have a corpus that

416

allows literals and comments to be queried independently from the identifiers. However, the high-

est contributions came from the CSB corpus and not the ICL corpus. This was due to the high

contributions that came from the signature and the body, indicating that grouping all identifiers

together will lead to a reduction in performance. After I have discussed the results of Research

Question 4, I will introduce a new corpus model that will take into account the results from these

two questions.

5.4.3 Does structural weighting affect the accuracy of a structured retrieval-based FLT?

As the previous question controlled for weighting, this question controls for the combina-

tions by looking at the performance of weighting on the full corpus. Weighting works to improve

results by placing emphasis on the lexicons that are most important to the results. Once again,

if we use the example of querying with an error message, the literals may be considered the most

important part of the returned result. However, a developer may realize that there could be multiple

methods with similar strings and that the query might also have something to do with the identifiers

in the relevant method. In this case, they can query over both lexicons but place greater emphasis

on the literals.

Again, in this question I use both the Combined and Title query types.

5.4.3.1 ArgoUML

Similar to the previous question, I look at both spreads of the effectiveness measures and

the computed MRRs. For the LMPBV corpus and the Combined query type, the leading comments

and parameters were given weighting factors higher than the other lexicons. In both, the weighting

factors for leading comments were higher than those for parameters. The Title query type however

found weighted body comments with the highest factor, while leading comments and parameters

were given lower weights. In the CSB corpus, signature went unweighted in most configurations

417

while comments and the body received higher weights. In the Title query type, a similar pattern

emerged, but the signature was weighted in the top two configurations. The Combined query type

for ICL emphasized identifiers and comments, while the Title query type emphasized comments

and literals.

As can be observed in the bargraphs, there were wider differences between the best and

worst weighting configurations versus the structural combinations. Each of the corpora also re-

sulted in higher differences in the MRR. I computed the percentage for each corpus of the amount

of instances where a weighting configuration outperformed the unweighted configuration. As ex-

pected, the percentages were close to 100% in each case. This is because the full corpus itself does

not perform very well, and by emphasizing more relevant lexicons, the amount of noise caused by

querying each lexicon in the corpus is reduced.

The increase in the overall MRR was smaller than for the combinations. Despite this, the

change in MRR from Research Question 1 is large. This is because while the weighting config-

urations perform differently when compared to the unweighted configuration, the best weightings

between the corpora are similar in their rankings. The largest contribution for the corpora is from

the CSB corpus, while the flat corpus comes in second.

5.4.3.2 JabRef

In JabRef, the Combined query type place the most emphasis on the method names and a

lesser emphasis on leading comments. In the Title query type, the method names were emphasized

again, but the leading comments were emphasized to a greater extent than in the Combined query

type. For the CSB corpus, the comments and the body had the greatest emphasis in botht eh

Combined and the Title query types. Finally, for the ICL corpus, the main emphasis was placed on

the comments with lesser emphasis placed on the identifiers and literals.

418

Again, there was a large increase for the MRRs of the individual corpora when compared

to the results of the query types. This is reflected in the percentages where over 90% of the best

queries came from weighted configurations.

A larger increase was seen overall than for ArgoUML, however the resulting MRR was still

lower than the same MRR for the combinations. Of the corpora, the largest contribution came from

the CSB corpus, however the LMPBV corpus closely followed with a less than 4% difference. The

flat corpus contributed an equal percentage with the CSB corpus.

5.4.3.3 jEdit

The highest weighting for the LMPBV corpus and the Combined query type was placed

on the method names followed by the parameters. For the Title query type, there was still a slight

emphasis on the method names, but the highest weighting factors went to the leading comments

and parameters. The Combined query type for the CSB corpus resulted in higher weighting factors

for the body, while the emphasis from the best of the Title query type fluctuated in importance

between the comments and the body. Then, for the ICL corpus and the Combined query type,

strong emphasis was placed on the identifiers while for the Title query type, strong emphasis was

placed on the comments.

There were moderate increases in the results of the corpora due to the weighting configu-

ration. Despite this, there was still a large increase in the MRRs when compared to the results of

Research Question 1, and the weighted configurations contributed over 96% of the best queries in

each corpus.

Overall, the increase for the best was large when compared to the individual corpora. How-

ever, the MRR is significantly lower than the MRR from the combinations. The CSB corpus once

419

again contributed the highest percentage of the best queries, while the flat corpus contributed the

least.

5.4.3.4 muCommander

For each of the top configurations in the LMPBV corpus with the Combined query type,

the method names were given the highest weighting factor with parameters, body comments, and

leading comments given small weighting factors in a small number of configurations. However,

when looking at the Title query type, the weighting factors almost invert with the leading com-

ments, parameters, body comments, and local variables receiving heavy weightings factors. The

method names reduce for this query type. In both the Combined and Title query types for CSB,

the comments receive the heaviest weighting, while for the Combined query type more emphasis

is placed on the signature and for the Title query type more emphasis is placed on the body. The

Combined and Title query types for ICL both place heavy emphasis on the comments, however for

the Title query type, heavy emphasis is also placed on the identifiers.

The differences for muCommander for each corpus are substantially higher than the re-

sults for Research Question 1. Again, weighting configurations contribute the majority of the best

queries for each corpus with a contribution of 95% for each corpus.

The MRR for muCommander is still small compared to the other subject systems, however

there is an increase for the overall results. As with the other systems, the CSB corpus contributes

the highest percentage of the best queries, while the ICL corpus contributes the least. The flat

corpus is outperformed by the LMPBV corpus.

5.4.3.5 All Systems

For all systems, both Combined and Title query types provide the greatest emphasis to

the leading comments in the LMPBV corpus, while secondary emphasis is placed on the method

420

name and the parameters. In the Title query type, secondary emphasis (over the method names and

parameters) is also placed on the body comments. In the CSB corpus, both the Combined and the

Title query types place heavy emphasis on the comments with secondary emphasis on the body.

Finally for the ICL, the Combined query type places equal emphasis on identifiers and comments,

while the Title query type places the heaviest emphasis on the comments.

There is a significant increase in the MRRs from the results of Research Question 1 in each

corpus with the MRRs being over double for each corpus. This is a result of the weighting config-

urations contributing the most to the best queries. In both CSB and ICL, weighting configurations

result in 96% of the best queries, while for LMPBV, weighting configurations contribute 95%.

The results of the overall MRR is significantly smaller than the results of the combinations,

however they are significantly higher than the results of query types. Overall, the CSB corpus

contributes the highest percentage of the best queries, while ICL contributes the least and there is

a tie between LMPBV and the flat corpus.

5.4.3.6 Combining the Results

The results of this question should be looked at in conjunction with the results from Re-

search Question 2. There is a relationship between the combinations and the results of the weight-

ing. This is easiest to see for the CSB and ICL corpora for all systems combined. Since the

weighting configurations for the structured retrieval technique are ratio based, only two lexicons

will be weighted at maximum. For CSB, the best two lexicon combination is comments com-

bined with the body, while for ICL, the best two lexicon combination is IC. When looking at the

weightings, it is easy to identify these as being the lexicons that are weighted together in the top

configurations for each corpus. This is an indicator that the weightings help to emphasize the

421

same structural combinations that lead to better results, but providing increased flexibility for each

lexicon to be given a relative importance with the other member of the combination.

Some of the results emphasize different lexicons than the LDA study, one possibility for

this is that LDA is topic-based while the structured retrieval approach is term-based. A possiblity is

that for the topic-based approach, terms that are descriptive of the responsibilities and topics in each

method are the most important, while for the term-based approach, terms that act as distinguishers

(i.e., set the method apart from others) are more important. Additional studies would be required

to determine whether this is really the case.

It is important to note however, that some of the combinations will see a decrease in per-

formance if the entire corpus is used. This is due to the noise that is added by the extra lexicons

and contexts. Therefore, while weighting can increase the performance of a given combination,

choosing the correct combination first is an important factor.

5.4.4 How does the best configuration of structural field combination and weighting affect the

accuracy of a structured retrieval-based FLT?

The previous two questions looked at structural combinations and weighting independently.

In this question, I wish to show how working together will increase the results over either dimen-

sion alone. For this question, I only used the Title query type. This was done for feasibility

purposes, however this does not jeopardize the results, as we will still see increases in the perfor-

mance.

5.4.4.1 ArgoUML

For the LMPBV corpus, popular combinations included leading comments combined with

body comments, leading comments combined with parameters, and leading comments combined

with method names. This extends to combinations that combine all four of these types. In each

422

of the configurations, the leading comments have the highest or are tied for the highest weighting

factors of the lexicons. Only two combinations were found for the CSB corpus, the full corpus

and the comments combined with the body. For each of these configurations, the comments were

weighted heavier than the other lexicons. Three combinations comprise the top configurations for

ICL. The three combinations consist of the literals alone as the top configuration, followed by the

comments combined with the literals, and the full corpus.

The results for the individual corpora are significantly higher than the previous questions.

This is especially true of the LMPBV corpus. This is not difficult to understand. The LMPBV cor-

pus has the highest level of flexibility of any of the corpora. This allows for a far wider number of

possible queries for the corpus. For both CSB and ICL, a weighting configuration was used 100%

of the time. For both the CSB and ICL corpora, the full corpus contributed the greatest percentage

of best queries. For LMPBV however, the greatest percentage came from the parameters alone.

The performance of the overall results are significantly higher than the corpus values. In-

terestingly, when looking at all combinations, the LMPBV corpus is the highest contributor of best

queries, indicating the importance of a structured corpus to be flexible. Of the best queries, 80%

of the best queries were the results of a weighting configuration. The full corpus did not contribute

significantly to the best queries for the overall results.

5.4.4.2 JabRef

For LMPBV, each of the top configurations consists of both the leading comments and the

body comments with the leading comments being weighted heavier than other lexicons. Param-

eters and local variables are included throughout the configurations with each having minimum

weighting. In all but one configuration for CSB, the comments and the body are included. Further-

more, the most common combination is the full corpus with the comments being given the heaviest

423

weighting. In all but one configuration for the ICL corpus, the comments and the literals are in-

cluded with heaving weighting for the comments. The two most common combinations include

the comments and literals alone and the full corpus.

Again there is a substantial increase in the MRR for the three corpora, but the LMPBV is

once again much higher than the others. For the three corpora, both CSB and ICL have 100% of

their best queries from weighting configurations, while LMPBV is lower at 87%. The full corpus

contributes the highest percentages in both CSB and ICL, while the parameters is once again the

highest contributor from LMPBV with body comments as the second top contributor.

The overall results of the system showed a significant increase in MRR. Only the LMPBV

corpus and the CSB corpus contributed to the overall results for the system. The full CSB corpus

made up the entirety of the CSB corpus’s contribution to the best results. It is important to note

that a small percentage such as the 6% from CSB was enough to raise the results of the LMPBV

corpus by 18%.

5.4.4.3 jEdit

The most common lexicons for the top configurations include the leading comments and the

parameters. Leading comments are given the highest weighting factors or are tied with other lexi-

cons for the highest. For the CSB corpus, the most common combination included the full corpus

follow by the comments combined with the body. For the ICL corpus, the top two configurations

are composed of the literals alone and the comments alone. The most common configurations

include the combination of the identifiers with the literals.

Again, each corpus showed a significant increase in performance with the LMPBV corpus

showing the largest increase. The best queries in CSB and ICL used weighting configurations

100% of the time, while the best queries in the LMPBV corpus only used a weighting configuration

424

84% of the time. Interestingly, unlike the previous two systems, the comments combined with the

signature contributed the highest percentage for the CSB corpus, while the identifiers combined

with the comments contributed the highest percentage for the ICL corpus. The highest percentage

for the LMPBV corpus came from the body comments alone.

There was a large increase for the overall results and the LMPBV corpus contributed the

highest percentage of the four corpora. This system is the perfect example of why the highest con-

tributing combinations in the overall results are different from the expectation from the individual

combinations and the corpora. The highest contributor for the LMPBV corpus is the body com-

ments alone. The comments in the CSB and ICL corpora are supersets of this model. A query that

is most relevant to the body comments can perform much worse when compared to the entire com-

ments. In these cases, the results for a query that queries only the body comments will outperform

either the CSB or the ICL corpus. Lowering contributions and changing the highest contributing

combinations from these corpora.

5.4.4.4 muCommander

The two most common lexicons for the LMPBV corpus consists of the method names and

the leading comments. In configurations containing the leading comments and the method names,

the leading comments have higher weightings factors. There is not a clear combination that is most

frequent within the CSB corpus, however the top configuration includes the signature alone while

every other combination is composed of at least two lexicons. The top configuration for the ICL

corpus are the literals alone, while the most common combinations include both the identifiers and

the comments.

The MRRs for muCommanderare the lowest of any system in each question. However, the

MRR for LMPBV is substantially higher than the other corpora. Again, weighting configurations

425

contribute 100% of the best queries in both CSB and ICL. The comments and the signature make

the best combination for the CSB corpus, while there is a tie between the identifiers combined

with the comments and the comments combined with the literals for the ICL corpus. The three

query types for LMPBV (leading comments, body comments, and leading comments with body

comments) comprise the highest percentages for LMPBV.

The overall results once again increase for muCommander, while the percentage con-

tributed by LMPBV is substantially higher than the other corpora.

5.4.4.5 All Systems

Leading comments are present in each of the top configurations. Body comments also

appear with higher frequency than other lexicons. In each configuration, leading comments are

given higher weighting factors than other lexicons. The two most common lexicons for the CSB

corpus includes the comments and the body with the commments receiving higher weighting.

The full corpus is the most frequent combination for the ICL corpus, while literals are the top

configuration. In each configuration, comments receive higher weightings than other lexicons.

As with the subject systems, the LMPBV corpus was shown to have the highest increase

in performance, and the CSB and ICL corpora were shown to use a weighting configuration for

each of the best queries. The best queries for the LMPBV corpus used a weighting configuration

in 88% of the queries. In each corpus, the highest percentages came from combinations that used

the comments.

Overall, the LMPBV corpus contributed 83% of the best queries. The highest contributing

combination for the LMPBV corpus came from the body comments alone, while the top contribut-

ing combinations for each of the other corpora included comments.

426

Figure 5.81: Recommended Corpus Structure

5.4.4.6 Combining the Results

The results of this problem and Research Question 2 and Research Question 3 help to un-

derstand why LMPBV outperformed the other corpora when all combinations were considered.

From the results of Research Question 2, being specific when targeting a lexicon will help to im-

prove the results, while the results from Research Question 3 show that being able to supply relative

importance to each lexicon in a combination improves results. With this in mind, a corpus should

allow for sufficient flexibility in both creating the combination and in weighting the lexicons.

While being specific helps to improve the results, in some cases using supersets lead to

better performance than the individual lexicon (e.g, the comment combination can lead to better

results than the leading comments or the body comments). With this information, the best results

will occur when given a corpus that allows the best features of the CSB, ICL, and LMPBV corpora

to be used. For this reason, I recommend a new corpus for structured retrieval. The resulting

structure can be found in Figure 5.81.

427

5.5 Summary

I conducted a large study to understand how CAS queries may be used to effect the re-

sults of a structured retrieval approach to feature location. I analyzed queries on three different

dimensions. The first was how the inclusion of different pieces of information in the query may

affect the results. To this end, I extracted queries from the title, description, and combination of

the two from features requests. I found that the performance of the structured retrieval can be

significantly impacted by the information included in the query. Second, I looked at how including

different structure and structure combinations in the query affect the results. For this question, I

took each combination of structure lexicons from three different corpora and analyzed how the

results changed. I found that it is not always best to query over all parts of a source code element,

and that searching over the wrong structural lexicons can actually lead to a degradation of results.

The third dimension I looked at was the weighting of the lexicons in a query. This was similar to

the structural weighting for LDA, however instead of the weighting improving the overall retrieval

model, the weighting used in this study weights the results of parts of queries issued on the model.

I found that in most cases using a proper weighting will lead to better results than unweighted

queries by giving emphasis to the parts of the query that are most important. Finally, I looked at

all of the dimensions together and found that using the proper structural combination combined

with a proper weighting will work together to lead to a significant improvement in the results of

the retrieval technique.

428

Chapter 6

LESSONS LEARNED AND FUTURE WORK

Throughout this dissertation, two techniques have been presented that use the structural lo-

cation of terms to improve TR-based FLT. Each of the techniques have benefits and consequences,

and determining which technique is best is not within the scope of this dissertation. In order to

do so would require having a fully optimized configuration for each technique, and due to the

large number of configurations and the required time to train and query these models, such a com-

parison is infeasible at this time. However, the studies conducted in this dissertation can provide

insights into each technique and help to guide future research. In this chapter, the benefits and

consequences of both techniques will be discussed. This chapter will answer the following two

questions:

1. What are the benefits and consequences of using structural weighting in LDA?

2. What are the benefits and consequences of using structured retrieval for feature location?

Furthermore, future work will be presented that can extend both techniques.

6.1 What are the benefits and consequences of using structural weighting in LDA?

The main advantage of using a topic modeling approach is that it is less sensitive to the

usage of terms. Instead of querying based on the terms, and therefore requiring identical terms

between the query and the source code elements, querying is performed across probability distri-

butions that represent topics. This means that topic models should be less sensitive to tasks such as

429

stop word removal and stemming. It also means that while synonyms can still impact the results,

the topic model should be able to handle them better than a traditional algebraic model. This leads

to the idea that a properly trained topic model should perform well when compared to other text

retrieval techniques on general queries.

This is supported by existing research [Biggers, 2012] into the performance of LDA for

software engineering, and by the results of the study presented in Chapter 4. For techniques that

focus on using queries that are generated directly for feature requests, LDA has been shown to

have results that are as good or better to the state of the art [Binkley et al., 2015]. These results are

improved even further by structural weighting.

The limitation of this technique comes in the form of training. LDA is sensitive to proper

training and configuration [Biggers et al., 2012]. Improper training can significantly impact the

results of the LDA-based technique and can also lead to unreliable and unpredictable results. This

issue led to the work in the preliminary study.

Training also imposes limitations with the structural weighting approach for LDA. While

this research has presented recommendations for identifying a structural weighting scheme that

will outperform the unweighted configuration, identifying the optimum weighting requires addi-

tional searching or learning techniques. Such techniques require training and verifying new LDA

models which can take a considerable amount of time. The time required to train and verify new

LDA models increases with the amount of structural locations and weighting factors that are con-

sidered. For a large system, this may be prohibitive in adopting the technique without sufficient

computational resources.

430

6.2 What are the benefits and consequences of using structured retrieval for feature location?

As opposed to structural weighting for LDA, the purpose of the structured retrieval ap-

proach is to provide more flexibility on a query by query basis. This technique allows a developer

the flexibility to modify their query based on structural context and to use the additional power

of an advanced query language to obtain better results. As shown in this research, when devel-

opers are using the query language to its full potential, the results of the technique are improved

significantly.

For developers to write the best queries, they need a strong mental model of how the system

is structured, knowledge of the usage of terms in the system, and an understanding and desire to

use the full querying capabilities. Many of these problems are areas for future research listed in

Chapter 5. Future research will need to look into methods of recommending queries to developers,

making the query language easier to use for developers, and providing developers with information

that helps support their building of a mental model for the system.

The study presented in Chapter 5 focused on Indri and the use of language models. How-

ever, these types of queries can be incorporated and combined with other models. The only re-

quirement is for the model to provide the ability to search specific structural contexts.

6.3 Future Work

This dissertation leaves ample opportunity for future studies. This section discusses future

work that can be performed in this area.

6.3.1 Improved Learning Algorithms

A preliminary algorithm was presented for learning structural weighting for LDA. To be

the most effective, this technique requires a history of changes and feature requests. Another

431

limitation of this technique is the time required to identify the optimum weighting configuration.

This is due to the amount of time required to train a weighted LDA model for larger systems.

This time requirement imposes a major limitation on the technique when trying to find an optimal

weighting structure.

6.3.2 Empirical Studies

The structured retrieval approach used queries that were extracted from the feature requests

and queries that were written in a modified version of Indri’s querying language. However, these

results do not say anything about how developers will actually use the structured retrieval system

in practice. For this reason, two major studies would help support the usage of structured retrieval

in software engineering tasks.

The first study would design multiple querying languages and interfaces and have the de-

velopers use the resulting tools. From this study, the hope is to identify an interface that is easy

to use for the developer and allows them to make the greatest use of the structured queries. The

second study would identify ways of integrating the search techniques into the developer’s normal

routine and encourage them to adopt the tool. While the results of the queries may have better

performance than existing techniques, this performance will be unimportant if the developer does

not make use of it.

6.3.3 Modeling Structural Information

In order for the structured retrieval system to be the most effective, it requires developers

to have a clear mental model of the terms and their usage within the software system. This makes

such a system more difficult for new developers to use without first studying the system. Future

research would need to focus on reducing this hurdle. There are two methods that may help solve

this problem.

432

The first is in machine learning algorithms that work to recommend queries to new devel-

opers by modeling the queries and the source code, while learning from a history of previously

performed queries. Such a technique would require three parts: features describing the terms in

each structural context, features describing the queries, and a method of determining the effective-

ness of a query. Possible features for describing the structural context include unique term density,

term contribution, lexicon density, part-of-speech usage, frequent n-grams, or other information of

this type. Features describing the query include n-grams, part-of-speech usage, or various similar-

ity measures with terms in each structural context. Determining effectiveness could be created by

mining changes from a software repository or using relevance feedback from the developer.

The second area would be to create an interface that provides the developer with additional

information about the terms and their usage in the software systems. This interface should provide

information that allows a developer to build a mental model of the system quickly.

6.3.4 Additional Software Tasks

Another straightforward area for future research is to look at how these approaches perform

in different software engineering tasks (e.g., traceability, triage, software search, categorization).

Furthermore, this study only focuses on software systems written in the Java programming lan-

guage, and while I assume that performance will be similar for other object-oriented languages,

this would need to be verified.

433

Chapter 7

CONCLUSION

Structural context is a key factor in the performance of TR-based techniques in software

engineering. Different types of terms in source code will play many different roles, and can convey

different information in various contexts. For example, an identifier test may appear in the name

of one method and in the method call in the body of another method. In the first case, the term test

may help to describe the main responsibility of the method, while in the second case, the term may

be part of a single step in a larger responsibility. However, little research prior to this dissertation

has been performed on how to use context to improve the results of TR-based techniques, and

less has been performed on using it to improve feature location. The research described in this

dissertation resulted in the following contributions:

• A large empirical study on the effects of structural weighting on LDA-based feature location

• Recommendations and insights on how to choose a proper weighting configuration with little

additional training

• A learning algorithm for determining the optimum structural weighting over time

• The introduction of content and structure (CAS)-based queries to search a corpus and provide

additional flexibility to developers

• A large empirical study on the effects of CAS queries to a FLT

434

• Insights on how to structure a corpus for structured retrieval and for writing queries to return

the best results

7.1 Structural Weighting of LDA

Chapter 4 introduced weighting configurations of LDA for four subject software systems

and showed that weighting lexicons identified by their structure increases the performance of an

LDA-based FLT. My results also identified characteristics of the lexicons that showed the best in-

creases in performance when weighted highly and made recommendations for identifying which

lexicons should receive higher weights. While the recommendations may not identify the configu-

ration with the highest performance, I outlined a search process that can identify better weighting

configurations over time.

The limitations of this approach are in the need to identify the lexicons that should receive

higher weighting factors and the time required to identify the best weighting configuration.

7.2 Structured Retrieval

Chapter 5 showed how to use content and structure to search a structured document retrieval

(SDR) [Lalmas and Baeza-Yates, 2009] model. Unlike traditional TR models, SDR models support

powerful query languages in which a user may specify several constraints, including the scope of

the query and the weight or probability assigned to each term or structural entity.

I conducted a large study to understand how CAS queries may be used to affect the results

of a structured retrieval approach to feature location. I analyzed queries on three different dimen-

sions. The first was how the inclusion of different pieces of information in the query may affect

the results. I extracted queries from the title, description, and combination of the description and

435

the titile from feature requests. I found that the performance of the structured retrieval technique

can be significantly impacted by the information included in the query.

Second, I looked at how including different structure and structure combinations in the

query affect the results. For this question, I took each combination of structure components from

three different corpora and analyzed how the results changed. I found that it is not always best

to query over all parts of a source code element, and that searching over the wrong structural

components can actually lead to a degradation of results.

The third dimension considered was the weighting of the components in a query. This

was similar to the structural weighting for LDA. However, instead of the weighting improving the

overall retrieval model, the weighting used in the study weighted the results of parts of queries

issued on the model. I found that in most cases using a proper weighting will lead to better results

than unweighted queries by giving emphasis to the parts of the query that are most important.

Finally, I looked at all of the dimensions together and found that using the proper struc-

tural combination combined with a proper weighting will work together to lead to a significant

improvement in the results of the retrieval technique.

The results of my study identified the following insights about constructing CAS queries:

• The developer should be concise in the terms they use to describe the query, while providing

sufficient information to identify the proper method

• Queries should be targeted at the components or combination of components that are most

likely to be related to the query. This requires a clear mental model of the system for the

developer

• Weighted configurations will often result in higher rankings than the structural combination

436

alone. In order to form the query, the developer should first select the combination and then

determine the relative importance of each component

In addition, I gave a representation for a corpus based off of the findings in my results. Instead of

using any individual corpus from those studied in Chapter 5, the best corpus combines the three

corpora while still allowing for the same queries. This allows for the same performance that was

shown when taking the best results from each of the individual corpora.

7.3 Final Remarks

The research presented in this dissertation shows how the structural location of terms in

source code can have a significant effect on the results of TR-based FLTs. The studies in this

dissertation used open source Java systems that have been studied previously by the research com-

munity. This dissertation is not a comprehensive list of the ways that structural location can be

incorporated into TR techniques. Chapter 6 presented multiple areas for future research, and fur-

ther research exists in incorporating structural location into other models. Source code elements

are structured entities, and researchers should be aware of how this affects the TR process.

437

REFERENCES

Abebe, S., S. Haiduc, A. Marcus, P. Tonella, and G. Antoniol (2009). Analyzing the evolution
of the source code vocabulary. In Proceedings of the 13th European Conference on Software
Maintenance and Reengineering, pp. 189–198.

Alhindawi, N., N. Dragan, M. Collard, and J. Maletic (2013). Improving feature location by en-
hancing source code with stereotypes. In Proceedings of the 2013 International Conference
on Software Engineering, pp. 762–771.

Alkhatib, G. (1992). The maintenance problem of application software: an empirical analysis.
Journal of Software Maintenance: Research and Practice 4(2), 83–104.

Antoniol, G., G. Canfora, A. Casazza, D. Lucia, and E. Merlo (2002). Recovering traceability
links between code and documentation. 28(10), 970–983.

Antoniol, G., G. Canfora, G. Casazza, and A. De Lucia (2000). Information retrieval models
for recovering traceability links between code and documentation. In Proceedings of the
International Conference on Software Maintenance, pp. 40–49.

Antoniol, G., Y.-G. Gueheneuc, E. Merlo, and P. Tonella (2007). Mining the lexicon used by
programmers during sofware evolution. In Proceedings of the IEEE International Confer-
ence on Software Maintenance, pp. 14–23.

Bäck, T. (1996). Evolutionary algorithms in theory and practice: evolution strategies, evolu-
tionary programming, genetic algorithms. Oxford university press.

Bajracharya, S., T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and C. Lopes (2006). Sourcerer:
A search engine for open source code supporting structure-based search. In Companion to
the 21st ACM SIGPLAN Symposium on Object-oriented Programming Systems, Languages,
and Applications, pp. 681–682.

Baldi, P., C. Lopes, E. Linstead, and S. Bajracharya (2008). A theory of aspects as latent topics.
SIGPLAN Notifications 43(10), 543–562.

Bassett, B. and N. A. Kraft (2013). Structural information based term weighting in text retrieval
for feature location. In Proceedings of the IEEE 21st International Conference on Program
Comprehension, pp. 133–141.

438

Biggers, L., C. Bocovich, R. Capshaw, B. Eddy, L. Etzkorn, and N. Kraft (2012). Configuring
latent Dirichlet allocation based feature location. Empirical Software Engineering 19(3),
465–500.

Biggers, L., B. Eddy, N. Kraft, and L. Etzkorn (2011). Toward a metrics suite for source code
lexicons. In Proceedings of the IEEE International Conference on Software Maintenance -
Early Research Achievements Track, pp. 492–495.

Biggers, L. R. (2012). Investigating the effect of corpus construction on latent dirichlet alloca-
tion based feature location. [Tuscaloosa, Ala.] : [University of Alabama Libraries], 2012.

Binkley, D., D. Lawrie, C. Uehlingera, and D. Heinzb (2015). Enabling improved ir-based
feature location. Journal of Systems and Software 101, 30–42.

Blei, D., A. Ng, and M. Jordan (2003). Latent Dirichlet allocation. Journal of Machine Learning
Research 3(0), 993–1022.

Boehm, B. (1981). Software Engineering Economics. Prentice Hall.

Brin, S. and L. Page (1998). The anatomy of a large-scale hypertextual web search engine.
Computer networks and ISDN systems 30(1), 107–117.

Casella, G. and E. I. George (1992). Explaining the gibbs sampler. The American Statisti-
cian 46(3), 167–174.

Cleary, B. and C. Exton (2006). The cognitive assignment eclipse plug-in. In Proceedings of the
14th IEEE International Conference on Program Comprehension, pp. 241–244.

Cleary, B. and C. Exton (2007). Assisting concept location in software comprehension. In Pro-
ceedings of the 19th Psychology of Programming Workshop, pp. 42–55.

Cleary, B., C. Exton, J. Buckley, and M. English (2009). An empirical analysis of information
retrieval based concept location techniques in software comprehension. Empirical Software
Engineering 14, 93–130.

Dallmeier, V. and T. Zimmermann (2007). Extraction of bug localization benchmarks from his-
tory. In Proceedings of the 22nd IEEE/ACM international conference on Automated software
engineering, pp. 433–436.

David, J. (2008). Recommending software artifacts from repository transactions. In New Fron-
tiers in Applied Artificial Intelligence, pp. 189–198. Springer.

439

De Lucia, A., R. Oliveto, and G. Tortora (2008). Adams re-trace: traceability link recovery via
latent semantic indexing. In Proceedings of the 30th international conference on Software
engineering, pp. 839–842.

De Lucia, A., M. Risi, L. Rizzi, and G. Scanniello (2008). A visual framework for the defi-
nition and execution of reverse engineering processes. In Proceedings of the 10th Interna-
tional Conference on Visual Information Systems: Web-Based Visual Information Search
and Management Visual Information Systems, pp. 235–246.

Deerwester, S., S. Dumais, G. Furnas, T. Landauer, and R. Harshman (1990). Indexing by latent
semantic analysis. Journal of the American Society of Information Science 41(6), 391–407.

desRivieres, J. and J. Wiegand (2004). Eclipse: A platform for integrating development tools.
IBM Systems Journal 43(2), 371–383.

Dit, B., L. Guerrouj, D. Poshyvanyk, and G. Antoniol (2011). Can better identifier splitting
techniques help feature location? In Proceedings of the IEEE 19th International Conference
on Program Comprehension, pp. 11–20.

Dit, B., M. Revelle, M. Gethers, and D. Poshyvanyk (2012). Feature location in source code:
A taxonomy and survey. Journal of Software Maintenance and Evolution: Research and
Practice 25(1), 53–95.

Eddy, B., J. Robinson, N. Kraft, and J. Carver (2013). Evaluating source code summarization
techniques: Replication and expansion. In Proceedings of the IEEE 21st International Con-
ference on Program Comprehension, pp. 13–22.

Erlikh, L. (2000). Leveraging legacy system dollars for e-business. IEEE IT Pro 2(3), 17–23.

Fluri, B., M. Wursch, and H. Gall (2007). Do code and comments co-evolve? on the relation
between source code and comment changes. In Proceedings of the 14th Working Conference
on Reverse Engineering, pp. 70–79.

Fox, C. (1992). Information retrieval data structures and algorithms. Lexical Analysis and Sto-
plists, 102–130.

Gao, J., J. Nie, G. Wu, and G. Cao (2004). Dependence language model for information re-
trieval. In Proceedings of the International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 170–177.

Gospodnetic, O. and E. Hatcher (2005). Lucene. Manning.

Griffiths, T. and M. Steyvers (2004). Finding scientific topics. Proceedings of the National
Academy of Sciences 101(Supplement 1), 5228–5235.

440

Haiduc, S., J. Aponte, and A. Marcus (2010). Supporting program comprehension with source
code summarization. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, pp. 223–226.

Haiduc, S. and A. Marcus (2008). On the use of domain terms in source code. In Proceedings
of the 16th IEEE International Conference on Program Comprehension, pp. 113–122.

Heinrich, G. (2009, September). Parameter estimation for text analysis. Technical report, Fraun-
hofer IGD, Darmstadt, Germany. Version 2.9.

Hill, E., L. Pollock, and K. Vijay-Shanker (2007). Exploring the neighborhood with Dora to
expedite software maintenance. In Proceedings of the 22nd International Conference on
Automated Software Engineering, pp. 14–23.

Hill, E., S. Rao, and A. Kak (2012). On the use of stemming for concern location and bug
localization in java. In Proceedings of the Source Code Analysis and Manipulation, pp.
184–193.

Hindle, A., M. Godfrey, and R. Holt (2009). What’s hot and what’s not: Windowed developer
topic analysis. In Proceedings of the IEEE International Conference on Software Mainte-
nance, pp. 339–348.

Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the 22Nd An-
nual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 50–57.

Jiang, H., T. Nguyen, X. Chen, H. Jaygarl, and C. Chang (2008). Incremental latent semantic
indexing for automatic traceability link evolution management. In Proceedings of the 2008
23rd IEEE/ACM International Conference on Automated Software Engineering, pp. 59–68.

Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold (2001). Getting
started with aspectj. Communications of the ACM 44(10), 59–65.

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the
ACM 46(5), 604–632.

Kuhn, A., S. Ducasse, and T. Gírba (2007). Semantic clustering: Identifying topics in source
code. Information and Software Technology 49(3), 230–243.

Kunz, P. (2001). The hippodraw application and the hippoplot c++ toolkit upon which it is built.
In Proceedings of the CHEP.

Lalmas, M. and R. Baeza-Yates (2009). Structured Document Retrieval. Springer US.

441

Lawrie, D., C. Morrell, H. Feild, and D. Binkley (2006). What’s in a name? a study of iden-
tifiers. In Proceedings of the 14th IEEE International Conference on Program Comprehen-
sion, pp. 3–12.

Li, W., D. Blei, and A. McCallum (2012). Nonparametric bayes pachinko allocation.
CoRR abs/1206.5270.

Li, W. and A. McCallum (2006). Pachinko allocation: Dag-structured mixture models of topic
correlations. In Proceedings of the 23rd International Conference on Machine Learning, pp.
577–584.

Liu, D., A. Marcus, D. Poshyvanyk, and V. Rajlich (2007). Feature location via information
retrieval based filtering of a single scenario execution trace. In Proceedings of the 22nd
International Conference on Automated Software Engineering, pp. 234–243.

Lormans, M. and A. van Deursen (2005). Reconstructing requirements coverage views from
design and test using traceability recovery via lsi. In Proceedings of the 3rd international
workshop on Traceability in emerging forms of software engineering, pp. 37–42.

Lu, W. and M. Kan (2007). Supervised categorization of javascripttm using program analysis
features. Information Processing and Management 43(2), 431–444.

Lukins, S., N. Kraft, and L. Etzkorn (2008). Source code retrieval for bug localization using
latent dirichlet allocation. In Proceedings of the 15th Working Conference on Reverse Engi-
neering, pp. 155–164.

Lukins, S., N. Kraft, and L. Etzkorn (2010). Bug localization using latent Dirichlet allocation.
Information and Software Technology 52(9), 972–990.

Manly, K. F. and J. M. Olson (1999). Overview of qtl mapping software and introduction to
map manager qt. Mammalian Genome 10(4), 327–334.

Manning, C., P. Raghavan, and H. Schutze (2008). An Introduction to Information Retrieval.
Cambridge University Press.

Marcus, A. and T. Menzies (2010). Software is data too. In Proceedings of the FSE/SDP work-
shop on Future of Software Engineering research, pp. 229–232.

Marcus, A., V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev (2005). Static techniques for
concept location in object-oriented code. In Proceedings of the 13th International Workshop
on Program Comprehension, pp. 33–42.

442

Marcus, A., A. Sergeyev, V. Rajlich, and J. Maletic (2004). An information retrieval approach to
concept location in source code. In Proceedings of the 11th Working Conference on Reverse
Engineering, pp. 214–223.

Maskeri, G., S. Sarkar, and K. Heafield (2008a). Mining business topics in source code using la-
tent Dirichlet allocation. In Proceedings of the 1st conference on India software engineering
conference, pp. 113–120.

Maskeri, G., S. Sarkar, and K. Heafield (2008b). Mining business topics in source code using
latent Dirichlet allocation. In Proceedings of the 1st India Software Engineering Conference,
pp. 113–120.

Mimno, D., W. Li, and A. McCallum (2007). Mixtures of hierarchical topics with pachinko
allocation. In Proceedings of the 24th International Conference on Machine Learning, pp.
633–640.

Moreno, L., L. Treadway, A. Marcus, and W. Shen (2014). On the use of stack traces to im-
prove text retrieval-based bug localization. In Proceedings of the 30th IEEE International
Conference on Software Maintenance and Evolution, pp. 151–160.

Müller, H., J. Jahnke, D. Smith, M.-A. Storey, S. Tilley, and K. Wong (2000). Reverse engineer-
ing: a roadmap. In Proceedings of the Future of Software Engineering, pp. 47–60.

Newby, G. (2000). The science of large scale information retrieval. Internet archives.

Nikulin, M. S. (2001). Hellinger distance. Encyclopedia of Mathematics.

Northover, S. and M. Wilson (2004). Swt: the standard widget toolkit, volume 1. Addison-
Wesley Professional.

Ogilvie, P. and J. Callan (2002). Language models and structured document retrieval. In Pro-
ceedings of the Initiative for the Evaluation of XML Retrieval Workshop, pp. 18–23.

Panichella, A., B. Dit, R. Oliveto, M. Di Penta, D. Poshynanyk, and A. De Lucia (2013). How to
effectively use topic models for software engineering tasks? An approach based on genetic
algorithms. In Proceedings of the International Conference on Software Engineering, pp.
522–531.

Parr, T. J. and R. W. Quong (1995). Antlr: A predicated-ll (k) parser generator. Software: Prac-
tice and Experience 25(7), 789–810.

Pinheiro, F. and J. Goguen (1996). An object-oriented tool for tracing requirements. In Proceed-
ings of the Second International Conference on Requirements Engineering, pp. 219.

443

Poshyvanyk, D., Y. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich (2007). Feature loca-
tion using probabilistic ranking of methods based on execution scenarios and information
retrieval. IEEE Transactions on Software Engineering 33(6), 420–432.

Poshyvanyk, D. and A. Marcus (2007). Combining formal concept analysis with information
retrieval for concept location in source code. In Proceedings of the International Conference
on Program Comprehension, pp. 37–48.

Poshyvanyk, D., A. Marcus, R. Ferenc, and T. Gyimóthy (2009). Using information retrieval
based coupling measures for impact analysis. Empirical software engineering 14(1), 5–32.

Rajlich, V. (2011). Software Engineering: The Current Practice. CRC Press.

Rajlich, V. and N. Wilde (2002). The role of concepts in program comprehension. In Proceed-
ings of the 10th International Workshop on Program Comprehension, pp. 271–278.

Ramesh, B. and V. Dhar (1992). Supporting systems development by capturing deliberations
during requirements engineering. Software Engineering, IEEE Transactions on 18(6), 498–
510.

Reiss, S. (2009). Semantics-based code search. In Proceedings of the IEEE 31st International
Conference on Software Engineering, pp. 243–253.

Revelle, M., B. Dit, and D. Poshyvanyk (2010). Using data fusion and web mining to support
feature location in software. In Proceedings of the 18th IEEE International Conference on
Program Comprehension, pp. 14–23.

Rousseeuw, P. (1986). Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics 20(0), 53–65.

Runeson, P., M. Alexandersson, and O. Nyholm (2007). Detection of duplicate defect reports
using natural language processing. In Proceedings of the 29th International Conference on
Software Engineering, pp. 499–510.

Saha, R., M. Lease, S. Khurshid, and D. Perry (2013). Improving bug localization using struc-
tured information retrieval. In Proceedings of the 28th IEEE/ACM International Conference
on Automated Software Engineering, pp. 345–355.

Salton, G. and C. Buckley (1988). Term-weighting approaches in automatic text retrieval. In-
formation Processing & Management 24(5), 513–523.

Salton, G. and M. McGill (1986). Introduction to Modern Information Retrieval. McGraw-Hill.

444

Scanniello, G. and A. Marcus (2011). Clustering support for static concept location in source
code. In Proceedings of the 19th IEEE International Conference on Program Comprehen-
sion, pp. 1–10.

Scheuermann, C., M. Werner, M. Kessel, C. Linnhoff-Popien, and S. Verclas (2012). Evalu-
ation of barcode decoding performance using zxing library. In Proceedings of the Second
Workshop on Smart Mobile Applications, pp. 1–6.

Shao, P. and R. Smith (2009). Feature location by ir modules and call graph. In Proceedings of
the 47th Annual Southeast Regional Conference, pp. 70:1–70:4.

Sisman, B. and A. Kak (2012). Incorporating version histories in information retrieval based
bug localization. In Proceedings of the 9th IEEE Working Conference on Mining Software
Repositories, pp. 50–59.

Song, D. and P. Bruza (2001). Discovering information flow using high dimensional conceptual
space. In Proceedings of the 24th International ACM SIGIR conference on Research and
development in information retrieval, pp. 327–333.

Standish, T. (1984). Information retrieval data structures and algorithms. IEEE Transactions on
Software Engineering 10(5), 494–497.

Strohman, T., D. Metzler, H. Turtle, and W. B. Croft (2005). Indri: A language model-based
search engine for complex queries. In Proceedings of the International Conference on Intel-
ligent Analysis, pp. 2–6.

Tairas, R. and J. Gray (2009). An information retrieval process to aid in the analysis of code
clones. Empirical Software Engineering 14(1), 33–56.

Teh, Y., M. Jordan, M. Beal, and D. Blei (2006). Hierarchical dirichlet processes. Journal of the
American Statistical Association 101(476), 1566–1581.

Turtle, H. and W. B. Croft (1990). Inference networks for document retrieval. In Proceedings
of the 13th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 1–24.

Voorhees, E. (1999). The trec-8 question answering track report. In Proceedings of the TREC-8,
pp. 77–82.

Wang, S., D. Lo, and J. Lawall (2014). Compositional vector space models for improved bug
localization. In Proceedings of the International Conference on Software Maintenance and
Evolution, pp. 171–180.

445

Wille, R. (2005). Formal concept analysis as mathematical theory of concepts and concept hi-
erarchies. In Formal Concept Analysis, pp. 1–33. Springer.

Zamania, S., S. P. Lee, R. Shokripoura, and J. Anvikb (2014). A noun-based approach to fea-
ture location using time-aware term-weighting. Information and Software Technology 56(8),
991–1011.

Zhai, C. and J. Lafferty (2004). A study of smoothing methods for language models applied to
information retrieval. ACM Transactions on Information Systems 22(2), 179–214.

Zhao, W., L. Zhang, Y. Liu, J. Sun, and F. Yang (2004). SNIAFL: Towards a static noninter-
active approach to feature location. In Proceedings of the 26th International Conference on
Software Engineering., pp. 293–303.

Zhao, W., L. Zhang, Y. Liu, J. Sun, and F. Yang (2006). SNIAFL: Towards a static noninterac-
tive approach to feature location. ACM Transactions of Software Engineering Methodolo-
gies 15(2), 195–226.

Zhou, J., H. Zhang, and D. Lo (2012). Where should the bugs be fixed? more accurate infor-
mation retrieval-based bug localization based on bug reports. In Proceedings of the 34th
International Conference on Software Engineering, pp. 14–24.

446

Appendix A
EXAMPLE QUERIES

Feature Query

549 Enumeration datatypes should be represented on the class diagram

Table A.1: Example Title Query for ArgoUML

Number Query

0 enumer datatyp repres class diagram

1 [identifiers](enumer datatyp repres class diagram)

2 [comments](enumer datatyp repres class diagram)

3 [literals](enumer datatyp repres class diagram)

4–19 weight({1,2,3,4} [identifiers](enumer datatyp repres class diagram)

{1,2,3,4} [comments](enumer datatyp repres class diagram))

20–35 weight({1,2,3,4} [identifiers](enumer datatyp repres class diagram)

{1,2,3,4} [literals](enumer datatyp repres class diagram))

36–51 weight({1,2,3,4} [comments](enumer datatyp repres class diagram)

{1,2,3,4} [literals](enumer datatyp repres class diagram))

52–115 weight({1,2,3,4} [identifiers](enumer datatyp repres class diagram)

{1,2,3,4} [comments](enumer datatyp repres class diagram)

{1,2,3,4} [literals](enumer datatyp repres class diagram))

Table A.2: Example Output Title Queries for the ICL corpus for ArgoUML and Feature 549. The
{} are used to indicate that every combination of the contained values are used.

447

	ABSTRACT
	DEDICATION
	LIST OF ABBREVIATIONS AND SYMBOLS
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Software Change
	Overview of Text Retrieval
	The Source Code Lexicon
	Vector Space Model (VSM)
	Latent Semantic Indexing (LSI)
	Latent Dirichlet Allocation (LDA)
	Language Modeling
	Structured Document Retrieval

	Overview
	Structural Weighting of LDA
	Structured Source Code Retrieval
	Comparing Structured Retrieval with Structural Weighting of LDA

	Organization

	Related Work
	Text Retrieval Based Feature Location
	Combining Additional Information with Text Retrieval
	Configuration and Corpus Creation

	Preliminary Study on Configuring LDA
	Case Study
	Definition and Context
	Overview
	Subject software systems
	Benchmarks
	Effectiveness measure
	Setting
	Hypotheses
	Data Collection and Analysis

	Results
	Part 1: Testing for Interactions among Factors
	Part 2: Configuring the Query
	Part 3: Configuring the Text Extractor and K
	Part 4: Configuring and
	Part 5: Applying the Lessons Learned

	Discussion of Results
	Part 2: Configuring the Query
	Part 3: Configuring the Text Extractor and K
	Part 4: Configuring and

	Threats to Validity
	Summary

	Structural Weighting of LDA
	Study Design
	Definition and Context
	Research Questions
	Data Collection and Analysis
	Threats to Validity

	Results of Case Study
	Does structural weighting of comments, leading terms, and local variables affect the accuracy of a LDA-based feature location technique (FLT)?
	Can a relationship between the contributions of each structural component's lexicon and their weighting factors be found?

	Discussion of Results
	Does structural weighting of comments, leading terms, and local variables affect the accuracy of a LDA-based feature location technique (FLT)?
	Can a relationship between the contributions of each structural component's lexicon and their weighting factors be found?
	Recommendations

	Using Machine Learning to Find Optimum Configurations
	Genetic Algorithms
	Fitness Functions Used in Study
	The Search Process
	Searching Eclipse

	Summary

	Structured Source Code Retrieval
	Approach
	Overview of Indri
	The Indri Retrieval Model
	Creating a Structured Corpus
	Creating Structured Queries

	Study Design
	Definition and Context
	Research Questions
	Data Collection and Analysis
	Threats to Validity

	Results of Case Study
	Does query type affect the accuracy of a structured retrieval-based FLT?
	Does changing the combination of included fields affect the accuracy of a structured retrieval-based FLT?
	Does structural weighting affect the accuracy of a structured retrieval-based FLT?
	How does the best configuration of structural field combination and weighting affect the accuracy of a structured retrieval-based FLT?

	Discussion of Results
	Does query type affect the accuracy of a structured retrieval-based FLT?
	Does changing the combination of included fields affect the accuracy of a structured retrieval-based FLT?
	Does structural weighting affect the accuracy of a structured retrieval-based FLT?
	How does the best configuration of structural field combination and weighting affect the accuracy of a structured retrieval-based FLT?

	Summary

	Lessons Learned and Future Work
	What are the benefits and consequences of using structural weighting in LDA?
	What are the benefits and consequences of using structured retrieval for feature location?
	Future Work
	Improved Learning Algorithms
	Empirical Studies
	Modeling Structural Information
	Additional Software Tasks

	Conclusion
	Structural Weighting of LDA
	Structured Retrieval
	Final Remarks

	REFERENCES
	Appendix
	Example Queries

