LinTraP: Primitive Operators for the Execution of Model
Transformations with LinTra

Loli Burgueno
Universidad de Malaga
Malaga, Spain
loli@lcc.uma.es

Jeff Gray
University of Alabama
Tuscaloosa AL, USA

gray@cs.ua.edu

ABSTRACT

The problems addressed by Model-Driven Engineering (MDE)
approaches are increasingly complex, hence performance and
scalability of model transformations are gaining importance.
In previous work, we introduced LinTra, which is a platform
for executing out-place model transformations in parallel.
The parallel execution of LinTra is based on the Linda co-
ordination language, where high-level model transformation
languages (MTLs) are compiled to LinTra and eventually
executed through Linda. In order to define the compilation
modularly, this paper presents a minimal, yet sufficient, col-
lection of primitive operators that can be composed to (re-
)construct any out-place, unidirectional MTL.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering; D.1.3 [Programming

Techniques|: Concurrent Programming; C.4 [Computer
Systems Organization|: Performance of systems

Keywords
Model Transformation, Linda, LinTra

1. INTRODUCTION

Model-Driven Engineering [2] is a relatively new paradigm
that has grown in popularity in the last decade. Although
there is a wide variety of approaches and languages with dif-
ferent characteristics and oriented to different types of model
transformations (MT), most model transformation engines
are based on sequential and local execution strategies. Thus,
they have limited capabilities to transform very large models
(with thousands or millions of elements), and provide even
less capabilities to perform the transformation in a reason-
able amount of time.

BigMDE 14 July 24, 2014. York, UK. Copyright @ 2014 for the individual
papers by the papers’ authors. Copying permitted for private and academic
purposes. This volume is published and copyrighted by its editors.

Eugene Syriani
University of Alabama
Tuscaloosa AL, USA

esyriani@cs.ua.edu

Manuel Wimmer
Vienna University of
Technology

. Vienna, Austria
wimmer@big.tuwien.ac.at

Antonio Vallecillo
Universidad de Malaga

Malaga, Spain
av@lcc.uma.es

In previous works [3, 4], we investigated concurrency and
distribution for out-place transformations to increase their
performance and scalability. Our approach, LinTra, is based
on Linda [8], a mature coordination language for parallel
processes that supports reading and writing data in par-
allel into distributed tuple spaces. A tuple space follows
the Blackboard architecture [5], which makes the data dis-
tributed among different machines transparent to the user.

To execute transformations on the LinTra architecture, Lin-
Tra specifies how to represent models and metamodels, how
the trace links between the elements in the input model and
the elements created from them are encoded for efficient re-
trieval, which agents are involved in the execution of the
MTs and their role, how the MTs are executed in parallel,
and how the models are distributed over the set of machines
composing the cluster where each MT is executed.

The implementation of several case studies using the Java
implementation of LinTra (jLinTra) is available on our web-
site!, together with the performance comparison with sev-
eral well-known model transformation languages (MTLs)
such as ATL [11], QVT-O [14] and RubyTL [7].

In order to hide the underlying LinTra architecture and in
order to ease the compilation from any existing out-place
MTL to the LinTra engine, in this paper we propose a col-
lection of minimal, yet sufficient, primitive operators that
can be composed to (re-)construct any out-place and uni-
directional MTL. These primitive operators encapsulate the
LinTra implementation code that makes the parallel and dis-
tributed execution possible, serving as an abstraction of the
implementation details of the general-purpose language in
which LinTra is implemented.

The rest of the paper is structured as follows. Section 2
introduces the collection of primitives. Section 3 illustrates
examples of primitive combinations in order to write MTs.
Section 4 discusses the related work to our approach. Fi-
nally, Section 5 presents our conclusions and an outlook on
future work.

"http://atenea.lcc.uma.es/index.php/Main_Page/
Resources/MTBenchmark

2. COLLECTION OF PRIMITIVES

This section shortly introduces LinTra, presents the set of
primitive operators, and describes the mapping of the prim-
itive operators to LinTra.

2.1 Background on LinTra

LinTra uses the Blackboard paradigm [5] to store the input
and output models, as well as the required data to keep
track of the MT execution that coordinates the agents that
are involved in the process.

One of the keys of our approach is the model and metamodel
representation. In this representation, we assume that ev-
ery entity in the model is independent from another. Each
entity is assigned an identifier that is used for representing
relationships between entities and by the trace model. Rela-
tionships between entities are represented by storing in the
source entity the identifier(s) of its target entity(ies).

Traceability is frequently needed when executing an out-
place model transformation because the creation of an ele-
ment might require information about some other elements
previously transformed, or even information about elements
that will be transformed in the future. This means that
there might be dependencies that can affect the execution
performance, e.g., when one element needs access to an ele-
ment that has not been created yet. In LinTra, traceability
is implemented implicitly using a bidirectional function that
receives as a parameter the entity identifier (or all the entity
identifiers in the case that the match comprises more than
one entity) of the input model and returns the identifier of
the output entity (ies), regardless whether the output entities
have already been created or not. This means that LinTra
does not store information about the traces explicitly; thus,
the performance is not affected by the access to memory and
the search for trace information.

Together with the Blackboard, LinTra uses the Master-Slave
design pattern [5] to execute MTs. The master’s job is to
launch slaves and coordinate their work. Slaves are in charge
of applying the transformation in parallel to submodels of
the input model (i.e., partitions) as if each partition is a
complete and independent model. Since LinTra only deals
with out-place transformations, the complete input model is
always available. Thus, if the slaves have data dependencies
with elements that are not in the submodels they were as-
signed, they only have to query the Blackboard to retrieve
them.

2.2 Primitives

Two different kinds of primitives can be distinguished in Lin-
Tra: the primitive constructs to encapsulate the concurrent
execution platform and the primitive constructs needed by
the MTL.

Primitives for the Concurrent Platform. Despite the
fact that due the representation of models in LinTra, all
model elements are independent from each other, LinTra re-
quires the user to specify the size of every partition, i.e.,
how many elements belong to each one. Furthermore, al-
though there is no need of specifying how the elements are
partitioned or which elements belong to the same partition,
LinTra offers that possibility.

The PartitionCreator primitive receives the input model,
an OCL expression, OF, and the maximum number of model
entities, S, that each partition will contain. The Partition-
Creator queries the input model using OF and partitions
the resulting submodel into partitions of size S. The com-
bination of PartitionCreators with different OCL expres-
sions may lead to overlapping partitions; thus, the LinTra
engine checks internally that the intersection of all the par-
titions is empty and the union is the whole model. The
purpose of OE is to give the user the possibility to optimize
the MT execution.

Primitives for the Model Transformation Language.

The minimum set of primitive constructs needed to define

out-place model transformations are: Composer, Tracer, Cre—
ator, CondChecker, Finder, Declarer and Assigner.

Composer is a primitive that allows the grouping of a com-
bination of primitives and assigns the combination a name.
Its syntax is Composer <composerName> { <combination
of primitives> } and it is mainly used by the Tracer.

The Tracer provides access to the trace model needed by
out-place MT engines for linking the entities in the out-
put model. Given an input entity or set of entities that
match the pre-condition of a rule, the traces give access
to the entities that were created in the post-condition, and
vice versa. In this case, to identify which primitive belongs
to which rule, we propose to encapsulate them in a Com-
poser so that the Tracer receives as a parameter the name
of the Composer and the set of entities from the pre or post-
condition and gives the reference to the other entities. Its
signature is Tracer(composer : Composer, e : Entity) : Col-
lection(Entity) and Tracer(composer : Composer, e : Col-
lection(Entity)) : Collection(Entity). The Collection corre-
sponds to the four collection types in OCL: Set, OrderedSet,
Bag, and Sequence. Furthermore, in a Composer, more than
one element might be created; thus, in the Tracer, the con-
crete Creator might need to be specified given its name,
being its syntax Tracer(composer : Composer, e : Collec-
tion(Entity), creatorName : String) : Collection(Entity).

Creator creates an entity given its data type and its fea-
tures (attributes and bindings) and writes it in the Black-
board. The primitive receives as parameter the entity type
and a dictionary which stores the values of every feature.
The dictionary is a collection of key-value pairs where the
first element is the name of the feature and the second its
value. The type of the values received by the dictionary
are of two kinds: OCL primitive data types, which cor-
respond to the basic data types of the language (string,
boolean and numbers in their different formats), and the
types defined by all the classes given by the output meta-
model. Furthermore, the values can be an OCL collection of
the previous types. Its syntax is Creator(type : Factory, fea-
tures : Dictionary<feature : String, value: OCLDataType |
Entity>). Moreover, the Creator might have an optional
parameter of type String specifying its name, Creator(type

Factory, features : Dictionary<feature : String, value:
[OCLDataType | Entity[>, name : String). This is needed
in case that it is referenced by a Tracer.

CondChecker allows the querying of the input model in the

Blackboard with an OCL expression that evaluates to a
boolean value. It receives as input the OCL expression,
queries the Blackboard and returns the result. Its signature
is CondChecker(expr : OCLExpression) : Boolean.

Finder allows the retrieval of elements from the Blackboard
that satisfy a constraint. It receives as a parameter an OCL
expression and returns the set of entities (submodel) that
fulfils the OCL expression. Its signature is Finder(ezpr :
OCLEzpression) : Collection(Entity).

Declarer allows to create a global variable that can be ac-
cessed by its name from any other primitive and that is
accessed by all the Slaves involved in the transformation
process. Its syntax is Declarer(type : [OCLDataType | En-
tity], name : String). The value of the variable is set by
Assigner.

Assigner sets the value of a variable defined by Declarer.
Assigner receives as a parameter the name of the variable
and its value. Its syntax is Assigner(varName : String, value
: [OCLDataType | Entity | Creator]). In the case that the
second parameter is a Creator, the element is stored in the
Blackboard and the variable points to it. In case the variable
is stored in the Blackboard, every time it is updated, the
corresponding value in the Blackboard is overwritten. If
the second parameter is an OCL primitive data type or an
entity, the variable is stored in memory and accessed while
the MT is executed but it is not a persistent value in the
Blackboard.

Figure 1 shows a class diagram with all the primitives and
their relationships.

B Primitive

4
[w

H EnginePrimitivé H MTLPrimitive| 0.

i % == | | = 1
H PartitionCreatot| | H CondChecker] H Finder 5 Composer
B Creator B Tracer
H Declarer H Assigner

Figure 1: Primitives Class Diagram.

2.3 Integrating the Primitives with the LinTra
Engine
When executing a transformation with LinTra there are sev-
eral steps. Some of the steps are done automatically by the
engine and others require that the user gives certain guide-
lines on how to proceed by means of the primitives. Two
different phases can be distinguished: the setup and the MT
execution itself.

The semantics of some MTs might require that a certain set
of rules are applied to the whole input model before applying

0N WN -

©

or after having applied some others. This is the case, for
example, of top rules in QVT-R [14], and entrypoint and
endpoint rules in ATL [11]. In order to be able to express
this behaviour, in the setup phase, the rule schedule must
be extracted from the transformation given by the user and
a collection of rules (or rule layers) must be created. All the
rules belonging to the same layer can be executed in parallel,
but all rules in one layer must have terminated before rules
in a subsequent layer can begin.

Furthermore, during the setup, the transformation written
in a high-level MTL is compiled to the MTL primitives, and
the input model is parsed to the tuple space representation
and stored into the Blackboard. Then, the PartitionCre-
ator provided by the user is executed and the model parti-
tions are created. Finally, the tasks to be executed by the
slaves are created and stored in order in the Blackboard. A
task is a pair consisting of a rule layer and a model parti-
tion. The tasks are produced by computing all the possible
combinations between the partitions and the rule layers.

After the setup phase is finished, the LinTra MT engine
starts using the Master-Slave design pattern. The master
creates slaves that execute the tasks that share the same
rule layer and waits for all the tasks to be finished before
starting to execute the ones that involve the following layer.
Every slave executes the assigned task sequentially and all
the slaves work in parallel. The master behaviour after
launching the slaves is given by the pseudo-code presented
in Listing 1.

Listing 1: Master.
params :: Integer nSlaves
index := 1
slavePool := createSlaves(nSlaves)
task := Blackboard.Tasks.dequeue ()
while (task != null){
while (task != null

and task.rulelayer.index = index)

slave := slavePool.getIdleSlave ()

slave.execute (task)

-- blocking

task := Blackboard.Tasks.dequeue ()
join() -- wait for all the slaves to finish
-- before starting to transform the
-- tasks involving the next rulelayer
index := index + 1

}

When a slave receives a task, it transforms the submodel
given by its partition with the rules given by its rule layer.
These rules are a collection of MT primitives. The code
executed by the slaves is shown in Listing 2. An overview of
how the system works can be seen in the activity diagram
presented in Figure 2.

Listing 2: Slave - execute method
for each e € task.partition {
task.rulelLayer.transforms (e)
¥

The sequential execution of a MT is a concrete scenario in
LinTra. There are several ways to achieve it. The MT is
executed sequentially either by not partitioning the input
model (therefore, only one task is created and executed se-
quentially by a single slave) or by launching only one slave

" Compile MT to |

Primitives
_Exaz’t Rule _C reate Rule
Scheduling Layers

(" Store Input | :
‘ Model into the H Create Model

Blackboard Partitions

Serialize Execute B ;

3 |rr4 Create Tasks

| Output Model [~ | Transformation) L. ,-l
“ o . -

Figure 2: Activity Diagram of the Transformation
Process.

that transforms all the tasks.

A class diagram showing all the elements involved in LinTra
and how they are related to each other can be found in
Figure 3. It contains the Master and Slave where every
slave executes a Transformation which is a collection of MT
Primitives that accesses to a Blackboard which is composed
by Areas that contain both Tasks - formed by a Rule Layer
and Partitions - and and the Entities that belong to a certain
Model. MTLPrimitive in this diagram corresponds with the
root class in the diagram presented in Figure 1.

H Master launche¢s [Slave executes H Transformation
T 0..
T
O"iipnm\ ives
longs T
H Flement = § H Area H MTLPrimitive
ontains 1 I
\ accesses
H Task B Entity H Blackboard
o id : EString
0
1 1 entiti
H Rulelayer ||H ModelPartitior| H Model

Figure 3: LinTra Class Diagram Metamodel.

3. EXAMPLES

This section demonstrates how the introduced primitives are
used for concrete transformation examples.

3.1 Activity Diagram to Petri Net

This case study is a simplification of the transformation from
UML Activity Diagrams to Petri Nets described in [15]. The
metamodels are represented in Figures 5 and 6 and, for sim-
plicity, only contain the elements needed by our simplified
transformation.

The MT simplification consists of an unaltered subset of
the original MT which focuses on transforming only sev-
eral elements belonging to the input model instead of the

Output element(s)

Input element(s

Initial Node, Place {ylgh_‘ggggﬂj + Arc + Transition
Final Node Transmon + Arc + Place
Activity Node

U
'5

%)

M

AcceptSignal Place + Arc + Transition
Activity Edge. Arc+ Place +Arc
signal.id ==

Transition + Arc Place + Arc + Transition
Transition + Arc + Place

acceptSignal.id Arc + Tra nsition + Arc

Figure 4: Activity Diagram to Petri Net Transfor-
mation.

whole model. Every Initial Node is transformed to a pro-
cessing Place with one token, an Arc pointing to a Transition
and other Transition. Every Final Node is transformed to a
Transition, an Arc pointing to a Place and such Place. From
every Action Node, an entry Transition, an Arc pointing to a
Place, such Place, an Arc from it to another Transition, and
such Transition are created. Every Signal is transformed in
the same way as a Final Node and every Accept Signal as
an Initial Node but with no token. Activity Edges between
any kind of nodes are transformed as an Arc pointing to a
Place, the Place and another Arc coming from it. Every pair
Signal-Accept Signal with the same value for their feature
signalld are transformed in the same way as Activity Edges.
For a better understandability, the previous transformation
rules are represented graphically in Figure 4. Finally, only
one entity of PetrilNet is created in the output model whose
name is the String “PNet” concatenated with the number
of arcs, the number of places and the number of transac-
tions in the output model after the whole transformation
process. All places, arcs and transitions must be linked to
that PetriNet entity.

Let us assume that the user does not specify how the enti-
ties are assigned to the different partitions and the partition
size is 100. The partition creator is invoked as Partition-
Creator(inModel, Entity.alllnstances, 100). Let us suppose
that it returns three partitions, P = {pl,p2, p3}. From the
MT, the rule schedule is extracted and the rule layers are
created. Given the MT definition, three different rule lay-

g WN -

H Activity

E ADElement [0-" activityDia

S name:: EString |9 ntains

H ActivityNode |1 4 H ActivityEdge
S current: EBoolean | ftarget 0." = guard : EBoolean
il . =
4 source sedge@--
[| — L
H ActionNode | | H ControlNode H signalNode H AcceptSignalNode
2 signalld : EString = signalld : EString

H ActivityFinalNode| .| H FinalNode H InitialNode

Figure 5: Activity Diagram Metamodel.

H PetriNet
= name : EString
/./ . T
O..“‘ﬂaﬂﬁs 0."qrcs transitions 0.
H Place H Arc H Transition

= token : EInt
= name : EString

= weight : EInt
= toPlace : EBoolean

= name : EString

"1 transition
S /

Figure 6: Petri Net Metamodel.

place l_/’

ers are created: RL = [I1,12,13] where I contains the first
composer where a global variable for the unique Petri Net
that will be referenced by the rest of entities is created, in
[2 all the elements are created and in [3, the name of the
Petri Net is changed. Given the partitions and the layers,
the tasks to be executed are T' = [T'1,72, T3], where T'1 =
{(p1,11), (p2,11), (p3,11)}, T2 = {(p1,12), (p2,12), (p3,12)}
and T3 = {(p1,13), (p2,13), (p3,13)}. We make the distinc-
tion between 71, T2 and T3 to clarify that all tasks in 71
are relative to 1, all tasks in T2 are relative to [2 and all
tasks in T8 are relative to [3; thus, until all tasks from T'1
have been executed, tasks from T2 cannot start and until
all tasks in T2 have been executed, tasks from T8 cannot
start.

The compilation process from the high-level MT to the prim-
itives produces the code shown in Listings 3, 4, and 5.

Listing 3: MTL Primitives for the first rule layer

a1).

Composer First {
Declarer (PetriNet , pNet)
Assigner (pNet ,
Creator (PetriNet , {[name, ’PNet’]}))
}

As the case study requires that only one PetriNet instance
is created and the rest of the elements in the output model
reference it, there is a need for a global variable that must
be available before the rest of the rules are applied. Listing
3 declares in line 1 a composer which, encapsulates the dec-
laration of a variable called pNet (line 2) and the creation

1

of the PetriNet entity (lines 3 and 4). Note that, as the en-
tity created is a persistent entity which is part of the output
model (instead of a temporary variable), the second param-
eter of the assigner is a creator, which means that the value
is stored in the Blackboard and the variable is a pointer to
it.

Listing 4 shows part of the primitives that compose the sec-
ond rule layer. In particular, this listing shows the collection
of primitives to transform ActionNodes and SignalNodes and
to match the output entities created from SignalNodes and
AcceptSignalNodes.

Lines 2, 21 and 33 show the condition checkers which impose
the pre-conditions that the entity, e, given by a task, has
to fulfil to be transformed by the set of primitives inside
the if the condition checker. For instance, given e, if the
condition checker in line 2 is fulfilled, it means that e is of
type SignalNode and from it, the entities specified by the
creators in lines 3, 5, 10, 12 and 17 will be created. For
example, in the creator in line 5, an Arc is created where
transition points to the entity created by the creator called
t1, place points to the entity created by creator p, toPlace
is set to true and net points to the element given by the
global variable pNet. The name of the creators is optional,
and in this example, it is only given when it is needed by a
tracer. For example, the tracer in line 6 gives the reference
to the entity created from e in ActNode by a creator called
t1.

A tracer can give the reference to an entity that has been
created either in the same composer or in a different com-
poser. It can also point either to a composer located in the
same rule layer or in a different rule layer. An example of the
first case is the tracer in line 39, which points to a creator
in the composer Signal.

The last composer encompasses the entities created by every
pair Signal-Accept Signal with the same signalld. This is a
particular case where from every entity, e, received in the
task and fulfilling the condition checker in line 33 (i.e. whose
type is SignalNode), it is needed to find in the Blackboard
all the elements of type AcceptSignalNode with the same
signal identifier as e. This is achieved by using the Finder
primitive in line 34.

Listing 4: MTL Primitives for the second rule layer
(12).
Composer ActNode {
if (CondChecker(e.oclIsType0Of (ActionNode)))
Creator (Transition,

{[name, e.name]|, [net, pNet]}, ’t1’)
Creator (Arc,
{[transition , Tracer (ActNode ,e, ’t1°)],
[place , Tracer(ActNode ,e,’p’)],
[toPlace, true],
[net, pNet]})
Creator (Place,
{[name ,e.name] ,[net ,pNet] ,[token,0]}, ’p’)
Creator (Arc,
{[transition , Tracer(ActNode, e, ’'t27)],
[place , Tracer (ActNode, e, ’p’)],
[toPlace, false],
[net, pat]})
Creator(Transition ,
{[name, e.name], [net, pNet]}, ’t27)

20

Composer Signal {
if (CondChecker(e.oclIsTypeOf (SignalNode)))
Creator(Transition ,

{[name, e.name], [net, pNet]}, ’'t’)
Creator (Arc,
{[transition , Tracer(Signal,e,’t’)],
[place, Tracer(Signal, e, 'p’)],
[toPlace, true],
[net, pNet]})
Creator (Place ,
{[name, e.name] ,[net, pNet]}, ’p’)

}

Composer MatchSignals {
if (CondChecker(e.oclIsTypeOf (SignalNode)))
for (a in Finder(AcceptSignalNode.allInstances

—>select (as|e.activityDiag = as.activityDiag
and e.signalld = a.signalld)
Creator (Arc,

{[place,

Tracer(Signal, e,
[transition,

Tracer(MatchSignals ,
[toPlace, false],
[net, pNet]})

Creator (Transition,
{[name, e.name+’—’+a.name],
[net, pNet]}, ’t’)

Creator (Arc,

{[place,
Tracer(AcceptSignal , e,

[transition,
Tracer(MatchSignals , {e,

[toPlace, true],

[net, pNet]})

'),

{e, a}, "¢,

') 1,

al, 't’)],

Finally, once all the output entities have been created, the
third rule layer, where the name of the only PetriNet is
updated, can be executed. Listing 5 shows how it is done
using an Assigner and a Creator inside of it that overwrites
the value of the pNet.

Listing 5: MTL Primitives for the third rule layer
(13).
Composer Last {
Assigner (pNet,
Creator (PetrilNet ,
{[name, pNet.name+(pNet.arcs.
+pNet.places.size ()
+pNet.transitions.size())]}))

size ()

The complete case study can be downloaded from our web-
site?. Note that, although the case study in [15] is an out-
place MT, i.e. the input and output metamodels are differ-
ent and the input model is not modified, the authors have
used an in-place MTL; thus, although the semantics of the
MT is the same, our solution is different to theirs.

3.2 Filtering Families

In this subsection, we introduce a second case study where
the input and output metamodel are the Family metamodel
shown in Figure 7. The MT consists of filtering the input
model so that the output metamodel is a subset of the input
model that contains only the families which have exactly two
daughters, two sons and their family members. This means
that the members belonging to families with more than two
daughters and two sons are not in the output model.

thtp ://atenea.lcc.uma.es/index.php?title=Main_
Page/Resources/Linda/ActivityDiag2PetriNet

1

E Family
T lastMame : 5tring

[I |]

mather
1 19 fhther
o, 1 =

H member
T name : String

daughters
g

Figure 7: Family Metamodel.

For example, this behaviour is done in ATL using a par-
ticular kind of rule called a lazy rule. Lazy rule are not
completely declarative, but they must be invoked explicitly.
In this way, the transformation for this example has a main
rule that checks if a family fulfilled the requirements and in
that case, a lazy rule that transforms its members is called.
Although in most of the cases there is a direct relation be-
tween rules in the high-level MTL and composers, this case
is an exception. With our collection of primitives, this is
done by means of a unique Composer.

Listing 6 shows the MTL primitives for this case study. An
entity, e, fulfils the condition in line 2, in line 5 a Family is
created. Then, the condition checkers in lines 11 and 15 and
creators in lines 12 and 16 transform every mother and father
of that family. All sons and daughters are transformed in
lines 20 and 24. Tracers in lines 6 and 7 reference creators
that can be invoked or not because they are inside ifs, in
the case that no entity is created, the reference points to
null. Tracers in lines 8 and 9 point to entities created inside
a for, those tracers return the pointers to all the elements
created in that creator. The complete case study can be
found on our website?.

Listing 6: MTL primitives for the Filtering Families
case study.
Composer R {
if (CondChecker(e.oclIsTypeOf (Family)
and e.daughters.size ()=2
and e.sons.size()=2))

Creator (Family , {[lastName, e.lastName],
[father , Tracer(R, e, '£7)],
[mother , Tracer(R, e, 'm’)],
[daughters , Tracer(R, e, ’ds’)],
[sons, Tracer(R, e, ’'ss’)]},

’fam’

if (CondChecker(not e.father.isOclUndefined()))
Creator (Member ,{[name ,e.father.name],
[familyFather , Tracer(R, e, ’'fam’)]},
)f 7)
if (CondChecker(not e.mother.isOclUndefined()))
Creator (Member ,{[name ,e.mother .name],
[familyMother , Tracer(R, e, ’fam’)]},
7m7)
for (daughter in e.daughters)
Creator (Member ,{[name ,daughter .name],

[familyDaughter , Tracer(R, e, ’fam’)]},
7ds7)
for (son in e.sons)
Creator (Member ,{ [name ,son.name],
[familySon, Tracer(R, e, ’fam’)]},
’ss)

3h'ctp ://atenea.lcc.uma.es/index.php?title=Main_
Page/Resources/Linda/FilteringFamilies

4. RELATED WORK

With respect to the contribution of this paper, we first elab-
orate on related work considering the performance of model
transformations in general and concerning parallel execution
in particular and second we discuss how the work on primi-
tives for model transformations is extended by this work.

The performance of model transformations is now consid-
ered as an integral research challenge in MDE [12]. For
instance, Amstel et al. [18] considered the runtime perfor-
mance of transformations written in ATL and in QVT. In
[19], several implementation variants using ATL, e.g., using
either imperative constructs or declarative constructs, of the
same transformation scenario have been considered and their
different runtime performance has been compared. However,
these works only consider the traditional execution engines
following a sequential rule application approach. One line
of work we are aware of dealing with the parallel execu-
tion of ATL transformations is [6] where Clasen et al. out-
lined several research challenges when transforming models
in the cloud. In particular, they discussed how to distribute
transformations and elaborated on the possibility to use the
Map/Reduce paradigm for implementing model transforma-
tions. A follow-up work on this is presented in Tisi et al. [17]
where a parallel transformation engine for ATL is presented.

There is also some work in the field of graph transformations
where multi-core platforms are used for the parallel execu-
tion of model transformation rules [1, 9] especially for the
matching phase of the left-hand side of graph transforma-
tion rules. A recent work exploiting the Bulk Synchronous
Parallel model for executing graph transformations based on
the Henshin transformation tool is presented in [13]. Finally,
model queries are executed for large models in a distributed
manner in an extension of EMF Inc-Query by combining in-
cremental graph search techniques and cloud computing [10].

With LinTra [3, 4], and its current implementation written
in Java, jLinTra*, we provide a framework to execute paral-
lel and distributed model transformations that requires all
MTs to be executed in Java. With the goal of designing
a Domain-Specific Language (DSL), we based our work on
T-Core [16], with specific focus on T-Core’s collection of
primitive operators that allows to write in-place MT's in an
intermediate level of abstraction which is between the high-
level MTLs and the low-level code used by the engines.

The main difference between T-Core and LinTraP is that
T-Core focuses on in-place MT while LinTra focuses on out-
place MT. This means that the nature of the problems to
address is different and also the way in which the MTs are
written. For instance, while in T-Core there exists the prim-
itive Rewriter that update the input model, in LinTra there
exists the primitive Creator that creates entities in the out-
put model.

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented a collection of primitives
which will be combined for running concurrent and dis-
tributed out-place model transformations using LinTra.

‘http://atenea.lcc.uma.es/index.php/Main_Page/
Resources/MTBenchmark

After having analyzed different high-level MTLs and the
LinTra characteristics and having discovered the complete
set of primitive operators, there are several other lines of
work we would like to explore. First, we will implement the
primitives and encapsulate the LinTra code written in Java
(jLinTra) into them. To achieve that, we will explore how
to formulate, in the most efficient way, the OCL constraints
using the methods available in LinTra to query the Black-
board. Second, we plan to create compilers from the most
common languages such as ATL or QVT-O to the primi-
tives, so that distributed models can be transformed in par-
allel reusing MTs written in those languages by means of
executing them in the LinTra engine. Third, we want to in-
vestigate some annotations for the high-level MTL, so that
the user can provide the engine details such as how the par-
allelization must be done, how the input model should be
partitioned, etc. to improve the performance of the trans-
formation. Finally, we plan to investigate the possibility of
creating a new and more specific high-level MTL for parallel
transformations.

6. REFERENCES

[1] G. Bergmann, I. R4th, and D. Varré. Parallelization of
graph transformation based on incremental pattern
matching. ECEASST, 18, 2009.

[2] M. Brambilla, J. Cabot, and M. Wimmer.
Model-Driven Software Engineering in Practice.
Synthesis Lectures on Software Engineering. Morgan
& Claypool Publishers, 2012.

[3] L. Burguefio. Concurrent Model Transformations
based on Linda. In Proceedings of Doctoral Symposium
@ MODELS, pages 9-16, 2013.

[4] L. Burgueiio, J. Troya, M. Wimmer, and A. Vallecillo.
On the Concurrent Execution of Model
Transformations with Linda. In BigMDE Workshop @
STAF, 2013.

[5] F. Buschmann, R. Meunier, H. Rohnert,

P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. Wiley, 1996.

[6] C. Clasen, M. Didonet Del Fabro, and M. Tisi.
Transforming Very Large Models in the Cloud: a
Research Roadmap. In Proceedings of CloudMDE
Workshop @ ECMFA, 2012.

[7] J. S. Cuadrado, J. G. Molina, and M. M. Tortosa.
RubyTL: A Practical, Extensible Transformation
Language. In Proceedings of ECMFA, pages 158-172,
2006.

[8] D. Gelernter and N. Carriero. Coordination languages
and their significance. Commun. ACM, 35(2):96-107,
1992.

[9] G. Imre and G. Mezei. Parallel Graph
Transformations on Multicore Systems. In Proceedings
of MSEPT, pages 86-89, 2012.

[10] B. Izs6, G. Szdrnyas, I. Réth, and D. Varré.
IncQuery-D: Incremental Graph Search in the Cloud.
In Proceedings of BigMDE Workshop @ STAF, pages
4:1-4:4, 2013.

[11] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev.
ATL: A model transformation tool. Science of
Computer Programming, 72(1-2):31-39, 2008.

[12] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige,
E. Guerra, J. S. Cuadrado, J. De Lara, I. Rath,

[14]

[15]

[17]

18]

D. Varré, M. Tisi, and J. Cabot. A Research
Roadmap Towards Achieving Scalability in Model
Driven Engineering. In Proceedings of BigMDE
Workshop @ STAF, 2013.

C. Krause, M. Tichy, and H. Giese. Implementing
Graph Transformations in the Bulk Synchronous
Parallel Model. In Proceedings of FASE, pages
325-339, 2014.

OMG. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification. Object
Management Group, 2011.

E. Syriani and H. Ergin. Operational semantics of
UML activity diagram: An application in project
management. In Proceedings of MoDRE Workshop @
RE, pages 1-8, 2012.

E. Syriani, H. Vangheluwe, and B. LaShomb. T-core:
a framework for custom-built model transformation
engines. Software & Systems Modeling, pages 1-29,
2013.

M. Tisi, S. M. Perez, and H. Choura. Parallel
Execution of ATL Transformation Rules. In
Proceedings of MoDELS, pages 656-672, 2013.

M. van Amstel, S. Bosems, I. Kurtev, and L. F. Pires.
Performance in Model Transformations: Experiments
with ATL and QVT. In Proceedings of ICMT, pages
198-212, 2011.

M. Wimmer, S. Martinez, F. Jouault, and J. Cabot. A
Catalogue of Refactorings for Model-to-Model
Transformations. Journal of Object Technology,
11(2):2:1-40, 2012.

