
A Multi-Level Technique for Modeling
Agent-Based Systems

Francisco Hernandez, Jeff Gray, Kevin Reilly

Department of Computer Science
University of Alabama at Birmingham

{hernandf, gray, reilly}@cis.uab.edu

Abstract. A layered technique is introduced in this paper to examine agent-
based systems from three different levels of abstraction. The technique provides
analysis capabilities of an agent system from the point of view of roles, agents,
and corresponding implementation objects. The core of the technique involves
the specification of meta-models for each level. Three different translators are
implemented to interpret each model and to create a corresponding specification
of the next subsequent level. The final translator generates code suited for a
specific agent environment.

1 Introduction

Research into multi-agent systems software development has taken two different di-
rections: 1) the creation of new methodologies specifically tailored to agents, and 2)
the adaptation of current object-oriented techniques to the design of multi-agent sys-
tems [1], [2]. Current studies have considered one of these two approaches, and an ex-
tensive list of studies according to this categorization is given in [2] and [3]. Both ap-
proaches have their own benefits and drawbacks because each considers agent
systems from two different perspectives. A major advantage could be achieved by in-
tegrating both approaches into a coherent technique [4].

During the analysis and design of a multi-agent system it is desirable to look at
agents as atomic objects. However, the implementation of agents as objects could lead
to an implementation that is complex, and difficult to understand, maintain and reuse
[5]. Often, objects are too fined-grained to be able to represent the complex behavior
that agents carry out [6].

The problem is that agents and objects typically operate at a different level of ab-
straction [6]. Agents are not objects [7], per se, and therefore they require special
techniques to analyze them. A technique that unifies agents and objects is required
[4]. Such a technique should be able to consider the whole life-cycle to achieve bene-
fits from both approaches. In order to do this, the technique should be able to enable
iteration along the software development cycle at different levels of abstraction.

There are several studies that consider different levels of abstraction through the
development cycle. Odell et al. presents a layered approach to protocols and uses an
extension of UML to model different properties of agents [8]. Bergenti and Poggi also
present an agent toolkit that can operate at two different levels of abstraction and

helps to bridge the gap between the specification and the implementation of agent-
based systems [9].

This paper introduces a three level technique that looks at multi-agent systems
from three independent levels of abstraction. This technique considers the system
from the perspective of roles, agents, and objects. The core of the technique creates
meta-models for each level. Three translators are necessary to interpret each model
and create a corresponding specification that is fed into the next subsequent level. The
final translator generates code suited for a specific agent environment.

In this paper, the internal behavior of an agent is specified. The interactions be-
tween agents are specified with different models. It is beyond the scope of this paper
to define those models. Nevertheless, they need to be mentioned within this tech-
nique. Section 2 provides a general background on meta-modeling concepts. Section 3
presents the three-level technique. Section 4 presents an example of the technique;
Section 5 introduces some future work relevant to the present study. Finally, section 6
offers conclusions of the present work.

2 Meta-Modeling

In domain-specific modeling, a design engineer creates models for a specific domain
using concepts and terminology from that domain [10]. The meta-model defines the
kind of models that can be built – it specifies the ontology of the domain. In order to
create the meta-models, a modeling paradigm must be used. The modeling paradigm
is the modeling language of the application domain. The modeling paradigm provides
a set of requirements that the meta-model needs to be able to generate models of the
given domain. These requirements involve the concepts that will be used to construct
the models, the relationships and organization of those concepts, how the concepts are
viewed by the modeler and rules and constraints governing the construction of the
model [11]. Models constructed with this style capture information relevant to the
system under design. An interpreter can translate these models into executable speci-
fications used to automatically synthesize software [12].

In the technique described in this paper, a meta-model is constructed for each level.
Each meta-model is specific to the technique or methodology implemented in that
level. Three translators or interpreters are also constructed. These translators interpret
a model from a specific level and generate a model from the subsequent level. The fi-
nal translator generates implementation code suited for the specific agent environ-
ment.

3 Three Level Technique

The technique introduces three independent levels of abstraction. Each level generates
a model for the next level leading to the generation of code at the object level. This
technique uses a top-down approach in which the first model created is the one at the
highest level of abstraction. A multilevel approach is used because it combines the
advantages of the agent-oriented and object-oriented approaches. It is more intuitive

to analyze an agent-based system using common abstractions of the domain [9] such
as roles, responsibilities, and interactions properties; and at the same time proven ob-
ject-oriented modeling techniques provide a more natural approach for implementing
the system. Three levels of abstraction provide for a more intuitive mapping between
agent-oriented analysis models and traditional object-oriented design techniques that
may be applied to implement the agents. The code that is generated is suited for a spe-
cific agent environment, and should be completed with application specific code as in
[9].

ROLES Model

AGENT Model

OBJECT Model

Translator

Translator

Translator

Code

1st. Level

2nd Level

3rd. Level

Roles Meta-Model

Agent Meta-Model

Object Meta-Model

Specific Agent Environment

Fig. 1. Three level technique

A specification of a level can evolve by changing the corresponding meta-model. If

the meta-model of a level is changed, the translator of the previous layer should also
be changed since the previous level generates the initial specification for that specific
level. A visual modeling language assists the modeler in manipulating the model re-
stricted by the constraints of the meta-model. Figure 1 presents a diagram of the
whole technique.

The process for using this technique is summarized by the following tasks:

• Specify the meta-model for each of the levels.

• Specify the translator for each level to the next one in the hierarchy (starting
from the top level). The translator from the object level will generate code.

• Create a role model and translate it into its corresponding agent model.

• Modify the agent model and translate it into its corresponding object model.

• Modify the object model and generate code from that model.

• Add the application specific code for the agent.

Each level requires further explanation.

3.1 The Roles Level

In this level, agents are viewed as having a role to follow, with an agent-based system
considered as a collection of roles. This point of view is not new and can be found in
the literature (e.g., [6]). Kendall [13] presents a comprehensive list of reasons why
role modeling is appropriate for intelligent agent systems. We utilize a role modeling
level as an approach for analyzing an agent-based system, as in [6]. A previous
analysis is conducted to be able to determine which roles would be part of the system.

The way in which a role is defined varies among different studies [6], [13], [14],
but as a standard for the remainder of this paper, roles have: beliefs, goals or respon-
sibilities, capabilities or activities, and interaction protocols. The beliefs are the
knowledge that a role should have in order to perform its actions. The goals specify
the function of the role or the responsibility that the role has. The capabilities are the
actions or activities that the role can perform. Finally, the interaction protocols spec-
ify how a role will interact with other roles.

The meta-modeler should take into consideration the properties defining a role and
create a meta-model that relates those properties in a coherent form. Because the in-
teraction protocols may involve different roles, and maybe different agents, a separate
model is needed to specify such protocols. This follows the approach taken in [6]. The
specification of this kind of model is out of the scope of this paper, nevertheless they
need to be mentioned in this level.

While creating the meta-model, we need to specify the constraints of the model
(e.g., we may enforce that each agent will implement just one role). This is typically
done within the meta-model by specifying constraints in the Object Constraint Lan-
guage (OCL) [15].

After the meta-model is defined, role properties need to be specified as instantia-
tions of the meta-model concepts. After all the roles in the system have been modeled,
the roles that are implemented by each agent need to be specified. Roles are grouped
by the agents they represent and are modeled accordingly. The role model is passed to
a translator that interprets the model and creates a specification that becomes the start-
ing point of the next level - in this case the agent level. Before defining the transla-
tors, the meta-models for the three levels need to be defined, because the translator
should know what it is supposed to generate for the next subsequent level.

3.2 The Agent Level

Each agent is formed from a collection of roles. The roles that are part of each agent
are defined in the specification of the previous level, which defined the properties
forming each role. That specification had a lack of detail about how each particular
property or concept should behave. At this point of the process, it is important to de-
fine each property more completely in order to give a more concrete specification of
all the properties of the agent.

The meta-modeler should create a meta-model of the particular way in which the
agent level needs to be modeled. At a minimum, this new meta-model should provide
artifacts to specify how to implement each one of the properties and concepts gener-
ated on the roles level. The meta-modeler could either create the meta-model from

scratch, or leverage off of an existing methodology that is already developed (e.g.
UML activity diagrams [8]). Some of the important concepts that need to be modeled
in this level are:

• The beliefs of the agent.

• The capabilities or activities of the agent.

• The responsibilities or goals of the agent.

Another important example of information that would be useful is a specification
of the inter-agent properties that the particular agent supports. Inter-agent properties
define the type of agent that is going to be created [4]. These properties (e.g., auton-
omy, reactivity, mobility, interactivity, social ability) vary among different studies
[3]. Specifying which properties are going to be implemented by the agent can yield
significant code reuse [2] when transitioning to the object level.

A major goal of software engineering is reuse. By providing enough information at
the agent level, the design of the object level can be reused [16]. The agent level has
as its primary goal the specification of each individual agent. It also has a side goal of
being able to deliver information that will ease the modeling of the object level.

The design of the agent meta-model should also consider constraints that must be
taken into account while modeling a specific agent. Once the agent meta-model is
created, we could start modeling each individual agent by using the specifications
generated by the translator coming from the roles level (recall that the roles level
generated empty buckets that need to be filled using the corresponding agent model).

After modeling the agent, the model can be sent to the agent translator. This trans-
lator generates the initial specification for the object level. As with the roles transla-
tor, the object level meta-model should be completely defined before the creation of
the translator.

3.3 The Object Level

In this level the agent is analyzed as a collection of objects or a group of objects
working together to provide the functionality that the specific agent requires. The
purpose of this level is to model agents at a lower layer of abstraction. Models from
this level should have a direct relation to the run-time system in which the agent is
executing. Code generated by this level should be completed with application specific
code as in [9].

The meta-modeler should take into consideration the following concerns while de-
signing the meta-model for this level:

• The facilities that are shared between agents (i.e., inter-agent properties), be-
cause they can provide code reuse.

• The environment in which the agent is going to perform [17].

The environment must be taken into consideration because it should provide some
services to the multi-agent system (e.g. communication, and persistence). These ser-
vices are shared among all the agents running in a specific environment [5] so it is of

utmost importance to have them preloaded in the system. Further information neces-
sary to create an optimized version of the generated code should also be included.

Because the purpose of the system is to model agents at the object level, the meta-
modeler could consider existing object oriented techniques to create the meta-model
(e.g., separation of concerns and aspect oriented programming [5], [18]). Starting
from the specification generated from the translator of the agent level, it is possible to
model the corresponding object representation of the agent. The final stage of this
level is the translation of the model to generate its corresponding code.

5 Example of the Technique

In this section an example is presented to illustrate the technique. An example taken
from Wooldridge et. al. [6] is expanded to show how this technique will provide a
path from a roles model (analysis phase) to an implementation phase. Current meth-
odologies will be used to create the meta-models of each level. The roles model of
Gaia [6] is used as the methodology for the roles level. UML [8] is used to further
specify the activities of the agent in the agent level. Finally, an aspect oriented ap-
proached based on [2], and [3] is used for the meta-model of the object level.

Wooldridge et. al. [6] introduces an example of a CoffeeFiller role. The responsi-
bilities of this role are to keep a coffee pot full and to inform workers when fresh cof-
fee has been brewed.

Fig. 2. Schema for role CoffeeFiller. Taken from [6]

Role Schema: CoffeeFiller

Description:
This role involves ensuring that the coffee pot is kept filled, and inform-
ing the workers when fresh coffee has been brewed.

Protocols and activities:
Fill, InformWorkers, CheckStock, AwaitEmpty

Permissions:
reads supplied coffeeMaker // name of coffee maker
 coffeeStatus // full or empty
changes coffeeStock // stock level of coffee

Responsibilities:
Liveness:
 CoffeeFiller = (Fill. InformWorkers. CheckStock. AwaitEmpty)w
Safety:

• coffeeStock > 0

In Gaia [6] a role is defined by four attributes: responsibilities, permissions, activi-
ties, and protocols. Responsibilities define the functionality of the role, and they are
further classified by liveness and safety properties. Liveness properties indicate the
principal function of the agent, and safety properties identify invariants that should be
maintained along the execution of the agent. Activities are actions that the agent per-
forms without interacting with other agents. Protocols are actions in which other
agents need to be involved. Finally permissions are rights associated with a role.

Having decided on which properties are needed for the roles model, the corre-
sponding meta-model is needed. The next step on this level is to model the schema
given by figure 2. At this point there is a shift from the Gaia methodology by translat-
ing the model into the initial specification for the agent level. The translator takes
every protocol, activity and responsibility specified in the roles level and generates
empty diagrams that need to be completed using the agent level meta-model.

Fi l l I nf or mWor ker s CheckSt ock Awai t Empt y

Cof ee pot
i s empt y

Fig. 3.Activity Diagram for the CoffeeFiller responsibility

Pour Cof f ee Change cof f eeSt ock

Cof ee pot
i s empt y

Cof ee pot
i s f ul l

Fig. 4.Activity Diagram for the Fill protocol

For the agent level UML techniques are used to specify the internal agent process-
ing more completely. Activity diagrams and StateCharts (as in [8]) are used to com-
plete the diagrams generated by the roles translator. At this point, additional activities
could be introduced to help define the ones specified in the role.

Figure 3 presents the activity diagram for the CoffeeFiller responsibility. The in-
ternal activities in the diagram can be further specified. Figure 4 presents the activity
diagram for the protocol “Fill”.

The specification of the particular inter-agent properties this agent needs to imple-
ment is also required. For example, the CoffeFiller agent is autonomous and interac-
tive. The interactive property allows the agent to send and receive messages [3].

After the modeling of the internal processing of the agent is finished, the translator
is used to generate the initial specification for the object level. The process for this
translator is to generate a UML static structure diagram with the activities from the
previous level as methods. The services that are going to be provided by the system in
which the agent is going to execute should also be known by the translator. In this

case, the system is going to provide a communication mechanism using the interactiv-
ity property on the agent. The translator should generate the corresponding relation-
ships between the interactivity property and the agent.

An aspect oriented approach that is based on [2], [5] is appropriate for the object
level meta-model. A generic agent class is provided to which aspects are adapted for
accomplishing interactivity and autonomy. The CoffeFiller agent class is then inher-
ited from that generic class. Figure 5 presents the diagram of the object level model.
This is a normal UML diagram with the addition of the aspects that are related to the
agent class. The model can be modified in order to optimize the generated code. Fi-
nally from this point the corresponding code from the object model can be generated.
The last step is to add the application specific code.

Agent

-Fill()
+InformWorkers()
+CheckStock()
+AwaitEmpty()
+PourCoffee()

CoffeFiller

+sendMessage()
+receiveMessge()

-Mailbox
<<crosscuts>>

Interaction
Autonomy

<<crosscuts>>

Fig. 5. UML Representation of the Object level model for the CoffeFiller agent

5 Future Work

The presented technique considers a top-down approach that starts at the highest level
of abstraction and moves down each level by generating a model for the subsequent
level. This ultimately leads to the generation of code at the object level. This work is
under development and further work is required to create a working model.

This model could also potentially be designed to function in the other direction (i.e.
modifying the object model and reflecting those changes into the agent and roles
models). Adapting the model in this way could further improve the maintainability of
the system as a form of round-trip agent modeling.

The use of current methodologies on each level could be of great importance to test
the approach. In the example presented in this paper, we examine using the Gaia
methodology [6] as the roles level meta-model, UML [8] for the agent level, and a
combination between UML, separation of concerns and Aspect Oriented Develop-
ment (AOD) implementation for the object level [2], [5]. The use of other methodolo-
gies is something that still needs to be explored.

6 Conclusion

The proposed technique aims to design agents at three independent levels of abstrac-
tion: the roles, the agent, and the object level. Three levels of abstraction are used be-
cause they provide for a more intuitive mapping between agent-oriented analysis
models and traditional object-oriented design techniques that may be applied to im-
plement the agents. By doing this, it is possible to optimize the benefits and minimize
the disadvantages of each methodology considered, thus improving the overall quality
of the system. This technique uses a meta-modeling approach that automatically
translates models from one level to the subsequent level. This helps to manage the
maintainability and reusability of the code. This technique could also use current
methodologies for a particular level, allowing the selection of the best methodologies
for solving a particular problem within a level of abstraction. The proposed technique
aims to unify the abstract agent oriented analysis and design with the more concrete
object oriented implementation.

References

1. C. Lucena, A. Garcia, J. Castro, A. Omicini, and F. Zambonelli, “Software Engineering for
Large-Scale Multi-Agent Systems – SELMAS 2002,” Proceedings of the IEEE/ACM Inter-
national Conference on Software Engineering (ICSE 2002), Orlando, USA, May 2002, pp.
653-654.

2. A. Garcia, C. Lucena, D. Cowan, “Agents in Object-Oriented Software Engineering,” Tech-
nical Report CS-2001-07, Computer Science Department, University of Waterloo, Waterloo,
Canada, February 2001.

3. A. Garcia, V. Torres, C. Lucena, and R. Milidiú, “An Aspect-Oriented Design Approach for
Multi-Agent Systems,” Technical Report, Computer Science Department, PUC-Rio, Brazil,
June 2001.

4. R. Depke, R. Heckel and J.M. Kuster, “Formal agent-oriented modeling with UML and
graph transformation,” Science of Computer Programming, 44 (2) (August 2002), pp. 229-
252.

5. A. Garcia, C. Chavez, O. Silva, V. Silva, and C. Lucena, “Promoting Advanced Separation
of Concerns in Intra-Agent and Inter-Agent Software Engineering,” Workshop on Advanced
Separation of Concerns in object-oriented Systems (ASoC) at OOPSLA’2001, Tampa Bay,
Florida, USA, October 14, 2001.

6. M.J. Wooldridge, N.R. Jennings, D. Kinny, “The Gaia Methodology for Agent-Oriented
Analysis and Design,” International Journal of Autonomous Agents and Multi-Agent Sys-
tems, 3 (3) (2000), pp. 285-312.

7. C. A. Iglesias, M. Garijo, and J.C. Gonzalez, “A survey of agent-oriented methodologies,” in
Intelligent Agents V-Proceedings of the Fifth International Workshop on Agent Theories,
Architectures, and Languages (ATAL-98), Lecture Notes in Artificial Intelligence, J.P.
Müller, M.P. Singh, and A. S. Rao, (Eds.), Springer-Verlag: Heidelberg, 1999.

8. J. Odell, H. Van Dyke Parunak, and B. Bauer, “Extending UML for Agents,” AOIS Work-
shop at AAAI 2000.

9. F. Bergenti, and A. Poggi, “A Development Toolkit to Realize Autonomous and Inter-
operable Agents,” Proceedings of Fifth International Conference of Autonomous Agents
(Agents 2001), Montreal, Canada, pp. 632-639.

10. J. Gray, T. Bapty, S. Neema, and J. Tuck, “Handling Crosscutting Constraints in Domain-
Specific Modeling,” Communications of the ACM, October 2001, pp. 87-93.

11. A. Ledeczy et al., “The Generic Modeling Environment,” Workshop on Intelligent Signal
Processing, Budapest, Hungary, May 17, 2001.

12. J. Sztipanovits and G. Karsai, “Model-Integrated Computing,” Computer, Apr. 1997, pp.
110-112.

13. E. A. Kendall, “Agent Roles and Role Models: New Abstractions for Intelligent Agent Sys-
tem Analysis and Design,” ECOOP’99, AOP Workshop, Lisbon.

14. B. Bauer, “UML Class Diagrams: Revisited in the Context of Agent-Based Systems,” In
Proceedings of Agent-Oriented Software Engineering (AOSE) 2001, Agents 2001, Montreal,
Canada, pp. 1-8.

15. Jos B. Warmer, Anneke G. Kleppe, The Object Constraint Language: Precise Modeling
With UML, Addison-Wesley, 1999.

16. Ivar Jacobson, Martin Griss, Patrik Jonsson, Software Reuse: Architecture, Process, and
Organization for Business Success, Addison-Wesley, 1997.

17. James Odell, “Modeling Agents and their Environment: The Physical Environment,” in
Journal of Object Technology, vol. 2, no. 2, March-April 2003, pp. 43-51.
http://www.jot.fm/issues/issue_2003_03/column5

18. G. Kiczales et al., “Aspect-Oriented Programming,” Proceedings of the ECOOP’97,
Finland. Springer Verlag LNCS 1241, June 1997.

