
Ontology Support for
Abstraction Layer Modularization

Hyun Cho and Jeff Gray
Department of Computer Science

University of Alabama
Tuscaloosa, AL USA

{hcho7, gray}@cs.ua.edu

Jules White
Bradley Dept. of Electrical and Computer Engineering

Virginia Tech
Blacksburg, VA USA
jules.white@vt.edu

Abstract—Abstraction layers have been widely used to increase
the portability of a software system by hiding the implementation
details of underlying resources (e.g., OS, hardware, and reusable
libraries). Abstraction layers have also been adopted in Software
Product Lines (SPLs), which assist in the creation of a family of
products by reusing common core assets and managing variants
in a family domain. An abstraction layer provides transparent
and unified access to the APIs of underlying resources.
Abstraction layer APIs are modularizd by generalizing the APIs
of underlying resources based on semantic similarity across
common resources. Thus, an abstraction layer inherently needs
to handle the semantic variants of the underlying APIs. However,
the lack of a systematic approach for evolving an abstraction
layer in accordance with the evolution of underlying resources
may restrict its usage. This paper describes an approach toward
ontology-based feature modeling to build and maintain the
abstraction layer in a modularized and systematic way. The
combination of ontologies and feature modeling can assist in
modularizing abstraction layers by identifying the semantic
similarities in APIs and provide insight into the variability of the
underlying resources.

Keywords; Software Product Lines, Abstraction Layer,
Ontology, Feature model, Model-Driven Engineering

I. INTRODUCTION

Software complexity continues to increase because of the need
to accommodate frequently changing requirements, and to
utilize the advances in hardware and software components.
Software systems often need to be ported onto various
underlying resources (e.g., OS, hardware, and libraries) to
reduce the cost of development and to provide better customer
satisfaction. Each underlying resource provides its own set of
Application Programming Interfaces (APIs), which may also
evolve over time. Portability is also an important factor when
designing and implementing core assets, such as reusable
libraries and device drivers, in software product lines [5][30].
Abstraction layers can assist in reducing the dependency
between core assets and the underlying resources.

Abstraction layers provide a set of APIs that classify and
generalize underlying resources (e.g., OS, hardware, libraries)
with the goal of increasing the portability of core assets and
enabling the reuse of their design and implementation. For
example, a hardware abstraction layer (HAL) is typically
located between the hardware and operating system (OS) or
device drivers. By calling APIs in the HAL, an OS can be
programmed more flexibly to support various underlying

hardware. This programming flexibility helps in porting the OS
or device drivers onto other target processors and boards.
Windows CE OAL [34] and eCos HAL [35] are examples of
popular HALs.

The OS Abstraction Layer (OSAL) [1][23] is another
example of an abstraction layer. Several OS implementations
[34][35][36] have been developed and maintained to support
either a specific domain or a general domain. OSAL provides
common OS APIs by generalizing OS architectures that
support a target domain. Portable Operating System Interface
(POSIX) [33], which provides standard APIs for OS as well as
thread management, is an early example representing the
principles of OSAL. These abstraction layers are also widely
used in software product lines to develop core assets that
support various underlying resources. Although many
researchers have proposed the principles and guidelines for
development of abstraction layers, the systematic management
of the abstraction layer as the underlying APIs evolve has not
been considered deeply. This paper introduces an ontology-
based feature modeling technique for managing abstraction
layers in a modularized way.

The term ontology originated from philosophy and has been
ascribed several definitions. Grube et el. [12] and Uschold et el.
[28] define an ontology as a set of definitions that represent
shared knowledge of a specific domain with modeling
primitives such as classes, relations, functions, and constraints.
Studer et el. [25] define ontology as an explicit specification of
consensual domain knowledge and the specification is
structured for machine manipulation. The notion of ontology is
widespread in the areas of information integration and retrieval
[13][29], knowledge engineering [11][25], and natural
language processing [17]. In these areas, an ontological
approach can transform the intellectual and conceptual
knowledge into a form of computation, such that the
transformed knowledge can be shared and reused. Recently,
technologies based on ontology have been recognized as a
means of addressing interoperability issues stemming from
semantic differences between systems. For example, web
services use ontology to interpret and invoke services with
different calling conventions [24]. The enabling technology for
solving the interoperability problem is based on matching
semantics through ontologies [6][19][20][22][26] and has been
applied to conceptual structures such as database and XML
schemas. The matching method is also the core of our approach
for modularizing underlying APIs by exploring API documents.

Ontologies contribute to early stage domain analysis by
identifying the representative vocabularies of a domain and by
representing the body of knowledge with the representative
vocabularies [4]. Feature modeling [16] can reconcile the view
of a domain by capturing the commonality and variability. The
combined use of ontologies and feature modeling can be
leveraged to represent the properties of a domain, especially
how underlying APIs can be modularized by their signatures
and descriptions. This feature model and ontology synergy can
also be used to represent the semantic relationships among
underlying resources. The remainder of this paper is organized
as follows: Section II describes an approach for modularizing
the abstraction layer with ontologies and feature modeling.
Section III relates this work to previous related research.
Section IV concludes the paper with expected contributions.

II. ONTOLOGY-BASED ABSTRACTION LAYER MANAGEMENT

Feature modeling was proposed by Kang et el. [16] and has
been widely used to analyze a specific domain and represent
variants of the domain. Feature modeling has also been used to
design domain-specific languages because feature models
provide a comprehensive way for modeling the commonalities
and variabilities of the domain with a simple notation [31].
Feature modeling also provides a fundamental form of
modularity that can be referenced across the software lifecycle
by different downstream models (e.g., software product line
architecture, core asset design, and programming model).

The combinatory use of feature modeling and ontologies
can help to modularize an abstraction layer in two ways:

 APIs that have similar semantic meaning are grouped
into a feature. This grouping helps to determine how to
modularize the abstraction layer to cover underlying
APIs.

 Each feature can show variability of APIs that provide
similar functionality. APIs grouped into a feature by
their semantic similarity and APIs in a feature can have
different signatures. Thus, by examining variants in a
feature, engineers can define abstraction layer APIs
that cover all variability in the feature.

An ontology for an abstraction layer can be built by
following the process described in [7][21]. In order to obtain a
feature model for the abstraction layer, two questions are
asked: “How are the APIs related to each other?” and “How
can the commonalities and variabilities in the APIs affect the
construction and maintenance of the modularity in an
abstraction layer?” The ontology for an abstraction layer is
constructed by examining APIs, which have the following
characteristics:

 Documented in a single file. If the document is
released as HTML, the document can have multiple
HTML files. However, as they are also released as a
package, multiple HTML files can be individually
considered as a single document.

 Multiple semantic units. APIs can be decomposed into
multiple semantic units. For example, OS APIs have

several semantic units (e.g., thread management,
memory management, and I/O management).

 Formed as a tree. APIs are normally structured with a
hierarchy (class hierarchy) and can be represented in
the form of a tree.

The goals of our approach are to identify semantic units in
APIs, modularizing underlying APIs according to their
semantic units, and then construct the feature model to
represent the modularity of an abstraction layer. The
framework for ontology-based abstraction layer management is
shown in Figure 1. The framework consists of three parts:
Abstraction Layer Modeler, Traceability Relation Manager,
and API Generator.

The Abstraction Layer Modeler is comprised of three
components: Term Extractor, Rule Composer, and Matcher.
The Term Extractor extracts the domain terms from the API
documents. The extracted domain terms are classified based on
semantic similarity and the classified terms will be the basis to
guide how to modularize the abstraction layer.

Ontology-based Abstraction Layer Management

Abstraction Layer Modeler

Term Extractor Rule Composer Matcher

API Generator

Traceability Relation Manager

<<all>>
/root

<<all>>
Database

<<all>>
Database

<<all>>
Database

<<all>>
Database

<<all>>
Database

<<all>>
Database

<<all>>
Database

<<all>>
Database

Feature Model of
Abstraction Layer

<<all>>
/root

<<all>>
Database

<<all>>
Database

<<all>>
Database

<<all>>
Database

<<all>>
Database

<<all>>
Database

<<all>>
Database

<<all>>
Database

Domain Feature
Model

API documents

Generated APIs for
Abstraction Layer

Data Dictionary

Traceability
Relation

Figure 1. The framework of the ontology-based abstraction layer management

The domain feature model can be used as a reference for
constructing ontologies (the domain feature model is the result
of the domain analysis and it is modeled with the standard
terms of the domain). The Rule Composer provides preliminary
classification of the extracted domain terms based on their
ontological similarity and allows users to compose the
matching rules. After the rules are composed, the Matcher
retrieves API documents and classifies APIs with a two-pass
matching technique. During the first pass, the Matcher
identifies the structure of API documents to build the
relationships between ontologies, and then analyzes the
semantic similarity of APIs to create a feature model.

According to [18], the structured relation strongly
influences the computation of similarity and a graph-based
comparison tends to improve the performance of the
computation. If the API design is object-oriented, the APIs are
structured as a tree. Thus, the Matcher can leverage the
structural relation of APIs for classification. In addition, the
identified structure of API documents will assist in determining
the depth of features when constructing the abstraction feature
model.

Figure 2. Feature model of Abstraction Layer

To represent the modularity of APIs in the abstraction layer,
the original feature model is modified to group APIs based on
their ontological similarity. The top part of the feature model
captures features, identified ontologies from the term extractor,
and the middle part of the feature model lists all attributes used
in the APIs. The syntax of an attribute is defined as datatype
VariableName::PackageName:APIName. The first part,
datatype VariableName, represents the data type and variable
name and the second part, PackageName:APIName, indicates
the origin of the attribute. The bottom layer lists APIs that are
classified as having semantic similarity. APIs in this layer have
similar syntax with the attribute section, ReturnType
APIName:: PackageName, to indicate the origin of the API.

An example feature model for an OS abstraction layer is
shown in Figure 2. OS vendors (e.g., Microsoft Windows CE
[34], eCos [35], and WindRiver VxWorks [36]) provide
various APIs to manage memory, file, process/task, etc.
Because most OS’ have APIs to synchronize processes/tasks,
synchronization is modeled as a mandatory feature. However,
each OS provides a different set of synchronization
mechanisms. For example, some OS’ may provide Mutex as a
primitive process for synchronization, but not semaphores and
conditional variables.

The Traceability Relation Manager (TRM) manages the
links between APIs and the feature model, and allows users to
query how the APIs are mapped onto the feature model (and
vice versa). The links are created when Matcher finds APIs that
have similar semantics and maps those APIs onto a feature. In
addition, the traceability relation is referenced by the Matcher
to help the modularization process when a new set of APIs or
new versions are introduced to the abstraction layer. Finally,
the API Generator generates APIs for the abstraction layer by
referring to the feature model. The feature model of the
abstraction layer covers the entire range of underlying
resources. For example, the feature model of OS abstraction
can cover APIs from general-purpose to very small OS. Thus,
APIs in the abstraction layer should vary for targeted OS and
the code generator can generate APIs selectively from feature
modules. Currently, the API Generator is hard-coded to support
a specific programming language. In the future, it will be

implemented using model-driven engineering to support
various programming languages.

III. RELATED WORKS

Core assets that are designed for software product lines have to
consider running on many different OS, hardware, and libraries.
The reusability and portability of the core assets led to the idea
of abstraction layers. Constructing the abstraction layer is the
task of building transparent and unified APIs to access the
underlying resources. One of the major challenges is to classify
various heterogeneous APIs based on their semantic similarity.
Researchers have introduced the principles and the benefits of
abstraction layers. Andrea et el. [1] and Probert [23] presented
the principles for building an OS abstraction layer (OSAL) that
minimizes the conflicts between operating systems. Handziski
[15] and Yoo et el. [32] introduced the hardware abstraction
layer for wireless sensor networks and systems on a chip,
respectively. These works described the issues and resolution
to building the abstraction layer, but they were not focused on
how to manage the abstraction layer systematically.

Ontologies are used to develop knowledge-based
applications [2][8][10] by reasoning about the semantics of the
domain-specific content. Several researchers [3][9][14][27]
have investigated the application of metamodels and ontologies
for domain analysis. Our approach is similar, but we introduced
feature models, instead of class diagrams, to represent the
commonalities and variabilities of the domain.

IV. RESEARCH ISSUES AND CONCLUSIONS

The approach introduced in this paper can provide a systematic
way to modularize the abstraction layer through the
combination of ontologies and feature modeling. Although the
approach is still at a preliminary stage and under development,
it has the potential to assist in maintaining abstraction layers in
a modularized way. The following lists several benefits of the
approach, as well as future directions for this research:

 Our approach can help maintain the abstraction layer
consistently through systematic matching and

generalization techniques. When a new API version is
released or the abstraction layer needs to support a new
underlying resource, the approach can systematically
identify the differences between existing APIs in the
abstraction layer and the new API.

 A feature model can provide insight into the
modularity and functionality of the underlying
resources. As underlying APIs are grouped into
features by their semantic similarity, the abstraction
layer feature model can represent the variabilities in the
API domain and each feature can represent the
variabilities in the API signature. In addition, the
feature model can provide the comparative information
about the underlying resources. This comparative
information can guide the abstraction layer maintainers
and underlying resource developers to predict how
APIs will be evolved to make up their deficiencies.

 The approach is transparent to the implementation
technology of underlying resources. The Abstraction
Layer Model in Figure 1 is also designed to deal with
various underlying languages and it can modularize
underlying APIs by referring to the grammar or syntax
of target languages. For example, the iPhone SDK is
developed based on Objective-C and the Android SDK
is released in the form of Java. However, both SDKs
target the same technology space (i.e., mobile
applications) and they have many commonalities. Thus,
even though their specific SDK implementation may
differ, our approach can be applied to the two SDKs by
designing more complex rules and matching algorithm.

 Generative programming has the potential to automate
the creation of APIs for the abstraction layer. Two
types of codes should be developed for the abstraction
layer. One is the API itself and the other is mapping
codes, which map APIs between the abstraction layer
and the underlying resources. To maximize the benefits
of modeling, generative programming techniques need
to be combined with feature model concepts to
generate the abstraction layer APIs for both a specific
target and mapping codes.

 Assessing the degree of modularity is one of
challenges in this approach. The modularity of the
abstraction layer is important by itself. However, the
abstraction layers are built by analyzing the underlying
resources, such that the modularity of the abstraction
layers may be affected by different change sources
instead of (non)functional requirements (e.g., the
modularity of underlying resources and ontology
matching rules), which are typical sources that affect
modularity. Thus, we consider using a pair-wise
comparison technique to assess the modularity of the
abstraction layer. By comparing the modularity
between the abstraction layers and underlying
resources, or changing the matching rules, we expect to
understand how the modularity of underlying resources
affects the modularity of the abstraction layer and how
ontologies influence the modularity of the abstraction
layers.

ACKNOWLEDGMENT

This research is supported in part by an NSF CAREER
award, CCF-0643725.

REFERENCES
[1] M. Andree, H. Karl, M. Herlich, J. Catalano, A. Schoofs, P. van der

Stok, L. Vazago, L. von Allmen, R. S. Oliver, G. Fohler, C. Brandolese,
M. Hauspie, G. Grimaud, s. Buisine, E. Fleury, A. Fraboulet, A. Picu,
and F. Bouwens, “Core Hardware Abstraction and Programming
Model,Deliverable D3.2,” IST-034963, WASP, (2008)

[2] J. Bateman, T. Kamps, J. Kleinz, and K. Reichenberger, “Toward
constructive text, diagram and layout generation for information
presentation,” Computational Linguistics 27(3), 2001, pp. 409-449.

[3] J. Bezivin, V. Devedzic, D. Djuric, J.M. Favreau, D. Gasevic, and F.
Jouault, “An M3-Neutral infrastructure for bridging model engineering
and ontology engineering,” In Proceedings of the first International
Conference on Interoperability of Enteprise Software and Applications,
(INTEROP-ESA 05), Geneva, Switzerland, February 2005.

[4] B. Chandrasekaran, J. Josephson, V. Benjamins, “What Are Ontologies,
and Why Do We Need Them?” IEEE Intelligent Systems 14, 1999, pp.
20-26.

[5] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, Boston, MA, 2001.

[6] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Ontology
matching: A machine learning approach. Handbook on Ontologies, pp.
385-516, 2003.

[7] B. Du Bois, “Towards an ontology of factors influencing reverse
engineering,” In Proceedings of the 13th IEEE International Workshop
on Software Technology and Engineering Practice, Budapest, Hungary,
September 2005, pp. 74-80.

[8] J. Davies, F. van Harmelen, and D. Fensel, Eds. Towards the Semantic
Web: Ontology-based Knowledge Management. John Wiley & Sons,
Inc., 2002.

[9] D. Gašević, V. Devedžić, D. Djurić, “MDA Standards for Ontology
Development,” International Conference on Web Engineering, Munich,
Germany, July 2004.

[10] J. Geurts, S. Bocconi, J. R. van Ossenbruggen, and L. Hardman, Toward
Ontology-driven Discourse: From Semantic Graphs to Multimedia
Presneation, CWI Technical Report INS-R0305, May 2003.

[11] A. Gomez-Perez, R. Benjamins, “Overview of Knowledge Sharing and
Reuse Components: Ontologies and Problem-Solving Methods,” In:
Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-
Solving Methods, Stockhol, Sweden, August 1999.

[12] T.R. Gruber. Towards principles for the design of ontologies used for
knowledge sharing. In Formal Ontology in Conceptual Analysis and
Knowledge Representation. Kluwer, Boston, MA, 1994.

[13] N. Guarino, “Semantic Matching: Formal Ontological Distinctions for
Information Organization, Extraction, and Integration,” In Information
Extraction: A Multidisciplinary Approach to an Emerging Information
Technology, Springer Verlag LNAI 1299, September 1997, pp. 139-170.

[14] N. Guarino, C. Welty, “Towards a Methodology for Ontology-based
MDE,” First International Workshop on MDE, Nice, France, June 2000,

[15] V. Handziski, J. Polastre, J.H. Hauser, C. Sharp, A. Wolisz, and D.
Cullar, “Flexible hardware abstraction for wirelss sensor networks,” In
Proceedings of 2nd European Workshop on Wireless Sensor Networks,
Istanbul, Turkey, February 2005.

[16] K.C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
Feature-oriented Domain Analysis (FODA) Feasibility Study, Technical
Report, CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, 1990.

[17] K. Mahesh, and S. Nirenburg, “A situated ontology for practical NLP,”
In Proceedings Workshop on Basic Ontological Issues in Knowledge
Sharing. International Joint Conference on Artificial Intelligence,
Montreal, Canada, August 1995.

[18] D.L. Medin, R.L. Goidstone, and D. Gentner, “Respects for similarity,”
Psychological Review, 100, pp. 254-278, 1993.

[19] D. McGuinness, R. Fikes, Rice, J., and S. Wilder, “The Chimaera
ontology environment,” In Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Conference on
innovative Applications of Artificial Intelligence, Austin, TX, August
2000, pp 1123-1124.

[20] J. Madhavan, P. A. Bernstein, and E. Rham, “Generic Schema Matching
with Cupid,” In Proceedings of the VLDB, San Francisco, CA,
September 2001, pp. 49-58.

[21] N. Noy, D. McGuinness, “Ontology Development 101: A Guide to
Creating Your First Ontology,” http://www-ksl.stanford.edu/people/
dlm/papers/ontology-tutorial-noy-mcguinness.pdf.

[22] J. Poole and J. Campbell, “A Novel Algorithm for Matching Conceptual
and Related Graphs,” In Conceptual Structures:
Applications,Implementation and Theory, Santa Cruz, CA, Springer-
Verlag, LNAI 954, August 1995, pp. 293-307.

[23] D. Probert, J.L. Bruno, and M. Karzaorman, “SPACE: A new approach
to operating system abstraction,” In International workshop Object
Orinetation in Operating Systems, Palo Alto, CA, October 1991, pp.
133-137.

[24] N. Srinivasan, M. Paolucci, and K. Sycara, “An Efficient Algorithm for
OWL-S based Semantic Search in UDDI,” In Proceedings of First
International Semantic Web Services and Web Process Composition
Workshop, San Diego, CA, July 2004.

[25] R. Studer, V.R. Benjamins, D. Fensel, “Knowledge engineering:
principles and methods,” Data and Knowledge Engineering 25 (1998)
pp. 161-197.

[26] G. Stumme and M. Alexander, “FCA-MERGE: Bottom-up merging of
ontologies, “ In 7th International. Conference on Artificial Intelligence,
Seattle, WA, August 2001, pp. 225-230.

[27] R. Tairas, M. Mernik, and J. Gray, “Using Ontologies in the Domain
Analysis of Domain-Specific Languages,” Workshop on Transforming

and Weaving Ontologies and Model Driven Engineering, Springer-
Verlag LNCS 5421 (Workshops and Symposia at MODELS 2008),
Toulouse, France, September 2008, pp. 332-342.

[28] M. Uschold and M. Gruninger, 1996, “Ontologies: Principles, Methods
and Applications.” The Knowledge Engineering Review, 11(2): 93-136.

[29] H.Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H.
Neumann, and S. Huebner, “Ontology-based integration of information -
a survey of existing approaches,” In Proceedings of the Workshop on
Ontologies and Information Sharing at the International Joint
Conference on Artificial Intelligence, Seattle, WA, August 2001, pp.
108-117.

[30] D. M. Weiss and C. T. R. Lai. Software Product-Line Engineering: A
Family-Based Software Development Process. Addison-Wesley, Boston,
MA, 1999.

[31] J. White, J. Hill, J. Gray, S. Tambe, D. C. Schmidt, and A. Gokhale,
“Improving Domain-specific Language Reuse through Software
Product-line Configuration Techniques,” IEEE Software Special Issue
on Domain-Specific Languages and Modeling, July/August, 2009, Vol.
26, No.4, pp. 47-53.

[32] S. Yoo, and A. A. Jerraya, “Introduction to hardware abstraction layers
for SoC,” In Proceedings of the Design, Automation, and Test in
European Conference and Exhibition, Munich, Germany, March 2003,
pp. 336-337.

[33] POSIX.1 (2001). IEEE Std 1003.1:2001. Standard for Information
Technology -Portable Operating System Interface (POSIX). The
Institute of Electrical and Electronic Engineers, 2001.

[34] http://msdn.microsoft.com/en-us/library/aa447042(v=MSDN.10).aspx

[35] http://ecos.sourceware.org/

[36] http://www.windriver.com/products/vxworks

