
Damage Tracker - A Cloud and Mobile System for
Collecting Damage Information after Natural Disasters

Chris Hodapp, Matt Robbins, and Jeff Gray
Dept. of Computer Science
The University of Alabama

Box 870290
Tuscaloosa, AL 35487-0290

(205) 348-2847
clhodapp@crimson.ua.edu
mrrobbins@crimson.ua.edu

gray@cs.ua.edu

Andrew Graettinger
Dept. of Civil, Construction,

and Environmental Engineering
The University of Alabama

Box 870205
Tuscaloosa, AL 35487-0205

(205) 348-1707
andrewg@eng.ua.edu

ABSTRACT
Tornadoes and other natural disasters frequently cause large
amounts of damage to buildings and infrastructure. An im-
portant part of learning from these events is assessing key
damage-indicators within the affected area. Researchers can
analyze these damage-indicators to better understand the
event and how to minimize future loss. These assessments
require many teams of researchers, government agencies, and
volunteer citizen groups to survey affected areas and collect
information. Assessment teams take thousands of digital
photographs for later review. When combined with GPS
data, these images can be used to document and under-
stand an extreme event. In this paper, we present Dam-
age Tracker, a software system for capturing and manag-
ing tornado damage information. A mobile application for
Android devices allows users to capture, annotate, and up-
load geo-tagged photos. A web application stores uploaded
photos and meta-data and displays this information on an
interactive map. This system allows an online community
of users to easily share data, which encourages more col-
laboration, reduces duplicate collection efforts, and poten-
tially improves the quality and depth of subsequent research.
Damage Tracker realizes the benefits of crowdsourcing and
citizen science in the context of disaster data collection.

Categories and Subject Descriptors
J [2]: Engineering

General Terms
Management, Design

Keywords
tornado, natural disaster, cloud, geo-tagging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACMSE ’13 April 4-6 Savannah, GA, USA
Copyright 2013 ACM 978-1-4503-1901 ...$15.00.

1. INTRODUCTION
Assessing damage after natural disasters is an important

part of response and recovery and also provides an oppor-
tunity to learn from an event. In the short term, this infor-
mation can help first-responders and disaster management
agencies determine which areas were hit hardest and decide
how to distribute resources (e.g., medical relief and tempo-
rary shelter). In the long term, although it is impossible to
prevent natural disasters, researchers can learn how to bet-
ter design infrastructure by collecting and analyzing data
about past disasters. This knowledge can provide valuable
insight to governments, city planners, and engineers. The
ability to predict the behavior of disasters can enable gov-
ernments to be better prepared, which may minimize hu-
man casualties. Civil engineers study the destructive forces
of natural disasters, such as earthquakes and tornadoes, to
recommend stricter building codes to ensure that buildings
can withstand intense ground shaking or high wind speeds.

In this paper, we present our experiences developing Dam-
age Tracker. We describe the major open-source technolo-
gies and tools used to build this application and give a brief
reasoning for each choice. We conclude with some future
goals for this project, including generalizing this work for
any type of natural disaster.

2. BACKGROUND AND MOTIVATION
Damage assessments are done using qualitative measure-

ments made from visual observations. The Enhanced Fu-
jita (EF) Scale for Tornado Damage is a two-step system
developed by the National Oceanic and Atmospheric Ad-
ministration (NOAA) [1]. The first step is identifying the
type of property being observed (e.g., “one- or two-family
residences”, “Strip mall”, ”softwood tree”, etc.) The sys-
tem refers to this as the Damage Indicator (DI). Each DI
has an associated ordered set of specifiers called Degrees of
Damage (DoD), which are numbered in order of increasing
intensity. Each unique pair of DI and DoD represents the
localized strength of a tornado, which is expressed in wind
speed (mph). The expected wind speed determines the EF
rating of a tornado. Although a range of wind speeds and EF
ratings are associated with a tornado, the largest sustained
estimated wind speed is used to assign a signle EF rating
for a tornado. Ratings can be determined by an expert in

the field or from a photo captured by any researcher [4].
It is necessary to associate these ratings with accurate

geo-location data when constructing spatial and temporal
models. Today, many mobile phones and digital cameras
have GPS receivers installed. These receivers allow the de-
vice to measure a user’s location with good accuracy (about
10 meters) and encode this information in the picture. This
location data is embedded in the meta-data of image for-
mats, such as JPEG (EXIF).

On April 27, 2011 an EF-4 (Enhanced Fujita scale) tor-
nado [5] devastated Tuscaloosa, Alabama, killing 43 peo-
ple [3] and causing total devastation to businesses and res-
idential properties in 12% of the city. In one study of the
Tuscaloosa tornado, researchers showed how systematically
mining crowd-sourced information could be used to help first
responders. A public API from the popular photo sharing
site Flickr was used to search for geo-localated images tagged
with the keywords “Tuscaloosa” and “tornado”. The search
results were then used to present damage along the path of
the tornado [2].

Damage Tracker is a new software application developed
at The University of Alabama to address the lack of solu-
tions for easily capturing and sharing tornado damage in-
formation. The April 25-28, 2011 tornado outbreak, which
affected many areas in the Southern and Midwest United
States, served as a principle motivator for this project. In to-
tal, 358 tornadoes were confirmed by the National Weather
Service in 21 states, making the April 2011 tornadoes the
largest outbreak on record. The April 2011 disaster raised
two problems with the way damage information is collection.
First, assessment teams do not use standard equipment or
methods for storing photos and GPS data to enable sharing.
In one case, proprietary software tools have been developed
to combine the data from a GPS receiver with images from
the camera by comparing time stamps. Second, there are no
public web sites for uploading and sharing this data to bet-
ter coordinate surveying effort. The equipment required and
lack of special-purpose sites for sharing also limits the contri-
butions from the public. Damage Tracker uses commodity
hardware and software to build a system for collecting and
sharing this data. A mobile application, built for the widely
available Android platform, has been developed to capture
photos and annotate them with damage indicators, degree
of damage ratings, and descriptive notes. A web application
accepts uploaded reports from the mobile app and displays
them on a custom Google Map. The web application can
also accept photos uploaded through the browser and parses
their GPS data.

3. DATA MODEL FOR DAMAGE
TRACKER

Researchers are interested in estimating and assigning
each tornado an EF rating. The wind speed of a tornado
is typically derived from the resulting category and degree
of damage in an area. It is therefore critical that photos of
these affected areas be captured immediately after an event
before any debris has been cleared or reconstruction efforts
are initiated. Areas in the path of a tornado may be unrec-
ognizable, so it is very important that an accurate location
be associated with each image.

The data model is central to the design and function of
Damage Tracker. To give the user more flexibility, in addi-

tion to images and GPS data, users may also add notes to an
image and assign them EF Damage Indicators and Degrees
of Damage using the mobile app, prior to image upload.
The specific information that Damage Tracker collects for
each snapshot includes the following: 1) Image, 2) Latitude
and longitude tuple, 3) NOAA Damage Indicator, 4) NOAA
Degree of Damage, 5) Street address, and 6) Notes.

The mobile application stores this meta-data in a SQLite
database. When images are uploaded to the website, this
data is transfered to a MySQL database. Images are stored
external to the databases within a photo directory. The
web application uses a MySQL relational database to store
persistent meta-data. Image locations are displayed on an
interactive map by markers. One of the requirements of this
application is that it must manage data from multiple nat-
ural disasters, separated temporally and geographically. In
order to manage this for the user, we introduced the con-
cept of “Collections”, which are user-defined labels, dividing
images into unique sets.

4. DESIGN AND IMPLEMENTATION OF
DAMAGE TRACKER

This section summarizes several of the implementation
and design issues that were investigated during the devel-
opment of Damage Tracker.

4.1 Web application
A web application was developed for Damage Tracker us-

ing the Play Framework1. Play is a web framework that sup-
ports applications written in the Java and Scala languages.
Play with Scala was used because each has a strong focus
on improving developer productivity. We were also strongly
influenced by the wide variety of open-source libraries avail-
able within Java’s large ecosystem.

4.1.1 User-Visible Pages
Our web application allows the user to interact with sev-

eral pages:

Map Displays Google map populated EF-labeled markers
for each photo (see Figure 1)

Photo Uploader Allows users to upload new image files,
which appear in the photo queue (see Figure 2)

Photo Queue Allows users to preview photos before
adding them to collections

Photo Metadata Editor Allows the user to view and
change metadata attached to photos

4.1.2 Architecture and Models
Play is a Model-View-Controller (MVC) web framework,

following the design popularized by Ruby on Rails. This
means that the application is segmented into three compo-
nents:

Model The Model component is responsible for inter-
facing with the application’s various data backends
(most often, a MySQL database). This layer consists
mostly of our application’s Object Relational Map-
ping (ORM) framework, which is defined using Play’s

1http://www.playframework.org

Figure 1: Web application map screen

Figure 2: Web application upload images screen

Anorm database access library. The Model is also re-
sponsible for providing a bulk storage API to the rest
of the application. Currently, bulk storage backends
are implemented for local (hard disk) storage and cloud
(Amazon S3) storage.

View The View component consists entirely of web page
templates, defined using Play’s built-in template
framework. A web page template is a file contain-
ing interleaved web markup (HTML) and application
code (Scala). This allowed us to define dynamic pages,
which build themselves using information encoded in
traditional Java objects.

Controller The Controller component is responsible for
accepting page requests from the web server and
returning the correct View for that request. For
example, for a request for “map.html”, the Con-
troller component should return the contents of
“maps.scala.html”. Frequently, the Controller must in-
terface with the Model in order to fulfill a request. This
is because a View often requires data from the model
in order to populate itself.

4.1.3 Play Framework
Play offers a number of features that reduce the amount

of time spent recompiling code and watching error consoles.
One such feature is “hot reload”. This means that whenever
a page is requested, Play checks whether the source code for
that page has been changed. If it has, it is recompiled before
the page is loaded (on the client side, this simply looks like a
slow page load). Play also offers in-browser error messages.
This means that if there is some error in the compilation or
execution of the code behind a page, an error line number
or a stack trace is provided attractively in the developer’s
web browser. These two features combined to ensure that
we could spend almost all of our development time either
editing code or testing that code in a web browser.

Play’s bundled libraries and Scala’s flexible syntax com-
bine to make asynchronous (multithreaded) programming
extremely easy. Play offers a data type, called a Promise,
which encapsulates computation that will return a value of a
given type (or error). Application code can easily transform
Promises with functional programming techniques (Promise
is a Monad) or attach callbacks to be run when the encapsu-
lated computation completes (or immediately if it’s already
completed). The key feature of Promises, though, is how
easily they can be created (and thus, how easily the devel-
oper can begin using multiple application threads). In order
fo faciliate creating Promises, Play provides a function called
Future, which accepts a block. The user need only pass a
block encapsulating the computation that they want to run
asynchronously to Future and it will return a Promise of the
block’s return value. The system will run the block’s code
on a worker thread at its next convenience (with the return
value fulfilling the promise). This API allowed us to make
all of the blocking operations in our web application (disk
IO, database access, etc.) run on worker threads, which al-
lows our application to handle significantly more concurrent
clients.

4.2 Cloud Deployment and AWS
The original deployment strategy for Damage Tracker was

a single server model. The application was hosted on a ded-

icated Windows or Linux server and ran a local instance
of the MySQL database. Furthermore, all uploaded images
were stored on local volumes (e.g., high capacity hard disk
drives). The reasoning behind this strategy was that there
would be separate instances of the Damage Tracker service,
deployed on a different server, for each event, thereby lim-
iting the demand on any given instance. This approach
seemed feasible with only a small group of users and an up-
per bound on the number of photos (e.g., a few thousand).
However, natural disasters, especially tornadoes, can hap-
pen quickly and with little warning, so there would not be
preparation time to manually deploy new instances of the
app and advertise availability before first responders would
need access to the system.

Another major focus of this project was to create an im-
proved repository for data used in disaster research. The
depth and scope of this research is largely dependent on the
sampling of sufficiently large data sets that are statistically
significant. Separate instances would restrict the view of
disasters to localized events and users would have to access
multiple services to analyze relationships. This presented
two engineering challenges when designing the web applica-
tion. First, we had to consider how the app would manage
tens of thousands of user images in a way in which stor-
age space could scale dynamically and that also protected
against data loss from disk errors or destruction. Second,
the web service runtime would need to scale with the traffic
of hundreds of users and properly handle concurrency issues.

In order to address these challenges expediently, we looked
to cloud computing to provide us with the required flexibility
and capbilities. Specifically, we considered three products
in the Amazon Web Services (AWS) ecosystem: EC2 for
hosting the application process, RDS for hosting a relational
database, and S3 for file storage.

4.2.1 Amazon EC2
The web service is hosted on an Amazon Elastic Compute

Cloud (EC2) instance. EC2 is a cloud service that provides
remote computing resources using virtualized, multi-tenant
servers that can be accessed from anywhere on the Internet
(e.g., a web server with a public IP address listening on TCP
port 80). One of the major benefits of using EC2 is easy scal-
ability of computing power. In a single-server system, a host
process can handle a finite number of requests per time un-
til it is overwhelmed by traffic and either becomes unusably
slow or unreachable. Unlike a single-server system, when an
increase in traffic to an EC2 instance might impact perfor-
mance, an administrator can clone a new image and AWS
will automatically use load balancers to distribute the work
between available nodes. This means that during tornado
season in the US, when tornado activity peaks and many
events overlap, the site will maintain the same quality of
service and reliability as if only one event had occured.

All of the AWS products we used were simple to provi-
sion. For development, we chose to deploy on the free tier of
EC2 which provides a micro instance with up to two Elastic
Computer Units for short processing bursts, for a maximum
uptime of 750 hours per month. Amazon offers a selection
of virtual machine images to install on an instance. We se-
lected an Ubuntu 12.04.1 LTS 64-bit distribution because it
was the closest match to our development environment.

4.2.2 Amazon RDS
The web service requires a MySQL database for struc-

tured (relational) data storage. In our current deployment,
we take advantage of the free tier of Amazon Relational
Database Service (RDS) to fill this role. Like EC2, RDS of-
fers several tiers of service (ranked by size qualifiers, such as
“small”, “medium”, and “large”), but only a single instance
in the micro tier is available for free. The free tier is also
limited to hosting databases no larger than 20GB in size.

In addition to offering this free service tier, RDS has sev-
eral other key features. First, RDS offers the customer the
ability to change the service tier (“size”) of a database in-
stance on demand. This would allow an administrator to
rescale a deployment to current demand with great ease.
Second, RDS automatically creates periodic database back-
ups (a single backup, updated daily for the free tier), which
significantly reduces the likelihood of data loss due to a
single system’s (inevitable) failure. Our RDS deployment
was nearly turnkey; Amazon RDS MySQL databases are
addressed over TCP using the native MySQL protocol at
a URL (read from the AWS management console). Be-
cause Play supports database configuration in the main ap-
plication configuration file (application.conf), using an RDS-
hosted database rather than a local one was a simple matter
of changing three configuration lines (the server URL, the
connection username, and the connection password). Since
Play applications can apply database schema updates auto-
matically, Damage Tracker was able to create its tables on
its first startup.

4.2.3 Amazon S3
The prototype for Damage Tracker was designed for a sin-

gle server and image storage and was implemented using the
local file system of the host. However, this created several
limitations for fail over and recovery. Most concerning was
the single point of failure for irreplaceable research data if
the physical disk became corrupt or damaged. Hosting the
web app on EC2 meant the user data would need to be just
close to the compute node in EC2 as it was to the local
host in a single server. Data is likely to be stored in an
Amazon data center so it should be more easily replicated
and geographically distributed than local data. To provide
local storage to our prototype EC2 node, we mounted an
Amazon Elastic Block Storage (EBS) partition to the vir-
tual machine, which acts like physically-attached storage.
EBS is a low-level storage-as-a-service. The root partition
of each EC2 machine resides in a small, free EBS volume.
Additional EBS volumes can also be purchased and mounted
to provide EC2 applications with bulk storage.

This model, however, had some severe limitations. The
data had to be backed up manually in snapshots, because
there was no automatic replication or distribution across
data centers. Fortunately, AWS provides another storage-
as-a-service called Simple Storage Service (S3) which was
significantly better-suited for our application. In trying out
S3, we wanted to retain the flexibility to return to local vol-
ume storage in the future, so we used an interface to abstract
over storage backend differences in our code. Specifically,
we defined an interface called StorageBackend with two
concrete implementations: LocalStorageBackend for single-
server volume-backed hosting and S3StorageBackend for in-
terfacing with Amazon’s Simple Storage Service (S3). The

S3 backend was implemented using RhinoFly’s S3 module2,
which provides a simple API to S3, allowing us to integrate
S3 functionality into our application. S3 uses a flat hierar-
chy of “buckets” similar to directories (but not recursive) for
storing files by a key or filename. One challenge in using
S3 was all users share the same bucket namespace. That
is, all bucket identifiers must be globally unique. Presently,
we overcome this issue by asking the user to define a unique
prefix for their buckets in the application configuration file.
The StorageBackend interface provides three functions to
the application for storage:

• store(bucket: String, file: java.io.File, key: String)

• lookup(bucket: String, key: String)

• delete(bucket: String, key: String)

4.3 History of Damage Tracker

4.3.1 Pre-Existing work
In a previous semester, a senior design team focused their

project on using mobile apps to help document tornadoes.
The team of computer science students included Kyle Red-
ding, Luke Taylor, and Jonathan Fikes. They built an An-
droid smartphone app for collecting data damage informa-
tion in the field. The app allowed the user to take photos
of damage scenes. After capture, an edit activity appeared
and the user was prompted to annotate the photo with typed
notes or address information. The app stored images on the
device’s internal SD card and the meta-data was stored in
a SQLite database. However, there was no way to retrieve
this data from the app or push it to a remote host. We
extended their app with this functionality and also added
NOAA indicators to the annotation options.

4.3.2 Modifications Leading to Current Version
Images are uploaded using the account credentials that

were created on the web site. The mobile client stores the
server URL and user email from the most recent upload, but
does not store the user’s password, as this would be a secu-
rity risk. Images are uploaded via HTTP POST requests,
which are sent to the web service. Each image is uploaded
in a seperate POST in order to minimize the chance that an
upload failure for a single image interferes with the upload
of any other image.

We also designed a streamlined, modal interface for the
application, giving the user the choice between the app’s
three main functions at startup (Figure 3) and providing
additional important information to the user on the infor-
mation entry screen (Figure 4).

5. CONCLUSION AND FUTURE WORK
Damage Tracker was originally intended as a system for

studying the EF strength of tornadoes by using the domain-
specific NOAA rating scale. This resulted in assumptions
made to the database schema and application design that
does not make this system fit for studying other natural dis-
asters. We believe, however, that with small modifications
to the data model, the mobile app and web service could be
generalized for mapping other disasters and location-specific
events.

2https://github.com/Rhinofly/play-libraries

Figure 3: Android application home screen

The current state of the system described in this paper
has several limitations that future work should address. As
previously discussed, a generalized model for annotating
geo-tagged images and events should be realized and im-
plemented to expand the usefulness of this app. Also, the
decision to use the Android platform for creating the mobile
uploader was made to build on prior work and our famil-
iarity with the SDK. By developing versions of the client
for other mobile platforms (e.g., iOS and Windows Phone),
the community of potential contributors could grow substan-
tially. Developing a version optimized for a mobile browser
is another possibility.

6. ACKNOWLEDGEMENTS
This research is supported by NSF RAPID award

#1047780.
We would like to thank Kyle Redding, Luke Taylor, and

Jonathan Fikes for their early vision and work on the pro-
totype for Damage Tracker.

Figure 4: Android edit information screen

7. REFERENCES
[1] R. Edwards, A. Dean, R. Thompson, and B. Smith.

Convective modes for significant severe thunderstorms
in the contiguous united states. part iii: Tropical
cyclone tornadoes. Journal of Weather and Forecasting,
27:1507–1519, December 2012.

[2] R. Fontugne, K. Cho, Y. Won, and K. Fukuda.
Disasters seen through flickr cameras. In Proceedings of
the Special Workshop on Internet and Disasters, SWID
’11, pages 5:1–5:10, New York, NY, USA, 2011. ACM.

[3] J. Morton. Tuscaloosa county death toll from tornado
increases to 43. Tuscaloosa News, 1 June 2011.

[4] S. Potter. Fine-tuning fujita. Weatherwise, 60(2):64,
2007.

[5] D. Prevatt, J. van de Lindt, A. Graettinger,
W. Coulbourne, R. Gupta, S. Pei, S. Hensen, , and
D. Grau. Damage study and future direction for
structural design following the tuscaloosa tornado of
2011. Technical report, Center for Advanced Public
Safety, 2011.

