
Damage Tracker
A Cloud and Mobile System for Collecting Damage Information

after Natural Disasters

Chris Hodapp∗, Matthew Robbins∗,
Jeff Gray∗, and Andrew Graettinger†

Departments of Computer Science∗ and Civil Engineering†

University of Alabama,
Tuscaloosa, Alabama 35487

5 April 2013



Acknowledgement

This project was supported in part by NSF grant #1047780



Outline

Motivation and Background

Implementation

Deploying in the Cloud

Demo

Future Work



Motivation and Background



Motivation

I Tornado outbreaks in April-May 2011
I Tornadoes hit cities across the states of Alabama and

Mississippi
I Tuscaloosa County devastated (43 lives lost, 12% of city

damaged1)

I Other geographically-distributed disasters (e.g. Gulf oil spill)

1Tuscaloosa county death toll from tornado increases to 43. Tuscaloosa News, 1 June 2011.



Background

I Researchers collect data after tornadoes
I Researchers take photos, sync GPS data later
I Hand-written notes

I Enhanced Fujita Scale
I Ratings between 1 and 5
I 28 Damage indicators, each with several degrees
I Indicator & Degree → Wind Speed Range → EF Rating



Design Requirements

I Allow users to report damage indicators & degrees
I Estimate wind speed / EF rating automatically
I Take textual notes (Speech-to-text a plus)

I Provide the ability to upload data from the web and from
mobile phones in the field

I Support many concurrent users

I Allow users to collaborate and see each other’s data on the
web



Implementation



Play

MVC web framework for Java/Scala

I Templating system

I Routes

I Database Evolutions

I ORM alternative library for queries

I Deploys as zip archive of jars with a launch script

I Encourages stateless server applications

I Code hot-swapping and in-browser errors



Scala

Statically-typed, Functional, Object-oriented language on JVM

I Pragmatic: enables multiple programming styles

I Type inference

I Great collections
I Great concurrency features

I Monadic Futures (we used them heavily)
I Actors (Play uses them internally)

I Simple Build Tool (SBT) offers Maven-like dependency
management



Additional Technologies

H2 In memory database of domain-specific data

T2V Auth Authentication module for Play

Twitter Bootstrap Site theme

Metadata-Extractor GPS data extraction

Imgscalr Server-side image manipulation

JBCrypt Password hashing

Android SDK Mobile application



Deploying in the Cloud



Amazon EC2

Elastic Compute Cloud

I Provides virtual machines, in which the user has root access
(Virtual Private Server)

I Standard Linux machines

I Pay by hour



Amazon EBS

Elastic Block Storage

I Provides raw (mass) storage volumes for EC2 instances

I Allowed us to start running our application in Amazon’s cloud
with no modifications

I Severely limited scalability: can only be connected to a single
EC2 instance at a time



Amazon RDS

Relational Database (as a) Service

I MySQL database in the cloud

I Completely drop-in replacement for a self-managed database
(just update configuration file)



Amazon S3

I Simple Storage Service

I Scalable storage in ‘buckets’

I Web API for reading and writing files

I Allowed us to overcome the limitations of EBS

I Use Rhinofly library to interface with S3 from Scala code



Demo



http://ec2-50-16-155-134.compute-1.amazonaws.com



Android Application



Map Screen



Upload Screen



Edit Screen



Future Work

I Deployment
I Host a canonical instance?
I Release source code?

I Evaluate after a tornado
I How much does the app help researchers?
I How does the app deal with load?



Questions


	Motivation and Background
	Implementation
	Deploying in the Cloud
	Demo
	Future Work

