
Introduction Modulo-X Overview

Case Study: Satisfy problem

Implementation Details of Modulo-X

References

Software modularity, driven by the concept of separation of

concerns, is a desired property for the development and evolution of

software. For a community like High Performance Computing

(HPC), where the programming models and architectures change

constantly, modularity of the source code plays a pivotal role. Often,

HPC programmers must rewrite existing programs to a new

environment to deliver the optimum performance possible. There is

a need for tools and techniques that can make such transformations

easier and simpler to perform.

In this poster, we introduce a simple source transformation

language named Modulo-X for FORTRAN and C (popular

languages in the HPC community), through which modularity of

HPC code can be improved. We follow a language-independent

approach, such that programs in both C and FORTRAN are

considered for modularity improvement.

[1] E. W. Dijkstra. On the role of scientific thought. In Selected

Writings on Computing: A Personal Perspective, pages 60–

66. Springer-Verlag, 1982.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.

Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented

Programming. In European Conference on Object-Oriented

Programming, pages 220–242, Jyv¨askyl¨a, Finland, June

1997.

[3] S. Roychoudhury, J. Gray, and F. Jouault. A model-driven

framework for aspect weaver construction. Transactions on

Aspect-Oriented Software Development, 8:1–45, 2011.

Conclusion

While creating a parallel version of a sequential program,

some code sections may be duplicated in the translated

version, which can hinder the evolution of the newly created

program. This can be prevented if parallel sections of a

program can be separated from the sequential sections.

In this poster, we introduced a transformation language,

called Modulo-X, which can make the parallel to sequential

conversion task easier without modifying the original source

code. A case study is included to show how sequential code

can be converted to two leading parallel programming

models (i.e., OpenMP and MPI) using Modulo-X.

Actions
Criterion

Actions can be specified for a function (in the Insert example in

Figure 2, the action occurs at the EMBAR FORTRAN procedure) or

globally (in the Replace example in Figure 2, the action occurs at all

the locations that match the criterion).

Insert Mode
• Insert mode inserts a block

of code before or after a
specified location. This is
identified by the keyword
insert into and followed by
after and/or before.

Replace mode
• Replace mode replaces the

specified statement or
block of statements with
new code. This is identified
by the keyword replace
and followed by with.

Expression statement
exprStatement

Function statement
funcStatement

For statement
forStatement

While statement
whileStatement

 The criterion specifies the location where an action

must occur.

 A criterion is specified using the having keyword.

 The criterion can point to a statement or a block of

statements. Figure 2 shows the specification of a

statement and Figures 3 and 4 shows the specification

of a block of statements (named as region).

 Every criterion follows the syntax that has the statement

type followed by the actual statement. This is to allow

language-independent transformations. Modulo-X allows

four types of statement as shown below.
Figure 2. Modulo-X Insert and Replace examples

Figure 3. Defining region using for loop

Figure 4. Defining region using start and end

Figure 6. MPI implementation using replace Figure 5. OpenMP implementation using insert

Parallel Implementation

The evaluation of satisfiability for a given set of variable assignments

can be computed independently of another evaluation with a different

set of variable assignments. Two common parallel implementations for

the problem are:

1. Execute all evaluations in parallel, and if an assignment combination

satisfies the expression, update that information to a shared memory

that is accessible to all the parallel execution.

2. Divide the possible variable assignment combinations equally

between the parallel executions and at the end of the execution,

merge all the information gathered by the individual executions.

Defining transformation regions

The first step in converting the sequential version of the Satisfy

program to a parallel version is to identify the parallelizable regions in

the program. In this case, the transformation region is a for loop that
occurs after the statement solution_num=0 and before

timer_end(). This can be defined in two different ways, as shown in

Figures 3 and 4.

OpenMP and MPI implementations

To convert the sequential code (identified as R1 or R2) to an OpenMP

implementation of the program, OpenMP directives must be included

before the statements. In the case of an MPI implementation, it is

preferable to replace the sequential implementation with MPI code.

The OpenMP and MPI versions of the Satisfy problem using Modulo-

X are shown in Figures 5 and Figure 6, respectively. Note that the

libraries required for the implementations can be added using the
include keyword.

Related Work

Aspect-Oriented Programming (AOP) [2] modularizes

crosscutting concerns. In [3], an aspect language for

FORTRAN was introduced. We believe Modulo-X is easier

to use with a low learning curve in comparison to an aspect

language.

Modulo-X is a transformation language targeted for procedural

languages like FORTRAN and C. Two basic Modulo-X statements are

shown in Figure 2.

The Insert example inserts the statement call print_results(Mops)

inside the FORTRAN function named EMBAR after the FORTRAN

statement Mops=2.d0**(m+1)/tm/100000.

The Replace example replaces all the occurrences of randlc function

calls with randlf(t1,t1).

In general, each Modulo-X statement executes an action at a

specified location of code.

Modulo-X file

Generating TXL files

Modulo-X parsing

Template

Template store

TXL file
Input

source file

Source transformation

TXL engine

Modified source file

Figure 1. High level design diagram of Modulo-X

A high-level design diagram illustrating the translation process of

Modulo-F is shown in Figure 1. As can be seen in the figure, a

Modulo-F file is parsed to identify the template required for

performing the specified action; the template is populated with

values from the Modulo-X file and passed to the TXL engine

along with the source FORTRAN/C file. The TXL engine

transforms the input source file to the output source file using the

newly created TXL file. Currently, there are four templates

available for transformation. For a specified criterion, there are

templates to:

1) Insert statements before or after the criterion (global scope)

2) Insert statements before or after the criterion (local scope)

3) Replace or remove statements (global scope)

4) Replace or remove statements (local scope)

