
A Platform-Independent Tool for Modeling
Parallel Programs

Ferosh Jacob, Jeff Gray
Department of Computer Science

University of Alabama
Tuscaloosa, AL 35401

fjacob@crimson.ua.edu, gray@cs.ua.edu

Yu Sun, Purushotham Bangalore
Department of Computer and Information Sciences

University of Alabama at Birmingham
Birmingham, AL 35205

{yusun, puri}@cis.uab.edu

ABSTRACT
Programming languages that can utilize the underlying parallel
architecture in shared memory, distributed memory or Graphics
Processing Units (GPUs) are used extensively for solving
scientific problems. However, from our observation of studying
multiple parallel programs from various domains, such
programming languages have a substantial amount of sequential
code mixed with the parallel code. When rewriting the parallel
code for another platform, the same sequential code is often
reused without much modification. Although this is a common
occurrence, existing tools and programming environments do not
offer much support for this process. In this paper, we introduce a
tool named PPmodel, which was designed and implemented to
assist programmers in separating the core computation from the
details of a specific parallel architecture. Using PPmodel, a
programmer can identify and retarget the parallel section of a
program to execute in a different platform. With PPmodel, a
programmer is better enabled to focus on the parallel section of
interest, while ignoring other parallel and sequential sections in a
program. The tool is explained by example execution of the
parallel section of an OpenMP program for the circuit
satisfiability problem in a cluster using the Message Passing
Interface (MPI).

Categories and Subject Descriptors
F.1.2 [Modes of Computation]: Parallelism and concurrency

General Terms
Algorithms, Performance, Languages.

Keywords
Parallel programming, model-driven engineering.

1. INTRODUCTION
With the popularity of multi-cores and multi-processors, the need
to understand parallel programming techniques will continually
emerge as a necessary skill needed by future software engineers.
For next generation applications, programmers will be required to
adapt to a new style of programming to utilize the parallelism in
the processors available to them. In addition to the platform in
which code is executed, the execution time of parallel programs

can vary based on the logic of the solution as well as the problem
size. This gives rise to the need for creating and maintaining
multiple versions of the same program intended for different
problem sizes. The existing programming styles involve creating
programs that have parallel and sequential sections. The parallel
sections are either platform-specific or architecture-specific; these
details often make parallel programming challenging for average
programmers. Often, the parallel section is deeply tangled with
the sequential section, which can affect the productivity of the
programmer. Creating a new version for an existing program
targeted to a new platform requires copying the sequential section,
rewriting the parallel section, and making necessary modifications
to bridge the new parallel code with the existing sequential code.
A parallel programming style that is void of any machine-specific
details, yet can aid programmers in bridging the parallel and
sequential sections of code, has the potential to offer much benefit
to future software engineers.

A survey of general-purpose computation on graphics hardware
reveals that General-Purpose GPU (GPGPU) algorithms continue
to be developed for a wide range of problems [1]. To use
GPGPUs outside of their intended context, much work is required
to make such algorithms accessible to a broader range of software
developers. Abstractions in parallel programming languages and
directives or annotations in sequential code have shown initial
promise in reducing some of the burdens of parallel programming.
However, even with all of these advances, parallel programming
still requires skill beyond that possessed by an average
programmer. There are several challenges that emerge when
designing parallel programs.

1.1 Why are parallel programs long?
A programmer writing code for an alternate parallel solution
should focus on defining the parallel block representing the code
to be executed by each thread or process. In an ideal situation, he
or she should not have to delve into the sequential part of the
program. Instead, a programmer should be given the flexibility to
port their program into another language by just rewriting the
parallel section of the program. Currently, many long parallel
programs have short parallel sections and long sequential sections
as revealed by our analysis. By separating the short parallel
sections from the long sequential sections, programmers are freed
from the additional task of understanding the complete code, and
allowed to focus on the core parallel computation.

An analysis was conducted on ten OpenMP programs collected
from various domains. In an OpenMP program, a parallel block is
defined by a compiler directive starting with #pragma omp
parallel. The details of the analysis are shown in Table 1. The
first column of the table shows the name of the program, second
column shows the total Lines Of Code (LOC), third column

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
49th ACM Southeast Conference, March 24-26, 2011, Kennesaw, GA,
USA. Copyright 2011 ACM 978-1-4503-0686-7 $5.00.

shows the total LOC of the parallel block, and the last column
shows the number of parallel blocks in each program. The LOC of
the parallel blocks to the total LOC of the program ranges from
2% to 57%, with an average of 19% for the selected ten OpenMP
programs. To create a different execution environment for any of
these programs, more than 50% of the total LOC would need to be
rewritten for most of the programs. Currently, programmers
manually copy/paste or rewrite the sequential section in the
parallel program. To the best of our knowledge, there is no current
support for creating or maintaining the sequential section while
rewriting the parallel program for a new platform. In this paper we
explore the possibilities to automate this process.

Table 1. Parallel sections in OpenMP programs

1.2 Which programming model to use?
In the current state of practice, in order to write a program that
will execute a block of code in parallel, a programmer must learn
a parallel programming language and supporting libraries to
describe the computation. After the program is executed, the
programmer must compare the results with some other baseline
representation of the computation in order to optimize
performance.

As an example, the shared memory (OpenMP) solution may
perform better for small problem sizes compared to using a GPU
(CUDA), which has a high threshold because of the expensive
data transfer operations. As the problem size increases, the GPU
programs become faster than shared memory programs. The
problem size for which a GPU performs better than a CPU differs
with each application. In the current practice, programmers have
to manually create the new version which may share a substantial
amount of code with the original version. Usually the
programming models require some additional code to setup the
execution in addition to actually specifying the execution. In the
case of OpenMP programs, additional code is required for the
library declarations; for MPI, the library declarations are

initialization and finalization code for process instance and
process size variables.

1.3 Solution: Modeling parallel programs
Models are often created as a higher level abstraction of some
system design [2]. Our research has led us to the realization of the
benefits of adopting a modeling approach to address the
challenges of parallel programming. The result of our work is a
modeling environment called PPmodel, which has two goals: 1) to
separate the parallel sections from the sequential parts of a
program, which allows a programmer to focus more on the
parallelism, and 2) to define a new execution strategy for the
computation intensive part of the program without changing the
flow of the program. Using PPmodel, the parallel part of the
program can be separated from the sequential part of the program,
re-designed, and then regenerated. With our approach,
programmers can switch between technical solution spaces (e.g.,
MPI, OpenMP, CUDA and OpenCL) without actually changing
the core sequential part of a program. Our approach allows a
programmer to concentrate more on the essence of the
parallelization, rather than focusing on the accidental complexities
of language-specific details. Section 2 describes PPmodel and the
design that led to the approach introduced in Section 3. Related
works are overviewed in Section 4 and the paper is concluded in
Section 5 by enumerating some possible extensions of the current
work.

2. WORKING WITH PPMODEL
In this section, PPmodel is explained from a user’s perspective
with the Satisfy problem example. The Satisfy problem has only
one parallel block, with each block determining whether the
current value satisfies the given circuit. The parallel program
written in OpenMP can be executed in a cluster using MPI by
rewriting the parallel part of the program while keeping the
sequential part of the program untouched. The following sections
introduce the three stages of using PPmodel.

2.1 Model creation for Satisfy problem
PPmodel is implemented as a modeling editor in Eclipse (please
see Section 3 for implementation details). As shown in Figure 1,
the model is created through a two-step process: 1) Model
representation of the program is generated by right-clicking the
program “Satisfy.c” in “Project Explorer” and selecting
“ModelMe,” and 2) From the model representation, a visual
representation of the program for a generated model is created by
right-clicking the generated file, “_satisfy.parallelsystem” and
selecting “DrawMe.” The model representation illustrates the
parallel blocks of the program and the visual representation links
the program to the target environment. It is possible to have
different visualizations for the same program. The visualization
model is a representation of the program in a particular
configuration, specifying the target platform for each block. The
two stages are explained in more detail in the following
subsections.

2.1.1 Creating a model from an existing program
On selecting the option “ModelMe,” two folders are created: 1)
“model,” which is a folder for model related files, and 2)
“generated,” which is a folder for generated source files. From the
selected program, the parallel blocks are identified and the
information is stored in the file “_satisfy.parallelsystem” in the
model folder. A copy of the program is placed in the “generated”
folder and renamed as “_satisfy.c”. The modifications that occur
as the result of the modeling activity are applied to this file.

No Program Name
Total
LOC

Parallel
LOC

No. of
blocks

1
2D Integral with
Quadrature rule

601 11 (2%) 1

2
Linear algebra

routine
557 28 (5%) 4

3
Random number

generator
80 9 (11%) 1

4
Logical circuit
satisfiability

157 37 (18%) 1

5
Dijkstra’s

shortest path
201 37 (18%) 1

6
Fast Fourier
Transform

278 51 (18%) 3

7
Integral with

Quadrature rule
41 8 (19%) 1

8
Molecular
dynamics

215 48 (22%) 4

9 Prime numbers 65 17 (26%) 1

10
Steady state heat

equation
98 56 (57%) 3

2.1.2 Creating a visual representation of model
On selecting the option “DrawMe,” a new file named
“_satisfy.parallelsystem_diagram” is created. Upon opening the
file, a view similar to Figure 2 is presented to the user (“MPI
cluster” node and the connecting link can be modeled).

2.2 Modeling the Circuit Satisfy problem
Modeling helps the programmer specify the automatically
detected blocks to execute in a different platform. The modeling
environment as shown in Figure 2 has a palette that consists of
Objects and Connections. The Objects represent the set of nodes
for modeling and Connections link a parallel block node with any
of the execution devices. In Figure 2, an execution device can be a
GPU device, MPI nodes, or even an unknown device (e.g.,
Xdevice). After creating a link between an execution device and
parallel block, a new file is created in the “generated” folder. The
name of the file is formed from the first four characters of the
parallel block name and first three characters of the execution
device name.

2.3 Code generation for Satisfy problem
In the editor, upon selecting “satisfy.parallelsystem_diagram”
there is an option for code generation. This integrates the code
written in “main_MPI.c” with the program in “_satisfy.c”. Code
integration involves replacing the OpenMP code with the newly
added MPI code, adding libraries to execute MPI code, and some
code to initialize MPI-specific variables (e.g., process identifier,
number of processes). An overview of the generated code using
the tool is shown in Listing 1. The execution plot for MPI and
OpenMP implementations is shown in Figure 3.

3. IMPLEMENTATION DETAILS OF
PPMODEL
A high-level diagram of PPmodel is shown in Figure 4. Domain-
Specific Modeling (DSM) [3] is applied to facilitate the tool
implementation for the modeling environment. DSM is a Model-
driven Engineering [4] methodology that uses a Domain-Specific
Modeling Language (DSML) [5] to declaratively define a system
using specific domain concepts, directly compute and analyze the
domain through model interpreters, and automatically generate the

Figure 1 Modeling the Satisfy problem

Figure 2 Modeling environment for the Satisfy program

desired software artifacts by model transformation engines and
code generators. Considering the description about the structure of
parallel programs as a specific application domain, the formal
specification for this domain – the metamodel - must be defined
first.

Figure 3 Comparison of OpenMP/MPI wth problem size

The metamodel [6] specifies the entities, associations and
constraints for the specific domain, which can be used to generate
a modeling environment, enabling users to build concrete models
and specify the structure of parallel programs. The models
conform to the definition of the metamodel and can be used in
computation, analysis and generation of other software artifacts.

We used the Graphical Modeling Framework (GMF), a powerful
DSM tool in Eclipse, to support the implementation. The
metamodel for GMF consists of three components: 1) the abstract
syntax of the structure of parallel programs is captured in the
domain model, 2) the concrete syntax (i.e., the visualization with
icons) is specified in the graphical model, and 3) the tooling
model defines the functions of the editing environment (e.g., the
palette, creation buttons, actions). This metamodel is applied to
create the PPmodel modeling editor automatically. The separation
of domain model, graphical model and tooling model realizes an
extensible framework, so that any changes to the visualization will
not affect the domain concept definition and the editing
environment, and any alteration of the domain model or tooling
model will not force the other two to change.

Figure 4 High level diagram of PPmodel

Listing 1. Final MPI program generated using PPmodel

include <stdlib.h>

include <mpi.h> /* Include MPI library.*

int main (int argc, char *argv[]){

 int id, p; /* Initialize MPI variables with other variables.*/

 MPI_Init (&argc, &argv);

 /* Determine the rank and number of processors.*/

 MPI_Comm_rank (MPI_COMM_WORLD, &id);

 MPI_Comm_size (MPI_COMM_WORLD, &p);

 /* Sequential code from OpenMP Satisfy version.*/

………………………………………………………………

if (id == 0) /* Newly inserted code

 ilo = 0;

...

.

………………………………………………………………

 /* Sequential code from OpenMP Satisfy version.

 /* Terminate MPI.*/

 MPI_Finalize ();

}

In PPmodel, the initial creation of models is not completed by
performing the basic editing operations from scratch. Instead, a C-
parser has been developed to separate the OpenMP preprocessor
statements from the rest of the C program and a data structure is
constructed with the information regarding the variables and
location of the preprocessor statements. Each block can be
uniquely identified with the function name and an identifier
representing the order of the block in that function. Using the
generated APIs to access and manipulate models in GMF, the
corresponding model elements and links are created based on the
collected information.

The initialized model can then be edited by users in order to
replace and modify the parallel components. Based on the data in
the modified models, the original code will be refactored to
replace the previous implementation with newly generated code.

4. RELATED WORKS
There have been a few modeling efforts in the parallel
programming domain. The CODE1 [7] programming language is
based on a generalized dependency graph to express the
computation in a unified parallel computation model without any
implementation details. In comparison with PPmodel, CODE is a
graphical programming environment, but PPmodel is a complete
modeling tool to create parallel programs from sequential or
parallel programs written for another target platform. GASPARD
[8] is another visual parallel programming environment
supporting task and data parallelism.

Rather than providing abstraction for a language from one parallel
programming model to the other, modeling the parallel part of the
program makes this work unique. OpenMP to GPGPU [9]
converts OpenMP programs to CUDA code. However, the goal of
our work is to express the parallel part of a program in a way that
is separate from the sequential part to allow the programmers to
focus more on the parallel problem than the program as a whole.
Other related works include program transformations from
sequential to parallel and abstractions in parallel programs. Many
of the sequential to parallel converters [10] use data dependency
and refactoring approaches that are similar to our current
implementation. Many efforts [11], [12], [13], [14] were done on
the abstraction of GPU programs. Most of the work was
concentrated on a particular device or language; [11],[12], and
[13] all target CUDA. CGiS [14] provides support for multiple
devices. Some of the features include parallel control structures
and special vector operators.

PPmodel is also motivated by the numerous successful DSM
applications, which involve creating models for specific domains
and generating low-level software artifacts from the models
automatically. For instance, a DSML is defined in [15] to specify
a home automation system and improve its quality and portability
by generating low-level control implementation from the models;
[16] focuses on the physical workflow domain and models the
specific working processes to enable model-based computation
and analysis. Our work is different from these typical DSM
applications in that the creation of our models is based on a
reverse engineering approach, which captures the essence of the
domain from the program source code. Although performing
reverse engineering on text has also been applied in some other
model-based applications, such as transforming the SPL (a
telephony language) code to CPL code (another telephony
language) by model transformation [17], and homogenizing

1 http://www.cs.utexas.edu/users/code

different textual code clone analysis results into a uniform format
[18], their main purpose is to realize data interoperability between
two different domains, rather than supporting the modification of
the parallel programs that occur in the same domain.

5. CONCLUSION
In this paper, we presented a tool named PPmodel that can be to
separate the parallel part from the sequential part of a program.
Using the modeling framework, programmers can execute the
parallel blocks in a different platform without actually rewriting
the program. The approach is independent of any platform or
language and hence it can be extended to any language. In this
paper, an OpenMP program written to solve the Circuit
Satisfiability problem was redesigned to execute in multiple nodes
using MPI.

The tool currently can model only C OpenMP programs and
generate target code for the MPI library. PPmodel can be
extended to support a GPU programming language like CUDA.
Similar implementations can be created for other programming
languages and platforms. The programming language determines
the refactoring framework to use and the platform decides the
code to be inserted or refactored.

6. REFERENCES
[1] Owens, John D., Luebke, David, Govindaraju, Naga, Harris,

Mark, Krüger, Jens, Lefohn, Aaron E., and Purcell, Timothy
J. A survey of general-purpose computation on graphics
hardware. Computer Graphics Forum, 26 (March 2007), 80–
113.

[2] Atlee, Joanne M., France, Robert, Georg, Geri, Moreira,
Ana, Rumpe, Bernhard, and Zschaler, Steffen. Modeling in
Software Engineering. In 29th International Conference on
Software Engineering (Minneapolis, MN May 2007), 113-
114.

[3] Gray, Jeff, Tolvanen, Juha-Pekka, Kelly, Steven, Gokhale,
Aniruddha, Neema, Sandeep, and Sprinkle, Jonathan. In
Domain-specific modeling: Handbook of dynamic system
modeling. CRC Press, 2007.

[4] Schmidt, Douglas. Model-driven engineering. IEEE
Computer, 39 (2006), 25-32.

[5] Lédeczi, Ákos, Bakay, Árpád, Maróti, Miklós, Völgyesi,
Péter, Nordstrom, Greg, Sprinkle, Jonathan, and Karsai,
Gábor. Composing domain-specific design environments.
IEEE Computer, 34 (2001), 44-51.

[6] Atkinson, Colin and Kuhne, Thomas. Model-driven
development: A metamodeling foundation. IEEE Software,
20 (2003), 36-41.

[7] Browne, J.C., Azam, Muhammed, and Sobek, Stephen.
CODE: A unified approach to parallel programming. IEEE
Software, 6 (July 1989), 10-18.

[8] Devin, Florent, Boulet, Pierre, Dekeyser, Jean-Luc, and
Marquet, Philippe. GASPARD: A visual parallel
programming environment. In International Conference on
Parallel Computing in Electrical Engineering (Warsaw,
Poland September 2002), 145.

[9] Lee, Seyong, Min, Seung-Jai, and Eigenmann, Rudolf.
OpenMP to GPGPU: a compiler framework for automatic
translation and optimization. SIGPLAN Notes, 44 (February
2009), 101-110.

[10] Allen, Randy and Kennedy, Ken. Automatic Translation of
FORTRAN Programs to Vector Form. ACM Transactions on
Programming Languages and Systems, 9 (1987), 491--542.

[11] Ueng, Sain-Zee, Lathara, Melvin, Baghsorkhi, Sara S., and
Hwu, Wen-Mei W. CUDA-Lite: reducing GPU
programming complexity. In Proceedings of the International
Workshop on Languages and Compilers for Parallel
Computing (Edmonton, Canada July 2008), 1-15.

[12] Breitbart, Jens. CuPP - A framework for easy CUDA
integration. In Proceedings of the 24th IEEE International
Parallel and Distributed Processing Symposium (Rome, Italy
May 2009), 1-8.

[13] Han, Tianyi David and Abdelrahman, Tarek S. hiCUDA: a
high-level directive-based language for GPU programming.
In Proceedings of 2nd Workshop on General Purpose
Processing on Graphics Processing Units (Washington, D.C
March 2009), 52-61.

[14] Fritz, Nicolas, Lucas, Philipp, and Slusallek, Philipp. CGiS: a
new Language for data-parallel GPU programming. In In
Proceedings of the 9th International Workshop on Vision,
Modeling, and Visualization (Stanford, CA November 2004),
241–248.

[15] Buendía, Manuel Jiménez, Rosique, Francisca, Sánchez,
Pedro, Álvarez, Bárbara, and Iborra, Andrés. Habitation: A
domain-specific language for home automation. IEEE
Software, 26 (2009), 30-38.

[16] Mathe, Janos L., Martin, Jason B., Miller, Peter et al. A
model-integrated, guideline-driven, clinical decision-support
system. IEEE Software, 26 (2009).

[17] Jouault, Frederik, Bézivin, Jean, Consel, Charles, Kurtev,
Ivan, and Latry, Fabien. Building DSLs with AMMA/ATL, a
case study on SPL and CPL telephony languages. In In
Proceedings of the 1st ECOOP Workshop on Domain-
Specific Program Development (DSPD) (Nantes, France July
2006), 4.

[18] Sun, Yu, Demirezen, Zekai, Jouault, Frédéric, Tairas, Robert,
and Gray, Jeff. A model engineering approach to tool
interoperability. In In 1st International Conference on
Software Language Engineering (SLE), Tool Demonstration
(Toulouse, France September 2008), 178-187.

[19] Atkinson, Colin and Kuhne, Thomas. Model-driven
development: A metamodeling foundation. IEEE Software,
20 (2003), 36-41.

