
A Platform-Independent Tool for
Modeling Parallel Programs

Ferosh Jacob, Jeff Gray, Yu Sun, Purushotham Bangalore

Department of Computer Science
University of Alabama

fjacob@crimson.ua.edu, gray@cs.ua.edu

Department of Computer and Information Sciences
University of Alabama at Birmingham

{yusun, puri}@cis.uab.edu

ACM Southeast 2011
Kennesaw State University

March 2011

Overview

PPmodel

• From Developers viewpoint

• Implementation details

• Related work

Problem formulation

• Parallel programming models

• Current Challenges

• Possible solution approach

Conclusion
Main contributions

Programming Models

CUDA

OpenCL

OpenMP
Cg

p-threads

OpenMPI

CUDA

OpenCL

OpenMP
Cg

Parallel Programming Challenges

• Which programming model to use?

Parallel Programming Challenges

• Why are parallel programs long?

No Program Name Total

LOC
Parallel

LOC
No. of
blocks

1 2D Integral with
Quadrature rule 601 11 (2%) 1

2 Linear algebra
routine 557 28 (5%) 4

3 Random number
generator

80 9 (11%) 1

4 Logical circuit
satisfiability 157 37 (18%) 1

5 Dijkstra’s
shortest path 201 37 (18%) 1

6 Fast Fourier
Transform 278 51 (18%) 3

7
Integral with

Quadrature rule 41 8 (19%) 1

8 Molecular
dynamics 215 48 (22%) 4

9 Prime numbers 65 17 (26%) 1

10 Steady state heat
equation 98 56 (57%) 3

Modeling Parallel Programs

1. Goals
• Separate the parallel sections from the sequential parts of a

program, which allows a programmer to focus more on the
parallelism.

• Define a new execution strategy for the computation
intensive part of the program without changing the flow of
the program.

2. PPmodel
• Using PPmodel, the parallel part of the program can be

separated from the sequential part of the program, re-
designed, and then regenerated.

• Programmers can switch between technical solution spaces
(e.g., MPI , OpenMP, CUDA and OpenCL) without actually
changing the program.

Working with PPmodel

PPmodel is explained from a user’s perspective with the Circuit
Satisfiability problem example.
1. Model creation for Circuit Satisfiability problem

• Create a model from an existing program: The parallel part of
the program is extracted from the sequential part and stored
separately.

• Create a visual representation of the model: The model
representation of the cluster is generated.

2. Modeling the Circuit Satisfiability problem: Modeling helps
the programmer specify the automatically detected blocks to
execute in a different platform.

3. Code generation : Code integration involves replacing the
OpenMP code with the newly added MPI code, adding
libraries to execute MPI code, and some code to initialize MPI-
specific variables.

Working with PPmodel

Demo…

Working with PPmodel

Implementation Details of PPmodel

Source code Source code

Original
parallel
blocks

Updated
parallel
blocks

#pragma omp for schedule(dynamic,chunk)
for (i=0; i<N; i++)

{
c[i] = a[i] + b[i];
printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
}

} /* end of parallel section */

#pragma omp for schedule(dynamic,chunk)
for (i=0; i<N; i++)

{
c[i] = a[i] + b[i];
printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
}

} /* end of parallel section */

#pragma omp for schedule(dynamic,chunk)
for (i=0; i<N; i++)

{
c[i] = a[i] + b[i];
printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
}

} /* end of parallel section */

#pragma omp for schedule(dynamic,chunk)
for (i=0; i<N; i++)

{
c[i] = a[i] + b[i];
printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
}

} /* end of parallel section */

#pragma omp for schedule(dynamic,chunk)
for (i=0; i<N; i++)

{
c[i] = a[i] + b[i];
printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
}

} /* end of parallel section */

#pragma omp for schedule(dynamic,chunk)
for (i=0; i<N; i++)

{
c[i] = a[i] + b[i];
printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
}

} /* end of parallel section */

#pragma omp for schedule(dynamic,chunk)
for (i=0; i<N; i++)

{
c[i] = a[i] + b[i];
printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
}

} /* end of parallel section */

#pragma omp for schedule(dynamic,chunk)
for (i=0; i<N; i++)

{
c[i] = a[i] + b[i];
printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
}

} /* end of parallel section */

#pragma omp for schedule(dynamic,chunk)
for (i=0; i<N; i++)

{
c[i] = a[i] + b[i];
printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
}

} /* end of parallel section */

#pragma omp for schedule(dynamic,chunk)
for (i=0; i<N; i++)

{
c[i] = a[i] + b[i];
printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
}

} /* end of parallel section */

#pragma omp for schedule(dynamic,chunk)
for (i=0; i<N; i++)

{
c[i] = a[i] + b[i];
printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
}

} /* end of parallel section */

#pragma omp for schedule(dynamic,chunk)
for (i=0; i<N; i++)

{
c[i] = a[i] + b[i];
printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
}

} /* end of parallel section */

Related Works

There have been a few modeling efforts in the parallel
programming domain.
• Graphical programming languages: CODE

programming language is based on a generalized dependency
graph to express the computation in a unified parallel
computation model without any implementation details.

CODE is a graphical programming environment, but
PPmodel is a complete modeling tool to create parallel
programs from sequential or parallel programs written for
another target platform. GASPARD is another visual
parallel programming environment supporting task and
data parallelism.

Related Works

There have been a few modeling efforts in the parallel
programming domain.
• OpenMP to GPGPU: converts OpenMP programs to

CUDA code
The goal of PPmodel is to express the parallel part of a
program in a way separated from the sequential part so as
to allow the programmers to focus more on the parallel
problem than the program as a whole.

• Program transformation tools: Other related works
include program transformations from sequential to parallel
and abstractions in parallel programs.

Limitations and Future work

• The tool currently can model only C OpenMP programs
and generate target code for the MPI library.

• PPmodel can be extended to support a GPU
programming language like CUDA.

• Similar implementations can be created for other
programming languages and platforms.

• The programming language determines the refactoring
framework to use and the platform decides the code to be
inserted or re-factored

Conclusion

• PPmodel is a tool that can be used to separate the parallel
part from the sequential part of a program.

• Using the modeling PPmodel framework, programmers
can execute the parallel blocks in a different platform
without actually rewriting the program.

• The approach is independent of any platform or language
and can be extended to any language.

• An OpenMP program written to solve the Circuit
Satisfiability problem was redesigned to execute in
multiple nodes using MPI.

Thanks

Questions

