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ABSTRACT 
The Lego Mindstorms Robot Command eXplorer (RCX) is a 
popular robotics kit that provides an immediate “out-of-the-box” 
opportunity to explore software controlled robot interaction. The 
limitations of the RCX provide a direct challenge that is typical of 
real-world embedded system development. This paper describes 
the Java-based development of a set of robots that coordinate to 
play the game of tic-tac-toe. Three key challenges were 
investigated in the project: 1) recognition of the state of the game 
board, 2) computation of the next-move within a reasonable 
timeframe using robots working in parallel, and 3) navigating a 
robot to the proper board location to mark the desired move. 
Game board analysis takes the form of a robot that performs 
optical scanning. A min-max tree algorithm was implemented in 
the primary control robot to determine the next best move. 
Various robot components were implemented to affect the 
physical movement of the robots and to mark the appropriate tic-
tac-toe cell. The inefficiency of the min-max algorithm provides 
an opportunity to explore the use of parallelism among the robots 
to compute the next best move at specific levels of game play. In 
addition to the research results, the project informs the 
appropriateness of using the RCX as the basis for introductory 
programming classes and to provide a platform to drive 
undergraduate research. 

Categories and Subject Descriptors 
C.3 [Special Purpose and Application Based Systems]: real-time 
and embedded systems, K.3.2 [Computers and Education]: 
Computer and Information Science Education 

Keywords 
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1. INTRODUCTION 
Embedded systems are “special-purpose computer systems 
encapsulated by the devices they control” [6]. Although there is 
disagreement concerning the general nature of embedded systems, 
two characteristics are generally applicable [1]: 

 

• An embedded system is typically deployed on a different 
platform from which it was designed and implemented. 

• An embedded system is typically resource-constrained and 
forced to execute in an asynchronous environment while 
optimizing performance and predictability concerns. 

The first characteristic is driven by the design of the hardware 
platforms on which embedded systems are implemented. Often, 
these hardware platforms provide little or no user interface 
through which a programmer can develop the embedded software. 
The second characteristic is driven by the uses to which 
embedded systems are commonly deployed (e.g., the 
measurement of real-time data through sensory input, or the 
performance of predefined tasks in a specific time-frame). Other 
characteristics exhibited by embedded systems are resource 
limitations (in terms of both computational power and memory 
capacity), safety issues inherent in embedded systems’ lack of 
information hiding, the inevitable compromise between size and 
performance, and loop structures for continuous sensory input 
[10]. 

Opportunities to investigate embedded systems within an 
educational context can be explored by adopting the RCX as the 
primary hardware platform. Because of its limited features, the 
RCX naturally embodies the first of the stated general 
requirements for embedded systems (i.e., software is developed 
on one platform and deployed on the RCX). The second general 
requirement is a matter of convenience (i.e., robots naturally lend 
themselves to real-time applications). The RCX offers a flexible 
architecture for exploring embedded systems, including 
challenges regarding real-time CPU performance, memory 
constraints, looping mechanisms, implementation exposure, and 
the limitations introduced from the use of an interpreter in an 
embedded system. The embedded systems created for the RCX 
take the form of robots that function autonomously, responding to 
their environment based on their programmed instructions. 

This paper describes the results of an undergraduate Honors 
research project that investigated the feasibility of using the RCX 
as the host environment for coordinated robots that play tic-tac-
toe. The project contained all of the challenges encountered 
during typical embedded systems development [7]. A contribution 
of the paper is a technique for parallel computation among robots 
to determine the next move using a game-tree algorithm. The 
paper describes the design and implementation of the tic-tac-toe 
player, as well as a discussion of the specific challenges and 
limitations encountered. 

The organization of the paper is as follows: Section 2 provides a 
brief introduction to the RCX and leJOS, and also motivates the 
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goals of the research. Section 3 outlines the major challenges of 
the project, followed by a discussion of the implementation 
details in Section 4. The final section provides concluding 
remarks and discusses the limitations of the work. 

2. BACKGROUND AND MOTIVATION 
This section provides the necessary background information about 
the RCX, as well as a generalization of RCX software 
development using Java on a small virtual machine. The section 
also motivates the goals of the research. 

2.1 RCX and leJOS 
The RCX was first released in 1998 with two additional versions 
following. The core of the robot consists of the Hitachi H8/3292 
CPU, which contains 16x8 general registers, 57 base instructions, 
8 addressing modes, 16K Flash ROM, 32K RAM, 16MHz @ 5V, 
2x8 bit timers, 1x16 bit timer, 8x10 bit A/D converters, 43 I/O 
lines, 8 input lines, and a serial port [2]. The default firmware for 
the RCX supports 5 program slots, each of which can manage 10 
threads that support 8 subroutines, 32 global variables, and 16 
local variables per thread. The firmware also provides 4 timers at 
100ms precision, and 4 other timers at 10ms. The RCX contains 3 
input ports (configurable for each sensor type, either active or 
passive), 3 output ports, 1 sound output, and 1 LCD unit. 
Although 8x10 bit A/D converters are available within the 
processor core, the RCX only takes advantage of 3 sensor ports, 3 
power ports, and an infrared (IR) port. RCX is distributed with the 
LEGO Robotics Invention System programming environment, 
which is a graphical programming environment for beginning 
programmers. Of the 32K of RAM in the RCX, 28K is available 
for user applications [2]. 

RCX development is possible with several programming 
environments. The leJOS framework is a Java-based derivative of 
the TinyVM for use in the RCX [3]. leJOS implements a variety 
of language features that are not typically found on other RCX 
programming systems (e.g., object-oriented programming, 
preemptive threads, synchronization, exceptions, arrays, and 
recursion). The combination of preemptive threads, 
synchronization, and exceptions enables leJOS-based applications 
to receive input from the external environment in a stable manner, 
while providing the design and implementation benefits of an 
object oriented language [4]. Among the features incorporated 
into leJOS that are not available in the standard TinyVM are 
floating point operations, string constants, dynamic casting of 
integers, multi-program downloading, trigonometric functions, 
and various APIs for reading sensors and controlling motors. 
Although the TinyVM’s footstamp is 10K, the leJOS footstamp is 
17K, which is a by product of leJOS’ attempt to be 
comprehensive in its coverage of the Java features that are 
appropriate for the RCX. 

Various development tools are also provided by leJOS. An 
Eclipse plug-in for leJOS provides an effective integrated 
development environment (IDE) for developing RCX embedded 
systems based on the leJOS runtime [5]. The plug-in enables 
developers to create leJOS-specific projects that may be uploaded 
to the RCX directly from the IDE. If required, the leJOS firmware 
may also be uploaded to the RCX directly from the IDE. leJOS 
also provides an RCX emulator called emu-lejos, which is a 
textual tool that can receive more detailed exception information. 

Such information can assist in debugging a leJOS application 
before it is deployed to an actual robot [3]. 

 

2.2 Motivation 
Embedded systems present special challenges in regard to the 
development of system software. As a platform for the 
development of embedded systems, the RCX provides 
opportunities for exploring these challenges. Of special interest is 
a specific set of embedded system issues that relate directly to the 
capabilities and limitations of embedded systems in general. 
These are 1) the development of embedded systems on one 
platform for deployment on another, 2) execution of real-time 
scheduling constraints, 3) systems that deal with sensors and 
activators, 4) the trade-offs between machine language, compiled 
and interpreted systems, 5) the use of loop structures for 
repetitious input, 6) information hiding concerns, and 7) the 
compromise between size and performance. Each of these general 
challenges finds specific expression when embedded systems are 
developed on the RCX.  

The development of embedded systems on one platform for 
deployment on another requires special consideration in regard to 
system design and implementation. Embedded systems may lack 
the external user interface features necessary to develop software 
on the host system itself. Therefore, general purpose desktop 
computers are generally employed as development platforms [1]. 
When necessary, the source code is compiled on the general 
purpose platform. Afterward, the compiled code is uploaded to 
the embedded system through a special interface designed for that 
purpose. In the case of the RCX, there are several options 
provided for the development platforms that run on a variety of 
operating systems, including Windows, Macintosh, and Linux.  

Real-time development demands that embedded systems assume 
specific characteristics. In terms of signal processing, real-time 
refers to the acquisition, transformation, and disposition of the 
incoming data in a manner efficient enough to ensure a 
sufficiently dense sampling of input data. What constitutes 
sufficient density differs among applications. For instance, a 
thermometer in a domestic setting for the control of a central air 
conditioning system has less stringent requirements than a heart 
monitor in a hospital’s intensive care unit. In other scenarios, 
embedded systems must meet efficiency requirements in terms of 
sufficient output. For example, when a robotic manufacturing line 
is controlled by an embedded system, the embedded system must 
perform its assigned tasks with sufficient efficiency to ensure the 
manufacturing line does not become congested. For this research, 
the RCX is used to receive and analyze input from the external 
environment and react to the input received. 

An embedded system is often deployed with accompanying 
sensors and activators, which are separate components (often 
embedded systems themselves) that provide information and 
perform actions for an embedded system [6]. Consider the 
thermostat for an air conditioning system: the embedded system is 
manifested in the form of a process that takes sensory input from 
a thermometer and controls (activates/deactivates) the air-
conditioning unit. The RCX represents a similar architecture in 
the form of three sensory sources, three activator sources, and one 
IR port. 



The computational and size limitations of embedded systems lead 
to special considerations in terms of programming language 
support. Although assembly language provides an opportunity for 
optimization and efficiency, it also introduces the developmental 
complexities associated with lower-level programming. Compiled 
languages provide an abstraction level between the developer and 
the hardware, facilitating development. However, an inefficiency 
shared with assembler language is the lack of debugging 
information. Interpreted languages provide more robust 
debugging capabilities, but at the cost of efficiency. 

A common characteristic of embedded systems are loop structures 
that poll repetitious input [6]. Often, input is continuous and must 
be monitored (e.g., altimeters, heart monitors). For other 
scenarios, embedded systems must perform a task in a repetitious 
manner. The RCX can be used as the controller for robotic 
systems that continually await for sensory input and react to the 
input in ways defined by the specific application. 

The resource constraints of embedded systems often limit the 
application of software engineering principles (e.g., information 
hiding) that can improve the stability and modularity of software 
systems [8]. Such limitations are encountered when an embedded 
system is developed in an object-oriented programming language 
that provides access to encapsulated data through interfaces. This 
problem is compounded when an interpreter is used (such as the 
leJOS TinyVM) because an interpreter requires additional 
resource overhead to perform a computational task. 

Several of the issues outlined in this section deal with the most 
fundamental characteristic regarding embedded systems, which is 
the compromise between size and performance. In computational 
domains that do not require critical, real-time performance, it may 
be possible to increase the functional capabilities of the embedded 
system. However, many applications of embedded systems do not 
permit this flexibility because of the effect on the performance 
and schedule. 

3. KEY CHALLENGES OF TIC-TAC-LEGO 
This section outlines several of the challenges encountered when 
developing the tic-tac-toe player. 

3.1 Cross Platform Development 
One of the issues regarding embedded systems is the frequent 
necessity for developing the embedded systems software on one 
platform for deployment on another platform. In leJOS, both the 
interpreter and the user application program are uploaded from a 
USB Tower on a PC to an infrared port on the RCX (see Figure 
1). On average, it takes 167 seconds to upload the leJOS firmware 
to the RCX. For our tic-tac-toe software, the bytecode (i.e., the 
.class file) for the Scanner robot was 13,572 bytes, which required 
108 seconds (1.8 minutes at 125 bytes/second) to upload. The 
time to upload the bytecode to the RCX presents a challenge 
during development – each change that is made to the source code 
must be uploaded to the RCX to be tested, which impacts the time 
of the edit-compile-test cycle. 

 
 

3.2 Performance Considerations 
For the Tic-Tac-LEGO project, two challenges related to 
performance issues emerged during development: 1) the 
computations for the next-best game move in a time-constrained, 
game-playing context, and 2) the physical movement of the robots 
to scan the game board and mark the result on the appropriate cell 
on the tic-tac-toe game board. 

The first challenge manifested primarily as a result of selecting 
the min-max algorithm [9] as the basis for exploring parallelism 
among RCX units. This choice highlighted two of the identified 
concerns of embedded systems: 1) the compromise between size 
and performance and 2) issues regarding the choice of language 
implementation. With the leJOS interpreter installed, and running 
an implementation of the min-max algorithm, the tic-tac-toe 
player was able to evaluate only 109 tic-tac-toe boards per 
second. Given this average processing time, the run-times for the 
specified remaining moves are indicated in Table 1. 

Table 1. Tic-Tac-LEGO Run Times 

Moves Remaining Run Time 
4 0.5 seconds 
5 2 seconds 
6 11 seconds 
7 58 seconds 

 
As expected, the growth is exponential. At 7 remaining moves in 
a game, 58 seconds may not meet the real-time requirement for 
computing the next, best move in a time-constrained, game-
playing context. The solution, as discussed in section 4.3, is to 
parallelize the next move computation among a set of 
collaborative robots. 

The real-time concerns involved in scanning the board and 
placing the game pieces derived from 1) the disjoint nature of the 
sensors and activators and 2) the limited number of sensors and 
activators. For the Scanner robot, one “rotation sensor/motor 
activation” combination was required for rolling 
forward/backward and rotating the sensor arm (see Figure 2). This 
combination relied on the RCX’s hardware interrupt system in 
conjunction with the virtual machine’s messaging system to 
coordinate the starting and stopping of motors based on a count of 
axel rotations. Because the motors operated independently of the 
axel sensors, a slight discrepancy might be incurred after each 
movement. This issue was overcome through the use of gear 
reduction to suppress the discrepancy to sufficient levels. 

 

Figure 1. The USB Tower and RCX 



Figure 3. The Marker Robot placing a game piece 
 

Another aspect through which the RCX reflects its nature as a 
platform for embedded systems is the limited number of sensors 
(three) and activators (three) available for use on the RCX unit. 
One sensor and one activator are required for each of the rolling 
and rotating behaviors. For the Scanner robot, this leaves one 
sensor for scanning. To actually affect the physical placement of 
pieces on a game board, another robot is required. For Tic-Tac-
LEGO, a second robot performs the role of board-marker (see 
Figure 3). This robot is also used as a second processor when 
parallel computation is required. 

4. TIC-TAC-LEGO IMPLEMENTATION 
4.1 Class Decomposition 
The use of Java and the leJOS TinyVM naturally led to a project 
implementation that decomposed into class hierarchies. The first 
hierarchy provided the core game playing and board scanning 
capability for one robot. The second hierarchy contained the 
parallel processing support and game piece placement for another 
robot. The design of each robot class was abstracted into a 
generalized class hierarchy. For example, both robots were 
required to roll forward/backward and rotate an arm, which 
suggested a generalized superclass called RollRotateRobot. 
One of the robots also required the ability to bend its arm to place 
game pieces on the board during game play. The class 
implemented to control the arm (ArmRobot) is a direct 
descendant of the RollRotateRobot class. Further, the 
processes of rolling, rotating, and bending are individually sensed 
and activated by an encapsulated class named RotationAxel. 
The RollRotateRobot is an aggregate class containing two 
(2) RotationAxel instances, one for rolling and another for 
arm rotation. These also exist in the ArmRobot, along with 
another for sensing and activating the bending of that robot arm. 
Other classes were also created for communication and location 
placement. 

During development, the extensive decomposition of the project 
into an abstract class hierarchy, coupled with the implementation 
of interfaces to access class members, resulted in an 
implementation that was too resource intensive. Although an 
iterative and incremental approach to implementation was 
pursued, eventually a resource error occurred when the addition 
of a new class resulted in the exhaustion of resources. 

The solution to resource limitations was achieved by refactoring 
the source code. Specifically, a weakness of embedded systems 
programming known as data exposure was resolved. Embedded 
systems often require that data be pooled in a common area, or 
(due to space considerations) be publicly accessible to all parts of 
the embedded system. For the Tic-Tac-LEGO project, the 
conservation of memory was achieved through redefinition of all 
class members as public, and with the removal of all 
accessor/mutator interfaces for class members. Thereafter, the 
robots functioned within acceptable limits. Of course, this is a 
violation of traditional software engineering principles (e.g., 
information hiding), but was required to resolve the problems 
caused by resource limitations. 

4.2 Event Polling 
Polling occurs in both the Scanner robot and the Marker robot. 
The Scanner robot awaits input from the external environment 
and the Marker. The Marker robot only accepts sensor input from 
the Scanner robot. An important design constraint for the primary 
Scanner/Game-play robot requires that the robot be able to play 
consecutive games of tic-tac-toe; that is, on the completion of one 
game, the robot should be in a state to start another game 
immediately. To start a game, both robots are activated through 
their on-off button. At startup, each robot enters their respective 
polling loop. The Scanner robot is programmed to scan the board 
and determine a move when its Prgm (external input) button is 
pushed. Once it scans the board and determines the next move, it 
transmits the location of the move to be made to the Marker robot 
through the infrared port. After the Scanner robot informs the 
marker robot, it reenters its loop, awaiting another press of its 
Prgm button to begin scanning another move. The Marker robot, 
after receiving notification of a move, places the next piece at the 
correct location on the game board, and then reenters its polling 
loop. 

Figure 2. The Scanner Robot scanning the board 



4.3 Parallelism in Computing the Next Move 
The min-max algorithm was specifically adopted to explore the 
possibilities of parallelism among coordinated RCX units. As 
explained in Section 3.2, time constraints emerge when seven or 
more moves remain in a tic-tac-toe game. A trivial analysis 
identified the hardcoded moves that should be made at the 
beginning of a game when nine or eight moves remained. 
Parallelism was implemented for the specific case when seven 
moves remain. First, the Marker robot implementation was 
extended to wait for one of two messages while in its polling 
loop. The first message provided information regarding the 
placement of a game piece on the board. The second message 
contained the board layout when a parallel computation was 
required. When appropriate, the Scanner robot transmits the board 
configuration to the Marker robot. At that time, both robots 
compute the next, best move in parallel. Because seven moves 
remain, one robot receives three board locations, and the other 
robot receives four board locations; therefore, the computation 
requires more time for one robot than the other. However, the 
RCX’s hardware interrupt system (in conjunction with the 
TinyVM’s messaging system) ensures that the message received 
from the Marker robot after it completes its computation does not 
interrupt the processing of the Scanner robot. After completing 
the move computation, the Marker robot reenters its polling loop, 
waiting for the message indicating which move is to be made. 
After the Scanner robot receives the computed move from the 
Marker robot, it selects one of the computed moves and informs 
the Marker robot of the move to be made. The implementation of 
parallelism for the computation of the next, best move when 
seven moves remains, results in a 43% reduction in the processing 
time required for that move, as compared to a single RCX unit. 

5. CONCLUSION 
The RCX provides an interesting and entertaining platform to 
explore the challenges of embedded system design and 
implementation. Through the resources provided by its three 
sensors, three activators, IR port, limited memory, and limited 
processor capabilities, the RCX provides the opportunity to 
explore the core issues involved with embedded system design 
(i.e., dual platforms for design and deployment; real-time 
processing; language implementation features and limitations; 
loop control structures for embedded systems; information hiding 
concerns; size versus performance issues; and the use of sensors 
and activators). The research described in this paper encountered 
the traditional challenges of embedded system design and 
investigated the use of parallelism among multiple RCX units. 

The use of a general computer for the development and the LEGO 
IR USB tower for deployment is a constraining factor when 
developing embedded systems for the RCX. When used in 
educational settings, especially with less experienced 
programmers, the slow transmission rate during uploads dampens 
the potential of the learning experience. We encountered this 
during our mentorship of summer high school interns – the upload 
time and unreliable nature of the IR tower presented several 
frustrations among the students (for information on this internship 
opportunity, please see http://www.cis.uab.edu/heritage). 

The requirement for real-time processing in conjunction with 
other implementation choices resulted in situations common to 
embedded systems development. The extensive class 

decomposition, coupled to the memory requirements of the 
interpreter resulted in the over-use of the RCX’s resources. The 
subsequently refactored code resulted in a functional product. 
However, the resulting code was less adaptable and maintainable 
due to the lack of information hiding. 

The inefficiency of the min-max algorithm provided the 
opportunity to explore the use of parallelism to compute the next 
best move. To split the task into parallel activities required the 
robots to communicate with each other during the computation of 
the next move. Such communication is possible through the infra-
red  ports. 

The RCX has definite shortcomings (the speed of uploads and the 
lack of an informative and useful emulator). However, the RCX 
provides interesting opportunities to explore embedded systems 
and other aspects of computer science. Class decompositions for 
the robotics aspects of RCX development provide clear and 
understandable delineations whose straightforwardness might be 
useful in an educational environment. 
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