
Tic-Tac-LEGO:
An Investigation into Coordinated Robotic Control

Ruben Vuittonet and Jeff Gray
Department of Computer and Information Sciences

University of Alabama at Birmingham
Birmingham, AL 35294 USA

{rvito, gray}@cis.uab.edu

ABSTRACT
The Lego Mindstorms Robot Command eXplorer (RCX) is a
popular robotics kit that provides an immediate “out-of-the-box”
opportunity to explore software controlled robot interaction. The
limitations of the RCX provide a direct challenge that is typical of
real-world embedded system development. This paper describes
the Java-based development of a set of robots that coordinate to
play the game of tic-tac-toe. Three key challenges were
investigated in the project: 1) recognition of the state of the game
board, 2) computation of the next-move within a reasonable
timeframe using robots working in parallel, and 3) navigating a
robot to the proper board location to mark the desired move.
Game board analysis takes the form of a robot that performs
optical scanning. A min-max tree algorithm was implemented in
the primary control robot to determine the next best move.
Various robot components were implemented to affect the
physical movement of the robots and to mark the appropriate tic-
tac-toe cell. The inefficiency of the min-max algorithm provides
an opportunity to explore the use of parallelism among the robots
to compute the next best move at specific levels of game play. In
addition to the research results, the project informs the
appropriateness of using the RCX as the basis for introductory
programming classes and to provide a platform to drive
undergraduate research.

Categories and Subject Descriptors
C.3 [Special Purpose and Application Based Systems]: real-time
and embedded systems, K.3.2 [Computers and Education]:
Computer and Information Science Education

Keywords
LEGO Mindstorms RCX, Embedded Systems, leJOS

1. INTRODUCTION
Embedded systems are “special-purpose computer systems
encapsulated by the devices they control” [6]. Although there is
disagreement concerning the general nature of embedded systems,
two characteristics are generally applicable [1]:

• An embedded system is typically deployed on a different
platform from which it was designed and implemented.

• An embedded system is typically resource-constrained and
forced to execute in an asynchronous environment while
optimizing performance and predictability concerns.

The first characteristic is driven by the design of the hardware
platforms on which embedded systems are implemented. Often,
these hardware platforms provide little or no user interface
through which a programmer can develop the embedded software.
The second characteristic is driven by the uses to which
embedded systems are commonly deployed (e.g., the
measurement of real-time data through sensory input, or the
performance of predefined tasks in a specific time-frame). Other
characteristics exhibited by embedded systems are resource
limitations (in terms of both computational power and memory
capacity), safety issues inherent in embedded systems’ lack of
information hiding, the inevitable compromise between size and
performance, and loop structures for continuous sensory input
[10].

Opportunities to investigate embedded systems within an
educational context can be explored by adopting the RCX as the
primary hardware platform. Because of its limited features, the
RCX naturally embodies the first of the stated general
requirements for embedded systems (i.e., software is developed
on one platform and deployed on the RCX). The second general
requirement is a matter of convenience (i.e., robots naturally lend
themselves to real-time applications). The RCX offers a flexible
architecture for exploring embedded systems, including
challenges regarding real-time CPU performance, memory
constraints, looping mechanisms, implementation exposure, and
the limitations introduced from the use of an interpreter in an
embedded system. The embedded systems created for the RCX
take the form of robots that function autonomously, responding to
their environment based on their programmed instructions.

This paper describes the results of an undergraduate Honors
research project that investigated the feasibility of using the RCX
as the host environment for coordinated robots that play tic-tac-
toe. The project contained all of the challenges encountered
during typical embedded systems development [7]. A contribution
of the paper is a technique for parallel computation among robots
to determine the next move using a game-tree algorithm. The
paper describes the design and implementation of the tic-tac-toe
player, as well as a discussion of the specific challenges and
limitations encountered.

The organization of the paper is as follows: Section 2 provides a
brief introduction to the RCX and leJOS, and also motivates the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SE’06, March, 10-12, 2006, Melbourne, Florida, USA
Copyright 2006 1-59593-315-8/06/0004…$5.00.

goals of the research. Section 3 outlines the major challenges of
the project, followed by a discussion of the implementation
details in Section 4. The final section provides concluding
remarks and discusses the limitations of the work.

2. BACKGROUND AND MOTIVATION
This section provides the necessary background information about
the RCX, as well as a generalization of RCX software
development using Java on a small virtual machine. The section
also motivates the goals of the research.

2.1 RCX and leJOS
The RCX was first released in 1998 with two additional versions
following. The core of the robot consists of the Hitachi H8/3292
CPU, which contains 16x8 general registers, 57 base instructions,
8 addressing modes, 16K Flash ROM, 32K RAM, 16MHz @ 5V,
2x8 bit timers, 1x16 bit timer, 8x10 bit A/D converters, 43 I/O
lines, 8 input lines, and a serial port [2]. The default firmware for
the RCX supports 5 program slots, each of which can manage 10
threads that support 8 subroutines, 32 global variables, and 16
local variables per thread. The firmware also provides 4 timers at
100ms precision, and 4 other timers at 10ms. The RCX contains 3
input ports (configurable for each sensor type, either active or
passive), 3 output ports, 1 sound output, and 1 LCD unit.
Although 8x10 bit A/D converters are available within the
processor core, the RCX only takes advantage of 3 sensor ports, 3
power ports, and an infrared (IR) port. RCX is distributed with the
LEGO Robotics Invention System programming environment,
which is a graphical programming environment for beginning
programmers. Of the 32K of RAM in the RCX, 28K is available
for user applications [2].

RCX development is possible with several programming
environments. The leJOS framework is a Java-based derivative of
the TinyVM for use in the RCX [3]. leJOS implements a variety
of language features that are not typically found on other RCX
programming systems (e.g., object-oriented programming,
preemptive threads, synchronization, exceptions, arrays, and
recursion). The combination of preemptive threads,
synchronization, and exceptions enables leJOS-based applications
to receive input from the external environment in a stable manner,
while providing the design and implementation benefits of an
object oriented language [4]. Among the features incorporated
into leJOS that are not available in the standard TinyVM are
floating point operations, string constants, dynamic casting of
integers, multi-program downloading, trigonometric functions,
and various APIs for reading sensors and controlling motors.
Although the TinyVM’s footstamp is 10K, the leJOS footstamp is
17K, which is a by product of leJOS’ attempt to be
comprehensive in its coverage of the Java features that are
appropriate for the RCX.

Various development tools are also provided by leJOS. An
Eclipse plug-in for leJOS provides an effective integrated
development environment (IDE) for developing RCX embedded
systems based on the leJOS runtime [5]. The plug-in enables
developers to create leJOS-specific projects that may be uploaded
to the RCX directly from the IDE. If required, the leJOS firmware
may also be uploaded to the RCX directly from the IDE. leJOS
also provides an RCX emulator called emu-lejos, which is a
textual tool that can receive more detailed exception information.

Such information can assist in debugging a leJOS application
before it is deployed to an actual robot [3].

2.2 Motivation
Embedded systems present special challenges in regard to the
development of system software. As a platform for the
development of embedded systems, the RCX provides
opportunities for exploring these challenges. Of special interest is
a specific set of embedded system issues that relate directly to the
capabilities and limitations of embedded systems in general.
These are 1) the development of embedded systems on one
platform for deployment on another, 2) execution of real-time
scheduling constraints, 3) systems that deal with sensors and
activators, 4) the trade-offs between machine language, compiled
and interpreted systems, 5) the use of loop structures for
repetitious input, 6) information hiding concerns, and 7) the
compromise between size and performance. Each of these general
challenges finds specific expression when embedded systems are
developed on the RCX.

The development of embedded systems on one platform for
deployment on another requires special consideration in regard to
system design and implementation. Embedded systems may lack
the external user interface features necessary to develop software
on the host system itself. Therefore, general purpose desktop
computers are generally employed as development platforms [1].
When necessary, the source code is compiled on the general
purpose platform. Afterward, the compiled code is uploaded to
the embedded system through a special interface designed for that
purpose. In the case of the RCX, there are several options
provided for the development platforms that run on a variety of
operating systems, including Windows, Macintosh, and Linux.

Real-time development demands that embedded systems assume
specific characteristics. In terms of signal processing, real-time
refers to the acquisition, transformation, and disposition of the
incoming data in a manner efficient enough to ensure a
sufficiently dense sampling of input data. What constitutes
sufficient density differs among applications. For instance, a
thermometer in a domestic setting for the control of a central air
conditioning system has less stringent requirements than a heart
monitor in a hospital’s intensive care unit. In other scenarios,
embedded systems must meet efficiency requirements in terms of
sufficient output. For example, when a robotic manufacturing line
is controlled by an embedded system, the embedded system must
perform its assigned tasks with sufficient efficiency to ensure the
manufacturing line does not become congested. For this research,
the RCX is used to receive and analyze input from the external
environment and react to the input received.

An embedded system is often deployed with accompanying
sensors and activators, which are separate components (often
embedded systems themselves) that provide information and
perform actions for an embedded system [6]. Consider the
thermostat for an air conditioning system: the embedded system is
manifested in the form of a process that takes sensory input from
a thermometer and controls (activates/deactivates) the air-
conditioning unit. The RCX represents a similar architecture in
the form of three sensory sources, three activator sources, and one
IR port.

The computational and size limitations of embedded systems lead
to special considerations in terms of programming language
support. Although assembly language provides an opportunity for
optimization and efficiency, it also introduces the developmental
complexities associated with lower-level programming. Compiled
languages provide an abstraction level between the developer and
the hardware, facilitating development. However, an inefficiency
shared with assembler language is the lack of debugging
information. Interpreted languages provide more robust
debugging capabilities, but at the cost of efficiency.

A common characteristic of embedded systems are loop structures
that poll repetitious input [6]. Often, input is continuous and must
be monitored (e.g., altimeters, heart monitors). For other
scenarios, embedded systems must perform a task in a repetitious
manner. The RCX can be used as the controller for robotic
systems that continually await for sensory input and react to the
input in ways defined by the specific application.

The resource constraints of embedded systems often limit the
application of software engineering principles (e.g., information
hiding) that can improve the stability and modularity of software
systems [8]. Such limitations are encountered when an embedded
system is developed in an object-oriented programming language
that provides access to encapsulated data through interfaces. This
problem is compounded when an interpreter is used (such as the
leJOS TinyVM) because an interpreter requires additional
resource overhead to perform a computational task.

Several of the issues outlined in this section deal with the most
fundamental characteristic regarding embedded systems, which is
the compromise between size and performance. In computational
domains that do not require critical, real-time performance, it may
be possible to increase the functional capabilities of the embedded
system. However, many applications of embedded systems do not
permit this flexibility because of the effect on the performance
and schedule.

3. KEY CHALLENGES OF TIC-TAC-LEGO
This section outlines several of the challenges encountered when
developing the tic-tac-toe player.

3.1 Cross Platform Development
One of the issues regarding embedded systems is the frequent
necessity for developing the embedded systems software on one
platform for deployment on another platform. In leJOS, both the
interpreter and the user application program are uploaded from a
USB Tower on a PC to an infrared port on the RCX (see Figure
1). On average, it takes 167 seconds to upload the leJOS firmware
to the RCX. For our tic-tac-toe software, the bytecode (i.e., the
.class file) for the Scanner robot was 13,572 bytes, which required
108 seconds (1.8 minutes at 125 bytes/second) to upload. The
time to upload the bytecode to the RCX presents a challenge
during development – each change that is made to the source code
must be uploaded to the RCX to be tested, which impacts the time
of the edit-compile-test cycle.

3.2 Performance Considerations
For the Tic-Tac-LEGO project, two challenges related to
performance issues emerged during development: 1) the
computations for the next-best game move in a time-constrained,
game-playing context, and 2) the physical movement of the robots
to scan the game board and mark the result on the appropriate cell
on the tic-tac-toe game board.

The first challenge manifested primarily as a result of selecting
the min-max algorithm [9] as the basis for exploring parallelism
among RCX units. This choice highlighted two of the identified
concerns of embedded systems: 1) the compromise between size
and performance and 2) issues regarding the choice of language
implementation. With the leJOS interpreter installed, and running
an implementation of the min-max algorithm, the tic-tac-toe
player was able to evaluate only 109 tic-tac-toe boards per
second. Given this average processing time, the run-times for the
specified remaining moves are indicated in Table 1.

Table 1. Tic-Tac-LEGO Run Times

Moves Remaining Run Time
4 0.5 seconds
5 2 seconds
6 11 seconds
7 58 seconds

As expected, the growth is exponential. At 7 remaining moves in
a game, 58 seconds may not meet the real-time requirement for
computing the next, best move in a time-constrained, game-
playing context. The solution, as discussed in section 4.3, is to
parallelize the next move computation among a set of
collaborative robots.

The real-time concerns involved in scanning the board and
placing the game pieces derived from 1) the disjoint nature of the
sensors and activators and 2) the limited number of sensors and
activators. For the Scanner robot, one “rotation sensor/motor
activation” combination was required for rolling
forward/backward and rotating the sensor arm (see Figure 2). This
combination relied on the RCX’s hardware interrupt system in
conjunction with the virtual machine’s messaging system to
coordinate the starting and stopping of motors based on a count of
axel rotations. Because the motors operated independently of the
axel sensors, a slight discrepancy might be incurred after each
movement. This issue was overcome through the use of gear
reduction to suppress the discrepancy to sufficient levels.

Figure 1. The USB Tower and RCX

Figure 3. The Marker Robot placing a game piece

Another aspect through which the RCX reflects its nature as a
platform for embedded systems is the limited number of sensors
(three) and activators (three) available for use on the RCX unit.
One sensor and one activator are required for each of the rolling
and rotating behaviors. For the Scanner robot, this leaves one
sensor for scanning. To actually affect the physical placement of
pieces on a game board, another robot is required. For Tic-Tac-
LEGO, a second robot performs the role of board-marker (see
Figure 3). This robot is also used as a second processor when
parallel computation is required.

4. TIC-TAC-LEGO IMPLEMENTATION
4.1 Class Decomposition
The use of Java and the leJOS TinyVM naturally led to a project
implementation that decomposed into class hierarchies. The first
hierarchy provided the core game playing and board scanning
capability for one robot. The second hierarchy contained the
parallel processing support and game piece placement for another
robot. The design of each robot class was abstracted into a
generalized class hierarchy. For example, both robots were
required to roll forward/backward and rotate an arm, which
suggested a generalized superclass called RollRotateRobot.
One of the robots also required the ability to bend its arm to place
game pieces on the board during game play. The class
implemented to control the arm (ArmRobot) is a direct
descendant of the RollRotateRobot class. Further, the
processes of rolling, rotating, and bending are individually sensed
and activated by an encapsulated class named RotationAxel.
The RollRotateRobot is an aggregate class containing two
(2) RotationAxel instances, one for rolling and another for
arm rotation. These also exist in the ArmRobot, along with
another for sensing and activating the bending of that robot arm.
Other classes were also created for communication and location
placement.

During development, the extensive decomposition of the project
into an abstract class hierarchy, coupled with the implementation
of interfaces to access class members, resulted in an
implementation that was too resource intensive. Although an
iterative and incremental approach to implementation was
pursued, eventually a resource error occurred when the addition
of a new class resulted in the exhaustion of resources.

The solution to resource limitations was achieved by refactoring
the source code. Specifically, a weakness of embedded systems
programming known as data exposure was resolved. Embedded
systems often require that data be pooled in a common area, or
(due to space considerations) be publicly accessible to all parts of
the embedded system. For the Tic-Tac-LEGO project, the
conservation of memory was achieved through redefinition of all
class members as public, and with the removal of all
accessor/mutator interfaces for class members. Thereafter, the
robots functioned within acceptable limits. Of course, this is a
violation of traditional software engineering principles (e.g.,
information hiding), but was required to resolve the problems
caused by resource limitations.

4.2 Event Polling
Polling occurs in both the Scanner robot and the Marker robot.
The Scanner robot awaits input from the external environment
and the Marker. The Marker robot only accepts sensor input from
the Scanner robot. An important design constraint for the primary
Scanner/Game-play robot requires that the robot be able to play
consecutive games of tic-tac-toe; that is, on the completion of one
game, the robot should be in a state to start another game
immediately. To start a game, both robots are activated through
their on-off button. At startup, each robot enters their respective
polling loop. The Scanner robot is programmed to scan the board
and determine a move when its Prgm (external input) button is
pushed. Once it scans the board and determines the next move, it
transmits the location of the move to be made to the Marker robot
through the infrared port. After the Scanner robot informs the
marker robot, it reenters its loop, awaiting another press of its
Prgm button to begin scanning another move. The Marker robot,
after receiving notification of a move, places the next piece at the
correct location on the game board, and then reenters its polling
loop.

Figure 2. The Scanner Robot scanning the board

4.3 Parallelism in Computing the Next Move
The min-max algorithm was specifically adopted to explore the
possibilities of parallelism among coordinated RCX units. As
explained in Section 3.2, time constraints emerge when seven or
more moves remain in a tic-tac-toe game. A trivial analysis
identified the hardcoded moves that should be made at the
beginning of a game when nine or eight moves remained.
Parallelism was implemented for the specific case when seven
moves remain. First, the Marker robot implementation was
extended to wait for one of two messages while in its polling
loop. The first message provided information regarding the
placement of a game piece on the board. The second message
contained the board layout when a parallel computation was
required. When appropriate, the Scanner robot transmits the board
configuration to the Marker robot. At that time, both robots
compute the next, best move in parallel. Because seven moves
remain, one robot receives three board locations, and the other
robot receives four board locations; therefore, the computation
requires more time for one robot than the other. However, the
RCX’s hardware interrupt system (in conjunction with the
TinyVM’s messaging system) ensures that the message received
from the Marker robot after it completes its computation does not
interrupt the processing of the Scanner robot. After completing
the move computation, the Marker robot reenters its polling loop,
waiting for the message indicating which move is to be made.
After the Scanner robot receives the computed move from the
Marker robot, it selects one of the computed moves and informs
the Marker robot of the move to be made. The implementation of
parallelism for the computation of the next, best move when
seven moves remains, results in a 43% reduction in the processing
time required for that move, as compared to a single RCX unit.

5. CONCLUSION
The RCX provides an interesting and entertaining platform to
explore the challenges of embedded system design and
implementation. Through the resources provided by its three
sensors, three activators, IR port, limited memory, and limited
processor capabilities, the RCX provides the opportunity to
explore the core issues involved with embedded system design
(i.e., dual platforms for design and deployment; real-time
processing; language implementation features and limitations;
loop control structures for embedded systems; information hiding
concerns; size versus performance issues; and the use of sensors
and activators). The research described in this paper encountered
the traditional challenges of embedded system design and
investigated the use of parallelism among multiple RCX units.

The use of a general computer for the development and the LEGO
IR USB tower for deployment is a constraining factor when
developing embedded systems for the RCX. When used in
educational settings, especially with less experienced
programmers, the slow transmission rate during uploads dampens
the potential of the learning experience. We encountered this
during our mentorship of summer high school interns – the upload
time and unreliable nature of the IR tower presented several
frustrations among the students (for information on this internship
opportunity, please see http://www.cis.uab.edu/heritage).

The requirement for real-time processing in conjunction with
other implementation choices resulted in situations common to
embedded systems development. The extensive class

decomposition, coupled to the memory requirements of the
interpreter resulted in the over-use of the RCX’s resources. The
subsequently refactored code resulted in a functional product.
However, the resulting code was less adaptable and maintainable
due to the lack of information hiding.

The inefficiency of the min-max algorithm provided the
opportunity to explore the use of parallelism to compute the next
best move. To split the task into parallel activities required the
robots to communicate with each other during the computation of
the next move. Such communication is possible through the infra-
red ports.

The RCX has definite shortcomings (the speed of uploads and the
lack of an informative and useful emulator). However, the RCX
provides interesting opportunities to explore embedded systems
and other aspects of computer science. Class decompositions for
the robotics aspects of RCX development provide clear and
understandable delineations whose straightforwardness might be
useful in an educational environment.

REFERENCES
[1] Bessin, Geoff. “Embedded Systems: A Primer.” Staff, IBM

Rational. November, 2003. Available at http://www-
128.ibm.com/developerworks/rational/library/806.html

[2] “RCX Brick.” Robotics Outreach Group.
Available at http://robofesta.open.ac.uk/techspec.html

[3] Ferrari, Giulio, et al. Programming LEGO Mindstorms with
Java. Syngress Publishing, Incorporated, Rockland, MA,
2002.

[4] “Tiny VM.” Available at http://tinyvm.sourceforge.net/
[5] “What is leJOS or TinyVM?” Available at

http://rcxtools.sourceforge.net/e_lejos.html
[6] “Embedded Systems.” Available at

http://en.wikipedia.org/wiki/Embedded_system
[7] Lee, E., “What’s Ahead for Embedded Software?” IEEE

Computer, September 2000, pp. 18-26.
[8] Parnas, D., “On the Criteria To Be Used in Decomposing

Systems into Modules,” Communications of the ACM, Vol.
15, No. 12, December 1972, pp. 1053-1058.

[9] Shannon, C.E., “Programming a Computer for Playing
Chess,” Philosophical Magazine 41, 1950, pp. 256-275.

[10] Simon, D., An Embedded Software Primer, Addison-Wesley,
1999.

