The Role of Reuse in Introducing Software Engineering
Principles in a Computer Science Second Course

PROJECT REPORT

Presented in Partial Fulfillment of the Requirements
for the Degree Master of Science in the

Department of Statistics and Computer Science

By
Jeffrey Gene Gray, B.S.
* k kk k% %
West Virginia University

May 1993

Project Committee:
Dr. Murali Sitaraman Approved by:

Dr. Frances VanScoy

Project Adviser
Dr. Douglas Harms
Department of
Statistics and Computer Science

ACKNOWLEDGMENTS

In the effort to completehis final degree requirement, find myself indebted to my
adviser, Murali Sitaraman. Ovdhe past yearhis willingness toassist me in the
preparation of various papers, wsll as thisreport, has been invaluablend verymuch
appreciated. Aparfrom his guidance irthese endeavors, | am also grateful for his
introducing me to the many current topics in the area of software reuse.

My gratitude is also expressed toward Frances VanScoy and Doug Harms, members of my
project committee. | consider it an honor to have them participate in this capacity.

PUBLICATIONS

Gray, Jeffrey G., “Teachingthe Second ComputescienceCourse in a
Reuse-Based Setting: A Sequence of Laboradssignments in Ada,” In
Proceedings of the Eleventh National Conference on Ada Technology
March 1993, pp. 38-45.

Sitaraman, Murali, and Gray, JeffSoftware Reuse: A Context for
Introducing SE Principles in a Traditional CS Second Course,” Department
of Statistics and Computer Science, We¥frginia University,
Morgantown, WV, TR-93-2, March 1993, pp. 1-14.

Gray, Jeffrey G., “Ants Climbing Trees:Memory Management in Ada,”
Embedded Systems ProgrammiAgril 1990, pp. 23-26.

LIST OF FIGURES

Figure 1 - The 3C Model Representation of a Prime Number Generator Using Sets....... 8

Figure 2 - The Specification of a Set COmMPONENL............ccooeiiiiiiiiiiiiiiiiiie 9-10
Figure 3 - The Specification of Secondary Set Operations.............ccceeeeeeeiiiiiiiiiiiiinnennn. 21
Figure 4 - The Specification of a List Component................cooooeiiiiiiiiiiiiiiiiiieiieeeen, 23-24
Figure 5 -A Procedure Specification Using the Object-based Approach...................... 29
Figure 6 -A Procedure Specification Using the Reuse-based Approach...................... 29

TABLE OF CONTENTS

ACKNOWLEDGMENTS.....ciiiiiiiiiiiiit e i
PUBLICATIONS . . iii
LIST OF FIGURES.coiiiiiiiiiiiieieeee ittt e e e e e e e e e e aeaeeas iv
TABLE OF CONTENTS. ..ottt e e e e e e e e e e e eaaaas Vv
CHAPTER 1 INEFOAUCTION. ... 1
1.1 Why teach reuse in an introduCtOory COUrSE?.........uuuuuummmmiiaaaaanaaaaaeaenns 1
1.2 DEFINITION. coeeeiiee et 2
1.3 Benefits of a reuse-based approach...............cccceeeiiiiiiiiieiiiiiiiiiiiiis 2
1.4 Organization Of the rePOIt.........uuueiiii e 5
CHAPTER 2 Technical Underpinnings. ... 7
2.1 The BC MOEL.... i 7
2.2 SPECITICALION.ceiiiiiiiiii ettt e e e eeaees 9
2.3 DBSION. ettt 12
2.4 IMPIEMENTALION.uiii e e eennaes 14
CHAPTER 3 Description of Materials for the Second Course.................... 15
3.1 LECIUIE OULINE. ... 15
3.2 An example laboratory SEQUENCE...........cccoviiiiiiiiiiiiiii s 17
3.3 Laboratory deSCrPIONS.v i eeeiiiieeiitiee e 19
CHAPTER 4 Related WOrK...........ooiiiiiiiii e 27
4.1 Topics to be covered in the firSt COUISe..........uuiiiiiiiiiiieeiiiieeeeeeeiiiiis 27
4.2 DistinguisShing fEAtUIES..........ooviiiiiiiiiiiie e 28
CHAPTER 5 Experience and ConcluSIiONS..........ccooooveeiiiiiiiiiiiii e 31
APPENDIX A Sample Lab DeSCrPtiONS.cccooveieiiiiiiiiieiiiiii e 33
Lab 1 - Student as client of a reusable component.............ccccceeeiiiiiiiinnnnnn. 34
Lab 2 - Student as implementer (layered approach).............ccccccvveiiininnnnnns 38
Lab 3 - Student as implementer (“from-scratch” approach)....................... 41
APPENDIX B Lab SOIUIONS.......oiiiieeiieei e 43
LBD Lo a e e e e e e e e aeees 44
= | o PP PP PP PRUPPPPPPIN 52
=1 I TS TS URPPPPPPPPTIN 57
BIBLIOGRAPHY ... 63

This page intentionally left blank.

Vi

CHAPTER 1

Introduction

The demand fograduates wektrained in softwareengineering principles and practices is
continuing to increaseEducators of undergraduate compuseience curricula can no
longer afford to wait untithe senioryear to motivate andhstill softwareengineering
principles in theiistudents. However, introducing nginciples in earlycourses, without
totally displacing existing principles, et easy. Software reuse provides an appropriate
context for presentingorinciples of software design and specification, along with
abstraction and encapsulationtriaditional freshmen computer science courses.

1.1 Why teach reuse in an introductory course?

Most current computescience curricula introducgoftwareengineering principles at a
junior/senior-levelcourse,motivating the need fordesign and specification usirggoup
projects.This lateexposure leaves students wiifle time to master and practice these
principles before thegraduate and join the industry. Moreovegyvingdone most of their
programming projects in previougourses without following sound principles,
junior/senior-level studentare less interested in correcting the Wbaabits they have
practiced in this process. The need for learning key software engineering principles early in
the curriculum is, therefore, quite clearThis need has also beetressed in recent
literature [Reuse-Ed 92].

Introducing new principles, such as specification and design, in freshmen cosgjeriee
courses is noeasy.For onething, new principles must be includedthout exluding

important conceptsonventionallytaught in these course&dditionally, it isimportant to

motivate the need fdearningtheseprinciples using aapproach that iseadily applicable
at thefreshmen level. An answer these problembes in software reuseyhich has been
found to provide a moatseful settingfor reinforcing conventionallytaught principles,

such as abstraction and informatiaiding, andfor introducing new softwarengineering
principles.

Concentrating on reus®ings into focus a number of kepftwareengineering principles.
Softwareengineeringtextbooks (e.g.[Pressmarf0]) explainthe role of abstraction in
specifications andgtress the need fatesigningthe specification of asoftware product
before it is implemented. Suchooks also argue for the need modularize the
construction of large softwaystems andor the need to restridommunication among
different modulesthrough only their interfaces. In addition, thedextbooks often
emphasizehe importance of softwargquality and discusthe advantages dbllowing
theseprinciples insoftware maintena. All of these issueare equallyimportant in the
context of reusable software.

Focusing on software reuse makgsecification and design central issues in problem
solving andnot asissues thatare taught on theside, as is the case with current
approaches. In the reuse-based approach, students appreciate the need for abstraction,
specification, design, and quality by reusicgmponents baseentirely on their
specifications, whichare supplied bythe lab instructor. Students also see software
construction more as a process adsembling existing reusabsmftware components

rather than continually starting from scratch.

This report presents an outline of lectures and an example sequence of lab assignments
for teaching the second course in computer science following a reuse-based approach. It
includes our experience in adapting the approach to Ada for four semesters in the
Department of Statistics and Computer Science at West Virginia University (Spring 92,
Summer 92, Fall 92, and Spring 93). Some ofpheciples thatre taught in the reuse-

based second course at WVU include:

The ability to understand abstract and formal specifications;

Specification-based component reuse;

Separation of the specification of a component from its implementation;

Construction of new components by layering them on top of existing components; and

Multiple implementations, with different efficiency characteristics, for a given
specification.

1.2 Definition

Recent literature on software reuse contains seddfaient definitions or classifications
of the term [Krueger 92, Yourdon 92]. Thefinition of reuse used in thigeport is one
which is component-based [Muralidharan 90Weide 91]. In this report, areusable
component is viewed abaving two distinct elements: a formal specification and a
certifiable implementation of that specification, possiblythia form of objectcode. All
references to reuse discussed in tlaport arebasedonly on the specification and
performance characteristics of thenplementation. Thereport concentrates on
componentsvhich are designedfor reusesince this is wheréhe benefitsare maximized
[Hollingsworth 92b]. Issues in reuse basedcodescavenging, obther methodsvhere
the utilization of already existingoftware occurs by accident gerendipity,are not
discussed in this report.

1.3 Benefits of a reuse-based approach

This section outlines several benefits of teachimg second course in compusaience
following a reuse-based approach.

1. Reuse provides an excelladntext for presenting important compusaience and
software engineering principles.

The idea that a software componerill e reused elsewhere permitse students to
readily see the importance &ky softwareengineering principles. The realization that the
developer of a component and the prospedreat arelikely to bedifferent peopldeads
students to new thinking. In particuldhe importance andelevance ofthe following
principles are made clear early in the curriculum:

« Separation of the specification and implementation details of a component

This separation permiteuse to be based on thpecification of a component;
without it, reuse is impractical even when possible.

« Unambiguous and abstract expression of a specification

The specification of a reusable component permits clients,welk as
implementation developers d@ghe component, talearly understand how the
component is supposed to behave. Such understandingnimakes it easy to
reason about other software that uses this component.

- Design

If a reusable component st well-designed,the scope for its reuseilwbe
limited. Studentdearn to appreciatéhe role ofdesign issues isoftware reuse
and general software development. Tesign issues that studeat® exposed to
include: adequatkinctionality, cohesion, coupling, composability, generality, and
minimality.

« Certification

If there is notsufficient confidence thahe implementation of a component meets
its specification correctly, it idikely that it will not be reusedlssues of
verification andtesting, seen as cruciér software developmertbut seldom
given muchattention in undergraduate curricula, become promiissoes in the
minds of freshmen students.

- Efficient implementations

If a reusable component st implemented efficientlythen users W prefer
custom-built component&his fact inturn motivates students to appreciate the
importance ofefficiency, but not at theexpense of correctness. Tissue of
designing efficient implementationalso provides an excellentontext for
introducing topics in the analysis of algorithms.

« Maintenance

Construction of softwareystems using existing reusaldeftware components
greatly enhancethe maintainability ofthese systems. The reuse-based approach
provides students with an insight into maintenance issues early in the curriculum.

The fundamentadoftwareengineering principles mentionedove, whertaught without
“thinking” reuse,seem neither importamor interesting to students in introductory
computersciencecourses.Traditionally, intoductory courses often concentrate on the
syntactic details of a particular programming langueaf@er thanspecific principles.
Absence of an earlgxposure to softwarengineering principleprevents studentsom
applyingand therefore understanding these ideas in amajsirity of theirundergraduate
coursesSince significanattention to syntactic detaifemains essentidr beginners, the
reuse-based second course continues to introduce langoagéucts to students.
However, the approach also attemptsirtfuse various softwaresngineering principles
into the consciousness d&feshmenstudents.This is done at anearly stage of the
curriculum so that stents are afforded the opportunity to practice phiaciples
throughouttheir undergraduate careers. Thus, bytime stidents are ready to enter the
industry, they have developed significant amount of confidence irdesigning and
specifying software using sound principles.

2. Focus on reuse permits introduction to principles of specification and design early in the
curriculum.

Principles of specification and desigreusuallyintroduced at a late point in most current
curricula. When these principlese presentedheyare taught as “otheitleasrather than
central themes for software construction. Iguaior/senior-levelsoftware engineering
class,group projects ardypically created to motivate the need fepecification and
design. One factor thatomplicates such late introduction to thgwinciples isthat
students have already acquired certain “bsaftwareengineering practice®.g.,coding
an implementation before designing the specification) that are difficult to change.

At the freshmen level, thinkingeuse providesnmediate motivatiorfior applyingsoftware
engineering principles while avoidirige need tdorm student teams. In the reuse-based
courses, the laboratory instructor and studémms a team. In someprojects, students
solve a problem using a reusable compondrith is implemented byhe instructor. In
others,they implement &omponent on their own. Acting &sth developers andients,
students appreciate the role of design and specification in software constructi@ady an
stage.

3. Computer scientists ibwv now be equipped with a component-based software
development mindset.

It is widely believed that sometime in the future new software products will be constructed
largely by assembling existingpmponents [Biggersta®9]. Such constructiomas the

potential to solvehe most importanproblem facingsoftware engineerday: how to
producehigh qualitysoftware on timeThis futuristic view ofsoftware construction may
come to resemblbBow otherindustries currentlyonstruct products. Fa@axample, in the
same way that an individugan go to their local Radio Shack and purchase electronic
components witlspecificcharacteristics, software engineers, or even compotayists,

may be able to go to lacal software shop and purchase software components to their
specifications. Thinkingeuseearly inthe curriculum prepares stlents forthis futuristic

view of software construction. In fact, studentsll worobably reuse some of the
components developed in their earlieourses to complete software projectey
encounter later in the curriculum.

4. Non-computescience majors can acquire importarsight into principles ofoftware
reuse and software engineering.

The reuse-centered approach greht#yefitsnon-computer science majors. It introduces
them to important softwarengineering principles theyould not otherwise have had the
opportunity to learn and apply. Thepéanciples, which tothe non-computescience
studentmay not have any intrinsic value beyortde course, can carry over a particular
mindset that could be applied tther disciplines as wellFor example, English majors
who happen to complete the reuse-based couliseatonly see the need f@pecifying

and designingoftware before it iamplementedput alsorealize thathe same philosophy
applies inthe construction of large term papers liberary works. In this sense, they
acquire theealization that advanced preparation betbesmplementation of anyype of

work not only increases the quality of the work but also improves productivity, an impetus
for applying the engineeringmetaphor to these othelisciplines. This is certainlypot a

new idea; the famous novelist/scientist C.P. Snow has often discussed the need for the two
cultures, represented by themanities andhe sciences, to have a mutual understanding
of the basic principles found in other disciplines [Snow 58].

1.4 Organization of the report

The report is organized into thefollowing chapters. Chapter 8ummarizes several
technical foundations involved the approach. Chapter 3 then presents a cawutiee
that has been used to tedbk second course during thast four semesters at the West
Virginia University. Included in thishapter is aliscussion of laboratory assignmetitat
have been used teelp teach the approach. Chapter 4 enumerates the topich are
assumed to be coveredthre first course. A second section thfis chapter compares the
approach to other methods fi@aching the secontburse. Thdinal chapter provides a
summary. It also includesur experience in teachindpe approach and offers suggestions
for possible future work. Two appendices provide supportive material used in
demonstrating the approach.

This page intentionally left blank.

CHAPTER 2

Technical Underpinnings

The specification-based approach to software reuse offers tremendous advantages in the
development and maintenance of lasgétware systems. The reuse-basedrsestrictly

adheres to this philosophy, aallireusableparts developed in the course are reussesgd

only on their specificationsThroughout the lectures, homework, alath assignments,
students always begin by reusing sotoenponent that is assumed to have alrdaen
implemented bythe lab instructor. They begin asusers of components to solve some
interesting applications, e.g., finding a solution to a “maze” problem using a stack. Later in
the semestetheyact aamplementers oEomponents. Some of theiseplementations are
layered ontop of existing componentw/hile others arebuilt from scratch.This chapter
discusses the technical foundations of the approach.

2.1 The 3C model

A useful model for discussing some of the topics mentioned in this chapter can be found in
the 3Cmodel [Tracz 89].This model, when applied tthe underlying structure of a
software system, can be used to illustraterétetionship among concepts (specifications),
contents (implementatis)y and the context (environment) in which theyoccur.
Conventions of theanodel state that concepts are to be representediroles while
contents aréndicated by rectangle€ontexts, althougliseful inotherdescriptionswill

not beutilized inthe example from thisection. As an illustration, theodel wil be used

to describe the structure of a sample laboratory assignment.

In Figure 1, themodel is used taepresent the structure oflab assignmentwhose
purpose is to construct a primambergeneratorDetailed descriptions of this assignment
can be found in Chapter 3 aAgppendix A. In this sectiorthe assignment is usezhly to
illustrate how the 3C model is applied.the figure, ararrowfrom aconcept to a content
indicates thathe contentmplementshe concept. An arrorom acontent to a concept
means thathe content uses tHacilities provided by the concepDotted arrowswhich
point to empty spaces indicate additionahcepts/contentahich were notincluded in
order to keep théigure as simple as possibleor example the content List Based_Set
can be used to implement the concept Set_Template. Likethesepnceptist_Template
is used by the content List_Based_Set. It is obviows the illustration thatthe model
allows a concept to be realized by multiple contents, a usifidute that is needed in the
description of reusable software.

Although recenbfferings ofthe second course at WVkhhvenot utilized this model, a
revised version of [Sitaraman 93IpJans to incorporate themodel as a basis for
introducingmany ofthe principlespresented in thiseport. The model is extremelyseful
in visually describingnany ofthe key aspects of therinciplestaught in the course. The
reader ofthis report may find the model useful in understandirthe structure of the
various lab assignments discussed in the next chapter.

List Based Array Based| |Pointer Based
Set Set Set

Stack Based| [Pointer Based
List List

The 3C Model Representation of a Prime Number Generator Using Sets
Figure 1

2.2 Specification

The importance of specificationstime context ofeusable softwarparts cannot be over-
emphasized [Luckha®7, Meyer 85, Weide91, Wing 90]. Thespecification of a reusable
part serves as aontract between developeend clients of thatpart. Without the
specification,the implementation developersilivnot know whatshould be implemented
and clients Wl not know what isbeingused. Rigorous certification efforts also need a
certain degree dbrmality in specificationsThe specification mustherefore, bdormal,

yet understandable to a potential client angdlementerere, abeginningundergraduate
student. The importance of an appropriaigression of a specificatiofor a given
audience is described in [Sitaraman 93a)].

In this report, theterm “specification” wll refer to both the syntactic argemantic
interfaces of a reusablpart. Figure 2 shows thespecification of an Ada generic
component, annotateasing a variant othe RESOLVESspecification languagewhich
provides an abstract data tyjset and operations owariables of thistype. In the
RESOLVE approach tapecifications [Hollingswortt92b, Sitaramar®3a, Weide 91],

every alstract data typectually has arfabstractview” that is alreadyfamiliar to the
students. A comparison of RESOLVE and other specification approaches, such as those in
[Wing 90], can be found in [Sitaram&8Ba]. Other approachesych as Larch and Z, may

also be used if they can be presented in a way understandable to freshmen.

generic

type Item is limited private

with procedure Item_Initialize(X : inout Item);

--l ensures X = initial_Item

with procedure Item_Finalize(X : inout Item);

with procedure Item_Swap(X, Y : inout Item);

--lensures X = #Y and Y = #X

with procedure Item_Comparator(X, Y : inout Item;
Answer : out Boolean);

--lensures X =#X and Y = #Y and Answer iff (X =)
package Set Template is
type Set is limited private ;

--I abstract view: Set is modeled by mathematical Set of ltems

The Specification of a Set Package
Figure 2

-- standard operations

procedure Initialize(S : inout Set);
--lensures S ={}

procedure Swap(S1, S2: inout Set);
-l ensures S1 = #S2 and S2 = #S1

procedure Finalize(S : inout Set);
-- set operations

procedure Add_ltem(S : inout Set;
X: inout Item);

--I requires X aos
--lensures S = #S O {#X} and X = initial_Item

procedure Remove_ltem(S : inout Set;
X: inout Item);

--l requires X O s
--lensures S = #S - {#X}

procedure Remove_Any One_ltem(S: inout Set;
X: inout Item);

--l requires S z{}
--l ensures X O#Sand S =#S - {X}

procedure Is_Member(S : inout Set;
X: inout Item;
Member : out Boolean);

--l'ensures S = #S and X = #X and Member = (X 0s)

procedure Is_Empty(S: inout Set;
Empty : out Boolean);
--lensures S =#S and Empty = (S={})

private

type Set_Rep;
type Set is access Set_Rep;

end Set_Template;

The Specification of a Set Package
Figure 2 (cont.)

It is important to note thabefore the students see tfieal version of Set Template
shown in Figure 2, they have viewed several intermediate veraibich incrementally
introduce them to various conventions used in @E%E. Other data abstractions ch

as Stacks and Lists, adesignedsimilarly. Therefore,only for the first example do the
students have to leartme key principles(e.g., abstractiorand information hiding) in
specification.

Using RESOLVE the program typé&et isexplained using mathematicabtationsfrom
set theory,such asl] and . This specification of aet does noinvolve the idea of

10

pointers or arrays, thu§eeingusers fromthe necessity of understanding details of the
private part. From an examination of Figure @ne camote that twaclausesare used in
the specification of eacloperation;namely, arequires clause (pre-condition) and an
ensures clause (post-condition). The requires clatestes what must bgue of the
arguments passed to the operation. If the requilasse istrue when an operation is
called, the ensuresclause Wl be true when it terminates, assuming eorrect
implementation of the operation. In the ensures clause, the notation “#x” for a parameter x
denotes thencoming value othe parametewhenthe operation isalled and “x”’denotes
its value wherthe operation returns. In the requires clause vé@bles alwaysienote
the incoming parameter values. If either clause is omitted fritve Sspecification of an
operation, the default is a true implication for that clause.

The specification ofmost operations provided in Set Template shouldebsy to
understand for those whwave a basic comprehension s#t theory. Foexample, the
specificationscapture thébehavior that Remove_Item removes a specified item whereas
Remove_Any_ One_Iltem removes a random item fthe set.This understanding is a
result ofapplyingtwo complementing principles.e., informationhiding and abstraction.

To demonstrate howinformation hiding is applied in thisomponent, note that the
program typeSet is noonly protectedrom the user, bynaking it alimited privatetype,

but the details ofthe type representation ahgdden inthe package bodyJUsing this
approach, the user is prohibittdm accessing andewing the details ofthe type. The
principle of abstraction is applied to Set_Template bgdeling the program type Set
using a related concept, i.e., mathematical sets. Rather than describing this type in terms of
an array, or somether lowlevel construct, theautilization of mathematical sets improves
understanding and captures thge behavior ofthe component. Thegeo principles aid

in understanding sinc¢he client of the component doesot need to siftthrough
nonessential details mrder tocomprehend th&ue meaning. This exampl@resented to
students early in the course, immediately introduces them to these important principles in a
context which is often missing in other approaches for teaching the second course.

Specifications of severaltherinterestingdata abstractions, atlevel of formality suitable

for an undergraduate class, can be found in [Sitaraman 93b]. $hes#ications use
familiar mathematicatoncepts such as strings, natural numbers, functions and relations. It
is emphasized again thttte goal is tomake specifications reasonably formalit allow

them to be at devel appropriate for undergraduate students. On a related note,
discussions othe introduction oformal methods igraduatdevel courses can be found

in [Garlan 92, Lutz 92].

2.3 Design

11

Recently, design issues have gained prominenteeititerature on softwarengineering
and reuseFor widespread reuse to occur, software parts mustebgned to be reused.
Set_Template is aaxample of asoftware partwhich was carefully designedor reuse
following specific guidelines in [HollingswortB2b] andprinciples in [Harm91, Reuse
92, SPC 89, Edwards 90].

The principles discussed so far in this chapter often synergetically combine to increase
the reusability of software. For example, a by-product of specifying a software part using
sound principles is that the design process becomes more manageable. This can be
demonstrated by once again examining Set_Template. In enforcing information hiding
on this component, by deferring the actual type representation until the package body,
design issues concerned with Itiple implementationgor the same specification become

more amenable.

Set_Template providesnly a primary set of operations. Othegeneric secondary
operations (e.g., &et union operation) can be constructeing layering.Standard
operations such dsitialize, Finalize,and Swap aréncluded inthe specification of every
data abstractionThis designapproach permits thgossibility of efficientdatamovement
and storagemanagement, unlikéhe copying approach [Harm®1]. It is possible to
initialize and finalize storage for a Set in constatine using amortization techniques.
These techniques amdt taught as part of the course descriptions of the method can
be found in [Harms 89, Weide 91].

Several subtle design ideas can be seen from a careful stuthe ddet Template
specification. Mte that both thggrogram typeSetand thegeneric parameter type Item
have been declared to bkmited private Following the design guidelines of
[Hollingsworth 92b], all imported and exported types adesigned in this manner.
Exported typessuch as 8t, aredeclared afimited privateto allow clients to confidently
reason abouvariables ofthe exported type. Exported typdeclared as beingrivate,
rather tharlimited private would allowthe client to accesanplicit operations, such as
the assignmenbperatorand tests forequality, which can be aabstacle to reasoning
about clients that use the component. An additignalelinestates thaall exportedtypes
should be represented as pointers to some other representatiomigtpesdeferred until
the implementation.

To discernthe importance oideclaring exported types afimited private instead of
private, consider thdollowing example:Supposewo variables, S1 an®2, are oftype
Setwhere S1 contains thealues{l, 2, 3, 4, 5} while S2 isempty. In this example,
assume thabetjust happens to be declaredpas/ate to allow access tthe assignment
operator.Also, assume thahe representation det isexplicitly defined inthe private
part of thespecification.Now, suppose that théllowing portion of code appears
somewhere in the client and is executed with the above values for S1 and S2:

12

1) Print_Set(S1);

2) Print_Set(S2);

3) S2 :=8S1;

4) Integer_Set.Remove_Iltem(S1, 2);
5) Print_Set(S1);

6) Print_Set(S2);

Without following the guidelines just mentioned,hat can alient confidentlystate about
the behavior ofthe above code? Asillnbe shown by simulated executiotie client can

not assuredly reasoabout thebehavior of thiscode since the assumptionsrom the
example violateéhe previouslystatedguidelines. To illustrate thigoint, suppose the type
Set is represented in a bounded form containing a record structure involving ahiaeray.
3 of the above code would themake a complete copy of S1 before assigning it to S2.
The effect of line 4, then, would have no effecttbainstance ofS2. Theoutput oflines

5-6 using this representation would be:

S1=>{1,3,4,5},S2=>{1,2,3,4,5)

This simulated execution seems to capturebétevior thabne wouldnormally expect of

a set package. However, suppose thstiead of a bounded representation, a particular
implementation of Set_Template utilized access typespoesent the exported tyfet.

In this scenario, line 3 would then simply make S2 pointhi sameabstractvalue
pointed to by S1. As is often thease when usingointers, thisexampleintroduces
problems concerned witiliasing Using this unbounded forrthe statement found Ime

4 would also havéhe side effect of alteringhe contents of S2. Theal output ofthis
representation would be:

S1=>{1,3,4,5},S2=>{1, 3, 4,5}

In this case, S1 =52, which is perhaps different fromhe behavior thatone would
intuitively expect of Set_Template. Inherent in the aboNstussionare differences
between “deep” and “shallow” copying. Ione case, a complete copy of a particular
instance othe type ignade while inthe other casenly pointers tahe representation of
the value are copied. As illustratedhis can introduce problems when trying to reason
about theclient of acomponent. Enforcinghe use ofimited privatetypes removethis
problem by eliminatinghe availability of the assignmenbperator. Vith limited private
types, clients musise the standard dat@govement operatiooalledSwap rather than the
assignmentoperator. This not only corrects theaforementioned problembut also
improves efficiencyFor example, line 3 othe above codeayhen usinghe boundedorm

of a set, could beiewed as a concerfor efficiency if, for instance, the sets contained
complex elements rather than simple Integers.

Once the choicbas been made to declaexported types aamited private imported
types are also declared this manner. Aside from maintaining consisteriistween
imported and exported types, there igesly importantreason for thiglesign guideline:

13

composability If imported types were allowed to peivate, rather thardimited private
then any implementation othe component would bellowed to usethe assignment
operator associated with the imported type. If the imp@teete type happens to be the
exportedimited privatetype of another component, then the Adapiler wil reject the
composition of these components. Set_Template providegample ofthe advantages
of this guideline. By enforcing thahe imported type Item bemited private in the
Set_Template specification, nestructures such as3et of a Set of Integers gpessible.
Such compositions would otherwise be a violatiorthef semantics of Adgrivate and
limited private types if theseguidelineswere notfollowed. Thus, by declaringpoth
imported and exported types lawited private one can morassuredly reasoabout the
local behavior of a client ahe componentwhile beingcertain thatall components are
composable with each other. These importandelinesare often overlooked bgome
authors, thus, limiting the scope of reuse for their components.

An additional guideline that can b®oticed from a study of Set_Template is that in
addition to exporting the standard operatitmsalize, Finalize,and Swap, the respective
routines are also imported corresponding to the imported fype.is needed tallow
storage management and data movement of the importettdypevithin the component.
All temporary variables of the imported type are initialized and finalRather tharusing
the assignmentoperator tocopy variables ofthe imported type, the Swap operation
associated with Item is used instead. For example, the code to implement Add_Item would
need to make use of ltem_Swap in ordemtwvethe datavaluerepresented by X into the
set.Sincethe valuerepresented by X is swapped, amwt copied, thespecifications must
indicate the returningalue of X. Inthe case of Add_Item, thealue of Xreturnedfrom
the procedure is some initial value obtained from the underlying type representation.

2.4 Implementation

Efficiency is animportant characteristic of a reusalplert. Unless reusablearts are as
efficient ascustom-made software partsybstantial reuse illv not result. There is a
common misconception that reusapkats arenecessarily inefficient. Othe contrary, it
has been argued in [Harms 91], for example, that this meebe thecase. Techniques for
building efficient implementations of reusabperts, and analysis oftheir efficiency
characteristics, are part of the reuse-based cour#i@s process, importargrogramming
techniqueqe.g., recursiorand backtracking) and methods falysis of algorithms are
discussed. Although more advanced techniques, such as comstatization and
finalization,are postponedntil later in thecurriculum, studentstill gain anappreciation
for the importance ofefficient implementationsFor more information on designing
efficient implementationssee [Bentley82], which describes various techniques for
increasing the efficiency of software, in general.

14

CHAPTER 3

Description of Materials for the Second Course

This chapter presents a course outliwkich has beemused to teach the reuse-based
course. The chapter also contains a sequence and descriptsempfe laboratory
assignments. The assignments chosen to be discussed in these sedalidypsaardset of
the totalcollection of labs that we hawkeveloped but are thoséhich bestexemplify our
overall goals.

3.1 Lecture outline

In [Sitaraman 93b], a completet of materials, including homeork assignments and
lecture notes, is presented. Tioowing outline illustrateghe order inwhich materials
are introduced in the course. This outline will be referenced throughout the report.

*1. The Engineering Metaphor Week 1

*2. Syntactic and Semantic Specification Week 1

*3. An Introduction to Formal Specification Week 2

4. Protected, Abstract, and Generic Data Types Week 3-4

Key example: Sets

5. Stacks: Design, Specification, and Implementation Week 4-6
Specification of unbounded stacks
An introduction to design issues in specification
Defensive and non-defensive specifications
Primary and secondary stack operations
Guidelines
Problem solving using stacks
Specification of bounded stacks
An implementation of bounded stacks

6. An introduction to certification of correctness of implementations Week 7
Key example: Certification of bounded stacks

7. An introduction to efficiency analysis of implementations Week 7-8
Key example: An analysis of a bounded stack implementation

8. Queues Week 8

15

Specification of unbounded and bounded queues
Secondary queue operations

Problem solving using queues

An implementation of bounded queues

9. Lists Week 9
Specification of lists
Secondary list operations
Problem solving using lists
List-based layered implementations of unbounded stacks and queues

10. Pointers as an implementation mechanism for unbounded ADT'sWeek 10-11
An introduction to access types and variables
An implementation of lists using pointers
Direct implementation of unbounded stacks and queues

*11. Recursion as a problem solving vehicle Week 11-12
Examples
Implementation of Stack, Queue, and List secondary operations

12. Trees Week 12-13
Specification
Tree traversals
An implementation of trees using pointers

13. Searching Week 14
Specification
Multiple implementation techniques
Linear and ordered linear search
Binary search trees
Searching using hash tables

14. Sorting Week 15
Specification
Multiple implementation techniques
Bubble Sort, Merge Sort, and Quick Sort
15. Course summary Week 15
*Note: Parts orall of chapters 1 (context setting), 2 andspecification ofprocedures),

and 11 (recursion) can be profitaloigvered in dirst course at WestVirginia University,
recursion is covered in the second course.

3.2 An example laboratory sequence

16

Laboratory sectionplay animportant role in the reuse-motivated second course. It is the
forum where students actually gain practice in applying the sofevaiaeering principles
that they have beetaught in the lecture section of tloéass. Inall of the laboratory
sections that have been offereger the past four semesters, theeems to be recurring
themes in the descriptions of tlssignments. Early ithe semester, the students are
simply users of a component. Ne#ttey become implementers ofcamponent using a
layeredapproachFinally, students implemetiteir own componentssing “from-scratch”
methods utilizing access types or arrays.

Examples of labs that have been used in the past include:

« Backtracking problems whetbhe students argiven astack package and asked
to solve some applicatidie.g., The EighQueens problem, drelping amousefind
cheese in a maze);

« Manipulation of é&Super Integer packagehich allowsrepresentation of integers
larger than that provided by the standard integer type; and

« Incorporation of a Set package to solve graph problems.

This section provides specificsequence ofabsused in the Spring 199#fering of the
course. Each description of ttad follows an outline whicleonsists of a statement of the
problem, thetems supplied byhe lab instructor, the week imhich the lab is assigned,
and the principles taught.

Lab Assignment 1 — Introduction to Super Integers

Problem: Giventhe specification to aSuper Integer component, construct
secondary operations for this compon@ng., Print_Super_Ingnd create alient
program which performs various manipulations on variables of type Super_Int.

Items supplied byhe Lab instructor:Listing of the Super Integespecification.
Also, informationabout how to access the Super Integer object codinkarg
purposes. Student does not see any implementation of Super Integers.

Course Outline: Week 2-4

PrinciplesTaught: Separation cpecification and implementations, Specification-
based reuse, Understanding of abstsgpecifications, Construction of secondary
operations.

Lab Assignment 2 — Postfix Evaluation of Super Integers

17

Problem: Giventhe specificationfor an unbounded Stack component, create a
postfix evaluator for Super Integers.

Lab instructorsupplied items: Listing ofhe Stackspecification. Also, information
about how to access the Stack object coddirfking purposes. Student does not
see any implementation of the Stack component.

Course Outline: Week 4-6

Principles Taught: Problemsolving using Stacks, Defensive and non-defensive
programming.

Lab Assignment 3 — Layered Stack Implementation

Problem: Giventhe specification to a Listcomponent,implement the Stack
component from assignmetwo using a layere@pproach based on LigRe-link
the Stack created ithis assignment witlthe client program from the previous
assignment.

Lab instructorsupplied items: Listing othe List specification. Also, information
about how taaccess the List objecbde forlinking purposes. Student does not see
any implementation of the List component.

Course Outline: Week 7-9

Principles Taught: The layered implementatiorapproach towardcomponent
construction, Introduction to the List abstraetta type Multiple implementations
for the same specification.

Lab Assignment 4 — “From-Scratclifnplementations of Lists
Problem: Giventhe specification to a Listomponent, create a “from-scratch”
implementation of this component using access types. Alssate secondary
operations, such as Print_Lisghich are writtenrecursively. Re-link this new
implementation with the previous assignment to provide the postfix evaluator.

Lab instructor supplied items: None

Course Outline: Week 10-12

Principles Taught: Recursion, Use of Ada access types, “From-scratch”
implementations.

3.3 Laboratory descriptions

18

This section provides more detailed description of how three recurrigg themes are
implemented. Each description contathsee sub-sectionwhich provide a list of the
goals that are desired,sammary ofthe assignment, and possible variations. Provided in
Appendix A are actualassignment descriptions whi@re given to the studentsThey
provide specific examples ohow the following themesare adapted in the course.
Appendix B containsource coddistings which offer solutions tthe assignments from
Appendix A.

Sample Lab Assignment 1
Student as client of a reusable component

Goals
To teach the following principles:

+ The ability to understand formal and abstract expressions of a specification;

Specification-based component reuse;

The need for separating the specification of a component from its implementation;

Acquaint each student with the notation of a specification language; and

Construction of secondary operations.
Summary

Traditionally, the first assignment has alwayscused onsolving some backtracking
problem using atack package provided by the instructor. Sewdifidrent backtracking
problems have been introducedtte studentsExamples of problemsased in the past
include:

« The Eight Queens problem, whereblye students mustind all possible
combinations of placing eight queens on a chHessrd so that no queen can be
attacked by another;

« Helping a mousénd a piece of cheese by movingrough amaze which contains
dead-ends; and

« Assisting a squirrel in climbing thetop of a treefilled with manyempty branches,
to find an acorn.

This section,however, wll describe an assignment whiokes the Set_Templateom
Chapter 2. A description of several backtracking labs can be found in [Gray 93].

19

Setscan often be used as an #&dvardsolvinggraph problemsAdditionally, they can be
utilized to help solvether mathemtical problems such as prime numgenerationThis
sub-section provides a description of how students are first introduced to Set_Template by
asking them to implementslution of theSieve ofEratosthenes algorithm. The students

are given a copy of the Set_Templgpecification and toltiow to access the object code
version ofthe body to allowfor properlinking. They must construct &lient program

which utilizes Set_Template to generate a list of prime numbers.

Whenthe students argiven the Set_Template componetitey are asked toiiew the
specification as @ontract betweethemselves anthe implementer othe package, i.e.,
thelab instructor. This reinforceghe notion that the developer and user of a component
are oftendifferent people. Thewre assured that the Set_Template operatighsvark
correctly provided they followthe specification. They must surmise on their own, by
reading the specification, the syntax and meaning of each operation. Thus, the students get
an early example of the importance of providing specifications véreElinambiguous. As
notedearlier, to addemantic information to Ada package specifications, we use a close
dialect of the RESOLVE specification language [HollingswortB2b, Sitaraman 93a,
Weide91]. RESOLVEspecificationsare formal, but yet succinct and understandable by
freshmen who have been briefly exposed to topics covered in discrete mathematics.

A final requirement of theassignment is taconstruct secondary operations for the
component. The assignment directs the students in assembling six secondary operations, as
shown in Figure 3. Several of these operations are needed in the driver prdglam w
others arencludedfor completeness. Notice that the secondary operations require access
to a packagealledInt_Sets.This is simply a pre-instantiation of Set_Template based on
Integers.This component is also supplied the lab instructor. Thereliance onint_Sets,
however, forces the component $acrifice genericityfor the sake ofsimplicity. An
alternative to providingnt_Sets would be téully parameterize the neededt operations

as generic parametershis would allowfor truly generic secondary operatioir an
illustration of fully parameterized secondary operations, see [Gray 93].

with Int_Sets;
package Secondary_Set Ops is

procedure Copy(S1, S2: inout Int_Sets.Set);
--lensures S1 = #S1 and S2 = #S1

procedure Clear_Set(S: inout Int_Sets.Set);
--lensures S ={}

20

procedure Print_Set(S: inout Int_Sets.Set);
--l ensurese S = #S and output = S

procedure Union(S1, S2, S3: inout Int_Sets.Set);
--l ensures S1 = #S1 and S2 = #S2 and
-- for all X : Integer, X is_an_element_of S3 iff
-- Xis_an_element_of S1 or X is_an_element_of S2

procedure Intersection(S1, S2, S3: inout Int_Sets.Set);
--l ensures S1 = #S1 and S2 = #S2 and
-- for all X : Integer, X is_an_element_of S3 iff
-- Xis_an_element_of S1 and X is_an_element_of S2

procedure Difference(S1, S2, S3: inout Int_Sets.Set);
--l ensures S1 = #S1 and S2 = #S2 and
-- for all X : Integer, X is_an_element_of S3 iff
-- Xis_an_element_of S1 and X is_NOT_an_element_of S2

end Secondary_Set_Ops;

The Specification of Secondary Set Operations

Figure 3

Variations
As stated above, backtracking problems have been traditionally uSesfiest laboratory
assignment. Similar labs that maliee of abstract data typether than a set or stack
could eaily be developed. Foexample, a lalinstructormight givethe students a queue
package and ask them to writelgent program that uses the componertiey might be
asked to use the queuedionulate a message passing system witegreests to send and
receive messageme handled and placed oncueue.Alternatively, they mightuse the
queue tosimulate arow of tellers at a bank where each teller has a queue of customers
with individual requests to be serviced.

Sample Lab Assignment 2
Student as an implementer of a layered component

Goals

This lab instills the following principles, in addition to those already named:

« Construction of new components by layering them on top of existing components; and

- Multiple implementations, with different efficiency characteristics, for a given
specification.

Summary

21

This sub-section describes an assignment that is Hiesgme idea athe lastassignment
but offers somewhat of a change in tih@plementation ofSet_Template. Inthis
assignment, the students greenthe specification to a listomponent shown in Figure 4.
Implementation detailaboutthis componenare hiddenbut access to the object code is
provided to allowlinking. They are then asked to ughis component toactually
implementthe operations of Set_Templatdich they have already seen amkd.They
must implement the set operations solely by makaily tothe operations of Figure 4 and
are notallowed to useany form of poiters or array constructs. Thus, Set_Template is
implemented by layering it on top of another component. The lab described in the previous
sub-section is reused in this caserbylinking it with the newsetimplementation. The
assignment should assishe students inbeginning to thinkabout how multiple
implementationgor the same specificatioare constructed [Sitaram&a2]. Also, the ease
with which this labcan be completed should reinforce tea ofreuse. Studentiearn
that it is often advantageous to make use of pre-existing standard compatiestshan
“re-inventing the wheel”.

The concept used to represent lisecomponent in Figure 4 is different frotine typical

list concept presented in textbooks like [Booch 87]. In particular, the abiskeacdf lists

is presented withowtiscussing pointers or access typeshmfigure, a typealled List is
modeled agwo strings of somedther typenameditem. Thesetwo strings arecalled,
appropriately, “left” and “right”. This view can be bettenderstood if oneenvisions a
conceptual cursor that separates twe strings. The package provides operations to
move thiscursor around thést as well aghe ability to perform insertions and deletions.
To illustrate this notion of &ursor, as it wouldapply to a list, examinghe following
instance of a list variable called L:

I
34|7263

The value of L.Left would contaithe two elements 3 and #hile the value of L.Right
would contain the fouvalues 7, 2, 6, and 2\l insertions and deletiorage performed to
the right of the cursor. The Move_To_Left Endd Advance operatiorsre used to
traverse through thelist. Using the above values of list L, a call to the
Move_To_Left End operation, followed by a call to Remove_Right, would result in L
now resembling the following:

I
147263

As a design principle, functions needed to chibekrequireslause ofall operations are
also included irthe specification,e.g., At_Right_EndThis illustrateghe design principle
of adequatdunctionality. Theoperation Swap_Rightsilvnot beused in this assignment.

22

It has been providefbr future assignments thahay implemensecondary operations. It
has been found useful eonstructingefficient implementations of a Copy_Lisperation
[Weide 91].

The students have often found that this assignment can be comytbtedeverahours.
Almost all of the required set operations tliaéy must write can benplemented with a
small amount otode. Forexample code toimplementthe Add_Item set operatiamould
simply entail makinghe proper call to a correspondilig operation, i.e., Add_Right. A
studentonly needs to understand tkpecification ofthe list componentwell enough to
discern whatalls correspond tsimilar notionswithin the set operationghis reinforces
the concept of specification-based component reuse.

generic

type Item is limited private ;

with procedure Item_lInitialize(X : inout Item);
--l ensures x = initial_Item

with procedure Item_Finalize(X : inout Item);

with procedure Item_Swap(X, Y : inout Item);

--lensures X = #Y and Y = #X
package List_Template is
type List is limited private ;
--I abstract model: a pair of mathematical strings of Items,
-- named Left and Right

-- standard operations

procedure Initialize(L : inout List);

--l ensures L.Left = empty_string and L.Right = empty_string
procedure Finalize(L : inout List);
procedure Swap(L1, L2 : inout List);

--lensures L1 =#L2 and L2 = #L1

The Specification of a List Component
Figure 4

-- List-specific operations

procedure Move_To_Left End(L : inout List);
--1 ensures L.Left = empty_string and L.Right = #L.Left * #L.Right

procedure Advance(L : inout List);
--1 requires L.Right /= empty_string
--l ensures L.Left * L.Right = #L.Left * #L.Right and
--1 thereExists X : Item, s.t., L.Left = #L.Left * X

procedure Add_Right(L : inout List;
X: inout Item);

23

--l ensures L.Left = #L.Left and L.Right = X * #L.Right and
-1 X = initial_Item

procedure Remove_Right(L : inout List;
X: inout Item);

-- requires L.Right /= empty_string

--l ensures L.Left = #L.Left and #L.Right = X * L.Right

procedure Swap_Rights(L1, L2: inout List);
--l ensures L1.Left = #L1.Left and L2.Left = #L2.Left and
--1 L1.Right = #L2.Right and L2.Right = #L1.Right

procedure At _Right End(L : inout List;
At_End: inout Boolean);
-l ensures (L = #L) and (At_End = true iff L.Right = empty_string)
procedure At Left End(L : inout List;
At_End: inout Boolean);
--l'ensures (L = #L) and (At_End = true iff L.Left = empty_string)
private
type List_Rep;
type List is access List_Rep;

end List Template;

The Specification of a List Component
Figure 4 (cont.)

Variations

Although the above descriptiolayers aset package oriop of a pre-existing list
component, it i€ertainly plausible thadne could also use alternative abstdata types.
For instance, the studentsight beasked toimplement asetlayeredupon a deque or a
standard FIFO queue rather thaimsa They also could be asked @oalyzethe efficiency
of each operation in comparison ¢ther strategies. W this in mind,the studentswill
come to realizéhe need foefficient implementations sindée client will probably decide
to rewrite the componerthemselves ithe component doasot meet their performance
requirements.

Sample Lab Assignment 3
Student as an implementer of a reusable component built from-scratch
Goals

In addition to theprinciples already named, this labtroduces thefollowing new
concepts:

+ Use of access types to efficiently implement components from-scratch; and

24

« Introduction to the use of recursion.
Summary

This sub-section describes variations to a laboratory assignment thféenspresented
toward theend of the semester. It tends to focus morspmetific details oimplementing
components, e.gusingpointers. Itbuildsupon the previousvo discussions by requiring
the students tdinally write lower level implementations othe list component. The set
package will still be layered on top of the list but in this case the students actpeldon
using access types to represent unbounded components.

Variations

Several possible variations could sxgggested towariinplementingthe list in waysother
than pointers. Thést itself could be layeredpon analready assemblezbmponent or the
implementation details might opt to focus on an array based app/Axditionally, rather
than concentrating on using a list ¢onstruct the set as done in the previtayered
implementationthe idea of pointers could be used itoplementthe setdirectly, which
would allowone toeliminatethe need foimplementing listsaltogether. Also, secondary
operations follists could berequestedsimilar to thosedescribed in thdirst assignment.
Students might be asked to implement a secondary operation which performs a Copy_List,
usingthe primary Swap_Rightsperation. Correspondingly, the studemisy beasked to
write secondary operations for thst package to provide thicilities for printing and
reversing lists. At this timethe studentsmay be required to write the secondary
operations recursively.

25

This page intentionally left blank.

26

CHAPTER 4

Related Work

This chapter provides discussion ofvork related to the reuse-based approach. firke
section describes certain assumptions expectedinfdent upon entering the reuse-based
course. A second section compares the reuse-based apmtiackher methodeffered

by either textbooks or course outlines obtained from instructors of related courses at other
institutions.

4.1 Topics to be covered in the first course

Upon entering the reuse-based second coseseral assumptiorsre made concerning
certain topics that the student should beilfanzed with from the first course. In our
implementation othe approach at We$trginia University, studentsrefirst taught the
basicconstructs of the Ada language in firet course. The textbook used to teach these
constructs in thdirst coursehas often beeffFeldman92a]. In order teensure successful
performance in the reuse-based second course, students Baeeldeen exposed to at
least chapters one through nine from tbigt. Specifically, studentareassumed to have a
knowledge of thdollowing material, withthe corresponding chapters fr¢heldman92a]
indicated:

Fundamental concepts of computer systems (Chapter 1);

« Basic problem solving techniques (Chapter 3);

« Introduction to top-down and structured design (Chapter 3);

« Control constructs, e.g., 'if and 'case’ statements (Chapters 4 and 7);

« lterative constructs, e.g., various 'loop' constructs (Chapters 5 and 6);

« Data structures using scalar and composite types (Chapters 7 and 8); and

« Basic debugging strategies (Chapters 2, 5, 6 and 9).
The above materiaovers a large portion of the suggested recommeagdettulum for
thefirst course, as proposed [ikoffman 84]. We do notassume, howeveany coverage
of access types or generics from the first course. Furthermore, although recursion could be
introduced in thdirst course (e.g., chapter thirteen[BEldman92a]), wehaveopted to
postponediscussion of this problem solving tool untthe second course. Walso
postponediscussion of algorithm analysis untihe second course, contrary to the

suggestion offKoffman 84]. In the future, the topic of proceduspecificationswill
probably be moved into the first course.

27

An interesting discussion whidbcuses on thérst course can be found [feldman93],
where an approach is describeddesigning and teachirtgefirst course in a largelass,
i.e., over 350 students per quarter. dlso provides several suggestive laboratory
assignments whiclcould be profitably utilized to inculcatéhe material previously
enumerated. AlsdFeldman92b] provides first persoprofiles of how twelveinstitutions
incorporate Ada into their first and second courses.

4.2 Distinguishing features

This sectionidentifies several distinguishing characteristicstité reuse-based approach
which differ from traditionalmethods for teaching the secooourse. A comparison is
made betweethe outline presented in Chapter 3 and various textbooks/outlines used to
teach the second course in other contexts.

The most obvious featumhich distinguisheshe approachHrom other methods is the
introduction of formal, yet understandable, specificationsfireshmen levetourse.Such
formal methodsare fundamentalfor teaching softwareengineering principles. In the
course, students reuse a packiagmediatelyafter seeing its specificatiomut long before
actual implementationsire discussedThis emphasis is highlighted bghe example
sequence oflab assignmentpresented in the previous chapteros¥ltextbooks used for
second courses dwt concentrate ospecificationse.g.,[Smith 87, Horowitz 78]. The
few textbooks that do usspecificationsare oftenlimited to syntactic specifications, e.g.,
[Booch 86]. Thespecifications thathe students see in the reuse-based course are both
syntactic and semantic. These specificatiares also written in a amner that allows for
multiple implementations, an idea which many authors seem to disregard.

The reuse-based course atsophasizeshe need fordesigning arf‘appropriate” set of
operations on abstract data égp the standardization and temall number of primary
operations make alract data typesasy tounderstand. ficiency issuesalso play an
important role in the courseyery implementation discussedtime course after week six
is analyzed carefully. Ithe reuse-based approach, students are expostssitm issues
that are not normally discussed in traditional freshmen courses.

An approach for teaching the secarairse which sharesiumeroussimilaritieswith the
reuse-based approach, can be found in [BeRBgran approackvhich the authors term
object-based. A strikingimilarity between the object-based and reuse-based approach is
that both methods provideemantic specifications. Beidleapproach, howevengpts to
useinformal assertionsvhile our specificationsare morgormal. As an example, Figure 5
shows how thé&op procedure for a Stackspecified in [Beidle®3]. Figure 6 shows our
specification ofPop. Here, theype Stack iamodeled using mathematical stritigeory.

The ensures clause contains an assevitunh makesuse of the concatenatia@perator,

k)

procedure Pop(An_Element : out Object_Type;
The_Stack : inout Stack_Type);

28

-- Pre Cond : The_Stack is not empty
-- Post Cond : Top of stack removed and placed in An_Element
-- Exceptions : Stack_Is_Empty

A Procedure Specification Using the Object-based Approach
Figure 5

There areseveral important differences betwettie design of components presented in
[Beidler 93] and the ones whaveused. Forexample,many designs, includinthose in

[Beidler 93], incorporate what we tergecondary operations in tlsame specification as

primary operations. Furthermore, a notatl#erence inthe implementation othe object-

based approach is the construction of student teams. The reuse-based approach, as stated
earlier, forms a team only between the student and instructor, rather than among students.

procedure Pop(S: inout Stack;
X: in out Item);
--l requires S /= empty_string
--lensures #5 =S * X

A Procedure Specification Using the Reuse-based Approach
Figure 6

In otherdetails related tdhe outline of Chapter 3ote that pointers are not taught until
much later in the courseLists aretaught before pointers amven introducedmade
possible onlythrough abstracimodeling. The specification of Lists, aburse, do not
involve pointers. Introducing access types after lwgered implementatiompproach
allows students to morkelly appreciate the advantageslayered implementations and
reuse in terms of ease of construction. Studgnitekly discover that theassembly of
reusable components is considerably easier than the “from-scratch” method.

Finally, it isessential tanote that mostraditional principlegaught in a second course are
still taught inthis course.This is critical because we dwt want todisplace principles
taught in aconventional secondourse (e.g.efficiency analysispointers, and recursion)
which are important foproblem solving. Principles such escursion, however, can be
moved to thefirst course. The reuse-based approach, therefore, provideasible
context for introducing software engineering principles in most schools.

29

This page intentionally left blank.

30

CHAPTER 5

Experience and Conclusions

Over the past four semesters, the appratdtribed in thiproject reporhas been used

to teach the second course in compsi@ence athe WestVirginia University. It was
developed tattack acommon problem found in most curricula, i#e introduction of
fundamental principles afomputerscience void oany particular contextEarly exposure

to theprinciplespresented in thiseport wil aid stidents inapplyingthe ideastoward a

vast majority of the programming projects that theyillwencounter throughout the
remainder of their undergraduate careers. uBlzing software reuse as thaesired
context for introducing traditiongrinciples,core softwarengineering principlearealso
introduced at an early stage rather than abstaining from such material until the senior year.

The reuse-based approadatstills software engineering principleswithout displacing
traditional conceptsaught in a second course, and thus providesaetical approach for
adaptation in most schools. Promising feedback has been received from professors at other
schools. A range of research and teaching schmalsiding The OhioStateUniversity,

Indiana UniversitySoutheast anfluskingum Collegeare committed taexperimenting

the reuse-based approach in the Fall of 1993.

One of the most significant findings of our research is the ability of freshmen to understand
specifications whenpresentedusing our specification approach, demonstratinthat
specifications can bleoth reasonably formal and understandalilee approaclseems to
minimize what Krueger termscognitive distance[Krueger 92], ameasure of the
intellectual effort expended to take a software system from one level to another.

There isstill muchwork thatneeds to be done with th@plementation othe approach.

For examplemost of the proposed laboratagsignments thatere mentioned under the
Variations sections of Chapter 3 need to be construdedciples that can be profitably
taught in thdirst course are alsbeing investigated. It is possible to “push” some of these
principlesdown into thefirst course, such asom chapters omprocedurespecifications

and recursionAdditionally, weare currentlyjkeepingtrack of previous students winave

taken the coursesingthe approach. It would be interesting itwestigate orhow the
approach affected students in courses encountered later ioutheulum. Current
feedback from students, obtained through confidential evaluations, has been very positive.

Finally, though theoverall approach is language-independent, Ada has proved to be a
mostsuitable languagéor teaching theserinciples to freshmestudents. Aradditional

area for future researamight explorehow the approach could bmplemented using
languages other than Ada, e.g., C++, Pascal, and Ada 9X.

31

APPENDIX A

Sample Lab Descriptions

Included in this appendix is a sample sequence of three laboratory assignment descriptions.
These descriptions illustrate the format of hassignmentare presented to students.
Each assignment description provides students with the following information:

An introduction to the assignment;

A list of the goals, or principles, that the assignment strives to teach;

A listing of supportive source code written by the lab instructor;

A description of the deliverables that they must provide; and

Instructions and suggestions for completing the assignment.

32

Sample Lab Assignment 1
Sieve of Eratosthenes

Computer Science 16
Summer 1993

Due Date

This project is due in three weeks.

Principles Taught

« The ability to understandormal and abtract expressions of a specification. You
will become acquainted with the notation of a specification language;

« Specification-based component reuse;
« The construction of secondary operations; and

+ Introduction to the Set_Template.

Project Description

An ancient Greek astronomer/mathematiai@medEratosthenesvented a method

for calculating prime numbers. For those of you who forgptjmae number is defined
simply as an integer that can éeenly divided by n@therwhole numbeiotherthan

itself or 1. For example,the first five prime numbersare 2, 3, 5, 7, andl. The
algorithm works by first inserting all prospective numbers into a set. As prime numbers
are discoveredall multiples ofthe primesare then removefitom this prospectiveet.

In a sense, during each iteration, thkgorithm sifts through and removes all
prospective numbers which are not prime.

For this assignment, you mushplementthe Sieve ofEratosthenealgorithm using a
Set_TemplateThis template wll be provided by the instructorYou also must
construct several secondary operations that involve sets.

A general outline of the Sieve of Eratosthenes algorithm follows:

1.a) In the setalledProspectsplaceall numbers thatall within the range ohumbers
to be searched. Fexample, you il be required tofind all primes from 1 tal00 so
you must first place these numbers in Prospects.

1.b) Make sure the set called Primes is empty.

33

1.c). Assign the first prime number (2) to a variable called Next.

2) Continue incrementing ekt until the currentvalue of Next is a merber of
Prospects.

3) The value of Mxtwhich survivedstep 2 must be prime number. Add Bixt to the
set called Primes.

4) Remove all multiples of Next (including Next itself) from #& Prospects.
5) If Prospects is not empty, then go to step 2.
6) Print the set Primes.

Support Code

Thefollowing represents a package that is alrelagylemented angrovided for you.
You may assume that the implementation of this package is correct.

generic

type Item is limited private ;

with procedure Item_lInitialize(X : inout Item);
--l ensures x = initial_Item
with procedure Item_Finalize(X : inout Item);
with procedure Item_Swap(X, Y : inout Item);
--lensures X = #Y and Y = #X
with procedure Item_Comparator(X, Y : inout Item)
Answer : out Boolean);

--lensures X = #X and Y = #Y and Answer iff (X =Y)
package Set Template is

type Set is limited private;
--I abstract view: Set is modeled by a mathematical Set of Items

-- standard operations

procedure Initialize(S : inout Set);
--lensures S ={}

procedure Swap(S1, S2: inout Set);
--l ensures S1 = #S2 and S2 = #S1

procedure Finalize(S : inout Set);

-- set operations

34

procedure Add_ltem(S: inout Set;
X: inout Item);
--1 requires X is_NOT_an_element_of S
--lensures S = #S U {#X} and X = initial_Item

procedure Remove_ltem(S : inout Set;
X: inout Item);
--I requires X is_an_element_of S
--lensures S = #S - {#X}

procedure Remove_Any_One_ltem(S: inout Set;
: inout Item);
--I'requires S /={}
--l ensures X is_an_element_of #S and S = #S - {X}

procedure Is_Member(S : inout Set;
X: inout Item;
Member : inout Boolean);
--l'ensures S = #S and X = #X and Member = (X is_an_element_of S)
procedure Is_Empty(S: inout Set;
Empty : inout Boolean);

--lensures S =#S and Empty = (S={})
private

type Set_Rep;
type Set is access Set_Rep;

end Set_Template;

An instantiation of the above templatesing integers, is also provided. The package is
called Int_Sets and you will be instructed on how to access the object code.

Thefollowing file (namedSETSEC.LIB in my account) represents fpecificationdor a
package that you mushplement. One ofhe operations, i.e., Union, aready written to
give you an idea of what is needed. You must complete the remaining operations.

with Int_Sets;
package Secondary Set Ops is

procedure Copy(S1, S2: inout Int_Sets.Set);
--lensures S1 = #S1 and S2 = #S1

procedure Clear_Set(S: inout Int_Sets.Set);
--lensures S ={}

procedure Print_Set(S : inout Int_Sets.Set);
--l ensurese S = #S and output = S

procedure Union(S1, S2, S3: inout Int_Sets.Set);
--l ensures S1 =#S1 and S2 = #S2 and
-- for all X : Integer, X is_an_element_of S3 iff
-- Xis_an_element_of S1 or X is_an_element_of S2

procedure Intersection(S1, S2, S3: inout Int_Sets.Set);
--l ensures S1 =#S1 and S2 = #S2 and
-- for all X : Integer, X is_an_element_of S3 iff
-- Xis_an_element_of S1 and X is_an_element_of S2

35

procedure Difference(S1, S2, S3:: inout Int_Sets.Set);
--l ensures S1 = #S1 and S2 = #S2 and
-- for all X : Integer, X is_an_element_of S3 iff
-- Xis_an_element_of S1 and X is_NOT_an_element_of S2

end Secondary_Set_Ops;

Deliverables

In addition to submitting a samptan of your program, you must provide the source
listing for the files SIEVE.PRC (the driver program) and SETSEC.PKG (the
secondary operations implementation).

Your sample run should resemble the following:

$ run sieve
What range do you want to search for primes (1-N) ? 100

97 89 83 79 73 71 67 61 59 53 47 43 41
37 31 29 23 19 17 13 11 7 5 3 2

Specific Instructions

1. Set up a link into my account so thaiu have access to Set_Template and
Int_Sets. This is done with the following command:

$ acs enter unit un036:[272.adalib] Set_Template, Int_Sets

The above command allows you to make use of Set_Template without having to
compile the files yourself.

2. Copy the files SETSEC.LIB and SETSEC.PKG from my account. You then need to
compilethe SETSEC.LIBfile. Your first programmingtask is to then complete the
implementation ofthe operations that have not already writtenfor you. The
operations in SETSEC.PKG are to be writtenntgking calls tothe Set_Template
operations.

3. Implement the driver routine. Use the algorithm presented in the Project Description
as a guide.

4. Compile all needefiles and link the driver. Run the driver atutn in tome,within
three weeks, the required deliverables.

36

Sample Lab Assignment 2
Layered Implementations

Computer Science 16
Summer 1993

Due Date

This project is due in one week.

Principles Taught

In addition to borrowing some of th@inciplestaught in thefirst assignment, this
second assignment introduces the following new principles:

The layered approach toward software construction;

The need for separating the specification of a component from its implementation;

Multiple implementations for the same specification; and

Introduction to the List_Template.

Project Description

In the lastassignmentthe Set Template package was provided for youthis
assignment, yoget thechance to write youown implementation of Set_Template
using a layereapproach. You W be given access to a List_Templdkat youmust

use to write the set operations. Yaomplementation othe set operations mustake
calls tothe List_Templatenly; noother method isllowed. Hopefully, you W find

that this approach isot only easyput alsovery productive in terms of the amount of
time needed to completihe assignmentYou should be able to completdl the
requirements withione totwo hours. After the Set_Template package is completed,
you will relink your new version with the first assignment.

Support Code

Thefollowing represents a package that is alrelagylemented angrovided for you.
You may assume that the implementation of this package is correct.

generic

37

type Item is limited private ;

with procedure Item_lInitialize(X : inout Item);
--l ensures x = initial_Item

with procedure Item_Finalize(X : inout Item);

with procedure Item_Swap(X, Y : inout Item);

--lensures X = #Y and Y = #X
package List Template is
type List is limited private ;
--I abstract model: a pair of mathematical strings of Items,
-- named Left and Right

-- standard operations

procedure Initialize(L : inout List);

--l ensures L.Left = empty_string and L.Right = empty_string
procedure Finalize(L : inout List);
procedure Swap(L1, L2 : inout List);

--lensures L1 =#L2 and L2 = #L1
-- List-specific operations

procedure Move_To_Left End(L : inout List);
--l ensures L.Left = empty_string and L.Right = #L.Left * #L.Right

procedure Advance(L : inout List);
--1 requires L.Right /= empty_string
--I'ensures L.Left * L.Right = #L.Left * #L.Right and
-1 thereExists X : Item, s.t., L.Left = #L.Left * X

procedure Add_Right(L : inout List;
X: inout Iltem);
--l'ensures L.Left = #L.Left and L.Right = X * #L.Right and
-l X =initial_ltem

procedure Remove_Right(L : inout List;
X: inout Item);

--1 requires L.Right /= empty_string

-l ensures L.Left = #L.Left and #L.Right = X * L.Right

procedure Swap_Rights(L1, L2: inout List);
--lensures L1.Left =#L1.Left and L2.Left = #L2.Left and
-l L1.Right = #L2.Right and L2.Right = #L1.Right

procedure At Right End(L : inout List;
At_End : inout Boolean);
--l'ensures (L = #L) and (At_End = true iff L.Right = empty_string)
procedure At Left End(L: inout List;
At_End: inout Boolean);

--l ensures (L = #L) and (At_End = true iff L.Left = empty_string)
private

type List_Rep;

38

type List is access List_Rep;

end List_ Template;
Deliverables
In addition to submitting a sampten of your program, you must also provide the

sourcelisting for the file SET.PKG, which implementsthe set operationssing a
layered approach.

Specific Instructions

1. Set up a link into my account so thyamiu have access to List Template. This is
accomplished irthe same manner ahe previousassignment by usinthe acs enter
unit command.

2. Copy the file SET.PKG from my account. This file provides the instantiation needed
to layerthe set operationgsing a list. Thandividual operationswhich are stubbed
out, are to be completed by you.

3. Compile all needed files and relink with the first assignment.tiRudriver and turn
in to me, by next week, the required deliverables.

39

Sample Lab Assignment 3
“From-scratch” Implementations

Computer Science 16
Summer 1993

Due Date

This project is due in two weeks.

Principles Taught

In addition to borrowing some of thprinciples taught in thefirst and second
assignments, this final assignment introduces the following new principles:

« Construction of software using raw implementations (e.g. access types);
« Dynamic memory deallocation; and

+ Introduction to recursive programming.

Project Description

In this assignment, you ilv continue toimplement acomponent. The method of
implementatiorfor this assignment, howeverjlivbe one which is basedipon a raw
approach to software construction. What tmsans is that you illvbe required to
construct the componensing onlyAda constructs (i.e. access types or arrays). You
are notallowed to usehe layeredapproach in this assignmeiviou will probablyfind

that this method isnuch more difficult than the one used mssignmentwo. There
are, however, situations which the raw approach must be used, either due to
efficiency reasons or th&ack of additional components suitalite layering. The raw
implementation that you ilvcomplete for thisassignment ishe List_Templatehat

you have already seen anded. In this case, you mustplementthe list operations
using onlyaccess types. In addition, you are requirefully implementthe standard
Finalize routine for Lists.This will be accomplished usinghe generic procedure
Unchecked_Deallocatiory.ou will be given more informatioraboutthis requirement

in the lab class. A final requirement of the assignment asks you to rewrite the Print_Set
operation fromassignmenbne. The twist to the neimplementation is that it must be
written recursively.

Support Code

No new support code is needed to complete this assignment.

Deliverables

40

In addition to submitting a sampten of your program, you must also provide the
source listing for théile LIST.PKG, which implementshe set operationssing access
types. You also must deliver the source code changes to Print_Set.

Specific Instructions

1. Copy thefile LIST.PKG from myaccount.This file provides the operatiorthat
you need to write. Complete the package using access types.

2. Rewrite the Print_Set operation recursively.

3. Compile allneedediles and relink withthe secon@ssignment. Ruthe driver and
turn in to me, within two weeks, the required deliverables.

41

APPENDIX B

Lab Solutions

The contents othis appendix provide partial solutions tiee laboratoryassignments
described in Appendix ARather than presenting the complete code for aaslygnment,

only the student eliverables aregiven. A brief description of the code precedeach
source listing.

42

Assignment 1

The student deliverables for assignment one include the construction of the driver program
in addition to the implementation of various secondetyoperations. Thepscifcation for
Set_Template is provided to the students in texin while the implementation of
Set_Template i®nly provided in object code fdmking purposes. An instantiation of
Set_Template for integers is also provided to the students in dbjectand iscalled
Int_Sets. Thdollowing pages present possible solutiorfor the driver routine and the
implementation of the secondary set operations.

SIEVE.PRC
with Int_Sets;
with Secondary_Set Ops;
with Text_IO;
procedure Sieve is
Primes :Int_Sets.Set;
Prospects : Int_Sets.Set;
Empty : Boolean ;
Member : Boolean ;
X,Y,N: Integer ;
Next Integer
package Int_10 is new Text_IO.Integer_I10(Integer);
begin

Int_Sets.Initialize(Primes);
Int_Sets.Initialize(Prospects);

Text_1O.Put("What range do you want to search for primes (1-N) ? ");
Int_10.Get(N);

-- First, begin by filling the set Prospects with all the needed
-- numbers.

X:=2;
while X <=N
loop

Y =X;
Int_Sets.Add_ltem(Prospects, Y);
X =X+1;

end loop ;

SIEVE.PRC (cont.)

43

-- The following block of code computes the prime number between 1-N.

Next := 2;
loop

-- Find the next number contained in the set Prospects...

Int_Sets.Is_Member(Prospects, Next, Member);
loop

exit when Member;

Next := Next + 1;
Int_Sets.Is_Member(Prospects, Next, Member);

end loop ;

-- The number just found must be a prime. Record the result.

Y := Next;
Int_Sets.Add_ltem(Primes, Y);

-- The next block of code removes all multiples of the current
-- prime from the set of prospective numbers.

X:= Next;
while X<=N
loop

Int_Sets.Remove_ltem(Prospects, X);
X := X+ Next;

end loop ;

-- Finally, exit when there are no more prospects...

Int_Sets.Is_Empty(Prospects, Empty);
exit when Empty;

end loop ;

SIEVE.PRC (cont.)

-- Print the results and exit...

Text_IO.Put("The prime numbers, between 1-");

44

Int_IO.Put(N, 0);

Text_IO.Put(" are:");
Text_10.New_Line(3);
Secondary_Set_Ops.Print_Set(Primes);
Int_Sets.Finalize(Primes);
Int_Sets.Finalize(Prospects);

end Sieve;

45

SETSEC.PKG

with Text_IO;

package body Secondary Set Ops is
package Int_ IO is new Text_lO.Integer_1O(Integer);
procedure Copy(S1, S2: inout Int_Sets.Set) is

Temp : Int_Sets.Set;
Empty : Boolean ;
X, Y : Integer
begin

Int_Sets.Initialize(Temp);

-- The following loop moves all of the items from set S1 into
-- set Temp.

Int_Sets.Is_Empty(S1, Empty);
while not Empty
loop

Int_Sets.Remove_Any_One_ltem(S1, X);
Int_Sets.Add_ltem(Temp, X);
Int_Sets.Is_Empty(S1, Empty);

end loop ;

-- The following loop moves all of the items from set Temp into
-- sets S1 and S2.

Int_Sets.Is_Empty(Temp, Empty);
while not Empty
loop

Int_Sets.Remove_Any_One_ltem(Temp, X);
Y =X;

Int_Sets.Add_ltem(S1, X);
Int_Sets.Add_ltem(S2, Y);
Int_Sets.Is_Empty(Temp, Empty);

end loop ;
Int_Sets.Finalize(Temp);

end Copy;

SETSEC.PKG (cont.)

procedure Clear_Set(S: inout Int_Sets.Set) is

46

Empty : Boolean ;
X Integer ;

begin

-- The following loop simply continues to remove items from set
-- S until there are no items left.

Int_Sets.Is_Empty(S, Empty);
while not Empty
loop

Int_Sets.Remove_Any_One_Iltem(S, X);
Int_Sets.Is_Empty(S, Empty);

end loop ;

end Clear_Set;

procedure Print_Set(S: inout Int_Sets.Set) is
Temp : Int_Sets.Set;

Empty : Boolean ;

X Integer ;

begin

Int_Sets.Initialize(Temp);

-- This code makes a copy of the set S. It then removes and prints
-- all items from the copied set.

Copy(S, Temp);

Int_Sets.Is_Empty(Temp, Empty);
while not Empty
loop

Int_Sets.Remove_Any_One_Iltem(Temp, X);
Int_lO.Put(X, 0); Text_IO.New_Line;
Int_Sets.Is_Empty(Temp, Empty);

end loop ;

SETSEC.PKG (cont.)

Int_Sets.Finalize(Temp);

end Print_Set;

47

procedure Union(S1, S2, S3: inout Int_Sets.Set) is

Templ, Temp2 : Int_Sets.Set;
Empty : Boolean ;
X Integer ;

begin

Int_Sets.Initialize(Temp1l);
Int_Sets.Initialize(Temp2);

Clear_Set(S3);
Copy(S1, Templ);
Difference(S1, S2, Temp2);

-- The following loop copies all items found in S1 into the
-- set S3.

Int_Sets.Is_Empty(Templ, Empty);
while not Empty
loop

Int_Sets.Remove_Any_One_Iltem(Templ, X);
Int_Sets.Add_ltem(S3, X);
Int_Sets.Is_Empty(Templ, Empty);

end loop ;

-- The following loop copies all items found in S2, but
-- not in S1, into the set S3.

Int_Sets.Is_Empty(Temp2, Empty);
while not Empty
loop

Int_Sets.Remove_Any_One_Iltem(Temp2, X);
Int_Sets.Add_Item(S3, X);
Int_Sets.Is_Empty(Temp2, Empty);

end loop ;

SETSEC.PKG (cont.)

Int_Sets.Finalize(Temp1);
Int_Sets.Finalize(Temp2);

end Union;

procedure Intersection(S1, S2, S3: inout Int_Sets.Set)
Temp :Int_Sets.Set;

Empty : Boolean ;
Member : Boolean ;

48

is

X : Integer
begin
Int_Sets.Initialize(Temp);

Clear_Set(S3);
Copy(S1, Temp);

-- The following loop moves items from S1. The items from S1
-- are only added to S3 if they can also be found in S2.

Int_Sets.Is_Empty(Temp, Empty);
while not Empty
loop

Int_Sets.Remove_Any_One_Iltem(Temp, X);
Int_Sets.Is_Member(S2, X, Member);

if Member then
Int_Sets.Add_Item(S3, X);
end if ;
Int_Sets.ls_Empty(Temp, Empty);
end loop ;
Int_Sets.Finalize(Temp);

end Intersection;

SETSEC.PKG (cont.)

procedure Difference(S1, S2, S3:: inout Int_Sets.Set) is

Temp :Int_Sets.Set;

Empty : Boolean ;
Member : Boolean ;
X : Integer

begin
Int_Sets.Initialize(Temp);

Clear_Set(S3);
Copy(S1, Temp);

49

-- The following loop moves items from S1. The items from S1
-- are only added to S3 if they can NOT be found in S2.

Int_Sets.Is_Empty(Temp, Empty);
while not Empty
loop

Int_Sets.Remove_Any_One_Iltem(Temp, X);
Int_Sets.Is_Member(S2, X, Member);

if not Member then
Int_Sets.Add_Item(S3, X);
end if ;
Int_Sets.Is_Empty(Temp, Empty);
end loop ;
Int_Sets.Finalize(Temp);

end Difference;

end Secondary_Set_Ops;

50

Assignment 2

As stated in thassignment description from Appendix A, assignnteat is a réativiely

easy assignmembr the students to complete. Tbely true deliverable ighe layered Set
implementation. Theollowing code represents possible implementation ofiow a
Set_Template could be layered using List_Template.

SET.PKG

with List_Template;
package body Set Template is

-- Instantiate the needed list package and complete the definition
-- of the set representation; in this case, layered on a list.

package Set By List is new List_Template(ltem, Item_Initialize,
Iltem_Finalize, Iltem_Swap);

type Set Rep is
record

The_List : Set_By_List.List;

end record ;
procedure Initialize(S : inout Set) is
begin

-- Allocate the space needed for this variable and then initialize
-- the list field...

S:= new Set_Rep;
Set_By_List.Initialize(S.The_List);

end Initialize;

SET.PKG (cont.)

51

procedure Swap(S1, S2: inout Set) is
Temp : Set;

begin

Temp := S1;

S1:=82;

S2 :=Temp;

end Swap;

procedure Finalize(S: inout Set) is
begin

Set_By_List.Finalize(S.The_List);

end Finalize;

procedure Add_ltem(S: inout Set;
X: inout Item) is

begin

-- Simply make a corresponding call to add an element to a list
-- and then initialize the incoming item, as indicated in the specs.

Set_By_List.Add_Right(S.The_List, X);
Item_Initialize(X);

end Add_lItem;
procedure Remove_ltem(S: inout Set;
X: inout Item) is
Temp : Item;
At_End: Boolean ;
Answer : Boolean ;
begin

SET.PKG (cont.)

-- Begin the search for the item at the beginning of the list.

52

Set_By_List.Move_To_Left End(S.The_List);

-- The following loop continually removes items from the list
-- and compares them to the value passed in X. If the value in
-- X is found, then it removes the item from the list. All other
-- items in the list are unaffected.

Set By List.At_Right_End(S.The_List, At_End);
while not At End
loop
Set_By_List.Remove_Right(S.The_List, Temp);

Iltem_Comparator(Temp, X, Answer);
if Answer then

exit ;
else

Set_By_List.Add_Right(S.The_List, Temp);
Set_By_List.Advance(S.The_List);

end if ;
Set By List.At_Right_End(S.The_List, At_End);
end loop ;
end Remove_ltem;
procedure Remove_Any One_ltem(S: inout Set;
X: inout Item) is

begin

-- The following two lines of code simply return the first value
-- that is stored in the list. This is all that the specifications
-- require.

SET.PKG (cont.)

Set_By_List.Move_To_Left End(S.The_List);
Set_By_List.Remove_Right(S.The_List, X);

end Remove_Any_One_ltem;

procedure Is_Member(S : inout Set;
X in out Item;

53

Member : in out Boolean) is

Temp : Item;

At End: Boolean ;

Answer : Boolean ;
begin

-- Begin the search for the item at the beginning of the list.

Set_By_List.Move_To_Left End(S.The_List);

Member = False ;

-- The following loop continually removes items from the list

-- and compares them to the value passed in X. The boolean Member
-- is updated accordingly based upon whether the value in X is

-- found.

Set By List.At_Right_End(S.The_List, At_End);
while not At End
loop

Set_By_List.Remove_Right(S.The_List, Temp);

Iltem_Comparator(Temp, X, Answer);
if Answer then

Member = True ;
Set_By_List.Add_Right(S.The_List, Temp);
exit ;
else

Set_By_List.Add_Right(S.The_List, Temp);
Set_By_List.Advance(S.The_List);

end if ;

SET.PKG (cont.)

Set_By_List.At_Right_End(S.The_List, At_End);
end loop ;
end Is_Member;
procedure Is_Empty(S: inout Set;
Empty : in out Boolean) is

begin

54

-- The following two lines check to see if the Set S is empty.
-- To determine if S is empty, the two lines simply check if
-- there are any elements at the front of the list.

Set By List.Move_To_Left End(S.The_List);
Set_By_List.At_Right_End(S.The_List, Empty);
end Is_Empty;

end Set_Template;

55

Assignment 3

This last example assignment requittes students to write a recusriveplementation of

the Print_Set operatidnom assignmenbne. Also, it is irthis assignemnt whesgudents

are introduced to constructinghplementations using access types. Tdiwing pages

first demonstrate a recursive solution to Print_SetimMplementation of List_ Template,
using access types, is then given.

PRINT SET.PRC

procedure Recursive_Print_Set(S : inout Int_Sets.Set) is

Empty : Boolean ;
X Integer

begin

Int_Sets.Is_Empty(S, Empty);
ifnot Empty then

Int_Sets.Remove_Any_One_Iltem(S, X);

Int_I1O.Put(X, 0);
Text_|IO.New_Line;

Recursive_Print_Set(S);
Int_Sets.Add_Item(S, X);
endif ;

end Recursive_Print_Set;

LIST.PKG

with Unchecked_Deallocation;
package body List Template is

-- The following type declarations are used in completing the
-- definition of List_Rep.

type Node;
type Node_Access is access Node;

LIST.PKG (cont.)

56

type Node is
record

The_ltem : Iltem;
Next : Node_Access;

end record ;

type List_ Rep is
record

Front : Node_Access;
Cursor : Node_Access;

end record ;

procedure Free_Node is new Unchecked_Deallocation(Node, Node_Access);

procedure Initialize(L : in out List) is

begin

-- Creates a dummy node which makes other operations easier to
-- write.

L:= new List_Rep;
L.Front := new Node;
L.Front.Next := null;
L.Cursor := L.Front;

end Initialize;

procedure Finalize(L : inout List) is
Temp : Node_Access;

begin

-- The following code finalizes a list in linear time. Constant
-- time finalization is not covered in the reuse-based second
-- course.

L.Cursor := L.Front;

LIST.PKG (cont.)

while L.Cursor.Next /= null
loop

Temp := L.Cursor.Next;

57

L.Cursor.Next := L.Cursor.Next.Next;
Free_Node(Temp);

end loop ;

end Finalize;

procedure Swap(L1, L2: in out
Temp : List;

begin

Temp :=L1;

L1:=L2;

L2 := Temp;

end Swap;

procedure Move To_Left End(L :

begin

List) is

in out List) is

-- The following moves the cursor to the front, or left end,

-- of the list.

L.Cursor := L.Front;

end Move To Left End;

procedure Advance(L : in out

begin

List) is

-- The following simply moves the cursor to the next element.

L.Cursor := L.Cursor.Next;

end Advance;

LIST.PKG (cont.)

procedure Add_Right(L : in out
X: in out

Temp : Node_Access;

begin

List;
Item) is

-- The following places the value, stored in X, to the right

58

-- of the cursor. Note the use of call by swapping inherent in
-- the code.

Temp := new Node;
Item_Swap(Temp.The_Item, X);
Temp.Next := L.Cursor.Next;
L.Cursor.Next := Temp;
Item_Initialize(X);

end Add_Right;

procedure Remove_Right(L : inout List;
X: inout Item) s

begin

-- The following removes the item to the right of the cursor
-- and stores the value in X.

Iltem_Swap(X, L.Cursor.Next.The_ltem);
L.Cursor.Next := L.Cursor.Next.Next;

end Remove_Right;

procedure Swap_Rights(L1, L2 : inout List) is
Temp : Node_Access;

begin

Temp := L1.Cursor.Next;

L1.Cursor.Next := L2.Cursor.Next;

L2.Cursor.Next := Temp;

end Swap_Rights;

LIST.PKG (cont.)

procedure At_Right_End(L : inout List;
At_End: in out Boolean)

begin

-- The variable At_End will represent whether the cursor is at
-- the right end of the list.

At_End := (L.Cursor.Next = null);

end At_Right_End;

59

procedure At _Left End(L: inout List;
At_End : in out Boolean) is

begin

-- The variable At_End will represent whether the cursor is at
-- the front, or left end, of the list.

At_End := (L.Front = L.Cursor);

end At_Left_End,;

end List_Template;

60

This page intentionally left blank.

61

[Beidler 93]

[Bentley 82]

[Biggerstaff 89]

[Booch 87]

[Edwards 90]

[Feldman 92a]

[Feldman 92b]

[Feldman 93]

[Garlan 92]

[Gray 93]

[Harms 89]

BIBLIOGRAPHY

Beidler, J., “An Object-based Approach to CS2/CS7,”
Computing Sciences Dept., University of Scranton, Scranton,
PA, Final Report for ONR Grant MDA972-92-J-1003.

Bentley, J.LWriting Efficient ProgramsPrentice-Hall, 1982.

Biggerstaff, T. and A. J. Perl&pftware Reusability, Volume
1: Concepts and Models, Volume 2: Applications and
Experience Addison-Wesley, 1989.

Booch, G.Software Components with Ada
Benjamin/Cummings, 1987.

Edwards, S., “An approach for constructing reusable
software components in Ada,” IDA Paper P-2378, Institute for
Defense Analyses, Alexandria, VA, September 1990.

Feldman, M. B., and E. B. Koffmada Problem Solving and
Program DesignAddison-Wesley, 1992.

Feldman, M.B., “Ada Experience in the Undergraduate
Curriculum,”Communications of the ACN85(17), November
1992, pp. 53-67.

Feldman, M. B., “Ada in a Very Large CS1 Course,” In
Seventh Annual Ada Software Engineering Education and
Training Symposiupdanuary 1993.

Garlan, D., “Formal Methods for Software Engineers:
Tradeoffs in Curriculum Design,” IRroceedings of the Sixth
SEI Conference on Software Engineering Educati®@®2, pp.
131-142.

Gray, JG., “Teachingthe Second Comput&cienceCourse in
a Reuse-Based Setting: A Sequence of Labor#&ssignments
in Ada,” In Proceedings of the Eleventh National Conference
on Ada Technologyarch 1993, pp. 38-45.

Harms, D.E., and B. W. Weide, “Efficient Initialization and
Finalization of Data Structures: Why and How,” Technical

62

[Harms 91]

[Hollingsworth 92a]

[Hollingsworth 92b]

[Horowitz 78]

[Koffman 84]

[Krueger 92]

[Luckham 87]

[Lutz 92]

[Meyer 85]

[Muralidharan 90a]

[Muralidharan 90b]

Report, Department of Computand Information Science, The
Ohio State University, OSU-CISRC-3/89-TR11, March 1989.

Harms, D. E., and B. W. Weide, “Copying and swapping:
Influences on the design of reusable software components,”
IEEE Trans. Soft. Engl7(5): 424-435, 1991.

Hollingsworth, J. E. and B. W. Weide, “Engineering
'Unbounded' Reusable Ada Generi¢&dceedings of the
Tenth National Conference on Ada Techno)dgyCOST,
Inc., Arlington, Virginia, February 1992, pp. 82-97.

Hollingsworth, J. Software Component Design-for-Reuse: A
Language-Independent Discipline Applied to Adh.D.thesis,
The Ohio State University, 1992. Available by anonymous FTP
from archive.cis.ohio-state.edu in directory pub/tech-
report/TR1-1993.

Horowitz, E.Fundamentals of Data StructurgSomputer
Science Press, 1978.

Koffman, E. B., “Recommended Curriculum for CS1,”
Communications of the AGNDctober 1984, pp. 998-1001.

Krueger, C. W., “Software ReusACM Computing Surveys
Vol. 24, No. 2, June 1992, pp. 131-184.

Luckham, D., and F. W. von Henke, B. Krieg-Bruckner, and O.
Owe,ANNA: A Language for Annotating Ada Programs
Springer-Verlag, 1987.

Lutz, M., “Formal Methods and the Engineering Paradigm,”
Proceedings of the Sixth SEI Conference on Software
Engineering Education992, pp. 121-130.

Meyer, B., “On Formalism in SpecificationdEFEE Software
2, no. 1, pp. 6-26.

Muralidharan, S., and Weide, B. W., “Should Data Abstraction
Be Violated to Enhance Software Reusefjceedings of the
Eighth National Conference on Ada Technolojifanta, GA,
March 1990, pp. 515-524.

Muralidharan, S. and Weide, B. W., “Reusable Software
Components = Formal Specifications + Object Code: Some

63

[Pressman 90]

[Reuse 92]

[Reuse-Ed 92]

[Sitaraman 92]

[Sitaraman 93a]

[Sitaraman 93b]

[Smith 87]

[Snow 58]

[SPC 89]

[Tracz 89]

[Weide 91]

[Wing 90]

Implications,”Third Annual Workshop: Methods and Tools for
ReuseSyracuse, NY, June 1990.

Pressman, R.Sftware Engineering: A Practitioners
Approach McGraw-Hill, Inc., 1990.

Proceedings of WISR '92 Fifth Annual Workshop on Software

ReuseSan Francisco, CA, 1992.

Proceedings of the Reuse Education WorksMiprgantown,
WV, 1992.

Sitaraman, M., “A Class of Programming Language
Mechanisms to Facilitate Multiple Implementations of a
Specification,”Proceedings of the 1992 IEEE International
Conference on Computer Languag®an Francisco, CA, April
1992.

Sitaraman, M., L. Welch, and D. Harms, “On Specification of

Reusable Software Componentsiternational Journal of
Software Engineering and Knowledge Engineering,June
1993.

Sitaraman, MCourse Notes for the Second Course in
Computer Sciencd®epartment of Computer Science, West
Virginia University, 1993.

Smith, H.Data Structures: Form and FunctiphiBJ
Publishers, 1987.

Snow, C.PThe SearchCharles Scribner and Sons, 1958.
Software Productivity Consortiuswla Quality and Style:
Guidelines for Professional Programmevain Nostrand

Reinhold, 1989.

Tracz, W. J., and S. Edwartimplementation Workingsroup
Report,”Reuse in Practice Workshopittsburgh, PA, 1989.

Weide, B. W., W. F. Ogden, and S. H. Zweben, “Reusable
Software Components,” IAdvances in Computergolume 33,
Ed. M. C. Yovits, pp. 1-65, Academic Press, 1991.

Wing, J. M., “A Specifiers introduction to formal methods,”
IEEE Computer23(9): 8-24, 1990.

64

[Yourdon 92] Yourdon, E.Decline and Fall of the American Programmer
Prentice Hall, 1992.

65

